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Abstract  
 

Dependency of human activities on electricity supply goes from emergency services to comfort aspects. 

Reliability of electricity distribution systems is a complex problem to tackle, especially when the 

systems are located at cold climate regions, dealing with ice accretion on the elements of the electrical 

systems and its consequences become a priority to be included in maintenance maneuvers in order to 

guaranty the energy distribution. De-icing methods must demonstrate their effectiveness in removing 

ice accreted on ground wires and conductors under severe environment conditions. Therefore, these 

methods are restricted by specific mechanical, electrical and thermal constrains related with the power 

line operation. Mechanical stresses imposed on the lines by stretching and torsion caused by the ice 

accreted on the system elements, the weight and action of the de-icing mechanism or wind effects on 

the structure determine the dynamics restrictions must be considered during installation as well as 

operation of new deicing mechanisms. Measures to insulate the de-icing mechanisms from electrical 

and electromagnetic perturbations are needed in order to overcome the electrical restrictions. Risk of 

damage or affected performance of de-icing mechanisms due to thermal shock during releasing of the 

high current pulse of lightning through the surface of the conductors, towers or other elements also 

imposes new set of constrains on the de-icing mechanism. Expansion of electrical system on remote 

location, with severe winter conditions along with the changes introduced by the climate changes, put 

extra interests on the technology development of mechanisms to prevent or remove ice from long lines 

with single or bundled conductors. Research has been carried out including large-scale technologies 

testing to address this problem. Mechanisms based on thermal effects, shock waves, cutting, or others 

have been already proposed. In this paper a comprehensive discussion of the existing methods and the 

comparison with a new proposed mechanism is presented. So, a new functioning principle of percussion 

will be presented, analyzed and discussed leading to new scenarios of technology development. 

This method represents a valid alternative that require less energy than the energy is used to melt the ice 

on the power lines. The implementation of this mechanism is also possible actually a design of the 

principle of functioning produced with support of external sources. 
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1 Introduction  

Combating ice deposits on overhead transmission lines has been a big challenge in cold climate regions 

since the installation of the first power lines. With an expanding electric system, it has been a difficult 

work to prevent or remove ice from long lines with single or bundled conductors. Extensive research 

has been carried out and large-scale technologies have been developed to address this problem. Based 

on worldwide power utility experience, two different strategies regarding ice accretion on overhead lines 

have been adopted. To prevent failure, power utilities try to build overhead lines that are capable of 

withstanding large icing events (with a low probability of occurrence). This commonly requires 

strengthened towers and costly lines. Therefore, transmission lines deicing technology is one of the 

major issues of intelligent power grid construction and development which needs to be resolved. 

There have been many studies about combating icing damage on overhead lines, a large number of anti-

icing and de-icing methods have been developed. Some of these methods have been well documented 

in specific reviews since the 1990s.  

1.1 Remote sensing of snow and ice 

Cryosphere is the surface of the Earth where water can be presence in form of snow, sea ice, freshwater 

ice, the large ice masses on land and permafrost. The presence of ice and snow on the Earth is significant 

over a wide range of spatial and temporal scales. The cryosphere represents an important part of the 

earth climate system. 

Falling or deposited ice particles formed mainly by sublimation is defined as snow. There are three types 

of snow cover such as permanent, seasonal and temporary. Permanent snow cover is retained for many 

years, while temporary and seasonal snow covers do not survive the summer. The global distribution of 

snow is shown in Figure 1.  

 

Figure 1 – The global distribution of snow cover [1]. 
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Permanent snow cover eventually forms a glacier, defined as an accumulation of ice and snow that 

moves under it is own weight. Icebergs are masses of freshwater ice that have calved from a glacier or 

ice shelf and fallen into the sea or a body of fresh water, or that have been produced as a result of the 

breaking up of larger icebergs. Icebergs are classified according to both size and shape [2]. 

Norway and China locations correspond to the area where it is presented of snow cover, glacier and 

permafrost.  
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2 Power transmission system  

Power transmission can be defined as the bulk transfer of power by high-voltage links between central 

generation and load centers. Power distribution, on the other hand, describes the conveyance of this 

power to consumers by means of lower voltage networks [3].  

The high voltage links are the structures that carry this electrical energy above the ground between 

source and distribution points, namely towers, lines and insulators. 

The main elements of the transmission and distribution system are tower, conductors (cables), isolators 

and protection devices 

2.1 Towers 

The towers are one of the types of structures that are used to transmit the electricity, see Figure 2. They 

support the insulators on which the lines are suspended. Depending on the function of the towers, they 

can be classified in two main types: towers for straight runs and towers for changes in route. The function 

of the former is to withstand the weight of the line, whereas the latter withstands the forces when there’s 

a change in the direction of the lines [3]. In both cases, the design of the tower must take into account 

wind, ice accretion and the rupture of the lines from one side of the tower as additional loads [4]. 

 

The basic geometries of the towers are lattice, pole, H frame, guyed V and guyed Y [5]. 

2.2 Conductors 

The type of conductors nowadays are different from those in the early days of electrical development. 

They are no longer made of copper, but aluminium. Aluminium conductors are more economical than 

copper, though they have a lower conductivity. A typical aluminium conductor provides only 60% of 

the conductivity of a copper conductor [5] [6]. With the same conductivity, an aluminium conductor has 

48% of the weight of a copper conductor, whereas the cross section is 160% of the copper conductor 

[7].  

Figure 2 – Typical suspension tower for straight runs of overhead line [4]. 
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2.3 Insulators 

The high voltage lines are suspended by insulators made of porcelain or glass. They can take three forms: 

pin type, suspension type and strain type. The pin type is used in lines that carry less than 33kV [3]. 

Though is one of the oldest, it is still in use. The suspension type is made of several discs arranged in a 

string and is used for lines above 33kV [8]. This type of insulator allows stacking the necessary amount 

of discs to suffice the necessary voltage, and when a disc gets damaged, it can be replaced. The third 

type is a variation of the suspension type. It is designed to withstand large tensile loads, since it is used 

in changes in route. The three types of insulators can be seen in Figure 3. 

 

Figure 3 – Types of insulators. Left to right: pin type insulator, suspension disc type and strain type [8]. 

2.4 Protection devices 

Since the towers, conductors and insulators are in the open, they are susceptible to damage by the nature, 

e.g. winds and lightning’s. Thus, wind and lightning protection are an important part of the design of a 

transmission network. 

2.4.1 Wind protection 

Wind can be disastrous for high voltage lines. It can cause the lines to hit against each other, and the 

vibration caused by the wind can damage the conductors and other parts of the structures. To prevent 

this, a protection device is installed on the lines. The most common protection devices are the 

Stockbridge damper, the spacer damper and the spiral vibration damper. 

The Stockbridge damper (Figure 4) consists of two weights at the end of a stiff cable located under the 

conductors, close to the tower [9]. Its function is to absorb the vibrational energy created by the wind 

[5]. 
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Figure 4 – Stockbridge damper [9]. 

Spacer dampers (Figure 5) maintain the original geometry and provide a separation between the 

conductors of a bundle line. There are different spacer models according to the bundle configuration on 

which they are going to be installed, e.g. three and four conductor’s bundle [10] [11]. 

 

Figure 5 – Spacer damper for a three conductor’s bundle [10]. 

The spiral vibration damper (Figure 6) is a spiral shaped wire that wraps around the conductors. It has 

two different inner diameters: the first one grips and holds around the conductor, and the second one 

provides the damping on the conductor.  

 

Figure 6 – Spiral vibration damper [12]. 
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3 Configuration/Mechanical model of the line. 

When there is ice on the line, the distributed or non-distributed load increases on the cable and the 

adverse impact can be classified into two broad categories: one related to the excessive load on the sides 

(Figure 7) that can generate broken conductors or fallen towers and the second relates to the fact that ice 

formations on insulators decrease their electrical strength and can result in flashover across the surface 

at operating voltage, – this process is called ‘icing flashover’. 

