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Abstract

Using multiwavelets, we have obtained total en-
ergies and corresponding atomization energies
for the GGA-PBE and hybrid-PBEO density
functionals for a test set of 211 molecules with
an unprecedented and guaranteed pHartree ac-
curacy. These quasi-exact references allow us to
quantify the accuracy of standard all-electron
basis sets that are believed to be highly accurate
for molecules, such as Gaussian-type orbitals
(GTOs), all-electron numeric atom-centered or-
bitals (NAOs) and full-potential augmented
plane wave (APW) methods. We show that
NAOQOs are able to achieve the so-called chem-
ical accuracy (1 kcal/mol) for the typical basis
set sizes used in applications, for both total and
atomization energies. For GTOs, a triple-zeta
quality basis has mean errors of ~10 kcal /mol
in total energies, while chemical accuracy is al-
most reached for a quintuple-zeta basis. Due
to systematic error cancellations, atomization
energy errors are reduced by almost an order
of magnitude, placing chemical accuracy within
reach also for medium to large GTO bases, al-
beit with significant outliers. In order to check
the accuracy of the computed densities, we have
also investigated the dipole moments, where in
general, only the largest NAO and GTO bases
are able to yield errors below 0.01 Debye. The

observed errors are similar across the different
functionals considered here.
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Electronic structure calculations are nowa-
days employed by a large and steadily growing
community, spanning condensed matter physics,
physical chemistry, material science, biochem-
istry and molecular biology, geophysics and as-
trophysics. Such a popularity is in large part due
to the development of Density Functional The-
ory (DFT) methods,! in their Kohn-Sham (KS)
formulation.?

Although the exact energy functional of DFT
is unknown, many approximate functionals offer
an excellent compromise between accuracy and
numerical cost, rivaling often the accuracy that
can be obtained with correlated methods, such
as Coupled-Cluster Singles Doubles (CCSD).3
During the last decades, extensive efforts have
been undertaken to provide ever more accu-
rate approximations to the exact Exchange-
Correlation (XC) functional.® This quest for
higher accuracy is conceptually captured by
John Perdew’s Jacob’s ladder analogy,” lead-
ing to the heaven of chemical accuracy: errors
of 1kcal/mol or less in atomization energies
and other energy differences that are of primary
interest in chemistry and solid state physics.
Rungs on this ladder are the Local Density
Approximation (LDA), the Generalized Gradi-
ent Approximation (GGA),® meta-GGAs,? hy-
brid and double hybrid functionals.'® The best
modern XC functionals come fairly close to
this target, with errors of a few kcal/mol on
a wide range of energetic properties relative
to experiment, including atomic and molecular
energies, bond energies, excitation and isomer-
ization energies and reaction barriers, for main-
group elements as well as transition metals and
solids. 11-12

The closer we get to chemical accuracy, the
more important becomes the identification of
errors due to various other, algorithmic approxi-
mations — basis sets, integration grids and pseu-
dopotentials, > ' to cite a few — which can
lead to comparable or even larger errors, but
their influence is hard to quantify. The impor-
tance of this issue has recently been highlighted
within the solid state community, with a sub-
stantial effort to assess the influence of such

approximations on the accuracy. Lejaeghere et
al.'% compared the GGA-PBE® calculated equa-

tions of state for 71 elemental crystals from
15 different widely used DFT codes, employing
both all-electron methods as well as 40 differ-
ent pseudopotential sets. For the equation of
state, most DFT codes agree within error bars
that are comparable to those of experiment, ir-
respective of the basis-set choice: all-electron
numeric atom-centered orbitals (NAOs), aug-
mented plane wave (APW) methods or plane
waves with pseudopotentials. The basis set is-
sue has also been highlighted by Mardirossian
and Head-Gordon,!™!® in connection with the
develpment of the BO7TM-V and wB97M-V func-
tionals. Although the functionals have been de-
signed and optimized by making use of a large
basis set (aug-cc-pVQZ for BOTM-W and def2-
QZVPD for wBI7M-V), the authors have exten-
sively explored the effect of smaller bases on the
functional performance.

