
 Faculty of Engineering Science and Technology

Department of Computer Science and Computational Engineering

Detection and prediction of falls among elderly
people using walkers
—
Aleksei Degtiarev

Master’s thesis in Computer Science - June 2018

Title: Detection and prediction of falls among elderly peo-

ple using walkers

Date: June 2018

Classification: Open

Author: Aleksei Degtiarev Pages: 120

Attachments: Zip file

Department: Department of Computer Science and Computational Engineering

Study: Master of Science, Computer Science

Student number: 166121

Course code: SHO6264 Diploma Thesis - M-IT

Supervisors: Bernt A. Bremdal, Asbjørn Danielsen

Principal: UiT - The Arctic University of Norway (Campus Narvik)

Principal contact: Bernt A. Bremdal

Keywords: CC2650, SensorTag 2.0, iPhone, Apple Watch, iOS, watchOS, Core ML, Core Mo-

tion, Core Bluetooth, Gyroscope, Accelerometer, Magnetometer, motion capture, data analysis,

neural network, Bluetooth Low Energy, machine learning, walkers

Abstract (English): Falls of elderly people are big health burden, especially for long-term

consequence. Yet we already have research, describing how exactly elderly fall and reasons of

falls. We aimed to develop means that could not only detect falls and send alerts to relatives and

doctors to conquer one of the biggest fears of elderly to fall and do not have the ability to call

for help, but also tried to implement fall prevention system. This system based on “relatively

safe walking patterns” that our system tries to detect during the walk. During the work we used

SensorTag 2.0 CC2650 sensors, iPhone and Apple Watch to collect motion data (Gyroscope,

Accelerometer and Magnetometer) and compared the accuracy of each device. As we chosen

iPhone and Apple Watch to use Core ML framework to integrate the neural network model we

generated using Keras into prototype app. The iPhone app perfectly detects falls, but it needs

to collect data more accurately, to improve the machine learning model to improve the work of

prediction falls. The Apple Watch app does not work acceptable, despite well prepared Keras

model and requires revision.

Acknowledgements

I would like to thank my supervisor Bernt A. Bremdal for providing the basis for the project

and giving me the opportunity to create my own vision on it and freedom in the choice of

hardware, software and tools for this work. I would also like to thank him for his suggestions

and feedback during the thesis work.

I would like to thank Asbjørn Danielsen for giving me valuable insight, advise on literature

and hardware.

I also wish to extend a special thanks to Igor Molchanov, who helped with experiments and

collecting motion data.

Finally, I would like to extend my sincere gratitude to everyone who provided me with advice,

support and assistance throughout the thesis work.

2

Contents

Acknowledgements 2

List of Figures 5

List of Tables 10

1 Introduction 1

1.1 Problem description . 1

1.2 Objectives . 1

1.3 Research questions . 2

2 State-of-the-art review 3

2.1 Classification . 3

2.2 Representation . 4

2.3 Other systems . 6

3 Method 8

3.1 Introduction . 8

3.2 Assess requirement instrumentation and equipment 8

3.2.1 Choosing software and hardware rig . 8

3.2.2 Review software and hardware rig . 10

3.3 Prepare and conduct fall experiments . 16

3.3.1 Develop apps for collecting data . 16

3.3.2 Conduct fall experiments and collect data 35

3.4 Pre-analysis of data from fall experiments . 39

3.4.1 Research collected data from SensorTags 39

3.4.2 Research collected data from iPhone and Apple Watch 41

3.5 Train and validate machine learning system . 43

3.6 Develop prototype (SafeWalk) . 45

4 Results 48

5 Discussion of results 50

6 Further development 53

7 Conclusion 54

3

Contents 4

A Flowchart of working process 60

B Conceptual model of falls prevention technology 61

C Analysis of data collected from 3 SensorTags 62

D Analysis of data collected from in-built iPhone and Apple Watch motion
sensors 97

E Source code 119

F Thesis description document 120

List of Figures

2.1 Overview of falls prevention interventions . 4

2.2 HIPSAFE belt . 7

3.1 Gemino 20 Lightweight Rollator . 9

3.2 Integrating trained model scheme . 14

3.3 Core ML layer in app . 14

3.4 Labelling SensorTags . 16

3.5 Core Data DataCollector . 21

3.6 App’s screenshots (DataCollector) . 22

3.7 UML - NSManagedObjects . 22

3.8 UML - ExportDataVC & CollectingDataVC . 23

3.9 UML - CircleButton, RecordIDVCDelegate, SettingsTableVCDelegate 23

3.10 UML - SessionIDCell and ItemSessionCell . 24

3.11 UML - RecordTableVC and SettingsTableVC . 24

3.12 UML - SensorOutput and Device . 25

3.13 DataCollector ViewController Scheme . 26

3.14 Core Data MotionCollector . 27

3.15 App’s screenshots (MotionCollector) . 28

3.16 Watch app’s screenshots (MotionCollector) . 31

3.17 UML - ExportDataVC & CollectingDataVC . 31

3.18 UML - NSManagedObjects . 32

3.19 UML - CircleButton, SessionIDCell, ItemSessionCell 32

3.20 UML - SettingsTableVCDelegate, SettingsTableVC, RecordIDVC, SettingsTableVCDel-
egate . 33

3.21 UML - MainIC, SensorOutput, SessionContainer 34

3.22 MotionCollector ViewController Scheme . 35

3.23 Falls patterns 1 . 36

3.24 Falls patterns 2 . 37

3.25 Attached sensors . 38

3.26 SensorsTags Data Structure . 39

3.27 iPhone and Apple Watch Data Structure . 41

3.28 Layers in neural network . 43

3.29 Core ML model window in Xcode . 46

3.30 App’s screenshots (SafeWalk) . 46

3.31 Watch app’s screenshots (SafeWalk) . 47

3.32 UML - ViewController and InterfaceController 47

3.33 UML - Classifier and WatchClassifier . 47

5

List of Figures 6

4.1 CPU load . 48

5.1 Kinect Studio . 51

A.1 Flowchart of working process . 60

B.1 Conceptual model of falls prevention technology 61

C.1 Sensor data distribution GyroX1 . 68

C.2 Sensor data distribution GyroY1 . 68

C.3 Sensor data distribution GyroZ1 . 68

C.4 Sensor data distribution AccX1 . 69

C.5 Sensor data distribution AccY1 . 69

C.6 Sensor data distribution AccZ1 . 69

C.7 Sensor data distribution MagX1 . 70

C.8 Sensor data distribution MagY1 . 70

C.9 Sensor data distribution MagZ1 . 70

C.10 Sensor data distribution GyroX2 . 71

C.11 Sensor data distribution GyroY2 . 71

C.12 Sensor data distribution GyroZ2 . 71

C.13 Sensor data distribution AccX2 . 72

C.14 Sensor data distribution AccY2 . 72

C.15 Sensor data distribution AccZ2 . 72

C.16 Sensor data distribution MagX2 . 73

C.17 Sensor data distribution MagY2 . 73

C.18 Sensor data distribution MagZ2 . 73

C.19 Sensor data distribution GyroX3 . 74

C.20 Sensor data distribution GyroY3 . 74

C.21 Sensor data distribution GyroZ3 . 74

C.22 Sensor data distribution AccX3 . 75

C.23 Sensor data distribution AccY3 . 75

C.24 Sensor data distribution AccZ3 . 75

C.25 Sensor data distribution MagX3 . 76

C.26 Sensor data distribution MagY3 . 76

C.27 Sensor data distribution MagZ3 . 76

C.28 Data plot GyroX1, GyroY1, GyroZ1 . 77

C.29 Data plot AccX1, AccY1, AccZ1 . 77

C.30 Data plot MagX1, MagY1, MagZ1 . 77

C.31 Data plot GyroX2, GyroY2, GyroZ2 . 78

C.32 Data plot AccX2, AccY2, AccZ2 . 78

C.33 Data plot MagX2, MagY2, MagZ2 . 78

C.34 Data plot GyroX3, GyroY3, GyroZ3 . 79

C.35 Data plot AccX3, AccY3, AccZ3 . 79

C.36 Data plot MagX3, MagY3, MagZ3 . 79

C.37 GyroX1, all sessions comparison . 80

C.38 GyroY1, all sessions comparison . 80

C.39 GyroZ1, all sessions comparison . 80

C.40 AccX1, all sessions comparison . 81

List of Figures 7

C.41 AccY1, all sessions comparison . 81

C.42 AccZ1, all sessions comparison . 81

C.43 MagX1, all sessions comparison . 82

C.44 MagY1, all sessions comparison . 82

C.45 MagZ1, all sessions comparison . 82

C.46 GyroX2, all sessions comparison . 83

C.47 GyroY2, all sessions comparison . 83

C.48 GyroZ2, all sessions comparison . 83

C.49 AccX2, all sessions comparison . 84

C.50 AccY2, all sessions comparison . 84

C.51 AccZ2, all sessions comparison . 84

C.52 MagX2, all sessions comparison . 85

C.53 MagY2, all sessions comparison . 85

C.54 MagZ2, all sessions comparison . 85

C.55 GyroX3, all sessions comparison . 86

C.56 GyroY3, all sessions comparison . 86

C.57 GyroZ3, all sessions comparison . 86

C.58 AccX3, all sessions comparison . 87

C.59 AccY3, all sessions comparison . 87

C.60 AccZ3, all sessions comparison . 87

C.61 MagX3, all sessions comparison . 88

C.62 MagY3, all sessions comparison . 88

C.63 MagZ3, all sessions comparison . 88

C.64 Prediction using GyroX1 values, result: 80.41% (5.76%) 89

C.65 Prediction using GyroY1 values, result: 80.41% (4.96%) 89

C.66 Prediction using GyroZ1 values, result: 80.64% (5.04%) 89

C.67 Prediction using AccX1 values, result: 83.84% (5.35%) 89

C.68 Prediction using AccY1 values, result: 82.87% (6.72%) 90

C.69 Prediction using AccZ1 values, result: 83.35% (4.93%) 90

C.70 Prediction using MagX1 values, result: 36.84% (33.52%) 90

C.71 Prediction using MagY1 values, result: 31.24% (34.59%) 90

C.72 Prediction using MagZ1 values, result: 39.32% (35.04%) 91

C.73 Prediction using GyroX2 values, result: 82.35% (4.90%) 91

C.74 Prediction using GyroY2 values, result: 82.86% (5.44%) 91

C.75 Prediction using GyroZ2 values, result: 79.64% (3.39%) 91

C.76 Prediction using AccX2 values, result: 83.59% (4.74%) 92

C.77 Prediction using AccY2 values, result: 83.34% (4.06%) 92

C.78 Prediction using AccZ2 values, result: 86.51% (5.86%) 92

C.79 Prediction using MagX2 values, result: 20.52% (27.13%) 92

C.80 Prediction using MagY2 values, result: 53.12% (36.79%) 93

C.81 Prediction using MagZ2 values, result: 40.02% (36.45%) 93

C.82 Prediction using GyroX3 values, result: 77.68% (7.85%) 93

C.83 Prediction using GyroY3 values, result: 77.68% (5.12%) 93

C.84 Prediction using GyroZ3 values, result: 78.91% (6.80%) 94

C.85 Prediction using AccX3 values, result: 87.74% (6.55%) 94

C.86 Prediction using AccY3 values, result: 84.06% (5.19%) 94

C.87 Prediction using AccZ3 values, result: 84.30% (4.81%) 94

List of Figures 8

C.88 Prediction using MagX3 values, result: 29.55% (34.17%) 95

C.89 Prediction using MagY3 values, result: 40.69% (34.67%) 95

C.90 Prediction using MagZ3 values, result: 75.63% (5.77%)) 95

C.91 Prediction using GyroX1 and AccX1 values, result: 80.64% (5.39%) 95

C.92 Prediction using GyroX2 and AccX2 values, result: 83.80% (5.37%) 96

C.93 Prediction using GyroX3 and AccX3 values, result: 85.12% (6.28%) 96

D.1 Sensor data distribution GyroX . 102

D.2 Sensor data distribution GyroY . 102

D.3 Sensor data distribution GyroZ . 102

D.4 Sensor data distribution AccX . 103

D.5 Sensor data distribution AccY . 103

D.6 Sensor data distribution AccZ . 103

D.7 Sensor data distribution MagX . 104

D.8 Sensor data distribution MagY . 104

D.9 Sensor data distribution MagZ . 104

D.10 Sensor data distribution WatchGyroX . 105

D.11 Sensor data distribution WatchGyroY . 105

D.12 Sensor data distribution WatchGyroZ . 105

D.13 Sensor data distribution WatchAccX . 106

D.14 Sensor data distribution WatchAccY . 106

D.15 Sensor data distribution WatchAccZ . 106

D.16 Data plot GyroX, GyroY, GyroZ . 107

D.17 Data plot AccX, AccY, AccZ . 107

D.18 Data plot MagX, MagY, MagZ . 107

D.19 Data plot WatchGyroX, WatchGyroY, WatchGyroZ 108

D.20 Data plot WatchAccX, WatchAccY, WatchAccZ 108

D.21 GyroX, all sessions comparison . 109

D.22 GyroY, all sessions comparison . 109

D.23 GyroZ, all sessions comparison . 109

D.24 AccX, all sessions comparison . 110

D.25 AccY all sessions comparison . 110

D.26 AccZ all sessions comparison . 110

D.27 MagX all sessions comparison . 111

D.28 MagY all sessions comparison . 111

D.29 MagZ all sessions comparison . 111

D.30 WatchGyroX, all sessions comparison . 112

D.31 WatchGyroY, all sessions comparison . 112

D.32 WatchGyroZ, all sessions comparison . 112

D.33 WatchAccX, all sessions comparison . 113

D.34 WatchAccY all sessions comparison . 113

D.35 WatchAccZ all sessions comparison . 113

D.36 Prediction using GyroX values, result: 65.94% (3.12%) 114

D.37 Prediction using GyroY values, result: 65.34% (3.83%) 114

D.38 Prediction using GyroZ values, result: 67.62% (2.80%) 114

D.39 Prediction using AccX values, result: 72.50% (2.24%) 114

D.40 Prediction using AccY values, result: 71.09% (3.78%) 115

List of Figures 9

D.41 Prediction using AccZ values, result: 70.44% (3.11%) 115

D.42 Prediction using GyroX and AccX values, result: 77.38% (2.80%) 115

D.43 Prediction using MagX values, result: 36.06% (21.72%) 115

D.44 Prediction using MagY values, result: 41.05% (22.91%) 116

D.45 Prediction using MagZ values, result: 45.15% (20.87%) 116

D.46 Prediction using WatchGyroX values, result: 69.21% (2.97%) 116

D.47 Prediction using WatchGyroY values, result: 68.96% (3.85%) 116

D.48 Prediction using WatchGyroZ values, result: 68.61% (3.71%) 117

D.49 Prediction using WatchAccX values, result: 72.96% (2.85%) 117

D.50 Prediction using WatchAccY values, result: 76.92% (2.91%) 117

D.51 Prediction using WatchAccZ values, result: 69.35% (4.21%) 117

D.52 Prediction using WatchGyroX and WatchAccY values, result: 74.45% (2.88%) . . 118

List of Tables

2.1 Pre-fall prevention interventions . 5

3.1 Technical specifications . 10

3.2 Bluetooth type comparison . 11

3.3 Models and third-party frameworks supported by Core ML Tools 15

3.4 Movement Sensor Attribute table . 19

3.5 Movement Sensor Configuration table . 19

3.6 IO Service Attribute table . 20

3.7 IO Service Configuration table . 20

10

Chapter 1

Introduction

1.1 Problem description

Approximately 30% of people over 65 falls each year, and for those over 75 the rates are higher [1],

[2]. Between 20% and 30% of those who fall su↵er injuries that reduce mobility and independence

and increase the risk of premature death. Fall rates among institution residents are much higher

than among community-dwellers.

Another aspect of falling is connected with the psychological aftermath of falling. Although even

few falls result could serious injury (head or spinal cord injury, joint dislocation, or fracture),

the psychological sequelae [1] (sometimes termed “post-fall syndrome”) can be severe and can

lead to a loss of self-confidence in one’s ability to perform routine daily tasks, as well as social

withdrawal, depression, or confusion. These, in turn, can lead to self-imposed restrictions in

activity, decreased mobility, and increased dependence.

For the last 5 years appeared mobile technologies allowing to capture the motion and handle the

captured data on mobile device. The price of hardware is relatively low that allows using these

devices by every person it’s needed. In addition, a lot of people already have a minimum amount

of devices for this purpose: Norway is the country with the largest smartphone penetration in

the world for age group 55+ [3]. So, if the trend will continue the problem of falling of elderly

could be solved just by mobile app, which would have minimal cost for a healthcare system.

1.2 Objectives

The main goal of this work is to develop means for detecting and predicting falls among elderly

people using walkers. A concept for defining instabilities and risk of falls should be designed

using machine learning technique. A risk of fall or fall should be identified and a user should

1

Introduction 2

be notified using any kind of mobile device. Prevention of fall should be based on the detected

risks. Such control could be embedded in the walker or as a kind of wearable or similar.

To implement this project should be also designed controlled experiment to train a wearable

system to detect instabilities and risk of falls. For this purpose could be used sensors or smart-

phone or smartwatch or any combination of these devices. Communication with sensor and

controlling device should be based on Bluetooth Low Energy. The project can be applied the

same approach as Elisabeth Gangenes on her Master thesis [4]. Could be used any kind of

software and hardware.

