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ABSTRACT

The temporal fluctuations in globalmean surface temperature are an example of a geophysical quantity that
can be described using the notions of long-range persistence and scale invariance/scaling, but this description
has suffered from lack of a generally accepted physical explanation. Processes with these statistical signatures
can arise from nonlinear effects, for instance, through cascade-like energy transfer in turbulent fluids, but they
can also be produced by linear models with scale-invariant impulse–response functions. This paper demon-
strates that, on time scales from months to centuries, the scale-invariant impulse–response function of global
surface temperature can be explained by simple linear multibox energy balance models. This explanation
describes both the scale invariance of the internal variability and the lack of a characteristic time scale of the
response to external forcings. With parameters estimated from observational data, the climate response is
approximately scaling in these models, even if the response function is not chosen to be scaling a priori. It is
also demonstrated that the differences in scaling exponents for temperatures over land and for sea surface
temperatures can be reproduced by a version of the multibox energy balance model with two distinct
surface boxes.

1. Introduction

Instrumental measurements and proxy reconstructions
of Earth’s surface temperatures show temporal vari-
ability on a range of different time scales (Lovejoy 2015;
Huybers and Curry 2006). For the global mean surface
temperature (GMST), the variability can be parsimoni-
ously described as scale invariant, since the estimated
power spectral densities (PSDs) are well approximated
by power laws S( f) ; 1/f b from monthly to centennial
scales (Rypdal et al. 2013). The typical scaling exponent
is b’ 1, and the signals are well described as a so-called
1/f noise, or pink noise. Some of the low-frequency var-
iability in the temperature records can be accounted for
by the variability in the radiative forcing of the planet,
but even the residual fluctuations are well described as a
scaling stochastic process, with a slightly lower exponentb.

This suggests that scale-invariant dynamics is an in-
trinsic property of the climate system, a claim that is
supported by the observation of scaling PSDs in unforced
control runs of general circulation models (GCMs),
on time scales from months to centuries (Fredriksen
and Rypdal 2016; Rybski et al. 2008; Fraedrich and
Blender 2003).
A signal with power-law PSD can be modeled as a

stochastic process with long-range dependence (LRD),
and examples of such processes are the fractional
Gaussian noises (fGns) and the fractional autore-
gressive integrated moving average (FARIMA)models.
Stochastic processes that exhibit LRD provide more
accurate descriptions of the unforced GMST variabil-
ity compared to the traditional red noise models, such
as the Ornstein–Uhlenbeck (OU) processes and the
autoregressive processes of order 1 [AR(1)] (Rypdal
and Rypdal 2014). The latter are characterized by a
single time scale, and are incapable of describing the
multiscale nature of the climate fluctuations. Despite
this, the LRD processes are largely ignored by many
climate scientists, and some consider LRD to be
an exotic and redundant notion in climate science
(Mann 2011).
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One of the aims of this paper is therefore to demystify
the notion of LRD in the climate systemby demonstrating
that the observed phenomena can be produced by simple
multibox energy balance models (EBMs). With this, we
demonstrate that the exotic physics may be no more than
vertical heat conduction in the ocean and that it is rea-
sonable to think of LRDas an approximation to the linear
response of EBMswithmultiple characteristic time scales.
Only a few boxes are needed to obtain power-law PSDs
on scales from months to centuries. We also demonstrate
how we can construct box models that are consistent with
the observation that the exponent b is lower for land
temperatures than for sea surface temperatures (SSTs)
(Fredriksen and Rypdal 2016).
Only a few of the studies that analyze LRD in sur-

face temperatures focus on the mechanisms behind
the phenomenon (e.g., Fraedrich 2002; Fraedrich and
Blender 2003; Fraedrich et al. 2004; Blender et al. 2006;
Franzke et al. 2015). Most treat LRD processes merely as
statistical models that fit well with data (Vyushin et al.
2012; Rybski et al. 2006; Franzke 2010). Statistical in-
ference for LRD processes requires special care to avoid
the fallacy of circular reasoning: that is, falsely attributing
trends in the forced signal to natural variability (Benestad
et al. 2016). Incautious trend-significance testing using
LRD null models (Cohn and Lins 2005) have led some
climate scientists to view LRD processes as exotic math-
ematical objects that somehowfitwith the ‘‘climate denier
agenda’’ (Mann 2011; Benestad et al. 2016). This is par-
adoxical, since climate response models that exhibit LRD
actually display more ‘‘heating in the pipeline,’’ and,
compared with other response models, they predict that
emissions of greenhouse gases must be reduced earlier
and more drastically to avoid dangerous anthropogenic
influence (K. Rypdal 2016; Rypdal and Rypdal 2014).
Other climate scientists consider scaling to be an in-

