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Determination of the edge of criticality in echo state
networks through Fisher information maximization
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Abstract—It is a widely accepted fact that the computational
capability of recurrent neural networks is maximized on the so-
called “edge of criticality”. Once the network operates in this
configuration, it performs efficiently on a specific application
both in terms of (i) low prediction error and (ii) high short-
term memory capacity. Since the behavior of recurrent networks
is strongly influenced by the particular input signal driving
the dynamics, a universal, application-independent method for
determining the edge of criticality is still missing. In this paper,
we aim at addressing this issue by proposing a theoretically
motivated, unsupervised method based on Fisher information for
determining the edge of criticality in recurrent neural networks.
It is proven that Fisher information is maximized for (finite-
size) systems operating in such critical regions. However, Fisher
information is notoriously difficult to compute and requires
the analytic form of the probability density function ruling
the system behavior. The paper takes advantage of a recently-
developed non-parametric estimator of the Fisher information
matrix and provides a method to determine the critical region
of echo state networks, a particular class of recurrent networks.
The considered control parameters, which indirectly affect the
echo state network performance, are explored to identify those
configurations lying on the edge of criticality and, as such,
maximizing Fisher information and computational performance.
Experimental results on benchmarks and real-world data demon-
strate the effectiveness of the proposed method.

Index Terms—Edge of criticality; Echo state network; Fisher
information; Non-parametric estimation.
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ARIMA Autoregressive integrated moving average
ESN Echo state network
FIM Fisher information matrix
GA Genetic algorithm
MC Memory capacity
MLLE Maximum local Lyapunov exponent
MST Minimum spanning tree
mSVJ Minimum singular value of Jacobian
NARMA Non-linear autoregressive moving average
NRMSE Normalized root mean square error
PD Positive semidefinite
PDF Probability density function
RNN Recurrent neural network
SVR Support vector regression
φ Region in parameter space where FIM is maximized
λ Region in parameter space where MLLE crosses zero
η Region in parameter space where mSVJ is maximized
γ Prediction accuracy

I. INTRODUCTION

A Recurrent Neural Network (RNN) can approximate any
dynamic system under mild hypotheses (see [1] and references
therein). However, RNNs are difficult to train [2] and the
interpretability of their modus operandi is still object of study
[3], [4]. Interestingly, RNNs can generate complex dynamics
characterized by sharp transitions permitting them to commute
between ordered and chaotic regimes. In fact, experimental
results on a multitude of application contexts suggest that
RNNs achieve the highest information processing capabil-
ity exactly when configured on the edge of this transition,
resulting in high memory capacity (storage of past inputs)
and good performance on the modeling/prediction task at
hand (low prediction errors) [5]–[10]. Therefore, in order
to determine such “critical” network configurations, RNNs
require fine tuning of their controlling parameters. This general
behavior is in agreement with the widely-discussed “criticality
hypothesis” associated with the functioning of many biological
(complex) systems [11]–[16], including the brain [17]–[23]. In
fact, it was noted, e.g., see [15], that such complex systems
tend to self-organize so as to operate in a critical regime. This
still controversial issue has been supported by experiments
showing that, in such a regime, systems are highly responsive
to external stimuli and hence capable of introducing any
dynamics as requested by the specific task [15]. Investigating
whether a given complex system operates more efficiently in
the critical regime or not requires, at first, theoretically sound
methods for detecting the onset of criticality [24].

Determination of system configurations lying on the edge
of criticality can be then carried out by means of appropriate
sensitivity analyses (on the edge of criticality the sensitivity
diverges, being the separation between ordered and chaotic
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regimes). In this direction, Fisher information, and its mul-
tivariate extension called Fisher information matrix (FIM)
[25]–[28], provide a way to quantify the sensitivity of a
(parametrized) probability density function with respect to
its control parameters. Fisher information is tightly linked
with statistical mechanics and, in particular, with the field
of (continuous) phase transitions. In fact, as shown in [29],
it is possible to provide a thermodynamic interpretation of
Fisher information in terms of rate of change of the order
parameter, quantities used to discriminate the different phases
of a system. This fact provides an important bridge between
the concept of criticality and statistical modeling of complex
systems. It emerges that the critical phase of a thermodynamic
system can be mathematically described as that region of
the parameter space where the order parameters vanish and
their derivatives diverge. This implies that, on the critical
region, Fisher information diverges as well, hence providing
a quantitative, well-justified tool for detecting the onset of
criticality in both theoretical models and computational sim-
ulations [30]. Nonetheless, Fisher information is notoriously
difficult to compute and, in principle, it requires the knowledge
of the analytical form of the parametrized probability density
function describing the system behavior.

The designer could consider directly the network weights
and drive them towards the edge of criticality through a
learning mechanism. Even though this problem is still open at
current state of research, what we propose here strongly goes
in this direction by accounting a special class of RNNs called
Echo State Networks (ESNs) [31]. Although ESNs are typi-
cally randomly initialized, the network designer has access to
a set of hyperparameters, which have an indirect effect (when
considering inputs) on the resulting ESN dynamics and their
related computational capability. We define the hyperparameter
configurations that bring an ESN in a state where prediction
accuracy and memory capacity are maximized as the critical
region (or equivalently, edge of criticality). Here we show
that the FIM can be used to determine the onset of criticality
for a network designed to deal with a particular application.
Notably, we provide an unsupervised algorithm that exploits
the determinant of the FIM in order to determine the edge
of criticality. Since the proposed algorithm is unsupervised, it
does not depend on the particular model and related training
mechanism adopted for the readout. This feature becomes
particularly relevant when the readout layer is implemented
by means of non-linear models, such as feed-forward neural
networks or kernel-based support vector regression, which
require a long training time. In the proposed algorithm, we
use a non-parametric FIM estimator [32] that allows us to
overcome some of the difficulties that arise when adopting a
model-based approach to compute the FIM (e.g., availability
of the analytical model ruling the system). Additionally, in
order to robustly estimate the FIM, we follow an ensemble
approach and perform a number of independent trials.