 

Figure 7 – Mechanical model of the line 

4 Models for the growth of rime, glaze, icicles and wet 

snow on structures 

The origin of natural ice that forms on structures may be either cloud droplets, raindrops, snow or water 

vapor. These particles can be either liquid, solid or a mixture of ice and water. In any case, the maximum 

rate of icing per unit projection area of the object is determined by the flux density of these particles. 

The flux density, F, is a product of the mass concentration, w, and the velocity, v, of the particles relative 

to the object. Consequently, the rate of icing is obtained from: 

 dM

dt
=∝1∝2∝3 𝑤𝑣𝐴 

(1) 

Where A is the cross-sectional area of the object (relative to the direction of the particle velocity vector 

v). The correction factors ∝1,∝2 and ∝3 represent different processes that may reduce dM/ dt from its 

maximum value. The correction factors ∝1, ∝2  and ∝3 vary between 0 and 1. 

In equation (1) ∝1 denotes the collision efficiency, ∝2 the sticking efficiency, and ∝3 the accretion 

efficiency.  

Collision efficiency is the ratio of the flux density of the particles that hit the object to the maximum 

flux density. Sticking efficiency is the ratio of the flux density of the particles that stick to the object to 

the flux density of the particles that hit the object. Accretion efficiency is the ratio of the rate of icing to 
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the flux density of the particles that stick to the surface. The main point is to simulate these coefficients 

because the complexity of the whole phenomenon.  

There are several types of ice, but the most common are rime and glaze. Rime ice is the result of dry 

growth (∝3= 1) that is when there is no liquid layer and no run-off. This type of ice is shown in the 

Figure 8 [13] [14] . 

 

Figure 8 – Rime ice (dry growth) [13] [14]. 

Glaze ice is the result of wet growth (∝3< 1) that is when there is a liquid layer on the surface of the 

accretion and freezing takes place beneath this layer. This type of ice is shown in the Figure 9 [13]. 

 

Figure 9 – Glaze ice (wet growth) [13]. 

4.1 Icing on power lines 

On the early stages of the ice formation around the conductor, the shape of the accreted ice starts as a 

lobe and grows irregularly as the ice is accumulated on the windward side of the conductor. The shape 

is determined by the direction of the wind and the gravitational force.  

A typical shape of ice on an overhead conductor can be seen on Figure 10. 
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Figure 10 – Schematic diagram of snow accretion on an overhead conductor [15]. 

4.2 Torque 

As ice accumulates on power lines, it forms a teardrop shape. When the wind blows, wires can start to 

move up and down in an oscillating motion (Torque). In essence, the wires encased in ice act like an 

aerodynamic airplane wing. This effect is known as “galloping” (Figure 11). Galloping can cause wires 

to eventually touch, resulting in a fault or subsequent outage. The increased movement can also cause 

cross-arms to break, bringing lines to the ground. 

 

Figure 11 – Rotational force [16]. 
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5 Calculation of ice loads  

For the approximate calculation of ice loads thought density of the ice and growth of the ice and a 

valuable, often the most important parameter is the duration of the icing event.  In addition to the 

parameters that determine the rate of icing as for instance, wind speed, air temperature, temperature of 

the structure, air liquid water content and droplet diameter in the air. The key element of successful icing 

modelling is the understanding of the combinations of different parameters where icing takes place. This 

is not a trivial problem, but, in short, for freezing precipitation, when it is required the wet bulb 

temperature to be less than 0 °C and for liquid precipitation that transform on formation of rime ice, 

when it is required the fog or the location of interest is at a higher altitude than the cloud base and for 

wet-snow situations with heavy snow fall when the wet-bulb temperature is greater than 0 °C. 

Simulation of ice accretion for practical purposes requires careful considerations of all these criteria 

[17]. The classical empirical approach estimates the rate of rime icing applying the condition (∝2=∝3=

1) in equation (1) so the icing rate depends only on wind speed.  

5.1 Collision efficiency 

When a droplet moves with the airstream towards the icing object, its trajectory is determined by the 

aerodynamic drag and inertia forces. If inertial forces are small, then drag will dominate and the droplets 

will follow the streamlines of air closely (Figure 12). For large droplets, on the other hand, inertia will 

dominate and the droplets will tend to hit the object, without being significantly deflected (Figure 12).  

The relative magnitude of the inertia and drag on the droplets depends on the droplet size, the velocity 

of the airstream, and the dimensions of the icing object. 

 

Figure 12 – Air streamlines and droplet trajectories around a cylindrical object [13]. 

Finstad et al. [18] have developed the following empirical fit to the factor ∝1 numerically calculated 

data:  

 ∝1 = A-0.028-C(B-0.0454) (2) 
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Where 

 A = 1.066K-0.00616 exp(-1.103K-0.688) 

B = 3.641K-0.498 exp(-1.497K-0.694) 

C = 0.00637(ø-100)0.381 

(3) 

 K = pwd2/9µD (4) 

 ø = Re2/K (5) 

 Re = padv/µ (6) 

Here, d is the droplet diameter, D the cylinder diameter, pw the water density, µ the absolute viscosity of 

air, pa the air density and Re the droplet Reynolds number based on the free stream velocity, v. 

5.2 Sticking efficiency 

When a super cooled, water droplet hits an ice, surface it rapidly freezes and does not bounce (Figure 

8). When there is a liquid layer on the surface, the droplet spreads on the surface and again there is no 

rebounding (Figure 9). 

Snow particles, however, bounce very effectively [19] . For completely solid particles, i.e. dry snow, 

the sticking efficiency,∝2 is zero. 

When there is a liquid layer on the surface of the snow particles, they stick more effectively, so that at 

small impact speeds and favorable temperature and humidity conditions ∝2 is close to unity for wet 

snow. 

The best first approximation for ∝2 for cylindrical shapes is probably [20]. 

 
∝2 =

1

𝑣
 

(7) 

Where the wind speed, v is in m/s. When v < 1 m/s, ∝2= 1. Humidity and air temperature also affect ∝2, 

but there are not data to consider them. 

5.3 Accretion efficiency 

In dry-growth icing (Figure 8), all the impinging water droplets freeze and the accretion efficiency ∝3 = 

1. 

Solving the accretion efficiency results in the following equation: 

 
∝3 =

1

𝐹(1 − 𝜆)𝐿𝑓
[(ℎ + 6𝑎)(𝑡𝑠 − 𝑡𝑎) +

ℎ𝜖𝐿𝑒
𝐶𝑝𝑝

(𝑒𝑠 − 𝑒𝑎) −
ℎ𝑟𝑣2

2𝐶𝑝
+ 𝐹𝐶𝑤(𝑡𝑠 − 𝑡𝑑)] 

(8) 
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Where, 𝜆 is the liquid fraction of the accretion (value of 𝜆 around 0.3), F is the flux of water to the 

surface (F = ∝1 ∝2 𝑤𝑣), h is the convective heat-transfer coefficient, r is the recovery factor for viscous 

heating (r = 0.79 for cylinder), v is the wind speed, Cp is the specific heat of air, ts is the temperature of 

the icing surface (ts = 0 °C for pure water) , ta is the air temperature, 𝜖 is the ratio of the molecular 

weights of dry air and water vapor (𝜖 = 0.622), a is the radiation linearization constant (8.1 x 107 K3), 

Le is the latent heat of vaporization, es is the saturation water vapor pressure over the accretion surface, 

ea is the ambient vapor pressure in the airstream,  p is the air pressure, Cw is the specific heat of water, 

and td is the temperature of the droplets at impact. For cloud droplets, td = ta can be assumed because 

of their small terminal velocity. Here, es is a constant (6.17 mbar) and ea is a function of the temperature 

and relative humidity of ambient air. The effect of surface roughness on h has been studied in detail 

theoretically [21] and this theory can be used as part of an icing model. 