herent property of atmospheric turbulent flows and
certain types of regime switching dynamics (Lovejoy
and Schertzer 2013; Franzke et al. 2015) and, as such, a
signature of the nonlinearity of the underlying dynam-
ics. In fact, Huybers and Curry (2006) hypothesize that
the persistent scaling of surface temperatures observed
on decadal to multicentennial scales is due to a non-
linear cascade driven by the seasonal forcing. They
present a bicoherence spectrum in favor of this hy-
pothesis, but the phase correlations that give rise to high
bicoherence do not imply an effective nonlinear energy
transfer between the seasonal and the multidecadal
scales. We have also had problems in reproducing the
bicoherence spectra reported in this paper. In a forth-
coming paper, we will examine this hypothesis in depth.
Since the ocean has a large heat capacity compared to

the atmosphere, the observation that ocean temperatures

are more persistent than land temperatures (Fraedrich
and Blender 2003; Fredriksen and Rypdal 2016) is an
indication that the observed persistence in global tem-
perature to a larger extent must be attributed to ocean
heat content and ocean dynamics and to a lesser extent
to nonlinear processes in the atmosphere. This hypoth-
esis is further strengthened by the results of Fraedrich
and Blender (2003), who find that only models with full
ocean circulation show persistence on scales longer than
about a decade. In the present paper, we model the
slowly responding components of the climate system by
including ‘‘boxes’’ that exchange heat with the more
rapidly responding mixed layer. This is clearly an over-
simplification of the ocean dynamics but reproduces the
multiscale characteristics of the surface temperature
response.
The paper is structured as follows. Section 2 discusses

the construction of multibox EBMs and their corre-
sponding response functions, and in section 3 we dem-
onstrate how the superposition of different response
times can be used to approximate an LRD response.
Furthermore, we estimate parameters and explore how
the response of sea surface temperatures differs from the
response of land temperatures. Section 4 presents some
concluding discussions.

2. Multibox EBMs

The simplest climate model we can imagine is the so-
called one-box EBM for the global temperature:

C
dDT
dt

52
1

Seq

DT1DF(t) . (1)

In this equation,C denotes the average heat capacity per
square meter of the surface, DT is the temperature
anomaly relative to an equilibrium state, Seq is the
equilibrium climate sensitivity, and DF(t) is the forcing
(i.e., the perturbation of effective radiative forcing from
the initial equilibrium state DT 5 0). As a response to a
constant perturbation DF, the temperature will reach a
new equilibrium DT, and the change in equilibrium
temperature relative to the change in radiative forcing is
equal to the equilibrium climate sensitivity: that is,

Seq 5
DT
DF

.

For a time-dependent forcing DF(t), the temperature
DT(t) is given by a convolution integral

DT(t)5
ðt

2‘
R(t2 s)DF(s) ds , (2)
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where the impulse–response function is an exponen-
tially decaying function with a characteristic time scale
t 5 CSeq:

R(t)5
1

C
e2t/t . (3)

In the one-box model there is no heat exchange with
the deep ocean, but this can be included by extending
the model to also include a box with a larger heat ca-
pacityC2. If the energy exchange between the upper and
lower box is proportional to the temperature difference
between the two boxes, we obtain what is known as the
two-box EBM (Geoffroy et al. 2013; Held et al. 2010;
Rypdal 2012; Caldeira and Myhrvold 2013):

C1

dDT1

dt
52

1

Seq

DT1 1 k2(DT2 2DT1)1DF(t) and

(4)

C2

dDT
2

dt
52k2(DT2 2DT1) . (5)

The equations can be written in matrix form:

C
dDT
dt

5KDT1DF(t) , (6)

where we introduce the notation

C5

"
C1 0

0 C
2

#
, DT5

"
DT1

DT
2

#
, and DF(t)5

"
DF(t)

0

#

and

K5

"
2(k

1
1 k

2
) k

2

k2 2k2

#
. (7)

For convenience, we denote k1 5 1/Seq, but it should be
noted that the physical meaning of k1 is different from
k2. While k2 is a coefficient of heat transfer between two
ocean layers, k1 is determined by the linearized response
of the net outgoing radiation to changes in the surface
temperature. It includes all the atmospheric feedbacks
and is sometimes referred to as the equilibrium global
climate feedback (Armour et al. 2013), or simply the
‘‘feedback parameter.’’
The natural generalization of the two-box model is to

consider N vertically distributed boxes. The model is
formulated as in Eq. (6), withDT andDF beingN vectors
and C and K being N 3 N matrices. The matrix C will
be a diagonal matrix with the heat capacities of each box
along the diagonal, and K will be a tridiagonal matrix.
The forcing vector DF consists of zeros for all boxes not

connected to the surface. We note that, when N is
large, this model setup can approximate a vertical
diffusion model.
In an N-box EBM the N-vector temperature can be

written using matrix-exponential notation:

