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Preface

This thesis is submitted as partial fulfillment of requirements for the degree of Master of
Science in Electrical Engineering at the Arctic University of Norway. It was carried out
in the autumn semester of 2017 and spring semester of 2018, in cooperation with SINTEF
Digital in Trondheim.

The idea of this project came out quite unexpectedly less than one year ago. At that time,
the author was considering topics for his master thesis, and one of the ideas was investigating
auto-tuning algorithms for controllers of synchronous machines. Then, in a summer weekend,
he met his neighbor Giancarlo Marafioti at the garden of their house and told him about his
idea. Giancarlo soon became interested, as he has extensive knowledge in model predictive
control.

With further exploration and brainstorming in the next month, both recognized that the
techniques required for auto-tuning of controllers could also be used for smart grid appli-
cations, such as condition monitoring and assessment of power grids. The author sketched
some of these initial ideas in a document, and Giancarlo suggested a presentation for his
employer, SINTEF Digital.

In late August these ideas were presented to Geir Mathisen, at that time, Senior Re-
searcher at SINTEF Digital and part-time professor at NTNU. These were reviewed and
streamlined during a meeting in September, at which the main points for a master project
were outlined. Finally, in late September, the proposal was presented to Trond strem,
coordinator of the Master in Electrical Engineering at UiT, and approved by the faculty.

The result of this unusual project is presented in the next pages. It is assumed the reader
is familiarized with basic concepts in linear algebra, control theory, analysis of electric ma-

chines and power systems.

Trondheim, 2018-06-10

Erick Fernando Alves
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Executive Summary

This work investigates and implements algorithms for reliable parameter identification for
salient pole synchronous machines that can be used for condition monitoring, on line assess-
ment of the power grid, and adaptive control.

All these applications are steps necessary to enable a smarter power grid, in which seam-
less integrated digital technology provides state estimation, fault detection, and self-healing
functionalities, with the ultimate goal of ensuring a reliable supply of electricity, and reducing
vulnerability to natural disasters or attacks.

Considering that accurate modeling of a synchronous machine is an involved task, its
model is first revised and its parameters defined. Thereafter, focus is given to develop an
observer for damper winding currents, as these variables of the model are not readily available
from measurement instruments in a power plant. Moreover, based on this machine model, an
optimal observer for all inputs and outputs variables is developed. The goal of this observer
is handling noise and correcting possible deviations in measurements caused by uncertainty
of instruments or effects not included in the model. Validation of both observers shows high
correlation with the reference model from Simscape Power Systems and low sensitivity to the
load condition of the machine. It also shows the optimal observer maintain goodness of fit
under a standard noise scenario.

With a model defined and inputs and outputs available, focus is given to the selection of
an estimation algorithm. Recursive Least Squares is chosen based on three criteria: availabil-
ity in the System Identification Toolbox of Simulink, possibility for near real-time execution,
references in the literature available for comparison. With simplifications, 8 out of 13 param-
eters from the synchronous machine model are reliably estimated by the proposed algorithm.
Estimations have very small percentage deviations from data sheet values, are in line with
those reported in the literature, and are largely insensitive to noise and load conditions.

Lastly, the non linear effects of magnetic saturation is evaluated in the optimal observer
and parameter estimator. When saturation is enabled in the reference model, the optimal
observer is able to compensate its effects for all variables, except for one of the indirectly
estimated values. This causes larger deviations in the estimation of one parameter that is
directly affected by saturation. However, there is no direct correlation between the amplitude
of this deviation and the saturation level, as one would expect. This leads to the conclusion
that saturation effects must be included in the machine model.

Finally, it is presented a simplified model for saturation that can be easily integrated
into the machine model, together with alternative methods and algorithms to estimate the
remaining parameters of the synchronous machine. Despite their limitations, results pre-
sented can already be used for practical condition monitoring applications, such as detection

of turn-to-turn short circuit and air-gap eccentricity.
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Chapter 1
Introduction

This chapter gives an overview of the thesis topic and how the remaining part of the report

is organized.

1.1 Background

“Applications of sound principles of planning, design, and operation - not revolutionary
changes - are what is necessary to obtain satisfactory levels of reliability” Concordia (1968).

Synchronous generators are the bulk of power generation worldwide. In Norway, 95% of
the electricity production comes from hydro power (NVE, 2017), in which the use of salient
pole, synchronous generators is the norm. Therefore, the proper understanding of these
devices is essential for planning, operation, and control of the power system (Kundur et al.,
1994). Examples of tasks requiring adequate modeling and parametrization of synchronous
machines includes load flow analysis, state estimation, stability assessment and tuning of
grid controls and protection settings. These tasks are essential for a Transmission System
Operator (TSO) or generation company to operate power system resources optimally and
reliably.

Traditionally, synchronous generator parameters are calculated by manufacturers in the
design phase using detailed information of the machine (Canay, 1969; Jackson and Winch-
ester, 1969) or recursive methods such as Finite Element Method (FEM) analysis (Bianchi,
2005). Calculations are later validated during commissioning through acceptance or per-
formance tests as described in IEEE and IEC Standards (IEEE, 2010; IEC, 2008). These
methods for parameter identification of synchronous machines are well-proven and being used
for decades to operate the power system reliably. However, they have two major shortcom-
ings.

The first is considering that many parameter values in the system equations are constants

and do not vary with time. However, several effects may impact the values of machine param-
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eters over time. For example, temperature and load affects the air-gap length considerably
(Dajaku and Gerling, 2012); field current level determines the saturation of the magnetic core
(de Mello and Hannett, 1986); aging influences material properties. The reason for adopting
this restriction is simplifying the analysis of equations, which was done manually when the
theory for synchronous machines was developed. Paraphrasing Canay (1993b), the availabil-
ity of powerful Information and Communication Technology (ICT) tools today makes such
simplifications neither reasonable nor justifiable.

The second shortcoming is requiring the machine to be in standstill or off-line for per-
forming the majority of tests for parameter estimation. Since this means loss of income for
generation companies, tests are only executed during commissioning or planned stops. This
limits greatly the amount of data and possible operational conditions that can be measured.
In Norway, Statnett requires the registration of generators’ parameters in SYSBAS for at
least two weeks before commissioning, and an update with measured values after the ma-
chine starts commercial operation (Statnett, 2012). Yet, there is no requirement for periodical
updates nor registration of distinct parameter values for different operational conditions.

An analogy for this second shortcoming is trying to forecast the weather for the next week
in a certain area by taking relevant measurements once a day for 15 consecutive minutes, let’s
say from 08:00 to 08:15. For sure, by having this data over a decade, it is possible to forecast
events such as dry or rainy season, the warmest and the coldest months of the year, the
expected amount of rain or snow in a certain month. However, accuracy would be really low
and one cannot expect a precise, hourly forecast of temperature or wind speed and direction
based on this system. When the electric grid is operated closer to its limits, a more precise
forecast of system parameters is a required feature for better state estimation and stability
assessment (Bush, 2014).

1.2 Motivation

The main motivation of this master thesis is to investigate and implement algorithms for
reliable parameter identification for salient pole synchronous machines. This can improve
the state estimation of the electric grid with minimal disruption of the normal operation of
the machine (Heydt et al., 2005) and consequently reduce uncertainties.

Moreover, storage of parameters values in a database together with the proper ICT in-

frastructure can enhance other applications such as:

e Condition monitoring: long-term changes in parameters indicate generator problems,

such as rotor and stator windings turn-to-turn short circuit and air-gap eccentricity,

and their proper monitoring can avoid catastrophic failures;



CHAPTER 1. INTRODUCTION 4

Stability assessment: on line, accurate evaluation of power transfer limits, rotor angle

and voltage stability can avoid large blackouts;

Adaptive control: auto-tuning and gain-scheduling in the Automatic Voltage Regulator

(AVR) and conditional settings in protection systems can increase stability and extend

the operational range of some systems.

1.3 Problem formulation

The main goal of this master thesis is answering the following questions:

What are the parameters of a synchronous machine?
How non linear effects such as saturation affects them?

How can parameters be estimated during normal operation, i.e. without taking the

machine out of service?
What are the effects of noise in the performance of the estimation procedure?

Which of the parameters can be reliably estimated?

The actions below aims to obtain answers to these questions:

1.

Review the literature: investigate and evaluate the state-of-the-art in estimation of

parameters for salient pole synchronous machines based on off-line and on line mea-

surements;

. Model the machine: derive a mathematical model for a salient pole synchronous ma-

chine including the effects of saturation;

. Validate the model: compare results of this derived model against the ones available

in benchmark tools such as Simscape Power Systems (SPS) using data from a real

machine;

Create an estimation procedure: implement and test algorithms in MATLAB/Simulink

to estimate parameters of an advanced, non linear model in the benchmark tool;

. Assess sensitivity: investigate the effects of noise in the estimation procedure and the

sensitivity to it.
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1.4 Limitations

The following limitations are taken into consideration:

e The algorithms for estimation of parameters run with the machine on line, and without
taking it out of service, performing difficult and time-consuming tests or involving large

perturbations;

e The required input data to the algorithms is based on common measurements available

in a power plant, i.e. there is no need to install additional transducers in the machine;

e Focus is given to salient-pole, synchronous machines, since these are the bulk of power

generation in Norway;
e Saturation effect is considered, since this affects considerably some parameter values;

e The data acquisition problem is separate from the parameter identification, i.e. it is
assumed input data is available in a database and bad data detection and rejection was

executed beforehand. However, the effect of measurement noise is considered.

1.5 Related work

Analysis, modeling and parameter estimation of synchronous generators is a century old
problem in electrical engineering. However, it is still an active area of research today, due to
its complexity and importance for power system planing, operation, and control.

A better understanding of electrical machines becomes necessary with the installation of
the first commercial power systems at end of the 19th century. André Blondel is one of the
first to study the coupling of synchronous generators to a large electric grid. His investigations
led to the publication in French of “Empirical Theory of Synchronous Generator” in 1899,
introducing the two-reaction theory (Capolino, 2004). This work is later expanded and
translated into English (Blondel, 1913).

Due to a rapid expansion of the power industry, the interwar period is one of the most
prolific in this research area. Several seminal papers are published in this period, including
the abridgment of synchronous machines by Doherty and Nickle (1926, 1927, 1928, 1930),
the generalized two-reaction theory by Park (1929, 1933), the methods for calculation of
machine parameters by Kilgore (1931) and their determination by tests by Wright (1931), the
extension of the two-reaction theory to study the machine connected to any type of balanced
load by Concordia (1937) and the first state-space representation of electrical machines by
Kron (1938).
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In the postwar period, the exponential growth of the power system continues and efforts
are focused on the documentation of the body of knowledge and its standardization using a
formal mathematical approach. “AIEE 503 - Test Code for Synchronous Machines”, arguably
the first standard in the field, is published in 1945 (IEEE, 1983). Rankin (1945) establishes
one of the most accepted per-unit bases for the rotor quantities. Also, the first editions of
several influential books are printed in this period. Examples are the ones reviewing the
theory and performance of electrical machines by Concordia (1951) and Adkins and Harley
(1975); and the ones about power system stability by Crary (1947), Zdanov (1948) and
Kimbark (1950). Finally, IEEE Std115 is published in 1965, the first international standard
with test procedures for synchronous machines (IEEE, 1983).