APW methods!® are widely believed to be
highly accurate, but contain several parameters
which are difficult to adjust and which can in-
fluence the results in a more or less erratic
way. Hence, the magnitude of the error can-
not be rigorously quantified without an exter-
nal reference. Similar limitations exist for at-
omization energies of molecules obtained with
Gaussian-type orbital (GTO) and NAO basis
sets: both bases cannot be systematically en-
larged to achieve completeness in the L? sense,
and within standardized basis sets, the conver-
gence to the exact result cannot be achieved. Ad-
ditionally, for larger systems, linear dependency
issues can limit the ability of these basis sets to
achieve complete convergence.

The basic mathematical formalism for KS
DFT calculations leads to a self-consistent three-
dimensional partial differential equation. What
makes the solution of this equation so chal-
lenging are the accuracy requirements for the
physically and chemically relevant energy differ-
ences. For instance, the atomization energy of
the largest molecule (SiCly) in our data set is
less than 1 Ha, but it is computed as a difference
of energies in the order of ~2000 Ha. Hence we
need at least 7 correct decimal places in the total
energy of the molecule to get the atomization en-
ergy within chemical accuracy of 1 kcal/mol ~
milli-Hartree (mHa), and even 10 decimal places



for micro-Hartree (pHa) accuracy.

For isolated atoms, and using the appropri-
ate numerical techniques, the associated many-
particle problem can be solved with essentially
arbitrary numerical precision. Virtually con-
verged LDA energies for spherical atoms are
available in the NIST data base.?’ For a few
dimers, highly accurate energies have been cal-
culated,?! and an attempt to obtain total en-
ergies free of basis set error was made also for
general molecular systems,?? but the accuracy
of this approach seems to be limited to around
1 kecal/mol. Similar accuracies were achieved for
solids with semicardinal wavelets.?3

In spite of all the progress that has been
made in numerical techniques to harness the
power of quantum mechanical theory and simu-
lations, none of the traditional techniques is able
to furnish, unambiguously, atomization energies
for molecules with arbitrary numerical preci-
sion. A straightforward, uniform grid- or Fourier
transform-based approach is ruled out since it
is impossible to provide sufficient resolution for
the rapidly varying wave functions near the nu-
cleus. Other basis set techniques are critically
hampered by non-orthogonality, which leads to
inevitable algebraic ill-conditioning problems at
small but finite residual precision.!® Because of
these problems a large part of the community re-
sorts to pseudopotentials methods,!* where the
Z/|r — R| potential is replaced by a smoother
potential that retains approximately the same
physical properties of the all-electron atom. The
smooth pseudopotential then allows to obtain
arbitrarily high accuracy with systematic basis
sets such as plane waves. The limitation is that
the pseudopotential introduces an approxima-
tion error, the magnitude of which is hard to
quantify.

The current de facto standard technique to
assess errors of different methods does not rely
on an absolute reference: errors are instead
estimated by comparing results obtained with
increasingly large bases.?4* The development
of Multiwavelet (MW) methods?® % has fun-
damentally changed the situation. MWs are
systematic, adaptive, and can be employed in
all-electron calculations. With this approach, it
is now possible to achieve all-electron energies

with arbitrarily small errors.