RNNs, as well as ESNs, are driven by inputs. Therefore,
their dynamics and related computational capability depend
on the type of input signal driving the network. During the
last decade, many solutions have been proposed to charac-
terize the input-driven dynamics of the network and perform

related tuning of the (hyper-)parameters [33]. Among the many
contributions, we can cite approaches based on mean-field
approximation of the neuron activations [34], information-
theoretic methods inspired by the concept of intrinsic plasticity
(based on the maximum entropy principle) borrowed from
neuroscience [35], [36], and methods for characterizing the
onset of criticality with measures of (directional) information
transfer and information storage [37], together with related
self-organized adaptation mechanisms [38].

To the best of our knowledge, FIM and related ther-
modynamic interpretations have not been considered yet to
study the issue of criticality in ESNs. We stress that, in
principle, our method can be extended to account for several
hyperparameters, such as feedback scaling and percentage of
noise in state update [39]. Finally, it is worth noticing that,
as a consequence of the theoretical framework adopted here,
we implicitly assume that the critical phase of ESNs can be
described by a continuous phase transition. This assumption
is highly justifiable, since a system can operate in a critical
regime only if such a transition is continuous.

The novelty of our contribution can be summarized as:

• An unsupervised learning method that, by exploiting only
the information coming from the neuron activations, per-
mits to identify the edge of crticality. Since no assumption
regarding the mathematical model of the (input-driven)
dynamic system is made, the method can handle any type
of applications;

• The proposed method is independent of the particular
reservoir topology, since it is conceived to determine the
critical ESN hyperparameters. This allows the network
designer to instantiate a specific architecture based on
problem-dependent design choices;

• The envisaged non-parametric FIM estimator [32] oper-
ates directly on data/observations: as such, there is no
need to estimate the high-dimensional densities underly-
ing the neuron activations. As a consequence, the number
of reservoir neurons does not pose a serious technical
issue from the estimation viewpoint and therefore it
can be chosen by the network designer according to
application requirements;

• The FIM estimator can be implemented in two different
ways, one of which requires elaboration in order to
properly define the related optimization problem. In this
paper, we propose our own formulation for the constraints
defining such an optimization problem – see Appendix A
for details.

The remainder of this paper is structured as follows. In
Section II, we introduce ESNs and the related considerations
on the characterization of the dynamics. Section III introduces
Fisher information matrix and the adopted non-parametric
estimator. In Section IV, we present the proposed method for
determining the ESN hyperparameters. In order to support our
methodological developments, Section V presents experimen-
tal results performed on both well-known benchmarks and a
real-world application involving the prediction of telephone
call loads [40]. Conclusions and future research directions
follow in Section VI.
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II. ECHO STATE NETWORKS

ESNs [31] consist of a large recurrent layer of non-linear
units with randomly generated weights and a linear, memory-
less readout layer that is trainable by means of a simple
regularized least-square optimization. The recurrent layer acts
as a non-linear kernel [41], mapping the input to a high-
dimensional space. A visual representation of the ESN archi-
tecture is reported in Fig. 1.
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Fig. 1. Schematic depiction of an ESN. The circles represent input x, state,
h, and output, y, respectively. Solid squares Wo

r and Wo
i , are the trainable

matrices, respectively, of the readout, while dashed squares, Wr
r , Wr

o , and
Wr

i , are randomly initialized matrices. The polygon represents the non-linear
transformation performed by neurons and z-1 is the time lag operator.

The equations describing the ESN state-update and output
are, respectively, defined as

h[k] =f(Wr
rh[k − 1] + Wr

ix[k] + Wr
oy[k − 1]), (1)

y[k] =Wo
ix[k] + Wo

rh[k]. (2)

The reservoir contains Nr neurons characterized by a trans-
fer/activation function f(·), which is typically implemented
as a hyperbolic tangent (tanh) function. At time instant k, the
network is driven by the input signal x[k] ∈ RNi and produces
the output y[k] ∈ RNo , being Ni and No the dimensionality
of inputs and outputs, respectively. The vector h[k] contains
Nr components and describes the ESN (instantaneous) state.
The weight matrices Wr

r ∈ RNr×Nr (reservoir connections),
Wr

i ∈ RNi×Nr (input-to-reservoir), and Wr
o ∈ RNo×Nr

(output-to-reservoir feedback) contain real values in the [−1, 1]
interval distributed according to a uniform distribution, but
additional options have been explored in the recent literature
[42], [43]. Wo

i and Wo
r , instead, are optimized for the task

under consideration, usually by means of a (regularized) linear
regression algorithm. Here, for the sake of brevity we do not
report the expressions describing training (regularized linear
regression of ESN readout) and refer the reader to [31] for
details. In fact, the proposed method for finding hyperparame-
ters is completely unsupervised and, hence, independent from
the readout training.

The behavior of a given network can be controlled by tuning
a set of scalar hyperparameters. Usually, the designer considers
θIS , the scaling of the input weights Wr

i , hence affecting
the non-linearity introduced by the neurons; θSR, scaling of
the spectral radius of Wr

r , which influences both stability and
computational capability of the network by shifting the transfer
function poles [35]; θRC , which determines the sparsity of
connectivity in Wr

r , i.e., the number of weights set to 0; θFB ,

which affects Wo
r , that is, the importance of output feedback

connections. In this study, we set θFB = 0 with a consequent
simplification of ESN state-update (1):

h[k] = f(Wr
rh[k − 1] + θISW

r
ix[k]), (3)

where Wr
r is normalized as Wr

r = θSRW
r
r/ρ(Wr

r), being
ρ(Wr

r) the spectral radius of Wr
r . θSR, θIS , and θRC are

hyperparameters typically tuned through cross-validation to
find the best-performing configuration for the task at hand. In
this paper, we study how to set these three hyperparameters
through an unsupervised approach. However, we stress that
the proposed methodology is applicable to any number of
hyperparameters.