The increased availability of computers in the 1960s allows development of more detailed
and precise models by Kron (1967), Canay (1969) and Schulz et al. (1973). This leads to a
better agreement between calculated and measured values of transient cases in simulations
(Dandeno et al., 1973; Dineley and Morris, 1973; Dandeno et al., 1974). Hence, test methods
to determine the parameters of these detailed models are soon developed by Yu and Moussa
(1971), Lee and Tan (1977) and de Mello and Ribeiro (1977). Those lead to a general revision
of IEEE Std115 in 1982 (IEEE, 1983).

In parallel, developments in control theory, electronics, and measurement equipment,
brings the first methods of identification in the frequency domain by Manchur et al. (1972)
and Shackshaft (1974). As consequence, standstill (Coultes and Watson, 1981) and on line
frequency-response tests emerge (Dandeno et al., 1981). Not least, attempts to model sat-
uration dynamically are done by Fuchs and Erdelyi (1973), Shackshaft and Henser (1979),
Namba et al. (1981a), de Mello and Hannett (1986) and El-Serafi et al. (1988).

In the 1990s, several authors, such as Canay (1993b), Wang (1995), Kamwa et al. (1997)
and Levi (1998), take advantage of Moore’s law effects and develop very precise, high-order,
non linear models including several rotor circuits and dynamic effects of saturation. Also,
the increased popularity of frequency response methods culminates with their incorporation
in the revision of IEEE Std115 in 1995 (IEEE Power Engineering Society, 1996). At the
same time, Kamwa et al. (1990), Fairbairn and Harley (1990), Canay (1993a), Huang et al.
(1994), Wang et al. (1994) and Tsai et al. (1995) make use of different approaches using
system identification to develop automated procedures for parameter identification.

Later on, automated procedures for synchronous machine parameter identification are
encouraged by the popularization of system identification techniques and their easy access in
mathematical tools such as MATLAB® (Ljung, 2012). Methods are varied, but approaches
can be summarized in analysis of transient data, such as short-circuit or load rejections;
and frequency response tests, with injection of perturbations in standstill, off-line or on line

operation. Successful examples of such automated procedures are extensive in the literature
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and are described by Verbeeck et al. (2000), Bortoni and Jardini (2002), Karayaka et al.
(2003), Kyriakides et al. (2005), Dehghani and Nikravesh (2008), among others.

1.6 Outline

e Chapter 2 introduces the synchronous machine equations, model and parameters used
in the thesis.

e Chapter 3 present details about the implementation of an optimal observer for the in-
puts and outputs variables of the synchronous model described in the previous chapter,
and how this observer performs in several simulation cases and noise scenarios when

compared to the synchronous machine model available in Simscape Power Systems;

e Chapter 4 describes the algorithm for parameter estimation used in this thesis, and
how it performs in the same simulation cases and noise scenarios evaluated in the

previous chapter;

e Chapter 5 verify the effect of saturation in the observer and estimation algorithms,

and also describes how this effect can be modeled;
e Chapter 6 presents conclusions, discussion, and ideas for further work.

e Appendix A contains an automated report of the Matlab Simulink model developed
for this thesis.

e Appendices B to D contain figures with results of the several simulations for valida-
tion of the thesis synchronous machine model and the parameter estimation algorithm.

They are not included directly in the main chapters for the sake of brevity.



Chapter 2

Synchronous Machine Equations and

Parameters

“There is probably more literature on synchronous machines than on any other device in
electrical engineering. Unfortunately, this vast amount of material often makes the subject
complex and confusing.” Sauer et al. (2017)

To avoid such confusion, a review of the dynamic model of the synchronous machine is
performed in this chapter. For the sake of clarity, the model is derived step by step, and
effects such as the type of neutral grounding are included gradually. At the end of this
chapter, the reader should be able to understand the mathematical model used in the rest of
this thesis and the meaning of its parameters.

It is assumed the reader is familiarized with analysis of electric machines, therefore there
is a limited description of physical concepts and a high level of abstraction. If this assumption
is not correct, the author recommends referring to Mohan (2012, ch. 5) and Mohan (2014,
ch. 2 and 3) before continuing further.

The notation adopted follows the IEEE convention (IEEE, 1969) and the mathematical
model presented is based on the work of Machowski et al. (2008, ch. 11). Moreover, the

following assumptions are made:

1. The three-phase stator winding is symmetrical, sinusoidally distributed and is wye/star

connected;
2. The capacitance of all windings is neglected;
3. Each of the distributed windings is represented by a concentrated winding;

4. The change in the inductance of the stator windings due to rotor position is sinusoidal

and does not contain higher harmonics;
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Figure 2.1: The windings in the synchronous machine and their axes (Machowski et al., 2008,
p. 434)

5. Hysteresis losses are negligible but the influence of eddy currents is included in the
model of the damper windings;

6. The magnetic circuits are linear (not saturated) and the inductance values do not

depend on the current.!

2.1 Flux linkages in the (A, B, C) reference frame

Figure 2.1 shows a schematic cross-section of a synchronous machine with their windings and

axes, with:
e a three-phase stator armature winding (al, a2, bl, b2, cl, c2);

a rotor field winding (f1, £2);

e two rotor damper windings, one in the direct axis (D) and another in the quadrature

axis (Q);

e the static axes of the stator reference frame (A, B, C), where the center of phase A is

used as reference;
e the rotating axes of the rotor reference frame (d, q);

e the rotor position () in relation to the A-axis, where v =~y + wt.

!Later on, chapter 5 presents an algorithm to account for saturation effects.
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The flux in each winding depends on the currents in all other windings as they are all

magnetically coupled. This can be represented by the matrix equation below:

or, in compact form:

Where:

Lap Lag iA
Lgp Lpg B
Lep Leg ic

ICA OB 00 0f ZCB eq (2.1)

Lac i Lay
Lpc | Lpy
Leo | Lcy
Lyc | Lyy
Lpc | Lpy
Loc | Loy
Ls ' Lsr
L Ly

Lip  Lyq if
Lpp Lpg 155
Kol

] [ j/,‘?@, ] (2.2)
1rDQ

e Lg submatrix of the stator self- and mutual inductances;

e Ly submatrix of the rotor self- and mutual inductances;

e Ly submatrix of the rotor to stator mutual inductances.

Most of the elements forming the inductance matrix in eq. (2.1) are dependent on the

rotor position. In particular, for salient pole machines, they are subject to periodic changes

due to the saliency of the rotor. Considering the assumptions outlined in the introduction,

these inductances are represented by a constant component and a single periodic component.

When the rotor d-axis aligns with the axis of the phase windings, the reluctance of the

flux path is minimum. This is when the maximum value of the self-inductance of each stator

phase winding is reached. The minimum reluctance occurs twice for each rotation, hence the

stator self-inductances have the form:

Ly =Ls+ ALgcos 2y

2
Lpp = Lg + ALg cos (27 — gw) (2.3)

Lco = Lg + ALg cos (2

4
— -
773

Considering the stator windings are shifted in space by 120°, the mutual inductance

between them is negative. Also, the magnitude is maximum when the rotor d-axis is halfway
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between two of the stator windings axes. Thus, the stator mutual inductances have the form:

1
Lagp = Lgas = —Mg— ALg cos (27 + §7T>
Lpc = Leg = —Mg — ALgcos (2’}/—|—ﬂ'> (24)
5
LC’A = LAC’ = —MS — ALS COS (2’)/ + gﬂ')
The mutual inductances between stator and rotor windings have a positive maximum
when the axes of a stator winding and rotor winding align and have the same positive flux
direction. They have a negative minimum when the flux directions are in opposition and are

zero when the axes are perpendicular. In summary, the rotor to stator mutual inductances
have the form:

2 4
Laf=Lsgy= Mscosy Lps= Lsg= M;ycos (7 — gﬂ') Lcy = Lsc = My cos (7 — —7T)

3
(2.5)

2 4
LADILDA:MDCOS’Y LBDILDB:MDCOS ’)/—gﬂ' LCD:LDC:MDCOS ’y—gﬂ'
(2.6)

2 4

Lag = Lga = Mgcosy Lpg= Lgp = Mg cos ’}/—gﬂ' Lcg = Loc = Mg cos 7—§7T
(2.7)

The rotor self inductances do not depend on the rotor position and are constant. Not
less, the rotor mutual inductances are zero, since the d- and g-axis are perpendicular to each
other:

LfQ = LQf = LDQ = LQD = O; Lff = Lf; LDD = LD; LQQ = LQ; LfD = LDf (28)

2.2 Flux linkages in the (d, q, 0) reference frame

Each phasor (voltage, current or flux linkage) in the stator reference frame (A, B, C) can
be transferred into the rotor reference frame (d, q) by a linear transformation dependent on
the rotor position ~y. In this case, the inverse transformation from (d, q) to (A, B, C) is not
unique, i.e. an isomorphism as defined by Lay et al. (2016, ch. 4.4).

To achieve an isomorphic transformation, it is necessary to include an additional coor-
dinate, which is usually the zero-sequence as defined by Clarke (1943) in the method of

symmetrical components. This tensor is referred in the literature as the dq0-transformation
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(Lipo, 1984), and is given below:

| 2 | 4
i Bq cosy Bgcos | v — §7T> Bgcos | v — §7r> iA
R T e /At R /A’ R W (N I
o | T | Bysiny ! Bysin (y— S i Bysin [y — o7 B (2.9)
i ! 3 ! 3 :
0 | e N ic
Bo 5o Bo
or, in compact form:
g0 = Wiapc (2.10)

where 4, B,, Bo are arbitrary, non-zero coefficients introduced due to the change of refer-
ence frame.

Since the dq0-transformation is an isomorphism, the inverse transformation exists accord-
ing to the invertible matrix theorem (Lay et al., 2016, ch. 2.4) and is uniquely determined
by:

iapc = Wi (2.11)

In order to make the transformation orthogonal, i.e. W= = WT_ the coefficients are
chosen as B; = —/2/3,8, = 1/2/3,80 = 1/+/3. This gives the following transformation

matrix:

2 ! 2 4
W = 3 sin sin <’)/—§7T> Lsin(fy—§7r> (2.12)

This choice of coefficients also make the transformation power invariant, i.e. the power
calculated in both the (A, B, C) and the (d, q) reference frames is identical. This property
will be extremely useful when deriving the per-unit (pu) model in section 2.5.

The special case? of the dq0 transformation where the rotating speed of the (d, q) reference
frame is the same as the rotor speed (w) is usually referred to as Park transformation, in
tribute to Robert H. Park. However, the original transformation proposed by Park (1929)
was not orthogonal, and was later rectified by Concordia (1951).

