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“There shall be no slides.”
—Hé&vard D. Johansen

“Har du sett racken hannes?”
—Helge Hoff

“There are no mistakes, just happy little accidents”

—Bob Ross

“Det e bare & ssh’e s inn i HTML5 koden og memlocke stacken!”
-Eddie/Magga

“E du snart ferdig med mastern din i Outlook?”
-Eddie

“We’re playing for all the marbles!”
—Unknown 4th grader






Abstract

Blockchains have become an integral part of many distributed applications, pro-
viding a new platform for interaction between system components. Blockchains
are perhaps most known for their use in crypto-currency systems, such as Bit-
coin and Ethereum, where pseudo-anonymous parties engage in transactions
without a trusted third party. Blockchain systems often struggle to meet per-
formance demands of real-word applications, rendering them inappropriate
for performance sensitive applications. There is also concerns regarding the
immense amount of electrical energy required to securely run existing public
blockchain systems. Bitcoin alone consumes more than small countries. Private
systems have higher throughput and avoid excessive energy consumption, but
have closed membership and do not scale to the same extent.

Both public and private blockchains rely on some form of membership mecha-
nism providing peers with a view of other participants. Existing systems often
employ partial view protocols due to their natural scalability. However, recent
work have shown that full view protocols are feasible in practice, and can
scale to thousands of participants. With full membership, applications can send
messages directly to their destination without any intermediate hops.

This thesis presents FireChain, which combines a Byzantine fault-tolerant
gossip service and full membership, with a proposal for blockchain systems
that does not consume excessive energy. We evaluate FireChain’s performance
through experiments on PlanetLab, and show that it scales beyond hundreds
of members.






Acknowledgements

First and foremost i want to thank my supervisor Havard D. Johansen for your
guidance, advice, and continuous feedback throughout writing this thesis. I also
want to thank Dag Johansen for his contagious passion for computer science,
which never ceases to amaze.

Further i want to thank my parents for proof-reading this thesis, and the mem-
bers of the Corpore Sano research group for countless fun monday meetings,
social meetups (beer), input, and feedback.

I want to thank my classmates, especially Christoffer Hansen, Kim Hartvedt
Andreassen, and Helge Hoff for 5 years of shitz and giggles. And countless
discussions about my thesis, this thesis would be pretty shit without you guys! I
would further like to thank Helge for putting up with my shit for 5 years!

Lastly, i would like to give a BIG thanks to Erlend Graff for creating this
fantastic Latex template, saving me countless hours fighting Latex.






Contents

Abstract iii
Acknowledgements \
List of Figures ix
List of Code Listings xi
List of Abbreviations xiii
1 Introduction 1
1.1 Problem definition . . . . . ... ... ... .. ... ... 3
1.2 Scope & Limitations . . . . .. ... ... ... ... .... 3
1.3 Methodology . . . . . . ... . .. .. ... ... ..., 3
1.4 Context . . . . . . . . . . o o e 4
1.5 Outline . . . . .. ... . .. e 6

2 Background & Related Work 7
2.1 The Fireflies Membership Protocol . . . .. ... ... ... 7
2.1.1 Certificate authority . . . . . ... ... ... .... 8

2.2 Blockchain . . . ... ... ... L 8
2.2.1 Proof-OfWork . ... ................. 9

2.2.2 Proof-Of-Stake . ... ... ... ... ........ 9

2.3 Bitcoin . . . ..o 10
2.4 Gossipprotocols . . . .. ... L Lo 12
2.5 Gossip in blockchains . . . . ... ..o 14
2.6 PoWchains . . . . . . . .. .. ... .. 14
2.7 PoSchains . .. ... .. ... .. ... 15
2.8 BFTchains . .. .. ... ... ... ... ... ... 16

3 The FireChain System 19
3.1 System overview . . . . . . .. h e e e e e e e e e 20
3.2 State COMPONENt . . . . . v v v v v v v v b b e e e e e e 21
321 Blocks. . . . . ... 21

Vii



viii

CONTENTS

322 Chain . . . ... ... ... .. 22
3.2.3 Blockentries . . .. .. .. ... ... ..., 22
3.24 Entrypools . . . . .. ... 23

3.3 Consensus COMPONENt . . . . . . . v v v v v v v v v v v v v 24
3.4 Communication substrate . . . . ... ... ... ...... 25
FireChain Communication Substrate 27
4.1 DatastruCtures . . . . . . .« v v v v v e e e e e 29
4.1.1 Certificates . . . . . . . .. . o 29
4.1.2 NOtes . . . . . v v it i e e e e 29
4.1.3 Accusations . . . . . . .. ..o e 30
4.1.4 Timeouts . . . . . . . . . . .t i 31

4.2 GOSSIPING . . . v v v e e e e e e e e 31
421 RIngs . . . . . . . 32

4.3 The Membershipservice . . . . . ... ... ... ...... 34
4.3.1 Joining thenetwork . . . .. ... ... ... .... 35
4.3.2 Rejoining after crashing . . . ... ... ... .... 37
4.3.3 Failuredetector. . . . . . . .. .. ... ... ..., 38

4.4 The Gossipservice . . . . . . . . . ... .. 39
4.4.1 Gossip messagecontent . . . . . . . . .. ... ... 41

4.5 The Messaging service . . . . . . . ... ... ... ..... 42
4.6 The Signature service . . . .. ... ... ... .. ..... 44
4.7 Certificate authority . . . . . .. .. ... ... ... L. 44
4.8 Cryptography. . . . . . .. .. . ... ... . ... ..... 45
FireChain Consensus 47
5.1 Consensus protocol . . . . . . ... ... ... ... 47
5.2 Votetables . . . .. ... ... ... ... ... ... 49
5.3 Gossiping vote tables & block entries . . . . ... ... ... 49
5.4 Resolvingforks . . . . .. ... ... .. ... . 52
Evaluation 55
6.1 Experimental platform &setup . . .. ... ... ... ... 56
6.2 Consensus experiment . . . . . . . . . . ... ... ... 57
6.3 Block commit interval experiment . . . . . .. .. ... ... 59
6.4 Passive attack experiment . . . . . . ... ... ... 60
6.5 Block size experiment . . . . . . . ... ... L. 62
Conclusion 65
7.1 Concludingremarks . . . ... ... ... .. ........ 66
7.2 Futurework . . . .. ... .. .. ... ... 66
67

Bibliography



List of Figures

3.1 Architectural overview of FireChain. . . ... ... ... .. 20
3.2 Contentofablock. . . ... ... ... ... .. .. ..... 21
3.3 Blockchain structure . . . . . .. .. .. ... 22
3.4 Entrypools . . . . ... 24
4.1 Architectural overview of Ifrit. . . . . . ... ... ... ... 28
4.2 NOteStruCture. . . . . . . v v v v v v e e e e e e e e e e e 30
4.3 Accusation Structure. . . . . . . . . .. .. e e e 30
4.4 Timeoutstructure. . . . . . . . . . . o v v vt oo 31
4.5 Gossipmeshexample. . . . .. ... ... .......... 33
4.6 Process of joining a Ifrit network. . . . . . ... ... .. .. 35
4.7 Flow of gossip interactions. . . . . . . . . ... .. ..... 36
4.8 Process of rejoining a Ifrit network. . . . . . . ... ... .. 37
4.9 Application interaction with the gossip service. . . . . . . . . 41
4.10 Gossip message content. . . . . . . . . ... e 42
4.11 Gossip response Structure. . . . . . . . . . ..o e ... 42
5.1 Vote table entry structure. . . . . . . .. ... ... ... .. 49
6.1 Acheiving consensus. . . . . . .. ... ... 58
6.2 Acheiving consensus with 2 minute epochs. . . . .. .. .. 59
6.3 Acheiving consensus when under attack. . . . ... ... .. 61
6.4 Acheiving consensus with 10 KB blocks. . . . ... ... .. 63






List of Code Listings

4.1
4.2
4.3

5.1
5.2

Adding of livepeers. . . . . . . . . . .. ... ... 34
Note evaluation. . . . . . . ... ... ... ... ...... 38
Message ServiCe. . . . . . . . i i e e e e e e e e 43
Consensus protocol. . . . . . ... ... . ... ....... 48
Gossipcallbacks. . . . . . . ... ... o 51

Xi






List of Abbreviations

API Application Programming Interface
AWS Amazon Web Services

BA Byzantine Agreement

BFT Byzantine Fault-Tolerance

CcA Certificate Authority

cPU Central Processing Unit

DAG Directed-Acyclic-Graph

DNS Domain Name System

DOS Denial of Service

DsA Digital Signature Algorithm

GB Gigabyte

GO Golang

GRPC Google Remote Procedure Call
GZIP GNU Zip

HTTP Hypertext Transfer Protocol
KB Kilobyte

KBPsS kilobits Per Second

Xiii



XiV

MB Megabyte

POS Proof-Of-Stake

POW Proof-Of-Work

RSA Rivest—-Shamir—Adleman

RTT Round-Trip-Time

SGX Software Guard Extensions
TCP Transmission Control Protocol
TLS Transport Layer Security
UDP User Datagram Protocol

uUiT University of Tromsg

vM Virtual Machine

LIST OF ABBREVIATIONS



Introduction

Blockchains are becoming an important building-block for distributed systems
and Internet services. They provide applications with a distributed data struc-
ture, often referred to as a distributed ledger, where participants can interact
without any form of trust [1, 2]. However, blockchains struggle with meeting
throughput and latency demands of real world applications [3, 4, 5]. Existing
blockchains, like Bitcoin [2] and Ethereum [6], are permissionless, or public:
any process can join the system and execute protocol steps. Such systems
are, however, susceptible to Sybil attacks [7] where the adversary controls
a majority of nodes and thus dictates system state. To prevent such attacks,
most permissionless blockchains deploy Proof-Of-Work (Pow)-based consen-
sus, often called Nakamoto consensus, where participants contribute computing
power to further progress the chain. POW is the act of presenting proof that
you have committed computing power to solve a cryptographic puzzle. Hence,
an adversary’s influence in the system is bounded by how much computing
power he has, and not how many identities he is able to produce. POW chains
provide fully open membership, but have throughput issues [2, 3, 8, 9, 4, 5].
With Bitcoin currently having a peak throughput of 7 transaction per second
and latency of 60 minutes (if you follow the advised 6 block rule) [9].

Some blockchains are permissioned, or private: only selected peers are allowed
to join the system, where identities of all participants are known. With admis-
sion control and known identities, private chains often employ classic Byzantine
Fault-Tolerance (BFT) consensus [10, 11, 12, 13]. Permissioned blockchains such
as Tendermint [14], Hyperledger Fabric [15], MultiChain [16], and Quorum [17]
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employ BFT-based consensus, where participants co-operate in progressing the
chain. They have significantly better throughput, but have a closed membership
and scalability issues [3], typically not being able to scale beyond 100 members
[10].

Most distributed systems, including blockchains, rely on some form of member-
ship mechanism. Existing membership protocols such as Cyclon [18], Scamp [19],
and Horus [20] all provide partial membership views. Systems such as Pas-
try [21] and Chord [22] incorporates a partial membership directly in their

application. The main benefit of partial membership systems are increased scal-
ability, both in terms of memory requirements and complexity of membership

updates. They scale logarithmically in the number of participants. If a peer joins

or leaves the network, not all participants need to be notified by the change

in membership. Likewise, a single peer does not need to maintain information

about all other participants, only a subset. By only maintaining a subset of
the entire membership, peers do not need to receive all updates, thus, limiting

bandwidth usage. However, partial views require all messages to be routed

through the overlay network, increasing the chance of encountering a byzan-
tine participant at each hop [23]. It was previously assumed that maintaining

full membership views were infeasible due to bandwidth, memory, scalability;,
and handling frequent membership changes [24]. However, Fireflies [25, 26]

and [23] have showed the feasibility of maintaining full membership views

and their benefits, such as point-to-point messaging. Fireflies scales to thou-
sands of participants, with memory requirement per participant around 600B,
requiring 60 Megabyte (MB) for 100000 participants. Bandwidth usage, both

under normal operation and when under attack, have been measured in [25]

and deemed acceptable.

The Bitcoin specification [2] does not include a formal membership protocol.
Participants form a Gnutella-like [27, 28] unstructured overlay network, which
converges towards a full membership view. To join the network, peers contact a
set of Domain Name System (DNS) servers which relays information of existing
participants. Peers advertise addresses of already observed participants to
neighboring peers, essentially flooding membership information. Hence, after
joining, peers will continuously learn of other participants in the network.
However, there are no measures to leave the network, peers might linger in
the view of others long after they stopped participating. As observed by [29],
at their time of writing 16000 peer addresses where being advertised, while
only 3500 where reachable.
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1.1 Problem definition

Proof-Of-Work (POw) and Byzantine Fault-Tolerance (BFT) chains are effec-
tively on separate ends of a spectrum [3]. One scales, has open membership,
but with low throughput, the other does not scale, has closed membership, but
with high throughput.

We investigate if we can devise a scalable approach based on previous work,
without the energy consumption of POW chains, but with configurable mem-
bership. Our thesis statement is that:

An efficient and scalable blockchain can be built using a Byzantine
fault-tolerant gossip service and full membership.

The protocol created and presented in [30] introduces another approach,
basing a blockchain’s consensus mechanism on gossip [31]. We aim to further
build on this work and the earlier work of Fireflies [25, 26]. Fireflies is, as
of our knowledge, the only Byzantine fault-tolerant membership protoco full
membership protocol capable of scaling to a size similar to that of the Bitcoin
network.

1.2 Scope & Limitations

This thesis does not intend to implement a fully functioning blockchain, our
goal is to investigate the applicability of using gossip as a consensus mech-
anism. Evaluating all possible attack vectors and security issues concerning
our implementation is beyond the scope of this thesis. We will introduce some
possible attacks and discuss how they are handled. Also, we are not focusing on
modifying the Fireflies protocol according to our specific use case. Part of our
objective is to show Fireflies’ applicability in a distributed application, hence,
we do not want to tailor it specifically for our use. We assume that participants
are not capable of breaking cryptographic primitives.