In the present work, we use MWs to obtain
error bars of less than a pyHa in the atomization
energies for a large test set of 211 molecules
with standard DFT functionals. We focus on
three widely used and well established func-
tionals, LDA-SVWNS5,3° GGA-PBE, as well as
hybrid-PBE(.3! PBE and PBEO are both rela-
tively accurate for atomization energies,3? and
have stood the test of time.?3 Our MW results
provide quasi-exact reference values that can
be employed to quantify the accuracy of stan-
dard basis sets, such as GTO, NAO and APW
methods, as well as of novel approaches based
for instance on finite element methods3*37" or
discontinuous Galerkin methods.3®

Real-space methods have a long history in
computational chemistry and have been used for
benchmarking purposes for decades.3’ However,
because of the so-called curse of dimensional-
ity, the naive numerical treatment of molecular
systems is prohibitively expensive, and its ap-
plicability relies on high symmetry to reduce
the dimensionality.*® The multi-scale nature of
the problem renders the traditional uniform grid
discretization highly inefficient, unless the prob-
lematic nuclear region is treated separately, e.g.
by means of pseudopotentials. The mathemati-
cal theory to solve these issues was developed in
the '90s, when Alpert introduced the MW basis,
allowing for non-uniform grids with strict con-
trol of the discretization error, as well as sparse
representations of a range of physically impor-
tant operators, with high and controllable pre-
cision. 4142

Alpert’s construction starts from a standard
polynomial basis of order k, such as the Legendre
or the Interpolating polynomials, re-scaled and
orthonormalized on the unit interval [0, 1]. Then,
an orthonormal scaling basis at refinement level
27" is constructed by dilation and transla-
tion of the original basis functions ¢}(z) =
2"/2¢,(2"x — 1), where ¢!, is the i-th polynomial
in the interval [[/2", (I +1)/2")] at scale n. The
set of scaling functions on all 2" translations at
scale n defines the scaling space V", and in this
way a ladder of spaces is constructed such that
the complete L? limit can be approached in a



systematic manner:
VWecvic.cyrc---cL® (1)

The wavelet spaces W) are simply the orthogo-
nal complement of two subsequent scaling spaces
Vi* and V"t

WreVr=vrt  wrLveE (2
Completeness in the L? sense can be achieved
both by increasing the polynomial order (larger
k) of the basis and by increasing the refinement
in the ladder of spaces (larger n).

Two additional properties are essential in
achieving fast and accurate algorithms: the van-
ishing moments of the wavelet functions and
the disjoint support of the scaling and wavelet
functions. The former leads to fast convergence
in the representation of smooth functions and
narrow-banded operators, whereas the latter en-
ables simple algorithms for adaptive refinement
of the underlying numerical grid, which is essen-
tial to limit storage requirements. The extension
to several dimensions is achieved by standard
tensor-product methods; to minimize the im-
pact of the curse of dimensionality, it is neces-
sary to apply operators in a separated form, 4344
by rewriting the full multi-dimensional operator
as a product of one-dimensional contributions.
For many important operators such a separa-
tion is not exact, but Beylkin and coworkers
have shown that it can be achieved to any pre-
defined precision as an expansion in Gaussian
functions. #3456 To apply such operators in mul-
tiple dimensions, and simultaneously retain the
local adaptivity in the representation of func-
tions, it is essential to employ the non-standard
form of operators,*™*® which, in contrast to the
standard one, allows to decouple length scales.

These combined efforts (MW representation
of functions and operators, separable operator
representations, non-standard form of operators)
made the accurate application of several impor-
tant convolution operators efficient in three di-
mensions:

o(r) = Guf(r) = / Golr =) F0)dr . (3)

Among such operators are the Poisson (u = 0)
and the Bound-State Helmholtz (BSH) (u? > 0)
kernels:

efﬂlrfr/‘
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This mathematical framework was introduced
to the computational chemistry community in
the mid 2000’s by Harrison and co-workers. 2629
They demonstrated that MWs could be em-
ployed to solve the KS equations in their integral
reformulation:4°

WYi = _QGMVQOM (5>

where the ;’s are the KS orbitals and the po-
tential operator V includes external (nuclear),
Hartree, exchange and correlation contributions,
while the kinetic operator and the orbital en-
ergies are included in the BSH operator as
2G,, = (T—e,;)_17 with 42 = —2¢;. The ordinary
KS equations [;hpi = €;;, where H=T4+Vis
the KS Hamiltonian, can be recovered by recall-
ing that (V? — p?)G,(r —1') = —=(r —r’'). Such
an integral formalism, when combined with a
Krylov subspace accelerator, leads to fast and
robust convergence of the fix-point iteration of
Eq. (5).