Considering that rotor currents, voltages and flux linkages are already in the (d, q) ref-

erence frame, no transformation is necessary for them. Therefore, it is possible to write flux

2The (d, q) reference frame may have a rotating speed different from the rotor. This is particularly useful
for analysis of asynchronous machines, although would not make any sense for a synchronous machine.
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isBC _ w0 idq0

Substituing eq. (2.2) into eq. (2.13), one obtains:

linkages and currents as:

D Apc
0 1

e

®ipg

[ Do | [ W 0] Le Ler | [ W 0] i
®po 0 1||LL Lp 0 1| img
Pao | _ | WLsW ' Wi | | i
®/pg LigW™" 1 Lg | | irpo
The sub-matrices from eq. (2.14) can now be calculated:
[ Las Lap Lac | [ Ly
WLsW ' =W | Ly Lpp Lpc | W '= Ly
| Lca Lep Lec | i L,
Laf Lap Lag | [ kM kM)
WLSR =W LBf LBD LBQ W_l - k,’Mq
| Loy Lep Leqg | i
LI,W™ =L, W7 = (WLgp)"
Where:
® LO = LS — ZMS;
3
® LdZL5+M5+§ALS;
3
® Lq :LS+MS— §ALS;
3
k= 4/2.
With that, eq. (2.14) can be expanded into:
o, | [ L kM kM IR
@q Lq I kMQ Zq
Py | Lo | io
(I)f B k‘Mf | | Lf LfD 133
dp kMp i LfD Lp 1D
(I)Q ‘rk?MQ ; | | LQ Q

13

(2.13)

(2.14)

(2.15)
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Figure 2.2: Three sets of fictitious perpendicular windings representing the synchronous
machine (Machowski et al., 2008, p. 438)

From eq. (2.15), one can rewrite three independent set of equations:

®y = Loio (2.16)
o, | [ Lq EM; kM) iq
o, | = 1| kEM; Ly Lp if (2.17)
¢p | | kMp Lyp Lp iD
®, | _| L kMg iy (2.18)

The dq0-transformation can be interpreted as substituting the effects of the three-phase
stator armature windings shifted in space by 120° (al, a2, bl, b2, cl, ¢2 in fig. 2.1), by
three fictitious rotor windings all orthogonal to each other (d, q and 0 in fig. 2.2). The
greatest advantage of orthogonality is the absence of magnetic coupling among the windings

in different axis, reducing the number of parameters in the model and simplifying the analysis.

2.3 Voltage equations

The application of Kirchhoff’s voltage law in the windings circuits of fig. 2.1 leads to:

V4 R4 P,
VB Rp d,
R Be _ 4 % (2.19)
—Up Rf dt (I)f
0 Rp op
U I Rq | [ @
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Note that v; has negative sign due to the generator convention used. Also that vg = vp =0,

since D and Q windings are short-circuited. It is also possible to write eq. (2.19) in compact
vagc | _ | Rase igpc | d
A Ripg | | ifpe | dt
Application of the dq0-transformation in eq. (2.20) develops into:
w-! vapc | _ | Rasc w-! iapc
L] | vipg Rpq 1] | i
d w-!
dt 1
Vago | _ W Rapc
V§DQ 1 Rfpq
A% d w1
1 | dt 1
Vigo | _ WR W idq0
ViDQ Ripq | | irpe

lw d | W@,
1| dt

®/pQ
Now, assuming the resistance of each of the stator phases is identical, i.e. R4 = Rp =

form:

®
ABC (2.20)

®pg

P apc

0%

(2.21)

Rc = R, and considering R g is a diagonal matrix, one finds that:
WRscW '=RWW '=R1=R (2.22)

Also, the following equation is derived when considering that v and consequently W are

functions of the time:

d d

d
% (W_lq)dq()) = E (W_l) quO + W_l— ((I)dqg) (223)

dt

Multiplying eq. (2.23) by W on the left:

And noting that

Cwwr= Ls Sy W W (Wm0 WO (W) = - (w)yw
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Equation (2.23) now becomes:

d

W—
dt

(Wi ®4p0) = —— (W) W @0 + — (Pago) (2.24)

Last but not least, it is possible to define:

(2.25)

which is known as the rotation matriz (Machowski et al., 2008, p. 441), as it introduces
terms into the voltage equations which are dependent on the speed of rotation.
Finally, when substituting egs. (2.22) to (2.25) into eq. (2.21), the voltage equations in

the (d, q) reference frame are obtained:

Vdgo | _ R .idqo _ i g0 + Q Pago (2.26)
ViDQ Ripq| |ifpe| dt | |®rpe 0| |®rpo
Which in expanded form becomes:
I /Ud i _R i -/[:d- _®d- ) -_®q-
v, R iy ®, o,
R ) d ) 0
vo | _ Z_O D R (2.27)
—Uf Rf Zf dt (I)f 0
0 Rp D dp 0
L 0 i Rq] |ig] (L Qo] ) L 0 ]

Equation (2.27) expresses voltages in terms of both current and flux linkages. Considering
the limitations of this thesis (refer to section 1.4), it is a huge advantage if voltages are
expressed in terms of currents only, because these are easily available in a power plant, while

flux linkages are not. Therefore, eq. (2.15) is used to substitute flux linkages by currents in
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eq. (2.27), giving:

[ vg ] [ R wL, wkMg] [iq]
Vg —wly R —wkMy —wkMp iq
vo | R 1o
—vy o Ry if
0 Rp iD

L 0] i Rq | lig.

[ L4 kM; kMp ] ([ia] )
L, kMo iy
- Lo L SRR (2.28)
kM Ly Lsp dt if
kMp Lip Lp in
! kMg Lo 1 \liel)

Note the inductance matrix is removed from the derivative because it is not considered a
function of time. This may seem a contradiction to what was stated in section 1.1. However,
as presented there, changes over time of parameters are mainly due to temperature and load
variations, saturation and aging. These are slow processes that will have no effect during the
data acquisition period required for estimation of parameters. Therefore, it is reasonable to

remove the inductance matrix of the derivative in eq. (2.28).

2.4 Effects of grounding

At this point, it is important to consider the effect of grounding in eq. (2.28), i.e. how point
N in fig. 2.1 is connected to the ground. In this realm, we can have three types of connection:
open, solid, or through an impedance Zy = Ry + jwLy. Since the first two cases can be
represented by infinite or zero impedances, respectively, only the last case will be analyzed.
Not least, commercial synchronous generators are mostly grounded through an impedance,
in order to limit the zero-sequence current and over-voltages in unbalanced faults (Reimert,
2006, sec 5.3).

Clarke (1943, ch. VIII) shows the effect of grounding through an impedance on the zero-
sequence voltage is the following: vy = ig(Zy + 3Zy). The correction of eq. (2.28) with the

grounding effect produces:
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Vd R qu wk:MQ_ id
Vg —wlLy R —wkMy —wkMp iq
Vo _ R + 3RN io
—uf Ry if
0 Rp ip
L 0 i Rq | Llig.
[ L4 kM; kMp 1 (T[]
L, kMo iq
L 3L d ]
- 0 Sbn a2 (2.29)
ka Lf LfD dt if
]{JMD LfD LD iD
i kMg Lq ( Lie] )

2.5 Choosing a pu base

“Perhaps the one area in power systems analysis that causes more confusion than any other is
that of per-unit system. This confusion is further compounded when a synchronous machine
is included in the system. However, the per-unit system is well established and has a number
of attractions.” (Machowski et al., 2008, Appendix A.1)

Such attractions are, for example, normalizing parameters of machines with different
ratings, providing an intuitive understanding of performance, and computational efficiencies.
But most of all, the proper choice of a pu base for the rotor quantities can greatly reduce
the number of parameters in the mathematical model.

So, in order to avoid the negative aspects of the per-unit system, the base quantities used
in this thesis are reviewed in this section and defined in tables 2.1 and 2.2. The derivation
of the rotor bases is explained in the remaining of this section.

At this stage, it is convenient to separate each individual winding self-inductance into its

magnetizing (L,,,) and leakage (I,) components, so that:

Ld:Lmd+ll LD:LmD+lD Lf:me+lf (230)
LqILmq+ll LQILmD+lQ

For the rotor base quantities, the equal mutual flux linkages system as defined by Anderson

and Fouad (2003) is chosen. This pu system requires the mutual flux linkage in each winding
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Table 2.1: Stator base quantities

Symbol Description Definition Unit
Vi Base voltage Line ‘to neutral Root Mean Square (RMS) v
terminal voltage, Vi _n
Sy Base power Rated apparent power per phase, Si¢ VA
Base
Sae machine power Sse = 3510 = 35 VA
ty Base time t, =1 S
S
1, Base current I, = =b A
Vi
V, V2
Zy, Base impedance Zy, AT Q
I, S,
Vit
Ly Base inductance L, % = 7 H
b
d, Base flux linkage @, = LI, = Vit, =V, Vs
6, Base elec. angle 6, =1 elec. rad
0
Wy Base elec. speed  wy = t_b =1 elec. rads™!
b
[ Base mech. angle 6,,, =1 mech. rad
O,
Winb Base mech. speed w,,;, = t_b =1 mech. rads™*
b

to be equal. Applying this assumption to eq. (2.15) gives:

d — coil :
D — coil :
f—coil :
q — coil :
Q — coil :

Lonaly = kMpIpy = kM1
EMply = LypIpy = LipIys
KMy = Liplpy = Loslsy
Loy = kMglgy
kMol = Lol

(2.31)

As the dq0 transformation is power invariant, the base power for each winding must be

the same and equal to Sb = VI, = VI py = VoI py = Vigplgp. This and eq. (2.31) produce
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Table 2.2: Rotor base quantities

Symbol Description Definition Unit
Ze e W :
7o D daanpen winding Zin = 72 =k 2
SR e M CREE :
b e T, i
TN s AL VR
b Do g Vet oy
Mpy f]?jlze Vl;rll:(cilllj; inductance Mjy = V]}g;tb _ % — kL, H
ey, Yo Wy
TR e N N
Ry e T e
the rotor scaling factors:
mziz me:ka:me:LfDEkf
Vi g Lypa  Lpma  EMy  kMp

VQb_ Ib . LmQ_kMQ_LmQ:k
Vi Iy \ Lmg Lmg kMg ' °
The definitions from table 2.1 together with eq. (2.32) produce the pu system described in

table 2.2. Now, calculating all the mutual inductances in pu and using again the relationships
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in eq. (2.32), one obtains:

Ly,
Lmdpu = L_bd
k'Mf k’Mf k‘fLmd
P May  ksLy kgL w»
Ly Lyy  kekMy
T Ly T KLy KL dp
kM kM kpLy,
kMDpu = D _ L _ 1D d = Lmdpu

MDb B kDLb B kDLb
Lo Lo L kekMp
TP = Leme  kpkpLy  krkpLy

- Lmdpu

Lmqpu = LL_TZQ

kMg _ kMg _ oLy _ ;
Moy,  koLy koL, = ™o
Limg — Lmqg _ kgkMg

- Lmqpu

EMgp, =

Lingpu = = =
9T Loy KLy kAL

21

(2.33)

(2.34)

Equations (2.33) and (2.34) demonstrate a very interesting feature of the chosen pu sys-

tem: the per-unit values of all mutual inductances on one axis are equal. That is:

Lmd = me = ka = ]CMD = Lad
Lmq = LmQ = k‘MQ = Laq

(2.35)
(2.36)

Substituting eqs. (2.35) and (2.36) into eq. (2.30) and then into eq. (2.29), one obtains
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the pu model of the synchronous machine used in this thesis:

Rem
[ vy ] [ R W(Lag + 1) WLy |
Vq —W(Lad + ll) R —wLad —wLad
Vo _ R + SRN
—vy Ry
0 Rp
L 0 i Rq |
[Log + 1, Laq Lag ]
Laq + ll Laq
Lo+ 3Ly d
Lad Lad + lf Lad dt
Lad Lad Lad + lD
L Laq Laq + ZQ_
Lom
Or in compact form:
. d,
VdqofDQ = _RsmlqufDQ - LsmalqufDQ

2]

20
if
55)

Kl
14
10

if
(55

(2.37)

(2.38)

Equation (2.38) shows that, in matricial form, a synchronous machine can be reduced to

an impedance with a resistive part Rgy, and an inductive part Lgy,.