In order to guarantee asymptotic stability, ESNs must satisfy
the so-called echo state property [44]–[47], which requires the
reservoir exhibiting short-term memory (exponential fading)
[48], [49]. Recently, in [50] the author investigated the effects
of criticality in ESN memory, showing that, under certain
conditions, the echo state property can still be verified even
if the memory vanishes slowly (i.e., following a power-law
function).

The stability margin of a network can be assessed in practice
by analyzing the Jacobian matrix of the reservoir state update
(3). Notably, the maximal local Lyapunov exponent (MLLE)
λ, used to approximate the separation rate in phase space
of trajectories having very similar initial states [51], can be
computed from such a matrix. In autonomous systems, λ < 0
indicates that the system (here ESN) is stable; λ > 0 denotes
chaoticity. A transition point between those two different
behaviors is obtained when λ = 0. The sign of λ provides thus
a criterion for detecting the onset of criticality in reservoirs.
Such a criterion is widely used also as a baseline to develop
and compare novel criteria [37].

If reservoir neurons are equipped with a hyperbolic tangent
activation function, the Jacobian at time k can be conveniently
expressed as

J(h[k]) = (4)
1− (h1[k])2 0 . . . 0

0 1− (h2[k])2 . . . 0
...

...
. . .

...
0 0 . . . 1− (hNr

[k])2

Wr
r ,

where hl[k], l = 1, 2, ..., Nr, is the activation of the l-th
reservoir neuron at time k. λ is then computed by means of
the geometric average:

λ = max
n=1,...,Nr

1

K

K∑
k=1

log (rn[k]) , (5)

where rn[k] is the absolute value of the n-th eigenvalue of
J(h[k]) and K is the total number of samples in the time
series under consideration.

Another indicator used to predict the network performance
is the minimal singular value of the Jacobian matrix (shortened
as mSVJ and denoted in the following as η), which provides
accurate information regarding the ESN dynamics. The set of
hyperparameter configurations that maximize mSVJ gives rise
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to dynamical systems with good excitability, separating well
the input signals in state space [51].

In this paper, as a means of numerical comparison with the
proposed method based on FIM, we will use also MLLE and
mSVJ criteria for detecting the onset of criticality in ESNs.

III. FISHER INFORMATION MATRIX AND THE
NON-PARAMETRIC ESTIMATOR

The Fisher information matrix [25] is a symmetric posi-
tive semidefinite (PD) matrix whose elements are defined as
follows:

Fij(pθ(·)) =

∫
D
pθ(u)

(
∂ ln pθ(u)

∂θi

)(
∂ ln pθ(u)

∂θj

)
du,

(6)
where pθ(·) is a parametric probability density function (PDF),
which depends on d parameters θ = [θ1, θ2, ..., θd]

T ∈ Θ ⊆
Rd being Θ the parameter space. As will be formally discussed
in the following sections, in ESN framework θ contains the
hyperparameters under consideration. In (6), ln pθ(·) repre-
sents the log-likelihood function. For sake of simplicity, we
denote F(pθ(·)) as F(θ). The FIM contains d(d+1)/2 distinct
entries encoding the sensitivity of the PDF with respect to the
parameters in θ.

Elements of the FIM can be directly connected with the rate
of change of the order parameters of a controlled (thermody-
namic) system [29]. An order parameter is a quantity used to
discern the phases of a thermodynamic system. For instance, in
the liquid–vapor (first-order) transition of water, temperature
acts as a control parameter (at constant pressure), while the
difference in density of the two phases – liquid and gaseous
states – is the order parameter. At the critical temperature,
liquid water turns into vapor and the order parameter varies
discontinuously. The mathematical relationship between Fisher
information and order parameters is particularly interesting to
provide a statistical description of continuous, second-order
phase transitions, and, as a consequence, of any complex
system approaching a critical transition. In fact, during a
continuous phase transition the order parameter varies con-
tinuously. Therefore, differently from first-order transitions,
a system can reside and operate in such a critical state. A
well-known example of continuous phase transition is the
ferromagnetic–paramagnetic transition of iron, where magne-
tization (the order parameter) is non-zero for temperatures
lower than the critical (Curie) one and zero otherwise. How-
ever, second-order derivatives of the observed thermodynamic
variable (or, equivalently for continuous transitions, the first-
order derivatives of the order parameter) are discontinuous and
divergent in at least one dimension. This implies that Fisher
information diverges at criticality for infinite systems, while
it is maximized in the finite-size system case [29]. This fact
provides a clear mathematical justification explaining why the
FIM (6) can be used to detect criticality in complex systems
in terms of maximum sensitivity with respect to control
parameter changes. Therefore, as we already mentioned, the
critical region (edge of criticality) is a region in parameter
space where the Fisher information is maximized; hence we
assume here to deal with finite-size systems. Fig. 2 provides
an intuitive illustration linking criticality and ESNs.

Computation of FIM (6) requires analytical availability of
the PDF. However, in many experimental settings either (i)
the PDF underlying the observed data is unknown or (ii) the
relation linking the variation of control parameters θ on pθ(·)
is unknown. In a recent paper [32], a non-parametric estimator
of the FIM was proposed, which is based on divergence
measure

Dα(p, q) = (7)
1

4α(1− α)

∫
D

(αp(u)(1− α)q(u))2

αp(u)(1− α)q(u)
du− (2α− 1)2,

belonging to the family of f -divergences; α ∈ (0, 1); p(·) and
q(·) are PDFs both supported on D.