The integral formulation, in combination with
MWs, provides unprecedented accuracy for all-
electron calculations, without relying on molec-
ular symmetry,?” 2 and has also been extended
to excited states® 53 and electric®%® and mag-
netic® linear response properties. In this ap-
proach all functions and operators, such as or-
bitals, densities and potential energy contribu-
tions to the KS Hamiltonian, are represented
using MWs. Concerning potential energy terms,
the external potential is obtained by projection*
onto the MW basis, the Hartree potential is com-
puted through Poisson’s equation:

p(r')
VHartree(T) :/de/, (6)

and the XC potential is computed explicitly in

*For the singularity of the nuclear potential, a simple
smoothing is employed, but its effect on the accuracy is
easily controlled by a single parameter. 2’



the MW representation from the following ex-
pression:

Ofsc _ o Ofxc

Vxol) = =5, 0Vl

-Vp. (7)

The partial derivatives of the XC kernel fx¢
can be mapped point-wise though external XC
libraries,®”*® and the gradients are computed by
the approach of Alpert et al.>® For hybrid func-
tionals, a fraction of the exact Hartree-Fock ex-
change contribution is included in the KS Hamil-
tonian (25% for PBEQ). In our work we follow
the method proposed by Yanai and coworkers, 2
where the exchange operator is defined as:

k50 =St [ S 0 )

Ar|r — /| )

The above expression is again computed directly
within the MW framework through repeated ap-
plication of the Poisson operator to different or-
bital products.

While MWs are able to provide high-accuracy
solution of integral equations in the form of Eq.
(3), the same is not true for differential operators.
In particular, high-order derivatives should be
avoided in order to maintain accuracy in numer-
ical algorithms. For this reason, we have found
that the direct evaluation of the kinetic energy
as a 2nd derivative of the wave function does
not give the desired accuracy. Instead, we avoid
the kinetic operator by computing the update
to the eigenvalue directly:*

(" [V Ap™)
<90n+1 |S0n+1>

(LAY
(Entipntt)y
9
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where the A’s refer to differences between it-
erations n and n + 1. In contrast, the gradi-
ents in the expression for the GGA potential
in Eq. (7) have not been found to affect the
accuracy, partly because of a slightly conserva-

"Displayed as spin-unpolarized for clarity. Extension
to spin-DFT is fairly straightforward.

IThis update is exact, provided that the orbital up-
date comes directly from the application of the BSH
operator defined by the previous (not necessarily exact)

eigenvalue: Ap" = —2@2 {V”cp"} — ™. Generalizations

can be made for multiple orbitals.

tive over representation of the density grid,’ and
partly because the XC energy is (by construc-
tion) only a small part of the total energy, thus
reducing its relative accuracy requirement.

In this work, the MW calculations are per-
formed with MRCHEM,% the GTO%62 calcu-
lations with NWCHEM® and the NAO cal-
culations with FHI-A1MS.%46 APW +local
orbital (APW-lo) calculations are performed
with ELK.% The exchange-correlation func-
tionals are calculated using the LIBXC®" li-
brary in case of NWCHEM and FHI-A1MS,
and the XCFUN?®® library for MRCHEM. We
underline that the basis sets chosen are de-
coupled from their implementation in a par-
ticular code, with a host of other codes pro-
viding access to fundamentally the same nu-
merical discretization schemes: See, for exam-
ple, WIEN2K® or EXCITING® for APWs;
DMOL3,%™ FpLO,™" ADF,”? or PLATO™
for NAOs; GAUSSIAN(09,™ GAMESS™, DAL-
TON™ or MOLCAS™ for GTOs; and MAD-
NESS™ for MWs.