1.3 Research questions

This thesis focuses on researching work of sensors, its connectivity with the smartphone, collect-

ing and researching data from sensors, and prototyping means for predicting and detecting the

falls. Another focus is to research walk smartwatch and its possibilities for solving objectives

we stated. And finally, it focuses on research of possibilities of mobile devices in relation to

machine learning.

During the work on projects we faced with several questions:

1. Which sensors better to use: CC2650TK, built-in phone’s sensors or watchs built-in sensors

or combination of them?

2. Will be enough 10 Hz frequency of sensor CC2650TK for detecting/predicting falls?

3. Is it possible to develop autonomous Apple Watch app for predicting/detecting fall that

could communicate with sensors? Is it possible to use for predicting/detecting only sensors

of the watch?

4. Does the Apple Watch Series 3 have enough performance for Core ML framework to

detect/predict falls?

5. What motion data could be excluded and how excluding them could improve performance?

6. What will be the battery life of devices using the app for predicting/detecting falls?

Chapter 2

State-of-the-art review

2.1 Classification

Prevention of falls has been a topic that is researched more than 30 years and considered

important health issue in the United Kingdom (UK), Europe, North America and Australia.

Falls prevention is a multidisciplinary problem that includes such discipline as occupational

therapy, physiotherapy, general practice, nursing, geriatrics, gerontology health and social care.

In a paper by Julian Hamm et al. [5], reviewed the fall prevention interventions that used

to prevent falls. One of the popular approaches of fall prevention is exercise intervention:

supervised, when doctors conduct training for older adults and unsupervised, when elderly

perform paper-based exercises or use 3D technologies and games for assistance. Another type of

intervention is risk fall assessment, an approach that used to assess a number of risk factors

that a↵ect the likelihood of falling. For this purpose is used, for example, Berg balance scale,

Timed Up and Go, Turn 180 test and others. As well as for exercise intervention, 3D technology

and games have shown as a low-cost solution complement to traditional fall risk assessments

and to account for low adherence rates of self-assessment of fall risks done at home for this

kind of intervention. The third type of popular interventions is education interventions. They

are developed to increase knowledge according to falls prevention and educate elderly people

regarding their risk of falling and falls prevention strategies based on the available evidence-based

literature. Home assessments based interventions are carried out and assistive equipment is

prescribed to reduce falls within the home environment. To help elderly reduce the falls this

type of interventions assumes inviting clinicians to patient’s home and then clinicians propose

adaptations, often via the installation of assistive equipment. Technology�based interventions

could be used in a wide range of falls prevention contexts and include diagnosing and treating

fall risks, increasing adherence to interventions, detecting and predicting falls and notifying

clinicians in case of falls. Technologies help elderly to be more independent as they help to

3

State-of-the-art review 4

perform self-assessments assistive equipment provision. Another advantage of using technologies

for solving this problem is that they are helping to save money to provide e↵ective self-care as

with ageing population it’s going to be a challenge. And technologies could be key to reduce

the cost of a healthcare system. All the approaches in scheme presented in figure 2.1.

Figure 2.1: Overview of falls prevention interventions

Source: J. Hamm et al. / Journal of Biomedical Informatics 59 (2016) 319345

All the falls prevention technology systems could be classified by several parameters. The

conceptual model of falls prevention technology presented on figure B.1. The model is separated

into two parts: falls prevention technology systems in practice (in the top part of the figure) and

technology deployment, which presents the range of falls technology systems proposed in the

literature, the types of the user interface which they use, the information sources they exploit

and their respective collaborative functions.

2.2 Representation

There are a lot of fall prevention intervention systems implemented for preventing falls. They

could be divided into 4 main groups by prevention type:

• Pre�fall prevention intervention systems - focused on supporting the prevention of falls

by targeting risk factors, which if present, are known to be the cause of falls.

• Post�fall prevention intervention systems are used in the first instance to screen elderly

for fall risks after they have experienced a fall.

• Fall injury prevention intervention systems (FIPIs) aim to detect and respond to falls

after they have occurred and prevent or minimize fall-related injuries that may occur as

a consequence of falling.

State-of-the-art review 5

• Cross falls prevention intervention systems (CFPIs) target the full range of interventions

covered by Pre-FPIs, Post-FPIs and FPIs, thus providing an integrated approach to the

delivery of falls prevention interventions to patients.

As our topic of thesis refers most to the first group and used wearables, sensors and smartphones,

we consider and review only such types of systems. The compilation of projects we present in

table 2.1 is based on paper by Julian Hamm et al. [5].

System Some de-

tails

Intrinsic

Fall risk

factors

App

type

Sensor

location

Sensor

purpose

Deploy-

ment

environ-

ment

Multi-

modal

interac-

tion

Collabo-

ration

Chou et

al. [6]

from bed Fun S U+C Co+Bs - Nii+Ts Async

Ferreira

et al. [7]

exercises Fun+Bal G U Co He NUI+Ts Sync

Geraedts

et al. [8]

exercises Fun VR U Bs He NUI+Ts Sync

Horta et

al. [9]

similar

concept

Fun - U Co - NUI+Ts Async

Danielsen

Asbjørn

et al.

[10] [11]

similar

concept

Fun - U+C Co - - Async

Majumder

et al.

[12]

smartshoe Fun S U Co - Nii + Ts Async

Otis and

Menelas

[13]

smartshoe Eh (Ex-

trinsic)

S U Co - Nii Asynch

Table 2.1: Pre-fall prevention interventions

Abbreviations used in table:

• Async - Asynchronous

• Bal - Balance impairments

• Bs - Bespoke sensor

State-of-the-art review 6

• Co - Co-opted

• C - Context

• Eh - Environmental hazards

• Fun - Functional ability deficit(s)

• He - Home environment

• Nii - Non-interactive interface

• NUI - Natural User Interface

• S - Static

• Sync - Synchronous

• Ts - Touch screen

• U - User-worn

• VR - Virtual Reality

The first project in the table is concerned on preventing falls from bed, the second and third

ones are based on providing special exercises for elderly, fifth and sixth ones represents special

smart shoe, that could help to prevent falls.

The forth has the similar concept as the project we work on. Authors detect falls “by measuring

a user body acceleration and position, getting acceleration values from the accelerometer and

then transforms the values in G-force. Through the magnitude of the G-force at a given moment

and inactivity immediately after, considering the position of the device, a fall may be detected.”

Authors also report that such technology cannot detect all the falls. They conclude that “to

avoid a fall, it is better for users health and a solution to increase the accuracy rate of the

mobile solution.” That’s is our goal of the thesis - increase accuracy using machine learning

technique. The fifth has also the similar concept, but not considered the case, when elderly own

their smartphone.

2.3 Other systems

Another type of interventions is post fall technologies. For example, HIPSAFE [14] represents

belt that inflates with air in the moment of fall before ground impact to protect the hips of

elderly (Figure 2.2). It mostly designed to protect seniors from hip fractures. But the biggest

problem of using such kind of devices is social. The elderly do not want to wear hip protectors

State-of-the-art review 7

[14]. Hip protectors can reduce the risk of fractures, but they dont make people fall less often,

they just slightly reduce the risk of pelvic fractures. The problem is needed to be solved for

companies that produce hip protectors is to motivate people to wear them.

Figure 2.2: HIPSAFE belt

Source: senior.helite.com/en/my-hipsafe/

Also, there are other projects that not based on smartphone and wearables, for example for

detecting falls from bed, Danielsen Asbjørn et al. in paper [15] use the thermal camera and in

papers [16], [17] use roof-mounted infrared array combined with an ultrasonic sensor.

Chapter 3

Method

3.1 Introduction

The method applied consists of multiple steps that involve qualifying the equipment needed,

conduct fall experiments, create a machine learning platform and carry out testing. The overall

method can be divided into the following steps:

• Assess requirement instrumentation and equipment

• Prepare and conduct fall experiments

• Pre-analysis of data from fall experiments

• Train and validate machine learning system

• Develop prototype

Each of these steps consists of one or more sub-activities. Each of these constitute part of the

method developed and applied. They will be described briefly in the next paragraphs. Flow

chart showing the working process on details presented in figure A.1.

3.2 Assess requirement instrumentation and equipment

3.2.1 Choosing software and hardware rig

At first, needs to be chosen a platform for development (software: iOS or Android and hardware:

type of wearables) and research software frameworks needed for development. Then, needs to

8

Method 9

be developed means for collecting the data from di↵erent sources: phone and wearable and

collected data. After this step needs to research collected data using any kind of Machine

Learning technique. And finally, needs to be developed prototype app that could predict and

detect falls.

In the beginning, we needed to choose a mobile platform on which develop all the system: iOS

or Android. In previous work implemented by Elisabeth Gangenes [4] was chosen Android, but

for these project, we choose iOS for several reasons.

First of all, reliability: Blanco’s report [18] shows that average Android device performed consid-

erably worse than an average iOS device. In Q2 2017, the Android device failure rate worldwide

was 25 percent, which was more than twice as high as the failure rate of iOS devices (12 percent)

in the same period. As we are going to work with health data, fault tolerance of device is the

most important aspect of the chosen platform.

Secondly, the CoreML framework for iOS/watchOS apps [19], presented on WWDC 2017 could

be used to easily integrate machine learning models into the app [20], which theoretically allows

us to detect and prevent failings not only on the mobile phone but also on the smartwatch.

Finally, Apple Watch has deep communication with iOS platform as well as convenient API for

programming apps. So, our chose of development platform defined the wearable kind.

Another option needed to make is the kind of Bluetooth motion sensors. My assistant supervi-

sor Asbjørn Danielsen recommended to use the Texas Instruments SimpleLink Multi-Standard

SensorTag 2.0 CC2650TK wireless MCU, that’s why we use such kind of wearable.

The walkers we used for experiments are Gemino 20 Lightweight Rollator (Figure 3.1) I have

recommended by supervisor Bernt A. Bremdal.

Figure 3.1: Gemino 20 Lightweight Rollator

Method 10

For iOS development, we used Xcode, for handling and researching data we used PyCharm. To

make some editing of data we used Excel. As hosting for sources we used GitHub.

3.2.2 Review software and hardware rig

Gemino 20 Lightweight Rollator

Gemino 20 Lightweight Rollator (Figure 3.1) is stable and firm foldable rollator produced by

Handicare which is very easy to operate by the user. It has the ability to correct height adjust-

ment, which is important for achieving the best upright walking position. Height adjustment

could be performed without the use of any tools, just by pulling out the handle and making the

adjustment release to handle. The height of the push handle is automatically and safely locked

in the fixed position. Full technical specifications presented in table 3.1.

Parameter Values

Max. User Weight 150 kg

Maximum User Height 150 - 200 cm

Overall Length 65 cm

Total Width 60 cm

Total Weight 7.4 kg

Width Between Push Handles 47 cm

Seat Height 62 cm

Overall Height 78 - 100 cm

Folded Height 80 cm

Folded Length 65 cm

Folded Width 23 cm

Turning Radius 84 cm

Colours Grey

Table 3.1: Technical specifications

Source: sunrisemedical.eu

Bluetooth Low Energy

Bluetooth Low Energy [21] is a wireless personal area network technology designed and mar-

keted by the Bluetooth Special Interest Group (Bluetooth SIG) aimed at novel applications

in the healthcare, fitness, beacons, security, and home entertainment industries. Compared to

Classic Bluetooth, Bluetooth Low Energy is intended to provide considerably reduced power

consumption and cost while maintaining a similar communication range. The full comparison

between Bluetooth Low Energy and Bluetooth presented on table 3.2.

Method 11

Bluetooth Low Energy (LE) Bluetooth Basic Rate/Enhanced

Data Rate (BR/EDR)

Optimized For... Short burst data transmission Continuous data streaming

Frequency Band 2.4GHz ISM Band (2.402 - 2.480

GHz Utilized)

2.4GHz ISM Band (2.402 - 2.480

GHz Utilized)

Channels 40 channels with 2 MHz spacing

(3 advertising channels/37 data

channels)

79 channels with 1 MHz spacing

Channel Usage Frequency-Hopping Spread

Spectrum (FHSS)

Frequency-Hopping Spread

Spectrum (FHSS)

Modulation GFSK GFSK, ⇡/4 DQPSK, 8DPSK

Power Consumption ⇠ 0.01x to 0.5x of reference (de-

pending on use case)

1 (reference value)

Data Rate LE 2M PHY: 2 Mb/s

LE 1M PHY: 1 Mb/s

LE Coded PHY (S=2): 500

Kb/s

LE Coded PHY (S=8): 125

Kb/s

EDR PHY (8DPSK): 3 Mb/s

EDR PHY (⇡/4 DQPSK): 2

Mb/s BR PHY (GFSK): 1 Mb/s

Max Tx Power Class 1: 100 mW (+20 dBm)

Class 1.5: 10 mW (+10 dbm)

Class 2: 2.5 mW (+4 dBm)

Class 3: 1 mW (0 dBm)

Class 1: 100 mW (+20 dBm)

Class 2: 2.5 mW (+4 dBm)

Class 3: 1 mW (0 dBm)

Network Topologies Point-to-Point (including pi-

conet) Broadcast Mesh

Point-to-Point (including pi-

conet)

Table 3.2: Bluetooth type comparison

BLE standard provides developers with a huge amount of flexibility, including multiple power

levels, from 1 mW to 100 mW, as well as multiple security options up to government grade [22]

and multiple PHY options that support data rates from 125 Kb/s to 2 Mb/s.

To transfer data back and forth we use GATT (Generic Attribute Profile) [23], which uses the

concept called Services and Characteristics. It simplifies the usage of generic data protocol called

the Attribute Protocol (ATT), which used to store Services, Characteristics and related data in

a simple lookup table using 16-bit IDs for each entry in the table. Once a dedicated connection

is established between two devices, GATT comes into play, showing that you advertising process

governed by GAP already finished.

Method 12

The most important is that connections are exclusive: Peripheral can only be connected to one

central device (smartphone, etc) at a time. Advertising stops as it turns out that Peripheral

connected to the Central device. After this, other Central devices no longer be able to see it

and connect until the existing connection is broken.

We use this type of communication to connect together next couples: SensorTag 2.0 and iPhone,

Apple Watch and iPhone. As programming framework we use Core Bluetooth [24] for first couple

and Watch Connectivity [25] for second.

SensorTag 2.0 CC2650TK

SensorTag 2.0 CC2650TK is device based on the SimpleLink ultra-low power CC2650 wireless

MCU for quick and easy prototyping of IoT devices. It supports development for Bluetooth low

energy and allows to load new images or firmware directly over-the-air. It includes 10 low-power

micro-electro-mechanical systems and other items in a tiny red package [22] :

• IR Thermopile Temperature Sensor TMP007 (Texas Instruments)

• 9-axis Motion Sensor MPU-9250 (Invensense)

• Multi-Standard Wireless MCU CC2650 (processor, Texas Instruments)

• Digital Humidity Sensor HDC1000 (Texas instruments)

• PCB antenna

• Altimeter/Pressure Sensor BMP280 (Bosch Sensortec)

• Ambient Light Sensor OPT3001 (Texas Instruments)

• Buzzer

• DevPack Expansion Connector

• JTAG Debug/Programming Interface

• CR2032 Battery Clip

• 4M Serial Storage

• Magnet Sensor MK24 (Meder)

• Digital Microphone SPH0641LU (Knowles)

• Solder point for AAA battery pack

• red and green LEDs

Method 13

For collecting motion data (Gyroscope, Accelerometer and Magnetometer) we use 9-axis Motion

Sensor MPU-9250 (Invensense) and for labelling sensors we use LEDs.

iPhone

iPhone is a line of smartphones produced by Apple Inc. It uses iOS as operating system software.

For this project, we use iPhone 5s and iPhone 8. Each has following sensors:

• Touch ID fingerprint sensor

• Three-axis gyro

• Accelerometer

• Magnetometer

• Proximity sensor

• Ambient light sensor

• Barometer (only iPhone 8)

We use only motion sensors: Three-axis gyro, Accelerometer and Magnetometer. All these

sensors support up to 100 Hz frequency.

iOS

iOS is a mobile operating system created and developed by Apple Inc. for iPhone, iPad, and

iPod Touch. As we use iPhone as the Central device for this project, we develop our apps for iOS

11. As the language for development, we use Swift 4. For our apps we use several frameworks

for development:

• CoreMotion - framework for working with motion sensors

• CoreBluetooth - framework for working with BLE

• CoreData - framework for working with object graph manager, which has an ability to

persist object graphs to a persistent store, on a disk.

• CoreML - framework for integrating machine learning model to app

• WatchKit - framework for working with Apple Watch

• WatchConnectivity - framework for exchanging data between iPhone and Apple Watch

Method 14

CoreML [19] framework helps to integrate machine learning models into app.

Figure 3.2: Integrating trained model scheme

Source: Apple’s documentation

A trained model is the result of applying a machine learning algorithm to a set of training

data. The model makes predictions based on new input data. For example, a model that’s been

trained on a region’s historical house prices may be able to predict a house’s price when given

the number of bedrooms and bathrooms.

Figure 3.3: Core ML layer in app

Source: Apple’s documentation

Core ML is optimized for on-device performance, which minimizes memory footprint and power

consumption. Running strictly on the device ensures the privacy of user data and guarantees

that your app remains functional and responsive when a network connection is unavailable.

