UiT Faculty of Science and Technology

NORGES Department of Computer Science

ARKTISKE
UNIVERSITET SecureCached

Secure Caching with the Diggi frawework
Helge Hoff

INF-3981: Master in Computer Science

June 1 2018

FLTT0TT 0TI iiirrririiiriiriririrri TRTETET R BT AT Ll L LTI I (i rireieriis
LLLLLLLrnn e i nrinnnlnriiieieiiierlgl lIlIlIlllllIlIlIlllIlIlIlllllIlIlIllllllllIlIlIlllllIlIlIlll/
I/II/I/II/I/II/I/II/I/IIOII/IOII/I/GI/ lIlIlllllIlIlIllllllllIlIlIlllllIlIlIlIlIlIlIlIlIlIIGIIIIIIII
' 1

UITTEETTEET R aariia i aadidd 1000000000000 0000 00000000000 002000 00002070000 00renqiinnranniininieii
FOTTPRTREQIEEQaiaaeriandoan i Q0700000000000 700000007000 00ierienierqienonenonononeneneninenenen

Henrrnrianninnnng IIIIIIIIII LO2T000 000000000000 00000000 00000000000 1qqqiqaqiqneiqaeiqneneninoneia

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
:
§~§
B
~
B
~
v
~
-
~
~
~
~
~
~y
~
-
~
~
~
-
~
-~
~
-
~
~
~
-~
~
-~
~
~
~
-
~
-~
~
g
~
-~
~
~
~
~
~
~
~

~
~
~
~
~
~
~
~
~
~
~
~
~
“~.

J
i 111 101 I l
odbaaraedbbbiaroiny I IMIMIINININIANINS Illllllllllllllllllllllll ll Illlllllll e

1

N
N
~
~
~
-
~
~
~
~
~
~
N
~
~
-y
S
~
~
~
~
N
S~
~
~
~
-~
L
~
~
~
~

AN RRR RN ANV llllllllllll 40
verbaarrrdiaiinoy I IIIMIMINMNMMIMINMIMIMNMIMMININnn llllll ” ll

RaaRRRRRaaaN Y A NNINAIIINNINI N lllllllllllllllllllllll aunnng

veaaaaaareair MMM IR llllllllllllllllllllllll winn
IRy I lllllllllllllllllllllll"
i Ill' l' {4 'llllllllllllllllllllllllll

qrraaaaaannnnnnnnnnnd
iy il

-

quraaananinininininen
AR RRaRaRaar 2NN 'lllll l'll'lllll ll'll'llllll'l 'lllll (4 lllll (A lllll llllllll'll lllllll'll"

[/

PO00000 J00 0000000000000 00000000000000000000000 0000000000000
AA0QRY 2000 00001
LY l'""""""""""""""""""'"'""'"""""""""""""""""" LLLLLLILA
IAA00r 20000000000000000004. LLLLL] ANQR000000000 LLLLL] LILLL] 'l'l"""'l"
AL l'""""""""""""""""""""""""""""" """"" """ Lhy: "'

1AR8E JRQ00R00 000 RRARARARRANRARNRARNRANNRNRNANY,
LU """"""'"""""""""""""""""""""""""""""""'""""

AL 5
w l"""""""""""'"""""""""""""""""""""""""""""' R ' LA
" "'"l""'l'""4
7 2000000000000 000N RQNNRANRAANARANRNANANIRRNNRRNARANARANARNANANANRNARANARANARANNQNNRRANAANARANANANRN

This thesis document was typeset using the UiT Thesis IKTEX Template.
© 2018 — http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

“Slask!”
—Asle Hoff

Abstract

Caching services are vital for the performance of large-scale web services
running in the cloud. However, placing sensitive data in caching services,
implicitly includes all components of the cloud infrastructure that can be
exploited. Therefore, end-users place their trust in the entire security stack
of their service providers. In order to achieve confidentiality and integrity
of sensitive data residing in cache services, the cloud infrastructure must be
removed from the set of trusted components. This has led to a wide adoption
of hardware-assisted Trusted Execution Environments (TEES), protecting user-
level software from higher-privileged system software.

The capabilities of TEEs do not support running legacy applications out-of-the-
box. Many prominent frameworks for TEEs have been developed to achieve
applicability through providing common programming abstractions. However,
these frameworks focus on providing native Linux services for TEEs, which
increases the probability for a trusted software component to be exploited.
Diggi is one such framework, utilizing Intel’s Software Guard Extension (SGX)
trusted computing infrastructure to provide secure execution. Diggi differs from
other framework for TEEs by implementing simplified abstraction for creating
distributed cloud applications. Moreover, by employing logically separated
tasks split into multiple units of application code, Diggi allows moving parts of
the application code and data into a TEE, like, for instance, a caching service.
This allows to drastically reduce the set of trusted components in a system, and
only include the parts that require strong security guarantees.

This thesis describes the introduction of a modified memcached implemen-
tation, called SecureCached, to the Diggi framework. We demonstrate the
feasibility of having a distributed cache deployed in a trusted execution envi-
ronment.

Acknowledgements

First and foremost I want to thank my ever so patient supervisors, Lars Brenna
and Anders Gjerdrum, for their help and guidance.

I want to thank my partners in crime at the office Kim Hardtvedt Andreassen,
and Christoffer Hansen, for keeping me leveled throughout this endeavor. I also
want to express my gratitude to Jon Foss Mikalsen for sticking with my nonsense
throughout the years at uni, and especially for his unending appetite?.

Lastly, a special mention to Vegard Sandengen for convincing us all to Challenge
the status quo!.

1. www.reddit.com/r/picturesofjoneating

Contents

Abstract

Acknowledgements

List of Figures

List of Tables

List of Code Listings

List of Abbreviations

1 Introduction

1.1
1.2
1.3
1.4
1.5

Thesis Statement
Scope & Limitations
Context
Methodology
Outline

2 Background

2.1
2.2
2.3
2.4
2.5

2.6

Trusted Computing
Trusted Execution Environment
Intel Software Guard Extensions (SGX)
Frameworks for SGX
Memcached

3 Diggi - A Framework for Trusted Execution

3.1
3.2
3.3
3.4

Diggi Architecture
Diggi Abstractions & Primitives
Agent Communication
Summary

Vil

iii

ix

xi

xiii

2

b W wwm=

viii

4

CONTENTS

Design & Implementation
4.1 Designtrade-offs
4.1.1 Sockets
4.1.2 Libevent,
4.1.3 Pipes
4.1.4 Threading,
4.1.5 DesignChoice
4.2 Architecture
4.3 Single-Threaded Execution
4.4 DiggiHandle
45 DiggiEvent e
4.6 DiggiSockets L oL
4.7 DiggiPipes e
4.8 Memcached Client
4.9 SUMMATIY . « « « ¢ v v vt e e e e e e e e e e e e

Evaluation
5.1 ExperimentalSetup
51.1 YSCB e e e
5.2 Single thread Performance
5.3 Inter-node communication baseline
5.4 Inter-process performance
5.4.1 Exceedingthe EPCsize.
5.5 Inter-node performance - Single Memcached Instance
5.6 Discussion
5.7 Comparison to Other Frameworks
58 Summary L e

Concluding Remarks

6.1 Conclusion e

6.2 FutureWork e
6.2.1 Multi-Threading
6.2.2 Feature Rich Memcached Client

Bibliography

47
47
48
49
51
53
54
55
58
60
60

61
61
62
62
62

63

List of Figures

2.1
2.2

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4
5.5
5.6

Ilustration of the PRM memory model. 11
Ilustration of the contents of an encalve. 12
Diggi Architecture L L L. 21
Contents of an agent binary 23
Depiction of agent-to-agent communication in Diggi. 24
[lustration of client-server model in memcached. 27
Ilustration of memcached on linux. 32
Architecture of SecureCached in Diggi. 33
Memcached request process flow. 34
Example of Diggi sockets. 43
Single process througput for SecureCached. 51
Baseline communication througput for Diggi.. 52
Inter-process SecureCached benchmark. 54
Inter-process SecureCached benchmark. 55
Latency for inter-node SecureCached. 57
Request througput for inter-node SecureCached 59

List of Tables

5.1

5.2
5.3
5.4
5.5

Measure latencies from all machines used for load generation

to the machine that runs SecureCached 48
Parameters for inter-enclave benchmark. 50
Parameters for communication baseline benchmark. 52
Parameters for inter-process benchmark. 53
Parameters for inter-node benchmark. 56

Xi

List of Code Listings

3.1

4.1

4.2

4.3

4.4

4.5

Definition of the interface all Diggi agents are required to im-
plement.

Implementation of Memcached request pattern - some details
are omitted forbrevity. oL L.
Details the Handle abstract class methods that must be imple-
mented for astreamtype.
Implements rescheduling of an event for all Handle type until
amessageisdrained.
Structure for the socket abstraction on top of the message
managerinDiggi. L oL
Example of an asynchronous put operation to memcached fol-
lowed by a synchronous retrieval.

Xiii

22

36

37

39

42

List of Abbreviations

ABI Application binary interface

AES AES

AESM Application Enclave Service Manager
AEX Asynchronous Enclave Exit

AID Agent Identifer

API application programming interface
CA Certificate Authroity

CPU central processor unit

DMA direct memory access

EPC Enclave page cache

EPCM Enclave Page Cache Metadata
Glibc GNU C Library

10T Internet of Things

IPI Inter Processor Interrupt

ISA Instruction Set Architecture

LKL Linux Kernel Library

LOC Lines of Code

XV

XVi

MEE Memory Encryption Engine

OS operating system

POSIX Portable Operating System Interface
PRM Processor Reserved Memory
RPC Remote Procedure Call

RSA Rivest-Shamir-Adleman

RTT Round-trip Time

SCONE Secure Linux Containers
SDK Software Development Kit

SE Secure Element

SECS SGX Enclave Control Structure
SEV Secure Encrypted Virtualization
SGX Software Guard Extension

smc Secure Monitor Call

SME Secure Memory Encryption
SMM System Management Mode
soc System-On-Chip

SOF Shared Object File

STL Standard Template Language
SUVM Secure User-managed Virtual Memory
SVM Secure Virtual Machine

TC Trusted Computing

LIST OF ABBREVIATIONS

LIST OF ABBREVIATIONS XVii

TCB Trusted Computing Base

TCG Trusted Computing Group
TCP Trusted Computing Platform
TCP Transmission Control Protocol
TCS Thread Control Structure
TEE Trusted Execution Environment
TLS Transport Level Security
TPM Trusted Platform Module
TTL Time To Live

TZ TrustZone

UDP User Datagram Protocol

vM virtual machine

VMM virtual machine monitor

YCSB Yahoo! Cloud Serving Benchmark

Introduction

Users entrust a wide array of cloud services to manage their sensitive data,
and expect it to remain confidential. This implies that end-users place their
trust in the entire security stack of their service providers. However, as the
complexity of cloud-based software architecture increases, the confidentiality
and integrity of data becomes harder to manage [1, 2, 3, 4].

Cloud-based software architectures such as web services are compromised of a
hierarchy of services. In in order to meet the scalability demands of large-scale
web services, caches are used to accelerate performance. However, placing
sensitive data in caching services, implicitly includes all components of the
cloud infrastructure in its Trusted Computing Base (TCB). Privileged software
components such as virtual machine monitors (VMMs), hypervisors, and host
operating systems (0Ss), provide protection from other cloud services running
on the hardware. However, they do not provide protection from potentially
untrusted cloud providers with root access. This has led to a wide adoption
of hardware-assisted Trusted Execution Environments (TEES), protecting user-
level software from higher-privileged system software. TEEs enable protection
of code and data by running applications on a secure area of the main proces-
sor, allowing applications to exclude cloud infrastructures from the TCB. The
applicability of these TEEs are further strengthened by commodity hardware
support from many vendors: Arm’s TrustZone [5], Intel’s Software Guard Exten-
sion (SGX) [6], and AMD’s Secure Encrypted Virtualization (SEV) [7].

Most TEEs implement the capabilities required for a fully trusted system:

2 CHAPTER 1 / INTRODUCTION

verifiable execution of code snippets (remote attestation), protection of cryp-
tographic keys, and sealed storage. Despite being useful properties for secure
execution, they do not facilitate a versatile runtime for real world applications.
To achieve applicability for TEEs they need to support a rich array of appli-
cations: e.g, language runtimes, distributed caches, and web servers. Many
frameworks for TEEs have been developed to achieve applicability through
providing common programming abstractions [8, 9, 10, 11]. However, these
frameworks focus on providing native Linux services for TEEs, which arguably
increases the probability for a trusted software component to be exploited.
Reducing the TCB is therefore a pivotal part of guaranteeing safe and correct
execution of a system.

Diggi is a TEE application framework for distributed cloud applications, like,
for instance, caching services. As well as providing common programming
abstractions, Diggi differs from previous frameworks by providing a simplified
abstraction for application developers to create trusted distributed applications.
By employing logically separated tasks split into multiple units of application
code, Diggi allows moving parts of the application code and data into a TEE.
Instead of executing monolithic legacy applications within a TEE, breaking an
application into smaller logical pieces of software allows to drastically reduce
the TCB.

Diggi implements the execution of sensitive code and data in trusted agents.
These are supported by Intel’s implementation of protected memory execution,
referred to as enclaves. Enclaves are restricted to only run in user-mode (Ring
3), and are unable to issue system calls. To enable well know abstraction and
functionality, Diggi implements user-level abstractions similar to those in an
operating system: user-level scheduler, Portable Operating System Interface
(POsIX) system call interface , communication primitives, and I/0 encryption.
Diggi agents must be implemented to accommodate the SGX architecture, and
porting an application to the runtime does not work out-of-the-box. Diggi
differs from other TEE frameworks, as it is specifically designed for distributed
computiation. To evaluate the feasibility of running a distributed caching
service on Diggi without sacrificing performance or functionality, this thesis
will port a distributed caching service, Memcached, into the Diggi runtime.
Using Memcached may allow Diggi to place sensitive inside a TEE, and also
move cached data out of a security domain closer to computation. Thus, this
thesis introduces SecureCached , a Memcached clone modified to run in Diggi.
We also contribute several additions to the Diggi runtime to replace those OS
services Memcached otherwise relies on.

1.1 / THESIS STATEMENT 3

1.1 Thesis Statement

This thesis shall investigate the properties and limitations of using the Diggi
secure distributed application framework to accelerate performance in privacy
sensitive web services. Specifically, the work will include evaluating the feasi-
bility of porting an existing state-of-the-art caching system to run within the
Diggi runtime.

We conjecture that Memcached falls within that category, therefore, our thesis
is:

The Memcached codebase can be modified to run within the Diggi
Library OS.