1.3 Methodology

In the final report by the Core of Computer science [32], the task force describes
the discipline of computer science. From their findings, computer science is
the systematic study of algorithmic processes, their theory, design, analysis, im-
plementation and application [32]. With the fundamental underlying question:
what can be efficiently automated?
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Theory rooted in mathematics and consists of four steps; define objects to
study, make hypothesis about the relations between objects, determine
whether the predicted relations were correct, and interpreting results.

Abstraction rooted in the experimental scientific method consisting of four
parts. Forming a hypothesis, create a model to test the hypothesis, design
experiments and retrieve results, and finally analyzing result data.

Design rooted in engineering and follows four steps; requirements, specifica-
tions, design and implementation, and testing.

This thesis is rooted in systems research, which to some extent belongs to all
three paradigms. We use existing knowledge of blockchains and Fireflies to
devise a system with the intent of solving an existing issue in the blockchain
design space. From this we design a prototype to develop and test. After
developing a prototype, we design experiments to evaluate if our system solves
the given problem.

1.4 Context

This thesis was implemented and written in the context of the Corpore Sano!
research group. The Corpore Sano research group focuses on interdisciplinary
research with computer, nutritional and sport science. With emphasis on per-
sonalized intervention technologies to improve health and wellness of people.
We will now give a brief summary of previous scientific work done by the
Corpore Sano research group.

Corpore Sano has done extensive international research of mobile agents and
their applicability in the TACOMA project [33, 34, 35]. Mobile agents are
processes capable of migrating to other hosts, typically in response to a client
request. These agents are a powerful abstraction for distributed application
developers, where the developer needs to know the location of some process.
By attaching computations to agents, they can efficiently and seamlessly be
moved across hosts and administrative domains. When deploying an agent at
a site, to provide fault tolerance, an additional agent is deployed at another
site. If the original agent fails, the backup can continue computation, or if its
services is no longer needed, self-terminate.

As many Internet services regularly update content and their content is by
nature dynamic and short-lived, the classical client-server model limits the

1. http://www.corporesano.no/
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Internet’s scalability. Corpore Sano developed the push based web-service
WAIF [36, 37], which wraps Internet services in a push-based notification
component. Instead of clients repeatedly pulling possibly new content from the
server, the server notifies clients of new or modified content. Thus, relieving
clients from constantly pulling for new updates.

After the blockchain technology emerged and quickly rose in popularity, Cor-
pore Sano did a longitudinal study [4, 5] of its most popular application, namely
Bitcoin. We investigated its scalability, performance, and cost. A notable dis-
covery was that Bitcoin is becoming increasingly centralized, partially due to
the emergence of mining pools. Instead of mining in a distributed fashion,
as intended, miners now gather their computational power in pools, sharing
all wealth from their block findings. This phenomenon emerged after Bitcoin
became popular, resulting in an increase in computational power required to
find blocks due to an influx of miners. Hence, the probability for single miners
to find a block is not high enough to compensate for their committed computing
power.

Corpore Sano has also presented work within the security and fault-tolerance
domain. We created secure abstractions by embedding executable code frag-
ments in protected capabilities, facilitating restricted data access across systems
in cloud architectures [38]. Furthermore, we developed the intrusion tolerant
network Fireflies [25, 26], which this thesis is built upon. Fireflies is a Byzan-
tine full membership protocol capable of scaling to thousands of participants,
we will go into further detail on Fireflies later on. With Fireflies, we created
FirePatch [39], which disseminates time-critical software patches in a secure
manner. By utilizing Fireflies’ Byzantine fault tolerant full membership, patches
can be disseminated to all honest participants in a Fireflies network through se-
cure channels. Thereby, minimizing the attack window of an adversary aiming
to delay dissemination of security patches.

We also developed StormCast [40], a distributed fault-tolerant weather forecast-
ing system based on artificial intelligence. StormCast consists of co-operating
agents, collecting, processing and exchanging weather data from fixed geo-
graphical locations. By coordinating weather agents, StormCast can forecast
the weather at multiple geographical locations.

After the introduction of Software Guard Extensions (SGX) by Intel, Corpore
Sano investigated the computational costs of using this new secure platform
[41]. In SGX, threads execute within secure enclaves, shielded from the host’s
privileged software. However, shielding data and an execution environment
from privileged software comes at a cost. We measured the architectural costs
of entering, exiting, and copying data to and from the enclave.
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Enforcing privacy policies after sharing data is non-trivial, and requires a
substantial architectural design. We developed LoNet [42], a system which
facilitates expressing data policies attached to files. Policies are programmable
code, called meta-code, and are enforced by intercepting file system operations.
LoNet also allows meta-code to affect derived data, for example, a coach could
not be allowed to view a player’s heartbeat data, but allowed to view health
analysis data derived from the original heartbeat data.

Corpore Sano is currently working in close cooperation with the elite foot-
ball club Tromsg IL, with existing systems such as Bagadus [43, 44, 45] and
Muithu [46, 47] currently deployed. Bagadus [43, 44, 45] is a sport analysis
system primarily focused on recording sport games and provide analytical feed-
back. Coaches can monitor real-time performance of their players and analyze
team performance both at half-time and after matches. Muithu [46, 47] is a
event based tagging system, providing coaches with ability to tag events as
they occur on field. After tagging an event, typically by pressing a button on
a pad, a recording of the preceding situation on-field is created and stored.
Coaches can later view the recording, typically useful to further investigate
certain situations. For example, tagging an event right after a player makes
a vital mistake, which can later be brought up and analyzed. Within video
analytics, Corpore Sano has developed a streaming system capable of keyword
searching through videos [48]. Avoiding the need of download entire videos
and searching through manually to find relevant content.

1.5 Outline

The rest of this thesis is organized as follows:

Chapter 2 introduces related work and background knowledge about related
topics such as: Fireflies, blockchains, pow, Proof-Of-Stake (P0s), and
gossip protocols.

Chapter 3 Presents the system overview of FireChain.

Chapter 4 Covers the design and implementation of FireChain’s communica-
tion substrate.

Chapter 5 Introduces FireChain’s consensus component.
Chapter 6 Presents and discusses experimental results of our implementation.

Chapter 7 Concludes the thesis and discusses future work.



Background & Related
Work

2.1 The Fireflies Membership Protocol

Fireflies is a membership protocol and gossip service developed at University
of Tromsg (UIT) in collaboration with Cornell University. The first protocol
version was published in 2006 [49], with several modifications proposed in
2008, named S-Fireflies [50]. However, these alterations were mostly rejected in
2015 due to practical concerns in a reworked version of the protocol [25].

The Fireflies protocol [25, 26] provides all correct member processes in a
distributed system with up-to-date views on all other correct and stopped
processes in that system. The protocol is resilient to Denial of Service (DOS)
attacks and Byzantine faults, yet scales to support views with several thousands
of members.

The protocol defines three data structures, an overlay mesh structure, and 10
rules for maintaining membership correctly. The overlay mesh structure consists
of an arbitrary number of rings, each containing all members arranged in a
pseudo random order. Nodes have exactly one successor and one predecessor
in each ring. A node’s successor and predecessor refers to their placement
relative to the particular node in a given ring. Each node has a set of neighbors
consisting of all their successors and predecessors in all rings. Nodes gossip with
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their neighbors and are responsible for monitoring their immediate successors.
By having all participants present in all rings, but in different orders, Fireflies
enforces diverse neighbors.

If a node stops responding, its predecessor will accuse the node of being crashed
by gossiping an accusation. Upon receiving a valid accusation, nodes start a
local timer associated with the accused node, and at the time of expiration the
accused will consider the node crashed. However, nodes can be falsely accused
by being temporary unavailable or slow, therefore, nodes are able to issue a
rebuttal if they receive an accusation concerning themselves.

If an attacker is capable of compromising membership information in an overlay
network, he can effectively control it [25]. The goal of Fireflies is to prevent
this by providing an intrusion tolerant network capable of operating in the
presence of byzantine members.

2.1.1 Certificate authority

As with all distributed systems that relies on some form of agreement, Fireflies
is vulnerable to Sybil attacks. Fireflies counter this by requiring members to
obtain cryptographic certificates signed by a trusted Certificate Authority (CA).
The cA is required to implement some means to limit the rate of Byzantine
nodes joining the network.

All participants can be securely identified by their respective certificates. These
certificates are distributed through gossip, hence, a node does not need to
be in direct contact with a new participant to receive his certificate. A new
participant will not be accepted by others unless they present a valid certificate
sign by the CA. By requiring signed certificates, the identities of all participants
are known and thus we avoid Sybil attacks [7]. The CA thwarts Sybil attacks
by limiting an attackers ability to obtain multiple valid certificates.

2.2 Blockchain

Blockchains are distributed systems where member processes cooperate to
maintain an agreed upon common append only data structure, often called a
ledger [1, 2]. All participants keep a copy of the ledger, and execute a consensus
protocol to validate and agree upon its content. Data entries are grouped into
blocks, which in turn is built into a hash chain of blocks. Peers participate in the
consensus protocol to agree upon the ordering of blocks and their contained
entries. With the goal of progressing the chain, while preventing malicious
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participants from altering already agreed upon content.

Blockchain systems can be split into two main groups; permissioned and
permissonless. In permissioned systems identities of all participants are known
and is not open for public access, there is a minor form of trust between
participants. Permissionless systems are open for everyone, and identities of
participants are not known. There are no trust assumption between peers in
such systems.

2.2.1 Proof-Of-Work

As peers are anonymous in permissionless systems, they are susceptible to Sybil
attacks [7]. Where an adversary attempts to gain control over a system by gen-
erating near infinite identities, thereby gaining influence and dictating system
state. Hence, such systems need other mechanisms to fight these attacks.

Achieving consensus among a set of possibly malicious, anonymous entities is
non-trivial. Byzantine Fault-Tolerance (BFT) consensus is susceptible to Sybil
attacks [7] when participants are not identifiable. Proof-Of-Work (POW) con-
sensus was introduced in [2], where participants solve cryptographic puzzles
to further progress the chain. Participants present their verifiable solution to
the cryptographic puzzle to other peers, proving that they committed compu-
tational power to solve it. POW acts as leader election, where the first peer to
solve the current cryptographic puzzle, effectively finding the next block, has
the authority to decide its content and is rewarded for his work. Thus, a peer’s
influence in the system is bounded by the computational power he is capable of
generating, and not the amount identities he is able to create. To invalidate a
committed transaction, an adversary would have to create a separate branch of
blocks, often called a fork, and out-pace the main chain. Hence, after a transac-
tion is deep in the chain, it would require a significant amount of computational
power to remove it, ensuring that transactions are immutable and permanent
after being committed. In Bitcoin [2], participants deem the longest chain, the
main chain. After overtaking the main chain, honest peers would consider the
created fork the new main chain, thus, invalidating blocks that were committed
after the point of forking. Honest participants might also accidentally introduce
forks by solving the current cryptographic puzzle simultaneously.

2.2.2 Proof-Of-Stake

The motivation for adopting a Proof-Of-Stake (P0S)-consensus model is to avoid
the significant energy costs of POW chains. In general, POW chains require
a lot of electricity to maintain and progress. With the Bitcoin [2] network
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currently consuming the same amount of energy as Ireland [51]. Also, in the
absence of POW computations, a system might be able to increase throughput
and decrease latencies significantly. However, implementing a faire and secure
POS blockchain have shown to be complex in practice [52].

POS is similar to POW in that they both periodically elect a leader responsible for
determining the next block. However, in POS, leader election is weighted by each
participant’s stake in the system, where stake represents how much resources a
participant has invested in the system. Either electing a single leader for each
time slot or forming committees of stakeholders, where stakeholders is the set
of participants with the most stake. Stakeholders have a higher probability of
being elected leader than participants with lower amount of stake in the system.
In the context of crypto-currencies, stake could be determined by how much
crypto-currency a peer is in possession of. Instead of participants competing
for the authority to determine the next block as in POW, a peer is selected at
random at every time slot, with peers weighted based on their stake in the
system. When elected leader, a peer determines the next block, linking it to
a previous one. If a malicious peer is elected leader, he could generate two
blocks, introducing one to the full system and the second to a set of isolated
peers. Hence, POS systems need a mechanism preventing malicious leaders
from breaking the system.

Distribution of wealth is also an issue, if a single peer is in possession of nearly
all the wealth, he will have a significant influence in the system. Although,
peers with significant wealth are incentivized to operate honestly, if they are
caught in being dishonest they are effectively undermining their own wealth.
Blockchains based on P0OS include Blackcoin [53], Ppcoin [54], Ouroboros [55],
and Algorand [8]. Ethererum [6] is currently based on Pow, but there are
proposals to adopt a POS and POW hybrid approach [56].

2.3 Bitcoin

The most common usage of blockchains is crypto-currencies, where Bitcoin [2]
and Ethereum [6] are the most popular systems in use today. Crypto-currencies
use blockchain to create a transfer log of some digital currency to and from
accounts. Effectively creating a log of transactions between pseudo-anonymous
entities, without any form of trust. They are unique in that they are the first
technology to solve the double spending attack without any form of trusted
third party.

Bitcoin [2] is based on POw-consenus, which is proven to converge except
for a negligible probability [57]. Peers transfer bitcoin by creating and verify-
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ing transactions. A transaction transfers bitcoin between one or more source
accounts to one or more destination accounts [29]. An account consists of a
public/private key-pair. To prevent forging of transactions, all transactions are
signed by the sender’s private key. Validation of transactions involve checking
signatures and verifying that the sender actually has the amount of bitcoin he
intends to transfer. Transactions essentially have a set of inputs which has to
originate from previous transactions, and a set of outputs. These outputs can
only be claimed once, and new ones are only created from new transactions.
However, participants might receive transactions in different order. A transac-
tion might claim an output of a previous one, which the participant have not
yet received. Peers might also try to spend coins twice, referred to as a double
spending attack. This could occur both by malicious intent or accident, where
separate transactions try to spend the same output [29].