Core ML support following models and third-party frameworks [19]:

Method 15

Model type Supported models Supported frame-

works

Neural networks Feedforward, convolutional, recurrent Ca↵e v1

Keras 1.2.2+

Tree ensembles Random forests, boosted trees, deci-

sion trees

scikit-learn 0.18

XGBoost 0.6

Support vector

machines

Scalar regression, multiclass classifica-

tion

scikit-learn 0.18

LIBSVM 3.22

Generalized linear

models

Linear regression, logistic regression scikit-learn 0.18

Feature engineer-

ing

Sparse vectorization, dense vectoriza-

tion, categorical processing

scikit-learn 0.18

Pipeline models Sequentially chained models scikit-learn 0.18

Table 3.3: Models and third-party frameworks supported by Core ML Tools

Apple Watch

Apple Watch is a line of smartwatches produced by Apple Inc. It uses watchOS as operating

system software which has deep integration with iOS. For this project, we use Apple Watch

Series 3. It has following sensors:

• Barometric altimeter

• Heart rate sensor

• Accelerometer

• Gyroscope

• Ambient light sensor

We use only motion sensors: Gyroscope and Accelerometer. All these sensors, as well as iPhone’s

ones, support up to 100 Hz frequency.

watchOS

watchOS is the mobile operating system of the Apple Watch, developed by Apple Inc. It is based

on the iOS operating system and has many similar features. It actually has all the frameworks

listed in iOS section. We use watchOS 4 for our project.

Method 16

3.3 Prepare and conduct fall experiments

3.3.1 Develop apps for collecting data

Developing app for collecting data from SensorTags 2.0 (DataCollector)

To collect motion data from several SimpleLink Multi-Standard SensorTags 2.0 CC2650TK

we need to develop a special iOS app for that purpose that could communicate with several

SensorTags and record data into internal storage of phone and export all the data into *.csv

files. Another requirement for the app is a possibility to label each sensor by a unique label

to do not mix data working with several sensors. For that purpose, we are going to use LEDs

build-in SensorTag. We mark the first sensor by red LED, second by the green LED, third by

a combination of red and green LEDs as presented in figure 3.4.

Figure 3.4: Labelling SensorTags

We usually use such terms as client and server to describe the entities which want data or which

has the data. But when we work with BLE we use a bit di↵erent terms: as for device that has

the data we use term Peripheral [26]; for the device that we want to receive data from Peripheral,

we use Central. In iOS development terms: iOS app will be Central, which interacts with one or

more Peripherals to receive information that could be handled, analyzed, or stored. As for our

case, the Peripherals would be SensorTags 2.0 CC2650TK. Another aspect of working with BLE

devices is that we want to know how to get the data we are interested in out of the Peripheral.

For this purpose, we use Services and Characteristics of each Peripheral. Characteristics are

representing “properties” of the device which could be read from and written to. Services are

Method 17

represent set of characteristics. Peripherals are usually contained several services that we need

to examine to find out which characteristics are available with which to interact.

At first, to start reading/writing data on the device we should discover it. As soon as it turns

out that a Bluetooth device is switched on and is in range, it periodically sends out a little signal

that lets interested devices know that its alive and kicking. This process named Advertising;

the time interval between signals is named “advertising interval”.

As for our case the Central is an iOS app, it listens for those advertisements, and we can specify

inside our app exactly which Services we are interested in. In the process of discovering, iOS

finds in the area that supports needed Services. This is important because the amount of BLE

devices that are in range could be many and we need to have a possibility to filter them. For

this purpose, we use framework power to filter the devices that are not broadcasting the services

we are interested in.

The framework we use for working with BLE devices is called Core Bluetooth [24], which

provides the classes needed for our iOS app to communicate with devices that are equipped

with Bluetooth low energy wireless technology. The framework is not concerned with working

with standard Bluetooth protocol, it is specially designed for working with BLE devices.

The main classes and delegates of the framework we use to develop an app in which Centrals

interact with Peripherals are:

• CBCentralManager - manages and interacts with Peripherals

• CBPeripheral - an abstraction of the Peripheral that wraps the functionality surrounding

the retrieval and updating of data in the remote device

• CBService - represent services

• CBCharacteristic - represent characteristics

• CBCentralManagerDelegate - delegate of CBCentralManager

• CBPeripheralDelegate - delegate of CBPeripheral

The names of classes and delegates in the framework begin with “CB” which shows that they

are all the part of Core Bluetooth framework. The work of framework is based on work of

delegates as about all of the interactions between the Central and Peripheral are asynchronous

and non-blocking. So, the usage of delegates in this scenario allows for the calling of a method

on one of the Core Bluetooth Framework objects, and it will get back at some undetermined

time in the future by way of a delegate method. Initially, the class we are most interested in

is the CBCentralManager. It works as the coordinator of the dialogue with the Peripheral

Method 18

devices, and its this class that one uses as the starting point when building an app that will act

as a Central.

All the Services and Characteristics in Core Bluetooth are defined by either a 16-bit UUID

(defined by the Bluetooth LE specification and are listed in the Bluetooth Developer Portal

in the Services or Characteristics sections) or a 128-bit UUID (for proprietary Services and

Characteristics) [26]. A UUID (Universally Unique Identifier) is basically just a number.

The basic workflow developing with Core Bluetooth should be following:

Algorithm 1 Workflow Core Bluetooth

1: create an instance of a CBCentralManager

2: if Bluetooth services are powered on then

3: start scanning for CBPeripherals with desired Services

4: if found a Peripheral we want to connect to then

5: stop scanning

6: connect to the CBPeripheral we have found

7: inspect the CBPeripheral for available CBServices (ask the Peripheral if it supports

specific services or ask it to return all available Services that it supports)

8: if found needed Peripherals Services then

9: if found needed CBCharacteristics then

10: read from or write to the values of those Characteristics

In our case, for the device of SensorTag 2.0 [27] we need to get an access to movement sensor

data: Gyroscope, Accelerometer and Magnetometer and also to IO Service to have a possibility

to label each of the Peripheral.

To start receiving updates of motion data periodically or notifications if naming in Bluetooth

low energy terms, we need using data from table: 3.4 and table 3.5 do following actions [27] :

1. Configure: enable each sensor and setting accelerometer range; I used 16G as the most

sensitive.

2. The numbers start at 1 with every call to the enumerate environment.

3. Set up needed period.

4. Write 0x0001 to Notification UUID to start getting notifications.

Method 19

Type UUID Access Size

(bytes)

Description

Data AA81* R/N 18 GyroX[0:7], GyroX[8:15], GyroY[0:7],

GyroY[8:15], GyroZ[0:7], GyroZ[8:15],

AccX[0:7], AccX[8:15], AccY[0:7],

AccY[8:15], AccZ[0:7], AccZ[8:15],

MagX[0:7], MagX[8:15], MagY[0:7],

MagY[8:15], MagZ[0:7], MagZ[8:15]

Notifi-

cation

2902 R/W 2 Write 0x0001 to enable notifications,

0x0000 to disable.

Configu-

ration

AA82* R/W 2 One bit for each gyro and accelerome-

ter axis (6), magnetometer (1), wake-

on-motion enable (1), accelerometer

range (2). Write any bit combination

top enable the desired features. Writ-

ing 0x0000 powers the unit o↵.

Period AA83* R/W 1 Resolution 10 ms. Range 100 ms

(0x0A) to 2.55 sec (0xFF). Default 1

second (0x64).

Table 3.4: Movement Sensor Attribute table

Bits Usage

0 Gyroscope z axis enable

1 Gyroscope y axis enable

2 Gyroscope x axis enable

3 Accelerometer z axis enable

4 Accelerometer y axis enable

5 Accelerometer x axis enable

6 Magnetometer enable (all axes)

7 Wake-On-Motion Enable

8:9 Accelerometer range (0=2G, 1=4G, 2=8G, 3=16G)

10:15 Not used

Table 3.5: Movement Sensor Configuration table

To label each SensorTag by desired color we need using data from table 3.6 and table 3.5 do

following actions [27] :

Method 20

1. Switch IO Service of each Peripheral into remote mode

2. Enable LED of the correspondent color of each Peripheral

Type UUID Access Size

(bytes)

Description

Data AA65* R/N 1 Depending on mode set in configura-

tion characteristic.

Configu-

ration

AA66* R/W 1 0: local mode, 1: remote mode, 2: test

mode

Table 3.6: IO Service Attribute table

Mode Name Description

0 Local In local mode the application itself controls the use of the LEDs.

By default the green led blinks when advertising, and is also used

at start-up to indicate a successful self test. The red LED is used to

indicate any error in the power on self test, under normal operation

it is not used. The buzzer is not used by any built in functionality

of the firmware.

1 Remote In remote mode the BLE host overrides the IO usage and can ac-

tivate the LEDs and the buzzer directly.

2 Test In test mode the values of the power on self test can be read.

Table 3.7: IO Service Configuration table

For storing collected data we use Core Data framework [28]. Core Data is a framework for

managing the model layer objects in an app. It provides generalized and automated solutions

to common tasks associated with object lifecycle and object graph management, including

persistence. Core Data is not an ORM or object-relational mapper. Nor is it a database.

Instead, Core Data is an object graph manager which also has the ability to persist object

graphs to a persistent store, on a disk. To store all the data we need we developed model for

Core Data presented on figure 3.5. To store the session we use several entities:

• Session - main object, where we store session; recordID is used to mark each session, for

example, recordID = 0 use for walking, recordID = 1 for falling.

• Sensor - sensor identificator; the sensor with red LED has id=1; the sensor with green

LED has id=2; the sensor with the combination of red and green LEDs has id=3

Method 21

• SensorData - used to store data combination of 3 sensors (Gyroscope, Accelerometer and

Magnetometer) and their timestamp; we receive the data from all each sensor simultane-

ously: timestamp is same for same Peripheral; each Peripheral has I’s own timestamp for

each sensor data, which could not be synchronized with each other

• Characteristic - used for storing such characteristics as Gyroscope, Accelerometer and

Magnetometer

• CharacteristicName - used to label each of characteristics by name

Figure 3.5: Core Data DataCollector

In the end, we implement the functionality of exporting all the data from object graph manager

to *.csv file. That gives *.csv file containing a table that contains data for each of the sensors

for each of the sessions. Finally, we get the app that contains all needed features for our

experiments. Screenshots of this app presented in Figure 3.6.

Method 22

(a) Record/searching View Con-
troller

(b) Editing/Exporting View Con-
troller

Figure 3.6: App’s screenshots (DataCollector)

Working on the app we implemented several constructs needed to provide all the functionality:

• NSManagedObject classes - provide work of each object of Core Data (Figure 3.7)

Figure 3.7: UML - NSManagedObjects

• CollectingDataV C class - provides all the functionality for collecting data (Figure 3.8)

• ExportDataV C class - provides all the functionality for exporting data (Figure 3.8)

Method 23

Figure 3.8: UML - ExportDataVC & CollectingDataVC

• CircleButton class - used for deforming Start/Stop buttons (Figure 3.9)

• RecordIDV CDelegate protocol - used for synchronization between CollectingDataV C

and RecordIDV C (Figure 3.9)

• SettingsTableV CDelegate protocol - used for synchronization data between CollectingDataV C

and SettingsTableV C (Figure 3.9)

Figure 3.9: UML - CircleButton, RecordIDVCDelegate, SettingsTableVCDelegate

• SessionIDCell class - used for viewing recordIDs (Figure 3.10)

• ItemSessionCell class - used for viewing Sessions in table (Figure 3.10)

Method 24

Figure 3.10: UML - SessionIDCell and ItemSessionCell

• RecordIDV C class - used to recordID changing (Figure 3.11)

• SettingsTableV C class - used to implement settings (Figure 3.11)

Figure 3.11: UML - RecordTableVC and SettingsTableVC

• SensorOutput class - for temporary storing SensorTag output data (Figure 3.12)

• Device class - singleton class that stores all const UUID values we use in app (Figure

3.12)

Method 25

Figure 3.12: UML - SensorOutput and Device

In View Controllers the scheme of work looks in following way. Main View Controller has Tab

Bar controller allowing separate functionality into two parts: Collecting data / Settings and

Exporting data/Deleting. Full scheme presented on Figure 3.13.

Method 26

Figure 3.13: DataCollector ViewController Scheme

Developing app for collecting data from iPhone and Apple Watch (MotionCollector)

To collect motion data from internal sensors of iPhone and Apple Watch we need to develop

another app. The app should have 3 regimes: collecting data from iPhone, collecting data from

the watch and collecting data from phone and watch simultaneously.

At first, we develop all the functionality, excluding work of Apple Watch. To implement this

we use Core Motion framework [29], which reports motion - and environment-related data from

the onboard hardware of iOS devices, including from the accelerometers and gyroscopes, and

from the pedometer, magnetometer, and barometer. We use this framework to access hardware-

generated data from in-built iPhone’s Gyroscope, Accelerometer and Magnetometer and save

the data into Core Data [28] as we implemented in the previous app. The basic workflow

developing with Core Motion goes following way:

Method 27

Algorithm 2 Workflow Core Motion

1: if isAccelerometerAvailable == True, isGyroAvailable == True, isMagnetometerAvailable

== True then

2: accelerometerUpdateInterval = 1.0 / neededFrequency

3: startAccelerometerUpdates()

4: gyroUpdateInterval = 1.0 / neededFrequency

5: startGyroUpdates()

6: magnetometerUpdateInterval = 1.0 / neededFrequency

7: startMagnetometerUpdates()

8: create scheduledTimer loop:

9: get all needed values: GyroX, GyroY, GyroZ, AccX, AccY, AccZ, MagX, MagY, MagZ

10: goto loop

As iPhone supports up to 100 Hz frequency for motion sensors, we need to optimize work with

memory. For this purpose, we store all the data from the sensor in RAM during a recording

session. As well as user pressed stop button all the data we save to object graph manager Core

Data. This optimization reduces CPU of phone load from 70% to 5%.

We store data using almost the same Core Data model as in the first app but we change

sensorsAmount property which defines amount of sensors of session into sensorType as for now

we need to maintain 3 types of sessions: with data only from iPhone, with data only from Apple

Watch and session which includes data from iPhone as well as data from Apple Watch. Data

Core model for this app presented on figure 3.14.

Figure 3.14: Core Data MotionCollector

Method 28

Exporting data into *.csv file works in the same principle as in the first app. Finally, we get the

app that could record data from in-built sensors and export collected data. The View Controller

scheme is almost the same as in the first app with the exception of lack of not used items in

settings. Screenshots of this app presented on Figure 3.15.

(a) Record/Searching ViewCon-
troller

(b) Editing/Exporting ViewCon-
troller

Figure 3.15: App’s screenshots (MotionCollector)

Starting working on Apple Watch app we meet several challenges:

1. We have limited resources: any modern iPhone or Mac has 10x or more computing power

of Apple Watch, so there is no scope to waste system resources.

2. We have limited screen space: even the larger Apple Watch only has a resolution of

312x390 (121,680 pixels), which is small even compared to an old iPhone as iPhone 4.

3. We have limited user attention: Apple recommends complete the app’s task in under two

seconds.

Apple Watch relies on a phone to be fully functional. The app for Apple Watch is store inside

iOS app. As soon as an iOS app would be installed on phone, the phone tries to find paired

Watch. As soon as Watch will be found, the Watch app would be installed.

Method 29

There is a limitation on background work of watch. This means that if we do not bypass it,

collecting data will stop as soon as user turn the wrist that switches watch to sleep mode.

WatchKitapps cannot use background execution except for 3 use cases [30] :

1. Network operations using URLSession

2. Playing audio using WKAudioF ileP layer or WKAudioF ileQueueP layer

3. Run a workout using HKWorkoutSession

The last one is the most suitable for us. For this purpose, we use HealthKit framework.

Comparing to the IOS app, WatchKit app needs not only check the availability of hardware

and start updates, but also create and run HKWorkoutSession in order to provide background

work.

For exchanging data between phone and watch we use WatchConnectivity framework and

create WCSession on phone and watch for this purpose. The limitation of this framework is

concerned with maximum message size that watch can send and receive. There are three ways

of exchange dictionaries between watch and phone :

1. Real-time messages or sending a message is the way of immediately transferring data from

one device to the other. If either device is not reachable, this fails and it is needed to try

again later. In the case of calling this from watchOS, it will launch the iOS app in the

background if it isn’t already run. In the case of calling this repeatedly, new data will

deliver after old data. For this method limit dictionary size of data is 65,536 bytes (65.5

KB).

2. Guaranteed messages or transferring user info is a way of guaranteed data gets delivered

at some points in the future. It might not be now, and this won’t wake iOS app in

the background, but it does ensure that data gets delivered. In the case of calling this

repeatedly, new data will deliver after old data. For this method limit dictionary size of

is 65,536 bytes (65.5 KB).

3. Application states or updating application context is for sending high-priority data that

contains core application settings and information. In the case of calling repeatedly, new

data replace old data. For this method limit dictionary size of is 262,144 bytes (262.1

KB).

As we use 60 Hz frequency, size of Double type is 8 bytes, size of Date is 8 bytes, we have two

characteristics: Gyroscope and Accelerometer and 3 axes for each, we can calculate the size

of stream of data to let us know whether or not we can keep within the limit of guaranteed

messages to deliver data from watch to phone. We have:

Method 30

8 ⇤ (2 ⇤ 3 + 1) ⇤ 60/1024 = 3.28125 (KB/ sec)

So, using this method we could only deliver data for up to 20 second, which is not enough.