1.2 Scope & Limitations

This thesis aims to address the performance of the primitives in the Diggi
rungime and how its OS-services affects the performance of Memcached. There-
fore, this thesis will not address the security of our solution.

While Memcached natively exposes a significant application programming in-
terface (API), we shall evaluate functionality by requiring that the prototype
can successfully run the Yahoo! Cloud Serving Benchmark (YCsSB) bench-
mark.

1.3 Context

This thesis is written in the context of the Corpore Sano Center 1. The center
works interdisciplinary, in the cross-section of computer science, sport science
and medicine, with life-sciences research and innovation. Specifically, it focuses
on technological innovations in mobility, cloud computing, big medical data,
and the Internet of Things (10T).

Over the years, the Corpore Sano center has done extensive research on dis-
tributed systems. Mobile agents that are able to migrate between hosts, as a
part of the TACOMA project [12, 13, 14], and StormCast [15], a distributed artifi-
cial intelligence application for weather monitoring. We also developed Fireflies
[16], a Byzantine fault-tolerant full membership protocol, capable of operat-

1. http://www.corporesano.no/

4 CHAPTER 1 / INTRODUCTION

ing in the presence of malicious members. Further, we built FirePatch [17], a
secure software patch dissemination system, building on the intrusion tolerant
network, Fireflies. With the goal of preventing an adversary from delaying the
dissemination of critical security patches in distributed systems.

The center has also contributed to research in the security domain. [18] con-
ducted extensive performance evaluation of Intel SGX, and provides recommen-
dations for developing applications on the architecture. More into the privacy
domain, the center shows a mechanism for flexible discretionary access control
in computing infrastructures [19], and enforcing privacy policies for shared
data [20].

Within sport science, the group has contributed to research in video analysis by
creating a real-time system for soccer analytics, Bagadus [21], accommodated
by a large-scale search based video system, DAVVI [22]. Corpore Sano is
also further involved in soccer analytics, and have developed Muithu [23], an
event-based tagging system where coaches can tag on-field events as they
occur.

The Corpore Sano center also developed a novel omni-kernel architecture per-
mitting fine-grained resource control by pervasive monitoring and scheduling

[24].

1.4 Methodology

Task force on the Core of computer science [25] define three major paradims
in the area of computing:

Theory rooted in mathematics. An iterative process consisting of four steps.
First is to define an object of study, from that find and hypothesis, test it,
and then interpret whether the hypothesis is true.

Abstraction construct a model from an hypothesis and make predictions,
design experiments and analyze the result.

Design rooted in engineering. Construct a system to solve a given problem by
stating the requirements of a system and its specifications. Then design
and test the system.

This thesis follows the systems research methodology and is rooted, to
some degree, in all the three paradigms. We build a system in order to
solve a given problem that we seek to address. Prior to development, we

1.5 / OUTLINE 5

state the requirements and specification. The system is tested throughout
development to assure that it follows the requirements. If the constructed
system is proven to meet the requirements, we design experiments to
validate our hypothesis.

1.5 Outline
The remainder of this thesis is structured as follows.

Chapter 2 details the Intel SGX, its architecture and isolation mechanisms.
In addition, the chapter describes previous work that aims to support
applicable applications inside enclaves and how the different approaches
tries to overcome the performance penalties that SGX imposes.

Chapter 3 presents the Diggi Library OS, its architecture, and it supports a
simple programming abstraction for trusted components. Specifically,
how Diggi achieves message passing, system call support, and POSIX
compatibility.

Chapter 4 covers the choices of design taking into account the features in
Diggi and the OS-service dependencies of Memcached, and describes the
implementation of SecureCached.

Chapter 5 details the evaluation of SecureCached.

Chapter 6 concludes this thesis, and lists proposal for future work.

Background

This chapter presents the functionality and concepts that are relevant to trusted
execution, and the architecture of memcached. Section 2.1 introduces the idea
of trusted comuting. Section 2.2 describes implementations of a TEE. Section
2.3 presents the Intel SGX architecures. Section 2.4 focuses on application frame-
works for intel SGX. Section 2.5 describes the architecture of memcached.

2.1 Trusted Computing

Trusted Computing (TC) is a technology developed and promoted by the
Trusted Computing Group (TCG) consortium [26], as the successor to the
Trusted Computing Platform (TCP). It is an effort to promote trust and security
in the personal computing domain. The term is rooted from the field of trusted
systems, and is a set of specifications that address the requirements for a trusted
system. The initial goal of the consortium was to develop the Trusted Platform
Module (TPM), a standardization for secure cryptoprocessors. The TPM is a
secure chip isolated from the processing system with cryptographic capability.
Features of a TPM includes secure generation of cryptographic keys, remote
attestation and enabling computer programs to authenticate hardware devices.
It can store passwords, certificates, and encryption keys to authenticate the
platform, and ensure that the platform remains trustworthy. TPMs are not only
used in the personal computing domain, but in other devices such as mobile
phones, and network equipment. The Secure Element (SE) is a specification

8 CHAPTER 2 / BACKGROUND

much like the TPM, targeting use-cases such as mobile payment by using the
same technologies as the TPM. However, these features are formalized beyond
the TPM, and extends beyond hardware support [27, 28].

The Trusted Computing Group (TCG) defines Trusted Computing (TC) by six
capabilities required to have a fully trusted system:

Endorsement Key Immutable RSA key used for attestation and encryption of
sensitive data.

Secure input and output Falls together with the former. Principle of securing
communication channels in and out of a system.

Protected Execution/Memory Curtaining Provide fullyisolated areas of mem-
ory on which code execute.

Remote Attestation Enabling authorized parties to remotely detect unautho-
rized changes to software.

Sealed Storage Coupling storage of sensitive data to hardware keys.

Trusted Third Party Attesting remote parties through a trusted third party,
much like the role of a Certificate Authroity (CA).

Now most trusted hardware devices implement these concepts, to a varying
degree, to enable a trusted system for multiple scenarios.

2.2 Trusted Execution Environment

A TEE is a set of hardware technologies for TC and was designed to enrich
previously defined trusted platforms, such as the TPM. GlobalPlatform !, an
industry association initially devoloped the specifications for a TEE. There
are multiple definitions of a TEE, however, we follow the definition from
GlobalPlaform [29]. They define a TEE as a secure area of the main processor
ensuring that sensitive data is stored, processed and protected in an isolated,
trusted environment [30]. It enables secure execution for trusted applications by
providing protected execution of authenticated code, integrity of runtime states
(e.g CPU registers and memory), and remote attestation. As opposed to TPM
or the SE, TEE is not physically isolated from the processing system, and offers
a large amount of accessible memory and high processing speeds. There are

1. https://www.globalplatform.org/

2.3 / INTEL SOFTWARE GUARD EXTENSIONS (SGX) 9

many implementations of TEE, and their level of security and performance vary
accross hardware vendors. This section will only address TEEs implemented
in commodity hardware.

ARM TrustZone (TZ) is a security extension to the ARM System-On-Chip (S0C),
which can be used to establish trusted components for mobile applications [31].
The processor can execute instructions in two different modes: normal world,
and secure world. Unstrusted code runs in the normal world, while secure ser-
vices are executed in the secure world. The two worlds have physically separate
addressable memory regions and different privilege levels. The processor can
only execute in one world at a time, and to execute code in another world is
done by issuing a special instruction called the Secure Monitor Call (smc). Sys-
tem developers are able to instruct which devices are accessible from the two
worlds. A special bit, the Non-Secure bit, which determines which world the
processor is currently running in such that hardware interrupts and bus access
to peripheral devices are trapped directly into the respective worlds.

Secure Encrypted Virtualization (SEV) was introduced by AMD to address
the security of their Secure Virtual Machine (SvM) virtualization technology.
SEV is an extension to AMD’s memory encryption technology: Secure Memory
Encryption (SME). It allows virtual machines (VMs) to obtain a unique AES
(AES) encryption key from the SME which is used to encrypt the contents
of the guest vM. This approach hides the contents of a guest VM from the
hypervisor, enabling secure data transfer through the hypervisor to the guest
VM. Moreover, the hypervisor will no longer be able to inspect or alter any
guest VM’s code or data. The SEV technology have been subject to attacks [32]
in which execution context is disclosed by observing cache operations. Even
though this has been addressed by AMD, the SEV does not support a TEE to
the same extent as SGX or TZ.

2.3 Intel Software Guard Extensions (SGX)

Intel’s SGX is an extention to the x86-x64 Instruction Set Architecture (ISA) de-
signed to increase the security of applications [6]. SGX provides a sandbox for
applications to create confidential, integrity preserving, and authenticated seg-
ments of code and data. Privileged system software such as the 0S, hypervisor,
and BIOS are all unable to interfere or access contents of an enclave. Enclaves
are facilitated by a TEE which reduces the TCB by removing privileged system
software, and only include the trusted hardware component and application.
Specifically, an enclave is a protected area of execution in memory, in which
all code and data is subject to encryption.

10 CHAPTER 2 / BACKGROUND

An SGX-enabled application consists of two parts: untrusted code and a trusted
enclave. The SGX-enabled processor isolates the enclave’s code and data from
the outside environment, including higher privileged software, i.e operating
system and hypervisor, and hardware devices attached to the system bus. En-
claves are backed up by a region of memory separated at boot time, called PRM.
The PRM is protected by the CPU such that no non-enclave memory accesses
may happen. This includes the software kernel, the System Management Mode
(sMM), and DMA accesses from peripheral devices. Enclave code and data
are managed by the EPC, which in turn is protected by the PRM, depicted in
Figure 2.1. The EPC is divided into 4 KB pages, and the assignment of pages to
enclaves and page management is facilitated by a kernel module provided by
Intel. Specifically, the contents of the EPC are encrypted upon being flushed
from the L3 cache by the Memory Encryption Engine (MEE).

The integrity of the EPC is checked to ensure that no modifications have been
done to it, resulting in a processor lock-down if the integrity of the EPC is
violated. Enclaves are allowed to access other regions of memory that are
located outside the EPC directly, whilst non-enclave code is not allowed to
access enclave memory. Furthermore an enclave can copy data to and from the
EPC, e.g, function call parameters and results, and it is the responsibility of the
enclave to assert the integrity of data that originated from outside the protected
memory region. SGX restricts the size of the EPC to 128 MB. There are no limits
to how large an enclave may be, however, after creation the memory allocated
for an enclave is finite and cannot be expanded. Exceeding the EPC size will
cause the CPU to move the pages between the EPC and untrusted memory.
Since the EPC is not accessible to any system mode, the OS handles page
assignment through SGX instructions. An 0S kernel module encrypts pages
that are evicted from the PRM. Page faults targeting a particular enclave will
cause the kernel to issue a Inter Processor Interrupt (IPI), affecting all logical
cores running inside enclaves. This causes all threads in enclave mode to do
an involuntary Asynchronous Enclave Exit (AEX), and trap down to the kernel
page fault handler. The second generation of SGX has support for dynamically
allocating new pages for an enclaves at runtime.

SGX supports multiple enclaves on a single machine; within the same process’
address space or different processes. Enclaves are created by the intel kernel
module in privileged mode on behalf of a process using the ECREATE instruction.
The ECREATE instruction will allocate new pages in the EPC for code segments,
stack, heap and data segment, the SGX Enclave Control Structure (SECS), and
the Thread Control Structure (TCS). The SECS contains information that is
used by SGX to identify the enclave and to hold any references to the memory
resources of the enclave. A depiction of the contents of an enclave and its
position within the process’ address space is shown in Figure 2.2. When an
enclave is loaded, its contents is cryptograpically hased by the cpu. This

2.3 / INTEL SOFTWARE GUARD EXTENSIONS (SGX) "

EPC
. . EPCM
. 4Kb Page Entry
Processor Enclave 4Kb Page Entry
Reserved Page
Memory Cache
4Kb Page Entry

Figure 2.1: Shows the memory layout of the SGX memory architecture. The PRM
contains the EPC which in turn consists of 4Kb pages that are managed by
the Enclave Page Cache Metadata (EPCM)

becomes the enclave’s measurement hash, used in the attestation process to
uniquely identify the software running inside the enclave. After initialization,
all code and data segments will be copied into the enclave, at which point no
further allocations may be done by the enclave. When an enclave is destroyed
the Os invalidates all pages that belonged to the enclave, and zero initializes
them to ensure that no data is leaked.

After creation, threads transition into the enclave by calling the EENTER instruc-
tion. SGX allows multiple threads to enter the enclave. The only constraint is
that the number of threads must be given prior to initialization. This is because
every thread executing inside an enclave must have a TCS which stores the
execution context. A thread can only transition into the enclave from user level
(ring 3), and is disallowed from issuing software interrupts. Therefore, without
the SYSCALL instruction enclaves cannot directly complete system calls. A
thread must first exit the enclave and transition into ring 3 before issuing any
software interrupts. Threads exit the enclave either through synchronous exits,
issued by the EEXIT instruction, or involuntarily through asynchronous exits.
Similarly, hardware interrupts are not handled by the enclave, as a mechanism
to prevent leaking information from the central processor unit (CPU). A thread
running in enclave mode will not directly service the interrupt or page fault. The
CPU performs an AEX into ring 3 code before servicing the fault or interrupt.
To avoid the OS from inferring the execution state of the evicted thread, all
execution context is saved before being flushed on exit.

Intel provides application developers with a Software Development Kit (SDK)2
for implementing applications. The SDK includes a stripped version of Glibc

2. https://github.com/intel/linux-sgx

12 CHAPTER 2 / BACKGROUND

\

. N (.’ S
\

Thread Context

Thread Control Structure

Thread Local Storage [

Thread Stack

\
N .

Enclave Code

Enclave Data

[y
’ \

’
. ’ ’
A e — .. -

User Process Enclave

Figure 2.2: Depiction of an enclave in the virtual address space of a user process, along
with the contents of an enclave.

and STL which includes memory allocation by emulating brk (), cryptographic
primitives for software attestation, and support for secure communication.
Notably, the Glibc and STL implementations exclude all system calls. The SDK
also have support for running enclaves in simulation mode with support for
standard debugging primitives, i.e GDB. Creating and running an enclave in
hardware mode requires the presence of a kernel module, referred to as the SGX
driver, and the the Application Enclave Service Manager (AESM) service 3. The
AESM service holds pre-provisioned enclaves by Intel, namely the Provisioning
and Quoting enclave, which are used to verify other enclaves and sign them
with an asymmetric key, and provide a launch token.