2.5.1 Choosing the rotor scaling factors

Assigning values to the rotor scaling factors is the last step to uniquely define a pu base. If

one inspects eq. (2.29) and consider

.,
e steady-state, i.e. aldqoﬂjq =0;
e stator resistances are negligible, i.e. R = 0;
e no-load operation, i.e. ig =i, = 0 ;
the following relationships are written:
Vg = —wkMQiQ
vy = wkMyiy +wkMpip



CHAPTER 2. SYNCHRONOUS MACHINE EQUATIONS AND PARAMETERS 23

Now, lets assume that
3 . .
e rated stator current §Ib at the Q-damper winding should induce rated stator voltage

\/g‘/}, at the d-axis;

e rated no-load field current I, with no current flowing in the D-damper winding should

3
induce rated stator voltage \/;V}, at the g-axis;

3
e rated stator current \/;Ib at the D-damper winding with no field current flowing should

3
induce rated stator voltage \/;Vb at the g-axis.

With these assumptions and the relationships from eq. (2.32) substituted into eqs. (2.39)

and (2.40), deductions of the rotor scaling factors follow:

\/g‘/;, = wka[fn

3% Ifn Lmdjfn ]fn
—— = wkMi—— = wky——— = wk¢Lyg——
o, T TR Ty, T W e
3 1 Iy
ke =4/= - 2.41
! \/;WLad Iy (2.41)
\/g‘/b:wk'MD\/g]b
kMD Lmd
1= = wkp—— = wkpL
w 7 WKp 7 WRpLiad
1
kp = 2.42
D= (2.42)
3 3
—Vy = —wkMon/ =1
\/; b w Q 9 b
kMg L,,
—1=w 7 :kaqu:kaLaq
1
ko = — 2.43
Q=7 (2.43)

Notice that eq. (2.12) scales values from the (A, B, C) reference frame by \/g . Worth to

mention is that a number of authors, such as Adkins and Harley (1975) and Kundur et al.
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(1994, section 3.3), favors the choice of 8; = 8, = 2/3, 5y = 1/3 in eq. (2.12). With this,
there is no scaling between the (A, B, C) and the (d, q, 0) reference frames. However, the
transformation is not orthogonal and consequently not power invariant, so scaling factors are

required in the machine inductances instead.

2.6 The parameters of a synchronous machine

The matrices Rgy and Lgy, in eq. (2.37) contains all relevant parameters for the dynamic
analysis of a salient-pole synchronous machine. From them, the standard parameters as
presented in table 2.3 can be defined. These are used in reduced-order models for planning,
operation, and control of the power system, while the matrices elements are interesting for
verification of the machine design and condition monitoring.

The standard parameters are not explicitly estimated in this thesis, but can be easily

calculated using the definitions in table 2.3 when matrices Rgy, and Lg,, are given.
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Table 2.3: Standard parameters of a salient-pole synchronous machine as defined by Kundur
et al. (1994, section 4.2)

Symbol Description Definition

d-axis synchronous

X,
d reactance

W(Lag + 1)
d-axis transient

Loa+1;  Log+1
T open circuit atly  Leatlp

time constant Ry Rp
d-axis transient
1 L4l 1 L4l
T, short circuit —(ly+ ad’l )+ —(p+ ﬂ)
i Ry Loa+ 1 Rp Loa +1
time constant
d-axis sub-transient
" . 1 Loaly
TdO open circuit m( D+ I I )(Lad + lf)
time constant do*tfAtD ad + Uy
d-axis sub-transient
T) short circuit /;(l D Ladlily f Ladl )
time constant T3l Rp Laali + Laaly + lly Laa +1
X! d-axis transient Xdlcll
reactance Tc/lO
” d-axis sub-transient 1Y
Xa dr
reactance Tc/l/(]
g-axis synchronous
X reactance W(Lag+ 1)
-axis sub-transient
T" (C)l . . (Laq + ZQ)
70 pen circuit —fhn.
time constant Q
-axi b-t ient L.l
X(;’ g-axis sub-transien ol aqlQ )
reactance Lo+ 1g




Chapter 3

Optimal observer with Kalman filter

This chapter presents details about the practical implementation of an optimal observer in
MATLAB/Simulink using the model described in chapter 2, and how it performs compared
to the synchronous machine model available in SPS.

It is assumed the reader is familiarized with basic concepts of modeling and validation
in control theory, in particular linear state-space representation. If this is not the case, it is
recommended referring first to Ljung and Glad (2016, ch. 3 and 15) and Glad and Ljung
(2000, ch. 1 and 2) before proceeding.

3.1 Kalman filters

For good parameter estimation of synchronous machines, it is necessary to accurately and
precisely measure inputs and outputs of eq. (2.37). However, there are some practical chal-

lenges when trying to perform that:
e Damper winding currents cannot be measured directly;

e Measurements are extremely affected by noise due to the high level of electromagnetic

interference in a power plant;

e Voltage and current measurements may come from several independent sources, such as
potential and current transformers for measurement or protection, each of them having

different precision and accuracy values.

Kalman filters are used to optimally estimate variables of interest when these cannot be
measured directly, but both indirect measurements and prior knowledge about the system
model are available. They are also used to find the best estimate of states from a state-space
model by combining measurements from various sensors in the presence of noise (Ulusoy,
2018b). Hence, they are a good choice to tackle the practical challenges above.
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Figure 3.1: Kalman filter algorithm, adapted from (Ulusoy, 2018a)

By definition, a Kalman Filter (KF) is an optimal state observer designed for stochastic
systems (Glad and Ljung, 2000, ch. 5.7). It is implemented in a two-step process, called a
priori estimate and a posteriori estimate. The first step is the prediction part, where the
system model is used to calculate the a priori state estimate &, and the error covariance
P, which is a measure of uncertainty in the estimated state £;. This variance comes from
the process noise () and propagation of the uncertain ;_q, i.e. the state estimate from the
previous time step. At the very start of the algorithm, the k-1 values for £ and P come from
their initial estimates.

The second step of the algorithm uses %, calculated in the prediction step and updates it
to find the a posteriori state estimate z and the error covariance P,. The Kalman gain K}
is calculated such that it minimizes P,. By weighting the correction term (y, — CZ; ), K
determines how heavily the measurement y, and the a prior: estimate &, contributes to the
calculation of Z;. If the measurement noise R is small, y; is trusted more and contributes to
the calculation of Z; more than Z, does. In the opposite case, where the error in the a prior:
estimate P, is small, 2, is trusted more and the computation of Z; mostly comes from this
estimate.

Once calculated the update equations, 2y is used in the next time step to predict the new
Z,  and the algorithm repeats itself. Notice that to estimate 2y, the algorithm does not need
all the past information, only Z,_1, Py_1, and yg. This is what makes the KF recursive. The

algorithm is better visualized and understood in fig. 3.1.
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In this thesis, the KF is used as an optimal observer, with the main purpose of filtering

and correcting measurements using prior knowledge about the synchronous machine model

and its parameters. In addition to the state-space definition, three additional matrices are

required for specification of a KF:

e Q, a SxS matrix (S=number of states) in which the diagonal elements represents the

noise covariance of the states, also called process noise covariance matrix;

e R, a YxY matrix (Y=number of outputs) in which the diagonal elements represents

the noise covariance of the outputs, also called measurement noise covariance matrix;

e N, a SxY matrix in which the elements represents the noise cross-covariance between

states and outputs, also called process and measurement noise cross-covariance matrix.

For a more formal definition of disturbance models refer to Glad and Ljung (2000, chap.

5), in particular measurement and system disturbances, optimal observers and Kalman filters.

It is assumed N = 0, i.e. there is no cross-correlation between the noise of states and

outputs. The other matrices are defined as:

[0.05

0.05

0.05

0.05

0.03

0.03

[0.05

0.05

0.05

0.05

0.05

0.05

(3.1)

Notice that the choice of diagonal Q and R matrices represents a naive assumption that

state and output changes are uncorrelated. These values produce robust results in several

load conditions with and without noise or saturation, as seen in sections 3.5, 4.4 and 5.1.

However, they might need fine tuning in the field for better performance, according to the

level of noise, measurement accuracy and precision of each power plant. In practice, these

values are also affected by the variance of elements of A, B, C, D.
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3.2 State space representation

A linear system in state space form (Ljung and Glad, 2016, appendix A) can be described
by:

—x = Ax + Bu
y = Cx+ Du (3.2)

Where:
e u is the input vector;
e X is the state vector;

e y is the output vector.
T
By inspection of eq. (2.37), it would be natural to assume u = [vd Uy Vo Uy Up V|
T
y=x= [id io o i ip @'Q] A= —Lgy 'Rem, B= -Lgy ', C=1 D = 0, and
consider the modeling done.

Nonetheless, for control purposes of a synchronous machine, it is more natural to assume

T
u = [z’d iqg o Vf Up UQ:| , since stator currents are defined by loads, field voltage is

T
delivered by the excitation system and vp = vg = 0. Thus, y = [vd vy Vo iy ip iQ

and matrices A, B, C, D must be redefined for a proper state space representation.
Assuming the second choice of input variables, the definition of matrices A, B,C,D is
easily achieved without major changes to the structure of eq. (2.37) by extending the model
presented in fig. 2.1. Let suppose a balanced, star-connected load with resistance Ry = 10*Z,
is inserted at the ABC terminals of the machine, as shown in fig. 3.2. With that extension,

the stator voltages in the (d, q, 0) reference frame can be expressed as:
Vg = Rdl(id — idt) Uq = Rdl(iq — iqt) Vo = Rdl(ig — iOt) (33)

Notice that the dummy load Ry is considerably larger than the real load of the machine,

therefore the difference between the terminal currents iy, iy, 7. and stator currents i,, 4, .
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Figure 3.2: Generator model with a dummy load, adapted from Barakat et al. (2010)

is negligible. Substituting eq. (3.3) into eq. (2.37), one obtains:

str\ndl
[ Raiat | [ R+ Ry w(Lag+10) whg| [ia]
Raig —w(Laa+1U) R+ Ry —wLlag —wLleg iq
vy Ry if
0 Rp ip
i L Rg | lig]
[Log + 1, Laq Laq | ([ia] )
Laq + ll Laq iq
L 3L d ;
0o t+oLn a Z'o (3.4)
Lo Lag + lf Laa dt Ly
Lad Lad Lad + ZD Z‘D
L Laq Laq + ZQ_ \ _iQ_ y,

Lsm
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The following state space is defined based on egs. (3.3) and (3.4):

T
u= [Rdlidt Rytyy Raioe vy 0O 0}

T T

x=|ia iy io iy ip iq| y=lvg v, vo if ip io
A= _Lsmilemdl B = Lsrni1 (35)

[Ra 1 [—1 i

Ry -1
R 1
Cc_ dl D—
1 0
1 0
i 1] i 0]

3.3 Observer for damper winding currents

For optimal state estimation, output measurements must be fed into the KF algorithm.
As the damper winding currents ip,ig cannot be measured directly, an observer must be
implemented for this purpose.