There is another way to deliver data: sending files. The limit of files is not documented in

WatchKit documentation. Then, we implement new class SensorOutput that adopts protocol

Codable, that allows us to serialize/deserialize data of supporting types to store our data in the

file.

Another feature of the app we need to implement is exchanging messages between watch and

phone to synchronously start the record in the case of the regime of recording simultaneously

recording on iPhone and Apple Watch. In the case of using this regime, the record number

which is used for identifying the type of record should be chosen on watch.

To start work on Watch app we need to think through the process how exactly the watch will

be interacting with the phone. The whole workflow of working of the app should be following:

Algorithm 3 Workflow of Start and Finish recording of data on Apple Watch and iPhone

1: procedure Start recording on watch

2: Request last record id from Phone

3: if Received last record id then

4: Update session id

5: Send to phone record id and request for starting recording on phone

6: Create new HKWorkoutSession on watch

7: Start recording data into RAM

8: procedure Stop recording on watch

9: Stop recording data on watch

10: Send request to stop recording on phone

11: Serialize all recording data and save into file

12: Send file to phone and request feedback as soon as it would be handled

After receiving the file on the phone, the phone starts the process of deserialization and saves all

the received data into Core Data. And finally, we have all the data from phone and watch stored

in single place, from which we can export for further analysis. Screenshots of Apple Watch app

presented in figure 3.16. Start/Stop menu is running using ForceTouch, a technology developed

by Apple that enables touchscreen to distinguish between di↵erent levels of force being applied

to its surface.

Method 31

(a) Main Interface controller (b) Start/Stop menu

Figure 3.16: Watch app’s screenshots (MotionCollector)

Working on this app we used modified constructs from the previous app as well as create new

ones:

• CollectingDataV C class - provides all the functionality for collecting data (Figure 3.17)

• ExportDataV C class - provides all the functionality for exporting data (Figure 3.17)

Figure 3.17: UML - ExportDataVC & CollectingDataVC

• NSManagedObject classes - provide work of each object of Core Data (Figure 3.18)

Method 32

Figure 3.18: UML - NSManagedObjects

• CircleButton class - used for deforming Start/Stop buttons (Figure 3.19)

• SessionIDCell class - used for viewing recordIDs (Figure 3.19)

• ItemSessionCell class - used for viewing Sessions in table (Figure 3.19)

Figure 3.19: UML - CircleButton, SessionIDCell, ItemSessionCell

• SettingsTableV CDelegate protocol - used for synchronization data between CollectingDataV C

and SettingsTableV C (Figure 3.20)

Method 33

• SettingsTableV C class - used to implement settings (Figure 3.20)

• RecordIDV CDelegate protocol - used for synchronization between CollectingDataV C

and RecordIDV C (Figure 3.20)

• RecordIDV C class - used to recordID changing (Figure 3.20)

Figure 3.20: UML - SettingsTableVCDelegate, SettingsTableVC, RecordIDVC, Set-
tingsTableVCDelegate

• MainIC class - for controlling main Interface controller of watch app, that starts/stops

sessions and sends data to phone (Figure 3.21)

• SensorOutput class - for temporary storing SensorTag output data (Figure 3.21)

• SessionContainer - container using which we serialize data before sending from watch to

phone and from which we deserialize data on phone before saving into Core Data (Figure

3.21)

Method 34

Figure 3.21: UML - MainIC, SensorOutput, SessionContainer

In View Controllers the scheme of work looks in the same as in fist app. The di↵erence is only

in absence of settings that do not need in the case of using built-in sensors of iPhone and Apple

Watch. Full scheme presented on Figure 3.22.

Method 35

Figure 3.22: MotionCollector ViewController Scheme

3.3.2 Conduct fall experiments and collect data

General conditions and limitations

To start record data we need to review falling patterns of elderly people using walkers. There

are five examples [31]:

1. Incorrect weight shifting while standing and turning. It happens in following way: while

initiating a turn, person rotates the walker and upper body 180 degrees, while the feet

remain stationary (typical of Parkinson-like freezing). Despite eventual steps, a backward

fall ensues (Figure 3.23 A).

2. Incorrect weight shifting while walking forward: while stepping around the dog, the person

establishes too narrow a base of support, causing a sideways fall (Figure 3.23 B).

Method 36

3. Trip while walking and turning: while playing ball, the man initiates a turn by crossing

his left leg in front of his right. He loses balance during the next step, after the toe of his

right foot collides with his left heel, resulting in a backward fall (Figure 3.23 C).

4. Trip while walking forward: the woman seems to attempt to steer around the foot of a

lifting device, but trips on the obstacle (Figure 3.23 D).

5. Loss of support with the external object while sitting down. We can note that the

wheelchair rolls backwards on contact, and is unable to provide the support necessary

to complete the transfer (Figure 3.23 E).

6. Fall when raising up/sitting down in bed or chair using a walker for support the walker

moves, and we have a fall (Figure 3.24).

Figure 3.23: Falls patterns 1

Source: Lancet. 2013 January 05; 381(9860)

Method 37

Figure 3.24: Falls patterns 2

Source: grayandwhitelaw.com

For collecting data we separate data into three groups and labelled each group by its own record

id:

1. Safe walking patterns or normal walk and other movements

2. Relatively safe walking patterns or initiations [31]

3. Unsafe walking patterns of falls

For first one we record simple walk, standing, turning and sitting implemented safely (without

movement that could provoke a fall). For the second one, we record patterns that could lead to

a fall. We use these patterns to predict the falls as notification to a user that his or her current

body position could lead to fall can help him or her to avoid falling changing the position. And

for the last group, we record all patterns described above. Each pattern records 1-3 times.

These patterns we use to detect falls.

For each of the type of collecting data (using SensorTags and iPhone and Apple Watch) data

was recorded by me and my groupmate Igor Molchanov.

Collecting data using SensorTags 2.0 CC2650TK

To collect data using SensorTags we attach 3 of them in following way (Figure 3.25) :

1. To upper part of walkers

2. To lower part of walkers

3. Put into pocket

Method 38

Figure 3.25: Attached sensors

For identification the number of each of SensorTag we use labelling by LED as we developed

(Figure 3.4). For recording we used following settings:

• Session period: 0.1 (maximum possible)

• Amount of SensorTags: 3

• Wake�On�Motion: disabled (not available via UI, default value in app)

• Accelerometer range: 16G (not available via UI, default value in app)

Using such placement of SensorTags and settings described above we implement all the walking

patterns and collect the data.

Collecting data using in-built iPhone and Apple Watch sensors

To collect data using iPhone and Apple Watch we dress the watch on the left hand and put a

phone into the pocket of jeans. All the control of processes of recording we make using a watch.

For recording we use following settings:

• Session frequncy: 60 (for phone and watch)

• Session type: watch and phone

Method 39

3.4 Pre-analysis of data from fall experiments

3.4.1 Research collected data from SensorTags

After collecting all 3 type of patterns we received 7429 data samples that include data collected

by me and by Igor Molchanov. The data has following structure:

Relatively

Figure 3.26: SensorsTags Data Structure

At first, we made analysis to make sure that we will not face hard-to-analyze issues when training

machine learning model on this dataset (C.1). Listing shows information about collected data:

amount of data for each type, used data types, amount of null values for each column, infor-

mation according distribution data and amount of data for each session record type. The dataset

contains both meta-information in columns SessionID, SessionDate, SessionDuration, Session�
Period, AmountOfSensors, RecordID, T imestamp(1-3) and timeIntervalSince1970 (1-3) as

well as sensor data in GyroX(1-3), GyroY (1-3), GyroZ(1-3), AccX(1-3), AccY (1-3), AccZ(1-

3), MagX(1-3), MagY (1-3), MagZ(1-3). The number in the end of the name of the column

is indicates the number of SensorTag used for collecting data according the scheme of attach-

ment as depicted on figure 3.25. Each data sample is labeled with a value from SessionID,

AmountOfSensors, SensorPeriod and RecordID columns.

Apart from numerical sensor data, the dataset contains data in RecordID column which acts

as a label for each row in the dataframe.

RecordID column represents categorical variable with following possible values:

Method 40

• 0: “safe walk pattern”

• 1: “relatively safe walk pattern” or initiation [31] ’

• 2: “unsafe walk pattern”

The dataset contains 6032 “safe” data samples as well as 613 “relatively safe” data samples and

613 “unsafe” data samples.

Since we have samples from 3 types of patterns, it makes sense to explore the distribution of

numerical data separately for each pattern. The result is presented on figures C.1 - C.27. It’s

could be concluded that data distribution of GyroY (1-3), GyroZ(1-3), AccX(1-3), AccY (1-3)

and AccZ(1-3) are symmetrical, but have di↵erent size of peaks for each type of walk pattern

in the most cases. In some cases (AccX3 and AccY 3) the distribution is bimodal. MagX(1-3),

MagY (1-3) and MagZ(1-3) are multimodal in the most of cases. Only MagX(1-3), MagY (1-3)

and MagZ(1-3) have outliers.

To see how patterns di↵erent in accordance to each characteristics we build Sensor data plots

(Figures C.28 - C.36). On these plots, we separate curves into 3 zones. Each zone represents

one of three possible patterns we research. As we can see in general the characteristics that

mostly subject to change the pattern of itself when the pattern of walk changes are Gyro(1-3)

and Acc(1-3) for all the axis. The pattern change does not a↵ect the behaviour of Mag(1-3)

for all the axis. So, we can conclude, that we can not use Magnetometer for predictions. Also

should be mentioned, that on the plots C.35 and C.36 first half of values of each zone is opposite

to second half. It can be explained that SensorTag was attached in di↵erent positions when

data was collected by me and by Igor Molchanov.

It is impossible to make predictions based on a single sample [32]. Only taking into account

several data samples make it possible to define the pattern. To let us know how much samples

do we need to use for detecting patterns we build plots (Figures C.37 - C.63) on which we depict

all the sessions starting each session from the start of the plot. We also left the section on the

plot on which the curve changes the most rapidly. Using this plot we can decide, what amount

of sample do we need to take for an acceptable level of defining the pattern. As seen from the

plots, 5-6 samples should be enough. That would give us a 6 by 6 (Gyro + Acc all axis) matrix

as an input for our neural network, but it could be power and performance ine�ciently as we

use the mobile device. So at first, we need to test, how prediction will work using only one

characteristic and then add another for additional accuracy.

As we recorded using 10 Hz frequency (maximum frequency supported by SensorTag), 6 sample

will equivalent to 0.1 * 6 = 0.6 seconds time observation. It means that minimum period needed

to define the pattern will be 0.6 seconds.

Method 41

3.4.2 Research collected data from iPhone and Apple Watch

Now we repeat the way we analyzed the data collected using SensorTags for data collected using

iPhone and Apple Watch. After collecting all 3 type of patterns we collected 73574 data samples

that include data collected by me and by Igor Molchanov. The data has following structure:

Figure 3.27: iPhone and Apple Watch Data Structure

As for the previous dataset, at first, we made analysis to make sure that we will not face hard-

to-analyze issues when training machine learning model on this dataset (D.1). The code was the

same as for the first dataset, so the listing shows the same type of information: the amount of

data for each type, used data types, amount of null values for each column, information according

to distribution data and amount of data for each session record type. This dataset contains both

meta-information in columns SessionID, SessionDate, SessionDuration, SessionFrequency,

RecordID, T imestamp,WatchT imestamp, timeInterval� Since1970 andWatchtimeIntervalSince1970

as well as sensor data in GyroX, GyroY , GyroZ, AccX, AccY , AccZ, MagX, MagY , MagZ,

WatchGyroX, WatchGyroY , WatchGyroZ, WatchAccX, WatchAccY , WatchAccZ. The

word “Watch” at the start of the name of the column is indicate belonging data to Apple

Watch. Each data sample is labeled with a value from SessionID,, SensorFrequency and

RecordID columns.

RecordID column is also as in previous dataset represents categorical variable:

• 0: “safe walk pattern”

• 1: “relatively safe walk pattern” ’

• 2: “unsafe walk pattern”

The dataset contains 46890 “safe” data samples as well as 12496 “relatively safe” data samples

and 12496 “unsafe” data samples.

Method 42

Since we have samples from 3 types of patterns, it makes sense to explore the distribution of

numerical data separately for each pattern. The result is presented on figures D.1 - D.15. t’s

could be concluded that data distribution of Gyro, Acc, WatchGyro and WatchAcc for all the

axis are symmetrical, but have di↵erent size of peaks for each type of walk pattern in the most

cases. In some cases (AccY , AccZ, WatchAccY , WatchAccZ) the distribution is bimodal for

one or several walk patterns. MagX, MagY and MagZ are multimodal in the most of cases.

Only MagX, MagY and MagZ have outliers.

To see how patterns are di↵erent in accordance with each characteristic we build Sensor data

plots (Figures D.16 - D.20) as well as we did it for dataset collected from SensorTags. On these

plots, we separate curves into 3 zones. Each zone represents one of three possible patterns we

research. As we can see in general the characteristics that mostly subject to change the pattern

of itself when the pattern of walk changes are Gyro, Acc, WatchGyro and WatchAcc for all

the axis. In the case of WatchGyro and WatchAcc we see that the behaviour of curves almost

does not changes when the plot passes from ‘safe” pattern to “relatively safe” pattern. This

means, that we cannot actually distinguish between ‘safe” pattern and “relatively safe” using

the Apple Watch motion sensor, The pattern change does not a↵ect the behaviour of Mag for

all the axis. So, we can conclude, that we can not use Magnetometer for predictions. It could

be also mentioned that on the plot D.17 the first half of values of each zone is opposite to the

second half. It can be explained that iPhone was attached in di↵erent positions when data was

collected by me and by Igor Molchanov.

In a similar way as according to the data collected using SensorTags, It is impossible to make

predictions based on a single sample. We need to take into account several data samples to

make it possible to define the pattern. To let us know how much samples do we need to use

for detecting patterns we build plots (Figures D.21 - D.35) on which we depict all the sessions

starting each session from the start of the plot. On the plots, we left only the section on which

the curve changes the most rapidly. Using this plot we can decide, what amount of sample

do we need to take for an acceptable level of defining the pattern. As seen from the plot,

10-12 samples should be enough. That would give us a 12 by 6 (Gyro + Acc all the axis for

iPhone and WatchGyro + WatchAcc all the axis for Apple Watch) matrix as an input for our

neural network, but it could be power and performance ine�ciently as we use the mobile device,

especially for Apple Watch. So at first, we need to test, how prediction will be work using only

one characteristic and then ad another for additional accuracy.

As we recorded using 60 Hz frequency (maximum frequency supported by iPhone and Apple

Watch is 100Hz), 12 sample will equivalent to 0.06 * 12 = 0.72 seconds time observation. It

means that minimum period needed to define the pattern will be 0.72 seconds.

Method 43

3.5 Train and validate machine learning system

As our goal is to create and train machine learning model that could predict type users’ walking

pattern, we need to choose machine learning framework. Our choice is limited by the list of

frameworks supported by Core ML (Table 3.3).

It is always the challenge of variety trying to solve the problem using machine learning. A

variety of models the one can use is vast. As it is always time and resources to evaluate only a

couple of models, choosing the most appropriate one is important.

We choose Keras framework because feed-forward neural networks in Core ML are supported

by this framework. This framework is developed with a focus for swift experimenting and can

be used on top of TensorFlow, CNTK, or Theano, therefore, was a perfect option for us. We

selected TensorFlow backend for Keras as the one we already made some experiences with and

was comfortable understanding its concepts and that allows experiment fast and concentrate on

design and not the implementation of the model.

Neural network for data from SensorTags

In feedforward neural networks everything starts from the input layer. As we already decided to

use 6 samples (or 6*2 for 2 characteristics) for input layer, now we need to decide on a hidden

layer. Starting neural network that contains only one hidden layer, evaluating its performance

and move further, adding an additional hidden layer if needed we find out that three hidden

layers are optimal for our case as appending more hidden layers had either no e↵ect on accuracy

or reduced it. We used 10-fold cross-validation on test data here and in all further experiments

to derive accuracy numbers. Its arguable, whether or not such the neural network we use can

be considered a deep one, but most that we able to find an optimal number of hidden layers.

Figure 3.28: Layers in neural network

Method 44

As we have other hyperparameters such as the number of neurons in hidden layers and their

activation functions, we also tweak them. The search procedure showed that the highest pre-

diction accuracy had a network with 15 neurons in each hidden layer and rectified linear unit

activation function. We selected categorical cross-entropy loss function for its ability to increase

a networks learning speed independently of defined learning rate. ADAM optimizer was cho-

sen for our model for computational e�ciency and delivering adequate results for the kind of

problem we trying to solve.

As a result (Figures C.64 - C.93) we can partially prove our statement, that using Mag(1-3)

for all the axis is impossible to define the pattern and this characteristic is not a↵ected by

changing the pattern. Only in the case of MagZ3 it gives adequate accuracy, but this accuracy

is relatively small compared to Gyro and Acc. As for Gyro and Acc, the result of prediction is

approximately the same for all the SensorTags, but the best accuracy has SensorTag that was

in a pocket the process during data recording. If we train our model using two characteristics

GyroX and AccX (6 samples for each or 12 in total) to improve the accuracy (Figures C.90 -

C.93) the result will be almost the same as using only one characteristic.