Transactions are disseminated in the network and included in everyones local
ledger if valid. However, there needs to exist a commit mechanism to persist a
set of transaction globally in all participants ledger’s. Implementing a global
commit mechanism in a distributed system with anonymous participants is non-
trivial. Bitcoin periodically gather a set of transactions within a block, where
each block links to the previous one by its hash value, effectively creating a
hash chain of blocks. Blocks are introduced each time a participant solves the
current cryptographic puzzle (POW), often referred to as mining. Participants
that actively solve cryptographic puzzles are referred to as miners, and after
solving a puzzle are paid for their efforts. The newly mined block and its content
is then disseminated throughout the network, and included in everyone’s
ledger, effectively globally committing all the transactions present in the block.
However, participants might solve the puzzle simultaneously, creating two valid
system paths referred to as a fork. Bitcoin resolves forks by always following
the longest chain, hence, participants are guaranteed that the main chain has
the majority of computing power in the system. There have been proposals to
change the chain selection algorithm, Ghost [58] suggests not only evaluating
chains by their length, but the weight of their entire subtree. Thereby, an
attacker cannot secretly create a hidden chain over time and introduce it later,
effectively replacing a huge part of the previous main chain. This approach
was later adopted by Ethereum [6].

Bitcoin disseminates membership, transactions, and blocks in a flooding-like
fashion [29]. Peers advertise observed participants to neighboring peers, but
there are no mechanism to leave the network or remove crashed peers. Hence,
advertised peers are not necessarily still participating or alive. After verifying
new transactions or blocks, peers advertise their availability to neighbors by
issuing inv messages containing their ids. Subsequently, neighbors can request
them by issuing a getdata message containing the ids of the ones missing from
the their local storage. Thereby, blocks and transactions are constantly flooded
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throughout the network upon creation. When two or more participants create a
fork as explained earlier, a race begins to disseminate your block quickest. The
more participants you spread your block to, the more peers will start working on
your branch, hence, accumulating more computing power to your cause. With
more computing power dedicated to your branch, the higher the probability
that it will become the main chain. All blocks that are not building on the main
chain are deemed invalid, likewise for their containing transactions.

2.4 Gossip protocols

The core concept of gossip protocols involve periodic information exchange
between participants about recent events [31]. Participants periodically select
a random peer in the system and reconcile information. By randomizing
peer selection, as opposed to a fixed set, peers will eventually gossip with
everyone in their view. With random peer selection and periodic reconciliation
of information, all events will eventually spread to all participants with high
probability.

Dissemination of data using gossip protocols have similar mathematically
properties as how infectious diseases spread in a population. An approximation
formula to estimate the fraction of infected hosts Y, after r rounds, where each
infected hosts infects f other hosts each round is given by: [31, 59].

1

Y~ 1+nefr (21)
Where n is the total amount of hosts. The amount of infected hosts relative to
uninfected ones increases exponentially each round by a factor of ¢/ [31]. In
the context of gossip protocols, the formula describes how many hosts have
received a gossip message after r rounds. A key detail from this equation
is that the convergence of gossip among a set of hosts is correlated with the
amount of gossip interactions each host initiate per round, and round frequency.
Gossip protocols typically reconcile with only one host per round, thus, round
frequency is in most cases the main convergence factor.

Gossip protocols have several strengths: they converge with high probability;
impose a bounded load amidst frequent updates; not dependent on stable
underlying network topologies [60]. Other classic distributed protocols, non-
gossip based, can impose high workloads during frequent updates. By imposing
a bounded load on participants, they will simply fall behind amidst frequent up-
dates and converge when traffic decreases. These boundaries include bounded
message sizes and gossip rates, how often participants gossip, and how much
gossip each message can accommodate. Also, gossip protocols are able to oper-
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ate on most underlying network topology, only requiring sufficient connectivity
and bandwidth [60].

Gossip protocols also have limitations. Bounded message sizes and slow gossip
rates limit the capacity of update propagation [60]. If the gossip content ex-
ceeds the maximum message size, it has to be split up into several messages and
distributed over multiple gossip rounds, resulting in slower update propaga-
tion. This presents a trade-off between lower convergence times and increased
overhead. By increasing the gossip frequency, one could facilitate frequent
updates, but this would introduce more overhead. In extreme cases where
the gossip rate approaches the network’s Round-Trip-Time (RTT), resource
contention at network interfaces might affect the protocol significantly [60].
Other weaknesses include not being resilient against malicious participants or
faulty components executing the protocol incorrectly. If there is no method
for verifying gossip data, malicious participants can pollute the system with
corrupt data which becomes indistinguishable from correct data. Adversaries
could attack a naive gossip approach by attempting to control information
flow. By targeting the overlay network connecting peers, an adversary can
separate participants into multiple partitions. After separation, the adversary
can feed participants whatever information he sees fit, effectively controlling
the network.

Gossip protocols are typically split into three types: dissemination (rumor-
mongering), anti-entropy, and aggregate [60]. In dissemination protocols,
peers only gossip about recent events, hence, propagation latency is an issue.
If an event is not disseminated within a time frame A, where A is the amount
of time a peer includes an event in its local gossip set, the event is lost. This
could occur, for instance, due to network partitions, network outage, slow
participants. Although, A would be reset for each time the event spreads to
a new participants, given that A is started upon receiving the event, and not
based on a timestamp contained in the event for when it occurred. Events
also have high latency from when they occur to when they are delivered to all
participants. Since peers only gossip about recent events, messages are small,
thus, reducing bandwidth usage compared to anti-entropy.

Anti-entropy protocols reconcile state in each gossip interaction, typically used
for data replication [60]. After peer a and b engages in a gossip interaction,
both will have the same state. Messages are typically significantly larger than
that of dissemination protocols since peers reconcile their entire state in each
interaction, resulting in increased bandwidth usage. However, anti-entropy
provides stronger convergence guarantees than dissemination since the entire
state is reconciled in each interaction, and not just recent events.

Aggregate protocols aim to combine information from all participants and
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compute some system wide value [60]. For example, like computing sum, max,
median across the entire network. With highly scalable systems, computing
aggregate values on data across entire systems are often more interesting than
data at individual nodes [61, 62, 63].

2.5 Gossip in blockchains

Most existing blockchain systems use some form of gossiping to disseminate
transactions, blocks, and membership information. By utilizing gossip, partici-
pants will eventually receive all transactions and blocks with high probability.
For example, participants in Bitcoin gossip with neighboring peers about recent
transactions, blocks, and advertise membership of other participants. Hyper-
ledger Fabric [15] is a platform for deploying and operating permissioned
blockchains. In Fabric, participants gossip about blocks, transactions, and mem-
bership information. Fabric divides gossiping into two modes: pull and push,
where participants request state from other peers during pulling, and sends
their state while pushing. Algorand [8] uses a similar gossip approach as Bit-
coin, where participants select a small subset of peers to gossip with. However,
in these systems gossip is typically used for disseminating blocks, transaction,
and possibly membership information, and not as a consensus mechanism
which we intend to.

The protocol presented in [30], is as of our knowledge, the only blockchain
consensus protocol fully based on gossip. We base our consensus solution on
the work presented in [30], where participants agree upon blocks by relying
gossip that converges with high probability. We will be explaining our full
design and implementation based on this protocol later on

2.6 PoW chains

Bitcoin-NG [64] is a scalable blockchain protocol with the same trust model
as Bitcoin. They divide their protocol into two parts: leader election and
transaction serialization. In Bitcoin, the miner who first solves the current POW
effectively becomes the leader and serializes transaction history of the next
block. Bitcoin-NG divides time into epochs, where in each epoch a leader is
elected by solving a POW, as in Bitcoin. Blocks created from POW are called
keyblocks, which does not include any transactions. Without content, keyblocks
can be disseminated more efficiently due their reduced size. The leader then
generates a series of microblocks containing transactions, these do not contain
any POW and can thus be produced faster than keyblocks. Hence, transaction
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latencies are bounded by network propagation delay of microblocks and the
more infrequent leader election of keyblocks.

Ethereum [6] is a generalized blockchain platform for executing smart con-
tracts, which essentially are distributed applications. Ethereum follows an
order-execute paradigm where all smart contracts are ordered at all peers
before executing them sequentially. After peers complete a POW, they sequen-
tially execute all transaction within that block, likewise for all other participants
receiving a new block. Thereby, all smart contracts are executed by all partici-
pants such that they converge to the same state. However, smart contracts are
written by potentially untrusted developers. Hence, adversaries could execute
a DOs attack by deploying a smart contract with an endless loop. To solve
this, Ethereum introduces gas, which is payment for execution. The payment
currency is Ethereum’s native crypto-currency, ether. Thereby, the transaction
issuer pays ether for having participants execute his smart contracts. All smart
contracts are written in Ethereum’s own scripting language Solidity, executed
in their own Virtual Machine (VM) [65, 66]. By providing their own vM,
Ethereum can determine execution costs and evaluate if smart contracts are
deterministic. Ethereum [6] is currently based on POW consensus, but there
are proposals to adopt a POW & POS hybrid [56].

Recent proposals, like Ghost [58, 67], Spectre [68], and Meshcash [69] aims to
increase Bitcoins throughput by replacing the underlying chain structure with
a Directed-Acyclic-Graph (DAG). With a DAG, chain selection algorithms can
evaluate more metrics than just length. More specifically, Ghost [58] proposes
to evaluate chains not only by length, but by the weight of their subtrees. From
this, they are able to improve throughput significantly. These systems are based
on POW consensus, where chain progression is bound by computing power. As
our system does not intend to use POW consensus, the benefits of a DAG are
not obvious, but could be explored more in the future.

2.7 PoS chains

Algorand [8, 70] is a relatively new crypto-currency, with transaction latencies
in the order of minutes and throughput 125 times that of Bitcoin. They achieve
this through the use of a Byzantine Agreement (BA) protocol to reach consensus
among participants on new sets of transactions. To scale the agreement among
many participants, only a selected few take part in each decision. Peers compute
a Verifiable Random Function [71] to check whether they were selected to
participate in the next BA. Algorand implements POS by assigning a weight to
each participant based on their wealth. A peer’s probability of being selected
to participate in the BA protocol is thus directly correlated to their wealth. By
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having a committee, effectively a small subset of the network with the most
wealth, Algorand can reach consensus about new blocks and transactions in
about a minute. Additionally, they avoid forks, even in the case where parts of
the committee is malicious.

Algorand’s gossip protocol is inherently susceptible to Sybil attacks [7], this is
clearly stated in [8]. The paper does not specifically state whether Algorand
targets a permissioned or permissionless deployment. If Algorand does not
target a fully permissionless environment, similar to Bitcoin [2] where there
are no elements of trust, Fireflies [25] would be an ideal candidate to provide a
Sybil resistant gossip network. However, Fireflies requires a trusted CA, thus, the
environment has to have one trust component. With Fireflies as the underlying
membership and gossip protocol, Algorand would be Sybil resistant.

Ouroboros [55] is a recent proposal for pure POS blockchains, which rigorously
prove their security guarantees. The set of peers with the most wealth in the
system, namely stakeholders, participate in a coin-flipping protocol to select
a leader for the current epoch. Ouroboros assumes that an adversary cannot
corrupt participants for a duration longer than an epoch (e.g a day). PoS chains
are susceptible to grinding attacks where an adversary attempt to manipulate
the randomness in leader selection to his advantage. Such attacks have a severe
impact on POS chain that base their entropy on chain content. Quroboros’s
joint-coin-flipping protocol does not depend on chain content and prevents
adversaries from manipulating it.

2.8 BFT chains

Hyperledger Fabric [15, 72, 73, 74] is a open source system for deploying per-
missioned blockchains. Fabric expands upon what Ethereum does with smart
contracts in a perimissioned setting. However, Fabric is novel in that it sup-
ports writing distributed applications (smart contracts) in general purposes
languages such as Golang (GO) and C/C+ +. Other smart contract blockchain
systems such as Ethereum [6] follows a order-execute paradigm, where all smart
contracts are firstly ordered and validated before they are sequentially executed
by all participants. Fabric introduces a novel execute-order-validate paradigm,
essentially executing smart contracts in parallel before ordering them, increas-
ing throughput significantly. Previous systems often hardcode their consensus
protocols, while Fabric supports modular consensus. By providing pluggable
consensus, applications can deploy protocols suitable for their deployment en-
vironment. Fabric achieves a throughput around 3500 transactions per second
with sub-second latencies, and scales to over 100 nodes.
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Fabric’s membership service is not explained in detail, but it seems that par-
ticipants gossip about recent membership changes, both leaving and joining
peers. Hence, either participants are assigned to monitor other specific peers,
or they randomly discover them to be unavailable when they try to gossip with
them. We argue that Fireflies would be a fitting membership service in Fabric’s
permissioned setting.

ByzCoin [75] adopts the same approach as Bitcoin-NG [64], decoupling leader
election and transaction serialization. They form a committee responsible for
serializing transactions, where each peer’s voting power is dependent on his
recent hashing power contribution. The committee acts as a sliding window of
participants, where only the most recent contributors are included. Hence, only
peers that have recently contributed computing power is allowed to take part in
the consensus protocol. When a peer finds a new block, he receives a consensus
group share, effectively granting him more influence in the system. As a result,
POW acts as proof-of-membership within the consensus committee, regulating
voting influence between peers. Although ByzCoin employs POW, its consensus
scheme is based on BFT with POW only serving as proof-of-membership and
chain progression. By forming a consensus committee based on recent activity,
ByzCoin can execute BFT consensus with a subset of recently active peers.
ByzCoin also utilizes a collective signing mechanism CoSi [76], enabling the
leader in each epoch to gather signatures of other participants in the consensus
group in a scalable manner.