It is well-known [13], [32], [52] that FIM can be approx-
imated by using a proper f -divergence measure computed
between the parametric PDF of interest and a perturbed version
of it. Notably, by expanding (7) with Taylor up to the second
order we obtain:

Dα(pθ, pθ̂) ' 1

2
rTF(θ)r, (8)

where θ̂ = θ + r, being r ∼ N (0, σ2Id×d) a small normally
distributed perturbation vector with standard deviation σ.

Divergence (7) can be computed directly without the need to
estimate the PDFs by means of an extension of the Friedman-
Rafsky multi-variate two-sample test statistic [53]. The test
operates by using two datasets, Sp and Sq , each one containing
samples extracted from p(·) and q(·), respectively. Theorem 1
in [32] shows that, as the number of samples n = |Sp| and
m = |Sq| increases asymptotically, we have:

1− C(Sp,Sq)
n+m

2nm

a.s.−−→ Dα(p, q), (9)

where C(Sp,Sq) is the outcome (expected to be normally dis-
tributed) of the Friedman-Rafsky test, which basically provides
a way to measure the similarity between two datasets. Inter-
estingly, such a test allows to analyze also high-dimensional
data, since it makes use of a graph-based data representations
(minimum spanning tree).

In the following, for the sake of brevity we omit θ in
most of the equations and refer to the estimated FIM as F̂.
[32] proposes two different approaches for estimating the FIM
(8). The first one is based on the well-known least-square
optimization:

F̂hvec = (RTR)−1RTvθ, (10)

where vθ = [vθ(r1), ..., vθ(rM )]T , with vθ(ri) =
2Dα(pθ, pθ̂i

), i = 1, ...,M , and Dα(·, ·) is computed by
means of the left-hand side of (9). R is a matrix con-
taining all M perturbation vectors ri arranged as col-
umn vectors, and F̂hvec is the half-vector representation
of F̂. Note that a vector representation F̂vec of F̂ reads
as [f11, . . . , fm1, f12, . . . , fmn]

T . Since F̂ is symmetric, it
can be represented through the half-vector representation,
F̂hvec, which is obtained by eliminating all superdiagonal
elements of F̂ from F̂vec [54]. F̂hvec in (10) is hence de-

fined as
[
f̂11, . . . , f̂dd, f̂12, . . . , f̂d(d−1)

]T
, where the diagonal

elements are located in the first components of the vector.
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(b) Echo state networks

Fig. 2. The approach based on FIM maximization used to identify a continuous phase transition can be adopted also to characterize dynamics in ESNs.
In this context, ESN hyperparameters (e.g., spectral radius, input scaling) play the same role of the control parameters in a thermodynamic system (e.g.,
temperature affects the magnetization phenomenon). FIM can be used to identify the critical region (edge of criticality) in the ESN hyperparameter space,
where the computational capability is maximized. Note that the densities plotted in the two figures are not related and show the role played by FIM in the
two different fields.

However, the least-square approach (10) does not guarantee
to find an approximation of the FIM which is PD. A second
approach requires solving a semidefinite optimization problem,
which instead assures that the resulting FIM is PD:

minimize
Fhvec

‖RFhvec − vθ‖2

subject to Fhvec(i) = diag
(

mat
(
F̂hvec

))
, i ∈ {1, . . . , d},

mat (Fhvec) � 0d×d.
(11)

The diag(·) operator returns the diagonal elements of a
matrix and the mat(·) operator converts the argument from
a vector form into a square d × d matrix. The diagonal
values of the FIM as expressed by the first constraint are
computed through the least-square optimization (10). The
second constraint, instead, guarantees the estimated matrix to
be PD.

Such a convex optimization problem (11) can be im-
plemented by using the framework provided in [55], [56].
However, there, a non-trivial implementation in matrix form
of the second constraint, i.e., mat (Fhvec) � 0d×d, must
be provided to define a proper semidefinite problem. In this
paper, we solve this issue and provide a novel method granting
mat (Fhvec) � 0d×d (see demonstration in Appendix A).

IV. CRITICAL REGION IDENTIFICATION FOR ESNS

Our goal is to find the edge of criticality, i.e., a region
in parameter space K ⊂ Θ where the ESN computational
capability is maximized. Fig. 3 shows a schematic description
of the main phases involved in the proposed method.

Let us discuss in details the proposed procedure. In order
to determine K, we propose an algorithm exploiting the
FIM properties of a system undergoing a continuous phase
transition. FIM defines a metric tensor on the smooth manifold
of parametric PDFs embedded in Θ [29], allowing thus also
for a geometric characterization of the system under analysis.
It is possible to prove [57] that K corresponds to a region
in Θ characterized by the largest volume (high concentration
of parametric PDFs). In addition, it worth mentioning that,

if Θ ⊆ Rd, then the related edge of criticality K is a
d − 1 manifold embedded in Θ. This geometric result can
be exploited by computing the FIM determinant, det(F(θ)),
which is monotonically related to the aforementioned volume
in the parameter space. Therefore, considering that the FIM is
a PD matrix, and hence its determinant is always non-negative,
we identify K with all those hyperparameters θ∗ for which:

θ∗ = arg max
θ∈Θ

det(F(θ)). (12)

Algorithm 1 delivers the pseudo-code of the proposed
procedure. As said before, the impact provided by the variation
of the control parameters θ on the resulting ESN state cannot
be described analytically without making further assumptions
[34]. In fact, the (unknown) input signal driving the network
plays an important role in the resulting ESN dynamics. There-
fore, in order to calculate F(θ), in Algorithm 1 we rely on
the non-parametric FIM estimator described in Sec. III. The
estimation of the FIM for a given θ is performed by analyzing
the sequence Sθ = {h[k]}Kk=1 of reservoir neuron activations
produced during the processing of a given input x of length
K. Since h[k] ∈ [−1, 1]Nr , the domain of the PDF in (6) is
defined as D = [−1, 1]Nr . Additional sequences of activations,
Sθ̂j

, are considered (see line 7), which are obtained by
perturbing M times the current network configuration θ under
analysis, and processing the same input x. Perturbations are
modeled with a zero-mean noise with a spherical covariance
matrix, thus characterized by a single scalar parameter σ
controlling the magnitude of the perturbation. In this paper,
we estimate the FIM by solving the optimization problem
(11) according to our formulation as described in Appendix
A. In order to make the estimation more robust, we follow
an ensemble approach and perform a number of independent
trials (see line 3). The determinant is computed only once
on the resulting average FIM, which is obtained by using
T independent random realizations of the ESN architecture
chosen for the experiment (see line 16).