5.4 Numerical modelling 

Resolving the icing rate analytically from, say, equations (2) and (8) is not practical, because equations 

for the dependence of the specific heats and the saturation water vapor pressure on temperature. All this 

makes the process of icing a rather complicated one. Notice that all parameters are interconnected in a 

complex way so, it will produce a highly dependency behavior of any model used or simulation done. 

Nowadays, rime icing can be simulated numerically by ballistic models [22] [23] [24].  

When the estimates of the density of accretions are included, a numerical model can be developed to 

simulate time-dependent icing of an object. Various physical phenomena can be included in the model 

as sub-routines and run selectively according to the input data and the state of the simulated process. 

Calculation progresses in a stepwise manner. A schematic description of an icing model is shown in 

Figure 13. 

5.4.1 Modelling tools  

Tools to model or simulate the ice accretion on structures. ANSYS Fluent and FENSAP-ICE are two of 

them. Following a summary about how these tool work. 

ANSYS Fluent 

The calculation method of ANSYS Fluent uses a finite element based on Navier-Stokes equations, 

energy balance, and Sheil equation for the ice accretion. 

The solidification/melting model capabilities allow ANSYS Fluent to simulate a wide range of 

solidification/melting problems, including melting, freezing, crystal growth, and continuous casting.  
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FENSAP-ICE 

The calculation method of FENSAP-ICE Fluent uses a finite element based on Navier-Stokes equations, 

the droplet impingement with an Eulerian model containing water droplets and finally a control volume 

analysis of the mass and heat transfer for the ice accretion. 

FENSAP-ICE can calculate 3-D geometry of glaze, rime or mixed-type ice shapes and roughness on 

any surface, for any icing condition. It has a built-in graphical interface to simplify selection of icing 

conditions. The ice shapes on power lines, stabilizers, control surfaces, air data probes, rotors, wings 

etc. can be used to evaluate performance degradation. Icing on intake screens can be used to calculate 

blockage effects.  

 

Figure 13 – Block-diagram of a numerical icing model [13]. 
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6 De-icing mechanism principle of functioning   

It is important to know the elastic properties of ice, in order to make calculations of the amount of energy 

in the form of heat to melt the ice, the amount of specific energy to cut the ice and the amount of energy 

needed to break or remove the ice.  

The elastic boundary of ice is close to zero and ordinarily the elastic properties appear together with the 

plastic. Consequently, it is problematic to determine the exact value of the various E, the shear modulus 

G and Poisson’s ratio v. 

When the load acting upon the ice is changed, three different types of deformation appear [25]: 

1. Elastically reversible instantaneous deformation  

2. Irreversible deformation – creep  

3. The slowly reversible deformation of the aftereffect  

Hooke’s law states that 𝜀 = 𝑆𝜎 where 𝜀 denotes strain, 𝜎 stress and 𝑆, compliance. Otherwise, 𝜎 = 𝐶𝜀 

where 𝐶 is stiffness. Both strain and stress are specified by second orders tensors and so C and S are 

specified by four order tensors. 

Hooke’s law may then be written: 

 𝜀𝑖 = 𝑆𝑖𝑗 𝜎𝑗(𝑖, 𝑗 = 1, 2… . 6) (9) 

Or 

 𝜎𝑖 = 𝐶𝑖𝑗  𝜀𝑗(𝑖, 𝑗 = 1,2… . 6) (10) 

 

Where 𝑆𝑖𝑗 and 𝐶𝑖𝑗 denotes the components of the matrices: 

𝑆𝑖𝑗 =

(

 
 
 

𝑆11
𝑆12

𝑆12
𝑆11

𝑆13
𝑆13

𝑆13 𝑆13 𝑆33
0
0
0

0
0
0

0
0
0

0
0

0
0

0
0

0 0 0
  𝑆44
0
0

0
𝑆44
0

0
0
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On this basis the elastic compliance constants may be interpreted as follows: 

 𝑆11 gives the standard strain perpendicular to the c-axis owing to a normal stress acting along 

X1 

 𝑆33 gives the standard strain parallel to the c-axis owing to a normal stress acting along the c-

axis; 

 𝑆12 gives the standard strain perpendicular to the c-axis owing to a normal stress also 

perpendicular to the c-axis and perpendicular to the direction of interest; 

 𝑆13 gives the standard strain perpendicular to the c-axis owing to a normal stress acting along 

the c-axis, as well as the normal strain along the c-axis owing to a normal stress along a direction 

perpendicular to the c-axis; 

 𝑆44 gives the shear strain in a plane parallel to the c-axis owing to a shear stress in the same 

plane. 

The most precise values to date have been attained by Gammon et al. [26]  shown in Table 1. 

Table 1 – Fundamental elastic constants for ice at -16°C [25]. 

Property and units Symbol Value 

Elastic stiffness (109 N m-2) 

C11 13.93±0.04 

C12 7.08±0.04 

C13 5.76±0.02 

C33 15.0±0.05 

C44 3.01±0.01 

Elastic compliance (10-12 m2 N-1) 

S11 103±0.05 

S12 -42.9±0.4 

S13 -23.2±0.2 

S33 84.4±0.4 

S44 331.8±0.2 

Compressibility (10-12 m2 N-1) 

2S11 + S33 + 2(S12 + 2S13) 
K 112.4±0.2 

Bulk modulus (109 N m-2) B = 1/K 8.90±0.02 

Poisson`s ratio  v 

v = -S12/S11 = 0.415 

v = -S13/S11 = 0.224 

v = -S13/S33 = 0.274 
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As a result, their elastic properties are totally described by only two independent constants [27] [26], 

chosen from Young`s modulus E, the shear modulus G, Poisson`s ratio v and the bulk modules B. 

Where: 

 G = E/2(1+v) (11) 

 

 B = E/3(1-2v) (12) 

 

The values measured at -16°C are listed in Table 2 and the effect of temperature may be obtained from 

Equation (5). 

 V(T) = V(Tr) [1 ± a (T-Tr) ] (13) 

Where Tr is the reference temperature at which the constant was measured, a = 1.42 x 10-3 K-1, “+” is 

for compliance and “−” is for stiffness. 

Table 2 – Elastic properties for ice at -16°C [25]. 

Property Units Value 

Young`s modules , E N m-2 9.33 x 109 

Compressibility, K N-1 m2 112.4 x 10-12 

Bulk modulus, B N m-2 8.90 x 109 

Shear modulus, G N m-2 3.59 x 109 

Poisson`s ratio, v n/a 0.325 

Latent heat  KJ/kg 334 

Density  kg/m3 916.8 

 

Both E and G depend only on the angle between the crystal axis ad the c-axis of the unit cell. This means 

that the elastic properties of ice are invariant with respect to rotation about that axis. 

The properties that are going to be used next are latent heat and density named in Table 2.  

6.1 De-icing mechanism required energy calculations   

To make the calculations, a case was taken as reference where symmetrical ice created with help of PVC 

tubes around the conductor with the following dimensions, the conductor diameter is 12.7 mm, the 

outside diameter 38.1 mm of ice and the length is 1 m [28] . Show in the Figure 14. The calculations 

were made for four methods that are shockwave, smelt the ice (Superheat steam), cut and percussion.  
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Figure 14 – Ice accretion on the conductor [28]. 

1. Shockwave:  

In the case of shockwave an energy of 1.86 J/m or 2 J/kg is represented to break or remove the ice [28] 

according with the proposed conditions and geometry named above. 

2. Smelt the ice  

In the case of melting of ice, the geometry named above was used to calculate the amount of energy 

needed to melt the ice that is in the line of power. The following formulas were used in order to do the 

calculations.  

 𝑉 = π ∗ 𝑟2 ∗ ℎ (14) 

 𝑚 = 𝜌𝑖𝑐𝑒 ∗ 𝑉 (15) 

 𝑄 = 𝐿𝑓 ∗ 𝑚 (16)  

 

Where V is volume, r is the radius, h is the length of the cylinder, m is the mass,  𝜌𝑖𝑐𝑒 is the density of 

ice, Q amount of energy in the form of heat and 𝐿𝑓 is the latent heat for fusion from solid to liquid.  