The FireChain System

To strengthen our thesis statement in Section 1.1, we have designed and im-
plemented a blockchain system, called FireChain. This chapter describes the
architecure of FireChain: a robust blockchain protocol based on a Byzantine
fault-tolerant gossip and membership service. Unlike most blockchain based
systems, FireChain does not rely on BFT agreement or Proof-Of-Work (POw)
for consensus. Instead, it uses Byzantine fault tolerant gossip that converges
with high probability. FireChain uses a Sybil resistant full membership protocol
to provide participants with a full view of members in the system. From our full
view we can efficiently determine other peers’ view of the system and detect
forks as they form. FireChain is not bound by the computational cost of POW,
and can potentially progress faster than traditional POW chains, avoiding the
excessive energy cost associated with Pow-based chains. Such a reduction in
energy requirements per operation can potentially yield higher throughput
compared to existing blockchains. Typical permissioned (closed) blockchains
that are not based on POw do provide better throughput, but do not scale
beyond a few hundred members. FireChain uses a relatively open membership
service and is able to scale beyond hundreds of members.

19



20 CHAPTER 3 / THE FIRECHAIN SYSTEM

3.1 System overview

FireChain is split into three main components: consensus, state, and commu-
nication substrate. FireChain’s communication substrate acts as a discovery
service and provides a full system view, allowing FireChain components to seam-
lessly communicate with other participating peers. The consensus component
orchestrates the system by using the communication substrate to contact and
achieve consensus with other participants. Subsequently, after agreeing upon a
new state, its stored in our state component, responsible for storing blockchain
state. The overall architecture is shown in Figure 3.1. We will now briefly
introduce all components, and dive further into details of our communication
and consensus components in Chapter 4 and Chapter 5 respectively.

FireChain

Consensus

Fork detector

Vote Tables

State

Entry Pools

Missing Favorite
Entries Entries

Blocks

Pending Entries
Chain
Confirmed Entries

Communication substrate

Messaging service

Membership service

Gossip service Signature service

Figure 3.1: Architectural overview of FireChain.
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3.2 State component

The FireChain state component keeps track of the entire blockchain state.
This component is divided into three subcomponents: blocks, chain, and entry
pool. The blocks component stores the set of all blocks, both committed and
pending ones. The chain component contains the hash chain of committed
blocks, effectively representing the blockchain state. Finally, the entry pool
consists of a set of memory pools containing block entries.

3.2.1 Blocks

Blocks contain: a merkle tree containing all entries, hash of the previous block,
and a block number, as shown in Figure 3.2. We use a third party merkle tree
implementation.! Blocks have a fixed size limit, this was done for simplicity
and dynamic sizes can be further explored in the future. As blocksize is
decisive for block dissemination, our experiments will operate with different
blocksizes to evaluate how the system behaves under different configurations.
FireChain maintains an in-progress block, which is populated as entries are
received.

Block content

32 VECEERD

| Block header
68 bytes

32 Previous hash

4 Block number

Variable size Block Entry O

Block Entry n

Figure 3.2: Content of a block.

1. https://github.com/cbergoon/merkletree
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3.2.2 Chain

All committed blocks are organized in a chain of blocks, where each block links
to the previous one, as shown in Figure 3.3, forming FireChain’s blockchain.
When resolving forks, we utilize the chain structure to determine which block
the fork originated from. After finding the block, participants can reconcile their
different branches and select the appropriate one as their main chain.

Block 0 Block 1 Block 2 Block n

prev prev prev
hash ER hash

Figure 3.3: Blockchain structure. Genisis block (block 0) has no previous block.

3.2.3 Block entries

In our system block entries do not contain any vital data, we only want to
investigate if our gossip approach is sufficient to ensure that all participants
agree upon the ordering of blocks and their content. Hence, we do not evaluate
the contents of a block entry, we only need an identifier for each entry. In
crypto currencies, the id of a transaction is the hash of its content. We mimic
the behavior for simplicity, each entry is a random sequence of bytes and the
id is its hash. Entries are periodically created by each FireChain instances and
added to their local pending pool. We deem it trivial to add data validation in
future work as all other structures are in place.

In Bitcoin [2], the miner decides which transactions should be included in their
newly found block and their ordering. Since we do not have miners, we need
another mechanism to ensure that all agree upon the ordering of entries within
a block. One could add entries in the order they are received. However, blocks
with different entry ordering result in different merkle root hashes, hence, they
are not considered equal. As a result, peers could populate their favorite block
with the same entries, but consider other blocks with the same content as a
completely different block. Therefore, we sort all entries in a block based on
their hash values. If all peers sort their entries in the same manner, equal entries
will result in an equal merkle root hash. Since our entries contain no vital data,
and they have no relevance to each other this approach is feasible. When peers
fill their local block, they first chose a set of random entries from the pending
pool, then sort them. Thereby, we avoid favoring entries that have low hash
values.
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3.2.4 Entry pools

As multiple blocks might have overlapping entries, we want a mechanism
to temporarily store them to avoid repeatedly requesting them. FireChain’s
consensus protocol defines a favorite block, consisting of entries that are cur-
rently being favored. These entries are more likely to be included in the next
block, hence, if we simply discard all entries we are currently not favoring,
we might need to request them later on due to changing favorite block. We
effectively need a caching mechanism for block entries, trading memory storage
for network usage.

Peers maintain several memory pools of block entries: pending, favorite, miss-
ing, and confirmed entries, as shown in Figure 3.4. The pending pool has a
default size limit of 10 blocks and contains entries that have not yet been in-
cluded in a committed block, similarly to Bitcoin [2]. The favorite pool contains
the hashes of all entries that makeup the current favorite block, and the missing
pool contains the hashes of the favorite entries that are currently missing from
the pending pool. As peers change their favorite block, both the favorite and
missing pool is reset and populated according to the content of the new block.
Some entries might already be present in the pending pool, those lacking are
added to the missing pool. Finally, the confirmed pool contains all entries that
have been included in accepted blocks. Currently, FireChain does not persist
blocks, they are only stored in the confirmed pool and in their respective blocks.
Since our entries do not actually store any vital data, we deemed adding per-
sistence a low priority. If FireChain is to be used, it is necessary to add support
for persisting blocks.

Both the missing and favorite pool do not store entry content, only hashes.
Hence, the missing pool reflects which entry hashes are currently in our favorite
pool, but their content is lacking from the pending pool. In the scenario where
a peer receives entries present in the missing pool and the pending pool is full,
a random entry which is not present in the favorite pool is evicted from the
pending pool. Thus, all entries present in the favorite pool have a priority in
the pending pool. Since our favorite pool contains the hashes of entries in the
current favorite block, the combined content size of its entries cannot exceed
the blocksize. As a result, in a worst case scenario where a new favorite block
is chosen with no overlapping entries with the pending pool, one blocksize of
entries are evicted from the pending pool. With our memory pools, peers can
identify which entries are currently in local storage, which ones are currently
favored and those lacking to complete our favorite block.

Introducing memory pools can directly open for a DOS attack, where the
adversary attempts to fill all participants pools with their own entries. However,
since we prioritize our favorite block, an adversary cannot fill a participants
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Figure 3.4: Structure of FireChain’s entry pools.

pool with his own entries that are not currently favored by the participant.
Peers will simply evict enough entries to make room for his favorite entries.
Also, peers will only add entries in their memory pool that was at one point
in time included in their favorite block. Hence, an adversary cannot simply
generate entries and try to disseminate them amongst participants.

3.3 Consensus component

FireChain consensus is based on earlier work on gossip-based consensus [30].
Firechain’s consensus component is responsible for reaching an agreement
with other participants about the blockchain state. We reach consensus by
periodically reconciling blockchain state with neighboring peers, eventually
converging to the same state. Participants execute a consensus protocol, where
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they vote and collectively agree upon the next state. After agreeing, peers
commit the new state to the state component and repeat the consensus process.
Membership and all communication between participants is orchestrated by
our communication component. Hence, our consensus component is oblivious
to how messages are transferred and how membership is maintained. The
consensus component is the main orchestrator of FireChain, and uses our state
component to track blockchain state and disseminates consensus information
through our communication substrate.

Internally, the consensus component consists of three main subcomponents;
a vote table, a fork detector, and a consensus protocol. The vote table keeps
track of all other participants’ votes, effectively representing all other peers’
state. Our fork detector periodically checks whether we are progressing on a
blockchain fork, and if so, resolves it. Finally, the consensus protocol forms
the backbone of FireChain, and dictates how the entire system should operate.
This component is further explained in Chapter s.

3.4 Communication substrate

To provide Sybil resistant membership views, our communication substrate
implements our own version of the Fireflies protocol [25, 26] called Ifrit (see
Chapter 4). We form an overlay network where all participants are connected
with high probability, and the diameter between two members is logarithmic in
the number of participants. Subsequently, we use our implementation to provide
a set of services; membership, gossip, signature, and a messaging service. The
membership service provides a full view of other participating peers, and
maintains system membership. The gossip service enables us to gossip with
neighboring peers through secure channels. With the connected graph, the
gossip service guarantees that all gossip will eventually spread to all participants.
As gossip protocols are inherently susceptible to data corruption [60], our
communication component provides a signature service, where all participating
peers’ signatures can be verified. Finally, the messaging service provides point-
to-point messaging through secure channels. The Ifrit communication substrate
is further explained in Chapter 4.






FireChain Communication
Substrate

This chapter describes FireChain’s communication substrate: a Byzantine fault-
tolerant gossip and membership service, which we have named Ifrit. Ifrit is
implemented as a library for the GO programming language. Ifrit improves on
several deficiencies in the reference implementation of the Fireflies protocol.!
First, he reference implementation was designed as a daemon process without
a clear public API, making it hard to build applications on top of it. Second,
it was implemented in Python with weak concurrency support, communicat-
ing with multiple peers concurrently is important for peer-to-peer systems.
We therefore re-implemented it in GO, which is a statically typed language
with builtin concurrency features. Ifrit provides an intrusion-tolerant overlay
network were peers agree upon liveness of participants even in the presence
of Byzantine members. The set of live peers form a connected graph where
the diameter between two peers is logarithmic in the number of participants.
Hence, all peers are connected and have a full membership view of the system,
which eventually converges with high probability. Ifrit provides four services;
membership, gossip, signature and a messaging service. The overall architec-
ture is shown in Figure 4.1, with definitions of external interfaces. All internal
interfaces combined implement the Fireflies protocol and maintain member-
ship information. This is done regardless of application interactions through

1. https://github.com/joonnna/ifrit
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the external interfaces.
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Figure 4.1: Architectural overview of Ifrit.
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4.1 Data structures

Ifrit adopts the same data structures and rules as in the reference implementa-
tion by [25],2 we will now explain them in further detail. Each peer maintains
four data sets concerning other participants: certificates, notes, accusations,
and timeouts. All gossiped data structures are signed and can be verified at
the receiver, forming the first rule of Ifrit.

Rule 1 A note or an accusation is only valid if its correctly signed with the
private key of its creator, and the creator’s certificate is correctly signed
by a common trusted CA.

4.1.1 Certificates

Certificates are X.509 compliant and used to establish secure gossip communi-
cation channels through Transport Layer Security (TLS). They contain node’s
unique identifier generated by the Certificate Authority (CA), their public key,
and their network address, effectively binding their public key to their iden-
tifier and network address. Also, the amount of gossip rings are stored in a
X.509 extension field. Certificates are gossiped between nodes, upon receiv-
ing one, its signature is verified to ensure validity. By having them signed by
commonly trusted CA, we ensure that all of its content is tamper-proof and
can securely identify participants. The purpose of certificates is to provide an
immutable data structure that can uniquely identify nodes, and facilitate TLS
communication.

4.1.2 Notes

A note represents a life signal from a node, containing: an epoch, a mask, a
signature, and the node’s unique identifier as shown in Figure 4.2. Epochs
are monotonically increasing counters, establishing the order of notes received
from a particular node. Only the most recent note is deemed valid as described
in Rule 2. The mask is a bit field representing enabled rings. If a node is
falsely accused by its predecessor, it can disable that specific ring by setting the
corresponding mask bit to zero. Effectively informing other nodes to ignore
accusations concerning itself originating from its predecessor on that ring.
When falsely accused, notes are used to rebut the accusation by incrementing
the epoch number, invalidating the accusation as described in Rule 5.

Rule 2 A note from node p is only valid if its the most recent observed note

2. https://sourceforge.net/projects/fireflies/
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from p.

Rule 5 Upon receiving a valid accusation concerning itself, a correct member
will immediately gossip a new note with an incremented epoch. Thereby
invalidating the accusation at all other correct nodes.

0 8 41 45 91
“

Figure 4.2: Note structure, numbers above fields refer to where they start.

4.1.3 Accusations

An accusation contains the epoch of the accused’s most recent note, a ring
number, a signature, and the accuser’s identifier as shown in Figure 4.3. When
a node stops responding to pings, its predecessor creates an accusation which
will eventually be disseminated throughout the network. The ring number
represents which ring the accusation originated from, this is necessary to
determine validity according to Rule 8. An accusation is only valid if the note
associated with it is valid, and the accuser is the direct predecessor of the
accused as described in Rule 3 and Rule 8. Therefore, when a rebuttal is issued
with a higher epoch number, the accusation becomes invalid due to the note
associated with it becoming invalid.

Rule 3 An accusation is only valid if the associated note is valid.

Rule 8 An accusation is only valid in ring r if the accuser is the direct prede-
cessor of the accused in ring r.