As the biggest accuracy has the neural network build using the data collected from the SensorTag

that was in a pocket, it could be concluded that for our main goal - to detect and predict the

falls among people using walkers it is possible to use only iPhone’s in-built sensors.

Neural network for data collected from iPhone and Apple Watch

As we already decided, for input layer we use 12 samples (or 12 * 2 for 2 characteristics), now

we need to decide on a hidden layer. Experiments show the same result as for previous data

- the most optimal is using 3 hidden layers. We also use 10-fold cross-validation on test data

here and in all further experiments to derive accuracy numbers as well as we done for data

collected using SensorTags. As for other available hyperparameters: a number of neurons in

hidden layers and their activation functions, after a search we stopped on the network with 15

neurons in each hidden layer and rectified linear unit activation function. We selected categorical

cross-entropy loss function for its ability to increase a networks learning speed independently

of defined learning rate. ADAM optimizer as well as in the previous case was chosen for our

model for computational e�ciency and delivering adequate results for the kind of problem we

trying to solve.

As a result (Figures D.36 - D.52) we can prove our statement, that using Mag for all the axis is

impossible to define the pattern and this characteristic is not a↵ected by changing the pattern.

As for other characteristics, Acc andWatchAcc shows the better result in comparison with Gyro

and WatchGyro. Comparing with result that we get using data collected from SensorTag, the

result is slightly worse, but we need to take into account that frequency is bigger in 10 times,

Method 45

that means, that sensitivity of iPhone’s and Apple Watch’s sensors is better and adding more

samples could improve the results.

If we train also our model using two characteristics GyroX and AccX (12 samples for each or

24 in total) to improve the accuracy (Figure D.42) the result is better compared to use only one

characteristic. As for WatchGyroX and WatchAccY in the case of using together (24 samples

for prediction) the result is slightly worse, compared to best one from its couple.

Combining two characteristics as well as in the case of data collected using sensor tags we

choose two best characteristics of the di↵erent type. Now we can start preparing the model for

integration to iOS app and implementing a prototype.

3.6 Develop prototype (SafeWalk)

As we saw during working on prediction, that although we can use SensorTags for prediction and

detection, but following the logic ”less equipment required, the better” we decided to continue

our work on the prototype using only models collected using iPhone and Apple Watch. Other

reasons for this choice are better accuracy and less minimum period needed for defining the

pattern (as the frequency is higher) of iPhone’s and Apple Watch’s sensors.

To utilize the models we received inside the iOS application which defines the walking pattern

of user we need to prepare them according to the following path:

1. Serialize our trained model to JSON and save its weights. Keras actually provides a

straightforward API to achieve this.

2. Save models weights to *.h5 file on disk.

3. Convert my saved model to Core ML format using Apples Core ML Tools Python

4. Importing Core ML

To import Core ML model to our iOS app we need just to drag&drop it to Xcode project. The

values used for creating model metadata for output and input description are now visible in the

Core ML model’s window in Xcode (Figure 3.29).

Method 46

Figure 3.29: Core ML model window in Xcode

In the same way, imported the model for the watch. Xcode automatically generates custom

API for imported Core ML model. So, now we ready to feed the model with sensor data and

read predictions.

We implemented simple prototype apps for iOS and WatchOS. We accessing the motion sensor

in the same way as we done it during the work on apps for collecting the data. After getting

access to real-time motion data we feed the model and get a result. Apps have a single view

with the text label, showing the current state. If state is unsafe, device vibrates (Figure 3.30,

3.31).

(a) State Safe (b) State Unsafe

Figure 3.30: App’s screenshots (SafeWalk)

Method 47

(a) State Safe (b) State Unsafe

Figure 3.31: Watch app’s screenshots (SafeWalk)

During development we implemented several constructs needed to provide all the functionality:

• V iewController class - provides all the functionality of main view of iOS app (Figure

3.32)

• InterfaceController class - provides all the functionality of main Interface controller of

watch app, that starts/stops sessions of predictions (Figure 3.32)

Figure 3.32: UML - ViewController and InterfaceController

• Classifier and WatchClassifier provide the work of models prepared for iPhone and

Apple Watch respectively (Figure 3.33)

Figure 3.33: UML - Classifier and WatchClassifier

Chapter 4

Results

The prototype for iPhone works stably, distinguishes between “safe” and “unsafe” patterns

perfectly. It works the same on iPhone 5s as on iPhone 8, despite of the best performance of the

last one - optimization is not required. But sometimes the app has problems with distinguishing

between “safe” and “relatively safe” patterns. This could be explained that data labelled as

“relatively safe” in our dataset used for training the model was collected insu�ciently accurate.

For example, when a user starts and ends recording he or she spends short time period for

pressing the button to start and to stop.

Another problem with the app is CPU load (Figure 4.1a) during feeding the model with sensor

data. This leads to increase of battery consumption. This problem can be solved with optimizing

the frequency.

(a) Phone CPU load (b) Watch CPU load

Figure 4.1: CPU load

The app for Apple Watch works unstable: actually almost never defines the right pattern. The

problem could be connected with the performance of processor used in Apple Watch (Apple S3

for the generation I used). As we can see in figure 4.1b, the CPU load of the watch is 91%

which is very high. In addition, it is not allowed to work in the background with such load,

48

Results 49

as the limit of CPU load for apps working in the background is 80% [33] and in the case when

observed 89% CPU load over 60 seconds, the app crashes.

The work of watch app could be optimized by limiting frequency of motion sensors. As we

concluded in our research that it is impossible to predict falls or detect “relatively safe” walk

pattern using motion data from Apple Watch, it would be not a problem as detecting falls is

less sensitive to decreasing frequency. Another way of using Apple Watch for this purpose is

just to use them as notification device: all the prediction work will be done on iPhone and when

the body position become “relatively safe” the user will receive notification on watch. This

approach significantly saves energy, as in this case watch do not need to work with motion data

in the background.

Chapter 5

Discussion of results

The testing prototype showed that it is actually possible to use only smartphone for prediction

and detection of falls. As for now, it is not the ideal solution, but it works. Our research also

showed us that only Accelerometer and Gyroscope could be used for detection and prediction

the falls. It is possible to use only one characteristic: Accelerometer or Gyroscope to predict

and detect falls, but using them together increases accuracy.

The accuracy could be improved by changing the way of preparing the data for the neural

network. The following way of collecting and preparing data could solve such problem: simulta-

neously with the recording of motion data, record the video on camera of all the moments, and

when all the types of pattern will be recorded, basing on video (which should be synchronized

by time with motion records) prepare manually the data for creating the model, but for this

purpose needed to be developed special app that could consider motion data on the tape of

time with synchronized video for accurately preparing sessions, watching the videos and cutting

needed moments. An example of software that works on similar principle could beKinectStudio

(Figure 5.1): it records the movement of the person using Kinect sensor as well as video of the

movements and allows to cut the records to get needed moments of movements.

50

Discussion 51

Figure 5.1: Kinect Studio

Source: kinect.github.io

Although, the performance of Apple Watch is enough for collecting data autonomously and

model, built using data collected from Apple Watch shows acceptable accuracy for detecting

falls (only detecting falls, not predicting as shown on plots D.19 and D.20), there is problem

with it when we trying to use CoreML framework. Formally, it compiles and runs, but not

defines the current state and as shown in chapter 4, the CPU load of the watch is 91% and

actually not works correctly, which is unacceptable for usage. The problem should be researched

more in detail, because it could be optimization problem as well as framework’s bug. Another

way of optimizing the work of Apple Watch as falls detector/predictor is refuse of using machine

learning technique on it and use fall detection algorithms [34], [35].

SensorTags 2.0 that we used in our experiments could be also used for our main purpose -

detection and prediction of falls, but it has several problems and for some of them there are

ways for the solution:

• Low frequency (10 Hz) allows detect/predict falls but gives longer delay compared to

phone’s sensors. This problem could be solved by using another type of sensors, for

example, MetaWear : BudgetConscious T iny Programmable BLE Sensors [36] can

stream sensor data from 1 Hz to 100 Hz, which is comparable to the phone’s sensor.

• Poor battery life. In the case of working in maximum frequency (10 Hz) sensor works no

longer than 48 hours (maximum ideal conditions) [37]. It could be a problem for elderly

to change the battery every 1-2 days. This could be solved in 2 ways: optimization of

frequency: decreasing it when the person sleeps or sits, and increase in the moments of

Discussion 52

movements. Another way is to use battery with more capacity, but it could also increase

weight.

• Receiving data not guaranteed by BLE: we cannot be 100% sure that no packet from the

sensor would be lost. We can check if the packet was lost, but can not get rid of losing

packets.

It is actually enough to use only one sensor and we do not need to solve the problem of synchro-

nization of sensors [38], which does not work perfectly. As showed our experiments, it does not

matter, where the sensor will be attached (at least among the places we used, which presented

in figure 3.25): to walkers or lie in the pocket, the data it receives could be used for prediction

and detection, but with data from the sensor that lies in pocket it can predict and detect falls

with slightly higher accuracy then compared to other sensors.

Chapter 6

Further development

Before this project can help elderly people using walkers it should be extended and improved

and I would like to propose a plan for further development:

1. Develop software described in chapter 4, that could combine video and motion data in a

single interface to improve the accuracy of data used to build models.

2. Provide new data collecting with more people.

3. Prepare data for building model using new software.

4. Improve CPU load issues of iOS app (for example, by reducing the frequency, but needed

to be tested).

5. Try to optimize work of Watch app or left it the role of the device for getting notifications.

6. Add more functionality of app: settings, registration/authorization, sending GPS coordi-

nates, etc.

7. Implement backend.

8. Implement Web-service for doctors.

9. Implement app’s functionality for relatives.

One more thing could be implemented to improve defining walk pattern, to notify user for

e�ciently and to make predictions more personal is to implement Real-Time Machine Learning

[39]. This means is to record the data when the person falls to use them for improving the

model.

The project could be also ported to Android platform. But as there is a diversity of Android

devices with varying degrees of reliability [18], the app should be tested on concrete Android

devices and compiled the list of recommended devices to use for this project.

53

Chapter 7

Conclusion

The main goal of this work was to develop means for detecting and predicting falls among

elderly people using walkers. This implies to choose hardware and software, develop apps for

collecting motion data, analyze data, build machine learning model, convert this model to Core

ML format and develop a prototype and integrate Core ML model to an app.

We actually created two experimental rigs:

• Walkers, three CC2650 sensors and iPhone where iPhone is the only controller, all data

collecting from sensors.

• Walkers, Apple Watch and iPhone, where data collecting from both devices.

For each of rigs was developed its own application. The second rig has two apps: for iPhone

and for Apple Watch.

As soon as apps were developed, we conducted experiments of collecting data. We divided

activities into 3 types: “safe walking” patterns or normal walk, “relatively safe” walking patterns

or initiations and “unsafe” walking patterns or falls. All these activities we recorded by me and

Igor Molchanov on both rigs. For the first kind of activity we recorded 5-minute walk, for

the second we recorded process of changing body from “safe” to “unsafe” position (about 25

di↵erent records each), for third - falls (about 25 di↵erent records each).

After collecting data, we conduct analysis to let us know whether or not collected data suits

for predictions and which characteristics it is better to use. We concluded that magnetometer

does not suit for prediction purpose and that we cannot predict fall (or detect “unsafe walking

pattern”) using Apple Watch. We concluded, that for prediction we can use only Gyroscope

and Accelerometer.

54

Bibliography 55

For prediction purpose, we built Keras neural network as it is compatible with Core ML

framework. For research purpose, we built the neural network using each of characteristics of

each axis from each device we collected. To increase accuracy we also combined 2 parameters

(one axis for gyro and one axis for accelerometer).

We concluded, that BLE sensors we used do not allow to predict fall for acceptable time (as

the frequency is low) and decided to build prototype app only using data collected from the

phone and watch. The app for phone ideally detects falls, but sometimes have errors in defining

“relatively safe” walking patterns. Apple Watch app almost never identifies patterns correctly

and needed to be revisioned.

Through the prototype app we developed, we proven that it is possible to build means for

detecting and predicting falls using only data from phone and Core ML framework with relatively

high accuracy.

Bibliography

[1] O’Loughlin J et al. Incidence of and risk factors for falls and injurious falls among the

community-dwelling elderly. American journal of epidemiology, pages 342–54, 1993.

[2] PhD; Dirk Cambier PT PhD Tine Roman de Mettelinge, PT. Understanding the Relation-

ship Between Walking Aids and Falls in Older Adults: A prospective cohort study. Journal

of GERIATRIC Physical Therapy, 2015.

[3] Simo Hosio Denzil Ferreira Theodoros Anagnostopoulos Anabela Berenguer,

Jorge Goncalves and Vassilis Kostakos. Increasing fall risk awareness using wear-

ables: A fall risk awareness protocol. Journal of Biomedical Informatics. IEEE Consumer

Electronics magazine, pages 104 – 110, 2017. ISSN 2162-2248/17.

[4] Elisabeth Razafimandimby Gangenes. Motion Capturing Machine Learning: Bluetooth

motion sensors. Master’s Thesis in Computer Science SHO-6264-December-2016, 2016.

[5] Anita Atwal Ioannis Paraskevopoulos Julian Hamm, Arthur G. Money a. Fall prevention

intervention technologies: A conceptual framework and survey of the state of the art.

Journal of Biomedical Informatics, 2016.

[6] Ming-Yih Lee Kin Fong Lei Wen-Cheng Chou, Wen-Yen Lin. Design and Assessment of

a Real-Time Accelerometer-Based Lying-to-Sit Sensing System for Bed Fall Prevention.

Systems, Man, and Cybernetics (SMC), 2013 IEEE International Conference on, 2013.

[7] B. N. Ferreira, V. Guimares, and H. S. Ferreira. Smartphone based fall prevention exercises.

IEEE 15th International Conference on e-Health Networking, Applications and Services

(Healthcom 2013), 2013.

[8] Zhang Wei-Bulstra Sjoerd Geraedts Hilde AE, Zijlstra Wiebren and Stevens Martin. Ad-

herence to and e↵ectiveness of an individually tailored home-based exercise program for

frail older adults, driven by mobility monitoring: design of a prospective cohort study.

BMC Public Health, 2014.

[9] Joel J. P. C. Rodrigues Sudip Misra Edgar T. Horta, Ivo C. Lopes. Real time falls prevention

and detection with biofeedback monitoring solution for mobile environments. IEEE 15th

56

Bibliography 57

International Conference on e-Health Networking, Applications and Services (Healthcom

2013), 2013.

[10] Bernt Arild Bremdal Asbjørn Danielsen, Hans Olofsen. Predicting Bedside Falls using

Current Context. Increasing fall risk awareness using wearables: A fall risk awareness

protocol, 2016.

[11] Bernt Arild Bremdal Asbjørn Danielsen and Hans Olofsen. Fall Risk Assessment and

Prevention Using Wearables. Ambient Assisted Living, 2015.

[12] Akm Jahangir Alam Majumder, Ishmat Zerin, Miftah Uddin, Sheikh I. Ahamed, and

Roger O. Smith. smartprediction: A Real-time Smartphone-based Fall Risk Prediction

and Prevention System. Proceedings of the 2013 Research in Adaptive and Convergent

Systems, 2013.

[13] M. J. D. Otis and B. A. J. Menelas. Toward an augmented shoe for preventing falls related

to physical conditions of the soil. IEEE International Conference on Systems, Man, and

Cybernetics (SMC), 2012.

[14] Romina Brignardello-Petersen Nancy Santesso, Alonso Carrasco-Labra. Hip protectors for

preventing hip fractures in older people. Cochrane Database of Systematic Reviews, 2017.

[15] Danielsen Asbjørn and Torresen Jim. Recognizing Bedside Events Using Thermal and

Ultrasonic Readings. Sensors, 2017.

[16] Danielsen Asbjørn and Bernt A. Bremdal. Predicting Bedside Falls using Current Context.

Computational Intelligence (SSCI), 2017 IEEE Symposium Series on, 2017.

[17] Asbjørn Danielsen. Non-intrusive Bedside Event Recognition Using Infrared Array and

Ultrasonic Sensor. Ubiquitous Computing and Ambient Intelligence, 2016.

[18] Blancco. State of Mobile Device Performance and Health. Trend Report: Q2 2017, pages

1 – 16, 2017.

[19] Apple. Core ML, 2017. URL https://developer.apple.com/documentation/coreml.

[Online; accessed 16-May-2018].

[20] Apple. Deploying to Core ML, 2017. URL https://apple.github.io/turicreate/

docs/userguide/activity_classifier/export_coreml.html. [Online; accessed 16-

May-2018].

[21] Bluetooth SIG. Radio Versions, 2018. URL https://www.bluetooth.com/

bluetooth-technology/radio-versions. [Online; accessed 16-May-2018].

https://developer.apple.com/documentation/coreml
https://apple.github.io/turicreate/docs/userguide/activity_classifier/export_coreml.html
https://apple.github.io/turicreate/docs/userguide/activity_classifier/export_coreml.html
https://www.bluetooth.com/bluetooth-technology/radio-versions
https://www.bluetooth.com/bluetooth-technology/radio-versions

Bibliography 58

[22] Andreas Knecht. modum.io Software on the CC2650 SensorTag Portability, Security and

General Architecture. University of Zurich SOFTWARE PROJECT Communication Sys-

tems Group, 2017.