In theory, the parameter space Θ is continuous. However,
here we assume that the parameter space Θ is quantized
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Collect ESN
activations

Sθ = {h[k]}Kk=1

Non-parametric
estimation

of FIM F̂(θ)

Evaluate
determinant

of F̂(θ)

Initial parameter
configuration θ0

Input signal
x[1], . . . ,x[K]

arg max
θ∗∈Θ

det(F̂(θ∗))

Select new ESN hyperparameters θ

Fig. 3. Schematic, high-level description of the proposed unsupervised learning method.

according to some user-defined resolution. Although this is
not a necessary assumption for the proposed methodology, it
allows us to disentangle the problems of defining from finding
the edge of criticality. In fact, our main goal here is to provide
a principled definition of the critical region characterizing
the ESN (hyper-)parameter space and related behaviors. More
efficient and/or accurate search schemes will be considered
in future research studies. Accordingly, the criterion in (12)
identifies a “quantized” critical region K in Θ represented by
a single hyperparameter configuration, θ∗.

Algorithm 1 Procedure for determining an ESN configuration
on the edge of criticality.
Input: An ESN architecture, input x of K samples, quantized parameter

space Θ, standard deviation σ for the perturbations, number of trials T
and perturbations M .

Output: A configuration θ∗ ∈ K
1: Select an initial parameter configuration, θ ∈ Θ; maximum η = 0
2: loop
3: for t = 1 to T do
4: Randomly initialize the ESN weight matrices
5: Configure ESN with θ and process input x
6: Collect the related activations Sθ = {h[i]}Ki=1
7: for j = 1 to M do
8: Generate a perturbation vector rj ∼ N (0, σ2Id×d)
9: Randomly initialize the ESN weight matrices

10: Configure ESN with perturbed version θ̂j = θ+rj and process
input x

11: Collect the related activations Sθ̂j
= {h[i]}Ki=1

12: end for
13: Define Sθ̂ = ∪Mj=1Sθ̂j

14: Estimate the FIM F(t)(θ) of trial t using Sθ and Sθ̂ with the
non-parametric estimator introduced in Sec. III

15: end for
16: Compute the average FIM, F(θ), using all F(t)(θ), t = 1, ..., T
17: if det(F(θ)) > η then
18: Update η = det(F(θ)) and θ∗ = θ
19: end if
20: if Stop criterion is met then
21: return θ∗

22: else
23: Select a new θ ∈ Θ based on a suitable search scheme
24: end if
25: end loop

A. Analysis of computational complexity

The asymptotic computational complexity (including also
constant terms) of Algorithm 1 can be summarized as follows
(assuming a grid search):

O(G(T (N2
r +KNr +M(N2

r +KNr) +EFIM) +d3 +Td2)).
(13)

In 13, G is the number of hyperparameter configurations
taken into account, T is the number of trials, Nr is the

number of neurons in the reservoir, K is the input signal
length, and M is the number of perturbations. The cost
related to the computation of the determinant of FIM is hence
O(d3), where d is the number of hyperparameters taken into
account. The last term, Td2, accounts for the computation of
the average FIM. The EFIM term describes the complexity
of the non-parametric FIM estimator described in Sec. III.
EFIM cost can be decomposed in two different terms. First,
9, the computation of α divergence, has a cost that is given
by the MST computation on z = (M + 1)K samples, that
is bounded by O(z2 log(z)). That cost is multiplied by M ,
the number of perturbations. Second, the cost associated with
solving the optimization problem shown in 20. The computa-
tional complexity of the constraint satisfaction is bounded by
d2. The semidefinite optimization program can be solved in
polynomial time, i.e., O(dp), where p is some positive integer
[55], [56].

Typically, d is much smaller than both Nr and K. Therefore,
polynomial terms in d do not pose a problem from the com-
putational complexity viewpoint. The computation complexity
(13) is hence dominated by the EFIM cost.

V. EXPERIMENTS

In this section, we evaluate the effectiveness of the proposed
method based on FIM for determining ESN hyperparameter
configurations lying on the edge of criticality. The proposed
method is firstly validated on a set of benchmarks used in
the ESN literature. In particular, we consider the short-term
memory capacity (Sec. V-A) and then a forecast task on
different time series models (Sec. V-B). For such benchmarks,
the training set consists of 5000 samples, while 500 samples
are used for testing. Successively, in Sec. V-C we validate the
proposed methodology on a real-world application involving
the prediction of time series related to phone calls load [40].
Here, the training set consists of 3335 samples, while 500
samples are used for testing.

The hyperparameters are selected in a discretized space
through a grid search, which considers 10 different config-
urations for each parameter. Specifically, we search for the
spectral radius θSR in [0.4, 1.6], input scaling θIS in [0.3, 0.8],
and reservoir connectivity θRC in [0.1, 0.7], evaluating a total
of 1000 hyperparameter configurations. Such intervals have
been chosen by focusing on the ranges that produce relevant
variations in the network behavior. For each hyperparameter
configuration, in Algorithm 1 we perform T = 10 independent
trials and M = 80 perturbations to compute the ensemble
average of the FIM; the variance for the perturbations is set
to σ2 = 0.25. In each trial, we sample new (and independent)
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input and reservoir connection weights (Wr
i and Wr

r). The
readout layer is trained by using a standard ridge least-square
regression, with the regularization parameter set to 0.05. For
each test we use a reservoir with Nr = 100 neurons; a standard
drop-out procedure is adopted [39], which discards the first
100 states not to consider ESN transient.