0 8 41 73 77 124
m

Figure 4.3: Accusation structure, numbers above fields refer to where they start.

Originally, accusations contained the most recent note of the accused. To
reduce bandwidth requirement of gossiping accucations, this was changed to
only contain the most recent note’s epoch, identifier, and ring number. This
reduces the size of an accusation with 56 bytes. This improvement does not
reduce the systems security properties since tampering with note information
such as the epoch number is not helpful in trying to falsely accuse peers. For
instance, accusations with higher epoch numbers that the current note will
simply be ignored by correct members. Such accusation also constitutes a proof
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of malicious behavior, and can be used to expel the offending member. Since
participants is already in possession of each other’s note, when determining
accusation validity, all note information will be retrieved from the accused’s
own signed note. If a node is not in possession of the accused peer’s note, the
accusation is discarded.

4.1.4 Timeouts

The timeout data structure is only kept as part of local state, and not dissem-
inated to other members. They contain the last note from the accused node,
the observer, and a timestamp from when the timer was started as shown in
Figure 4.4. A timeout is only valid if its associated accusation is, as described in
Rule 4. Therefore, if a rebuttal is received before the timeout expires, invalidat-
ing its accusation and subsequently deleting the timeout. Timeouts are started
as a result of receiving a valid accusation, if the timer expires, the accused node
is considered crashed and removed from the local node’s live view. However,
the crashed node is not removed from the full view, enabling him to rejoin
the network without having to re-disseminate his certificate throughout the
network.

Rule 4 A timeout concerning node p is only valid if there exists a valid accusa-
tion for p.

Figure 4.4: Timeout structure, the observer field is a local representation of a remote
peer. There is no need to show byte indexes here since timeouts are not
gossiped.

4.2 Gossiping

All data structures are gossiped (except timeouts) in the following order:
certificates, notes, and then accusations. This way, nodes will always be able to
recognize the unique identifier present in both notes and accusations. Notes
and accusations are signed with the private key of their creator, such that
nodes can verify their integrity by using the public key stored in the creator’s
certificate. Hence, all gossip messages are tamper-proof, and if tampered with,
they are discarded as described Rule 1.

Ifrit imposes a set of rules concerning gossip partners:



32 CHAPTER 4 / FIRECHAIN COMMUNICATION SUBSTRATE

Rule 9 For each ring r, correct members maintain a secure gossip channel to
their neighbors (successor and predecessor) in ring r which are consid-
ered live.

Rule 10 For each ring r, correct members only accept gossip from their neigh-
bors in each ring r which are considered live.

After converging to the same view, participants will only try to gossip with
their correct neighbors. Thereby, discarding traffic originating from malicious
or simply incorrect nodes. As a result, participants will disconnect gossip
channels upon a change in neighbors, where the old neighbors either crashed
or is temporarily unavailable. Upon resurfacing, a peer re-integrates into the
network by proving his liveness, only then will participants accept gossip
connections from him. To prove his liveness, the peer has to rebuttal the
accusation that was created when he disconnected. When contacting his old
neighbors, they should inform him of the accusation concerning him, such that
he can rebuttal it, and thus re-integrate into the network.

4.2.1 Rings

A ring consists of all members in the Ifrit network organized in pseudo-random
order, an example of a gossip mesh is shown in Figure 4.5. Each ring have a
different ordering of members to enforce diverse gossip partners and monitors.
Random gossip partners are essential for providing the high probability of
convergence property of gossip protocols. All participants gossip with their
closest neighbors in each ring, namely, their successor and predecessor. Also,
participants monitor their successor on each ring. In Figure 4.5 member A’s gos-
sip partners are highlighted in red, each one of them are either its predecessor
or successor in their respective ring.

With different monitors in each ring, Ifrit guarantee, with high probability,
that all participants have at least one correct monitor. A node p can disable
rings with misbehaving predecessors by setting the appropriate bit in the mask
bitmap in its own note to zero. By disabling a ring, all other nodes will ignore
accusations concerning p originating from the disabled ring as presented in
Rule 7.

Rule 7 An accusation is only valid in ring r if the bit corresponding to r’s ring
number in its contained note is enabled.

Hence, preventing corrupt nodes from generating additional traffic by repeat-
edly accusing their successors. However, a node might disable all of its rings
by accident, or a corrupt one might disable all on purpose. Therefore, Ifrit
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Figure 4.5: An example of a gossip mesh consisting of three rings. All members colored
in red are neighbors of member A, forming its set of gossip partners.

impose an upper limit on how many rings can be disabled at any given time.
The amount of rings k can be formulated as k = 2t + 1, where t is the upper
bound on ring deactivation. From this, Ifrit presents Rule 6:

Rule 6 A note is only valid if the contained bitmask is of length 2t + 1 and at
most t of the bits are disabled.

As a result, correct nodes cannot deactivate all their rings by accident and
corrupt ones cannot deactivate all on purpose. For example, with 11 rings,
participants can only deactivate 5 rings. If a node wants to disable ring a, but
has reached his deactivation limit, he reactivates another ring b, and deactivates
a. This is done in a round-robin fashion, not prioritizing any rings. However, this
could be extended by keeping a small history log for each ring, where nodes
could prioritize deactivating rings with a higher frequency of misbehaving
monitors. Thus, punishing byzantine behavior.
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4.3 The Membership service

Ifrit’s membership service provides applications with the current live view of
the system. We expose an endpoint where peers can retrieve the addresses of
all participants currently believed to be alive. This is the primary purpose of
Ifrit, providing a BFT full membership view. Participants that stop responding,
either by temporarily becoming unavailable or crashing are removed from the
live view. Hence, our live view only contains active participants. As of now, our
membership endpoint retrieves all live members, hence, each time the applica-
tion needs an updated view it has to fetch the entire membership. Ideally, we
want to provide both the option of fetching the entire view and periodically
receive updates concerning leaving and joining peers. We could implement
incremental updates as a subscription based service, where applications sub-
scribe to membership changes. Each time a peer joins or a live one crashes, the
application could be notified with a message containing the peers address and
live status.

Ifrit maintains three structures for membership management: a full view, a
live view, and a set of ring structures. The full view contains all peers ever
observed that possessed a valid certificate. The live view is a subset of the full
view, containing only the peers believed to be alive. Finally, the ring structures
are used for gossip and monitoring purposes. A peer’s position within the
rings determines his gossip partners and monitoring responsibilities. Rings
contain all peers present in the live view, and the number of rings used is a
configuration variable determined at startup. Hence, peers are removed and
added to the rings depending on changes in the live view. Furthermore, rings
facilitate accusation invalidation, when adding a node to a ring, gaining a
predecessor p and successor s, if there exist an accusation concerning s issued
by p it can simply be removed due to it becoming invalid since p is no longer the
direct predecessor of s. The pseudo code can be seen in Code Listing 4.1.

Code Listing 4.1: Adding of live peers.

1 func addLivePeer(p *peer) {

2 // Rings contain all live participants.

3 for r := range rings {

4 // The peer gains a successor and predecessor on each ring,
5 r.add(p)

6 successor, predecessor := p.neighbors(r)

7

8 // If the new peer is placed between two participants
9 // where there already exists an accusation.

10 // We can now invalidate it, since the new peer

11 // is now the direct predecessor of the accused

12 if predecessor.accused(successor) {

13 successor.removeAccusations()

14 }

15 }

16 }
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Upon receiving a new valid certificate, participants create a local peer repre-
sentation and add it to their local full view. The new certificate is included in
participants’ gossip set, however, the peer is not considered live. A peer is not
considered live before participants have both a valid certificate and note from
the respective peer. Upon receiving a valid note, the peer is added to the live
view and ring structures, hence, it its now considered live. When viewed as
live, neighboring peers will open gossip connections and the peer will even-
tually learn of all other participants in the network. Since Ifrit provide a full
membership view, and peers can deterministically determine who they should
be gossiping with, a peer that is considered live by the network will always be
contacted by his neighbors.

4.3.1 Joining the network

To join an Ifrit group, a peer i sends a certificate signing request to the CA. If
accepted to join the group, the CA responds with a signed certificate, and a list
of certificates of peers already participating in the network. i then contacts the
closest neighboring peer in the list received from the cA, which in turn finds
his actual neighbors. Finally, peer i can contact his appropriate neighbors and
integrate into the network. Our CA acts as an entry point into the network,
supplying new peers with certificates of existing participants. Peers discover
other participants through gossiping with the peers belonging to the supplied
certificates. The process of joining the network is depicted in Figure 4.6

CNAH) (7 C(GFE)

CA

Figure 4.6: (1): I sends a certificate signing request to the CA. Receives certificates of
participating peers G, F, E. (2): Tries to gossip with the closest neighbor
G, which finds his neighbors since he has not seen him before. Returns
certificate and notes of his appropriate neighbors, A, H. (3): I contacts his
neighbors (A, H) and integrates into the network.
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Peers already participating in the network are responsible for helping new
members integrate into the network. A key consideration is therefore how
much resources existing participants allocate to help integrate new peers. If
we dedicate too much, adversaries could exploit this by repeatedly contacting
participants, depleting resources. We want to evenly distributed resources
among our neighbors, and occasionally help new peers integrate, but with a
low amount of resource cost. Our solution is as follows; existing participants
help newly joined peers integrate by finding their appropriate neighbors. More
specifically, certificates and notes of their neighbors are returned in the gossip
response. The flowchart of a gossip interaction is shown in Figure 4.7. We deem
finding their neighbors a small task, which only includes determining their
appropriate position in each ring.

As depicted in Figure 4.7, if we have observed a peer before (it is present in our
full view) we reject its request. If an adversary gossips with a non-neighboring
peer a, and a has not seen him before, a will find his neighbors and include
the adversary’s’ note and certificate in his local gossip set. Thereby, other
participants will eventually learn of the adversaries existence, thus, if he tries
to contact another non-neighboring peer that has received his certificate, that
peer will reject him.

Invalid Valid

Certificate check

Neighbor check

Not neighbors Neighbors

Seen before

Observation check

Not seen before
Accepted

Figure 4.7: Flow of gossip interactions.
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4.3.2 Rejoining after crashing

A peer might crash or temporarily become disconnected from the network.
When detecting an unresponsive peer, accusations are created and disseminated.
Upon receiving a valid accusation, a local timeout is started, associated with
the accused participant. If the participant was already considered crashed or
has not been observed before, the accusation is discarded. If the timer expires
before receiving a rebuttal, the peer is removed from the live view and ring
structures, but is still kept in the full view. When the peer becomes available
again he contacts his neighbors, learns of the accusations concerning himself,
rebuttals them and thus rejoins the network. However, there are scenarios
where the rejoining peer will be rejected by his neighbors. While the peer was
unavailable, new participants might have joined the network and become the
new neighbors of the peer’s previous neighbors, as shown in Figure 4.8.

After
leaving

Before
leaving

After
rejoining

Figure 4.8: Process of rejoining the network after being crashed. A is not aware
of his new neighbors after coming online again. Upon contacting his
old neighbors, they inform him of the accusations associated with him.
Subsequently, A rebuttals the accusation, learns of his new neighbors and
rejoins the network.

Here, peer a becomes unavailable and does not learn of the accusation con-
cerning himself. Before rejoining, peer i and j joins the network, and becomes
the new neighbors of peer h and b. When peer a contacts h or b, he is rejected
due to not being their neighbor and having previously been observed. Since a
does not learn of his accusation, a rebuttal is not initiated. Also, a is unaware
of i and j’s existence since he has none to gossip with. Hence, he will remain
crashed in other participants view, and unable to contact his neighbors.
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We solve this issue by extending our observed check to include whether the
contacting peer is accused. If so, we send back the accusations concerning him.
Subsequently, the peer will issue a rebuttal, and at the next gossip interaction
he will present his new note, which invalidates the accusations. Note that
the contacting peer’s note will always be evaluated, even if the interaction is
rejected. The validation algorithm is shown in Code Listing 4.2.

Code Listing 4.2: Note evaluation.

1 func evaluateNote(n *note) {

2 peer := getPeer(n.id)

3

4 // Content validation.

5 if !isMoreRecent(n, peer.note) || !validMask(n.mask)
6 || !validSignature(n.signature) {

7 return

8 }

9

10 // New note might be a rebuttal,

11 // need to invalidate accusations and timeouts if so.
12 if peer.isAccused() {

13 peer.removeAccusations()

14 peer.removeTimeouts()

15

16 // Peer might already have been removed from our live view,
17 // by a previous timeout expiring.

18 if peer.isCrashed() {

19 addLive(peer)

20 1

21 }

22 // Always want to store the most recent note.

23 peer.replaceNote(n)

24}

Hence, when the peer retries to contact his former neighbors, the new note
will invalidate previous accusations. After invalidation, the new note will be
disseminated throughout the network, invalidating accusations at all other
participants. As a result, the peer will be re-included into the live view and
rings at all other participants.

4.3.3 Failure detector

Peers are assigned monitoring responsibilities to remove crashed members
from our live view. Each participant monitors their successors by periodically
pinging them, if a specified timeout is exceeded the ping fails, if this occurs
more than a set limit the successor is considered dead. To prevent the forging
of pong responses, each ping contains a random generated nonce value, pong
responses contain the signature of this nonce. If the signature is not valid, the
ping is considered failed. Thereby, malicious peers cannot forge ping responses
to keep dead peers in the live view of honest peers.
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Upon detecting a crashed peer, the accuser generates an accusation and adds
it to the local gossip set. It will then be included in all the following gossip
interactions and spread throughout the network. Only the direct predecessors of
a given peer p can issue valid accusations for p. With high churn in the network,
peers might disagree on the current system view, resulting in disagreement
concerning the validity of accusations. However, participants will eventually
converge to the same view when the churn ceases.