The first step for the calculations was to find the volume of the ice around the conductor, then the ice 

mass and finally calculate the amount of energy to melt the ice shown below. 

 

𝑉𝑡𝑜𝑡 = 𝑉1 − 𝑉2 = (𝜋 ∗ 0.1905
2 ∗ 1) − (𝜋 ∗ 0.06352 ∗ 1) = 0.101 𝑚3 

𝑚 = 𝜌𝑖𝑐𝑒 ∗ 𝑉 = 916.8 
𝑘𝑔

𝑚3
∗ 0.101𝑚3 = 92.6 𝑘𝑔 

𝑄 = 𝐿𝑓 ∗ 𝑚 = 334
𝑘𝐽

𝑘𝑔
∗ 92.6𝑘𝑔 = 30.9 𝑀𝐽 

The calculations show that the needs 30.9 MJ to smelt the ice with the proposed conditions and geometry 

named above. 
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3. Cut 

In the case of cutting, a turning scenario is proposed where the ice with the dimensions named above is 

cut with a tool in the axial direction. The tool used to cut ice is made of Stainless steel, therefore the 

following data and assumptions are used: 

Do = 38.1 

L = 1000 mm  

K = 2700 N/ mm2 

𝑣𝑐  = 1.1 m/s 

f = 0.7 mm/rev  

𝑑𝑐 = 7.5 mm  

Tm = 8.0 min  

The following formulas are used in order to fulfill the calculation of amount of specific energy to cut 

the ice:  

 𝑃𝑐 = 𝐹𝑐 ∗ 𝑣𝑐 (17) 

 𝐹𝑐 = 𝐾 ∗ 𝑓 ∗ 𝑑𝑐  (18) 

 
𝑣𝑐 =

𝜋 ∗ 𝐷𝑜 ∗ 𝐿

𝑓 ∗ 𝑇𝑚
 

(19) 

 𝑅𝑀𝑅 = 𝑣𝑓𝑑𝑐 (20) 

 
𝐸𝑐𝑢𝑡 =

𝑃𝑐
𝑅𝑀𝑅

 
(21) 

 

Where 𝑃𝑐 is the cutting power, 𝐹𝑐 is the cutting force, 𝑣𝑐 is the cutting speed, K is the strength specific 

cutting resistance of the material- related, f is the feed of cut, 𝑑𝑐 is the depth of cut, 𝐷𝑜 is the diameter, 

L is the length of the work piece, Tm is the machining time, 𝑅𝑀𝑅 is the material removal rate and 𝐸𝑐𝑢𝑡is 

the amount of energy to break/remove the ice. 

The first step for the calculations was to find the cutting speed of the tool, then the cutting force, so the 

cutting power, later the material removal rate and the end calculate the specific energy to cut the ice 

shown below. 

𝑣𝑐 =
𝜋 ∗ 𝐷𝑜 ∗ 𝐿

𝑓 ∗ 𝑇𝑚
= 
𝜋 ∗ 38.1 ∗ 1000

0.25 ∗ 7.5
=  0.38 𝑚/𝑠 

𝐹𝑐 = 𝐾 ∗ 𝑓 ∗ 𝑑𝑐 = 2700 ∗ 0.7 ∗ 7.5 = 14175 𝑁 
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𝑃𝑐 = 𝐹𝑐 ∗ 𝑣𝑐 = 14175 𝑁 ∗ 0.38
𝑚

𝑠
=  5.39 𝑘𝑊 

𝑅𝑀𝑅 = 𝑣𝑐𝑓𝑑𝑐 = 22799
𝑚𝑚

𝑚𝑖𝑛
∗ 0.7 

𝑚𝑚

𝑟𝑒𝑣
∗ 7.5𝑚𝑚 = 119694.75 𝑚𝑚3/𝑚𝑖𝑛 

𝐸𝑐𝑢𝑡 =
𝑃𝑐
𝑅𝑀𝑅

=
323400 𝐽/𝑚𝑖𝑛

119694.75 𝑚𝑚3/𝑚𝑖𝑛
= 2.7 𝐽/𝑚𝑚3 

Multiplying for the volume of the ice to remove, calculated above (14): 

𝐸𝑡𝑜𝑡_𝑐𝑢𝑡 = 𝐸𝑐𝑢𝑡 ∗ 𝑉𝑡𝑜𝑡 = 2.7
𝐽

𝑚𝑚3
∗ 1,01 ∗ 109 = 2,727 𝑀𝐽 

The calculations show that the c energy to cut the ice is 2.7 MJ. 

4. Percussion/ impact  

In the case of percussion the scenario is of impact in axial direction to the ice with the dimension named 

above with 6 pins. The following formula was used to calculate the amount of energy to break or remove 

the ice: 

 
𝐸𝑖𝑐𝑒 =

𝑚 ∗ 𝑣2

2
 

(20) 

Where 𝐸𝑖𝑐𝑒 is the amount of energy to break/remove the ice, m is the mass and v is the velocity. 

The following assumptions were made to carry out the calculations as the speed of the 6 nails that are 

going to break the ice and the mass of these. 

v = 1, 2 and 3 m/s 

m = 1, 2 and 3 kg  

Here we calculated the energy to break or break the ice with the different data and assumptions named 

above. 

𝐸𝑖𝑐𝑒1 =
𝑚 ∗ 𝑣2

2
=
1 ∗ 12

2
= 0.5 𝐽 

𝐸𝑖𝑐𝑒2 =
𝑚 ∗ 𝑣2

2
=
2 ∗ 22

2
= 4 𝐽 

𝐸𝑖𝑐𝑒2 =
𝑚 ∗ 𝑣2

2
=
3 ∗ 32

2
= 13,5 𝐽 

The energy use to break/remove the ice is dependent of velocity and mass. 

The comparison of the methods for the same ice geometry shows that the percussion is a viable 

alternative based on an energy criterion and therefore it will be considered as such for the design process.  
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7 Design process 

The objective is to evaluate the design of the de-icing equipment to test concept and then try to improve 

a de-icing equipment or give suggestions about new designs of de-icing devices. To reach the objective 

the eight stages of the design process by Nigel Cross [29] was used. This method is an overall strategy 

from concept to detail design, outlining the nature of design thinking and setting it within broader 

contexts of product development and design process management. The process is composed by the 

following steps: 

1. Identifying opportunities 

2. Clarifying objectives  

3. Establishing functions  

4. Setting requirements  

5. Determining characteristics  

6. Generating alternatives  

7. Evaluating alternatives 

8. Improving details  

7.1 Restrictions of applicability for de-icing methods/Identifying 

opportunities 

De-icing and anti-icing methods must respect some specific mechanical, electrical and thermal 

restrictions relative to power line operation.  

7.1.1 Mechanical restrictions  

All methods used on ground wires and conductor have to withstand mechanical restrictions as 

mechanical stresses (stretching and torsion) caused by the high-amplitude low-frequency vibration, 

called galloping, of energized conductors or ground wires, created by wind , ice shedding or 

electrodynamic stresses induced by high current pulses [30] [31] . Under conductors, ground wires 

oscillate at a frequency close to the important lower order harmonics (from 0.5 to 3 Hz), but with 

amplitudes that can range from 1 m to 10 m or more, depending on the length of the section. Also, any 

device mechanically connected to the conductor, such as ferromagnetic heating rings and vibrating 

devices, could be subjected to high acceleration forces produced by wind vibrations or galloping 

oscillations. 

Therefore, the mechanical restrictions that are inherent to the installation and the dynamic behavior of 

conductors and ground wires must be taken into account in the applicability of the new methods of 

prevention and thawing currently under development. This will also help to diminish the potential of 

some new concepts based on rigid dielectric coatings [30]. Preferably, the coatings will have to be more 
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flexible, but with the same mechanical coefficient equivalent to that of the conductor or ground wire in 

which they are installed. 