DT(t)5
ðt

2‘
e(t2s)A C21DF(s) ds, with A5C21K ,

and it follows that the surface temperature is given by a
convolution integral similar to the one in Eq. (2), but
where the impulse–response function is now a weighted
sum of N exponentially decaying functions:

R(t)5 (etAC21)11 5 !
N

k51
b
k
e2t/tk . (8)

The characteristic time scales are defined as tk 5 21/lk
for k 5 1, . . . , N, where lk are the eigenvalues of the
matrix C21K. Since 2K is symmetric and positive defi-
nite, the eigenvalues lk are real and negative.
The model defined by Eq. (6) is meant to describe

vertically distributed boxes, but boxes can also be
aligned horizontally. This can be useful in order to in-
clude the atmosphere over land in the model. In prin-
ciple, we can have interactions between all boxes,
making the matrixK less sparse. The mathematical form
of the response function remains the same though, but
the characteristic time scales and the weights bk are
changed. Several horizontally distributed boxes could
also be useful for modeling a space-dependent depth of
the mixed layer.
Tomake separate boxes for the upper ocean layer and

atmosphere over land, we adopt the asymmetric heat
exchange between land and sea used by Meinshausen
et al. (2011) to obtain the equations

C
L

dDT
L

dt
52l

L
DT

L
1F

L
(t)1

k

f
L

(maDT
1
2DT

L
) and

C1

dDT
1

dt
52l

O
DT1 1F

O
(t)2

k

f
O

(maDT1 2DT
L
)1F

N
.

(9)

Here it is assumed that the temperature in the atmo-
sphere over oceans DTO,atmos is proportional to the
temperature in the mixed layer (i.e., DTO,atmos 5 aDT1),
where the factor a . 1 describes the effect of changing
sea ice cover (Raper et al. 2001). The parameter m . 1
quantifies the asymmetry in the heat transport between
the atmosphere over the ocean and the atmosphere over
land. The parameter fL 5 0.29 is the proportion of
Earth’s surface that is covered by land, and fO 5 12 fL.
The term FN represents the heat transport into the deep
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oceans, and FL and FO are the forcing terms over land and
ocean, respectively. Frommodels in phase 3 of theCoupled
Model Intercomparison Project (CMIP3), one finds that
the typical values of m are in the range 1–1.4 (Meinshausen
et al. 2011). This implies that, when a new equilibrium is
reached after a perturbation of the forcing, the land tem-
perature will have changed more than the SST.
In the limit CL / 0, Eq. (9) becomes

DT
L
5

F
L
(t)1 kmaDT

1
/f
L

l
L
1 k/f

L

. (10)

Hence, land temperature appears as a weighted sum of
the SST and an instantaneous response to the forcing
over land. The GMST anomaly is given by

DTglobal 5 f
L
DT

L
1 f

O
DT1 5

$
f
O
1

kma

l
L
1 k/f

L

%
DT1

1
f
L

l
L
1 k/f

L

F
L
(t) .

3. Approximate scale invariance from aggregation
of OU processes

TheOrnstein–Uhlenbeck stochastic process is defined
via the stochastic differential equation

dx(t)52ux(t) dt1sdB(t) ,

where dB(t) is the measure of white noise. The equation
has a stationary solution of the form

x(t)5
ðt

2‘
R(t2 s) dB(s), with R(t)5se2ut . (11)

The parameter s is called the scale parameter, and u is the
damping rate. Since dB(t) is a white noise, it follows that

hx(t)x(t1 t)i5
ð‘

0

R(t0)R(t01 t) dt05
s2

2u
e2ut , (12)

where the angle brackets throughout this paper denote
ensemble averaging. Hence, the characteristic correla-
tion time of an OU process is t 5 1/u. In the multibox
EBM with N vertically distributed boxes, the tempera-
ture DT1(t) is given by

DT
1
(t)5

ðt

2‘

"

!
N

k51
b
k
elk(t2s)

#
dDF(s)5 !

N

k51
b
k
DT

1,k(t),

(13)

where

DT1,k(t)5
ðt

2‘
elk(t2s) dDF(s) . (14)

If we consider the perturbations of the radiative forcing
caused by volcanoes, solar variability, and anthropogenic
activity as ‘‘deterministic,’’ and the perturbations from the
chaotic atmospheric dynamics as random, then it is natu-
ral to model the forcing as a superposition of a deter-
ministic component and a white-noise random process:1

dDF(t)5DFdet(t)dt1sdB(t) .