The ping protocol used in the original implementation [25] adopts the ping
timeout according to previously recorded latencies. Hence, it does not rely on
a set timeout shared across all connections. A hard timeout approach is sub-
optimal since latencies will differentiate between connections in a distributed
environment. Ifrit does not implement the ping protocol specified in [25], and
relies on a set timeout for all connections. This a drawback of the implemen-
tation, and the ping protocol or another approach should be implemented in
future work. Pinging in Ifrit is done over User Datagram Protocol (UDP) and
relies on a set timeout, after a set amount of failed pings a node is considered to
be crashed. As a result, Ifrit might generate more false accusations by not reg-
ulating the timeout per connection compared to the previous implementation

[25].

Our failure detector is agnostic of the underlying pinging procedure, hence,
any implementation can be provided. We implemented the pinging procedure
using UDP due to its lower complexity compared to Transmission Control
Protocol (TCP).

4.4 The Gossip service

Participants gossip through secure channels, where peers are securely identified
by their signed certificate. By having a trusted CA and communicating over
secure channels, Ifrit resists Sybil attacks [7]. All participants maintain a
secure gossip channel with neighboring peers, as described in Section 4.2. After
establishing a secure connection, gossip channels are reused until a change of
neighbor or disconnection. In the case of disconnection, the neighbor will be
re-dialed periodically until either he responds or a new neighbor replaces him.
Peers periodically reconcile membership state with neighbors through these
channels. When peers gossip, they pick a Ifrit ring in a round-robin fashion and
gossip with both neighbors on that particular ring. Hence, with n rings, peers
will have gossiped with all their neighbors after n rounds of gossip. Our gossip
interval is a configuration variable, with the default set to 10 seconds. This is a
rather aggressive approach, and we envisage that applications can configure
this interval according to their needs. More frequent gossip results in quicker
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convergence, but more bandwidth usage. We use Google Remote Procedure
Call (GRPC) for all communication and connections over TLS.

Applications might want to disseminate their own gossip, which they typically
would do on-top of any membership view. The standard approach in gossip
protocols is to periodically select a random peer and reconcile information.
With random peer selection, and other primitives, such protocols converge
with high probability. For example, Bitcoin [2] does exactly this, periodically
gossiping with neighboring peers about transactions, blocks and membership
information. Ifrit enforces diverse gossip partners through its pseudo-random
ring constructions, where in each ring, all participants are organized in a differ-
ent order. Hence, periodically gossiping with neighbors is similar to selecting
a random peer from a membership view. Therefore, we provide applications
with a gossip service, where they can add gossip content which will period-
ically shared with neighboring peers. We effectively piggbyback application
gossip on our own gossip interaction with Ifrit neighbors. When gossiping with
neighboring peers, the provided message is included and propagated to the
receiving application. Ifrit will include this message in each gossip interaction
until the application either replaces or removes it. All messages and their re-
sponses are relayed through events that the application subscribes to, as shown
in Figure 4.9.

The application is guaranteed that all messages received through gossip are
sent by a neighboring peer in the Ifrit ring mesh. Peers that try to gossip with
everyone for possibly devious purposes are rejected, as shown in Figure 4.7.
All gossip related to Ifrit internals are still propagated and processed to main-
tain the membership, even if the application does not attach any additional
gossip. We envisage that this service is beneficial for applications wanting to
disseminate state in a distributed environment, similar to how Ifrit operates.
As peers gossip at 10 second intervals by default, the provided message will be
transferred over the network every 10 second. Therefore, applications should
not include messages in the gossip service that are of significant size.

We do acknowledge that this service is possible to simulate through our mes-
saging service or application messaging primitives. However, its purpose is
to periodically exchange information with a restricted set of peers through a
secure channel. From our gossiping rules, we can determine which peers are
allowed to contact us. If applications were to enforce this through an alternative
messaging scheme, they would have to keep track of all gossip rings and discard
messages originating from non-neighbors. This would also require them to
know how we manage our underlying rings, or enforce their own messaging
rules. We argue that this service provides an ease-of-use alternative to imple-
menting restrictive messaging protocols. Also, Ifrit already maintains gossip
connections for its own purposes, so the only cost is an increased message
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Figure 4.9: Application interaction with the gossip service.

size per gossip interaction, instead of additional connections in an application
implemented scheme.

4.4.1 Gossip message content

As message size is one of the limiting properties of a gossip protocol [29],
reducing gossip content is critical for performance. The original Fireflies [25]
implementation supported set reconciliation [77] for gossip interactions, min-
imizing the amount of data transmitted over the network. Our previous Ifrit
implementation did not support this, and instead transferred the entire gossip
set in each interaction (all certifcates, notes, and accusations). We still do not
support set reconciliation, but have changed our gossip approach to reduce
network usage. Instead of sending everything, we send a set of all current
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known peer id’s and their current note epoch, as shown in Figure 4.10.

36
)
\

Peers

Figure 4.10: The contents of a gossip message, numbers refer to the sizes of each
structure in bytes.

On the receiving side, we identify if the sender has any old notes and if they
lack certain node id’s. The response contains all notes we believe the sender
has stale versions of, any certificates belonging to peers the sender did not
know of, and all accusations as shown in Figure 4.11. Although corrupt peers
could attack this design by repeatedly stating that they know of no other peers,
this would result in the same network usage as our previous approach. Hence,
our worst case scenario when under attack is equal to our previous design,
while in a normal case scenario we reduce our network usage.

504 92 125

Certificates Accusations

Figure 4.11: The contents of a gossip response, numbers refer to the sizes of each
structure in bytes.

To further reduce network traffic, we compress all messages. GRPC supports
compressing outbound messages, and uses GNU Zip (GZIP) by default. Com-
pression presents a trade-off between Central Processing Unit (CPU) usage,
memory usage, and network traffic. In theory, Ifrit is network bound, therefore
we deem this trade-off acceptable. Also, our deployment environment has low
quality network links, which further supports enabling compression.

4.5 The Messaging service

One of the benefits of full membership views is the possibility of point-to-point
messaging, without any intermediate hops. With Ifrit’s full membership view
we provide a messaging service where applications can send their messages
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directly to their destination. Addresses of other participating peers can be
fetched from the membership service, and then be used to send direct mes-
sages. Applications can implement their own messaging scheme on-top of our
membership service. However, we provide this service as an ease-of-use alter-
native to implementing a messaging scheme. Also, all messages are transferred
over a secure connections TLS. With a full membership view and storing of all
participants signed certificates, we can establish a TLS connection with every
participant.

As network links are unpredictable and peers have different network environ-
ments, we implemented this as a asynchronous service. Applications subscribe
to events such as incoming messages and responses, an example usage of
sending a message is shown in Code Listing 4.3.

Code Listing 4.3: Message service.

1 func sendMessage(msg) x*response {

2 // Retrieves addresses of all peers currently belived to be alive.
3 addrs := ifrit.Members()

4

5 // Pick random peer to send a message to.

6 addr := addrs[randIdx]

7

8 // Returns a synchronization primitive.

9 ch := ifrit.SendTo(addr, msg)

10

11 // Wait for response through the synchronization primitive.
12 resp <— ch

13

14 return resp

15 }

A key note here is that our messaging service bypasses Ifrit communication rules,
as described in Section 4.2, messages can be sent to all participants and not just
neighbors. We deem this a necessity to make the service applicable. If we did
abide by Ifrit rules, the messaging service would become somewhat identical to
our gossip service. However, when we allow applications to communicate with
all participants, we need to consider connection management. If an application
decides either by accident or on purpose, to message everyone in the network
with a significant amount of participants, we cannot simply open connections to
everyone. We employ a connection pool in this service, where only a fixed set of
connections are allowed to operate concurrently. Hence, when applications send
messages and exceed the max amount of connections, messages are queued
until connections become available. Since the service is already asynchronous,
this extension is feasible.
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4.6 The Signature service

All peers are required to present a certificate containing their public key and
network address that is signed by a trusted CA when contacting other partic-
ipants. By maintaining a full membership view and storing public keys of all
other participants, Ifrit is capable of verifying their signatures. However, appli-
cations must provide the Ifrit id of signer, such that Ifrit can verify the signature
with the correct public key. Applications only need to include the id, which can
be retrieved through our external interface, in the message they want to sign
and send. We envisage that this service is beneficial for applications needing
to verify content integrity, and we relieve them of disseminating public keys.
For example, if the application uses either the gossip or message service, all
outgoing messages can be signed and the received verified by the signature
service.

One of the motivations for providing this service is that gossip protocols are
inherently susceptible to data corruption [60]. Hence, if an application uses
our gossip service to disseminate information, for example a vote table where
each participant votes for a particular issue, malicious peers could manipulate
other participants entries. By providing a signature service, applications sign
their own entry, verify others and discard tampered information.

4.7 Certificate authority

Ifrit also supplies a basic Certificate Authority (CA) implementation responsible
for signing participants’ certificates. The CA exposes a single Hypertext Transfer
Protocol (HTTP) endpoint for certificate signing requests, expecting the body
to contain a X. 509 compliant certificate request. If the request body does not
contain a valid certificate request, it is discarded. When signing certificates,
the CA is responsible for generating the Ifrit id used by participants. As these
ids have to be unique, the CA stores all previously generated ids to ensure
uniqueness. Furthermore, the CA acts as a entry point into the network by
piggybacking certificates of nodes already present in the network on certificate
signing requests. This was done purely for simplicity and we consider the
entry mechanism as an orthogonal field of research. A possibility would be to
distribute the CA in similar manner as the DNS servers used for Bitcoin [29],
acting as both a cA and DNS. We do not consider vulnerabilities or attacks
concerning the certificate authority implementation.

As of now, our CA does not monitor network activity, hence, its unaware of
which peers are still participating. As a result, if all of its known peers either
leave or crash, it can no longer provide an entry point into the network. To



4.8 / CRYPTOGRAPHY 45

solve this, the CA could periodically query its set of known peers to ensure that
it always has an updated view. Another approach could be to simply store all
certificates at the cA, however, if the system grows to a significant size, both
storage and determining who is alive becomes problematic.

4.8 Cryptography

Ifrit uses GO’s standard library for all cryptography and certificate operations,
both the CA and client implementations. Also, we adopt the same approach as
the previous implementation [25] and use elliptic curve signatures due to its
low signature length compared to Rivest-Shamir-Adleman (RSA) and Digital
Signature Algorithm (DSA). As one of gossip protocol’s limitations are bounded
message sizes [60], and all gossiped data structures are signed, we deem this
a desirable feature.






FireChain Consensus

This chapter will introduce FireChain’s consensus component and its subcompo-
nents. FireChain’s consensus protocol is based on gossiping block propositions,
adding them to the state component as participants agree upon the next block.
Propositions converge over time so that eventually every correct member will
(with a high probability) have seen all votes.

5.1 Consensus protocol

Time is divided into epochs. For each epoch members decide on the next block
to commit to the chain. Hence, the epoch length in wall-clock time decides
the block commit interval. In the current prototype, epochs are configured to
be 10 minutes, split into 60 10 seconds gossip rounds. Leaving peers with 60
gossip rounds to agree upon the next block. In each gossip round, participants
gossip k other peers in the system. At the end of an epoch participants commit
their favorite block to their local chain. The favorite block of a participant is the
block that received the majority of votes during an epoch, hence, its the most
popular block. A superficial representation of the protocol is shown in Code
Listing 5.1.
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Code Listing 5.1: Consensus protocol.

1 // In each epoch we decide the next block.
2 for each epoch do {

3 // We choose a favorite block in each round.

4 for each gossipRound do {

5 // Fetch k random peers from our view.

6 kPeers := sampleRandomPeers()

7

8 // Gossip with them, get their tables.

9 tables := gossip(kPeers)

10

11 // Update entries that has lower epoch numbers.

12 roundTable := reconcileTables(tables)

13

14 // Pick the most popular block for this round.

15 // The block with the most votes becomes our favorite.
16 pickFavoriteBlock(roundTable)

17 }

18

19 // After reaching agreement during gossip rounds we commit
20 // our favorite block, and the process repeats.

21 commitFavoriteBlock()

22 1}

All participants maintain a vote table, containing one entry per participant in
the network. Entries effectively represent each peer’s vote for the next block.
Each entry consists of: the peer’s id, an epoch, the peer’s favorite block, and a
signature. Entries are signed by their respective creator to ensure that malicious
participants cannot alter other peers’ votes. The epoch field does not directly
correlate to consensus epochs, but rather representing an increasing counter
establishing the order of which block each peer favored. Hence, if peer n favors
block a at epoch 5, but later on favors block b at epoch 6, n has changed favorite
block from a to b during this timespan. Thereby when we are comparing entries,
we know that the one with the highest epoch is the most recent vote from the
respective peer.

In each gossip round, participants reconcile their vote table with k other peers.
When reconciling tables, peers adopt all entries that have a higher epoch
number compared to their entry. After reconciling tables, participants count
votes for each block, and replaces their favorite block with most popular block in
the table. Subsequently, incrementing their epoch counter, signaling a change
in favorite block. If they chose the same block as they did in the previous round,
they do not increment their epoch counters. In the event of a tie between
several blocks, one is picked at random.

At the start of an epoch, each participant fills their local block with collected
entries and sets it as their favorite block. After gossiping with other participants,
peers will learn of other blocks and always vote for the most popular one. By
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continuously gossiping tables, participants will eventually, with high probability,
agree upon the next block. Epochs act as a global commit timer and signals all
peers to commit their current favorite block, and start the consensus process for
the next block. Peers ignore all votes that either have a invalid signature or has
a different previous block compared to them, hence, ignoring votes originating
from forks. We will introduce possible forking scenarios and how we resolve
them later on.

5.2 Vote tables

Vote tables contain all participating peers, and each entries’ structure is shown
in Figure 5.1. Each peer uses their deployed Ifrit client’s id as their vote table id

148 + 32"n

0 32 35 67 99 148
“ PR EntryHaSh - - EntryHaSh !