The transfer function for the observer of ip and ig is derived by applying the Laplace

transform to rows 5 and 6 of eq. (3.4), and manipulating the expressions further to obtain:

sLgq
$(Laqg +1lp) + Rp
SLag :
$(Lag +1g) + Rg N

ip=- (i + iy) (3.6)

io=—

3.4 Implementation in MATLAB /Simulink

To validate the KF and the Observer for Damper Windings (ODW), a simulation file in MAT-
LAB/Simulink is implemented. A brief review of this file is given in this section. For more
details, refer to appendix A, which presents a report of every component and its parameters.

The main section of the Simulink file (fig. 3.3) contains a synchronous machine model
in pu from the SPS library connected to an RL load and the dummy load. Parameters
of a real synchronous machine are taken from examples 3.1, 3.2 and 8.1 of Kundur et al.
(1994, p. 91,102,345). The rotor speed w is assumed constant, i.e. the prime mover and its
turbine governor are not modeled because the mechanical dynamics are much slower than
the electrical and have little impact in the results.

The field voltage is provided by an excitation system block from Simscape Power System,
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Figure 3.3: Main section of the Simulink model

which implements a DC1C type excitation as described in IEEE (2016). The choice of
parameters for the AVR gives a fast and stable response, without overshoot in the terminal
voltage. However, they are not optimized and a power system stabilizer is not included,
as detailed modeling and optimization of the excitation system are out of the scope of this
thesis.

The outputs of the synchronous machine model, i.e. stator and field measurements
Va, Vb, Ve, Uf, La, Ub, Le, ¢y together with the rotor mechanical angle «, are fed into the The-
sis model subsystem. There, the first step is scaling measurements to their RMS values and
convert them from International System of Units (SI) to the thesis pu base, according to
tables 2.1 and 2.2.

The next step is adding band-limited white noise and re-sampling measurements into a

Add noise and

Scale input values  Convertto pu ’ q0 transformation Build input vectors. Observer for damper Estimate states Estimate parameters and build
resample windings currents and filter noise out output vectors in Matlab pu
w} ib_t iabc_n
> P . P idq0
iabc fabo fabo.n a0
|_rms Lpu AL
- idqo_t u_KF ’ u
»garma  gamman Rom_nat
/dq0_t
gamma_mech kil Rsm_hat
mech to elec A
it xhat shat
vabc v
i
c
RLS_error 5
V_rms V_pu Input vectors yhat ’ yhat >
ALS_error
ift if
if sl >y Parameter Estimator
y 2 1y
L plxnat VoltKE
w : s S | D
v Currents Kalman Filter
visi
Vi_pu > yhat cunkF ——»(3 )
Noise CurkF
bW
Output vectors

Figure 3.4: Thesis model subsystem of the Simulink model
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lower sample frequency f,, in order to make them more realistic. In the simulations, fy is
assumed as 400 Hz. According to the author experience, this is a typical minimum value for
data logging in measurement units available in most Norwegian power plants, such as digital
protection relays.

This is followed by the dq0 transformation, which is performed according to egs. (2.11)
and (2.12). Then, the next subsystem organizes the measurements into vectors to feed the
ODW and the KF, which are implemented using eqgs. (3.1), (3.5) and (3.6).

Finally, estimated states and outputs are fed into the Parameter Estimator subsystem,
which is detailed later in chapter 4. They are also re-converted to Matlab pu for comparison
and validation of results. This is necessary because the synchronous machine model from

SPS uses the dq0 transformation and pu system defined by Kundur et al. (1994, sections

3
3.3, 3.4). Thus stator variables are divided by 27 as discussed in section 2.5.1, and field

variables use as base their no-load rated values.

3.5 Validation of the thesis model

For validation of ODW and KF, the simulation file runs with the following load conditions,

where P represent the active power and Q the reactive power:
e Case 1: P =0 pu, Q = 0 pu (no load);
e Case 2: P =0.25 pu, Q = 0 pu;
e Case 3: P = 0.5 pu, Q = 0.5 pu;
e Case4: P = 0.5 pu, Q =-0.5 pu;
e Case 5: P =0.9 pu, Q = 0.4359 pu (rated load).

In all cases, the simulation starts at rated stator voltage. In order to observe transient
behavior, a step of +5% is applied to the reference of the AVR at time ¢ = 9 seconds. At
this moment, saturation in the SPS model is disabled. Validation for the latter is addressed
in section 5.1.

The initial states of SPS are calculated using the Machine Initialization tool from powergui
block in order to avoid loss of synchronism. However, initial states of ODW and KF are all
zero, so it is necessary some seconds of simulation to achieve steady state. This also shows
KF is stable even when wrong initial conditions are given and with large transients.

In addition, for each simulation case, the following noise scenarios are explored:

e No noise scenario: noise power density IV, = 0;
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W
e Standard noise scenario: noise power density N, = 10*10H—;
Z
. . . . . oW
e High noise scenario: noise power density N, = 10 o,
z

Results are shown in appendix B and compared measuring the goodness of fit between
the synchronous machine models of the thesis (z) and SPS (z,¢f). The cost function used is
the Normalized Mean Square Error (NMSE), defined as:

| res — ||

NMSE =1—-

(3.7)
[€res — mean(res)||?
where || indicates the Euclidean or L? norm of a vector. NMSE costs vary between —oo (bad
fit) to 1 (perfect fit). If the cost function is equal to zero, then x is no better than a straight
line at matching ..
A summary of these results is presented in table 3.1 and below follow some remarks about
them:

e The mean correlation between KF and SPS for all variables is close to unity in the no

noise scenario. This shows the two models are nearly equivalent;

e The low standard deviation between all cases indicates the correlation is not sensitive

to the load connected to the machine;

e Also in the standard noise scenario, correlation between KF and SPS is relatively close

to unity and with small standard deviation;

e As expected, the performance of ODW in the noise scenarios is degraded, but it is

considerably improved by KF;

e The performance of KF gets better in the high noise scenario when the load increases,

because the Signal-to-Noise Ratio (SNR) also improves;

e NMSE of v, and ig are very low in case 1 (no load) because their values tend to zero
and, since the noise power is constant, the SNR is extremely low. This makes NMSE
measurement not relevant for these cases, so they are excluded from the standard

deviation (Std dev) calculation.
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Table 3.1: NMSE values for all simulation cases and noise scenarios

Variable Case1l] Case 2 Case3 Case4 Caseb5 Mean Std dev
No noise scenario
vy KF 1.0000  1.0000  1.0000  1.0000  1.0000 1.0000 8.082e-10
vy, KF 1.0000  1.0000  1.0000  1.0000  1.0000 1.0000 1.638e-09
iy KF 1.0000  1.0000  1.0000  1.0000  1.0000 1.0000 6.681e-06
tp ODW 0.9999  0.9999  0.9999  0.9999  0.9999 0.9999 7.582e-07
ip KF 0.9998  0.9988  0.9980  0.9969 0.9954 0.9978 1.689e-03
iqg ODW 1.0000  1.0000  1.0000  1.0000  1.0000 1.0000 7.213e-08
1o KF -393.5  0.9931  0.9950  0.9999  0.9987 0.9967 3.191e-03
Standard noise scenario
vy KF -392.9  0.9527  0.9544  0.9963 0.9846 0.9720 2.185e-02
vy KF 0.9962  0.9942 0.9938  0.9882  0.9877 0.9920 3.835e-03
i KF 0.9962  0.9968  0.9992  0.9954 0.9994 0.9974 1.773e-03
ip ODW 0.8653  0.8559  0.8180  0.8997  0.7772 0.8432 4.697¢-02
ip KF 0.9538  0.9498 0.9362 0.9629 0.9199 0.9446 1.679e-02
ig ODW -4902  0.8971  0.8684  0.9908  0.9327 0.9223 5.269e-02
ig KF -2134  0.9568  0.9488  0.9967  0.9751 0.9693 2.131e-02
High noise scenario
vy KF -3939  0.5270  0.5437  0.9632  0.8459 0.7199 2.186e-01
v, KF 0.9619 0.9423 0.9385 0.8817 0.8773 0.9204 3.835e-02
iy KF 0.9621  0.9684 0.9916 0.9546  0.9937 0.9741 1.763e-02
tp ODW  -0.3465 -0.4406 -0.8192 -0.0025 -1.2272 -0.5672 4.698e-01
ip KF 0.5408  0.5101  0.3811  0.6580  0.2415 0.4663 1.597e-01
ig ODW -49021 -0.0285 -0.3153  0.9078  0.3269 0.2227 5.269e-01
ig KF -17806  0.6288  0.5307  0.9675  0.7609  0.7220 1.889¢-01
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Chapter 4

Algorithms for Parameter Estimation

Parameter estimation is one application of the wider discipline of system identification. The

overall problem of system identification is, given
e a set of process signal values over time;
e a model structure with a set of constraints to satisfy;

e an approximation or error criterion;

determine a model that satisfies the set of constraints and results in the least approximation
error according to the stated criterion (Mukhopadhyay, 2004).

For the scope of this thesis, the set of process signal values over time u,y and the model
structure with a set of constraints to satisfy are given by eq. (2.37), where the final goal
is estimating the elements of matrices Rsm,Lsm. So, the only piece left is defining an
approximation or error criterion.

The literature has some accounts of approximation or error criteria for parameter iden-
tification of synchronous machines, such as Extended Kalman Filter (EKF) (Namba et al.,
1981b), Levenberg-Marquardt algorithm (Bortoni and Jardini, 2002), RLS (Karayaka et al.,
2003; Kyriakides et al., 2005), Prony method (Dehghani and Nikravesh, 2008), among others.

In this thesis, the approximation or error criteria used is the RLS. The main reasons for

this choice are:

e RLS is readily available in the System Identification Toolbox of Simulink, which is a

huge advantage considering the limited time for preparation of the thesis;

e Near real-time execution is possible with RLS due to its recursive nature and low com-
putational effort compared to other methods. If implemented directly in an Intelligent

Electronic Device (IED) or a fog computing solution, this is an essential consideration;

e Benchmarks are available in the literature for comparison of results.

36
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4.1 Recursive Least Squares Estimation

The RLS estimation involves the recursive application of the well-known least squares regres-
sion algorithm, so that each new data point is used to modify or correct a previous estimate
of the parameters based on a linear correlation of the system model.

To understand this concept, a simple example is given. Let say the average z(n) of a data

set z(n) = {x1, 29, -, x,} should be calculated, that is:
1 < T+t x,
i)=Y g, =+ TIn 4.1
"= 53 . (4.
Now, suppose a new value is added to the dataset, so z(n + 1) = {1, 29, -+ ,Zn, Tpi1}-

How can the average T(n + 1) be calculated recursively, i.e. using only the new sample value
Tpe1, the previous average z(n) and the number of samples n?
By rearranging the equation for Z(n + 1), one gets:

1 nzﬂaz-leJr-“—i-a:n—l—an

n+1

_ 1) —
T(n+1) P
m+Dzn+1)=(r1+x2+ -+ ) + Tpy1 = nT(n) + Tyiq
Tn+1)=n(Zn) —Z(n+1)) + 2,1
rr+-+Ty  Trtc Tyt Tpg

= n( - — 1 )+ Tnta
oA (@ 4 F ) =P @ Tag) (4 D) (@)
B n(n+1)
_ n(ry + -+ ) + n(xn4)
n(n+1)

(n+ D)@+ -+ 2n) +0(@nga) = (21 + -+ 20)
B n(n+1)
_(ZL‘l—i—'"—i—iL‘n) 1 ($1+"'+$n>
B n Ty 1(%+1 a n )
= 50) + — (s — ()
= Z(n) + K(znp1 — Z(n)) (4.2)

which is the answer to the problem. Note two important elements in eq. (4.2):
1. The gain K, dependent on how many samples were processed

2. The term (x,+1 —Z(n)), called innovation which is the difference between the new value

Tne1 and the a priori estimation z(n)
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In a general linear regression algorithm, the fitting model is given by:
yt:9gpxt—|—et,t:1,2,...,n (43)

where
e y, is the output vector;
e X; is the input vector;
e 0, is the parameter matrix;

e ¢; is the prediction error and represents effects of measurement errors in yy, x¢ or

dynamics not modeled.