Since the N-box models we consider are linear, the de-
composition of the forcing yields a straightforward de-
composition of the temperature response:

DT1(t)5DT1,det(t)1s

ðt

2‘

"

!
N

k51
b
k
elk(t2s)

#

dB(s)

5DT1,det(t)1s !
N

k51
b
k
x
k
(t) , (15)

where the processes

x
k
(t)5

ðt

2‘
elk(t2s) dB(s)

are dependent OU processes with characteristic time
scales given by the eigenvalues of the matrix C21K via
the relations tk 5 21/lk. Taking the Fourier transform
of Eq. (14) yields

DT1,k(v)5
DF(v)

iv1 1/t
k

,

and the PSD of DT1(t) becomes

S
1
(v)5 lim

T/‘

1

T
hjDT

1
(v)j2i

5 lim
T/‘

1

T
hjDF(v)j2i[S(0)(v)1S(cr)(v)] ,

where

S(0)(v)5 !
k

b2
k

(v2
k 1v2)

,

S(cr)(v)5 !
k
!
j,k

2b
k
b
j
(v

k
v

j
1v2)

(v2
j 1v2)(v2

k 1v2)
, and v

k
5 1/t

k
.

(16)

1 In this paper, we follow Rypdal and Rypdal (2014) and model
the random component of the forcing as white noise. However, the
models can easily be modified to other stochastic models for the
random forcing.
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Here, T is the length of the time series DT1(t), S
(0)(v) is

the PSD of an independent superposition of the processes
DT1,k(t), and S(cr)(v) is the contribution to the PSD from
the cross terms, which cannot be neglected since the
processes DT1,k(t) are driven by the same forcing DF(t).
For the stochastic component of the process Eq. (15), we
can replace the forcing by a white noise process such that
limT/‘T21hjDF(v)j2i is a constant in v.
Before we proceed to estimating parameters from

data, we demonstrate that the PSD in Eq. (16) can easily
be made to approximate a power law. For instance, can
we pick time scales tk such that tk11 5 atk and weights
bk such that bk11 5

ffiffiffiffiffiffiffiffiffi
ab22

p
bk. Then we have the ap-

proximate relations S(0)(v);vb, S(cr)(v);vb, and
hence S1(v);vb. In Fig. 1, this is demonstrated for a
superposition ofN5 5 terms. The sum S(0)(v) is shownby
the red line in Fig. 1a and the total sum S(0)(v)1 S(cr)(v)
by the blue line in Fig. 1b. The idea that a long memory
process can be produced by aggregating OU processes is
the same as presented by, for example, Granger (1980)
andM.Rypdal (2016). In this paper, the time scales tk and
their weights bk are estimated from data without a priori
assumptions of scale invariance.

a. Example 1: The two-box model

For the classical two-boxmodel, Geoffroy et al. (2013)
estimated parameters by fitting the GMST response in
the two-box model to the corresponding response in
CMIP5 models. The forcing scenario used for fitting
was abrupt quadrupling of atmospheric CO2 concentra-
tion. They find multimodel mean parameter estimates
Ĉ1 5 7.3Wyrm22K21, Ĉ2 5 106Wyrm22K21,
k̂1 5 1.13Wm22K21, and k̂2 5 0.73Wm22K21, which
correspond to characteristic time scales of 3.88 and 242yr.
The two-box model provides a good fit to CMIP5
abrupt 4 3 CO2 experiments and 1%yr21 CO2 increase

experiments over 140 years, but, if forced with white
noise, the PSD is S1(v) } S(0)(v) 1 S(cr)(v). Using the
parameters estimated by Geoffroy et al. (2013) for three
different CMIP5 models, we have plotted this expression
in Fig. 2a. As seen from Fig. 2, the PSD can be approxi-
mated by two different power laws: one in the high-
frequency range and another in the low-frequency range.
For frequencies corresponding to time scales greater
than a few decades, the PSD can be approximated by
S( f ) } 1/fb, with b 5 0.3, and for the higher fre-
quencies it can be approximated by S(f) } 1/f2. This
result is inconsistentwith thePSDsestimated fromCMIP5
control run temperatures, which are well approximated by
one power law over the entire range of frequencies from
months to centuries (Fredriksen and Rypdal 2016).
The inability of the two-box model to simultaneously

describe the average GMST response to certain forcing
scenarios in GCMs, as well as the PSD of the back-
ground fluctuations, serves as a motivation to analyze
more generalN-box models, and in the next example we
consider the EBM with three vertically distributed
boxes. We will demonstrate that the three-box model
provides accurate descriptions of both the deterministic
response to historic radiative forcing and the statistical
properties of the response to random forcing.

b. Example 2: The three-box model

The three-box model is given by Eq. (6) with

C5

2

64

C1 0 0

0 C
2

0

0 0 C
3

3

75, DT5

2

64

DT1

DT
2

DT
3

3

75, and

DF(t)5

2

64

DF(t)