The raw data of our study, as well as instruc-
tions for its reproducibility is available in the
Supporting Information (SI).™ Our test set com-
prises 211 molecules. In addition to the 147
systems from the G2/97 test set® containing
light elements up to the third row, it contains
molecules with chemical elements that are un-
derrepresented in the G2/97 test set (Be, Li, Mg,
Al, F, Na, S and Cl) as well as 6 non-bonded
systems. For most of the systems, the experi-
mental structure obtained from the NIST Com-
putational Chemistry Comparison and Bench-
mark Database?* was employed. In the remain-
ing cases, geometries have been optimized at the
MP2 level of theory, using the largest Gaussian
basis set (see SI™ for details).

$The grid is constructed such that it holds both the
density and its gradient within the requested accuracy.
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Figure 1: Absolute deviations in total energy
found for different functionals for selected atoms.
For LDA-SVWNS5, energy differences are w.r.t.
NIST all-electron values.? For GGA-PBE and
hybrid-PBEOQ, the energy differences are w.r.t
MRCHEM. In all codes the largest basis
set and tighter parameters were used. In all
plots the reference values (NIST for LDA and
MRCHEM for PBE/PBEOQ) are given with 6
decimal precision; a displayed error below 1e-06
Ha means that no discrepancy is detectable.

In the main part of our results we have con-
sidered four different basis sets each within
NWCHEM and FHI-A1MSs (APW-+lo results
with ELK could be obtained only for a small

subset), ranging from small ones intended for
prerelaxations and energy differences between
bonded structures (“light”, aug-cc-pVDZ), pro-
duction basis sets considered in most publica-
tions (“tight”, “tier2” for FHI-A1MS and aug-
cc-pVTZ, aug-ce-pVQZ for Gaussian codes), as
well the largest available basis sets: “tierd” for
FHI-A1MS and aug-cc-pV5Z for NWCHEM.Y

The construction and philosophy behind GTO
basis sets is well documented in the quantum
chemical literature, e.g. in the recent review
by Jensen.®! In particular for the aug-cc-pVXZ
bases the reader is referred to the original works
from Dunning and coworkers. 5285

The construction of the NAO basis sets used
here is documented in detail in Ref.%*, and pre-
cise basis set definitions can be found in the
SL.™ The “tier” radial functions form a fixed ba-
sis set library, established for elements 1-102,
and the choice of the exact radial functions
for each element was carried out by an auto-
mated, computer guided strategy as described
in Ref.%*. The sequence of successive “tier” ba-
sis sets is strictly hierarchical, beginning from
a minimal basis of radial functions for the oc-
cupied core and valence states of free atoms.
Additional “tiers” or groups of radial functions
(constructed for free ions or hydrogen-like poten-
tials) can then be added to increase the basis set
size towards numerical convergence for DFT. An
accurate, global resolution-of-identity approach
(“RI-V” in Ref.%) is employed to evaluate the
four-center Coulomb operator in hybrid-PBEOQ
in FHI-A1MS. It is important to note that
the NAO basis sets include a “minimal basis”
of atomic radial functions determined for the
same XC functional as used later in the three-
dimensional SCF calculations. This is standard
practice in FHI-A1MS for semi-local density
functionals. For hybrid-PBEQ, these radial func-
tions are provided by linking FHI-AIMS to
the “atom_sphere” atomic solver code for spher-
ically symmetric free atoms developed in the

YFor Li, Be, Na and Mg the largest basis set is aug-
cc-pVQZ and has therefore been employed. For the other
elements, the corresponding 67 basis is also available, but
attempts to employ such a basis led to overcompleteness
problems, often resulting in energies higher than the 5Z
results.
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Figure 2: GGA-PBE (left) and hybrid-PBEO (right) deviations in total energy, atomization energy,
and electrostatic dipole moment for the set of 211 molecules with respect to highly accurate values
obtained using MRCHEM. MAD, RMSD and maxAD stand for mean absolute deviation, root
mean square deviation and maximum absolute deviation, respectively. Results are included for two
different DFT codes (NWCHEM and FHI-A1MS) and four bases each: “light”, “tight”, “tier2” and
“tierd” for FHI-A1IMS and aug-cc-pVXZ (X=D, T, Q, 5) for NWCHEM.