2.4 Frameworks for SGX

Prior application framework support for Intel SGX heavily focuses on the ap-
plicability, and addressing SGX performance restrictions. Specifically, the two
restrictions in question are: 1) Entering and exiting an enclave to issue priv-
ileged instructions. 2) the limited EPC size (128 MB). The first may have a
substantial performance impact on applications workloads frequently interact-
ing with the operating system, such as I/O [18]. The second can incur expensive

3. https://github.com/intel/linux-sgx-driver

2.4 / FRAMEWORKS FOR SGX 13

swapping if the application’s working set exceeds the EPC size limit. To issue
instructions that may require change in privilege levels such as SYSCALL and
SYSENTER, the enclave is unable to directly execute system calls. Enclave code
must first explicitly exit the enclave execution context, through an 0CALL. Com-
pared to a system call that takes about 150 cycles, an OCALL uses around 8000
cycles to complete [33]. The authors of [34] reported that the performance
overhead for a synchronous implementation of system calls adds a significant
overhead. Similarly, they discovered that memory accesses beyond the available
EPC size, incurred performance overhead three orders of magnitude larger
compared to memory accesses within the EPC boundary.

Initial work that pre-dates the availability of SGX hardware, Haven, showed
that it is possible to run unmodified binaries by placing an entire library OS
inside enclaves [35]. Haven builds on Drawbridge [36], a library 0S based
on windows 8, consisting of two core mechanisms: The picoprocess and a
library 0S. The Drawbridge Library Os is an Application binary interface (ABI)
to the hardware services in the host 0S, and is implemented by a security
monitor. Picoprocesses is constructed in a hardware address space to create a
secure isolation container, with no access to system calls. Together, they enable
sandboxing of unmodified Windows applications. Haven locates the Drawbrigde
library OS inside the enclave which interacts with an untrusted lower level ABI
implementing 22 calls, such as thread management and encrypted I/O streams
and virtual memory management. However, their results are not representative
for real world performance as their evaluations were conducted on an Intel
provided SGX emulator.

Secure Linux Containers (SCONE) compares an approach similar to that of
Haven on SGX hardware [34], by using the Linux Kernel Library (LKL) to
create a Linux library 0S. They found that having an entire library 0s inside
an enclave increases the size of the TCB by 5%, the service latency by 4x, and
halves the service throughput. In the same work, they proposed an alternate
approach to that of Haven: placing Libc inside the SGX and shielding system
calls by implementing a shielding layer between Libc and the host OS. Further-
more, to mitigate the incurred performance overhead of enclave transitions,
SCONE implements asynchronous system calls, called m:n threading, in which
M threads run inside the enclave and N threads run in a kernel module to
service the system calls. Asynchronous system calls avoids the cost of uneces-
sary enclave transitions. Their evaluation achieved at least 60% of the native
throughput, and a comparable throughput for native Memcached.

Other approaches, however, contend that they are comparable to SCONE in
terms of performance and with TCB of similar proportions. Graphene-SGX an
open-source library OS for SGX [37], offering a wider range of functionality
than that of SCONE, such as fork. Graphene-SGX is a port of the Graphene

14 CHAPTER 2 / BACKGROUND

Library 0s [38], modified to run inside enclaves. The Graphene library 0S
implements most of the functionality of an OS in user-level, with the exception
of an ABI exposing 18 system calls to the untrusted host 0S. Graphene-SGX is
able to support Os calls that SCONE does not. Most notably fork, execve, and
dynamic loading of Shared Object File (SOF)s. The enclave code and data is
measured before initialization and attested by the CPU, and is therefore unable
to natively support dynamic loading. Graphene-SGX does this by creating a
unique signature for any permutation of an executable and dynamically-linked
libraries, by using the linux SGX driver. After initialization, their user-level
bootloader checks the intergrity of each library that is copied onto the enclave
heap; if a library does not match it will not be loaded into the enclave. They
method in which they implement fork is by creating a new enclave, copying
the execution state of the parent enclave, and establishing a secure channel
between them for communication.

Eleos [39] is another effort which is also based on the graphene library Os.
Their approach includes optimizations to tackle enclave thread transitioning
and the memory footprint restrictions set by the EPC. Eleos implements what
the authors refer to as the Secure User-managed Virtual Memory (SUVM) ab-
straction. By having a global allocator across enclaves, the SUVM mechanism
avoids expensive page faults and associated enclave exits. The SUVM main-
tains a backing store in untrusted memory, allocated by the process owning
the enclave. It implements paging in a similar manner to that of SGX, pages
copied from the EPC to untrusted memory are encrypted, and when copied
to the EPC the pages’ intergrity is validated. Eleos also integrates an Remote
Procedure Call (RPC) mechanism to enable exit-less system calls. They modify
Graphene-SGX to support their SUVM and exit-less system calls, and use mem-
cached to benchmark native Graphene-SGX with their two modifications. With
memcached, they achieve a 2.2x throughput increase over native Graphene-
SGX with the SUVM when memcached exceeds the EPC, and 2.5x when it does
not.

Panoply [40] is another SGX frawework aiming to minimize the TCB, while
providing a complete POSIX API within enclaves. Their solution prioritizes to
minimize the TCB and trades API completeness over performance. In contrary
to the aformentioned fraweworks, Panoply achieves system call support by
implementing all functionality with OCALLs. Panoply offers much of the Os-
services that Graphene-SGX does, with some additional features such as event
handling and on-demand threading. However, what differntiates Panoply from
other frameworks is that they place all libraries in an application outside the
enclave. Argubly, this lowers the TCB but exposes an increased attack surface
to the untrusted application.

Common for most of the SGX frameworks is that they address the performance

2.5 / MEMCACHED 15

restrictions that are inherent with the SGX architecture. The take-away is that
in order for SGX to be applicable it needs the support of common OS services
to accommodate real world applications.

2.5 Memcached

Memcached is an open-source distributed memory object caching system that
was built to alleviate database load in dynamic web applications [41, 42, 43].
Specifically, memcached is an in-memory key-value store for generically typed
data objects, e.g, rendered pages, database results, or any non-static data used
in a web application. Its creator, Brad Fitzpatrick, originally built it to speed up
LiveJournal’s web servers in 2003 4. This chapter will introduce the architecture
of memcached.

Memcached exposes an extensive API that is accessible by two protocols: accii
and binary. Some of the functionality include the standard CRUD operations
for a key-value store: Retrieve a value associated with a key, adding a value
associated with a key, and deleting key-value pairs. Keys size is limited to 250
bytes and the maximum size for data value is default to 1MB. Most of its API
runs in constant time O(1), and having one element in the cache shall be as
performant as a full cache. Additionally, memcached keeps track of hit-rate,
eviction-rate, etc. Clients can query these statistics and alter the configurations
to accommodate a usage pattern optimally.

In a multi-instance memcached deployment the abstraction the client is exposed
to is a dictionary interface. However, Memcached instances are independent of
each other, and do not communicate. Therefore, to consistently store key-value
pairs memcached uses two-layer hashing. The first layer is implemented on
the client side. By hashing the key, the client decides which memcached server
to send the request to. The second layer is the selected server’s hash table.
Memcached instances process queries in parallel, thus the main reason for
adding instances is to increase the total amount of memory.

Since memcached instances are generic in nature, clients implement extensive
features. E.g, compression to reduce the memory footprint, mult-get to retrieve
multiple keys at once, and weighting the key distribution among a cluster of
memcached servers based on available memory. There exist client libraries for
many programming languages: Perl, C++, C, Java, etc; the most used being
libmemecached 5.

4. https://memcached.org/
5. http://libmemcached.org/libMemcached.html

16 CHAPTER 2 / BACKGROUND

2.5.1 Memcached Internals

The entire memcached codebase is written in C, and is maintained as an
open-source project 6. Internally, memcached implements a hash table that
uses chaining to resolve collisions. The hash table can handle concurrent
accesses, and the synchronization is done on the buckets in the hash table. This
prevents elements from being accessed by multiple threads simultaneously
whilst improving thread contention on the hash table itself. This is a key
requirement of memcached, such that a client updating an item does not cause
any other clients to wait. The hash table is expanded if the load factor exceeds
a given threshold, 2/3 by default. In order to avoid slowing down queries while
the hash table is expanded, memcached allocates a new hash table and lazily
moves entries from the old table to the new. Entries that are not found in the
new table are re-hashed and fetched from the old table.

To store the elements of the hash table, memcached uses a slab allocator. The
slab allocator divides a memory pool into classes of increasing sizes and every
slab class maintains a free-list of elements within each slab. The slab classes are
power-of-two sizes from 64 bytes to 1MB, and fits an element in the smallest
class possible. Every slab class, regardless of its size, allocates 1MB pages on-
demand or prior to initialization to avoid memory fragmentation. If any of
the slab classes fills up, memcached evicts items if they have not expired, the
slab class is ouf of free chunks, and if there no more pages to allocate to a
slab class. Memcached also maintains an LRU that evicts items based on their
activeness. Items are moved between three categories: HOT, WARM, and COLD.
New items enter the HOT category and are bumped down to COLD if they are
not accessed as new items enter. This is one of the key designs in memcached:
forgetting is a feature. To maintain this structure, memcached uses a separate
thread to crawl three categories and move them accordingly.

Memcached delegates query processing to a user-defined amount of threads.
Each thread maintains a connection structure holding the state of the current
request and a list of all pending queries. Fueled by libevent, all worker threads
use asynchronous I/0. Each worker is independent of each other, and all they
share are references to the internal hash table. Memcached also uses libevent
to update a global clock used for features such as Time To Live (TTL). Instead
of having to explicitly run an update procedure, libevent executes a function
that updates the global timer at a fixed time interval.

Memcached exposes a large set of configurable parameters. Many of these
parameters have a direct impact on the data structures and performance.

Memcached allows explicitly setting the maximum sized items which can be

6. https://github.com/memcached/memcached

2.6 / SUMMARY 17

stored, how large the slab’s pages shall be and whether the memory used by
the slab allocater shall be pre-allocated. Other parameters that may be more
performance related are the degree of concurrency for request processing,
dissallow expanding the hash table, and whether the maintaince threads shall
run.

2.6 Summary

This chapter has presents the capabilities of Trusted Execution Environments
(TEEs), implementations of TEEs with emphasis on the Intel SGX architecture.
We also detailed the challenges of providing common OS services, and the
performance restrictions, in SGX.

Diggi - A Framework for
Trusted Execution

Diggi is a framework for TEEs, currently supporting intel SGX. This chapter will
describe the motivation and design of Diggi, as well as the simple programming
abstraction it exposes to application developers.

Section 3.1 give a brief description of the architecture of Diggi. Section 3.2
explains the Diggi programming model and the Diggi library 0S. Section 3.3
describes Diggi’s communication through message passing.

3.1 Diggi Architecture

Diggi is a distributed agent-based application framework for dissemination
of privacy sensitive data and operations. It offers a simple abstraction for
application developers to create trusted distributed applications. The trusted
parts of the application that require strong security guarantees will be executed
inside a TEE, while those that do not may run outside the TEE. Breaking an
application into untrusted and trusted parts allows Diggi to reduce the TCB of
the application. These components are units of execution referred to as agents,
and all components in Diggi are implemented using this agent abstraction. The
role of an agent is divided into two categories: system and application agents.

19

20 CHAPTER 3 / DIGGI - A FRAMEWORK FOR TRUSTED EXECUTION

System agents perform tasks such as orchestration, 10, and message scheduling,
while application agents perform application logic.

Diggi’s design principles include ease of deployment and simplified abstractions.
The key features of Diggi are: user-level scheduling, asynchronous system calls
and non-blocking message queues for agent-to-agent communication. More-
over, diggi supports legacy applications by implementing user-level OS-services
exposed through a POSIX API. Applications developers are exposed to the
same programming abstractions regardless of the agent’s execution environ-
ment. Currently, Diggi utilizes Intel’s SGX trusted computing infrastructure
to provide secure execution for its trusted components. As a consequence of
using SGX, Diggi aims to tackle its inherent functionality and performance
restrictions. Executing large codebases in SGX does not not only increase the
TCB, but hurts performance due to complex abstractions and the current ar-
chitecture of SGX [18]. Diggi’s agent model of dividing an application into
smaller logical applications, may reduce the overall runtime costs. Another
performance restriction of SGX is the overhead of transitioning from trusted
executing to non-trusted. Diggi solves this by performing all system call related
operations asynchronously.

Figure 3.1 illustrates the overall architecture of Diggi. For simplicity of abstrac-
tion the runtime itself is also composed of agents. Each instance of the Diggi
runtime includes an agent-agent, managing the agents for that particular Diggi
instance. The agent-agent runs outside SGX, and is responsible for deploying
new agents on-demand, agent discovery, and agent-to-agent communication. A
Diggi instance is a process that contains all agents in its virtual address space,
including the trusted components (enclaves).

Through service oriented applications, Diggi agent are also able to migrate
between Diggi processes. This allows trusted parts of a Diggi application to be
relocated, moving computation closer to the data and still guarantee strong
isolation. In a classic three-tier architecture in which sensitive data resides in
a key-value store, placing the cache closer to the web server in a TEE, will not
diminish security guarantees.

3.2 / DIGGI ABSTRACTIONS & PRIMITIVES 21

Transport Global Message

Oreipsieie Scheduler Scheduler 1
Application
L g T Untrusted Agent
.
Untrusted Execution Environment _ _ I _ _ _ _ _ M _ _ _ _ e ccccaao--
Trusted Execution Environment - -
| |

Application

Trusted Agent

Figure 3.1: Shows the overall architecture of a Diggi instance running one trusted
agent and one untrusted agent. The untrusted agent and the agent-agent
both run outside the TEE. The agent-agent communicates with the two
agents through the two red messagues queues.

3.2 Diggi Abstractions & Primitives

Diggi implements all operations asynchronously in the context of a single
thread. Following the recommendation of [18], Diggi agents are single-threaded
because pinning threads inside enclaves maximizes performance. That one
thread handles everything within an agent: 10, messaging, application logic,
etc. Diggi alleviates all these responsibilities for application developers, by
only exposing asynchronous APIs. Although the core functionality of Diggi
utilizes asynchronous operations, Diggi is able to hide asynchrony for POSIX-
like compatibility. Specifically, to emulate a blocking call for a POSIX emulated
system call, the POsix-layer will use the thread scheduling API to execute
other tasks while waiting for a response. Diggi’s thread scheduler interface
consists of the following: push tasks to the scheduler, and Yield. When pushing
tasks to the scheduler, set task will not start executing until the function that
pushed the subsequent task to the scheduler is done. The yield method is
a way of supporting synchronous programming, dequeueing tasks from the
scheduler until a condition is met. There is no priority scheme to distinguish
the importance of task, that is, all tasks are dequeued in a FIFO manner.