In Fig. 4, we report the critical regions of the parameter
space identified in each test by maximization of FIM deter-
minant, zero-crossing of MLLE, and maximization of mSVJ.
For the sake of brevity, we refer to these regions as φ, λ,
and η, respectively. The light gray manifold corresponds to
the regions in parameter space where the performance of the
network is maximized and the dark gray manifolds represent
φ, λ, and η. In Tab. I, we report the numerical values of the
correlations between the light gray manifold and the dark gray
ones. In the following subsections, we discuss the details of
obtained results.

A. Memory capacity

This test quantifies the capability of ESN to remember
previous inputs, relative to an i.i.d. signal. Given a time delay
δ > 0, here we train an ESN to reproduce at time k the input
x[k− δ]. Memory Capacity (MC) is measured as the squared
correlation coefficient between the desired output, which is the
input signal delayed by different δ time steps, and the observed
network output y[k]:

MC =

δmax∑
δ=1

cov2 (x[k − δ],y[k])

var (x[k − δ]) var (y[k])
. (14)

MC is computed by training several readout layers, one for
each delay δ ∈ {1, 10, . . . , 100}, while keeping fixed input
and reservoir layers.

As it is possible to notice in Fig. 4(a), the critical regions
identified by each one of the three methods follow, with good
accuracy, the region of the hyperparameter space where MC
is maximized. The degrees of correlation for the MC task are
provided in Tab. I. It is interesting to note that λ shows a very
high correlation (81%) preforming better than η for this task.
The correlation between φ and the region with maximum MC
is also very high (75%), showing that both φ and λ can be used
as reliable indicators to identify the optimal configurations
that enhance the short-term memory capacity of ESNs. The
p-values for each correlation measure are lower than 0.05,
indicating statistical significance of the results.

B. Prediction accuracy on benchmarks

In this test, we evaluate the effectiveness of using φ, λ,
and η to identify regions of hyperparameters where prediction
accuracy is maximal. We define the prediction accuracy as γ =
max{1−NRMSE, 0}, were NRMSE is the Normalized Root
Mean Squared Error of the ESN. The accuracy is evaluated on
three prediction tasks of increasing difficulty. For each of them,
we set the forecast step τf > 0 equal to the smallest time lag
that guarantees input measurements to be decorrelated, which
corresponds to the first zero of the autocorrelation function of
the input signal.

TABLE I
CORRELATIONS BETWEEN THE REGIONS WHERE FIM DETERMINANT IS
MAXIMIZED (φ), MLLE CROSSES ZERO (λ), MSVJ IS MAXIMIZED (η)
AND PERFORMANCES ARE MAXIMIZED (γ /MC). BEST RESULTS ARE

SHOWN IN BOLD, p-VALUES ARE REPORTED IN BRACKETS.

Test Corr (φ , γ/MC) Corr (λ , γ/MC) Corr (η , γ/MC)
MC 0.75 (1e-5) 0.81 (1e-8) 0.65 (1e-4)
Predict – SIN 0.58 (0.02) 0.52 (1e-3) 0.56 (1e-3)
Predict – MG 0.71 (1e-5) 0.66 (1e-4) 0.38 (0.06)
Predict – NARMA 0.52 (0.01) 0.25 (0.22) 0.48 (0.02)
Predict – D4D 0.63 (1e-4) 0.34 (0.09) 0.54 (0.01)

Sinusoidal input. In the first test, an ESN is trained to
predict a sinusoidal (SIN) input using a forecast step equal to
1/4 of its period. In Fig. 4(b), both φ and η are consistent with
γ, while λ shows a lower agreement. From Tab. I, we see that φ
achieves the best results, all the measures have positive degrees
of correlation with γ and small p-values (hence statistical
significant).

Mackey-Glass. The input signal in this test is generated by
the Mackey-Glass (MG) system, described by the following
differential equation:

dx

dk
=

αx(k − τMG)

1 + x(k − τMG)10
− βx(k). (15)

We generated a time series using τMG = 17, α = 0.2, β = 0.1,
initial condition x(0) = 1.2, 0.1 as integration step and we
trained the system to predict τf = 6 step ahead. As we can
see from Fig. 4(c) and the results in the table, for this test both
φ and λ provide much better results than η for identifying the
optimal configuration. Notably, the correlation between γ and
η has a p-value beyond the confidence level 0.05, suggesting
that correlations are not different from zero.

NARMA. This task, originally proposed in [39], consists in
modeling the output of the following order-r system:

y[k + 1] = (16)

0.3y[k] + 0.05y[k]

(
r−1∑
i=0

y[k − i]

)
+ 1.5x[k − r]x[k] + 0.1,

being x[k] an i.i.d. uniform noise in [0, 1]. According to the
results shown in Fig. 4(d) and Tab. I, in this case φ and η
perform significantly better than λ for identifying the critical
region. If fact, the correlation between γ and λ is low and not
statistically significant. Even in this case, the best results in
terms of correlation are achieved by φ.