Notice that the input vector may be non linearly related to the output vector, and only
parameters must be linearly related to the input vector. To apply the least squares regression,

it is necessary first to define a cost function. This is given by

t
Ce(f) =Y N (ye — 07 %)  (ye — 07 x¢) (4.4)
i=1
where 0 < A < 1 is the forgetting factor, which gives exponentially less weight to older error
samples.
When minimizing eq. (4.4), i.e. derivating it and making it equal to zero, one finds the

following least square solution
¢ R ¢
<Z )\t_iXiXiT> Ht = (Z )\t_iini> (45)
i=1 i=1

t
assuming the matrix Ry = (Z Aixx; T | can be inverted.
i=1
Now, using the same principle from the first simple example, i.e making the algorithm

recursive, and considering that R,_; = Ry — x¢x¢ !, follows that:

t—1
ét = R;l (Z N lyixi + YtXt>

i=1
= Rt_l ( ;_11@1:—1 + YtXt>
= 0,1 + R, (YtXt - (XtXtT)étfl)
= ét,1 + R;lxt (yt — (XtT)étfl) (46)
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Finally, to obtain the final recursive algorithm, the matrix inversion lemma (Strang, 2005)

is applied to R; '

1 Rij (XtXtT)Riil
R—l — _ R—l _ t—1 t—1 47
t A ( N+ x TR %, (4.7)

As so, the following recursive equations are used for the RLS algorithm:

€& =Yt — (XtT)étfl

_ 1 Pt71<XtXtT)Pt71
P,=R'=-(P,_, —
t t )\ ( =1 )\ + XtTPt,lxt

1
A+ xTPyixg
0, = 0,1+ Kie,

Kt = PtXt = ( ) Pt,lxtPt (48)

where
e ¢, is the absolute error of the approximation;
e P, is the parameter covariance matrix;
e K, is the RLS gain;
° ét is the estimated parameter matrix.

In its first iteration (¢ = 1), initial values Py and y must be provided. More details and
formal approaches are given by Ljung (1999, chap 11) and Pelckmans (2013, chap. 8).

The attentive reader may have noticed the RLS algorithm is very similar to the KF
explained in section 3.1. Indeed, RLS and KF are closely related and the former can be

considered a special case of the latter (Borodachev, 2016).

4.2 Simplification of the synchronous machine equation

Considering simultaneous estimation of the 14 parameters of the synchronous machine with

RLS estimation generates poor results (Kyriakides et al., 2005), simplifications are required.

Thus, steady-state is assumed, i.e. EiqufDQ =0, and eq. (2.38) is reduced to:

VaqorpQ = —Ridqofpq (4.9)
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With this simplification, eq. (4.9) has the same form of eq. (4.3). Therefore, parameters
from matrix Rgy, can be estimated using a recursive algorithm, but not Lg,,. But notice that
4 out of 8 parameters from Lg,, are also present in Rgp,.

Another practical assumption is the stator resistance R should not be estimated in rows

1 and 2 of matrix Rgy. The arguments for this assumption are:

e R is not used for the calculation of any standard parameter, as defined in table 2.3;

e R in pu is usually two to three orders of magnitude smaller than other parameters in

these rows (wLg,wLga, wLy,wLe,);

e Variations of up to 200% of the datasheet values of R were obtained when using RLS
estimation with the cases and noise scenarios described in section 3.5. So, it is assumed

proper identification with this estimation method would be challenging.

Using these assumptions, eq. (2.37) can be re-arranged to:

—?)d - R’id_ qu wLaq id
vy — Ry —wly —wlyg —wLgy iq
R+ 3R )
LI [ ol ‘o (4.10)
—vy Ry if
0 Rp ip
U i Rq | Liq]

Notice that in eq. (4.10), the stator voltages vq, v, are compensated with the voltage drops
in the stator resistance Riq, Ri,. Also R 4 3Ry is estimated in the third row. In summary,
eq. (2.37) is only re-arranged to avoid the estimation of R individually, as this parameter is
not useful for planning, operation, and control of the power system. Moreover, its use for
condition monitoring is compromised because it cannot be estimated reliably. Not least, if
the value of R is unknown, it can be set to zero without major consequences.

Last but not least, the steady-state condition is detected in run-time by monitoring that
the damper windings currents are below a certain level, since current flows in these windings

only in transient conditions. This approach produces good results, as shown in section 4.4.

4.3 Parameter Estimator Subsystem

In the Parameter Estimator subsystem (fig. 4.1), the first step is to detect steady-state, which

is done following the procedure below:

1. Filter the damper winding currents with moving average to remove noise and calculate

their absolute value
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Figure 4.1: Parameter estimator subsystem of the Simulink model

2. Compare this result to the configurable threshold level ss_thr. This variable is an input

value in the accompanying Matlab script and is set at 0.005 pu.

3. If both ip and ig are below the threshold, then it is assumed the synchronous machine

is in steady-state.

The threshold level for the steady-state condition is defined after simulations in several
load conditions, with and without noise. However, it might require fine tuning in the field
for better performance, according to the noise level, measurement accuracy and precision of
each power plant.

The steady-state condition, together with vectors u, xhat and yhat of the KF are fed into
the Rsm Estimator subsystem (fig. 4.2). There, these vectors are broken into their individual
components and manipulated according to eq. (4.10) for feeding six RLS estimators from the
System Identification Toolbox of Simulink.

The latter implements the recursive algorithm described by eq. (4.8), where the equiva-

lence between Simulink nomenclature and the equations presented are:
e Regressors = Xg;
o Output = yy;
e Parameters = 0;;
o Lrror = €.

On top of that, Py, A, 6, are block parameters. The value for Pg is chosen as 0.05. The

1
forgetting factor A is related to the RLS memory time 7;,, by A = 1— fT’ which is chosen as
10 seconds. Both values are user inputs in the accompanying Matlab sg"ipt and empirically
defined, so they might have to be adjusted for each machine. The initial parameter values

comes from user inputs, the same used to define the state-space matrices from the KF.
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Figure 4.2: Rsm estimator subsystem of the Simulink model

Not least, Enable and Reset inputs are connected to the steady-state condition. When
the latter is false, the Enable input stops the processing of the RLS algorithm and holds
the last valid estimation in the outputs. When steady-state is back to true, the Reset input
forces the process to restart from the scratch, i.e. adopting the initial conditions Py and bo.
This step is necessary because the value of P; may become very small after a long steady-
state period, and a large transient could cause instability of the RLS algorithm. If estimated
parameters are used in adaptive control, this instability may lead to bursting phenomena
(Marafioti et al., 2014).

Lastly, the outputs of the six RLS blocks are aggregated and connected to the outputs
Rsm_hat and RLS _error, which are respectively the estimated value of the matrix Rgy, and

the vector ;.

4.4 Validation of the Parameter Estimator

For validation of the parameter estimator, the simulation file runs at exactly the same con-
ditions as described in section 3.5. The exception is the +5% step is applied to the reference

of the AVR at time ¢ = 17 seconds, in order to allow the RLS algorithm to run during at



CHAPTER 4. ALGORITHMS FOR PARAMETER ESTIMATION 43

least one period of the memory time 7},. At this moment, saturation in the SPS model is
disabled. Parameter estimation with the latter is addressed in section 5.1.

Results are shown in appendix C. They are evaluated measuring both the error in per-
centage from the data sheet values informed for the SPS model and the RLS absolute error,
i.e. ¢ in eq. (4.8). Summaries of these evaluations are presented in tables 4.1 to 4.4.

Below follow some remarks about them:

e The RLS algorithm estimates parameters of the SPS machine with very small per-
centage deviations, whose values are in line with those reported by Kyriakides et al.
(2005);

e The low standard deviation between all cases indicates the estimation is not sensitive

to the load connected to the machine;

e Noise power has small influence in the quality of the parameter estimation for both

evaluation methods, i.e. percentage error and absolute RLS error;

e The strategy to disable and reset the RLS algorithm during transients is successful,
since its mean absolute error decreases to very small values and no instability is ob-
served in the estimated parameters for all cases and noise scenarios. Also for long time
simulations of 300 seconds in all noise scenarios (not included in the results for sake of

brevity), instabilities are not detected.
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Chapter 5

The Effects of Saturation

5.1 Validation with Saturation

For validation of ODW, KF and RLS with saturation, the simulation file runs at exactly the
same conditions as described in sections 3.5 and 4.4, but with saturation enabled in the SPS
synchronous machine model using the curve in fig. 5.1.

Results are presented in appendix D and their summary is available in tables 5.1 to 5.5.

Below follow some remarks about them:

e The KF effectively compensates saturation effects for vg,iy. When comparing NMSE

values with table 3.1, there are only marginal deviations.

e The KF does not compensate saturation effects for ip. Saturation changes the value
of L,q, which is the main component of the zero and pole of ip transfer function
in the ODW, as shown in eq. (3.6). The variation of L,; makes the state transition
function non linear, and improper for a KF to handle. An alternative would be using an
Extended or Unscented KF, which can handle non linear state transition functions, and
compensate the value of L,; dynamically using the algorithm presented in section 5.2.
This possibility was briefly explored, but meaningful results could not be presented in

this report due to time limitation.

e The error for wl,; estimation increases considerably and this is expected due to the
saturation effect. However, there is no direct correlation between the amplitude of this
deviation and the saturation level, as one would expect. This fact is clearly seen in case
4, which has the largest error for wlLg, wlL.q, but the lowest level of saturation, i.e. the
smallest field current of all cases. Hence, it is necessary to model this effect to have a

proper estimation of parameters.

48
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Figure 5.1: Saturation curve used for validation, values in Matlab pu base

e Noise power continues to have small influence on the quality of the parameter estimation
even with errors in the model caused by saturation. This seems to be an advantage
of the KF over other filtering techniques reported in the literature by Karayaka et al.
(2003); Kyriakides et al. (2005), which still have to be corroborated with practical

results.

5.2 Saturation Model

“Saturation effects are highly nonlinear and depend on the generator loading conditions
so trying to account for them accurately in the generator model is nigh on impossible.”
(Machowski et al., 2008, Section 11.1.8)

Due to this, magnetic saturation in the stator and rotor iron has been ignored in the
modeling of previous sections. However, it is introduced here a simple saturation model that:
produces acceptable results; is linked to the physical process; and uses easily obtainable data
(Machowski et al., 2008; Anderson and Fouad, 2003; Kundur et al., 1994).