0

0

3

75

FIG. 1. (a) The solid red line shows the sum S(0)(v) in Eq. (16), with N5 5, b5 1, t1 5 1, b1 5 1, and a5 5. The
dashed red line shows a power law of 1/fb, with b5 1. The black lines show the contribution from each term in the
aggregation. (b) The red line shows the sum S(cr)(v), while the blue line shows S(0)(v)1 S(cr)(v). The dashed blue
line shows the power-law spectrum we approximate, given the same forcing for all modes. The black lines show the
contribution to S(cr)(v) for each k: !j,k2bkbj(vkvj 1v2)[(v2

j 1v2)(v2
k 1v2)]21.
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and

K5

2

64
2(k

1
1 k

2
) k

2
0

k
2

2(k
2
1 k

3
) k

3

0 k3 2k3

3

75 . (17)

To estimate the parameters in the model, we will
make use of the HadCRUT4 dataset for the GMST
since 1850 (Morice et al. 2012) and the global effective
forcing data, both with annual resolution. The forcing
data is an updated version of Hansen et al. (2011) (avail-
able at http://www.columbia.edu/;mhs119/Forcings/).
We also use the Moberg Northern Hemisphere tem-
perature reconstruction (Moberg et al. 2005) and the
Crowley forcing data (Crowley 2000) for the years
1000–1979. We fix a set of three well separated time
scales (t1, t2, and t3) and compute the responses

DT1,k(t)5
ðt

t0

e2(t2s)/tkDF(s) ds , for k5 1, 2 , and 3,

to the historical forcing data DF(t), where the integral is
estimated by a sum. As in Eq. (13), the GMST response
is a linear combination of the responses DT1,k(t):

DT
1
(t)5 b

1
DT

1,1
(t)1 b

2
DT

1,2
(t)1 b

3
DT

1,3
(t) ,

and our approach is to estimate the parameters b1, b2,
and b3 from historical data of GMST and forcing. We
will subsequently demonstrate that, for the range of time
scales we consider in this paper, the results are largely
insensitive to the choice of time scales (t1, t2, and t3), as
long as these are sufficiently separated. We do not only
require that the deterministic response to radiative
forcing fits well with observations, but also that the

PSD of the stochastic component of the response is
consistent with the estimated PSD of the residual ob-
servational signal (the difference between observed
temperature record and the model response to the de-
terministic forcing). Rypdal andRypdal (2014) employ a
maximum-likelihoodmethod to estimate the variance of
the temperature residual s2

T and the spectral exponent
b of a long-memory model. This method is inadequate
here, since we have more free parameters and the
method favors a good fit for the smallest time scales.
We employ instead an iterative routine, which in ad-

dition to weighting all the time scales in the estimation,
allows us to fit to a composite spectrum. We first com-
pute the residual temperature by guessing the model
parameters, computing the deterministic responses to
the Crowley and Hansen forcing time series, and then
subtracting the deterministic responses from the ob-
served Moberg temperature and HadCRUT4 records.
The PSD of the residual is estimated using the perio-
dogram and subsequently log binned. The theoretical
PSD of the response to white-noise forcing in the three-
box model is then fitted to the composite residual PSD
derived from the temperatures from Moberg and
HadCRUT4 byminimizing the square distance between
the theoretical and estimated residual PSDs. From this,
we obtain new estimates of the relative size of the
weights bk at each time scale, and using these we
perform a new regression analysis with HadCRUT4 to
determine the initial temperature T0 and the absolute
strength of the response. The procedure is repeated with
these new model parameters as a starting point. The
parameter estimation converges rapidly; only a few it-
erations are needed to obtain our estimates.
In Figs. 3a,c, we show the deterministic responses to

historical forcing with estimated parameters. The three

FIG. 2. (a) Theoretical PSD of the response to white-noise forcing for a two-box model, with three different
sets of parameters. The dashed red line shows a power law 1/fb, withb5 0.3 for reference. (b) The response to a unit
step forcing for the same parameter choices. The three different sets of parameter choices are those estimated by
Geoffroy et al. (2013) from the following models: HadGEM2-ES: (k1, k2)5 (0.65, 0.55)Wm22 K21 and (C1, C2)5
(6.5, 82)Wyrm22 K21, IPSL-CM5A-LR: (k1, k2)5 (0.79, 0.59)Wm22 K21 and (C1, C2)5 (7.7, 95)W yrm22 K21,
and NorESM1-M: (k1, k2) 5 (1.11, 0.88)Wm22 K21 and (C1, C2) 5 (8.0, 105)Wyrm22 K21.
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different colors represent different choices of the time
scales t1, t2, and t3, and the parameter estimates are
presented in Table 1, where we also present the corre-
sponding values of the parameters kk and Ck, as well as
the equilibrium climate sensitivity of the model. We note
that the colored curves in Figs. 3a,c are almost in-
distinguishable, and they all closely follow theHadCRUT4
and Moberg records.
Figure 4a shows the theoretical PSD of the stochastic