Vote Table Entry

Figure 5.1: Structure of a vote table entry, numbers refer to their placement within
the structure.

since they are already unique. To identify what block entries each favorite block
consists of, we include hashes of all block entries in vote table entries. Thereby;,
peers can identify which block entries is missing from their local storage. The
roothash field represents the merkle tree root hash of the block’s entries, and
prevhash represents the previous block’s hash. By adding signatures, entries
are tamper-proof. We utilize Ifrit’s signature service to verify all signatures and
to sign our own entry.

5.3 Gossiping vote tables & block entries

Vote tables and block entries are disseminated through Ifrit’s gossip service.
We refer to the message attached to the gossip service as our state, which
will be transferred to our neighbors periodically by the service, subsequently
reconciling their states. Upon a change in state, the gossip service is updated
with the new state to be disseminated. A change in state does not append
another message to the service, it replaces the previous one. We will now
present our design process of what our state consists of in incremental steps,
before finally showing our final approach.
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Initially, our state contained the entire pending pool of block entries and our
local vote table. However, each participant’s pool could grow indefinitely since
the pool had no size limit. As a result, gossip messages between participants
would also grow indefinitely in size. To resolve this issue, a maximum size of
the pending pool was imposed on participants, ensuring that gossip messages
would never exceed the maximum memory pool size. However, this approach
was not feasible since some entries might not be propagated throughout the
network due to all participants having maxed out their memory pools. Peers
need to have all block entries that could be included in the block to be chosen
in the current epoch. We then instructed participants to continuously ask their
neighbors for entries in their favorite block. However, with 300 participants and
1 MB blocks, each participant would have to receive and store 300 megabytes
of data per epoch in a worst case scenario where no blocks had overlapping
entries. To reduce network usage, participants only ask neighbors for entries
they lack to complete their own favorite block, instead of all entries of everyone’s
favorite block. More specifically, each peer asks their neighbors for all entries in
their missing pool, as explained in Subsection 3.2.4. As the network converges,
all participants will eventually have the same favorite block, and everyone
will have received its content. Hence, we will still fulfill our constraint that
participants need to have all block entries of the block to be chosen in an epoch.
At the point of convergence, everyone’s missing pool will be empty and no
further transfer of entries is necessary.

To determine which entries each block in the table consists of, each entry
contains all entry hashes of the blocks content. The total size of a vote table entry
with a block consisting of 10 entries would be 486 bytes. With 100 participants,
the entire table would then be 48.6 KB. We initially added the entire table
to the gossip service, where it would be sent over the network at each gossip
interaction. Participants would then adopt specific entries as according to the
protocol. The gossip service will by default compress all outgoing messages,
reducing our network usage. However, we wanted to reduce it further. Firstly,
we made a small change to the protocol, instead of incrementing our epoch
number after each reconciliation, we only increment it after changing favorite
block. We still add our entire table to the gossip service, however, each entry
only consists of: id, epoch and the block’s merkle root hash. Entry size is now
reduced to 68 bytes, and with 100 participants amounts to 6.8 KB. On the
receiving side, the participant checks whether the sender has any stale entries
by checking epoch numbers and merkle hashes. If there any stale entries,
their full versions (the one showed in Figure 5.1) are transferred back. Since
the receiver does not adopt any entries, messages do not need to include
signatures. They are transferred when stale entries are detected, likewise for
entry hashes.

Our state consists of a reduced vote table, and the missing pool explained
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in Subsection 3.2.4. We subscribe to incoming messages and responses by
registering handlers in the gossip service, where our message handler is ex-
pected to return a response. Our registered event handlers pseudo code is
shown in Code Listing 5.2, which will be invoked on each received message
and response.

Code Listing 5.2: Gossip callbacks.

1 func handleGossip(msg *message) *response {

2 // We fetch all vote table entries we think the sender has
3 // stale versions of.

4 staleVotes := checkTable(msg.table)

5

6 // We return the requested block entries,

7 // if we have them in local storage.

8 blockEntries := getBlockEntries(msg.missingBlockEntries)
9

10 resp := &response{

11 blockEntries: blockEntries,

12 table: staleVotes,

13 }

14

15 return resp

16 }

17

18 // This callback will be invoked on each received response.
19 func handleGossipResponse(resp *response) {

20 // We requested these in our inital request.

21 for _, blockEntry := range resp.blockEntry {

22 // Add all block entries that we are missing from our favorite block.
23 if disMissing(blockEntry) {

24 addBlockEntry(blockEntry)

25 }

26 }

27

28 // The receiver has 1identified which votes we have

29 // stale version of, now we reconcile them.

30 reconcileVoteTable(resp.table)

31

32 // If we update some vote table entries or

33 // received some block entries missing from our favorite block,
34 // we then update ifrit with our new state.

35 if state.changed() {

36 ifrit.SetGossipContent(state.serialize())

37 }

38 }

In our initial design, when participants converged, they would still exchange full
voting tables. With our optimization, we only transfer 68 bytes per participant
after convergence. Even before convergence we only transfer stale entry values,
reducing our network usage significantly. Additionally, participants would ex-
change significant amounts of block entries, even if they already had all block
entries associated with their favorite block. As gossip protocols are inherently
bound by message sizes [60], we deem this a significant improvement to our
previous design.
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As mentioned in Chapter 4, when using the gossip service, messages should not
be of significant size. We observed slow peers with our initial design choices due
to extensive network usage. Both due to responses growing indefinitely and
large vote tables. By changing our gossip approach, we fetch a maximum of one
block of entries and the size of vote table entries reduced significantly.

5.4 Resolving forks

Forks occur when one or more participants create a branch of blocks separate
from the main chain. Bitcoin [2] resolves forks by participants always following
the longest chain. Hence, the main chain will always be the set of peers with
majority of computing power. However, it is not clear which branch is the main
chain at point of forking, since they are equal in length. It takes time before
the main chain out-paces other branches. This is one of the reasons Bitcoin
developers recommend waiting until your transaction is 6 blocks deep before
considering it permanently committed [29]. Another approach introduced by
Ghost [58], proposes weighting each branch not just by its length, but by its
subtrees. If a branch has significant amount of subtrees, it is more probable
that its the main chain since there is probably more peers working on that
branch.

As our consensus protocol is not based on POW, forks are not created by multiple
miners finding the next block simultaneously. One or more forks are created
if peers disagree at the end of an epoch, whether it happens by accident or
due to malicious participants. During development, we found that a frequent
cause of forks was peers temporarily becoming unavailable, not being able
to contact or be contacted by other participants. Isolated peers would then
progress their own local chain, oblivious to other peers in the network. Since
they were alone, their own vote was enough to commit block after block. When
becoming available again and rejoining the network, they would have a personal
branch and would ignore other’s blocks due to having different previous blocks.
Likewise for other participants, rejecting the re-emerged peer’s blocks due to
different previous blocks.

To resolve forks, we utilize our full membership view combined with our vote
tables. After rejoining the network, peers will learn of the current block propos-
als through reconciling vote tables. By examining updated vote tables, peers
can identify if a majority of the network is on a different branch. Since each
vote table entry contains the previous block, we deem that every participant
with a different previous block is on a separate branch. If a majority of the
network (over 50%) is on a different branch, peers contact a random partici-
pant in that majority and presents him with his local chain. We only send the
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hashes of each block with no content, since the receiver only needs to identify
where the fork occurred. The random participant then inspects where the fork
occurred through his state component and sends back all the blocks beyond
that. Subsequently, the receiver evaluates the proposed chain and replaces
his own if valid. As we select a random participant in the majority, we might
contact a byzantine or corrupt peer, which in turn could present his own secret
fork. However, if we receive a secret fork that is not the main chain, we will
simply detect this as another fork and the process is repeated. An obvious
drawback of this approach is if the network is split into two equal partitions,
hence, there is no majority. To improve on this, we could add a tie-breaker rule,
such that all honest peers would at least follow the same chain. As peers in the
majority might not be one of our neighbors, we cannot contact him directly
through the gossip service. We also rely on this direct message to be through a
secure channel. Peers utilizes Ifrit’s messaging service to resolve forks through
secure channels.

Another approach could be to contact a set amount of peers in the majority and
confirm their chain representation from multiple sources before committing.
This would, however, incur additional overhead and it is essentially what we do
by repeating the process, just with a significantly better best-case performance.
For example, if we were to contact 2/3 of the majority before committing, with
a total network of 1000 and a majority of 9oo, that would be 600 messages.
Instead we only send one message, and repeat the process if the received
chain is a fraud attempt. This is only plausible due to our full membership
view, with a partial view, we would not be able to accurately estimate what
the majority of the network favored since we do not know its full size. Also,
contacting someone in that majority, if not in our partial view, would have
to travel several hops between peers to reach its destination. Increasing the
chance of encountering a byzantine or corrupt peer at each hop.

An adversary attempting to create a fork in Bitcoin [2] could attempt to out-
pace the main chain if he is in possession of the majority of computing power.
Hence, invalidating the main chain’s progression in favor of his own blocks.
Peers in FireChain do not produce POW to progress the chain as in Bitcoin,
but collectively agree on the next block within a fixed time frame. Hence, a
branch with only one honest member would progress at the same pace as
the main chain. An adversary could produce blocks at a rate only bounded
by the rate of which he can produce and disseminate them. However, these
blocks would not be accepted by honest participants as they only commit
blocks per fixed interval and commit the one which is most popular. This
leads to the possibility of performing a Sybil attack [7], where adversaries
allocate a significant amount of identities to gain influence and control a
distributed system. However, Ifrit's membership service already solves this
issue as explained in Chapter 4. Adversaries could, however, refuse to forward
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gossip information or simply vote for random vote table entries that are not
popular. Aiming to cause confusion among honest peers, preventing them from
agreeing on the next block. To withstand such attacks we rely on our gossip
converging at honest members.

Adversaries can simply pool their votes together and vote for their block, effec-
tively controlling chain content. Content would still have to be valid, however,
they could starve all other participants by not letting them commit their entries,
rendering the system useless for all other peers. Honest participants will follow
the most popular block, and if 30% of the network is corrupt, it is highly prob-
able that their block will be chosen every round. We currently do not have any
countermeasures, however, a POS hybrid approach could prevent this attack.
If votes were weighted by participants current stake in the system, adversaries
would at least have to own significant amounts of stake before they can control
chain content. Current systems employing POS [8, 55] select a committee
based on participants’ stake in the system. The committee either collectively
agrees upon the next block or elect a leader responsible for deciding the next
block. We would not elect a full committee, and rather weight a stakeholder’s
vote higher than that of peers with no stake in the system. Alternatively, par-
ticipants could only consider votes originating from stakeholders. With a full
membership view, peers can identify who currently is in possession of the most
stake. Non-stakeholders would effectively only be disseminating gossip.

Also, the adversary could create a fork originating arbitrarily in the distant past.
From this fork he can produce enough blocks to match the length of the main
chain. When at the same length and with the majority of votes, the adversary
can re-write history by introducing his fork. As generating blocks is trivial
without Pow the attack is feasible. However, the adversary must control the
network majority. We do not have an effective solution for when a majority of
the network is corrupt. However, we envisage that corrupt participants could
be detected and their certificates revoked, effectively removing them from the
membership. This would have to be enforced by Ifrit, but could be detected by
FireChain.



Evaluation

In this chapter we evaluate FireChain by investigating how many rounds of
gossip are required for the system to converge. We run several experiments
for different scenarios to investigate various aspects of FireChain’s perfor-
mance.

In some cases during our experiments, certain members became isolated or
disconnected from the system, unable to send or receive messages from the
other peers. Such partitioned members may create forks in the blockchain
when reconnecting with system, and report back that they converged on their
own branch in o rounds. We discard these measurements and ensure that
they resolved their fork and continued on the main chain. Also, we discard
measurements originating from forks created by subset of participants. We
are only measuring the convergence of the main chain, and we ensure that
participants eventually resolve their forks and rejoin the main chain.
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6.1 Experimental platform & setup

All experiments and most of the testing and development were done on Planet-
Lab. PlanetLab! is a global research network maintained by several academic
institutions, supporting development of new network services, consisting of 1353
nodes distributed across 717 sites. Sites are distributed worldwide including:
France, Germany, Norway, Italy, and Spain. PlanetLab provides a distributed
environment spread across the world with different network environments,
which are the desired characteristics for testing our implementation.

With PlanetLab’s high diversity in network environments and commodity hard-
ware, we argue that our experiments are conducted in a real world setting
where hosts regularly crash or disconnects, which we often experienced in
development and testing of both FireChain and Ifrit. PlanetLab nodes have a
minimum bandwidth requirement of 400 kilobits Per Second (KBPS). 2

PlanetLab provided us with 48 nodes distributed all over Europe with high
diversity in network environments. Experiments were orchestrated from our
local machine at the UiT. Our CA was deployed on the same node in all
experiments and was redeployed before each experiment. FireChain instances
were deployed on all nodes followed by a 30 minute waiting period to ensure
that all nodes had converged to the same view and start up traffic had ceased.
As we only have 48 hosts, multiple FireChain instances were deployed evenly
across all hosts. FireChain instances are also responsible for creating block
content. The chain of events in each experiment deployment can be seen in
Section 6.1.

Step 1 Deploy the CA.

Step 2 Deploy FireChain instances on all PlanetLab nodes.

Step 3 Wait 30 minutes to ensure the underlying Ifrit clients have converged.
Step 4 Start experiment by sending a start request to all instances.

Step 5 After each epoch, peers report back their convergence number for that
epoch to our orchestrator at UiT.

Step 6 Let the chain progress 50 blocks (50 epochs).

Step 7 Shut down the cA and FireChain instances.