The magnetic circuit of a synchronous machine comprises an iron path (rotor and stator
cores) and an air path (air-gap). The relationship between mmf and flux in such a circuit
is represented by the general curve shown in fig. 5.2.a. When the iron path is unsaturated,

the relationship between mmf and flux is linear and represented by the air-gap line, segment
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Table 5.1: NMSE values for all simulation cases and noise scenarios with saturation

Variable Casel Case2 Case3 Case4 Caseb Mean Std dev

No noise scenario

vy KF 1.0000  1.0000  1.0000  1.0000  1.0000 1.0000 4.671e-10
vy, KF 1.0000  1.0000  1.0000  1.0000  1.0000 1.0000 1.778e-09
i KF 1.0000  1.0000  1.0000  1.0000  1.0000 1.0000 6.962¢e-06
ip ODW 0.5904 0.8797 0.6168 0.9968  0.9744 0.8116 1.951e-01
ip KF 0.5943  0.8742  0.5997  0.9968  0.9649 0.8060 1.960e-01
iog ODW  -0.6178  0.9998  0.9999  1.0000  0.9999 0.9999 8.425¢-05
1o KF -37.03  0.9967  0.9978  0.9999  0.9996 0.9985 1.509e-03
Standard noise scenario
vy KF -167.5 09752 09775  0.9983  0.9926 0.9859 1.131e-02
vy KF 0.9981  0.9973  0.9970 0.9947  0.9944 0.9963 1.650e-03
i KF 0.9994  0.9992 0.9998  0.9974  0.9997 0.9991 9.706e-04
ip ODW 0.5123  0.8070  0.5186  0.9582  0.8726 0.7337 2.064e-01
ip KF 0.5663  0.8483  0.5652 0.9836  0.9298 0.7786 2.002e-01
g ODW -579 0 0.9363 0.9234  0.9956  0.9651 0.9551 3.211e-02
ig KF -249.3 09736 09702  0.9984  0.9871 0.9823 1.295e-02
High noise scenario
vy KF -1684  0.7521  0.7750  0.9833  0.9259 0.8591 1.132e-01
vy, KF 0.9811  0.9729 0.9703 0.9472  0.9440 0.9631 1.650e-02
i KF 0.9941  0.9916  0.9977 0.9743 0.9972 0.9910 9.664e-03
ip ODW  -0.1771  0.1639 -0.3546  0.6110 -0.0378 0.0411 3.709e-01
ip KF 0.3265  0.6255  0.2638  0.8651  0.6175 0.5397 2.454e-01

ig ODW -5774 03659  0.2363  0.9558  0.6520 0.5525 3.201e-01
1o KF -2157  0.7647  0.7220  0.9840  0.8747 0.8363 1.176e-01
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A: air-gap line C: air-gap line, D: "saturated" air-gap line

Figure 5.2: Saturation characteristics: (a) curve for a magnetic circuit with flux path in iron
and air; (b) synchronous machine open-circuit saturation characteristic (Machowski et al.,
2008, p. 458)

0A. In this situation, the reluctance of the magnetic circuit is dominated by the reluctance
of the air-gap.

When the iron saturates, the relationship is not linear and follows the saturation curve,
segment 0B. Therefore, for a given total flux linkage W, there are two components in the
total mmf Fr: the air-gap mmf F, and the iron mmf F;, such that Fr = F, + Fj.

Moreover, the total flux linkage W, can be interpreted as the air-gap flux linkage V.1, a
theoretical flux linkage in the air-gap without saturation effects, subtracted from the satura-
tion flux linkage W,, such that: U, ,p = Uy + U,

Using triangle similarity in fig. 5.2.a, the saturation factor K,y is defined as:

ko WYy Vg
_Fa+Fi B \IJT+\DS _\IlaT

K (5.1)

Having defined a saturation factor, it is necessary to provide a simple method of calcu-
lating its value for any load condition using data readily available. For that, the following

assumptions are made:
1. The open-circuit saturation curve can be used under load conditions;

2. As the leakage flux path is mainly in the air, the leakage inductances are independent
of saturation. This implies that only the mutual inductances L,q, Loq are affected by

saturation,

3. Saturation on the d-axis and g-axis are independent of each other;
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4. For salient pole machines, since the g-axis reluctance is dominated by air paths, satu-
ration effects are ignored.

In steady-state ip = ig = 0 and the derivative of all currents are zero. Hence, it is

possible to obtain the following expressions from eq. (2.37):

Vg = —R’id - w(Laq + ll)iq

Vg + Rid + wlliq = —wLaqiq (52)
Vg + RZd + wlli
_ " 1 =T,

Vg = L«J(Lad + ll)’id — qu + WLadif

Vg + Rig — wljig = wLad(id + if) (53)
v, + Ri, — wlp
‘ ! thd = \Ijad
w
Vg = 0
Uy = 2+ 0, 0 = 02, 4 02, (5.5)

When the synchronous machine is in no-load operation (i.e. open circuit), iy = i, = 0.
Substituting these values in egs. (5.2) to (5.5), one easily deduces that:

Vg = \Ifaq =0
Vg = \Ijad = wLadz'f = \Ifad (56)
\I/T = \Ilad = Uq

and the open-circuit saturation curve in fig. 5.2.b can be directly related to the magnetic
saturation of the d-axis. In other words, the vertical axis in fig. 5.2.b when plotted in pu is
interpreted as either voltage or flux linkage, and the horizontal axis is interpreted as either
current or mmf

Finally, if at some open-circuit voltage E the required flux linkage is ¥4, then the required

field current will be i if there is no saturation of the iron. However, if saturation is present,
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the required current will be ¢4, Taking this into consideration and using egs. (5.1) and (5.6):

ifo

ifsat — K P (57)
v,
Log = -2 (5.8)
’lf(]
y v,
Ladsat = - r = - d (59)
Lfsat Lfsat
Ladsat - stLad (510)

Note that L4 is the slope of the air-gap line (segment 0C), while L4 is the slope of the
“saturated” air-gap line (segment 0D). In load operation, L4 is calculated considering WU as
given in eq. (5.5) and assuming eq. (5.10) is still valid. (Kundur et al., 1994, Section 3.8.2)
Last but not least, it is necessary to fit the open-circuit saturation characteristic by a well
defined function in order to calculate K,; and consequently the saturation flux linkage ¥, at

any operation point. This is done using the following conditional function in pu:

0,0, <
U, = r= (5.11)
AggpeBrar(W1=¥70) Qg > Wy

where:
o Uy is the flux linkage level where the saturation effect starts

o A, By, are constants easily calculated by performing a least-square approximation

in the known saturation curve starting at Wy
In summary, the procedure for calculating K4 is:
1. With the saturation curve in hands, determine W7 and the air-gap line.

2. Interpolate the difference between the air-gap line and the saturation curve with an

exponential function of type Ae to obtain A.u, Bsat
3. Knowing vg, v, g4, iq, i, w, R, {;, calculate W, ¥,q, Ur using egs. (5.2), (5.3) and (5.5)
4. Calculate ¥, using eq. (5.11)

5. Calculate K4 using eq. (5.1)



Chapter 6

Conclusions, Discussion, and Further

Work

This final chapter summarizes the work done and results achieved. It also discusses the major

findings and put them ”in the big picture”, together with recommendations for next steps.

6.1 Summary and Conclusions

The focus of this thesis has been investigating and implementing algorithms for reliable
parameter identification for salient pole synchronous machines that can be used for condition
monitoring, on line assessment of the power grid, and adaptive control.

Naturally, the first step to achieve this goal is defining the parameters of a synchronous
machine. It may seem obvious, but the derivation of an accurate model for a three-phase
synchronous machine is an involved task that occupied many bright minds for over a century,
as described in section 1.5. This was not different in this thesis, where good part of the effort
was put to model the machine and understand the vast and sometimes confusing literature
about the subject. Therefore, chapter 2 is dedicated to revise the basic equations of the
synchronous machine. Based on them and the pu system defined by table 2.1, the model
and parameters in pu are defined by eq. (2.37). Last but not least, section 2.6 defines how
to convert the parameters from eq. (2.37) to the standard parameters used in reduced-order
models for planning, operation, and control of the power system.

The next step is designing an optimal observer to measure inputs and outputs of the model
obtained in the previous chapter. This step is necessary because inputs and outputs should
be based on common measurements available in a power plant, as defined in section 1.4.
Measurement of damper winding currents is usually not possible, so an observer for them is
necessary. On top of that, other practical issues include handling noise and measurements

from several sources, each of them having different precision and accuracy values. To handle

o8
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these challenges, a Kalman Filter (KF) is implemented using a state-space representation
derived from an extended model of the synchronous machine, given by egs. (3.4) and (3.5).

Results of the validation of this KF without saturation effects is presented in section 3.5
and shows almost perfect correlation with the synchronous machine model available in Sim-
scape Power Systems (SPS) when using Normalized Mean Square Error (NMSE). The re-
sults also show the correlation is not sensitive to the load connected to the machine, and
that goodness of fit is maintained under a ”standard” noise scenario. As one would expect,
performance degrades in the "high” noise scenario, specially when the Signal-to-Noise Ratio
(SNR) is extremely low.

After the foundation is laid, i.e. a model is defined and inputs and outputs are available,
focus is given to the selection of an algorithm and error criterion for parameter estimation.
Recursive Least Squares (RLS) is chosen based on three criteria: availability in the System
Identification Toolbox of Simulink, possibility for near real-time execution, references in the
literature available for comparison.

Next, considering that simultaneous estimation of the 14 parameters of the synchronous
mrachine with RLS produces poor results (Kyriakides et al., 2005), some simplifications of

the model are assumed as described in section 4.2. In summary, these simplifications are:

steady-state is assumed (i.e. iidqofDQ = 0), and the parameter R is not estimated. The
steady state condition is detected in run-time by monitoring that damper winding currents
are below a configurable threshold level. The RLS estimator is disabled when a transient
state is detected, and reset once the steady state is back to avoid instability and bursting
phenomena if parameter estimation is used in adaptive control. See considerations and
additional comments in section 6.2.3.

With simplifications, 8 out of 13 parameters from the synchronous machine model are
reliably estimated by the proposed algorithm: R + 3Ry, Ry, Rp, Rg,wLq,wLaq,wLg,wLeg.
The ones not being estimated are: R, Ly + 3Ly, Ly, Lp, Lg, in which R is not relevant for
planning, operation, and control of the power system.

The RLS estimation algorithm is then tested without saturation effects using the same
cases and noise scenarios used for validation of the KF. Results of these simulations show
very small percentage deviations from the data sheet values, and are in line with those
reported by Kyriakides et al. (2005). However, the estimator developed in this thesis is largely
insensitive to noise and load conditions, contrary to the former, which may be considered a
valuable contribution if corroborated with practical results. Also, the strategy for detection
of steady state and disabling/resetting the RLS estimator seems successful, as no instability
was observed in the estimated parameters, even during long time simulations of 300 seconds.

Last but not least, the non linear effects of saturation are evaluated in section 5.1 by

repeating previous tests with saturation enabled in the synchronous machine model from
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SPS. Results show the KF effectively compensates saturation effects for v, i and correlation
with SPS is very high. However, this is not true for ip because its measurement is provided
by the Observer for Damper Windings (ODW), whose zeros and poles are directly affected
by the saturation of L,,. This effect reduces considerably the goodness of fit of ip compared
to SPS. Moreover, the error for wl,, estimation increases considerably and this is expected
due to the saturation effect. However, there is no direct correlation between the amplitude
of this deviation and the saturation level, as one would expect. A fact that is clearly seen in
case 4, which has the largest error for wl,4, but the lowest saturation level.