A Diggi application is a collection of simple purpose-based agents that each do
separate specific tasks, collectively creating an application. Applications in Diggi
hold many similarities to the service oriented architecture paradigm, where
single purpose units of operation are composed to implement a full application

22 CHAPTER 3 / DIGGI - A FRAMEWORK FOR TRUSTED EXECUTION

stack. E.g, an agent wanting to read data which is located on disk is able to
read that data with the service of a second agent that implements file I/O. Each
agent binary contains the Diggi library 0OS which implements messaging, thread
scheduling, networking and encryption. The application code is compiled
together with the library 0S into a SOF, or shared library.

To illustrate how Diggi agents are developed, Listing 3.2 highlights the four
functions all agents are required to implement. When the agent SOF is dynam-
ically loaded into memory the agent-agent extracts the four functions from
the symbol table. agent_start is the entry point for the agent application,
similar to that of a main function in most programming languages. The func-
tion agent_init is called prior to the entry point such that the application
may initialize the state of the application. Its counterpart, agent_stop, is
called when the agent exits to deallocate state. The core features of Diggi,
namely its scheduler message manager and logging, are exposed through a
C++ interface. All POSIX functionality is C-compatible and build upon the
C++ interface. The core services implemented by the library Os are passed
through the ctx parameter holding the current execution state of the agent,
and of the whole runtime. This state includes the agents own Agent Identifer
(AID) and a list of other agents that are alive in the system.

Code Listing 3.1: Definition of the interface all Diggi agents are required to imple-

ment

// Called to initialize agent
void agent_init(void *ctx, 1int status);

// A Diggi agent’s main function
void agent_start(void *ctx, 1int status);

// Default recieve callback
void agent_recieve(void *msg, int status);

// Deallocate all resources
void agent_stop(void *ctx, 1int status);

Figure 3.2 depicts the components that make up an agent binary in Diggi,
where the application compiled together with the Library OS. Diggi agents
are also written to be agnostic of architecture, allowing agents to run on any
TEE and operation system. However, in its current form Diggi only supports
intel SGX, but the techniques used here are expected to apply for similar
systems. Application developers are exposed to an API that hides whether
the application is running in trusted or unstrusted mode. When compiling
the application together with the library 0s. developers can either mark the
application as trusted or untrusted. If the application is marked as trusted Diggi
will transparently turn on security features such as encrypted communication
and I/0.

3.3 / AGENT COMMUNICATION 23

Agent Binary
Application

Network Manager

Scheduler

Secure Message Manager

Async Message Manager

Figure 3.2: Depicts an agent binary that is composed of the application binary and the
Diggi library OS. This particular example contains the services compiled
for a trusted agent. All components are compiled into a SOF.

3.3 Agent Communication

Diggi agents communicate with the system, and other agents through an
asynchronous lock-free message queue. Diggi’s message manager is versatile
and used as a building block to implement more complex features. It implements
transparent agent-to-agent communication, either within or between Diggi
instances (inter-node). Upon initialization each agent allocates one outbound
and one inbound queue. To schedule message between agents, Diggi uses the
Global Message Scheduler which is a part of the agent-agent. The message
scheduler keeps references to all input/output queue pairs of every agent
running on the same Diggi instance. To keep track of the source and destination
of a message, the message scheduler uses Diggi’s Agent Identifers (AIDS).
Therefore, sending a message to an agent only requires the identifier of the
recipient agent.

Messages bound for another agent are appended to the queue with a destina-
tion identifier. The global message scheduler continuously polls for incoming
messages, and copies messages from the outbound queue of the source agent to
the inbound queue of the recipient agent. The message manager also transpar-
ently implements message passing between Diggi instances with Transmission
Control Protocol (TCP). If the message scheduler receives a message with an
AID that is not running on the local Diggi instance, the scheduler maintains a
map of agents residing on other instances of Diggi.

24 CHAPTER 3 / DIGGI - A FRAMEWORK FOR TRUSTED EXECUTION

One of the design principles of Diggi is runtime agnostic agents, allowing
agents not running in SGX to communicate with those that do. To adhere to
that principle, Diggi implements two methods of sending messages: securely,
and insecurely. Insecure agents are able to establish a TLS channel between
agent-agents, or directly targeting a secure agent. Communication between
trusted agents are encrypted by default, thus all communication between
trusted agents are always subject to encryption. All message queues reside in
untrusted memory, because processes outside SGX are not allowed to access
the EPC. Therefore, messages that are sent out of the enclave must be copied
into unstrusted memory. This scenario is depicted in Figure 3.3.

Secure Agent Secure Agent

Message Manager Message Manager

Global Message Scheduler

Figure 3.3: Shows the communication between two agents where the Global message
scheduler handles message passing. Both agents run in a enclaves, where
messages are subject to encryption. Note that all message queues reside
outside EPC.

The message manager is also a building block for asynchronous operations. As
Diggi composes an application of smaller logical pieces, agents must have the
possibility to issue operations to other agents. Therefore, the message manager
supports multiple types of messages: regular message, operations, or system
calls. This enables a system agent to receive operations from an application
agent asynchronously.

3.4 Summary

This chapter has presented, Diggi, a framework for creating trusted distributed
applications, currently utilizing Intel SGX. Specifically, it has described the
simple programming abstractions in Diggi, how Diggi splits application into
smaller parts in order to reduce the size of trusted components, and how Diggi
tackles the performance restrictions of intel SGX.

Design & Implementation

This thesis introduces SecureCached, a port of the popular in-memory dis-
tributed key-value store Memcached to Diggi. Memcached is an OS-intensive
application requiring many features provided by conventional operating sys-
tem. Diggi does not yet support the set of features required in order to run
legacy applications such as memcached. Therefore, this chapter will first detail
the capabilities memcached requires from Linux, followed by the modifica-
tions to memcached that are results of Diggi’s architecture. Third, we detail
feature extensions to Diggi that emulate a small portion of the POSIX abstrac-
tion. Lastly, we describe how we enabled memcached to run within the Diggi
runtime.

Section 4.1 discusses the design choices made when porting memcached to
the Diggi runtime, and summarizes the required extensions to Diggi. Section
4.2 gives a brief overview of SecureCached. Section 4.3 explains how we
altered Memcached to fit the single-thread Diggi agent programming model.
Section 4.4 and 4.6 describes the implementation of a shim layer to support
linux primitives in Diggi. Section 4.8 briefly discusses the implementation of a
memcached client supporting a minimal client API.

25

26 CHAPTER 4 / DESIGN & IMPLEMENTATION

4.1 Design trade-offs

Memcached is an OS-intensive application written in C (18k Lines of Code
(Loc)) with an extensive use of system calls. The system call dependencies
include socket operations, UNIX-domain sockets, event polling, pthreads, and
inter-thread communication. This section will focus on which of these fea-
tures Diggi can support, and which constraints the Diggi runtime imposes
on memached. For future reference we will refer to the unmodified mem-
cached implementation as memcached, and refer to our modified version as
SecureCached.

As described in Chapter 3, Diggi does not support running unmodified binaries
inside enclaves. Enabling memcached to run in Diggi will therefore require
extensive modifications and recompilation. First, a set of constraints must be
accounted for in order to make the right design choices. Memcached is imple-
mented in C and Diggi is implemented in C+ +, therefore all extensions to
Diggi that are required by memcached must made be C-compatible. None of
the modifications made to memcached can break its API, that is, the API mem-
cached exposes to its clients. Furthermore, by the design principles of Diggi, an
agent shall be agnostic of its execution environment, therefore, implementing
SecureCached as a Diggi agent requires it to be able to run in both trusted and
untrusted Diggi agents.

Having defined a set of constraints, we also consider multiple solutions to
implement the required features. The three things to concider while making
the right design choices are: 1) Which OS-services does Diggi support, 2) and
what are the consequences of implementing them in user mode 3) Which
features are Diggi unable to support. The next subsection will discusses the
design trade-offs individually.

4.1.1 Sockets

Memcached uses the client-server model and exposes its services over either
User Datagram Protocol (UDP) or TCP using POSIX sockets [44]. An illustration
of how clients interact with memcached is shown in Figure 4.1. Diggi does
not yet implement a POSIX socket interface, and we propose two solutions for
implementing a POSIX compliant socket API in Diggi:

1. Implementing an external POSIX-socket OCALL interface, where the sys-
tem calls are serviced by the untrusted part of the Diggi process.

2. Implement a POSIX socket API on top of Diggi’s message manager.

4.1 / DESIGN TRADE-OFFS 27

Solution 1 conflicts with the Diggi asynchronous system call model, and its
CPU thread utilization model. Transitioning from enclave mode to issue a
system call that may block will deprive or block other Library OS routines from
executing.

App
Get(key1) = valuet
Get(key2) = value2

Memcached Client

hv(key1l) =17 % 2 = (Memcached Server 1)
hv(key2) = 30 % 2 = (Memcached Server 2)

Get(Key1) (key2 Va|ue)

Memcached Server 1

Items

key1 = value1

(key1 data) wwweeeeege] i Get(KeyQ)

Memcached Server 2

Items

key2 = value2

Figure 4.1: [llustration of the interaction between a memcached client and two mem-
cached server. The keyspace is distributed among the two servers, and
keys are located accordingly.

As described in section 3.3 Diggi’s message manager transparently implements
reliable agent-to-agent communication over TCP, and communication between
trusted agents also involves encrypting the contents of message, which is not a
feature in memcached. Therefore, implementing a POSIX socket API by using
the message manager has the following advantages:

1. Requests sent to a memcached agent will adhere to the secure messaging
protocol in Diggi while not requring any changes to the memcached
codebase.

2. Avoid thread transitions for agent-to-agent communication within the
same Diggi process.

The first advantage also adheres to our contraints that memcached must be
agnostic to whether it is running in a trusted or untrusted agent. However
by using the message manager we set constraints to the network protocol in

28 CHAPTER 4 / DESIGN & IMPLEMENTATION

SecureCached, that is, functions such as recvfrom, and UDP or protocol specific
POSIX functionality. This is because all cummunication to Diggi instance on a
different machine has to be reliable, and is therefore always TCP.

4.1.2 Libevent

Memcached uses 1ibevent, an event framework enabling callback notifications
set on file descriptors to avoid polling, to implement asynchronous I/O. Libevent
uses system calls such as pol11(), and implements a range of functionality, e.g,
rate-limiting, filters, and zero-copy file transmission. Implementing libevent
support for Diggi would require the Diggi library OS to support a majority of
the POSIX API and signal handling. Enclaves are unable to handle software
interrupts, which would require an OCALL interface in which threads transition
out of the enclave to wait for interrupts. Implementing that approach would
break with thread utilization in Diggi. Memcached only uses 2% of the libevent
API, and we therefore deem that porting libevent to memcached is unnecessary
L. Instead, we implement the event handling as a part of the Diggi library OS,
with a small shim-layer as the interface to SecureCached.

Memcached also uses libevent for updating its global timer: It registers a clock
handler callback with libevent which is expected to be called at a fixed time
interval. The global timer is an imperative part of the core functionality of
memcached, and elements that are stored in a memcached instance becomes
associated with a Time To Live (TTL); a feature which is exposed through the
memcached client API. If the global timer never gets updated, all items will
remain in the cache until memcached runs out of memory; similarly achieved
by setting the TTL to zero. Diggi does not implement timer interrupts, which
is due to SGX restrictions. SGX does support secure time through the SDK
function sgx_get_trusted_time. However, Diggi’s thread scheduler does not
have the feature to execute callbacks with fixed time intervals because SGX
does not support interrupts; diggi does not support preemption and thus not
timed events. Removing this feature will impair our initial constraint of not
breaking the memcached API. However, we deem that by removing the TTL
feature from SecureCached we still have the feature set to support relevant
benchmarks [45].

1. The percentage of the libevent API utilized by Memcached was obtained from counting
all Ap1 functions of the library.

4.1 / DESIGN TRADE-OFFS 29

4.1.3 Pipes

POSIX pipes is another OS-service that is utilized by memcached. Pipes are
used for communication between threads or processes, e.g, between a parent
and a child process. However, memcached only uses pipes for inter-thread
communication, allowing us to exclude supporting inter-process communica-
tion. The POSIX API we need to fulfill only consists of three functions, and
will therefore be implemented in the Diggi POSIX API. Memcached uses pipes
in combination with libevent to notify threads in the system with additional
arguments, hence, the implementation must support event handling.

4.1.4 Threading

As described in Section 2.5.1, Memcached is a multi-threaded application relying
on separate threads to handle specific tasks, e.g, maintenance threads to keep
the invariants in their data structures. The clock event handler calls a method
that resizes the hash table if the amount of elements in memcached exceeds
a given threshold. We could implement a scheme in which the method is
called every N request. That would not be an optimal approach because it will
cause the operation to block all other requests while the table is resized. We
ammortize this effect by adjusting the hash table size to fit with a hard element
threshold, removing the need to re-size.

As a side-effect of bypassing high transition cost for threads, Diggi allocates
dedicated threads to each agent. To ensure many agents can be located on a
single host, each agent is given a single thread, and must ensure high thread
utilization by exclusively using asynchronous operation. We therefore have
to modify SecureCached to run all routines within the context of a single
thread. Memcached uses the pthread library for multi-threading. As we aim
to run memcached single-threaded, we may remove pthreads entirely from the
codebase.

4.1.5 Design Choice

To summerize, we list what the Diggi library OS must support and the modifi-
cations to the memcached codebase.

Extensions to the Diggi library 0S

POSIX Pipes: Support for inter-thread communication. Specifically, emulating
message passing between threads in an agent, including support for the

30 CHAPTER 4 / DESIGN & IMPLEMENTATION

API to allow both non-blocking and blocking operations.

POSIX Sockets: The functions that memcached uses and must be supported
are: Read, write, listen, bind, sendmsg. Additionally for Read,
write, and sendmsg Diggi must support non-blocking and blocking op-
erations.

Event Framework: Implement a subset of the functionality in libevent: regis-
ter an event on a file descriptor of either type socket or pipe (read and
write); delete a prevously registered event; Since libevent uses the file
descriptor abstraction, the framework must be compatible with all file
descriptor primitives.

Memcached Client: There are many implementations of memcached client
in numerous languages, the most used being libmemcached 2. However,
porting an existing client API is outside the scope of this thesis. Instead,
we need to implement a small subset of a memcached client to support
the most basic operations: load memcached with a key-value pair, and
retrieve a value associated with a key. The client also have to implement
consistent hashing in order to utilize multiple memcached servers.

Logging: Memcached uses standard in and out (stdin, stdout, stderr) as the
destination of log messages. Diggi must support a C-compatible logging
interface for debugging purposes.