7.1.2 Electrical restrictions  

The presence of high electric and magnetic fields, as well as electrical discharges and the impact of 

lightning should normally be taken into account in the development of de-icing and anti-icing methods. 

In addition, electromagnetic perturbations, caused by the high-frequency electric fields emitted by some 

devices, can interfere with military or civil apparatus and must be taken into account in the design. 

As concerns lightning, it induces very high impulse currents in connection with high voltages, together 

with large mechanically induced high temperatures and forces [32] [33]. Depending on the type of attack 

(direct or indirect), currents can be generated between 30 and 60 kA, and sometimes can reach as high 

as 200 kA in the worst cases [32]. These high currents are accompanied by voltages higher than 1 MV, 

which are generally sufficient to induce flashover on or between overhead line equipment. In fact, 

lightning can breakdown the electrical insulation of dielectric coatings or electrical tracing of such 

methods as electromagnetic expulsive sheathings and vibrating devices. Therefore, lightning can straight 

affect active anti-icing or de-icing methods, implying that the equipment’s used should be electrically 

protected from live conductors or ground wires. 

7.1.3 Thermal restrictions  

One of the major aspects that must be taken into account is the thermal energy released by the high 

current pulse of lightning. In fact, because of the short duration of the pulse, this is equivalent to high 

frequency leakage current from hundreds kHz to MHz flowing mainly to the surface of the conductor 

due to the skin effect. In this condition, most of the thermal Joule energy produced by the strike is 

dissolute at the surface of the conductor. In some cases, thermal energy is sufficient to melt the surface 

aluminum conductor fibers [33], and could consequently melt material on the surface of the energized 

conductors or ground wires. For this cause, any equipment installed on the surface of live conductors or 

ground wires, can be subjected to this kind of thermal shock, which can cause permanent damage and 

extremely reduce their life performance and expectancy.  

Now, one of the methods to ice prevention or removal is coatings, the thermal limitation of energized 

conductors must be considered. With these coatings, the convective heat loss values and the total heat 

capacity of the conductor must be taken into account in the calculation of the maximum permitted 

temperature [34]. As these coatings are permanently installed on the conductors, particular consideration 

will be paid to the thermal conductivity of the coating and the different current values suitable for the 

conductor and its prevention or de-icing coating. 
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7.1.4 De-icing equipment applicable to overhead power lines. 
 

Seven equipment were found that are used in transmission lines that comply with the restrictions named 

above. Below are listed: 

A. Design of control system for the De-icing robot on transmission line 

Liu, Hu et al. [35] designed a new type of control system for de-icing robot on high voltage transmission 

line. Using the control system, the de-icing robot can get rid of the ice of transmission line effectively. 

This also can detect the basic information and comprehend the de-icing and line inspection. 

De-icing robot (Figure 15) is built with mobile mechanism, control systems and sensing system. The 

main mechanical structure of this de-icing robot consists on walking mechanism, de-icing mechanism, 

brake mechanism, telescopic mechanism, etc. This robot has three arms that are equipped with a 

telescopic mechanism, which can manage arm scaling throughout walking. The middle arm is equipped 

with a walking mechanism, containing two walking wheels and a brake device.  

 

Figure 15 – De-icing robot [35]. 

The control system structure of de-icing robot as shown in Figure 16.  

 

Figure 16 – Representation of the control system structure of de-icing robot [35]. 
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In Figure 16, it can be seen that there are three levels in the control system structure of de-icing robot 

called remote control, organization and executive levels. The remote control is responsible for the 

coordination of levels and helping the organization level. The organization is the robot body, is the core 

of the control system. It is responsible for collecting and processing the sensor information and image. 

The executive has high accuracy and contains various motor controlled and motion controlled cards 

[35]. 

B. LineScout 

LineScout (Figure 17) was designed by Hydro-Québec TransÉnergie [36], which is an inspection robot. 

It is designed to move along single energized conductors, including one of the conductors of a conductor 

bundle, and is immunized to electromagnetic and radio-frequency interferences (EMI/RFI) from lines 

of up to 735 kV [36].  

 

Figure 17 – LineScout [37]. 

The mechanical structure of this robot is able to cross warning spheres (0,76m diameter), double 

insulator strings, vibration dampers and corona rings (Figure 18). This makes the system very versatile, 

but crossing dead end structures and jumper cables (Figure 18, e) were not included in the design 

specifications [36]. LineScout is design based on two "extremity frames" and a "centre frame" which 

guarantees the movement of the robot along the line. All are autonomous from each other. The 

"extremity frames" are constituted by a "wheel frame" and an "arm frame". The "wheel frame" includes 

two rubber "traction wheels" and a camera mounted on a pan-and-tilt unit. The "arm frame", besides 

two arms and two grippers includes other two cameras on a pan-andtilt unit and most of the possible 

application modules. The "centre frame" (white circle) hosts the electronics on board and the battery 

pack. In addition, it links the "extremity frames" and allow them to rotate and slid. LineScout has a top 

linear speed of 1 m/s, weights 98 kg and has a battery duration of 5 hours. 
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Figure 18 – (a) Warning spheres, (b) Corona rings, (c) Double insulator strings, (d) Vibration dampers, (e) Jumper 

cable located at an angle tower [37]. 

C. Expliner 

Expliner (Figure 19) was developed by HiBot Corp., in a joint project with Kansai Electric Power 

Corporation (KEPCO) and Tokyo Institute of Technology in Japan in 2008 [38]. This robot is designed 

for inspection up to four cables grouped in a bundle, and has been extensively tested in live lines up to 

500kV. The mechanical carbon fiber structure of the robot is made by two pulley units, a Tshaped base, 

a counter-weight and a manipulator with 2 degrees of freedom. Expliner carries four sensing units to 

inspect up to 4 cables simultaneously. The sensing units incorporates visual camera able to get images 

of the entire surface of the cables and laser sensors capable to identify changes in the diameter in the 

order of 0.5mm to detect internal corrosion along the line. Expliner has a top linear speed of 0.33 m/s, 

weights 80 kg and has a battery duration of 6 hours [38].  

 

Figure 19 – Expliner [37]. 

D. T21 

In Australia, researchers at the Australian Research Centre for Aerospace Automation (ARCAA), a joint 

venture between the Commonwealth Scientific and Industrial Research Organization (CSIRO) 

Information & Communication Technologies (ICT) and the Queensland University of Technology 

(QUT), designed an autonomous helicopter for power line inspection, which requires minimal operator 

input [37]. The autonomous helicopter (T21) (Figure 20) [37] [39], powered by micro-turbine, 2.2 m 

rotor diameter, from 1 to 1.5 hrs.  of durability, maximum take-off 30 kg. Their activity in particular has 
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focused to develop obstacle detection and path planning for avoidance using stereo vision and laser 

scanning to produce a 3D Occupancy Map of the environment [37] [40]. 

 

Figure 20 – T21 [37]. 

E. LineROVer 

LineROVer (Figure 21) is a remotely operated (1km max remote distance) robotic device designed by 

Hydro-Québec TransÉnergie [30] [41], which is an inspection and de-icing robot of ground wires and 

conductors. LineROVer de-icing tool based on a set of steel blades which allowing for gradually de-

icing. LineROVer is able to work on conductors with a diameter between 10 to 37 mm. It can be installed 

from a helicopter or an insulated boom truck. This can perform on transmission lines of up to 315 kV, 

but it is only made to operate down to a temperature of -10 °C and has a traction force equal to 670N. 

LineROVer weights 23 kg and has a battery duration of 45 minutes to several hours (depending on the 

task).  

 

Figure 21 – LineROVer [30] [41]. 