component (the response to white-noise forcing) in the
model. The estimated parameters are shown in Table 1,
and the choice of time scales are t15 1 yr, t25 10 yr, and

t35 100 yr. The PSD of the model fits well with the PSD
estimated from observational data in the time-scale
range from months to centuries, and in this range it is
close to a power law with an exponent b 5 0.65.
In Fig. 4b, we show the three-box model responses

to a unit step-forcing scenario. The different colors
correspond to different choices of the time scales t1, t2,
and t3, and the gray curves are the corresponding two-
box model responses with parameters estimated by
Geoffroy et al. (2013) by fitting to abrupt 4 3 CO2 ex-
periments in CMIP5 models. From the response to a
unit step forcing, we can also derive that the equilibrium

FIG. 3. (a) The black curve is theMoberg temperature reconstruction, and the colored curves are the responses to
Crowley forcing of the three-box model with estimated parameters. The orange curve is the response of the three-
box model where we have fixed time scales t1 5 0.5 yr, t2 5 5 yr, and t3 5 50 yr. The thicker green curve is the
response of the three-boxmodel where we have fixed time scales t15 1 yr, t25 10 yr, and t35 100 yr. The red curve
is the response of the three-boxmodel wherewe have fixed time scales t15 1 yr, t25 20 yr, and t35 400 yr. (c)As in
(a), but showing the response to forcing over the instrumental period, and the black curve is the global instrumental
temperature from HadCRUT4. (b),(d) The green curves in (a) and (c) decomposed into the responses corre-
sponding to the exponential terms in the response functionR(t). The orange curve corresponds to t15 1 yr, the red
curve corresponds to t2 5 10 yr, and the blue curve corresponds to t3 5 100 yr.
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climate sensitivity for an N-box model is given by
Seq 5!N

k51bktk.
The difference we observe in the step-forcing responses

is not a result of a difference between the two- and

three-box models, but rather a difference in estimation
strategy. In our estimation procedure, we use only ob-
servational and proxy data and have hence chosen the
parameters that best reproduce both the residual
spectra and responses to historical forcing. The pa-
rameters estimated by this method are not the same as
the parameters that best describe the 4 3 CO2 runs.
This discrepancy can have several explanations; per-
haps is the random forcing not accurately modeled as a
white noise, or the forcing in the 43CO2 experiments is
too strong for a linear approximation to be valid. It is
likely that the feedback parameter or parameters re-
lated to ocean mixing can change during the strong and
abrupt climate change following a quadrupling in CO2

concentration. The large differences between the dif-
ferent CMIP5 step responses also reflect the large un-
certainty associated with these model runs.

c. Example 3: Separate boxes for land and ocean

With two surface boxes, one for land and one for
ocean, the equation for the ocean surface temperature is

C1

d

dt
DT1 52k0

1DT1 1F
N
1F

O
(t)1

k

f
O
(l

L
1 k/f

L
)
F
L
(t) ,

(18)

where

k0
1 5 l

O
1 kma/f

O
2

k2ma

f
O
f
L
(l

L
1k/f

L
)
. (19)

TABLE 1. Parameters estimated from data. The time scales tk and
their weights bk for k5 1, 2, and 3 uniquely determine the estimated
response functions. The parameter smonthly is the estimated standard
deviation of the monthly resolved stochastic forcing. The values for
T0,instr and T0,Moberg are the initial temperature anomalies estimated
for global instrumental temperature and the Moberg temperature
reconstruction. We note that there is some remnant seasonal vari-
ability that we were not able to remove by subtracting a mean sea-
sonal cycle. This is not so apparent in a double-logarithmic plot of the
PSD, but it causes our estimates of smonthly to be slightly inconsistent
with the actual residual variability. We also point out that our esti-
mates ofsmonthly are only valid formonthly resolved temperatures, or
monthly temperatures sampled at a different time resolution.

Parameter (units)

Time scales (t1, t2, t3) (yr)

(0.5, 5, 50) (1, 10, 100) (1, 20, 400)

b1 (Km2W21 yr21) 0.198 0.165 0.187
b2 (Km2W21 yr21) 0.033 0.022 0.018
b3 (Km2W21 yr21) 0.011 0.005 0.001
smonthly (Wm22 yr21/2) 0.73 0.70 0.68
T0,instr (K) 20.13 20.14 20.14
T0,Moberg (K) 20.18 20.17 20.15
Seq (Km2W21) 0.79 0.85 1.07

C1 (W yrm22 K21) 4.15 5.09 4.86
C2 (W yrm22 K21) 15.4 22.0 31.7
C3 (W yrm22 K21) 24.1 41.8 149
k1 (Wm22 K21) 1.26 1.18 0.94
k2 (Wm22 K21) 5.61 3.30 3.50
k3 (Wm22 K21) 1.74 1.2 0.91