Alterations to the memcached codebase

Remove threading: Modify the memcached codebase to run in the context of
a single thread, effectively this will involve removing multi-threading in
memcached entirely. This will also result in switching off memcached’s
maintenance threads.

Remove Threading primitives: As we aim to remove threading in mem-
cached entirely, all synchronization primitives most notably pthreads
must be removed. This will not change the behaviour in any way as we
have already removed concurrency from memcached, there will be no
need for synchronization.

Glibc & Linux: The intel SGX SDK only provides a subset of the GNU C Library
(clibc) functionality. Therefore, any side functionality that does not
directly affect the core features of memcached must either be removed
or supported in Diggi.

2. http://libmemcached.org/libMemcached.html

4.2 / ARCHITECTURE 31

Remove TTL feature: since Diggi can not support libevent timing, we remove
the TTL feature of memcached. We conjecture that this is viable as mem-
cached can still support the feature set needen to complete evaluation.
Memcached will still evict items, just not based on the activeness of the
item.

Remove signaling: Diggi agents have to be written such that they are able to
run inside SGX. Calling functions such as assert () will call the SIGABRT
signal which is an illegal instruction in SGX. Therefore, we remove all
signal handling and Glibc code that utilizes privileged calls.

Remove excessive features: Unix domain socket support, UDP protocol func-
tionality, and ip-address specific functionality such as getaddr.

4.2 Architecture

Porting memcached to the Diggi runtime involved modifying 1500 LOC, most of
which were deleted linux-specific features listed in the previous section. Figure
4.3 depicts a high level illustration of how memcached interfaces with Glibc
and Libevent. Much of the Glibc AP1 implicitly calls the linux kernel to service
system calls. This also includes libevent, which is heavily dependent on Glibc.
Compare that to SecureCached, shown in Figure 4.2. Glibc and Libevent are
replaced with a POSIX shim-layer that binds SecureCached with the Diggi
library 0s. The 0s-services provided by the linux kernel have been replaced
with our implementation of sockets, and pipes built on the core primitives of

Diggi.

32 CHAPTER 4 / DESIGN & IMPLEMENTATION

Memcached

Libevent

Figure 4.2: Depiction of how memcached interfaces with linux. Memcached uses
Glibc which implementis a POSIX API. Memcached also uses libevent
which depends on functionality from Glibc. Most of the libraries that
memcached uses issue system calls to the linux kernel.

The handle-layer, under the POsiX-layer, unifies all extensions to Diggi that
emulate the POSIX file descriptor primitive. By utilizing a shim-layer on top
of Diggi’s functionality, we are able to minimize the modifications to legacy
applications. Diggi socket and pipes are specialized implementaions of the
Handle abstractions. Diggi sockets in turn utilize some of the core Diggi
library Os primitives, namely the massage manager and thread scheduler. The
remaining sections of this chapter will describe the implementation details of
SecureCached, the handle abstraction, Diggi sockets, and Diggi pipes.

4.2 / ARCHITECTURE 33

SecureCached

POSIX-Socket POSIX-Pipes Libevent Shim

Diggi Handle

Diggi Socket Diggi Pipe

Message Logging Thread
Manager Service Scheduler

Figure 4.3:

Mlustration of how the SecureCached agent interfaces with the Diggi
library 0S, The SecureCached is exposed to a POSIX C shim-layer running
on top of Diggi primitives. The socket and pipe implementation is unified
through an event framework, Diggi Handle. Diggi Handle in turn utilizes
the core services from the Diggi library 0s. All components listed in the
figure run in user-space (ring 3).

34 CHAPTER 4 / DESIGN & IMPLEMENTATION

4.3 Single-Threaded Execution

By turning off many of memcached’s maintenance threads, and modify the
request logic, SecureCached is able to run within the context of a single thread.
Memcached implements request handling by using the co-routines design
pattern: a single thread is responsible for accepting new connections and
delegate requests to worker threads. Memcached achieves this through the
libevent library.

Notify read event Dispatch command accept()

>

Yield ()

Wait for data to arrive

Data available process()

>

Delete event and yield

Figure 4.4: llustration of how memcached uses libevent and worker threads to imple-
ment request processing. First libevent notifies the orchestration thread
(main thread), after which it writes to a pipe to notify one of the worker
thread. The worker thread starts a new session by calling accept () and
then yields to the libevent to wait for incoming data. When data arrives
on the socket the worker will process the request and yield to the libevent
main loop to wait for a notification from the main thread.

Figure 4.4 states how memcached uses libevent to implement request process-
ing. First libevent executes the registered callback when data arrives on the
listening socket in the context of the main thread. The main thread chooses a
thread and delegates the request by sending the connection object for the lis-
tening socket to that thread. Moreover, upon initialization all threads subscribe
a read even on the receiving end of a POSIX pipe. The main thread notifies
that thread by writing to the thread thread’s pipe. After the thread is notified
it will accept the connection and instantiate a client session before it yields to
libevent, waiting to be scheduled when data arrives on the connection. When
data arrives, the request will be processed in the context of that worker thread.
When the thread completes the request it yields to libevent, waiting to process

4.3 / SINGLE-THREADED EXECUTION 35

another request. Diggi only supports running single threaded agents, and is
not able to construct muli-threaded co-routines such as query processing is im-
plemented in memcached. Conversely, this thesis shows that this is achievable
in a single-threaded context.

Libevent’s usage-pattern involves deferring the execution of a function until
an event occurs on the registered file descriptor. When a worker thread is
scheduled to complete a request, it will register an event on the socket prior to
reading a request. This means that each worker thread is driven by executing
callbacks that are registered, waiting for a specific event. This callback-based
pattern can be utilized to implement an event-based Diggi framework, running
only in the context of a single thread. By removing threading entirely in
memcached’s implementation of co-routines, and taking advantage of the
event-based nature of the worker threads, we are able to support co-routines
in a single-threaded manner.

A pseudo-code of how memcached implements the callback-based pattern is
presented in Code Listing 4.1 The implementation involves the three routines :
memcached_worker_entry_point, thread_process, and process_request.
Notoably, thread_proccess and process_request bot have the libevent call-
back signature. By that, we can internally register the subscriptions for those
events in Diggi, and use its scheduler to execute the routines.

Every memcached worker thread is initialized by setting the function memcached-
_worker_entry_point as argument to pthread_create. The entry point
function will set up the worker context, and subscribe for read events on
the allocated pipe before the thread yields to libevent; the state of a worker
contains a pipe set and a structure to hold requests. We modified the mem-
cached codebase to call that method in the context of the main thread, and
return after initialization in order to complete the event initialization for a
worker. Memcached supports multiple worker threads, SecureCached also sup-
port multiple workers by allowing memcached to create and register states to
the libevent shim-layer. The thread_process function is a function that alters
the state of a worker, and accept new client connections. Specifically, after the
worker has initiated a new session, it will register a read event on the acquired
socket to start processing the request when there is available data to read. The
worker sets the function process_request to be activated on incoming data
for the newly established session. Note that process_request also follows the
libevent callback signature, allowing it to be called in the context of any of the
worker threads. However, in SecureCached that routine will be executed in the
context of the same thread. Diggi will still be able to logically support multiple
workers as the third callback argument will contain the connection state, even
if that routine is called in the context of the same thread.

36 CHAPTER 4 / DESIGN & IMPLEMENTATION

Code Listing 4.1: Implementation of Memcached request pattern - some details

are omitted for brevity.

OOV WN -

// Entry point for a request process thread
static void *memcached_worker_entry_point(void *arg)

{
// Setup logic...
event_thread *me = arg;

// Register a read event on the recieving end of

// pipe (notify_fd) for thread_process to be 1invoked

event_set (&me->notify_event, me->notify_fd, EV_PIPE_READ,
thread_process, me);

event_base_set (me->base, &me—>notify_event);

// Yields to the event loop
event_base_loop(me—>base, 0);

3

// Callback that is invoked when the request
// process thread is scheduled when a new request comes
// in

static void thread_process (int fd, short which, void xargs)
char buf[1];

// Read command
read (me—>notify_fd, buf, 1);

switch (buf[0])

{

// new connection

case ’c’:

{
int sfd = setup_connection(fd);
// Register a new event on the session
event_register (sfd, SOCKET_READ, process_request);
me—>state = CONN_READ;

}

}

3

// State machine Callback — invoked when there
// is data on the socket
void process_request (int fd, short which, void xargs)
{
conn *c;
c = (connx*)args;

switch(operation)
{

case CONN_READ:
case CONN_WRITE:

4.4 / DIGGI HANDLE 37

As memcached implements its request processing using a state-machine pattern
that is based on callbacks, Diggi event will queue these operations in the
Diggi thread scheduler. Therefore, by running memcached single-threaded
and transparently queuing operations based on calls to libevent, Diggi is able
to emulate the correct runtime behavior of memcached. Doing so allows us
to support features needed by memcached without extensively changing the
codebase.

4.4 Diggi Handle

This thesis introduces the handle abstraction to Diggi, which implements event
scheduling, polling, and provides a unified interface for file descriptor types.
To achieve that, all file descriptor types introduced to Diggi must satisfy the
interface. Due to the lack of OS primitives in Diggi, we need to take advantage
of Diggi’s design to provide the support for a POSIX API, and Libevent. The
interface of Diggi handle is depicted in Listing 4.2 and its purpose is to provide
a poll interface in the Diggi library 0S. As previously discussed, agents in
Diggi are composed of only a single thread, eliminating the option of having
designated threads to poll for events in the system.

Code Listing 4.2: Details the Handle abstract class methods that must be imple-

mented for a stream type.

//! Register an event on a filedescriptor that will be scheduled
//! for every incoming packet
virtual int registerEvent (int fd, async_cb_t handler,

bool persistent, void *arg) = 0;

//! Unregister event
virtual int unregisterEvent (int fd) = 0;

//! Polls for incoming packets on the filedescriptor
virtual enum handle_status poll (int fd) = 0;

// Returns the state of fds in xfdsx
int unix_poll (struct pollfd xfds, nfds_t);

// Invokes register callback (async_cb_t) until
// the buffer assiciated with the fd is drained
static void messageDrain (void *arg, int status);

// Return the fd type (Socket, Pipe, etc.)
virtual enum handle_type handle_type () = 0;

Calling registerEvent will activate the callback argument for that particular
file descriptor, and its counterpart unregisterEvent will deactivate it. Events
notified by the handle will include all events that may happen on the descriptor:
read, writes, etc; Retrieving the exact event requires a subsequent call to poll.

38 CHAPTER 4 / DESIGN & IMPLEMENTATION

Since this is an interface that must be satisfied by any file descriptor type,
events may vary or be triggered differently between implementations. The
poll method is a simplified version of POSIX poll as it only returns one event
for one file descriptor. The interface also includes a generic poll function
implemented to emulate the original POSIX call.

4.5 Diggi Event

Libevent provides a mechanism to dispatch events, or execute program logic
through callbacks for events that occur on a filedescriptor. This functionality is
dependent on the ability to continuously checking for state on a file descriptor
such as pol1(), select(), and unix filedescriptors. The subset of libevent
that we implemented is the following:

Event_set: identify an event with a non-negative file descriptor.

Event_add: add an event coupled with a combination of the flags READ,
WRITE, or PERSIST. This activates the event if the file descriptor is ready
for reading or writing depending on the flag. Since libevent can operate
on several types of file descriptor, e.g pipes or sockets, we must support
the same operations for all those types. Calling event_add sets the
callback provided in the subscription to active. When an event occurs the
callback will become non-pending right before the callback is invoked. A
subsequent call to event_update will reactivate the callback. However,
if the event is flagged as persistent, the event will remain pending even
if the callback is executed once.

Event_del: called after event_add to make the callback non-pending and the
event non-active.

The parts of libevent we were unable to support were: evtimer_set, evtimer-
_add, and evtimer_update. This is because there are no primitives in the
Diggi library Os allowing timers. As previously mentioned, this is an inherent
restriction based on the architectural limitations of Intel SGX.

Diggi event mirrors the subset of functions that memcached require from
libevent, and the libevent shim-layer acts as a C-interface to specific imple-
mentations of the handle abstraction. When an event is registered for a file
descriptor, e.g a read event, Diggi event chooses the corresponding handle
implementation. It then activates the provided callback through the handle im-
plementation. If the activation of the callback is marked persistent, it registers
that callback to call the messageDrain routine.

4.6 / DIGGI SOCKETS 39

The function messageDrain is a side effect of Diggi’s inherent single-threaded
runtime, as there are no primitives for continuously polling for events in
the system. To circumvent this inadequacy, the handle abstraction supports
rescheduling incomplete events until completion. The protocol involved with
receiving large messages over network firstly reads a prepended header in the
message that contains its size - as is the case with memcached. However, after
reading the header memcached will yield to the libevent main-loop, waiting to
be invoked when more data arrives. Recall that libevent has the persistent flag
denoting that an event is always pending, creating the need for the event sched-
uler to be persistent The routine of rescheduling incomplete events is shown
in Listing 4.3. If the persistent flag is set upon calling the registerEvent
method, messageDrain will be called. This is a libevent-specific feature, how-
ever, we want to keep complexity of the shim-layers to the minimal. After each
invocation of the event callback the function polls for incoming messages, and if
there are pending messages in the queue messageDrain schedules itself again.
By doing this, we can ensure that a process finishes processing the request for
which it has registered.

Code Listing 4.3: Implements rescheduling of an event for all Handle type until a

message is drained.

1 void

2 IHandle::messageDrain (void *arg, int status)

3 {

4 auto handle_ctx = (event_context_tx*)arg;

5 auto _this = (IHandlex)handle_ctx—>ec_handle;

6

7 // Call the registered callback

8 handle_ctx—>ec_handler (handle_ctx—>ec_arg, 0);

9

10 // After we return from the callback we check if the message
11 // has been consumed, if not we schedule this method again
12 if (_this—>poll (handle_ctx—>ec_fd) == HANDLE_MSG_IN)

13 {

14 // Queue messageDrain to the scheduler

15 _this—>acont->GetThreadPool()—->Schedule (IHandle::messageDrain,
16 arg, __PRETTY_FUNCTION__);
17 }

18 else

19

20 delete handle_ctx;

21 }

22 }

4.6 Diggi Sockets

The socket operations that are paramount to implement support for commu-
nication in SecureCached are receiving and sending data on a file descriptor.
We omit the parts of the socket API that is bound to the IP protocol such as

40 CHAPTER 4 / DESIGN & IMPLEMENTATION

getaddrinfo, and bind. Specifically, the POSIX-socket functionality that we
need to implement is:

Socket: allocate a POSIX file descriptor that we externally expose to the appli-
cation, while identifying it with the internal Diggi socket implementation.