F. De-Icer Actuated by Cartridge (DAC) 

De-Icer Actuated by Cartridge (DAC) (Figure 22) was designed by Hydro-Québec TransÉnergie [30] 

[28] , which is a remote controlled mechanical de-icing device. The DAC consists of using a portable 

cylinder piston system that creates shock waves to de-ice the cable. The device is designed to take 

advantage of the brittleness of ice at high strain rates to create shock waves that propagate along the 

span and break the ice. This is generated with a cartridge that explodes. The DAC is a portable, robust, 

effective, and simple device that can easily be used after a line fault due to clearance violation between 

ground wires and phase conductors. The de-icing operation is carried out entirely from the ground. The 
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DAC is equipped with a revolver barrel that stocks 6 blank cartridges that can be remotely fired from 

the ground. DAC allows an average of 50 to 100 shots (dependent on ambient temperature). 

 

Figure 22 – De-Icer Actuated by Cartridge (DAC) [28]. 

G. Remotely Operated De-icing All-weather Vehicle (RODAV) 

Remotely Operated De-icing All-weather Vehicle (RODAV) (Figure 23) was made by Hydro-Québec 

TransÉnergie [42] [43], which is a de-icing vehicle. RODAV can perform on transmission line up to 

330 kV, wood poles and transformers using superheated steam (200°C). The steam is led through an 

insulated hose on a 3.8 m (retracted) and 16 m (extended) long non-conductive hydraulic telescope mast 

mounted on a truck.  The unit is operated through a remote control with a range of 300 meter. 

 

Figure 23 – Remotely Operated De-icing All-weather Vehicle (RODAV) [43]. 
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7.2 Desirable de-icing methods  

In addition to the need to respond to severe restrictions, methods in development must primarily 

demonstrate their effectiveness in removing ice accreted on ground wires and conductors. 

Because the whole idea is evaluate the functioning principle of the de-icing methods used on power 

lines, the design process by Nigel Cross [29] the second step is called clarifying objectives where all the 

characteristics desired for the de-icing elements are defined, classified and applicable.  

7.3 Clarifying objectives 

After evaluating what is there on the need of market, the following characteristics were identified: 

1. De-icing system classification 

A summary of the most notable de-icing methods developed so far and the differences between them, 

divided into two groups, conductors de-icing and ground wire de-icing, can be seen respectively in the 

Table 3 and Table 4.  

Table 3 – Conductor de-icing 

Name Mechanism 

Load shifting Use the heating effect of load currents to prevent 

conductor icing or to remove ice form from 

conductors. 

Reduced-voltage short-circuit Use short-circuit heating to melt ice on the 

conductors. 

High-voltage short-circuit Involves circulating short-circuit current at the 

rated voltage of the transmission lines and the 

subsequent action of electromagnetic forces that 

allow conductors to knock against each other to 

de-ice. 

AC/DC current AC and DC can use to heat line conductors. 

AC for small lines and DC for large lines. 
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Table 4 – Ground wire de-icing 

Name Mechanism 

Joule effect de-icing Use Joule effect to remove ice from ground wires.  

Remotely Operated Vehicle (LineROVer) Use the cut function to remove the ice from 

ground wires. 

De-Icer Actuated by cartridge (DAC) Use shock waves to de-ice the cable. 

Remotely Operated De-icing All-weather 

Vehicle (RODAV) 

Use superheated steam to de-ice the cable. 

 

2. Mobile mechanism  

A mechanism that allows access to places of difficult access and that can move in turn through the line. 

3. Remote control 

Equipment of operation used to control functionality of the device with a good range of distance.  

4. Inspection 

System able to get information of the entire surface of the power lines before and after the treatment. 

5. Transmission line  

The type of transmission lines that the equipment can perform. 

6. Speed  

The velocity at which the device operates and moves on the power lines.  

7. Weight 

The mass of the device meeting the mechanical restrictions.  

8. Power supply 

It refers to the type of energy source used to operate and move the system.   

9. Sensors  

The type of systems capable to identify changes of diameter, from ice to no-ice conditions, on the 

transmission lines. 

10. Operation temperature 

The device able to perform in extremely cold conditions. 
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11. Material  

The material resistant to ice/freezing, thermal conductivity, water vapor permeability, water, solvents 

and chemicals. 

12. Maintenance requirements 

The maintenance requirements do not have to be expensive and very often. 

The named characteristics are used to stablish the design objectives and sub objectives of the new 

proposed de-icing mechanism. Based on the design idea and on the relevance of the showed 

characteristics, the proposed relationships and interconnections between them can be seen on Figure 24, 

ordered from a higher to a lower level. 

Additionally to the characteristics named above, there are others like:  

 Navigation, defined as the process of monitoring and controlling the location of the 

device.  

 Drive system, used for controlling the speed, torque and direction of the device. 

These characteristics are important to mention because they help and are a plus to achieve the 

main objective of designing a simple and smart equipment to remove the ice on the power lines. 

 

 

Figure 24 – Design characteristics 
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7.4 Establishing functions 

In this section, the functions required and the system boundary of the new design (Table 5) are stablished 

in order to achieve the required design.  

The table shows the connection between the characteristic of the system, listed in the previous section, 

and four different categories, referring to the macro-requirements that should be met by the final product. 

The first category, simple and smart, refers to the main goal that should be achieved by the device: to 

be simple as functioning and to build and smart in the way to operate. Cleaning indicates that the device 

should carry out its main function: remove the ice from power lines. The third category, cold climates 

indicates the specific environment conditions where the device is collocated and the last category, 

optional, refers to those elective requirements that could be met by the system.  This method gives an 

overview on which parameters have to be considered during the designing of a specific component.  

Table 5 – Functions analysis 

Aspect considered Simple and Smart Cleaning Cold climate Optional 

Mobile mechanism  x   

Remote Control x    

De-icing system   x   

Inspection  x   

Material   x  

Transmission line   x   

Power supply   x  

Speed   x   

Weight  x    

Operation temperature    x  

Sensors x    

Maintenance requirements    x 

Navigation x    

Drive system  x    

 

7.5 Setting requirements  

After establishing the functions of the new design, the obtained requirements have been divided in four 

classes, shown in Table 6.  
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Table 6 – Requirements categories 

Code Description 

A These requirements must be met to obtain a stable system.  

B These requirements are given by the examiner and must be met.  

C These requirements should be met. 

D These requirements are optional. 

 

Then, all the initial requirements have been listed in Table 7 with the respective classification.  

The objective to performance specifications aim is to make an accurate specification of the performance 

required of the design solution. 

Table 7 – Specifications 

Specifications  Class 

The device needs a mechanism to move along the conductor  A 

The range of remote control needs to be around 1Km C 

The de-icing system must be a percussion system  B 

The device needs a simple inspection system  B 

Restrictions on material are given  A 

The device has to woks on conductors with a diameter between 10 to 37 mm A 

The device has a power supply duration of 1 hour C 

The speed of the device has to be between 0.33 to 1 m/s B 

Restrictions on weight are given 23 kg  B 

The device has to perform on conditions -10°C to -20°C A 

The sensors will be determined by the inspection system  B 

No maintenance plan or requirements are requested B 

The device needs a simple navigation system C 

The device needs a simple and functional drive system  C 

The device must be easy to install on the overhead line A 

 

7.6 Determining characteristics 

Quality function deployment (QFD) is a method for industrial product designers to gain information and 

insight about which technical parameters are most important in the development or improvement of a 

product. 

For this project, four different QFD analysis have been developed, each one referring to different parts 

of the de-icing machine: the de-icing system (Table 9), the mobile mechanism (Table 10), the drive 
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system (Table 11) and the remote control (Table 12). All tables are a matrix composed by engineering 

requirements and customers’ requirements and a value, explained in Table 8, is assigned to each cell in 

order to evaluate the effectiveness between them.  

Table 8 – Rates descriptions 

Symbol Meaning 

+ Weak 

++ Good 

+++ Excellent 

 

Table 9 – QFD: De-icing system 
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 Engineering opinion/ requirements 

Simple 

construction 
Controllable 

Easy 

maintenance 
Strength  

Percussion ++ +++ + +++ 

Cut ++ +++ + +++ 

Superheated 

steam 
++ + +++ ++ 

Shockwaves ++ ++ ++ ++ 

 

Requirements considered for the de-icing system mechanism are the simplicity of the construction, the 

de-icing system, the controllability and the strength to remove the ice on the transmission lines. 