[23] Kevin Townsend. Introduction to Bluetooth Low Energy, 2015. URL https://learn.

adafruit.com/introduction-to-bluetooth-low-energy/gatt. [Online; accessed 16-

May-2018].

[24] Apple. Core Bluetooth, 2017. URL https://developer.apple.com/documentation/

corebluetooth. [Online; accessed 16-May-2018].

[25] Apple. Watch Connectivity, 2017. URL https://developer.apple.com/documentation/

watchconnectivity. [Online; accessed 16-May-2018].

[26] Evan K. Stone. Zero to BLE on iOS, 2017. URL https://www.cloudcity.io/blog/2015/

06/11/zero-to-ble-on-ios-part-one/. [Online; accessed 16-May-2018].

[27] Texas Instruments contributors. CC2650 SensorTag User’s Guide, 2018. URL http:

//processors.wiki.ti.com/index.php/CC2650_SensorTag_User’s_Guide. [Online; ac-

cessed 16-May-2018].

[28] Apple. Core Data, 2017. URL https://developer.apple.com/library/content/

documentation/Cocoa/Conceptual/CoreData/index.html. [Online; accessed 16-May-

2018].

[29] Apple. Core Motion, 2017. URL https://developer.apple.com/documentation/

coremotion. [Online; accessed 16-May-2018].

[30] Apple. Leveraging iOS Technologies, 2017. URL https://developer.apple.com/

library/content/documentation/General/Conceptual/WatchKitProgrammingGuide/

iOSSupport.html#//apple_ref/doc/uid/TP40014969-CH21-SW10. [Online; accessed

16-May-2018].

[31] Fabio Feldman-PhD* Yijian Yang MD Rebecca Schonnop BSc Pet Ming Lueng MSc Thi-

ago Sarraf MSc Joanie Sims-Gould PhD Prof. Stephen N Robinovitch, PhD* and MSc

Marie Loughin. Video capture of the circumstances of falls in elderly people residing in

long-term care: an observational study. Lancet. 2013 January 05; 381(9860), page 47 54,

2013.

[32] Viktor Malyi. Run or Walk. Towards Data Science, 2016.

[33] Apple. Energy E�ciency Guide for iOS Apps, 2017. URL https://developer.apple.

com/library/content/documentation/Performance/Conceptual/EnergyGuide-iOS/

WorkLessInTheBackground.html. [Online; accessed 16-May-2018].

https://learn.adafruit.com/introduction-to-bluetooth-low-energy/gatt
https://learn.adafruit.com/introduction-to-bluetooth-low-energy/gatt
https://developer.apple.com/documentation/corebluetooth
https://developer.apple.com/documentation/corebluetooth
https://developer.apple.com/documentation/watchconnectivity
https://developer.apple.com/documentation/watchconnectivity
https://www.cloudcity.io/blog/2015/06/11/zero-to-ble-on-ios-part-one/
https://www.cloudcity.io/blog/2015/06/11/zero-to-ble-on-ios-part-one/
http://processors.wiki.ti.com/index.php/CC2650_SensorTag_User's_Guide
http://processors.wiki.ti.com/index.php/CC2650_SensorTag_User's_Guide
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/CoreData/index.html
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/CoreData/index.html
https://developer.apple.com/documentation/coremotion
https://developer.apple.com/documentation/coremotion
https://developer.apple.com/library/content/documentation/General/Conceptual/WatchKitProgrammingGuide/iOSSupport.html#//apple_ref/doc/uid/TP40014969-CH21-SW10
https://developer.apple.com/library/content/documentation/General/Conceptual/WatchKitProgrammingGuide/iOSSupport.html#//apple_ref/doc/uid/TP40014969-CH21-SW10
https://developer.apple.com/library/content/documentation/General/Conceptual/WatchKitProgrammingGuide/iOSSupport.html#//apple_ref/doc/uid/TP40014969-CH21-SW10
https://developer.apple.com/library/content/documentation/Performance/Conceptual/EnergyGuide-iOS/WorkLessInTheBackground.html
https://developer.apple.com/library/content/documentation/Performance/Conceptual/EnergyGuide-iOS/WorkLessInTheBackground.html
https://developer.apple.com/library/content/documentation/Performance/Conceptual/EnergyGuide-iOS/WorkLessInTheBackground.html

Bibliography 59

[34] Ning Jia. Detecting Human Falls with a 3-Axis Digital Accelerometer. AnalogDialog, 2009.

[35] Yan Zhao Falin Wu, Hengyang Zhao and Haibo Zhong. Development of a Wearable-Sensor-

Based Fall Detection System. International Journal of Telemedicine and Applications,

2015.

[36] MbientLab Inc. MetaWear: Budget Conscious Tiny Programmable BLE

Sensors, 2015. URL https://www.kickstarter.com/projects/guardyen/

tiny-programmable-ble-sensors-that-wont-break-your. [Online; accessed 16-

May-2018].

[37] MobileModding Tech blog. TI SensorTag 2 Power consumption analysys, 2015. URL http:

//mobilemodding.info/2015/06/ti-sensortag-2-power-consumption-analysys/.

[Online; accessed 16-May-2018].

[38] Stefan Hey Andre Bideaux, Bernd Zimmermann and Wilhelm Stork. Synchronization in

wireless biomedical-sensor networks with Bluetooth Low Energy. Current Directions in

Biomedical Engineering 2015; 1:7376, 2015.

[39] Stephanie Wang Alexey Tumanov William Paul Johann Schleier-Smith Richard Liaw

Mehrdad Niknami Michael I. Jordan Ion Stoica Robert Nishihara, Philipp Moritz. Real-

Time Machine Learning: The Missing Pieces. HotOS ’17 Proceedings of the 16th Workshop

on Hot Topics in Operating Systems, pages 106–110, 2017.

https://www.kickstarter.com/projects/guardyen/tiny-programmable-ble-sensors-that-wont-break-your
https://www.kickstarter.com/projects/guardyen/tiny-programmable-ble-sensors-that-wont-break-your
http://mobilemodding.info/2015/06/ti-sensortag-2-power-consumption-analysys/
http://mobilemodding.info/2015/06/ti-sensortag-2-power-consumption-analysys/

Appendix A

Flowchart of working process

Figure A.1: Flowchart of working process

60

Appendix B

Conceptual model of falls prevention

technology

Figure B.1: Conceptual model of falls prevention technology

Source: J. Hamm et al. / Journal of Biomedical Informatics 59 (2016) 319345

61

Appendix C

Analysis of data collected from 3

SensorTags

Console output

1 /Library /Frameworks/Python . framework/Vers ions /3 .6/ bin /python3 /Users / de lexa /

Desktop/ModelGenerator/ ana lyze . py

<c l a s s ’ pandas . core . frame . DataFrame’>

3 RangeIndex : 7429 en t r i e s , 0 to 7428

Data columns (t o t a l 39 columns) :

5 Sess ionID 7429 non�nu l l in t64

Sess ionDate 7429 non�nu l l ob j e c t

7 Sess ionDurat ion 7429 non�nu l l ob j e c t

Se s s i onPer i od 7429 non�nu l l f l o a t 6 4

9 AmountOfSensors 7429 non�nu l l in t64

RecordID 7429 non�nu l l in t64

11 Timestamp1 7421 non�nu l l ob j e c t

t ime In t e rva lS in c e1970 1 7421 non�nu l l f l o a t 6 4

13 GyroX1 7421 non�nu l l f l o a t 6 4

GyroY1 7421 non�nu l l f l o a t 6 4

15 GyroZ1 7421 non�nu l l f l o a t 6 4

AccX1 7421 non�nu l l f l o a t 6 4

17 AccY1 7421 non�nu l l f l o a t 6 4

AccZ1 7421 non�nu l l f l o a t 6 4

19 MagX1 7421 non�nu l l f l o a t 6 4

MagY1 7421 non�nu l l f l o a t 6 4

21 MagZ1 7421 non�nu l l f l o a t 6 4

Timestamp2 7415 non�nu l l ob j e c t

23 t ime In t e rva lS in c e1970 2 7415 non�nu l l f l o a t 6 4

GyroX2 7415 non�nu l l f l o a t 6 4

25 GyroY2 7415 non�nu l l f l o a t 6 4

GyroZ2 7415 non�nu l l f l o a t 6 4

62

Appendix C 63

27 AccX2 7415 non�nu l l f l o a t 6 4

AccY2 7415 non�nu l l f l o a t 6 4

29 AccZ2 7415 non�nu l l f l o a t 6 4

MagX2 7415 non�nu l l f l o a t 6 4

31 MagY2 7415 non�nu l l f l o a t 6 4

MagZ2 7415 non�nu l l f l o a t 6 4

33 Timestamp3 7417 non�nu l l ob j e c t

t ime In t e rva lS in c e1970 3 7417 non�nu l l f l o a t 6 4

35 GyroX3 7417 non�nu l l f l o a t 6 4

GyroY3 7417 non�nu l l f l o a t 6 4

37 GyroZ3 7417 non�nu l l f l o a t 6 4

AccX3 7417 non�nu l l f l o a t 6 4

39 AccY3 7417 non�nu l l f l o a t 6 4

AccZ3 7417 non�nu l l f l o a t 6 4

41 MagX3 7417 non�nu l l f l o a t 6 4

MagY3 7417 non�nu l l f l o a t 6 4

43 MagZ3 7417 non�nu l l f l o a t 6 4

dtypes : f l o a t 6 4 (31) , in t64 (3) , ob j e c t (5)

45 memory usage : 2.2+ MB

The datase t conta in s 7429 data samples and 39 data columns

47 Sess ionID 0

Sess ionDate 0

49 Sess ionDurat ion 0

Ses s i onPer i od 0

51 AmountOfSensors 0

RecordID 0

53 Timestamp1 8

t ime In t e rva lS in c e1970 1 8

55 GyroX1 8

GyroY1 8

57 GyroZ1 8

AccX1 8

59 AccY1 8

AccZ1 8

61 MagX1 8

MagY1 8

63 MagZ1 8

Timestamp2 14

65 t ime In t e rva lS in c e1970 2 14

GyroX2 14

67 GyroY2 14

GyroZ2 14

69 AccX2 14

AccY2 14

71 AccZ2 14

MagX2 14

73 MagY2 14

MagZ2 14

Appendix C 64

75 Timestamp3 12

t ime In t e rva lS in c e1970 3 12

77 GyroX3 12

GyroY3 12

79 GyroZ3 12

AccX3 12

81 AccY3 12

AccZ3 12

83 MagX3 12

MagY3 12

85 MagZ3 12

dtype : in t64

87 Sess ionID Ses s i onPer i od AmountOfSensors RecordID \
count 7429.000000 7429 .0 7429 .0 7429.000000

89 mean 2.109032 0 .1 3 . 0 0 .293579

std 5.012527 0 .0 0 .0 0 .646925

91 min 0.000000 0 .1 3 . 0 0 .000000

25% 0.000000 0 .1 3 . 0 0 .000000

93 50% 0.000000 0 .1 3 . 0 0 .000000

75% 0.000000 0 .1 3 . 0 0 .000000

95 max 20.000000 0 .1 3 .0 2 .000000

97 t ime In t e rva lS in c e1970 1 GyroX1 GyroY1 GyroZ1 \
count 7 .421000 e+03 7421.000000 7421.000000 7421.000000

99 mean 1.524754 e+09 4.798598 1.808747 0.485961

std 5.010783 e+02 11.749951 5.073385 3.542819

101 min 1.524753 e+09 �122.505000 �87.867700 �57.296700

25% 1.524753 e+09 �0.793457 �0.068665 �0.213623

103 50% 1.524754 e+09 3.913880 1.510620 0.480652

75% 1.524754 e+09 10.406500 3.425600 1.136780

105 max 1.524755 e+09 173.775000 139.137000 72.120700

107 AccX1 AccY1 . . . t ime In t e rva lS in c e1970 3 \
count 7421.000000 7421.000000 . . . 7 .417000 e+03

109 mean 7.826345 2.151173 . . . 1 .524754 e+09

std 0.597147 0.728369 . . . 5 .014980 e+02

111 min �6.791020 �16.000000 . . . 1 .524753 e+09

25% 7.750000 2.000000 . . . 1 .524753 e+09

113 50% 7.843750 2.189450 . . . 1 .524754 e+09

75% 7.937500 2.378910 . . . 1 .524754 e+09

115 max 15.999500 15.999500 . . . 1 .524755 e+09

117 GyroX3 GyroY3 GyroZ3 AccX3 AccY3 \
count 7417.000000 7417.000000 7417.000000 7417.000000 7417.000000

119 mean �1.185217 0.286809 �0.712268 �0.831244 0.268602

std 26.789268 30.590364 17.011276 0.537666 1.674093

121 min �179.329000 �250.000000 �167.015000 �6.511230 �3.319820

25% �17.654400 �14.831500 �7.591250 �1.205570 �1.550780

Appendix C 65

123 50% �7.240290 0.282288 2.502440 �0.791016 1.403810

75% 12.321500 14.511100 8.483890 �0.479980 1.886230

125 max 249.992000 249.992000 171.577000 2.874020 8.816410

127 AccZ3 MagX3 MagY3 MagZ3

count 7417.000000 7417.000000 7417.000000 7417.000000

129 mean �0.166580 923.383983 276.965485 64.720911

std 0.531404 210.614916 81.803291 265.499163

131 min �5.143550 429.000000 �116.000000 �538.000000

25% �0.443848 733.000000 225.000000 �190.000000

133 50% �0.156738 814.000000 266.000000 86.000000

75% 0.088867 1134.000000 325.000000 315.000000

135 max 11.610800 1332.000000 1216.000000 1072.000000

137 [8 rows x 34 columns]

Dataset conta in s 6032 ” s a f e ” data samples as we l l as 613 ” r e l a t i v e l y s a f e ” data

samples and 613 ” unsa fe ” data samples

139 Sess ionID Sess ionDate Sess ionDurat ion Ses s i onPer i od \
0 0 2018�04�26 16 : 3 4 : 0 0 . 4 030 05 :01 0 .1

141 1 0 2018�04�26 16 : 3 4 : 0 0 . 4 030 05 :01 0 .1

2 0 2018�04�26 16 : 3 4 : 0 0 . 4 030 05 :01 0 .1

143 3 0 2018�04�26 16 : 3 4 : 0 0 . 4 030 05 :01 0 .1

4 0 2018�04�26 16 : 3 4 : 0 0 . 4 030 05 :01 0 .1

145 5 0 2018�04�26 16 : 3 4 : 0 0 . 4 030 05 :01 0 .1

6 0 2018�04�26 16 : 3 4 : 0 0 . 4 030 05 :01 0 .1

147 7 0 2018�04�26 16 : 3 4 : 0 0 . 4 030 05 :01 0 .1

8 0 2018�04�26 16 : 3 4 : 0 0 . 4 030 05 :01 0 .1

149 9 0 2018�04�26 16 : 3 4 : 0 0 . 4 030 05 :01 0 .1

10 0 2018�04�26 16 : 3 4 : 0 0 . 4 030 05 :01 0 .1

151 11 0 2018�04�26 16 : 3 4 : 0 0 . 4 030 05 :01 0 .1

12 0 2018�04�26 16 : 3 4 : 0 0 . 4 030 05 :01 0 .1

153 13 0 2018�04�26 16 : 3 4 : 0 0 . 4 030 05 :01 0 .1

14 0 2018�04�26 16 : 3 4 : 0 0 . 4 030 05 :01 0 .1

155 15 0 2018�04�26 16 : 3 4 : 0 0 . 4 030 05 :01 0 .1

16 0 2018�04�26 16 : 3 4 : 0 0 . 4 030 05 :01 0 .1

157 17 0 2018�04�26 16 : 3 4 : 0 0 . 4 030 05 :01 0 .1

18 0 2018�04�26 16 : 3 4 : 0 0 . 4 030 05 :01 0 .1

159 19 0 2018�04�26 16 : 3 4 : 0 0 . 4 030 05 :01 0 .1

161 AmountOfSensors RecordID Timestamp1 \
0 3 0 2018�04�26 16 : 3 4 : 0 0 . 4 760

163 1 3 0 2018�04�26 16 : 3 4 : 0 0 . 5 940

2 3 0 2018�04�26 16 : 3 4 : 0 0 . 6 440

165 3 3 0 2018�04�26 16 : 3 4 : 0 0 . 7 770

4 3 0 2018�04�26 16 : 3 4 : 0 0 . 8 940

167 5 3 0 2018�04�26 16 : 3 4 : 0 0 . 9 440

6 3 0 2018�04�26 16 : 3 4 : 0 1 . 0 770

169 7 3 0 2018�04�26 16 : 3 4 : 0 1 . 1 940

Appendix C 66

8 3 0 2018�04�26 16 : 3 4 : 0 1 . 2 440

171 9 3 0 2018�04�26 16 : 3 4 : 0 1 . 3 770

10 3 0 2018�04�26 16 : 3 4 : 0 1 . 4 940

173 11 3 0 2018�04�26 16 : 3 4 : 0 1 . 5 440

12 3 0 2018�04�26 16 : 3 4 : 0 1 . 6 770

175 13 3 0 2018�04�26 16 : 3 4 : 0 1 . 7 940

14 3 0 2018�04�26 16 : 3 4 : 0 1 . 8 440

177 15 3 0 2018�04�26 16 : 3 4 : 0 1 . 9 770

16 3 0 2018�04�26 16 : 3 4 : 0 2 . 0 940

179 17 3 0 2018�04�26 16 : 3 4 : 0 2 . 1 440

18 3 0 2018�04�26 16 : 3 4 : 0 2 . 2 760

181 19 3 0 2018�04�26 16 : 3 4 : 0 2 . 3 940

183 t ime In t e rva lS in c e1970 1 GyroX1 GyroY1 . . . \
0 1.524753 e+09 1.159670 0.625610 . . .