Goedecker group for several years. 4

The ground state energy of atoms from Hy-
drogen (Z=1) to Argon (Z=18) has been com-
puted with the three chosen functionals. Our
results are summarized in Figure 1. For all com-
putational methods employed, the results of this
section refer to the largest bases and tighter pa-
rameters: pHa for MRCHEM, “tierd” for FHI-
AIMS and aug-cc-pV5Z for NWCHEM (see
previous section and SI™ for details). The top
panel reports the LDA-SVWN5 values as abso-
lute errors with respect to the reference values
of the NIST?® database for non-relativistic, spin
polarized, spherically symmetric atoms. As ex-
pected, MWs yield differences which are consis-
tently below the requested accuracy of 1 uHa.

The NAO and APW-+lo approaches achieve av-
erage errors of ~0.01-0.1 mHa and ~0.1-1mHa,
respectively. GTOs are limited to around mHa
accuracy. The GTO outliers (Li, Be, Na and Mg)
have been computed with the aug-cc-pVQZ ba-
sis, because the aug-cc-pV5bZ basis set is not
available for these elements. Had 5Z-quality
functions been available for all elements, a more
uniform error for GTO would have resulted
along the series, but the overall picture would
only improve slightly.

In the GGA-PBE (middle) and hybrid-PBEO
(bottom) panels, all 18 atoms (both spherical
and not), are included. The non-relativistic,
spin-polarized electronic density and the total
energy of the ground state, computed using



MRCHEM (converged within pHa) serves as
the reference to which the other approaches are
compared. For both functionals, NWCHEM
performs at the limit of chemical accuracy (~
ImHa). The NAOs in FHI-AIMS achieve
0.1 mHa or better, except for fluorine (0.3 mHa).
For closed-shell atoms, FHI-AIMS is essen-
tially exact because the exact radial functions of
spherically symmetric, spin-unpolarized atoms
are included in the basis sets. For GTOs, we ob-
serve that the total energy error grows with the
atomic number, Z. In contrast, the accuracy of
NAOs is less affected by the nuclear charge, with
errors generally below 0.1 mHa for the Z range
examined here, irrespective of the choice of func-
tional. For APW+lo, only the LDA-SVWN35 val-
ues are included in Figure 1: the corresponding
GGA-PBE and hybrid-PBEO errors achieved in
this work are above the threshold of le-03 Ha
(dashed line) and were not considered further
because it is unclear how much they might be af-
fected by implementation-specific aspects other
than the basis set.

The total energies, atomization energies and
dipole moments of the 211 molecules consid-
ered have been computed within the GGA-PBE
and hybrid-PBEOQ functionals using MRCHEM
with the highest affordable precision (below 1
uHa throughout). Figure 2 reports the Mean
Absolute Deviation (MAD), Root Mean Square
Deviation (RMSD) and Maximum Absolute De-
viation (maxAD) obtained for total energy (top
panel), atomization energy (medium panel) and
dipole moment (bottom panel) with NAO and
Dunning GTO basis sets w.r.t. MRCHEM for
the GGA-PBE and hybrid-PBEO functionals, re-
spectively.l For all the molecules, the correct
ground-state spin multiplicity was specified.