Table 10 – QFD: Mobile mechanism 
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m

 

 Engineering opinion/ requirements 

Simple 

construction 
Controllable 

Easy 

maintenance 
Reliability  

Gear set ++ ++ + ++ 

Slider +++ ++ ++ ++ 

Belting +++ ++ +++ ++ 

Chain and 

sprocket 
++ ++ + ++ 

Cam and 

follower 
+++ ++ ++ ++ 
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Requirements considered for the mobile mechanism are the simplicity of the construction, the 

controllability, maintenance and the reliability. 

Table 11 – QFD: Drive system 

C
u

st
o

m
er

/d
es

ig
n

er
 

re
q

u
ir

em
en

ts
 

D
ri

v
e 

sy
st

em
 

 Engineering opinion/ requirements 

Efficiency Controllable Easy maintenance Reliability 

Electric +++ +++ ++ +++ 

Bar Linkage ++ ++ ++ ++ 

Hydraulic ++ ++ ++ ++ 

Pneumatic ++ +++ ++ +++ 

 

Requirements considered for the drive system are the efficiency of the engine, the controllability, the 

maintenance and the reliability.  

Table 12 – QFD: Remote control 

C
u

st
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er
/d

es
ig

n
er

 

re
q

u
ir

em
en

ts
 

R
em

o
te

 c
o
n

tr
o
l 

 Engineering opinion/ requirements 

Simple 

installation 
Controllable Range Reliability  

Tethered  + ++ ++ ++ 

Wireless +++ ++ +++ ++ 

Automatic  ++ ++ + + 

  

Requirements considered for the remote control are the simplicity of installation, the controllability, the 

range of working operation and the reliability. 

7.7 Generating alternatives  

The objective of the morphological chart method (Table 13) is to generate the complete range of 

alternative design solutions for a product, and hence to widen the search for potential new solutions. 

The table can be seen as a matrix, composed by several options for each component, that combined can 

generate several possible solutions.  
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Table 13 – Morphological chart 

Concepts  1 2 3 4 5 

Mobile 

mechanism 
1 Gear set Slider Belting 

Chain and 

sprocket 

Cam and 

follower 

Remote 

control 
2 Tethered Wireless Automatic stop   

De-icing 

system 
3 Percussion Cut 

Superheated 

steam 
Shock waves  

Sensors 4 Contact Optics Thermal   

Power 5 Battery 
Line 

current 
Fuel   

Drive system 6 Electric 
Bar 

linkage 
Hydraulic Pneumatic  

Navigation 7 GPS GNSS IRS   

Inspection 8 Visual/Camera Ultrasonic    

 

7.8 Evaluating alternatives 

The intention of the weighted objectives method (Table 15) is to compare the utility values of alternative 

design proposals on basis of performance against differentially objectives.  

Parameters analyzed in the selection matrix has been divided in three macro area and then each 

parameter has been evaluated with a rate between 0 and 5 as show in Table 14. Reliability is the first 

category considered, and it has been divided in two sub categories: working environment and operating 

characteristics. Working environment refers to those phenomenon, such as cold temperature, strong 

wind and precipitations that could occur in that specific environment where the device will operate. 

Instead, operating conditions refers to the technical characteristics, such as working speed and 

programmability, of the component considered. The second macro area is production. It includes those 

parameters useful to evaluate the complexity of the production process, analyzing the number of parts 

needed to produce, their complexity in terms of geometry and the number of standard parts used. The 

last category evaluated is efficiency. It considers the easiness of operation, installation, assembling, 

maintenance and transportation of the device. 

The result of the analysis is a concept composed by belting transmission system and moved by an electric 

motor supplied by a battery. The ice-removing system operates via percussion with a contact sensor 

used to evaluate the thickness of the ice layer and a camera for the inspection after the removal phase. 

A wireless remote control is used to control and manage the device and a GPS navigation system ensures 

a correct location and motion of the device on the transmission line. 
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Table 14 – Rates description 

5-points scale Meaning 

0 Inadequate 

1 Weak 

2 Satisfactory 

3 Good 

4 Excellent 

 

Table 15 – Weighted objectives 

D
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t N
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er 

Reliability (0-5) Production (0-5) Efficiency (0-5) Total  

Working environment Operating characteristics    

T
em
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re 
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S
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eed
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m
ab

le 

N
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m
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er o
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C
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ity

 

U
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 p

arts 

E
asy

 to
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E
asy

 to
 in
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E
asy

 to
 assem

b
le 

E
asy

 to
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E
asy

 to
 tran

sp
o

rt 

M
o

b
ile m

ech
an
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Concept 1,1 3 3 4 4 - - - 5 5 5 3 - 32 

Concept 1,2 3 3 4 4 - - - 5 5 5 3 - 32 

Concept 1,3 4 4 4 4 - - - 5 5 5 4 - 35 

Concept 1,4 3 3 4 4 - - - 5 5 5 3 - 32 

Concept 1,5 3 3 3 4 - - - 5 5 5 4 - 32 

R
em

o
te 

co
n

tro
l 

Concept 2,1 - - - 5 - - - 1 1 - 2 1 10 

Concept 2,2 - - - 5 - - - 5 5 - 5 5 25 

Concept 2,3 - - - 5 - - - 3 5 - 5 5 23 

D
e-icin

g
 sy

stem
 

Concept 3,1 5 5 4 5 4 4 4 5 3 4 3 5 51 

Concept 3,2 5 5 4 5 4 4 4 5 3 3 3 5 50 

Concept 3,3 5 5 5 4 3 3 4 5 3 2 3 2 44 

Concept 3,4 5 5 4 5 3 3 4 5 3 3 3 5 50 

S
en

so
rs 

Concept 4,1 5 5 - 5 - - - 4 4 4 4 4 35 

Concept 4,2 5 3 - 3 - - - 4 4 4 4 4 31 

Concept 4,3 5 4 - 5 - - - 4 4 4 4 4 34 
P

o
w

er 

Concept 5,1 3 5 - - - - - 5 5 - 5 4 27 

Concept 5,2 5 5 - - - - - 5 3 - 3 5 26 

Concept 5,3 5 5 - - - - - 4 3 - 4 3 24 

D
riv

e sy
stem

 

Concept 6,1 5 5 - 5 - - 5 5 5 5 5 4 44 

Concept 6,2 5 3 - 3 - - 5 4 3 3 3 3 32 

Concept 6,3 3 4 - 2 - - 5 3 3 4 3 3 30 

Concept 6,4 5 5 - 3 - - 5 5 5 5 3 3 39 

N
av

ig
atio

n
 

Concept 7,1 - - - 5 - - - 5 5 - 5 5 25 

              

Concept 7,2 - - - 5 - - - 4 5 - 5 5 24 

Concept 7,3 - - - 5 - - - 3 5 - 5 5 23 

In
sp

ectio
n
 

Concept 8,1 5 4 4 3 - - - 5 5 5 4 4 39 

Concept 8,2 5 4 3 4 - - - 5 5 5 3 3 37 
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7.9 Improving details  

The main goal of the value engineering method is to increase or maintain the value of the product to its 

purchaser whilst reducing the cost to its producer. 

Different aspect have been considered in order to improve the design after the first implementation. 

These are listed below.  

1. Utility  

It measure the performance on two aspects. First accuracy in the ice removal process and on inspections 

reports based on multiple sets of accurate data, and second efficiency, which allows to work in multiple 

spans.  

2. Reliability  

It is defined as the freedom from breakdown and malfunction or as the performance under varying 

environmental conditions. It is evaluated by the versatility of the device, which should be equipped with 

sensors and tools to perform a wide range of de-icing and inspection, by the ruggedness, for ensure the 

use in hostile environments and at last by the continuity of service, for ensuring the simplicity of 

installation and operation. 