Listen: set the socket file descriptor state to a listening state; that is, activate
the input stream as ready to accept incoming connections.

Accept: extracts the first connection on the queue of pending connections,
and return a new file descriptor.

Write: write to a file descriptor - blocking and non-blocking.
Poll: unix version of poll. Query the state of multiple file descriptors.
Read: read a message from a file descriptor - blocking and non-blocking.

Sendmsg: similar to write but takes in a structure of type msghdr that con-
tains the content to send.

From Section 3.3, Diggi’'s message manager is built as a messaging service
between agents. It is also agnostic to where an agent resides, which can either
be on the same instance of the Diggi runtime, or on another machine. If the
destination of a message is an agent residing on different computer, the Diggi
runtime will transparently forward that message through the network to the
message manager of the respective machine. Therefore, the only abstraction a
developer needs to know is the message manager. As mention in the start of this
chapter, we implement a POSIX-compatible socket layer on top of the message
manager to avoid unnecessary system calls for communication between agents
residing within the same Diggi instance. Arguably, this adds an extra layer of
abstraction since Diggi’s message manager uses POSIX sockets for inter-node
communication. However, if a socket is set to blocking and a read call yields to
the Diggi scheduler until data arrives, we achieve high thread utilization for
the agent. This is because Diggi’s global message scheduler runs in a separate
thread, and therefore achieves high thread utilization even if that thread blocks
on a read call.

The Diggi socket abstraction is built using the Diggi handle abstraction in
order for the socket layer to support events. The socket implementation in
Diggi is verbatim POSIX sockets with the POSIX socket shim layer as the C
interface to SecureCached. Since the interface for communication in Diggi is
its message manager, there is no support for listening on unix devices. Diggi is
built to only communicate between its logical applications component with a

4.6 / DIGGI SOCKETS 41

simple interface, and have no need for exposing hardware or protocol specific
interfaces. Therefore, the Diggi socket interface will listen to any incoming
messages with a specific message type that denotes a socket-type message and
subsequently de-multiplex messages for delivery to requesting services on top.
Diggi-socket also supports some of the socket-specific option which may be set
on a file descriptor, such as blocking and non-blocking. If the socket is set to
blocking, each call made to the POSIX socket API will yield until the operation
can be completed.

To illustrate how Diggi sockets are implemented, we present a figure illustrating
the same request pattern as shown in Figure 4.4. The requests flow between
SecureCached and the components of the Diggi library Os involved in setting
up a socket connection and instantiating a client session is shown in Figure
4.5. We omit the notification of a worker thread on incoming requests to only
focus on Diggi sockets. SecureCached first allocates a socket in Diggi-socket
through the POSIX API. It then starts listening for incoming connections by
calling 1isten. Listen will subscribe to the NETIO messsage type from the
massage manager, and provide a callback. The callback routine resides in
Diggi-socket, and takes the file descriptor as argument. Whenever the message
manager receives a message of that type it calls that routine which append
the message to a queue identified with the specific file descriptor. After the file
descriptor is ready to receive connections, SecureCached subscribes for read
events on that file descriptor by calling event_add, which in turn will register
that subscription to Diggi-socket.

When the message manager receives a NETI0 message type, it calls subscribed
routine in Diggi-socket with the file descriptor as argument. Diggi-socket finds
a subscription on that particular file descriptor and calls the routine subscribed
by the libevent shim-layer, which will notify SecureCached of the incoming
connection. On every unique connection from a client, SecureCached will call
accept () to initiate a session with the client. The function accept () will call
Diggi-socket which extracts the first Diggi message from a queue of pending
receives, create a new queue to which all messages from that session will be
appended.

As shown in listing 4.4, a network session in Diggi is identified by a socket file
descriptor, the AID of the client agent, and an id used internally by the message
manager to create callback sessions. Diggi socket uses all three identifiers
such that a client agent may have multiple sessions to a server. Moreover, the
message id will be provided to the active callback routine handling incoming
messages and connections. The POSIX socket API uses the void argument
of async_handler_t callback type to pass the correct file descriptor of that
particular session. The member so_sfd, is the non-negative integer that is
externally exposed to application code.

42 CHAPTER 4 / DESIGN & IMPLEMENTATION

Code Listing 4.4: Structure for the socket abstraction on top of the message man-

ager in Diggi.

typedef struct diggi_socket
{
//! External socket +identifier
uint64_t so_sfd;
union
{
unsigned int so_attributes;
struct
{
unsigned int SO_BLOCKING :
SO_NONBLOCKING :
SO_SESSION

P

}so_flag;
}s

//! Client +ddentifier

aid_t so_dest;

//! Id of message session

unsigned long so_id;

async_cb_t so_handle;

void *so_handle_args;
}diggi_socket_t;

Diggi’s message manager exposes multiple methods for receiving messages:
registering a callback method per message type, and one for a given message re-
sponse. Internally, our socket implementation subscribes to the NETIO message
type. Messages delivered by the message manager transient, meaning that a
message will be deallocated by the message manager after delivery. Therefore,
Diggi-socket persists messages by copying them to the internal queue. For I/O
intensive applications such as memcached where requests can be as large as
1MB, having to copy each request may arguably impose an overhead.

4.7 / DIGGI PIPES 43

SecureCached
Listen for Add read Instantiate ~ Add read event on
connections event on fd connection session socket
Notify Notify
Socket() Listen()= 3 event_add() 5 Registered accept() g Read

callback event

Posix-Socket

Libevent Shim

Subscribe .
for Schedule 8
Socket incoming i Callback

messages

Create Dequeue Notify read

Diggi - message and event
Socket Diggi-Socket allocate session

Set callback for
subsciption Message Manager

Figure 4.5: The figure show the steps involved in creating a file descriptor in Diggi,
and subscribing a notification for that descriptor. Also the figure details
the steps that happens when Diggi Socket receives a connection until
SecureCached is notified of the read event. The steps of the former is
highlighted in white circles, while the steps of the latter is highlighted in
black circles.

4.7 Diggi Pipes

Memcached uses a combination of unix pipes and libevent to implement thread
notification. Diggi supports this by extending the Diggi handle abstraction to
support pipe semantics, with a POSIX pipe shim-layer as the interface to
SecureCached. Specifically, the functions we need to implement are:

Pipe: generate two file descriptor - one for receiving end and one sending a
data.

Read: extend the read method to support a file descriptor of type pipe.

Write: similar to read, extend this method to support a file descriptor of type
pipe.

44 CHAPTER 4 / DESIGN & IMPLEMENTATION

The difference between pipes and sockets is that we can not rely on the message
manager to supply events on incoming messages. Instead, we schedule events
based on writes to a pipe that have registered events through libevent. Incoming
messages that are directed to a socket will invoke callbacks that are registered
on the socket. For pipes, however, callbacks are scheduled to run whenever a
notification pipe is written to. When a thread writes to a pipe that has a event
subscription active, the callback will be pushed to the Diggi scheduler task
queue. Internally, Diggi implements this with a circular ring buffer for storing
the data sent through the pipe. The pipe implementation only supports inter-
thread communication, as Diggi does not have the primitives for communicating
between processes.

4.8 Memcached Client

Memcached clients support various features, and implements support for the
entire memcached API. Diggi agents are light-weight, therefore, porting client
libraries such as libmemcached will bloat the library OS. Instead we implement
a minimal interface to the memcached API. In order to have agent-to-agent
queries, we implemented a subset of the memcached operations and features
which are:

Set: Unconditionally store a value associated with a given key. As opposed to
Add which will fail if the item already exists.

Get: Retrieve a value associated with a key.
Delete: Delete the item with the specific key.

Multiple Servers: Allow the client to located keys in multiple SecureCached
instances.

Consistent hashing: Consistently distribute the key space among Secure-
Cached instances.

Our memcached client implementation exclusively uses the memcached binary
protocol 3.

The client follows Diggi’s asynchronous callback model, with the exception
of the support for asynchronous operations combined with blocking response

calls. That is, to support Yahoo! Cloud Serving Benchmark (YCSB) the mem-

3. https://github.com/memcached/memcached/wiki/BinaryProtocolRevamped

4.9 / SUMMARY 45

cached client has to support synchronous operations. An example of a set
operation followed by a blocking call to retrieve the response is depicted in
listing 4.5. The put operation will complete the sending of the request, and
getResponse will yield to the Diggi scheduler until a the response for that
request is received.

Code Listing 4.5: Example of an asynchronous put operation to memcached fol-

lowed by a synchronous retrieval.

enum memcached_status status;

// Non-blocking call
status = client—>put("key", 3, "value", 5);

struct memcached_response *resp;
// Blocking call — waits until response is received.
status = client—>getResponse (&resp);
if (status != MEMCACHED_STATUS_NO_ERROR)
{
// query failed
}

Since message delivery in Diggi deletes message after the registered deliv-
ery callback returns, the synchronous getResponse copies the message inter-
nally.

The memcached client also supports querying multiple memcached servers.
Since half the memcached logic is placed on the client side, where the client
is responsible for discovering and choosing the distribution of the key space.
When a client is set up to support multiple memcached servers, every request
has to be issued to the memcached instance responsible for a particular key.
The client supports two methods of choosing the key space, both involving
hashing the key. The first method uses the key hash modulo the number of
memcached servers.

To identify memcached instances in a Diggi deployment, as we have no support
for ip or ports, Diggi maintains a list of its agents and where they are located
from which we can detect the memcached instances.

4.9 Summary

This chapter has presented SecureCached, a modified version of memcached
to Diggi. This was achieved by making modifications to memcached and im-
plementing OS-services in Diggi. Notably, SecureCached may run in single-
threaded context by emulating the runtime behaviour of memcached. The

46 CHAPTER 4 / DESIGN & IMPLEMENTATION

extentions to the Diggi library OS were implementations of POSIX sockets and
pipes, a subset of libevent, and an event framwork that unifies file descriptor
types.

Evaluation

In this chapter we evaluate the SecureCached. Before we assess SecureCached
in a distributed setup, we evaluate the communication throughput of Diggi to
find how Diggi compares to native Linux sockets. We evaluate SecureCached
in three different set-ups: between agents in the same Diggi process, between
Diggi processes on a single machine, and between Diggi processes located on
separate machines.

5.1 Experimental Setup

Four different machines were used to generate load, and one to run Secure-
Cached. Machine 1 & 2 have identical hardware specifications: Intel Core
i5-6500 3.20 GHz Quad-Core processor with 4 logical cores, each core has a
separate 32 X 4 way 32KB L1 data and instruction cached and 4 x 256 KB way L2
caches, and all core share a 6MB 12-way cached. Each processor is connected to
16 GB of DDR3 RAM with a front bus of 1600MHz. Both machines run Ubuntu
16.04 LTS with Linux kernel version 4.13.0-47.

Machine 3 & 4 is a Dell PowerEdge R330. Is is equipped with a Intel Xeon
E3-1270 v5 processor with a base frequency of 3.6 GHz. The processor has 4
physical cores and 8 hyperthreads. Each core has a separate 64 x 8 way 32K L1
data and instruction cached, a 4 x 256 KB 4 way L2 cache, and all cores share a
8MB L3 cache. The machine runs Ubuntu 16.04 LTS with Linux kernel version

47

48 CHAPTER 5 / EVALUATION

Machine RTT

1 0.380 ms
2 0.369 ms
3 0.475 ms
4 0.461 ms

Table 5.1: Measure latencies from all machines used for load generation to the machine
that runs SecureCached

4.4.0-119.

Machine 5 is used to run SecureCached and is an Intel server blade S1200SP.
It is equipped with a Intel Xeon E3-1270 v6 processor running at 3.8GHz. Each
core has a seperate 64 x 8 way 32K L1 data and instruction cached, a 4 x 256
KB 4 way L2 cache, and all cores share a 8MB L3 cache. It has 64 GB of DDR4
RAM running at 2133 MHz. The machine runs Ubuntu 16.04 LTS with Linux
kernel version 4.13.0-37.

All machines are connected by a 1Gbps Ethernet link, however, they are con-
nected to different network typologies. We therefore measure the Round-trip
Time (RTT) latency from machine 1-4 to machine 5. The measured RTT la-
tency is listed in the Table 5.1. The RTT is measure with the ping commandline
utility. The packet size for the measurents is set to 1Kb since all evaluation of
SecureCached is done with value sizes of 1Kb.

The enclaves are created using Intel’s open source kernel module 1. Unless
specified, all enclaves are compiled and run in hardware mode with the
SGX PRERELEASE flag. All code is compiled with GCC version 5.4.0. Note
that all components used in the experiments, namely SecureCached and client
agents, run on SGX-enabled hardware, and thus, within enclaves.

5.1.1 YSCB

YCSB is an open source benchmarking tool by Yahoo [45]. Its purpose is to
create a reference benchmark for popular data serving systems, ranging from
databases to in-memory key-value stores, by defining a set of core workloads
that covers a wide range of use cases. We evaluate SecureCached using the
popular YCSB load generator implementet as a Diggi agent. The agent first
pre-loads the memcached instances with key-value pairs, and then issues
update or get requests. The workloads are according to the pre-defined YCSB

1. https://github.com/intel/linux-sgx

5.2 / SINGLE THREAD PERFORMANCE 49

get/update ratios, however, for our experiments we only use workload b: 95%
GET requests and 5% UPDATES. The value size for all experiments is 1Kb. All
experiments conducted which includes SecureCached have mean latencies for
100K measurements per client, and include a 96% confidence interval.

The vCsB Diggi agent used for load generation differs from the standard im-
plementation of the framework. YCSB measures applications by incrementally
increasing the frequency of operations. However, since the YCSB Diggi agent
runs within an enclave fine-grained frequency control is difficult to imple-
ment. This is because enclave threads exit the enclave in order to access Linux
time. Moreover, YCSB also increases the concurrency of the benchmark to
increase load. Our approach to that is increasing the number of Diggi client
agents.

5.2 Single thread Performance

Firstly, we assess the single threaded performance of the SecureCached by
locating the client agents and the SecureCached agent within the same Diggi
process. We want to assess the maximum requests that SecureCached is able to
complete, without involving network overheads. Recall Diggi’s global message
scheduler from 3, which runs in the context of a single thread. Therefore,
in addition to assessing the performance of SecureCached we also want to
evaluate at which point the global message scheduler is saturated.

The experiment was conducted by increasing the the number of clients that
query a single server agent; all running inside enclaves, and therefore messages
sent between them will be subject to encryption. The experiment does not
issue any system calls either, as agent-to-agent communication is within the
same Diggi process.