Total energies are a measure of the accuracy
achieved by each method/basis pair, whereas
the atomization energies deserve special atten-
tion for their role in the development of den-
sity functionals, generally benchmarked against
such thermodynamic values. However, as re-
cently pointed out by Medvedev et al.?® the
variational energy is not the optimal measure

IDue to technical reasons in convergence, CH3;CH,O
was excluded from the PBEO results, while CCH was
excluded in both PBE and PBEO.

for the quality of the calculated electronic den-
sity, which influences numerous other observ-
ables. For this reason, we have included the
dipole moment as a non-variational quantity in
our benchmarks (dipole errors are linear in the
density error, whereas energies are quadratic).
Dipole moments also serve as a verification that
the different methods converge to the same elec-
tronic state and not to a nearby metastable
configuration. Although the existence of mul-
tiple metastable SCF solutions in Kohn-Sham
DFT is well known, it is often not detected by
users of electronic structure codes. The solu-
tion strategy, also employed in the present pa-
per, is to probe different spin initializations of
each molecule to identify the global minimum.
In the present work, the correct identification
has been validated by ensuring consistency of
the dipole moment as well as the KS eigenvalue
spectra produced by the three distinct electronic
structure methods.

Several important conclusions can be drawn
from the results obtained:

1. For total energies, FHI-A1TMS with
NAOs is able to reach more accurate
results than NW CHEM with GTOs, for
basis sets of comparable size (e.g. “tierd”
vs. aug-cc-pV5HZ).

2. For atomization energies, both NAOs and
GTOs benefit from error cancellation to
some extent. Such a cancellation is how-
ever much stronger for GTOs where the
RMSD is lowered by a factor 4-8 in most
cases, whereas for NAOs only by a fac-
tor of 1,5-2. In both cases the cancella-
tion is more marked for the smallest bases.
Despite the smaller cancellations, NAOs
are still closer to the converged limit than
GTOs, for comparable basis sets.

3. The two functionals considered (GGA-
PBE and hybrid-PBEO) yield very similar
results, and we therefore assume that our
conclusions concerning the accuracy of the
different approaches (NAOs and GTOs)
will hold also for other functionals of the
same type.



4. Dipole moments can be considered accu-
rate if deviations are below 0.01 Debye. 24:86
Only the largest basis sets in NAO and
GTO used in our calculations achieve this
target on average, but even such basis
sets have outliers with errors close to
0.1 Debye.

5. Due to the cumbersome convergence of pe-
riodic DFT codes with respect to the box
size, we did not include APW+lo results
for the entire test set of molecules. Never-
theless, for a small subset of molecules for
which the limit of the box size was reached,
we found atomization energies with errors
of about 1kcal/mol (see SI™). Our expe-
rience suggests that it is technically chal-
lenging for APW-based codes to reach ac-
curacies below 1kcal/mol on atomization
energies.

As a final remark, we stress that for a few
atoms (Li, Be, Na, Mg), the aug-cc-pV5Z ba-
sis is not available, as previously mentioned in
the atomic calculations part. Had it been avail-
able, GTOs might have yielded somewhat higher
precision for the affected systems than in our
benchmarks. However, considering the large size
of our sample, the fact that only a few atoms
in a molecule are affected, and the small im-
provement that can be inferred from the atomic
calculations, our main conclusions still hold. On
the other hand, such a de facto limitation of the
availability of GTO basis sets illustrates how
demanding it is to generate such basis sets. In
contrast, MWs and NAOs are much less affected
by such a limitation.

Considering that several families of GTO ba-
sis sets are available we have also performed
an additional set of calculations for the GGA-
PBE functional, in order to compare the per-
formance across such sets. The results are dis-
played in Figure 3. In particular, we have con-
sidered the Pople basis sets 6-31+G** and 6-
311++G(3df,3pd),®™ % the pc-2 and pe-3 basis
sets?179* (the augmented analogs were also con-
sidered, but here we encountered ill-conditioning
problems), and finally def2-TZVPD and def2-
QZVPD.% This is a selection of the basis sets
considered by Mardirossian and Head-Gordon

6-31+G**
6-311++G(3df,3pd) C—
pc-2 I

pe-3 pmm—

aug-cc-pVTZ
aug-cc-pVQZ Errm)
def2-TZVPD
def2-QZVPD 5

1000

)
-
-~ = 8

Total energy
(kcal/mol
o

0.01L

1000
100 |

(kcal/mol)
- o

Atomization energy
o

Dipole
(Debye)