C. Prediction of mobile traffic load time series

Here, we analyze time series of data related to na-
tionwide mobile telephone loads. Such time series have
been generated from the data collected in the Orange tele-
phone dataset, published in the Data for Development (D4D)
challenge [58]. D4D is an open collection of call data
records, containing anonymized events of Orange’s mobile
phone users in Ivory Coast, Africa. More detailed infor-
mation on the challenge is available on the related web-
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(e) D4D prediction task

Fig. 4. In each figure, we graphically represent the computed edge of criticality for each of the considered methods. The light gray manifold represents
configurations of spectral radius (θSR), input scaling (θIS ), and reservoir connectivity (θRC ) that maximize Memory Capacity (MC) or prediction accuracy
(γ). The dark gray manifolds represent (from left to right): configurations where the FIM determinant is maximized (φ); configurations where MLLE crosses
zero (λ); configurations where mSVJ is maximized (η).
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site1. The dataset considered here span from December 1,
2011 to April 28, 2012. It includes antenna-to-antenna traf-
fic on an hourly basis, relative to mobile phone calls and
SMS. Each record in the dataset has the following struc-
ture: 〈DateTime, IDa, IDb,NumCalls,TotTime〉. DateTime
is the time (with hourly resolution) and date when an activity
between the two antennas a and b has been registered; IDa

and IDb are the identifiers of the transmitting and receiving
antenna, respectively; NumCalls is the number of calls started
from a and received by b in the time interval under considera-
tion; finally TotTime is the sum of the durations (in seconds)
of all calls recorded in the interval. We selected a specific
antenna and retrieved from the dataset all those records relative
to the activity involving that antenna. We have accordingly
generated the following 7 distinct time series:

– ts1: constant input (a time series with all values set to
1). This is a standard practice in prediction with neural
networks, since a constant input acts as a bias for the
individual neurons of the network [39];

– ts2: number of incoming calls in the area covered by
the antenna;

– ts3: volume in minutes of the incoming calls in the area
covered by the antenna;

– ts4: number of outgoing calls in the area covered by the
antenna;

– ts5: volume in minutes of the outgoing calls in the area
covered by the antenna;

– ts6: hour of the day when the telephone activity was
registered;

– ts7: day of the week when the telephone activity was
registered.

All these 7 time series are fed as input to an ESN, while we
predict the values relative only to ts2.

The dataset contains a small percentage of missing values;
they appear when there is no outgoing and/or incoming
telephone activities for the monitored antenna at a given hour.
They are replaced by 0s, to guarantee each time series to
have the same length. Corrupted data are relative to periods
where the telephone activity is not correctly registered and,
according to [59], they have been replaced with the average
value of the corresponding periods (i.e., same weekday and
hour of the day) in two adjacent weeks. All data have been
standardized by a z-score transformation prior to processing.
This is successively reversed when the forecast must be
evaluated. In Fig. 5, we show the profile of ts2 relatively
to the load in the first 300 time intervals (corresponding to 1
hour of activity).

D4D time series have been previously studied in [40],
where ESNs and other standard methods (ARIMA and Triple
Exponential Smoothing) were adopted to perform both 1-step
and 24-steps ahead predictions. In [40], hyperparameters were
tuned using a genetic algorithm (GA) optimization scheme and
different optimization procedures were evaluated for training
the readout: least-square regression; elastic net penalty; linear
and nonlinear ν-SVR. It was shown that ESN achieved higher
prediction accuracy with respect to the other forecast methods,

1http://www.d4d.orange.com
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Fig. 5. The load profile of ts2 for the first 300 time intervals.

especially when using non-linear ν-SVR, at the expense of a
much higher computational cost. It is worth mentioning that,
when GAs are used in a supervised cross-validation scheme,
they yield a single solution through a black-box process,
which does not follow a mathematically motivated criterion
to determine the edge of criticality. Additionally, a non-linear
model such as ν-SVR, must be trained at each iteration of the
global optimization procedure, with consequent increment of
computational complexity.

We focus again on the analysis of the hyperparameters θSR,
θIS , and θRC , while for the remaining ones we adopt the
optimal configuration found in [40]. In particular, we set Nr =
680 and the regularization parameter for the ridge regression
equal to 0.04. The forecast step τf is set to 1, i.e., we predict
the telephonic load of the next hour. Note that this differs from
the other tasks previously considered, where τf was set equal
to the first zero of the autocorrelation function.

In Fig. 4(e), we show the results of γ (prediction accuracy
on ts2) with respect to φ, λ, and η. According to Tab. I,
even in this case φ gives rise to a manifold having high
correlation with γ; η produces lower yet positive and statis-
tically significant correlations; finally, λ achieves the worst
results. Interestingly, by using the FIM-based criterion we find
a critical region in the three-dimensional ESN hyperparameter
space containing the optimal values for θSR and θIS , which
are reported in [40]. In fact, the quantized area centred in
{θSR = 1, θIS = 0.35, θRC = 0.55}, belongs to the ESN crit-
ical region, according to the FIM-based criterion. Such region
contains also the values θSR = 0.98 and θIS = 0.33, which
were identified as optimal in [40]. Instead, for what concerns
the sparsity of reservoir connectivity θRC , the upperbound
considered in the GA optimization for this value was set to
0.4. Accordingly, the optimal configuration with θRC = 0.55
could not be obtained. This represents a good example of how
the proposed method provides a more flexible approach for
tuning the network hyperparameters. In fact, while several
cross-validation methods (in fact, using a GA is just an
example) treat the model as a black-box, the framework we
developed allows to analyze the dynamics of the systems and
visualize the critical regions during the process of optimizing
the network. For example, it is possible to assess if the critical
region is too close to one of the bounds considered for a
given hyperparameter, hence allowing to redefine the bounds
accordingly.
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VI. CONCLUSIONS AND FUTURE DIRECTIONS

Echo state networks, as a class of networks in reservoir
computing, offer a compromise between training time and net-
work performance in terms of prediction error and short-term
memory capacity. Experiments showed that such networks
operate more efficiently when configured on the so-called
edge of criticality, a region in hyperparameter space separating
ordered and chaotic regimes. Hyperparameters (indirectly) af-
fecting the behavior of the network are hence tuned according
to some criterion. In this paper, we proposed a principled
approach for configuring an echo state network on the edge
of criticality. The proposed method is completely unsupervised
and is based on the interplay between the theory of continuous
phase transitions and Fisher information. In fact, it is possible
to prove that Fisher information diverges on the critical region
and hence can be used to determine the onset of criticality.
Nonetheless, Fisher information presumes analytic knowledge
of the parametric distribution describing the system/network;
in addition its computation is known to be difficult and prone
to numerical errors. In order to deal with these issues, here
we have followed an ensemble estimation approach based on
a recently proposed non-parametric Fisher information matrix
estimator. Such an estimator is applicable to high-dimensional
densities, since it operates by means of a graph-based data
representation. This last aspect is very important in our case,
since we analyze the network though a multivariate sequence
of reservoir neuron activations.