FIG. 4. (a) The blue curve is the estimated PSD of the residual global instrumental temperature after subtracting
the estimated deterministic response of a three-boxmodel. The characteristic time scales in the three-boxmodel are
chosen to be t1 5 1 yr, t2 5 10 yr, and t3 5 100 yr. The red curve is the residual of the Moberg temperature
reconstruction. Both curves are normalized by their power on decadal scales. The black curve is the theoretical PSD
with the estimated response function, which can be quite well approximated by a power law, shown by the dashed
line with slope 2b 5 0.65. (b) The gray curves are the responses to a unit step forcing using two-box model
parameters estimated for many climate models by Geoffroy et al. (2013). The colored curves show the three-box
responses with the parameters from Table 1. The orange curve is the response of the three-box model where we
have fixed time scales t1 5 0.5 yr, t2 5 5 yr, and t35 50 yr. The thicker green curve is the response of the three-box
model where we have fixed time scales t1 5 1 yr, t2 5 10 yr, and t3 5 100 yr. The red curve is the response of the
three-box model where we have fixed time scales t1 5 1 yr, t2 5 20 yr, and t3 5 400 yr.
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The response function can hence be estimated in the
same way as for global temperature, and the results are
given in Table 2. For the estimation, we have used the
global Hadley Centre SST, version 3 (HadSST3; Kennedy
et al. 2011a,b), dataset.
Simplifying the constants inEq. (10), and separating the

stochastic (stoc) and deterministic (det) parts results in

DT
L
(t)5 r

1
F
L
(t)1 r

2
DT

1
5 r

1
F
L,det(t)1 r

2
DT

1,det(t)

1 r1sL
dB

L
(t)1 r2DT1,stoc(t) ,

(20)

where sLdBL(t) is the direct stochastic forcing of the
land surface temperature. For the ocean response, we
use the previously estimated parameters, given in Table
2. The remaining parameters are chosen such that the
deterministic response

DT
L,det 5T

0
1 r

1
F
L,det 1 r

2
DT

1,det (21)

is similar to global land surface temperature (LST) and
such that the PSD of the residual temperature obtained
after subtracting the deterministic response is similar to
the PSD expected for the stochastic part of Eq. (20):

hjDT
L,stoc(v)j

2i5 (r1sL
)2Dt1 r22hjDT1,stoc(v)j

2i. (22)

Here we assume that the instantaneous response in
ocean temperature to changes in the direct forcing of the
land temperature is small compared to the land tem-
perature response to this forcing. For the global LST, we
use the Climatic Research Unit (CRU) land air tem-
perature, version 4 variance adjusted (CRUTEM4v;
Jones et al. 2012), dataset. The observed SST, LST, and
the response to deterministic forcing with the parame-
ters listed in Table 2 are shown in Fig. 5. Figure 5 also
shows the estimated and theoretical PSDof the response
to stochastic forcing with the same parameters. The
global temperature response DTG 5 fLDTL 1 fODT1 is
similar to the three-box temperature response estimated
directly from global temperature.

The theoretical PSD of DT1(t) fits well with the esti-
mated PSD of the SST residual, and both are well ap-
proximated by a power law with bO ’ 1. In the same
way, the theoretical PSD of DTL(t) fits well with the
estimated PSD of the LST, and both can be approxi-
mated by a power law with bL ’ 0.5. These results are
similar to the estimated PSDs of the linearly detrended
global LST and global SST analyzed in Fredriksen and
Rypdal (2016). With this model, the only reason global
LST shows persistence is because of the influence by
global SST, but the persistence is weaker for land than
for sea as a result of the component responding instantly
to forcing.
We note that, in themodel presented in this paper, the

relation between the equilibrium climate sensitivities for
land temperatures and ocean temperatures is

Seq,land 5 r1 1 r2Seq,sea.

If r1/r2 ! Seq,sea, there will be a near-constant ratio be-
tween land and ocean temperature change, consistent
with the findings of Lambert et al. (2011).

4. Discussion and conclusions

Simple climate models can be divided in two classes:
EBMs and tuned impulse–response (IR) linear statisti-
cal models (Good et al. 2011). The power-law response
model proposed by Rypdal and Rypdal (2014) is an
example of an IR model that reproduces observed
temperature variability quite well, but in this mathe-
matical idealization conservation of energy is lost. It
may also be unclear what the physical reason for using
this model is. In this paper, we demonstrate that such a
model is closely approximated by the response of a
multibox EBM. This shows that LRD models can be
seen as a compact mathematical description of the effect
of a range of time scales in the physical response.
Linear EBMs have been studied since Budyko (1969)

and Sellers (1969), with variousmodels for how the heat is
taken up by the ocean. Many of them include also an
additive stochastic forcing, assumed to be generated by a

TABLE 2. Parameters estimated from global sea and land surface temperatures. The fixed time scales are chosen to be t15 0.5 yr, t25 5 yr,
and t3 5 50 yr.