185 1 1.524753 e+09 1.205440 0.572205 . . .

2 1 .524753 e+09 1.205440 0.587463 . . .

187 3 1.524753 e+09 1.281740 0.595093 . . .

4 1 .524753 e+09 1.197810 0.617981 . . .

189 5 1.524753 e+09 1.159670 0.617981 . . .

6 1 .524753 e+09 1.342770 0.488281 . . .

191 7 1.524753 e+09 1.121520 0.648498 . . .

8 1 .524753 e+09 1.297000 0.656128 . . .

193 9 1.524753 e+09 1.205440 0.663757 . . .

10 1 .524753 e+09 1.121520 0.602722 . . .

195 11 1.524753 e+09 0.923157 0.541687 . . .

12 1 .524753 e+09 1.106260 0.709534 . . .

197 13 1.524753 e+09 1.159670 0.534058 . . .

14 1 .524753 e+09 1.312260 0.457764 . . .

199 15 1.524753 e+09 1.266480 0.595093 . . .

16 1 .524753 e+09 1.251220 0.572205 . . .

201 17 1.524753 e+09 1.335140 0.831604 . . .

18 1 .524753 e+09 �3.196720 0.068665 . . .

203 19 1.524753 e+09 2.792360 �2.403260 . . .

205 t ime In t e rva lS in c e1970 3 GyroX3 GyroY3 GyroZ3 AccX3 \
0 1.524753 e+09 �0.556946 0.892639 �0.205994 �1.375980

207 1 1.524753 e+09 �0.335693 0.762939 �0.556946 �1.354490

2 1.524753 e+09 �0.427246 0.526428 �0.839233 �1.354000

209 3 1.524753 e+09 0.205994 1.106260 �0.938415 �1.352540

4 1.524753 e+09 0.419617 1.007080 �1.258850 �1.347660

211 5 1.524753 e+09 �1.251220 �1.243590 �1.716610 �1.367190

6 1.524753 e+09 �1.419070 �0.312805 �1.571660 �1.351560

213 7 1.524753 e+09 �4.241940 �2.120970 �1.403810 �1.358890

8 1.524753 e+09 �7.225040 �5.874630 1.358030 �1.363770

215 9 1.524753 e+09 �6.172180 �4.707340 3.341670 �1.336430

10 1.524753 e+09 1.655580 �2.204900 �1.388550 �1.261720

217 11 1.524753 e+09 6.950380 �21.087600 �15.228300 �1.246580

Appendix C 67

12 1.524753 e+09 19.966100 �17.639200 �25.688200 �1.189940

219 13 1.524753 e+09 10.505700 �16.464200 �43.830900 �0.898438

14 1.524753 e+09 �0.480652 42.488100 �46.836800 �0.930664

221 15 1.524753 e+09 6.050110 54.336500 �27.275100 �1.095210

16 1.524753 e+09 20.431500 34.812900 �20.843500 �1.262700

223 17 1.524753 e+09 23.498500 �4.783630 �4.943850 �1.002930

18 1.524753 e+09 27.359000 10.147100 0.892639 �0.739258

225 19 1.524753 e+09 �8.621220 22.979700 9.017940 �1.012700

227 AccY3 AccZ3 MagX3 MagY3 MagZ3

0 �1.38867 0.330566 1164 .0 289 .0 264 .0

229 1 �1.39893 0.343750 1167 .0 291 .0 273 .0

2 �1.39746 0.333496 1166 .0 293 .0 270 .0

231 3 �1.41357 0.330078 1164 .0 301 .0 273 .0

4 �1.38672 0.320312 1159 .0 290 .0 267 .0

233 5 �1.39990 0.309570 1164 .0 291 .0 275 .0

6 �1.40234 0.327148 1167 .0 291 .0 273 .0

235 7 �1.39600 0.335449 1164 .0 289 .0 266 .0

8 �1.40430 0.291992 1163 .0 290 .0 267 .0

237 9 �1.45264 0.272949 1163 .0 300 .0 267 .0

10 �1.48389 0.314453 1157 .0 294 .0 255 .0

239 11 �1.52881 0.412109 1154 .0 290 .0 251 .0

12 �1.53516 0.525391 1148 .0 296 .0 255 .0

241 13 �1.62354 0.460938 1166 .0 288 .0 270 .0

14 �1.53613 0.245605 1159 .0 276 .0 283 .0

243 15 �1.65576 0.362793 1145 .0 260 .0 268 .0

16 �1.61133 0.448730 1112 .0 249 .0 271 .0

245 17 �1.56934 0.519043 1132 .0 245 .0 354 .0

18 �1.63916 0.538086 1172 .0 232 .0 378 .0

247 19 �1.41846 0.447754 1183 .0 234 .0 371 .0

249 [20 rows x 39 columns]

251 Process f i n i s h e d with e x i t code 0

Listing C.1: Console output

Appendix C 68

Sensor data distribution plots

Figure C.1: Sensor data distribution GyroX1

Figure C.2: Sensor data distribution GyroY1

Figure C.3: Sensor data distribution GyroZ1

Appendix C 69

Figure C.4: Sensor data distribution AccX1

Figure C.5: Sensor data distribution AccY1

Figure C.6: Sensor data distribution AccZ1

Appendix C 70

Figure C.7: Sensor data distribution MagX1

Figure C.8: Sensor data distribution MagY1

Figure C.9: Sensor data distribution MagZ1

Appendix C 71

Figure C.10: Sensor data distribution GyroX2

Figure C.11: Sensor data distribution GyroY2

Figure C.12: Sensor data distribution GyroZ2

Appendix C 72

Figure C.13: Sensor data distribution AccX2

Figure C.14: Sensor data distribution AccY2

Figure C.15: Sensor data distribution AccZ2

Appendix C 73

Figure C.16: Sensor data distribution MagX2

Figure C.17: Sensor data distribution MagY2

Figure C.18: Sensor data distribution MagZ2

Appendix C 74

Figure C.19: Sensor data distribution GyroX3

Figure C.20: Sensor data distribution GyroY3

Figure C.21: Sensor data distribution GyroZ3

Appendix C 75

Figure C.22: Sensor data distribution AccX3

Figure C.23: Sensor data distribution AccY3

Figure C.24: Sensor data distribution AccZ3

Appendix C 76

Figure C.25: Sensor data distribution MagX3

Figure C.26: Sensor data distribution MagY3

Figure C.27: Sensor data distribution MagZ3

Appendix C 77

Sensor data plots

Figure C.28: Data plot GyroX1, GyroY1, GyroZ1

Figure C.29: Data plot AccX1, AccY1, AccZ1

Figure C.30: Data plot MagX1, MagY1, MagZ1

Appendix C 78

Figure C.31: Data plot GyroX2, GyroY2, GyroZ2

Figure C.32: Data plot AccX2, AccY2, AccZ2

Figure C.33: Data plot MagX2, MagY2, MagZ2

Appendix C 79

Figure C.34: Data plot GyroX3, GyroY3, GyroZ3

Figure C.35: Data plot AccX3, AccY3, AccZ3

Figure C.36: Data plot MagX3, MagY3, MagZ3

Appendix C 80

Comparison single characteristic of all sessions

Figure C.37: GyroX1, all sessions comparison

Figure C.38: GyroY1, all sessions comparison

Figure C.39: GyroZ1, all sessions comparison

Appendix C 81

Figure C.40: AccX1, all sessions comparison

Figure C.41: AccY1, all sessions comparison

Figure C.42: AccZ1, all sessions comparison

Appendix C 82

Figure C.43: MagX1, all sessions comparison

Figure C.44: MagY1, all sessions comparison

Figure C.45: MagZ1, all sessions comparison

Appendix C 83

Figure C.46: GyroX2, all sessions comparison

Figure C.47: GyroY2, all sessions comparison

Figure C.48: GyroZ2, all sessions comparison

Appendix C 84

Figure C.49: AccX2, all sessions comparison

Figure C.50: AccY2, all sessions comparison

Figure C.51: AccZ2, all sessions comparison

Appendix C 85

Figure C.52: MagX2, all sessions comparison

Figure C.53: MagY2, all sessions comparison

Figure C.54: MagZ2, all sessions comparison

Appendix C 86

Figure C.55: GyroX3, all sessions comparison

Figure C.56: GyroY3, all sessions comparison

Figure C.57: GyroZ3, all sessions comparison

Appendix C 87

Figure C.58: AccX3, all sessions comparison

Figure C.59: AccY3, all sessions comparison

Figure C.60: AccZ3, all sessions comparison

Appendix C 88

Figure C.61: MagX3, all sessions comparison

Figure C.62: MagY3, all sessions comparison

Figure C.63: MagZ3, all sessions comparison

Appendix C 89

Prediction plots by 6 samples using neural network

Figure C.64: Prediction using GyroX1 values, result: 80.41% (5.76%)

Figure C.65: Prediction using GyroY1 values, result: 80.41% (4.96%)

Figure C.66: Prediction using GyroZ1 values, result: 80.64% (5.04%)

Figure C.67: Prediction using AccX1 values, result: 83.84% (5.35%)

Appendix C 90

Figure C.68: Prediction using AccY1 values, result: 82.87% (6.72%)

Figure C.69: Prediction using AccZ1 values, result: 83.35% (4.93%)

Figure C.70: Prediction using MagX1 values, result: 36.84% (33.52%)

Figure C.71: Prediction using MagY1 values, result: 31.24% (34.59%)

Appendix C 91

Figure C.72: Prediction using MagZ1 values, result: 39.32% (35.04%)

Figure C.73: Prediction using GyroX2 values, result: 82.35% (4.90%)

Figure C.74: Prediction using GyroY2 values, result: 82.86% (5.44%)

Figure C.75: Prediction using GyroZ2 values, result: 79.64% (3.39%)

Appendix C 92

Figure C.76: Prediction using AccX2 values, result: 83.59% (4.74%)

Figure C.77: Prediction using AccY2 values, result: 83.34% (4.06%)

Figure C.78: Prediction using AccZ2 values, result: 86.51% (5.86%)

Figure C.79: Prediction using MagX2 values, result: 20.52% (27.13%)

Appendix C 93

Figure C.80: Prediction using MagY2 values, result: 53.12% (36.79%)

Figure C.81: Prediction using MagZ2 values, result: 40.02% (36.45%)

Figure C.82: Prediction using GyroX3 values, result: 77.68% (7.85%)

Figure C.83: Prediction using GyroY3 values, result: 77.68% (5.12%)

Appendix C 94

Figure C.84: Prediction using GyroZ3 values, result: 78.91% (6.80%)

Figure C.85: Prediction using AccX3 values, result: 87.74% (6.55%)

Figure C.86: Prediction using AccY3 values, result: 84.06% (5.19%)

Figure C.87: Prediction using AccZ3 values, result: 84.30% (4.81%)

Appendix C 95

Figure C.88: Prediction using MagX3 values, result: 29.55% (34.17%)

Figure C.89: Prediction using MagY3 values, result: 40.69% (34.67%)

Figure C.90: Prediction using MagZ3 values, result: 75.63% (5.77%))

Figure C.91: Prediction using GyroX1 and AccX1 values, result: 80.64% (5.39%)

Appendix C 96

Figure C.92: Prediction using GyroX2 and AccX2 values, result: 83.80% (5.37%)

Figure C.93: Prediction using GyroX3 and AccX3 values, result: 85.12% (6.28%)

Appendix D

Analysis of data collected from

in-built iPhone and Apple Watch

motion sensors

Console output

1 /Library /Frameworks/Python . framework/Vers ions /3 .6/ bin /python3 /Users / de lexa /

Desktop/ModelGenerator/ ana lyze . py

<c l a s s ’ pandas . core . frame . DataFrame’>

3 RangeIndex : 73573 en t r i e s , 0 to 73572

Data columns (t o t a l 24 columns) :

5 Sess ionID 73573 non�nu l l in t64

Sess ionDate 73573 non�nu l l ob j e c t

7 Sess ionDurat ion 73573 non�nu l l ob j e c t

Sess ionFrequency 73573 non�nu l l in t64

9 RecordID 73573 non�nu l l in t64

Timestamp 67070 non�nu l l ob j e c t

11 t ime In t e rva lS ince1970 67070 non�nu l l f l o a t 6 4

GyroX 67070 non�nu l l f l o a t 6 4

13 GyroY 67070 non�nu l l f l o a t 6 4

GyroZ 67070 non�nu l l f l o a t 6 4

15 AccX 67070 non�nu l l f l o a t 6 4

AccY 67070 non�nu l l f l o a t 6 4

17 AccZ 67070 non�nu l l f l o a t 6 4

MagX 67070 non�nu l l f l o a t 6 4

19 MagY 67070 non�nu l l f l o a t 6 4

MagZ 67070 non�nu l l f l o a t 6 4

21 WatchTimestamp 73573 non�nu l l ob j e c t

WatchtImeIntervalSince1970 73573 non�nu l l f l o a t 6 4

23 WatchGyroX 73573 non�nu l l f l o a t 6 4

97

Appendix D 98

WatchGyroY 73573 non�nu l l f l o a t 6 4

25 WatchGyroZ 73573 non�nu l l f l o a t 6 4

WatchAccX 73573 non�nu l l f l o a t 6 4

27 WatchAccY 73573 non�nu l l f l o a t 6 4

WatchAccZ 73573 non�nu l l f l o a t 6 4

29 dtypes : f l o a t 6 4 (17) , in t64 (3) , ob j e c t (4)

memory usage : 13.5+ MB

31 The datase t conta in s 73573 data samples and 24 data columns

Sess ionID 0

33 Sess ionDate 0

Sess ionDurat ion 0

35 Sess ionFrequency 0

RecordID 0

37 Timestamp 6503

t ime In t e rva lS ince1970 6503

39 GyroX 6503

GyroY 6503

41 GyroZ 6503

AccX 6503

43 AccY 6503

AccZ 6503

45 MagX 6503

MagY 6503

47 MagZ 6503

WatchTimestamp 0

49 WatchtImeIntervalSince1970 0

WatchGyroX 0

51 WatchGyroY 0

WatchGyroZ 0

53 WatchAccX 0

WatchAccY 0

55 WatchAccZ 0

dtype : in t64

57 Sess ionID Sess ionFrequency RecordID t ime In t e rva lS ince1970 \
count 73573.000000 73573 .0 73573.000000 6.707000 e+04

59 mean 3.650891 60 .0 0 .555503 1.524751 e+09

std 6.827412 0 .0 0 .795353 9.955023 e+02

61 min 0.000000 60 .0 0 .000000 1.524750 e+09

25% 0.000000 60 .0 0 .000000 1.524750 e+09

63 50% 0.000000 60 .0 0 .000000 1.524751 e+09

75% 2.000000 60 .0 1 .000000 1.524752 e+09

65 max 28.000000 60 .0 2 .000000 1.524753 e+09

67 GyroX GyroY GyroZ AccX AccY \
count 67070.000000 67070.000000 67070.000000 67070.000000 67070.000000

69 mean �0.007527 �0.014304 0.006841 0.156397 �0.053040

std 0.396976 0.522330 0.336815 0.262515 0.920346

71 min �9.733911 �9.350921 �3.720490 �7.007690 �8.075256

Appendix D 99

25% �0.197357 �0.255608 �0.128766 �0.012161 �0.948441

73 50% �0.009513 �0.007902 �0.016014 0.139290 �0.093346

75% 0.147421 0.182670 0.081850 0.253723 0.973648

75 max 5.313863 22.365086 6.960622 7.504089 8.004822

77 AccZ MagX MagY MagZ \
count 67070.000000 67070.000000 67070.000000 67070.000000

79 mean �0.224298 �821.137326 2351.779068 2544.714715

std 0.261519 623.156775 27.002165 7.640330

81 min �5.975113 �1918.711670 2304.219727 2537.750488

25% �0.303616 �1795.484619 2309.559326 2539.945068

83 50% �0.218887 �458.846252 2367.477539 2540.272705

75% �0.063572 �432.115746 2368.635864 2556.660889

85 max 4.069229 �253.117111 2376.392090 2558.171631

87 WatchtImeIntervalSince1970 WatchGyroX WatchGyroY WatchGyroZ \
count 7 .357300 e+04 73573.000000 73573.000000 73573.000000