Table 5.2 shows the parameters for the setup, which includes enclave sizes
for the number of threads utilized in the experiment. The experiment was
conducted on machine 5 as it provides 8 hyperthreads, allowing us to test with
up to six clients.

The results are are shown in Figure 5.1. SecureCached achieves a maximum
throughput of 150K reqs/s with four clients. When more than four clients
generate requests, the throughput decreases and latency increases. This can be
explained by threads not being affinitized to a logical core. As the global thread
scheduler polls for messages to be sent and received we expected to reach a
cap, and not degrading performance. However, due to threads being scheduled
across logical cores, the latency increases. Note that from two to three clients

50 CHAPTER 5 / EVALUATION

Enclave Size Threads

Clients 10Mb 1-6
SecureCached soMb 1
Diggi Process - 1

Total 110 MB 2-8

Table 5.2: Parameters for inter-enclave benchmark.

there is a drop in throughput, which increases again for four clients. During
testing, the third client agent spends longer to finish its requests than the
first two. Since the throughput is measure by dividing the total amount of
requests for all client agents by the time of the longest running client agent,
this affects our results. However, this happens because the third client agent
will introduce the fifth thread to the experiment. As there are four physical
cores on the machine, the fifth thread will compete with the other four threads
for a physical core. This is then amortized when the sixth thread is introduced
to the experiment (client agent). To conclude, this benchmark shows that
SecureCached yields a maximum throughput of 150K req/s in Diggi, when
network overhead is removed from the equation.

5.3 / INTER-NODE COMMUNICATION BASELINE 51

160000 T r r r r r
150000 | 1
140000 8
130000 | 8
120000 | 1
110000 | 8
100000 | g
90000 8
80000 8
70000 . L L

Requets per second

Agents

Figure 5.1: Measured throughput and latency for SecureCached where the clients
are located within the same Diggi process. The uppermost plot shows
the measured latency in miliseconds and the bottom most plot shows
measured throughput in requests per second.

5.3 Inter-node communication baseline

As we explore to assess inter-node performance of SecureCached, we conduct
experiments to find the theoretical maximum for inter-node communication in
Diggi. To be able to compare the baseline performance to the SecureCached
experiments, we include a value size of 1Kb. Evaluating the cap for commu-
nication allows us to assess the overhead of SecureCached queries as well as
having a theoretical maximum for queries between agents located on different
physical machines.

We first use iperf to define the maximum throughput of a regular application.
Packet sizes of 1KB yielded 550 mbit/s maximal throughput.

We conduct the experiments by setting up one server agent and increasing the
number of client agents. The client agent only uses Diggi’s message manager to
send packages to the server agent. We increase packets sizes from 16 to 4096
bytes in power-of-twos. Each run for a given packet size include 100K requests

52 CHAPTER 5 / EVALUATION

Enclave Size Threads
Client 10Mb 1-3
Server 10Mb 1

Table 5.3: Parameters for communication baseline benchmark.

to the server agent.

One Agent
— Two Agents
250+ — Three Agents

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Packet size in bytes

Figure 5.2: Baseline commincation throughput in megabit per second for agent-to-
agent communication, between two Diggi process, each of which located
on a separate machine. The number of agents issuing requests are increase
from one to three, where each iteration includes 100K requests per power-
of-two packet size.

From 5.2 we see that for packet sizes of 1Kb, Diggi achieves a throughput of
approximately 74 mbps, Diggi therefore only achieves 13 % of native throughput,
compared to measurements from iperf. Relating this to requests per second,
packet sizes of 1KB yields around 9K. By that the maximum throughput a
machine with four physical cores may achieve for packet sizes of 1Kb is gK. We
therefore deem that in order to impose greater load to SecureCached must
utilize more machines in order to saturate a single-threaded SecureCached
setup.

5.4 / INTER-PROCESS PERFORMANCE 53

5.4 Inter-process performance

Diggi supports inter-process communication via POSIX sockets. We want to
assess the throughput between two Diggi processes to find at which point
Diggi’s agent-to-agent communication handler experiences saturation. Recall
that Diggi has a dedicated thread handling all outgoing and incoming re-
quests.

We set up the benchmark on machine 5. All the details is shows in Table 5.4

Enclave Size Threads

Client 10Mb 1-5
SecureCached soMb 1
Diggi Process 1 - 1
Diggi Process 2 - 1

Total 100 MB 8

Table 5.4: Parameters for inter-process benchmark.

The plot in Figure 5.3 shows the results of the experiment. We increased the
client agents issuing requests from one until five clients. Machine 5 only has
four physical cores (8 hyperthreads), and we allocate eight logical threads for
the highest number of client agents. This will cause expensive thread transition
whenever a thread is relocated to a different core. However, we aim to assess
the theoretical maximum load for the Diggi message scheduler.

The results support our claim to a certain extent, latency increases drastically
from two clients. This could also be an effect of the single-threaded communi-
cation handler in Diggi. However, comparing that to the performance penalty
of enclave thread transition we believe that it is the main cause for the added
latency. The overall throughput does not rise above 40K req/s. After adding
more than two clients it stabilizes to around the maximum. The maximum
throughput is therefore capped to 40K req/s for SecureCached requests with
value size 1Kb.

54

40000

35000

30000

25000

Requets per second

20000

Figure 5.3:

CHAPTER 5 / EVALUATION

1 2 3 4 5
Agents

Throughput for SecureCached with inter-process agent-to-agent commu-
nication on a single machine. The throughput is shown in the lowermost
plot, whilst the latency is the uppermost plot.

5.4.1 Exceeding the EPC size

As explained in Chapter 2, causing the OS to swap pages from the EPC is a
performance penalty. We want to see how this affects the overall throughput
for SecureCached. The parameters of the experiment is identical to the pre-
vious inter-process setup, only that we increase the size of the enclaves to
exceed the EPC. The size of the SecureCached agent remains soMb, whilst the
client agents are increased to 20Mb. We could have increased the size of the
SecureCachedagent, however, as long as the total size of all enclaves exceeds
the EPC boundary memory accesses will incur paging.

5.5 / INTER-NODE PERFORMANCE - SINGLE MEMCACHED INSTANCE 55

30000

T

28000

26000

T

24000 |

Requets per second

22000 I I I I I I

1 2 3 4 5 6
Agents

Figure 5.4: Throughput and latency for a inter-process setup of SecureCached and
client agents where the size of the client agents are increased to exceed
the EPC.

From the plot in Figure 5.4 we can infer that exceeding the EPC does degrade
performance. Comparing it to Figure 5.3, latency is comparable up to two
clients. For three clients and onwards, latency increases more than if the
EPC boundary is not exceed. The throughput drastically decreases as well for
number of clients above three.

5.5 Inter-node performance - Single Memcached
Instance

To fully benchmark SecureCached in a distributed setup, we conduct experi-
ments where we deploy one SecureCached agent on machine 5 and place the
YCSB clients on the four load generation machines, machine 1-4. Note that
to avoid expensive enclave thread eviction during the experiments, we can

56 CHAPTER 5§ / EVALUATION

Machine Enclave Size Threads
1 10Mb 1-3
2 10Mb 1-3
3 10Mb 1-3
4 10Mb 1-3
SecureCached soMb 1

Table 5.5: Parameters for inter-node benchmark.

only run as many client agents as there are physical cores on the machine’s
processor, minus the thread dedicated for communication.

We want to assess at which point the server experiences saturation. Therefore,
we start by deploying one client agent on one machine and increasing the
number of clients by one at a time on that machine. When the amount of
threads exceeds the physical cores on that machine we continue increasing
clients by adding more to the next machine, and so forth. The experiment
starts by loading the SecureCached agent with key-value pairs, before issuing
requests. YCSB does this by increasing the amount of threads doing requests.
We are unable to replicate that scenario as a Diggi agent can only run in the
context of a single thread. Instead we delegate the responsibility of pre-loading
the memcached server to one client agent which notifies the other client agents
in the experiment to start issuing requests after it finishes. The key space is
distributed among all the clients in the experiment in slices. Since our adoption
of memcached is single-threaded, there will be no contention for keys.

The machines used for load generation all have different hardware specifications
and connected to the server machine through varying network topologies. To
that end, we measured the latency for each request done by a client agent and
accumulate them for each unique machine. We also calculate the total requests
per second for each machine. Note that for this experiment the memcached
server enclave does not allocate more than the size of the EPC.

Measured mean latencies for the experiment is plotted in Figure 5.5. The total
mean latency for all client agents residing on the same physical machine are
plotted separately. That is, for every increase in client agents on a machine all
latency is calculated together. We do this because of the heterogeneity of our
machines and their interconnections. The introduction of a new machine to
the experiment is marked by gray dotted line in plot.

From the results there are several things we are able to infer. The latency for
all clients on a single machine increases by adding clients to that machine.
This shows that Diggi’s agent-to-agent communication is subject to contention

5.5 / INTER-NODE PERFORMANCE - SINGLE MEMCACHED INSTANCE 57

0.9 Machine 1 Machine 2 Machine 3 Machine 4
F Machine 1
sl Machine 2 |
+ Machine 3
+— Machine 4
0.7} -
€06} .
>
(9}
]
= 051 -
-
0.4} -
0.3} -
02 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12
of agents

Figure 5.5: End-to-end latency between client agents and the memcached agent server.
Latencies for client agents on the same machine are plotted together as
the total number of client agents are increase in the experiment.

when there are several agents using it. Introducing the total amount of client
agents does not affect the latency of the system. This is substantiated by the
stable latency of machine one and machine two when the third and fourth
mahine is introduce to the experiment. Machine one and two have unstable
latencies for each addition of a client agent. Especially, when machine two is
added, and comes down to the fact that a machine running only one client
will issue requests faster than with a machine running three clients; that is, a
single client will deprive other clients from issuing requests.

Machine three and four have a larger RTT for packets send to the server node,
which the trends from the plot is showing. Overall, however, we are no able to
reach the point saturation in the system. Even if the latency climbs up to 0.6 and
0.8 ms, respectively, for the machine three and four we do no consider a mean
latency of such a small magnitude as an indication of a breaking point.

We also measure the overall throughput of the system during the same bench-

58 CHAPTER 5§ / EVALUATION

mark. In Figure 5.6, we plot the throughput collectively and individually for
the machines. The YCSB benchmark runs load generation on a single machine,
since we divide to load to multiple machines there is no point of coordination
for testing. That is, all client agents each run 100K requests in the key space
that is loaded into the SecureCached agent. This causes the clients to finish
at different times, hence, to calculate the overall throughput in the system we
divide the total number of requests by all clients with the time spent for the
longest running client agent.

The results show that the single-threaded SecureCached agent handles approx-
imately 16K requests per second when all four machines run three clients each
(12 client agents). The throughput scales linearly until with the number of
clients, however, there is a drop in throughput when machine three is intro-
duced. The reason why there is a drop in throughput at that point comes down
to two reasons. The RTT time from that machine to the server node is slightly
higher and when the third client agents is added to that machine it uses longer
time to finish than machine one and two. However, when the fourth machine
is added it contributes to more requests in the same time-span, increasing the
throughput again. Although the measurements are colored by the benchmark
setup it shows that we are able to scale to 12 clients. Overall, we were not able
to find at which point SecureCached becomes subject to saturation, and there
are two reasons why:

1. The throughput measurement shows a trend of increasing throughput
when clients are added, and the results does not show any decrease in
throughput.

2. Latency does not increase significantly for machine 1 an 2 when the other
machine contribute to the load. Arguably, a maximum latency of 0.8 ms
does not show that there is a point of saturation.

The configuration setup may not be comparable or realistic to that of data
center with homogeneous hardware and interconnections, however, the setup
allowed us to evaluate the performance of SecureCached in Diggi.

5.6 Discussion

We have shown that it is feasible to run memcached on trusted hardware by
using the Diggi framework. Memcached is a distributed caching service, and
we implemented the support for deploying multiple instances of SecureCached
across Diggi processes that are located on separate machines. We did not
include the performance of such a setup, as the number of machines that

5.6 / DISCUSSION 59

Machine 1 Machine 2 Machine 3 Machine 4
16000 T . . T
— Machine 1
14000l T Mach!ne 2
— Machine 3
— Machine 4
12000 .— Total
0
m
(o
© 10000}
5
o
e
2 8000}
o
e
|_
6000 |
4000 \/—\ %
2000 | | | | | | | | | | | |

1 2 3 4 5 6 7 8 9 10 11 12
of agents

Figure 5.6: Measured throughput for a single SecureCached agent. Througput is
measured overall for each machine, and the gray dotted line shows when
a client is introduces on a new machines. The overall throughput of the
SecureCached agent is measured by dividing the total amount of requests
done by all clients, by the longest time spent to finish the experiment.

were available was not enough to utilize a multi-instance setup. Memcached
instances are typically added to a system in order to increase the memory
availability. This would be the case for the memcached agent as well due to the
limited memory resources of SGX. Our memcached agent is single-threaded,
and increasing the number of instances could also help performance. Reducing
the size of each SecureCached agent, trading memory for concurrency.

In large-scale cloud services where the amount of data residing in caches can
exceed several gigabytes, placing those caching service in SGX will incur too
large performance overheads. As caches are built to speed up software system,
such a performance overhead will be counterproductive. Therefore, in order
for sGx-enabled caching services to be viable, the amount of data residing in
the cache should be kept small.

60 CHAPTER 5 / EVALUATION

5.7 Comparison to Other Frameworks

Porting memcached to run on trusted hardware has been investigated in
research. Our implementation is not comparable to the performance others
report, however, we will compare the framework that have been utilized to run
memcached on SGX.

The first was scone [34], achieving near vanilla memcached throughput. Com-
pared to our implementation, scone implements multi-threaded support for
memcached, and increased concurrency for network handling. Diggi only uses a
single thread to service network packets, whilst scone utilizes a greater amount
of threads to service network traffic than the amount of threads used for mem-
cached. In addtion to that, scone service the system calls in a kernel module,
and can provide network packets directly to the enclave without switching
privileged levels.

Eleos compares Graphene-SGX and a modified version of it that has asyn-
chronous system calls and a user-level virtual memory manager [39]. The base-
line Graphene-SGX framework running single-threaded memcached reached
20K req/s. With the two extensions, eleos achieved twice the throughput. They
report that the speedup is caused by avoiding expensive enclave thread transi-
tions. They also tested their virtual memory manager by setting the memcached
memory pool to 5ooMb. According to their results they were able to obtain
a performance that is comparable to a memcached instance that fits the epc,
2.5x speedup over Graphene when the EPC is not exeeded and 2.0x when it
is.