1. https://www.planet-lab.org/
2. https://www.planet-lab.org/node/222
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We rely on all FireChain instances starting approximately at the same time,
and deem the latency between each participant receiving the start request
acceptable. Each instance records how many gossip rounds it uses to settle
on each block. By collecting all instances’ round number for each block we
can determine their convergence time for each block by inspecting the highest
round number. The highest round number recorded represents when the entire
network agreed upon the block. We also ensure that each participant has
converged to the same blockchain state by inspecting each participant’s chain.
For each experiment deployment, we measure the average amount of gossip
rounds required for convergence.

We could have deployed our experiments on Amazon Web Services (AWS),
providing us with significantly increased network connectivity and possibly
better hardware. Or we could create a simulated environment, and add latencies
as we see fit. However, by deploying on PlanetLab we are closer to a real-
life scenario, where crashes and network outage are the default and not a
rare occasion. Since PlanetLab is distributed across the entire globe, network
latencies are high and connectivity low, which was experienced first-hand
during development and experiments. We frequently received messages from
PlanetLab support due to our excessive network transfers to low bandwidth
destinations, notably this only occurred with our initial design and later ceased
to occur.

6.2 Consensus experiment

We first investigate how many gossip rounds the blockchain protocol requires in
order to converge. In blockchain systems, the time used for reaching consensus
is decisive for performance, both in terms of throughput and latency. We
commit blocks at fixed interval, hence, reaching consensus prior to the end of
intervals does not increase performance, but indicates system stability. In our
experiments, blocksize is set to 1 KB as we want to mainly test our consensus
scheme, and not maximize throughput.

The results are shown in Figure 6.1, with the amount of participants on the
x-axis and the amount of gossip rounds used to agree upon the next block on
the y-axis. We observed 23 fork blocks during the entire experiment.

From our results, its clear that we are well within the 60 gossip round limit
for convergence. This is due to our aggressive gossip rounds set to 10 seconds,
and that we gossip with 2 peers in each round. We observe an increasing
amount of rounds needed for convergence as we add more participants, which
is to be expected. The graph does not follow a linear pattern, hence, gossip
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Figure 6.1: The average amount of gossip rounds required to reach consensus on
blocks, with a 10 minute commit interval. Error bars show the g5 percentile.

dissemination of our vote tables are not linearly correlated with our convergence
time. FireChain scales well to 200 participants, and by the trend of the graph,
probably scales well beyond that. As we only has access to 48 physical hosts,
we did not conduct experiment with even more participants, we leave this to
future work.

As our epoch length is set to 10 minutes, and with 200 participants we currently
use around 6-8 gossip rounds (slightly above a minute) to agree upon the next
block, we could possibly reduce our epoch length. With rounds at 10 seconds,
epochs could be pushed to around 2 minutes. Although, with a shorter time
frame comes an increased chance of creating forks due to higher probability of
peers disagreeing. Essentially presenting a trade-off between system stability
and commit latency. With more forks, participants will more frequently disagree
on the current state of the distributed ledger.

Throughout the entire experiment we observed 23 fork blocks, all of which only
had either 1 or 2 votes. When peers temporarily become unavailable due to
loss of network connectivity, they will simply progress their own local chain
with their single vote. After rejoining the network and receiving update vote
tables, they will detect a fork and resolve their branch with a random member
of the majority. Hence, such forks live for the duration of the peer’s network
outage.
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6.3 Block commit interval experiment

In the next experiment, we want to investigate if it is feasible to shorten epoch
length. From the experiment described above, we observed that participants
were able to agree upon a block on average before two minutes. This experiment
will therefore explore how well FireChain perform with 2 minute epochs.
However, with shorter epochs the probability of forks increases. We will either
observe similar results to our first experiment or participants will not be able
to agree within 2 minutes and diverge. As we have a significant shorter time
frame to reach consensus, we also expect to observe more forks. Blocksize is
set to 1 KB as we want to mainly test our consensus scheme, and not maximize
throughput.

The results is shown in Figure 6.2, with the amount of participants on the x-axis
and the amount of gossip rounds used to agree upon the next block on the
y-axis. We observed 217 fork blocks during the experiment.
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Figure 6.2: The average amount of gossip rounds to reach consensus on blocks, with
a 2 minute commit interval. Error bars show the 95 percentile.

From our results, it is clear that participants are still able to agree upon blocks.
We see an almost identical graph compared to experiment 1, hence, our system is
still functioning as expected. However, we are creating significantly more forks
compared to our first experiment, which is to be expected. This is due to the
shorter time span in which peers have to agree upon blocks. If a peer becomes
unavailable for two minutes, he has effectively missed an entire block selection.
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We also observed longer lived forks, where separate vote partitions formed,
these forks could live across several blocks. However, they were eventually
resolved by our fork resolving scheme. This essentially presents a trade-off
between fork frequency and block commit time. By committing blocks more
frequently we reduce commit latencies, but we create more forks resulting
increased system instability. Although we have showed the feasibility of running
two minute commit intervals, a somewhat higher interval time might be sensible
to account for various transient delays in the network.

With more forks, entries are more probable to not be permanently committed
due to being on a fork. Bitcoin [2] advises a 6 block rule with 10 minute
block commit latencies, resulting in a total of 60 minutes latencies. We do
not have Pow, hence, the main chain cannot be out-paced. Peers only have
to be concerned about being apart of the majority. Hence, if a majority of
all participants voted for a block, it is permanently committed. Unless an
adversary gains control of the network majority, he is then capable of altering
previous blocks as he holds a majority of votes. At the time of block committing,
participants could prematurely detect that they are creating a fork by inspecting
the amount of votes their favorite block has. If it is less than the majority; it is
highly probable that the favorite block will become a fork.

An alternative optimistic approach that could improve performance, would be
to allow agreement within an epoch. This would however require substantial
change to the consensus mechanisms and require some changes to our fork
resolving scheme. Instead of enforcing fixed time intervals for epochs, we could
commit as we gained a majority for a block. Effectively committing whenever
the network majority agree upon the next block, instead of waiting until the
end of the current epoch. For example, if a network of 250 participants all
voted for block b at gossip round 8, they would effectively have to wait until the
end of the epoch (gossip round 60) to commit the block. We could allow the
network to commit blocks that are in practice agreed upon prior to the end of
the current epoch, thereby committing agreed upon blocks earlier. Participants
that crash or are slow will simply fall behind have to catch up later. This
approach introduces more instability and would require more investigation to
determine if its a valid solution. However, we would eliminate our dead period
between agreeing upon a block and waiting for the epoch to end.

6.4 Passive attack experiment

In this experiment we want to investigate how the system behaves when under
attack. We instruct 30% of participants to mount a passive attack, and still
measure gossip rounds required for convergence as in the previous experiments.
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The goal here is to see if our system is capable of operating while under attack.
Passive attackers still participate in the underlying Ifrit network, but do not
participate in our consensus protocol and does not forward any FireChain
gossip. Hence, attackers are attempting to disrupt the convergence process of
honest participants. Attackers still deploy Ifrit clients, but do not subscribe to
events in either the gossip or message service, they will therefore not receive
any gossip or messages concerning FireChain consensus.

The results is shown in Figure 6.3, with the amount of participants on the x-axis
and the amount of gossip rounds used to agree upon the next block on the
y-axis. We observed 34 fork blocks during the experiment.
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Figure 6.3: The average amount of gossip rounds to reach consensus on blocks, while
under a passive attack. Error bars show the 95 percentile.

From the results we see that participants are still able to agree upon blocks
despite the passive attack. We observe an increased amount of gossip rounds
needed to reach consensus, but that is to be expected. The graph follows a clear
linear pattern up until 120 clients, and afterwards varies. One possible reason for
the difference in behavior is how attackers are positioned within Ifrit’s ring mesh
structure. Since each deployment produces its own pseudo-random ring mesh,
attackers might be positioned in an inefficient attack manner. For example, if a
high percentage of attackers are neighbors with the same honest participants,
they can fully exclude them from participating in the consensus protocol. On
the other hand if attackers are evenly distributed, honest participants will still
receive consensus gossip, but in lower quantities. Additionally, if attackers are
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neighbors they effectively waste an attack opportunity by affecting less honest
participants’ gossip patterns.

Surprisingly, we do not generate a significant amount of fork blocks. In our
first experiment we generated 23 fork blocks, while under attack we produce
34. As attackers are effectively slowing down consensus progress, we expected
even more forks to be created due to disagreement. This might be related
to the same scenarios as we explained previously, however, as fork blocks are
accumulated throughout all experiment deployments, its seems highly unlikely.
We attribute this attack resiliences to Ifrit’s gossip service. With Ifrit’s ring mesh,
participants are highly probable to have at least one honest neighbor and will
thereby receive consensus gossip.

6.5 Block size experiment

In this experiment we want to test FireChain with 10 KB blocks and see if par-
ticipants still reach agreement within epoch time frames. Previous experiments
were conducted with 1 KB blocks, mainly to test our consensus mechanism. As
disseminating larger blocks requires more bandwidth and time, participants
might not reach agreement within epochs. Also, our vote tables will be signifi-
cantly affected due to blocks having more entries, since we store block entry
hashes in each vote table entry. Thereby, not only will block dissemination be
affected, but also our vote tables that control our consensus mechanism.

The results is shown in Figure 6.4, with the amount of participants on the x-axis
and the amount of gossip rounds used to agree upon the next block on the
y-axis. We observed 34 fork blocks during the experiment.

From our results we see that participants are still able to agree upon blocks,
and follows a similar scaling pattern as our previous experiments. However,
we observe that at 20 and especially 100 participants, our results indicate
system instability. After closer inspection we discovered that PlanetLab had
capped bandwidth usage of some of our hosts due to excessive network traffic.
Thereby resulting in slower dissemination of vote tables and blocks for some
hosts, subsequently slowing the down our consensus protocol. As we extract the
highest gossip round number per block, the slowest participants will determine
when the system agreed upon blocks. Thus, we argue that the instability
at 20 and 100 participants were due to some hosts having the bandwidth
capped. Although, it is interesting that our bandwidth was not capped with
200 participants, as we use more bandwidth the more peers present in the
network.
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Figure 6.4: The average amount of gossip rounds to reach consensus on 10 KB blocks.
Error bars show the g5 percentile.

We initially intended to set our blocksize to 1 MB, as in Bitcoin. However,
after testing our implementation on PlanetLab, we discovered that nodes had
insufficient bandwidth to disseminate blocks of that size. This was mainly
due to our gossip approach, where all entry hashes associated with a block
are stored in vote tables entries. Hence, as we increase block sizes, our vote
table entries contain more hashes, subsequently consuming more bandwidth.
Resolving forks and disseminating blocks also consumes more bandwidth with
higher block sizes. Also, the minimum bandwidth requirement of PlanetlLab
nodes are 400 KBPS which we deem quite low, and has a maximum bandwidth
usage limit of 10 Gigabyte (GB) per day.

If we separate our voting mechanism from our block entry dissemination, we
could effectively agree upon blocks of arbitrary size. More specifically, we could
remove block entry hashes from vote table entries, only identifying blocks from
their root hash and previous hash. However, we would need another approach
for coupling blocks with their respective content. Participants could potentially
start disseminating block content after receiving sufficiently amounts of votes
for their block, thereby shrinking the size of our vote tables significantly, and
eliminating unnecessary block entry dissemination. With this approach par-
ticipants could agree upon blocks without having received all of its content,
possibly committing blocks with invalid content, which subsequently increases
fork frequency. This approach or other alternatives should be explored in future
work to further improve performance.






Conclusion

Existing blockchain systems based on Proof-Of-Work (POW) consensus require
immense amounts of energy to meet their safety and liveness properties. Sys-
tems based on classical Byzantine Fault-Tolerance (BFT) consensus avoids
excessive energy consumption, but does not scale to the same extent, and has
closed membership. Both POw and BFT systems often employ partial mem-
bership views. We deem this a disadvantage as this requires messages to be
routed over multiple hops before reaching their destination.

Our goal was to build a blockchain based on another consensus approach,
with a full membership view, and without the computational costs of POW. To
facilitate our consensus approach, we designed and implemented a Byzantine
fault-tolerant gossip and membership service, namely Ifrit. In general, we argue
that Ifrit provides a beneficial membership service for blockchain systems. Pow
chains can utilize Ifrit without a CA and take advantage of the full membership
view. POS and BFT chains can deploy Ifrit with a CA for a full Sybil resistant
membership view.

With Ifrit’s services, we designed and implemented FireChain, a blockchain
based on an alternative consensus model, namely gossip that converges with
high probability. From our experiments, we have shown that FireChain scales
to 200 members. We were only limited by the size of our testbed, and we are
confident that FireChain can scale even further.
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7.1 Concluding remarks

By designing, implementing, and evaluating FireChain, we have shown the
feasibility of building blockchain systems on a gossip consensus mechanism
and full membership views. We successfully implemented a BFT gossip and
membership service, namely Ifrit, based on the Fireflies protocol. Subsequently,
we used Ifrit as FireChain’s communication substrate. From our results we
have shown the feasibility and scalability of FireChain, which operates without
POW, hence, consuming low amounts of energy.

7.2 Future work

Future work consists of two main points; entry content and storage. As of
now, entries contain random data, we envisage that FireChain can provide a
generic interface where applications can define how transactions are validated,
processed etc. Thereby, supporting any application specified transaction or
data fulfilling our interface. We deem adding storage a trivial matter. Also, our
fork resolving scheme has not been formally verified for correctness, and there
might be attack vectors that we have not addressed.

Our experiments were conducted with a total of 48 physical hosts, where
multiple clients were deployed on each host. In future work, larger scale should
be done, conducting experiments at the scale of the Bitcoin network would
be desirable. As we are confident in the scalability of FireChain, experiments
with over 3000 physical hosts would be an impressive feat. Also, conducting
experiments in a high performance environment would be an interesting
comparison to our current environment on PlanetLab, where nodes have a
minimum bandwidth requirement of 400 KBPS.
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