3. Safety  

It is ensured with a design for a use in hard-to-reach locations, reducing risk and increasing stability and 

reliability. It can be improved enhanced worker health and safety 

4. Maintenance  

5. Lifetime  

A long lifetime offers good value in the initial purchase price. 

6. Cost  

Reducing costs through deferring capital spending ensure improvement of the product.  

7.10 Material selection 

Once the concept of the product has been chosen, it is necessary to proceed to a different stage of the 

designing process. In this phase, the main goal is to select a material as strong as possible to meet the 

products performance goals. It is important to highlight that the selection process has been done only 

for the core of the device: the percussion de-icing system.  The four steps of the material selection 

process are listed below.  
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1. Functions  

The first step of the material selection process is to define the function of the tool, which is to remove 

ice formation on the transmission lines. 

2. Objectives  

In the material selection process, it is necessary to establish which variable need to be maximize and 

which need to be minimize. Weight, brittleness, friction and heat transfer must be minimized to have a 

light material product with minimum friction and heat losses and low liability to break. On the other 

hand, hardness has to be maximized.  

3. Constraints  

Constrains are defined as specific requirements that should be met by the material suitable for the device. 

The material should have an excellent response under cold and rainy conditions to prevent corrosion 

phenomenon, and it should resist at friction and shock against ice, to prevent its damage or break.  

4. Choice of material  

Using the software CES EduPack 2017 [44], it was possible to reach a certain number of possibilities 

setting those restrictions or limits defined in the previous steps, related to the performance goals 

established for this de-icing device. Then, minimum working temperature, resistance at fresh and salt 

water and thermal conduction has been set at first stage. 

Figure 25 shows material resulted suitable plotted in a Density-Price chart.  

 

Figure 25 – Material selection chart 
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Considering the low density, related with a low weight, titanium alloys and commercially pure titanium 

are the most desirable choice, but, on the other hand, they are expensive and difficult to produce. Nickel-

chromium alloy is the worst selected candidate for selection since it has a high density and cost. Despite 

its high density, stainless steel shows the lowest cost per kilo, an excellent hardness and a great easiness 

of production.   

Considering the objectives listed above, the best choice for the de-icing tool result the stainless steel.  

8 Experiment  

This is a proposal to made the ice and do the experiments because due for time restrictions it was no 

possible to do them. Nevertheless, it is important to report that the experiments were planned and 

designed to test the proposed idea. 

This experiment can be conducted in a climatic room inside the Mechanical Laboratory at UiT the Arctic 

University of Norway, campus Narvik. A could chamber, in which the temperature could be controlled, 

should be used. Before the experiment it is necessary to put the conductor into a PVC pipe with a 

diameter and a length to calculate and define. The PVC pipe has to be filled with water and then sealed. 

After sealed, it should be put into the cold chamber for 48 hours. After freezing, the PVC pipe should 

be removed and a cylindrical icicle with a specific diameter and density will be shown around the 

conductor.  

It was planned to do two types of experiments once the ice was created as it is named above. One of the 

experiments was to calculate the amount of force necessary to break the ice by dropping amounts of 

mass into the ice and thus be able to make the corresponding calculations. The other experiment was to 

place the proposed percussion method in axial direction to test the tool and make calculations and 

analysis on it. 
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9 Final design  

It is necessary to generate some initial design and sketches (Figure 26) before any of the final design. 

This is the most creative part of designing. As the engineer architect, Santiago Calatrava said:  

To start with you see the thing in your mind and does not exist on paper and then you start making 

simple sketches and organizing things and then you start doing layer after layer [45]. 

Then, the final sketch and the modelling are made with a desired software. The CAD design is made by 

using SolidWorks by MsS. Enrique Santos formed student of UiT. It is a whole assembly consisting of 

small parts connected to each other. The percussion plus rotation mechanism proposed in this work will 

use an internal motor that will activate six steel pins that will hit the surface of the ice in the axial 

direction. The energy transmitted by the pins will produce fractures in the front layers that will grow in 

the ice body. So, the rotation element comes along to induce a momentum on the ice that will break the 

ice. The final design shown in the Figure 27 and Figure 28. 

Figure 27 – Percussion de-icing system 

Figure 26 – Sketches 
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Figure 28 – De-icing device 

9.1 Prototype 

The prototype referred here only includes the percussion mechanism based on the interaction of six pins 

but not a full de-icing equipment. At UiT the Arctic University of Norway, campus Narvik only the de-

icing system have been produced, where three parts of the prototype are made with the 3D printer. These 

parts are stem guide, case and spacer. The rest of the parts are made in the CNC machine at the university 

with the respective G-codes (Appendix 2 for more details). Percussion power is stablished as function 

of the mechanical properties of ice, show in Table 2, and the velocity imposed as working pace. It is 

important to highlight that the geometry has a principal role, because the percussion will be applied to 

the side of the accumulated ice, which corresponds to the angular form, having the internal diameter the 

same as the external dimeter of the wire and the external diameter as the ice accumulated diameter. 

 

 

 

 

 

 

 

 

Motor 
Percussion de-icing system  

Battery 
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10 Conclusion and future work 

A Percussion/rotation de-icing method to maintain the working condition of electricity distribution 

systems is presented. In principle this method can be adapter to a device as the basic engineering showed 

in final design section and fulfil the conditions of overcome the three main constrains for any de-icing 

mechanism. The model was made concentrated in the operating method to remove the ice from the 

power lines. Power calculation are related with the ice properties and the imposed working velocity. 

This mechanism take advantage of the fragile condition of the ice in combination with the most 

vulnerable geometrical constrain of the ice geometry, additionally, imposed impact forces in the axial 

direction will produce less effect on the towers that the application of the same force in the radial 

direction. 

As future work, it is possible to continue working with de-icing device to make it more detailed and 

even better adapted for the purpose with thinking of motor, mobile mechanism, drive system, navigation, 

power supply, weight, inspection system, etc. It is recommended also to include a cost analysis of this 

project, evaluate risks, strengths and weaknesses of the proposed project and find other possible 

solutions that could be applied for de-icing of power lines and do the experiments named above. 
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Appendix 1 – Technical drawings  
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Appendix 2 – G-codes  

Part 1 – Head 
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Part 5 – Main Body  
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On 04.02.2018, there was an academic technical visit to Chongqing .This academic visit is a part of the 

join collaborative project Study of atmospheric icing on structures in high north between The Arctic 

University of Norway and Chongqing University. The project is funded by the Norwegian Center for 

International Cooperation in Education (SIU). 

The purpose of the excursion was to gain an insight into how anti-icing and de-icing system take place 

in practice and the ice accretion. The excursion was completed a little on the project. By doing so we 

could quiet relevant questions that had appeared along the way while we had it necessary theoretical 

background to understand the processes that took place. 

We departed from Narvik at 08:48. The journey took about 15 hours, and as agreed we met at the airport 

in Chongqing. Here we were welcomed by the professor Hu Qin, then the next day we went to the 

research station localized in Xuefeng Mountain. First, we got an introduction about the equipment and 

the experiments that can be done in the station and how they are related to our study and thesis. 

After this we made a schedule of the experiments in the station: Related to the thesis topic as ice 

accretion on the conductors over the time in a realistic scenario and evaluate the working principle of 

the solution for anti-icing and de-icing on the conductors. Based on the weather predictions we started 

the experiments, but unfortunately the climatic conditions for the experiments were not given. We did 

an experiment of flash over insulator with only ice and with ice and pollution which relates to our study. 

Finally, we visited the laboratory of the University of Chongqing and we received information about the 

equipment and the experiments that are carried out there.  

We were very well received and the visit was very educational. Excursions also gave a great deal 

motivation to continue the further work on the task. In addition, the visit provided a lot of important 

information regarding anti-icing and de-icing systems. We came back to Norway on 24.02.2018. Twenty 

one days were allocated for the excursion.  

 

 

 

 

 

 

 

 