5.8 Summary

This chapter has conducted experiments to evaluate SecureCached. The experi-
ments showed that a single-instance SecureCachedscales to 12 clients. However,
the hardware resources used to conduct the experiments were not enough to
determine the maximum amount of requests one SecureCached agent is able
to handle.

Concluding Remarks

This chapter will conclude this thesis, summarize our contributions and results,
relating them to our thesis statement.

6.1 Conclusion

This thesis aimed to evaluate the feasibility of running a distributed caching
service on Diggi without sacrificing performance or functionality.

Specifically, our thesis is:

The Memcached codebase can be modified to run within the Diggi
Library OS.

We successfully ported a modification of Memcached, SecureCached to run in
Diggi with the following contributions:

1. SecureCached - a port of Memcached to run on Diggi and SGX.

2. Shim extensions to the Diggi library OS that replaces legacy Os services
required by Memcached.

Our evaluation showed that SecureCached is able to provide the legacy API of

61

62 CHAPTER 6 / CONCLUDING REMARKS

Memached by succesfully running the Yahoo! Cloud Serving Benchmark (YCSB)
benchmark. Therefore, we demonstrated the feasibility of having a distributed
cache deployed in a secure execution environment. Diggi is now able to move
cached data into a security domain without diminishing the confidentiality
and integrity of sensitive data. To that end, our thesis holds.

6.2 Future Work

We propose future work for our solution, with regards to security and mem-
cached functionality.

6.2.1 Multi-Threading

Memcached is implemented to take advantage of the paralellism of the cpu.
Many of the side features of memcached also require threading. The only
restriction to that is that the number of threads that may execute inside an
enclave must be given prior to creating it. For an application such as memcached
that start threads at startup, depending on the configurated parameters, that
can be challenging. Therefore, dedicated threads that service a log stream
through the network, and the number threads handling requests must be
given. We therefore propose a future implementation of multi-threading in
Diggi.

6.2.2 Feature Rich Memcached Client

The authors are unaware of the extent to which all the client-side memcached
features are used. We implemented a minimal client API to service the YCSB
testing framework. For a secure caching service, implementing features such
as compression that allows a memcached agent residing in SGX to have a
smaller memory footprint. Taking into account the memory restrictions of the
SGX architecture, one additional client feature would improve on that. E.g,
allow application developers to mark an item as sensitive that requires to
be storage in secure hardware. This would require the client to be aware of
which memcached agents run on trusted hardware and which instances run
on untrusted system software. Application developers can choose to store only
the most sensitive data in a memcached agent residing in trusted hardware to
reduce the memory footprint.

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

J. Tang, Y. Cui, Q. Li, K. Ren, J. Liu, and R. Buyya, “Ensuring security and
privacy preservation for cloud data services,” ACM Comput. Surv., vol. 49,
pp- 13:1-13:39, June 2016.

S. Luo, Z. Lin, X. Chen, Z. Yang, and J. Chen, “Virtualization security for
cloud computing service,” in 2011 International Conference on Cloud and
Service Computing, pp. 174-179, Dec 2011.

M. Almorsy, J. C. Grundy, and I. Miiller, “An analysis of the cloud computing
security problem,” CoRR, vol. abs/1609.01107, 2016.

D. Puthal, B. P. S. Sahoo, S. Mishra, and S. Swain, “Cloud computing
features, issues, and challenges: A big picture,” in 2015 International
Conference on Computational Intelligence and Networks, pp. 116-123, Jan
2015.

A. ARM, “Security technology building a secure system using trustzone
technology (white paper),” ARM Limited, 2009.

I. Corp, “Software guard extensions programming ref-
erence, ref. 329298-002us..” . https://software.intel.com/
sites/default/files/managed/48/88/329298-002.pdf, Oct. 2014.

D. Kaplan, J. Powell, and T. Woller, “Amd memory encryption,” White
paper, 2016.

T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A distributed sand-
box for untrusted computation on secret data,” in 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), (Savannah,
GA), pp. 533-549, USENIX Association, 2016.

F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich, “Vc3: Trustworthy data analytics in the cloud
using sgx,” in Security and Privacy (SP), 2015 IEEE Symposium on, pp. 38—

63

64

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

BIBLIOGRAPHY

54, IEEE, 2015.

S. Brenner, C. Wulf, D. Goltzsche, N. Weichbrodt, M. Lorenz, C. Fetzer,
P. Pietzuch, and R. Kapitza, “Securekeeper: Confidential zookeeper using
intel sgx,” in Proceedings of the 17th International Middleware Conference,
Middleware 16, (New York, NY, USA), pp. 14:1-14:13, ACM, 2016.

L. Guan,P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and T. Jaeger, “Trustshadow:
Secure execution of unmodified applications with arm trustzone,” in
Proceedings of the 15th Annual International Conference on Mobile Systems,
Applications, and Services, MobiSys "17, (New York, NY, USA), pp. 488-501,
ACM, 2017.

D. Johansen, K. Marzullo, and K. Lauvset, “An approach towards an agent
computing environment,” in Proceedings. 19th IEEE International Confer-
ence on Distributed Computing Systems. Workshops on Electronic Commerce
and Web-based Applications. Middleware, pp. 78-83, 1999.

D. Johansen, R. van Renesse, and F. B. Schneider, “Operating system
support for mobile agents,” in Proceedings sth Workshop on Hot Topics in
Operating Systems (HotOS-V), pp. 42—45, May 1995.

D. Johansen, H. Johansen, and R. van Renesse, “Environment mobility:
Moving the desktop around,” in Proceedings of the 2Nd Workshop on
Middleware for Pervasive and Ad-hoc Computing, MPAC '04, (New York, NY,
USA), pp. 150-154, ACM, 2004.

G. Hartvigsen and D. Johansen, “Co-operation in a distributed artificial
intelligence environment—the stormcast application,” Engineering Appli-
cations of Artificial Intelligence, vol. 3, no. 3, pp. 229 — 237, 1990.

H. D. Johansen, R. V. Renesse, Y. Vigfusson, and D. Johansen, “Fireflies: A
secure and scalable membership and gossip service,” ACM Trans. Comput.
Syst., vol. 33, pp. 5:1-5:32, May 2015.

H. D. Johansen, D. Johansen, and R. van Renesse, “Firepatch: Secure and
time-critical dissemination of patches,” 2006.

A. T. Gjerdrum, R. Pettersen, H. D. Johansen, and D. Johansen, “Perfor-
mance of trusted computing in cloud infrastructures with intel sgx,” in
Proceedings of the yth International Conference on Cloud Computing and
Services Science. Porto, Portugal: SCITEPRESS, pp. 696—703, 2017.

R. v. Renesse, H. Johansen, N. Naigaonkar, and D. Johansen, “Secure

BIBLIOGRAPHY 65

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

abstraction with code capabilities,” in 2013 21st Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing, pp. 542—
546, Feb 2013.

H. D. Johansen, E. Birrell, R. van Renesse, F. B. Schneider, M. Stenhaug,
and D. Johansen, “Enforcing privacy policies with meta-code,” in Proceed-
ings of the 6th Asia-Pacific Workshop on Systems, APSys 15, (New York, NY,
USA), pp. 16:1-16:7, ACM, 2015.

H. K. Stensland, V. R. Gaddam, M. Tennge, E. Helgedagsrud, M. Ness, H. K.
Alstad, A. Mortensen, R. Langseth, S. Ljgdal, O. Landsverk, C. Griwodz,
P. Halvorsen, M. Stenhaug, and D. Johansen, “Bagadus: An integrated
real-time system for soccer analytics,” ACM Trans. Multimedia Comput.
Commun. Appl., vol. 10, pp. 14:1-14:21, Jan. 2014.

D. Johansen, P. Halvorsen, H. Johansen, H. Riiser, C. Gurrin, B. Olstad,
C. Griwodz, A. Kvalnes, J. Hurley, and T. Kupka, “Search-based composi-
tion, streaming and playback of video archive content,” Multimedia Tools
and Applications, vol. 61, pp. 419—445, Nov 2012.

D. Johansen, M. Stenhaug, R. B. A. Hansen, A. Christensen, and P. M.
Hggmo, “Muithu: Smaller footprint, potentially larger imprint,” in Seventh
International Conference on Digital Information Management (ICDIM 2012),
Pp. 205-214, Aug 2012.

Kvalnes, D. Johansen, R. van Renesse, F. B. Schneider, and S. V. Valvag,
“Omni-kernel: An operating system architecture for pervasive monitoring
and scheduling,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, pp. 2849—2862, Oct 2015.

P. J. Denning, D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner,
and P. R. Young, “Computing as a discipline,” Computer, vol. 22, pp. 63—70,
Feb 1989.

C. Mitchell and . of Electrical Engineers, Trusted Computing. Computing
and Networks Series, Institution of Engineering and Technology, 2005.

S. Kim, Y. Shin, J. Ha, T. Kim, and D. Han, “A first step towards leveraging
commodity trusted execution environments for network applications,” in
Proceedings of the 14th ACM Workshop on Hot Topics in Networks, HotNets-
X1V, (New York, NY, USA), pp. 7:1-7:7, ACM, 2015.

J. E. Ekberg, K. Kostiainen, and N. Asokan, “The untapped potential of
trusted execution environments on mobile devices,” IEEE Security Privacy,

66 BIBLIOGRAPHY

vol. 12, pp. 29-37, July 2014.

[20] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution envi-
ronment: What it is, and what it is not,” in 2015 IEEE Trustcom/Big-
DataSE/ISPA, vol. 1, pp. 57-64, Aug 2015.

[30] “Trusted execution environment (tee) guide.” https://www.
globalplatform.org/mediaguidetee.asp. Accessed: 2018-05-19.

[31] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using arm trustzone to build
a trusted language runtime for mobile applications,” SIGARCH Compuit.
Archit. News, vol. 42, pp. 67-80, Feb. 2014.

[32] Z.Du,Z.Ying,Z. Ma,Y. Mai, P. Wang, J. Liu, and J. Fang, “Secure encrypted
virtualization is unsecure,” CoRR, vol. abs/1712.05090, 2017.

[33] O. Weisse, V. Bertacco, and T. Austin, “Regaining lost cycles with hotcalls:
A fast interface for sgx secure enclaves,” in 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA), pp. 81-93, June
2017.

[34] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,
D. Muthukumaran, D. O’Keeffe, M. Stillwell, et al., “Scone: Secure linux
containers with intel sgx.,” in OSDI, vol. 16, pp. 689—703, 2016.

[35] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from an
untrusted cloud with haven,” ACM Trans. Comput. Syst., vol. 33, pp. 8:1—
8:26, Aug. 2015.

[36] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt,
“Rethinking the library os from the top down,” SIGARCH Comput. Archit.
News, vol. 39, pp. 291-304, Mar. 2011.

[37] C. che Tsai, D. E. Porter, and M. Vij, “Graphene-sgx: A practical library OS
for unmodified applications on SGX,” in 2017 USENIX Annual Technical
Conference (USENIX ATC 17), (Santa Clara, CA), pp. 645-658, USENIX
Association, 2017.

[38] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John, H. A. Kalod-
ner, V. Kulkarni, D. Oliveira, and D. E. Porter, “Cooperation and security
isolation of library oses for multi-process applications,” in Proceedings of
the Ninth European Conference on Computer Systems, EuroSys '14, (New
York, NY, USA), pp. 9:1-9:14, ACM, 2014.

https://www.globalplatform.org/mediaguidetee.asp
https://www.globalplatform.org/mediaguidetee.asp

BIBLIOGRAPHY 67

[39]

M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein, “Eleos: Exitless os
services for sgx enclaves,” in Proceedings of the Twelfth European Confer-
ence on Computer Systems, EuroSys '17, (New York, NY, USA), pp. 238-253,
ACM, 2017.

[40] S. Shinde, D. Tien, S. Tople, and P. Saxena, “Panoply: Low-tcb linux

[41]

[42]

[43]

[44]

[45]

applications with sgx enclaves,” in Proceedings of the Annual Network and
Distributed System Security Symposium (NDSS), p. 12, 2017.

B. Fitzpatrick, “Distributed caching with memcached,” Linux J., vol. 2004,
Pp- 5—, Aug. 2004.

Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Characterizing face-
book’s memcached workload,” IEEE Internet Computing, vol. 18, pp. 41-49,
Mar 2014.

J. Jose, H. Subramoni, K. Kandalla, M. Wasi-ur Rahman, H. Wang, S. Nar-
ravula, and D. K. Panda, “Scalable memcached design for infiniband clus-
ters using hybrid transports,” in Proceedings of the 2012 12th IEEE/ACM
International Symposium on Cluster; Cloud and Grid Computing (ccgrid
2012), pp- 236—243, IEEE Computer Society, 2012.

L. of Electrical and E. Engineers, “leee standard for information technology-
portable operating system interface (posix): approved september 15, 1993:
Ieee standards board; approved april 14, 1994: American national stan-
dards institute,” Inst. of Electrical and Electronics Engineers.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC '10, (New York, NY, USA),
PpP- 143-154, ACM, 2010.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Code Listings
	List of Abbreviations
	1 Introduction
	1.1 Thesis Statement
	1.2 Scope & Limitations
	1.3 Context
	1.4 Methodology
	1.5 Outline

	2 Background
	2.1 Trusted Computing
	2.2 Trusted Execution Environment
	2.3 Intel Software Guard Extensions (SGX)
	2.4 Frameworks for sgx
	2.5 Memcached
	2.5.1 Memcached Internals

	2.6 Summary

	3 Diggi - A Framework for Trusted Execution
	3.1 Diggi Architecture
	3.2 Diggi Abstractions & Primitives
	3.3 Agent Communication
	3.4 Summary

	4 Design & Implementation
	4.1 Design trade-offs
	4.1.1 Sockets
	4.1.2 Libevent
	4.1.3 Pipes
	4.1.4 Threading
	4.1.5 Design Choice

	4.2 Architecture
	4.3 Single-Threaded Execution
	4.4 Diggi Handle
	4.5 Diggi Event
	4.6 Diggi Sockets
	4.7 Diggi Pipes
	4.8 Memcached Client
	4.9 Summary

	5 Evaluation
	5.1 Experimental Setup
	5.1.1 YSCB

	5.2 Single thread Performance
	5.3 Inter-node communication baseline
	5.4 Inter-process performance
	5.4.1 Exceeding the epc size

	5.5 Inter-node performance - Single Memcached Instance
	5.6 Discussion
	5.7 Comparison to Other Frameworks
	5.8 Summary

	6 Concluding Remarks
	6.1 Conclusion
	6.2 Future Work
	6.2.1 Multi-Threading
	6.2.2 Feature Rich Memcached Client

	Bibliography