Figure 3: Statistics for total energy, atomiza-
tion energy, and electrostatic dipole moment for
the set of 211 molecules with respect to highly
accurate values obtained using M RCHEM.
Displayed values are mean absolute deviation
(MAD), root mean square deviation (RMSD)
and maximum absolute deviation (maxAD).
The following basis sets have been considered:
6-31+G**, 6-311++G(3df,3pd), pc-2, pe-3, def2-
TZVPD, def2-QZVPD, aug-cc-pVTZ and aug-
cc-pVQZ.

for the development of the B97M-V and wB97M-
V functionals.!™® For the comparison one
should keep in mind that pc-2 and def2-TZVPD,
as well as the large Pople set are comparable
in size to aug-cc-pVTZ, while pc-3 and def2-
QZVPD are comparable to aug-cc-pVQZ.
Although the detailed analysis of the perfor-
mance of each basis set family is a relevant issue,
it is outside the scope of this letter and will be
considered in another study. Suffice it here to
say that, among the considered basis sets, only
pc-3 stands out when it comes to energy calcu-
lations, actually outperforming the much larger
aug-cc-pVHZ basis, and competitive with NAOs.
However, due to the lack of diffuse functions the



pe-n series suffers when dealing with dipole mo-
ments, where pc-3 performs only on par with the
smaller aug-cc-pVTZ basis. The Pople sets are
those which benefit the most from error cancel-
lation when atomization energies are considered,
while the def2-QZVPD basis yields better dipole
moments, which is an indication of higher ver-
satility in the basis. In practical calculations,
the relatively weak performance of this broad
range of production quality GTO basis sets for
DFT-based total and atomization energies (ex-
cept pc-3) can translate into real problems for
subtle energy differences, e.g. conformational en-
ergy differences of hydrogen bonded systems. %

To the best of our knowledge, this work
presents the most accurate atomization energies
calculated to date, for a large benchmark set of
molecules. We conclude that moderately sized
GTO basis sets, frequently used in quantum
chemistry applications, suffer from average to-
tal energy errors much larger than 10 kcal /mol,
and while very large GTO basis sets yield the
desired accuracy on average, there are still sig-
nificant outliers. Moreover, it may not always
be feasible to employ such basis sets for sys-
tems much larger or chemically more diverse
than those included in this study. In addition
to cost, ill-conditioning can be a practical limi-
tation for large GTO basis sets. Applying large,
high-accuracy GTO basis sets to all-electron
calculations for elements beyond the lightest
few (e.g., Z=1-18 as covered here) is also not
straightforward. In contrast, there is no prac-
tical limitation to extend the NAO, APW, or
MW paradigm to all-electron DF'T' calculations
across the full periodic table, for which NAOs
and APWs are routinely used.

NAOs give much better accuracy even for mod-
erately large bases (“tight” and beyond) since
they can be constructed to possess the numer-
ically correct behavior for a given XC func-
tional, both in the nuclear as well as in the tail
region. When feasible, APW+lo-based calcula-
tions achieve errors around 1 mHa for total en-
ergies, and 1 kcal /mol for atomization energies.
However, this level of convergence is difficult to
reach for general molecular systems.

With our MW results as reference, ™ it will be

possible to unambiguously assess the accuracy
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of any given basis for the computation of to-
tal energies and atomization energies. This will
help to shed light on the quality of the currently
available basis sets, and the underlying reasons
for their shortcomings. It will also guide towards
the development of more accurate basis sets.

Another central conclusion of our work is that
the basis set error can dominate over errors aris-
ing from the choice of XC functional under many
circumstances, in particular if some of the most
advanced and accurate functionals are used. Our
results set therefore new standards in the ver-
ification and validation of electronic structure
methods. We expect that results of this work
and the method described will be used to as-
sess the accuracy of all future developments in
Density Functional Theory methods.
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