This leads to the conclusion that saturation effects must be considered and included in the
model. Taking this into account, a simplified model for saturation is introduced in section 5.2,
based on a recursive algorithm and previous knowledge of the open-circuit characteristic of
the synchronous machine. Initial investigations for inclusion of this non linear model in an
Extended Kalman Filter (EKF) have started, but time for delivery of this report came before
meaningful results could be achieved. On top of that, an Extended Kalman Filter (EKF)
can be used for estimating the values of Lo+ 3L, Ly, Lp, Lg, by assuming these parameters

are states with derivatives equal to zero.

6.2 Discussion

It is important to keep in mind that the goal of this project was never to produce the ultimate,
state-of-the-art parameter estimator for a synchronous machine, but rather a minimum viable
product that could be executed in the short time available for a master thesis and used to
test some initial hypothesis.

Despite the fact that saturation effects are not properly handled yet, this thesis fairly

answers the main questions of the problem formulation, i.e.:
e What are the parameters of a synchronous machine?

How non linear effects such as saturation affects them?

How can parameters be estimated during normal operation, i.e. without taking the

machine out of service?

What are the effects of noise in the performance of the estimation procedure?

Which of the parameters can be reliably estimated?

So the reader should aim to see the big picture of this work, some of the intermediary
results achieved and what can be developed further if proper human and financial resources

are applied. All applications mentioned here are steps necessary to enable a smarter power
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grid, in which seamless integrated digital technology provides state estimation, fault detec-
tion and self-healing functionalities, with the ultimate goal of ensuring a reliable supply of

electricity, and reducing vulnerability to natural disasters or attacks.

6.2.1 Condition Monitoring

Useful condition monitoring applications for salient-pole synchronous machine can be devel-
oped today, using only some of the parameters reliably estimated with saturation effects in

this thesis, namely: Ry, Rp, Rg,wLq. Some examples follow below:

e An indirect measurement of the air-gap and stator turns can be obtained from L,
since the magnetizing reactance is inversely proportional to the air-gap and squarely

proportional to the number of stator turns (Mohan, 2014, sec 2-3-3).

e Turn-to-turn short circuits in the rotor winding can be detected by proper long-term
analysis of Ry, as this type of defect would naturally reduce its value. Moreover, this

monitoring can be further enhanced if a proper method to estimate [ is implemented.

e Broken damper winding can be detected by proper long-term analysis of Rp, Rq, as

this type of defect would naturally increase their values.

If these methods are proven precise and accurate in practice, they can be used to equip
virtually all salient-pole synchronous machine on a very low price tag, as no additional
sensors in the machine are required and measurements of the input and output signals of the

algorithm are already available in IEDs dedicated for protection.

6.2.2 On-line Assessment of the Power Grid

For on line assessment of the power grid, the standard parameters as defined in table 2.3 can
be transferred in near-real time to control centers using existing Supervisory Control And
Data Acquisition (SCADA) infrastructure. Control centers will then transfer these further
to dispatch centers of the Transmission System Operator (TSO), who might use more precise
and accurate values for load flow analysis, state estimation and stability assessment when
necessary.

The advantage of this method is the computation effort can be distributed, i.e. the com-
plex synchronous machine models are handled locally in each power plant, by the parameter
estimator proposed in this thesis. Then dispatch centers could continue to use simplified
models and bulk methods whenever necessary, such for fast decoupled load flow in their
wide-area analysis. But they can also use more accurate and precise values for state esti-
mation and stability assessment of critical corridors with near-real time information of each

relevant machine in the grid.
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All this can be done in the near future with minor intervention in existing platforms.
In general, Information and Communication Technology (ICT) infrastructure between all
actors is already in place today. So, the main effort would be interfacing this information
with databases of dispatch centers.

For this to happen, the parameter estimator must handle properly saturation effects and

estimate reliably values for Lg, Log, L, Lp, Lg.

6.2.3 Adaptive Control

For adaptive control, the standard parameters as defined in table 2.3 can be transferred in
near-real time to control and protection equipment using existing or future ICT infrastruc-
ture, such as IEC 61850 protocols (International Electrotechnical Commission et al., 2011).
Alternatively, they can also be embedded in these equipment.

With this information available in near real-time, control and protection equipment such
as AVRs and protection IEDs can implement adaptive control techniques such as self-tuning,
gain scheduling and model predictive control.

For this to happen, the parameter estimator must handle properly saturation effects and
estimate reliably values for Ly, Laq, L¢, Lp, Lg. On top of that, stability and robustness
of the parameter estimation must be deeply investigated to avoid problems such as lack of
persistent excitation and bursting phenomena. These investigations are not in the scope of
this thesis, however the interested reader can refer to Moore (1983); Anderson (1985, 2005);

Marafioti et al. (2014) and included references in these articles.

6.3 Recommendations for Further Work

As one should have noticed by now, this thesis only scratches the surface of main applications
envisioned for reliable parameter identification for salient pole synchronous machines. And
it also left a couple of open points that must be solved before any application can be put
into practice. Many of these challenges were already mentioned through out the text and are

summarized below.

6.3.1 Modeling of saturation

As shown in section 5.1, the machine model without saturation effects is not good enough.
Therefore, the next natural step is incorporating the saturation factor presented in section 5.2
in the KF. This will make the system non linear, so the optimal observer must be updated
to an Extended or Unscented KF.
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Alternatively, a more advanced non linear model of the machine including saturation in
its derivation can be used. Examples of such a model in state-space form are given by Levi
(1998); Rehaoulia et al. (2007).

A comparison between results of these two approaches using both Extended or Unscented

KF will be a valuable contribution to the state-of-art.

6.3.2 Eliminate ip,ig from State Space

As shown in sections 3.5 and 5.1, the ODW performance is greatly affected by noise and
saturation, which directly reflects in the KF performance. Therefore it can be an advantage
to substitute ip,ig by other variables in the state-space, such as fluxes. Alternative repre-
sentations of the synchronous machine without ip,ig are explored by Levi (1998); Rehaoulia
et al. (2007).

A comparison between results of this approach with the one given in this thesis will
be a valuable contribution to the state-of-art, and can be combined with investigations for

section 6.3.1.

6.3.3 Estimate Values of Lo+ 3Ly, Ly, Lp, Lg

After proper handling saturation effects, the next natural step is estimating values of Ly +
3Ly, Ly, Lp, Lg. As mentioned earlier, this can be implemented with an Extended or Un-
scented KF by assuming these parameters as states with derivatives equal to zero. This ap-
proach was briefly investigated by this author estimating only the value of L; with an EKF.
Results were satisfactory without saturation, but errors of up to 15% were produced with
the latter enabled. Therefore, this must be combined with investigations for section 6.3.1.

A different approach is revising the RLS algorithm to consider eq. (2.38) without simpli-

fications, i.e. —igqopq 7 0. This would require an algorithm to calculate derivatives of the
state values, which is the same approach used by Kyriakides et al. (2005).

Another option using this same approach is getting the derivative of the states from
the Extended or Unscented KF algorithm, considering these blocks already calculate these
values in each iteration step. However, this requires blocks from Control System Toolbox to

be adapted, as they do not output the derivative of the states.

6.3.4 Validate Algorithm in a Real Power Plant

After solving the issues above, it is a good time to test the algorithm in a real power plant. The
easiest way to perform that is merely recording several samples sets of required measurement

Gas Uy Ges T f, Vg, Up, Ve, V¢ With proper time stamping and sampling frequency (fs > 400Hz).
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Later, these can be imported in Matlab, and the algorithm executed and fine-tuned. It
would be a huge advantage to execute this procedure for a machine in which traditional
methods from (IEEE, 2010; IEC, 2008) were recently applied for sake of comparison.

A more sophisticated approach is programming the algorithm using Matlab/Simulink
Coder in an edge device, such as Raspberry Pi, and receiving measurements directly from
equipment in a power plant, either by analog inputs or bus communication with time stamp-
ing such as OPC-UA or IEC 61850. This approach would allow the algorithm to run contin-

uously and investigate issues of stability and robustness.
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IED Intelligent Electronic Device 36, 61, 62

KF Kalman Filter 27, 28, 31, 33, 34, 39, 41, 48, 49, 59, 60, 62, 63
NMSE Normalized Mean Square Error 34, 48, 59

ODW Observer for Damper Windings 31, 33, 34, 48, 60, 63

pu per-unit 12, 18, 20-22, 56-58

RLS Recursive Least Squares i, iv, 36, 37, 39-43, 46-48, 53, 54, 59, 63, 78-82, 92-96

RMS Root Mean Square 19, 32

SCADA Supervisory Control And Data Acquisition 61
SI International System of Units 32
SNR Signal-to-Noise Ratio 34, 59

SPS Simscape Power Systems 4, 26, 31, 33, 34, 43, 48, 59, 60, 69-76, 84-91

TSO Transmission System Operator 2, 61

66



Appendix A

Matlab Simulink model

This section presents an interactive report of the Matlab Simulink model developed for this
thesis. It contains a detailed description of the model components and its parameters.

Instructions:

1. Unzip the file appendix-a.zip;

2. Open the folder sm_model simplified;

3. Open the file webview.html with your preferred web browser;

4. Navigate the model and click over a element to see its properties on the right side.
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Appendix B

Figures of the Model Validation

This section presents the figures generated for the validation described in section 3.5.
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Figure B.1: Comparison of the Kalman filter versus SPS - Case 1, no noise

v,
6 106 N
5 105 P A
4 [
104 |
2 2
B 2 {
e H c
£ £ 103 |
2 H
=2 c {
o g 102 |
£ E
] 5 |
2 S
101
0 |
4 Baseine 1h e
KF low noiso, NMISE = -157.3410
2 099
8 9 10 1 12 13 14 8 9 10 1 12 13 14
i el i 2 i
106 ! 510 2 <10 Q
‘/"v\ Saseine
15 ODW low noise, NIMSE = 5622121
105 | .
[ ! o l J"“'y/“‘ i rNA /) W ‘JJ i ‘ KF low noise, NMSE = -249.3708
v“ [v W R‘ ‘M’\c/ \
104 ‘ “
2 2 E
e ( gsf | g0
£ 103 E g
2 = iﬂ Z 0
c 1 = | £
Z 102 H | H
@ 8 -10 ,! ]
5 5 | 508
3 3 3
101
1
15 !
1F e i‘ 45
099 20 2
8 9 10 " 12 13 14 8 9 10 " 12 13 14 8 9 10 1" 12 13 14

Figure B.2: Comparison of the Kalman filter versus SPS - Case 1, standard noise
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Figure B.14: Comparison of the Kalman filter versus SPS - Case 5, standard noise
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Appendix C

Figures of the Parameter Estimator
Validation

This section presents the figures generated for the validation described in section 4.4.
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Figure C.4: RLS approximation error - Case 2
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Figure C.10: RLS approximation error - Case 5
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Appendix D

Figures of the Complete Validation

with Saturation

This section presents the figures generated for the validation described in section 5.1.
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Figure D.1: Comparison of the Kalman filter versus SPS - Case 1, no noise
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Figure D.11: Comparison of the Kalman filter versus SPS - Case 4, standard noise
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Figure D.13: Comparison of the Kalman filter versus SPS - Case 5, no noise
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Figure D.15: Comparison of the Kalman filter versus SPS - Case 5, high noise
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Figure D.16: Parameter estimation with saturation - Case 1
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