Sea Land

b1 0.092Km2W21 yr21 r1 0.10Km2W21

b2 0.035Km2W21 yr21 r2 1.40
b3 0.009Km2W21 yr21 — —
smonthly,sea 0.76Wm22 yr21/2 smonthly,land 0.2Wm22 yr21/2

T0,sea 20.13K T0,land 20.15K
Seq,sea 0.69Km2W21 Seq,land 1.07Km2W21
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truncation of the dynamics on shorter scales than the re-
sponse (Hasselmann 1976). Weather systems and day-to-
day variations in insolation and outgoing radiation due to
variations in cloud cover are likely important parts of the
noisy forcing. These are known to be unpredictable on the
scales of the climate response, and a Gaussian white noise
description in time may be reasonable.
The ocean then integrates the forcing on several time

scales, but it is difficult to point out exactly what the time
scales are. The reason is that the response appears to be
practically indistinguishable from a power law, even if
we do not assume this a priori. By picking a set of time
scales that is sufficiently separated within the range of
the scales where we expect a climate response, we
obtain a set of sufficiently different predictors to de-
scribe global temperature evolution. We find that three
time scales is the least number needed to approximate
the temperature response. The resulting description of
global temperature in terms of this set of predictors
should be seen as a statistical model with a minimal
number of parameters to be estimated from data—
a model that can also be replaced by a simpler power-
law response with even fewer parameters to estimate.
Contrary to the power-law response, the response

derived from the EBM has a physical fundament of

energy conservation and some description of energy
exchange within the system. Even though the model is
oversimplified, the power-law-shaped spectrum we ob-
tain for global surface temperature with this simple
model is consistent with the slightly more advanced
linear diffusion models, where Fraedrich et al. (2004)
and Lemke (1977) report 1/f noise characteristics, as
well as with the power-law spectra observed in complex
GCMs (Fredriksen and Rypdal 2016). It is difficult to
draw any general conclusions about the physical pa-
rameters in the simple model from the large separation
of time scales, since each time scale and corresponding
response depends on all parameters in the linear model.
One general feature for our estimated parameters is that
C1 , C2 , C3, but the large separation of time scales
does not necessarily imply that the heat capacities must
be well separated.
The EBMs considered in this paper consist only of one

or two surface boxes and can therefore only describe the
correlation structure of global temperature in time.
Several papers consider EBMs extended to describe a
horizontal temperature field (North and Cahalan 1981;
Kim and North 1991; North et al. 2011). These models
were expanded to include a simple model for ocean
diffusion and upwelling by Kim and North (1992) and

FIG. 5. (a) The black curve is the global HadSST3 dataset, and the red curve is the response to forcing on time
scales of 0.5, 5, and 50 yr. (b) The blue curve is the spectrum of the residual of HadSST3 after subtracting the red
curve in (a), and the black curve is the expected spectrum of the residual. The dashed black line shows a power law
1/fb for reference. (c),(d) As in (a),(b), but for the global CRUTEM4v dataset. In addition to the three time scales,
we have an instantaneous response to the forcing for land temperatures.
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were compared to early versions of GCMs by Kim
et al. (1996). More recently, work on two-dimensional
stochastic–diffusive EBMs by North et al. (2011) was
generalized to include long-memory temporal response
by Rypdal et al. (2015). An important result derived
from this generalization is power-law spectra for both
local and global temperature, and spectral exponent of
global temperature, which is twice that of local tem-
peratures, are in good agreement with observations. The
spatial model proposed by Rypdal et al. (2015) could be
approximated by a sum of spatial fields with AR(1)
characteristics in time, similar to our approximation for
global temperature in this paper.
As suggested by Ragone et al. (2016), we believe that

the global temperature response in the Holocene can be
well approximated as linear. Extending the linear re-
sponse to local and regional temperatures is more
problematic, especially for the temperature responses in
theArctic, where strong nonlinear effects such as the sea
ice–albedo feedback are present. Despite this, linear
responses as in Lucarini et al. (2017) or derived from
spatially dependent EBMs have considerable success in
describing most local temperatures. The multibox
models can also easily be extended to include nonlinear
terms: for instance, to describe the rapid sea ice loss in
the Arctic. And they can be extended to include dif-
ferent types of tipping points, which allows us to study
critical transitions in systems that exhibit LRD. The
effect of LRDon the early warning indicators associated
with critical transitions in multibox EMBs is a topic that
will be pursued in future work.
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