We evaluated the proposed method on well-known bench-
marks as well as on a real-world application involving tele-
phone call load prediction. The benchmarks taken into account
were conceived to evaluate both the short-term memory capac-
ity (in terms of the squared correlation between past inputs
and network outputs) and the prediction accuracy (in terms of
normalized root mean square error). In order to compare our
method with other unsupervised approaches, we have taken
into account (i) a criterion based on the sign of the maximum
local Lyapunov exponent computed on the activations and (ii)
a criterion based on the maximum value of the minimum
singular value of the Jacobian matrix of the reservoir. Results
showed that the proposed method based on Fisher information
is more accurate than those two unsupervised methods (on
both the benchmarks and the real-world application) in deter-
mining critical ESN hyperparameter configurations in terms of
accuracy. However, test on memory capacity showed that Lya-
punov exponent provides better results, although differences
are not as high as in the accuracy case.

The methodology proposed here offers a sound and ap-
pealing solution to determine the onset of criticality in echo
state networks, with potential extension to other families
of recurrent neural networks. Nonetheless, our contribution
comes with some technical difficulties that we have only
partially solved so far. First of all, potential non-stationarities
and dependencies of the neuron activations might affect the
estimation outcomes. Here, we have addressed this issue
by following an ensemble approach to estimate the Fisher
information matrix. However, other approaches might be con-
sidered in the future, for instance by following a window-

based analysis of the activations. Second, the non-parametric
Fisher information matrix estimator we used requires to set
a parameter controlling the magnitude of the perturbations.
This parameter turned out to be very sensitive and difficult to
determine in practice, hence posing some technical limitations
when trying to automatize the procedure. Such issues will be
object of future research efforts.

There are many possible routes that we intend to follow
in future research studies. Among the many, we believe it is
worth focusing on (i) how to enable and control the output
feedback connections and (ii) the application of the proposed
unsupervised learning method for training other types of
recurrent neural networks.
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APPENDIX A
PROPOSED FORMULATION OF THE SEMIDEFINITE

CONSTRAINT

Here we provide the details of the formulation in matrix
form of the mat(·) operator in Eq. 11. This is a necessary
step to implement the semidefinite constraint in matrix form.

First, we express the constraint with mat(·) using the
inverse operator, vec(·), which transforms a matrix into its
vector representation. A matrix F ∈ Rm×n is converted into
the vector representation as follows:

Fvec =

n∑
i=1

BiFEi, (17)

where Ei is the i-th canonical basis vector of an n-dimensional
Euclidean space, i.e., Ei = [0, . . . , 0, 1, 0, . . . , 0]

T has a 1 in
the i-th position and 0 elsewhere. Bi is a (mn) × m block
matrix defined as a stack of n blocks, which are defined as
m×m zero-matrix with the exception of the i-th block, which
is the identity matrix:

Bi = [0m×m, · · · ,0m×m, Im×m,0m×m, · · · ,0m×m]
T
.

(18)

Notice that, in our case, m = n = d, where d is the number
of ESN hyperparameters taken into account. To convert the
half-vector representation Fhvec in Eq. 11 into the vector form
Fvec, we rely on the following expression:

D (SFhvec) = Fvec, (19)

where D and S are the multiplication and the shuffling
matrices, respectively. These matrices cannot be expressed in
closed-form [54]. Therefore, in the following we provide the
pseudo-code of Algorithms 2 and 3 that implement them.
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Algorithm 2 Duplication matrix computation.
Input: Dimensionality d of the hyperparameter space
Output: Duplication matrix, D
1: D = Id2×d2 = [d1, . . . ,dd2 ]T

2: γ = δ = ∅
3: for i = 1, . . . , d− 1 do
4: γ ∪ {i+ di, . . . , i+ d(d− 1)}
5: δ ∪ {i+ d(i− 1) + 1, . . . , i+ d(i− 1) + d− i}
6: end for
7: for i = 1, . . . , d(d− 1)/2 do
8: dδ(i) = dγ(i) + dδ(i)
9: end for

10: for i = 1, . . . , d(d− 1)/2 do
11: remove dγ(i) from D
12: end for

Algorithm 3 Shuffling matrix computation.
Input: Dimensionality d of the hyperparameter space
Output: Shuffling matrix, S
1: S = 0d(d+1)/2×d(d+1)/2 =

[
s1, . . . , sd(d+1)/2

]T
2: I = Id(d+1)/2×d(d+1)/2 =

[
i1, . . . , id(d+1)/2

]T
3: s1 = i1
4: for j = 2, . . . , d do
5: γ = 1 + d(j − 1)− (j − 1)(j − 2)/2
6: sj = iγ
7: remove iγ from I
8: end for
9: for j = d+ 1, . . . , d(d+ 1)/2 do

10: sj = ij
11: end for

Hence, the optimization problem in (11) is formalized as:

minimize
Fhvec

‖RFhvec − vθ‖2

subject to Fhvec(i) = F̂hvec(i), i ∈ {1, . . . , d},
D (SFhvec) = Fvec,

Fvec =

d∑
i=1

BiFEi,

F � 0d×d.

(20)
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