89 mean 1.524751 e+09 0.000180 �0.023876 �0.004918

std 9.938303 e+02 0.632220 0.337101 0.408254

91 min 1.524750 e+09 �21.260214 �9.755253 �6.625195

25% 1.524750 e+09 �0.137497 �0.125230 �0.135379

93 50% 1.524751 e+09 �0.014599 �0.010576 0.001319

75% 1.524752 e+09 0.094476 0.087081 0.155269

95 max 1.524753 e+09 21.818573 6.052173 8.516460

97 WatchAccX WatchAccY WatchAccZ

count 73573.000000 73573.000000 73573.000000

99 mean 0.369578 0.322029 �0.728343

std 0.273462 0.393525 0.279427

101 min �4.127808 �15.992234 �14.162827

25% 0.284286 0.168198 �0.893875

103 50% 0.411102 0.361084 �0.823074

75% 0.550217 0.604874 �0.542801

105 max 13.100601 10.012497 6.332337

107 Dataset conta in s 46890 ” s a f e ” data samples as we l l as 12496 ” r e l a t e v e l y s a f e ”

data samples and 12496 ” unsa fe ” data samples

109 Sess ionID Sess ionDate Sess ionDurat ion Sess ionFrequency \
0 0 2018�04�26 16 : 0 0 : 3 2 . 4 520 05 :07 60

111 1 0 2018�04�26 16 : 0 0 : 3 2 . 4 520 05 :07 60

2 0 2018�04�26 16 : 0 0 : 3 2 . 4 520 05 :07 60

113 3 0 2018�04�26 16 : 0 0 : 3 2 . 4 520 05 :07 60

4 0 2018�04�26 16 : 0 0 : 3 2 . 4 520 05 :07 60

115 5 0 2018�04�26 16 : 0 0 : 3 2 . 4 520 05 :07 60

6 0 2018�04�26 16 : 0 0 : 3 2 . 4 520 05 :07 60

117 7 0 2018�04�26 16 : 0 0 : 3 2 . 4 520 05 :07 60

8 0 2018�04�26 16 : 0 0 : 3 2 . 4 520 05 :07 60

Appendix D 100

119 9 0 2018�04�26 16 : 0 0 : 3 2 . 4 520 05 :07 60

10 0 2018�04�26 16 : 0 0 : 3 2 . 4 520 05 :07 60

121 11 0 2018�04�26 16 : 0 0 : 3 2 . 4 520 05 :07 60

12 0 2018�04�26 16 : 0 0 : 3 2 . 4 520 05 :07 60

123 13 0 2018�04�26 16 : 0 0 : 3 2 . 4 520 05 :07 60

14 0 2018�04�26 16 : 0 0 : 3 2 . 4 520 05 :07 60

125 15 0 2018�04�26 16 : 0 0 : 3 2 . 4 520 05 :07 60

16 0 2018�04�26 16 : 0 0 : 3 2 . 4 520 05 :07 60

127 17 0 2018�04�26 16 : 0 0 : 3 2 . 4 520 05 :07 60

129 RecordID Timestamp t ime In t e rva lS ince1970 GyroX \
0 0 2018�04�26 16 : 0 0 : 3 2 . 5 750 1.524751 e+09 0.114449

131 1 0 2018�04�26 16 : 0 0 : 3 2 . 5 920 1.524751 e+09 0.068869

2 0 2018�04�26 16 : 0 0 : 3 2 . 6 090 1.524751 e+09 0.007367

133 3 0 2018�04�26 16 : 0 0 : 3 2 . 6 260 1.524751 e+09 �0.048851

4 0 2018�04�26 16 : 0 0 : 3 2 . 6 420 1.524751 e+09 �0.113524

135 5 0 2018�04�26 16 : 0 0 : 3 2 . 6 610 1.524751 e+09 �0.163319

6 0 2018�04�26 16 : 0 0 : 3 2 . 6 760 1.524751 e+09 �0.188750

137 7 0 2018�04�26 16 : 0 0 : 3 2 . 6 940 1.524751 e+09 �0.219468

8 0 2018�04�26 16 : 0 0 : 3 2 . 7 100 1.524751 e+09 �0.236479

139 9 0 2018�04�26 16 : 0 0 : 3 2 . 7 270 1.524751 e+09 �0.227973

10 0 2018�04�26 16 : 0 0 : 3 2 . 7 440 1.524751 e+09 �0.212068

141 11 0 2018�04�26 16 : 0 0 : 3 2 . 7 610 1.524751 e+09 �0.200369

12 0 2018�04�26 16 : 0 0 : 3 2 . 7 770 1.524751 e+09 �0.183296

143 13 0 2018�04�26 16 : 0 0 : 3 2 . 7 940 1.524751 e+09 �0.160993

14 0 2018�04�26 16 : 0 0 : 3 2 . 8 110 1.524751 e+09 �0.169483

145 15 0 2018�04�26 16 : 0 0 : 3 2 . 8 270 1.524751 e+09 �0.169528

16 0 2018�04�26 16 : 0 0 : 3 2 . 8 440 1.524751 e+09 �0.189672

147 17 0 2018�04�26 16 : 0 0 : 3 2 . 8 610 1.524751 e+09 �0.200226

149 GyroY GyroZ . . . MagY MagZ \
0 0.420634 0.014215 . . . 2368.050537 2540.110596

151 1 0.390462 �0.003109 . . . 2368.050537 2540.110596

2 0.312997 �0.018244 . . . 2368.050537 2540.110596

153 3 0.257071 �0.030221 . . . 2368.047363 2540.111572

4 0.201090 �0.050801 . . . 2368.044189 2540.112549

155 5 0.154738 �0.073429 . . . 2368.050537 2540.110596

6 0.120278 �0.083103 . . . 2368.034424 2540.115234

157 7 0.087935 �0.098162 . . . 2368.034424 2540.115234

8 0.084778 �0.095090 . . . 2368.031006 2540.116211

159 9 0.100871 �0.098284 . . . 2368.034424 2540.115234

10 0.140669 �0.096176 . . . 2368.031006 2540.116211

161 11 0.178249 �0.102628 . . . 2368.034424 2540.115234

12 0.186672 �0.118521 . . . 2368.021240 2540.118896

163 13 0.209206 �0.119492 . . . 2368.014893 2540.120850

14 0.212437 �0.121709 . . . 2368.014893 2540.120850

165 15 0.218970 �0.113201 . . . 2368.008301 2540.122559

16 0.222173 �0.121914 . . . 2368.014893 2540.120850

Appendix D 101

167 17 0.179066 �0.131431 . . . 2368.001709 2540.124512

169 WatchTimestamp WatchtImeIntervalSince1970 WatchGyroX \
0 2018�04�26 16 : 0 0 : 3 2 . 3 630 1.524751 e+09 �0.251138

171 1 2018�04�26 16 : 0 0 : 3 2 . 3 780 1.524751 e+09 �0.042320

2 2018�04�26 16 : 0 0 : 3 2 . 3 930 1.524751 e+09 0.009363

173 3 2018�04�26 16 : 0 0 : 3 2 . 4 090 1.524751 e+09 �0.216995

4 2018�04�26 16 : 0 0 : 3 2 . 4 240 1.524751 e+09 �0.545621

175 5 2018�04�26 16 : 0 0 : 3 2 . 4 390 1.524751 e+09 �0.898000

6 2018�04�26 16 : 0 0 : 3 2 . 4 540 1.524751 e+09 �1.178968

177 7 2018�04�26 16 : 0 0 : 3 2 . 4 690 1.524751 e+09 �1.045339

8 2018�04�26 16 : 0 0 : 3 2 . 4 850 1.524751 e+09 �0.592919

179 9 2018�04�26 16 : 0 0 : 3 2 . 5 000 1.524751 e+09 �0.483998

10 2018�04�26 16 : 0 0 : 3 2 . 5 150 1.524751 e+09 �0.687511

181 11 2018�04�26 16 : 0 0 : 3 2 . 5 300 1.524751 e+09 �0.566808

12 2018�04�26 16 : 0 0 : 3 2 . 5 450 1.524751 e+09 �0.077885

183 13 2018�04�26 16 : 0 0 : 3 2 . 5 600 1.524751 e+09 0.341297

14 2018�04�26 16 : 0 0 : 3 2 . 5 760 1.524751 e+09 0.380301

185 15 2018�04�26 16 : 0 0 : 3 2 . 5 950 1.524751 e+09 0.215465

16 2018�04�26 16 : 0 0 : 3 2 . 6 050 1.524751 e+09 0.039867

187 17 2018�04�26 16 : 0 0 : 3 2 . 6 210 1.524751 e+09 0.157158

189 WatchGyroY WatchGyroZ WatchAccX WatchAccY WatchAccZ

0 0.118929 0.384660 0.415756 0.319626 �0.778305

191 1 0.152088 0.446979 0.424835 0.382248 �0.835861

2 0.114961 0.379977 0.425674 0.434128 �0.906601

193 3 0.022031 0.329766 0.402939 0.440201 �0.988129

4 �0.064078 0.293156 0.391174 0.424164 �0.989151

195 5 �0.110774 0.348198 0.340195 0.290054 �0.922485

6 �0.107791 0.356047 0.338486 0.280914 �0.895691

197 7 �0.092344 0.329540 0.369049 0.388519 �0.794418

8 �0.033741 0.320642 0.375153 0.505051 �0.799042

199 9 �0.022736 0.268441 0.402039 0.464737 �0.846954

10 �0.035012 0.269091 0.407852 0.388168 �0.838440

201 11 �0.032540 0.223395 0.396469 0.476639 �0.808060

12 �0.010667 0.187023 0.392410 0.525406 �0.813080

203 13 0.061721 0.153365 0.408936 0.543961 �0.792542

14 0.087955 0.107310 0.405014 0.502380 �0.823151

205 15 0.058433 0.106029 0.389954 0.382782 �0.858536

16 0.035453 0.115367 0.396179 0.388687 �0.840485

207 17 0.020057 0.105061 0.407516 0.466400 �0.796265

209 [18 rows x 24 columns]

Listing D.1: Console output

Appendix D 102

Sensor data distribution plots

Figure D.1: Sensor data distribution GyroX

Figure D.2: Sensor data distribution GyroY

Figure D.3: Sensor data distribution GyroZ

Appendix D 103

Figure D.4: Sensor data distribution AccX

Figure D.5: Sensor data distribution AccY

Figure D.6: Sensor data distribution AccZ

Appendix D 104

Figure D.7: Sensor data distribution MagX

Figure D.8: Sensor data distribution MagY

Figure D.9: Sensor data distribution MagZ

Appendix D 105

Figure D.10: Sensor data distribution WatchGyroX

Figure D.11: Sensor data distribution WatchGyroY

Figure D.12: Sensor data distribution WatchGyroZ

Appendix D 106

Figure D.13: Sensor data distribution WatchAccX

Figure D.14: Sensor data distribution WatchAccY

Figure D.15: Sensor data distribution WatchAccZ

Appendix D 107

Sensor data plots

Figure D.16: Data plot GyroX, GyroY, GyroZ

Figure D.17: Data plot AccX, AccY, AccZ

Figure D.18: Data plot MagX, MagY, MagZ

Appendix D 108

Figure D.19: Data plot WatchGyroX, WatchGyroY, WatchGyroZ

Figure D.20: Data plot WatchAccX, WatchAccY, WatchAccZ

Appendix D 109

Comparison single characteristic of all sessions

Figure D.21: GyroX, all sessions comparison

Figure D.22: GyroY, all sessions comparison

Figure D.23: GyroZ, all sessions comparison

Appendix D 110

Figure D.24: AccX, all sessions comparison

Figure D.25: AccY all sessions comparison

Figure D.26: AccZ all sessions comparison

Appendix D 111

Figure D.27: MagX all sessions comparison

Figure D.28: MagY all sessions comparison

Figure D.29: MagZ all sessions comparison

Appendix D 112

Figure D.30: WatchGyroX, all sessions comparison

Figure D.31: WatchGyroY, all sessions comparison

Figure D.32: WatchGyroZ, all sessions comparison

Appendix D 113

Figure D.33: WatchAccX, all sessions comparison

Figure D.34: WatchAccY all sessions comparison

Figure D.35: WatchAccZ all sessions comparison

Appendix D 114

Prediction plots by 12 samples using neural network

Figure D.36: Prediction using GyroX values, result: 65.94% (3.12%)

Figure D.37: Prediction using GyroY values, result: 65.34% (3.83%)

Figure D.38: Prediction using GyroZ values, result: 67.62% (2.80%)

Figure D.39: Prediction using AccX values, result: 72.50% (2.24%)

Appendix D 115

Figure D.40: Prediction using AccY values, result: 71.09% (3.78%)

Figure D.41: Prediction using AccZ values, result: 70.44% (3.11%)

Figure D.42: Prediction using GyroX and AccX values, result: 77.38% (2.80%)

Figure D.43: Prediction using MagX values, result: 36.06% (21.72%)

Appendix D 116

Figure D.44: Prediction using MagY values, result: 41.05% (22.91%)

Figure D.45: Prediction using MagZ values, result: 45.15% (20.87%)

Figure D.46: Prediction using WatchGyroX values, result: 69.21% (2.97%)

Figure D.47: Prediction using WatchGyroY values, result: 68.96% (3.85%)

Appendix D 117

Figure D.48: Prediction using WatchGyroZ values, result: 68.61% (3.71%)

Figure D.49: Prediction using WatchAccX values, result: 72.96% (2.85%)

Figure D.50: Prediction using WatchAccY values, result: 76.92% (2.91%)

Figure D.51: Prediction using WatchAccZ values, result: 69.35% (4.21%)

Appendix D 118

Figure D.52: Prediction using WatchGyroX and WatchAccY values, result: 74.45% (2.88%)

Appendix E

Source code

DataCollector (Collecting data using SensorTag 2.0 CC2650TK)

https://github.com/degtiarev/DataCollector

MotionCollector (Collecting data using iPhone and Apple Watch)

https://github.com/degtiarev/MotionCollector

MotionDataHandler (Handling data, building plots and models)

https://github.com/degtiarev/MotionDataHandler

MotionDataHandler (Prototype of app (iPhone & Apple Watch) for detection and

prediction of falls among elderly people using walkers)

https://github.com/degtiarev/SafeWalk

119

Appendix F

Thesis description document

120

Faculty of Engineering Science and Technology

Department of Computer Science and Computational Engineering

UiT The Arctic University of Norway

Detection and prediction of falls among elderly people
using walkers

Aleksei Degtiarev
Thesis for Master of Science in Computer Science

Problem description

This proposal is meant to extend previous work at UiT Narvik on fall risk
assessment carried out by Elisabeth Gangenes (2016) and PhD work by
Asbjørn Danielsen (2015-2016).

The idea is to create a means for detecting and possible prevent falls
among elderly people that use walkers. A concept for detecting
instabilities and risk of falls using machine learning should be designed.
A risk of fall or fall should immediately emit an alarm signal on the spot
and by means of a message emitted from the smart device. In addition,
the design should include a speci.cation of how falls can be automatically
controlled and prevented based on the detected risks. Such control could
be embedded in the walker or as a kind of wearable or similar.

A controlled experiment should be designed to train a wearable system to
detect instabilities and risk of falls. This could be by means of a smart
watch or smart phone or both. A set of sensors should be identi.ed for
the purpose and connected to the wearable device. Communication with
between sensor and controlling device should be based on Bluetooth. The
same approach as Elisabeth Gangenes can be applied. The student is at
liberty in the choice of machine learning technique. But it is
recommended that a cluster technique, a boosted CART or a LTSM
network is applied. The trained model should be converted to a core ML
model format.

The thesis will consist of four sub-tasks each with a distinct goal:

1. Review state-of-the-art literature and design the concept
2. Create an experimental rig and conduct experiments to generate a

training and test set for machine learning.
3. Demonstrate the accuracy of fall risk detection when using a walker

based on sampling from task 2 above
4. Create a pilot test with subjects using a walker

Dates

Date of distributing the task: <12.01.2018>

Date for submission (deadline): <1.6.2018>

Contact information

Candidate

Advisor at UiT-IVT

Advisor at UiT-IVT

Aleksei Degtiarev
delexa0@gmail.com

Bernt A. Bremdal
bernt.a.bremdal@uit.no

Asbjørn Danielsen
Asbjorn.danielsen@uit.no

General information

This master thesis should include:

T Preliminary work/literature study related to actual topic
- A state-of-the-art investigation
- An analysis of requirement speci.cations, de.nitions, design

requirements, given standards or norms, guidelines and practical
experience etc.

- Description concerning limitations and size of the task/project
- Estimated time schedule for the project/ thesis

T Selection & investigation of actual materials
T Development (creating a model or model concept)
T Experimental work (planned in the preliminary work/literature study part)
T Suggestion for future work/development

Preliminary work/literature study

After the task description has been distributed to the candidate a
preliminary study should be completed within 3 weeks. It should include
bullet points 1 and 2 in “The work shall include”, and a plan of the
progress. The preliminary study may be submitted as a separate report or
“natural” incorporated in the main thesis report. A plan of progress and a
deviation report (gap report) can be added as an appendix to the thesis.

In any case the preliminary study report/part must be accepted by
the supervisor before the student can continue with the rest of the
master thesis. In the evaluation of this thesis, emphasis will be placed
on the thorough documentation of the work performed.

Reporting requirements

The thesis should be submitted as a research report and could include the
following parts; Abstract, Introduction, Material & Methods, Results &
Discussion, Conclusions, Acknowledgements, Bibliography, References
and Appendices. Choices should be well documented with evidence,
references, or logical arguments.

The candidate should in this thesis strive to make the report survey-able,
testable, accessible, well written, and documented.

mailto:delexa0@gmail.com

Materials which are developed during the project (thesis) such as
software / source code or physical equipment are considered to be a part
of this paper (thesis). Documentation for correct use of such information
should be added, as far as possible, to this paper (thesis).

The text for this task should be added as an appendix to the report
(thesis).

General project requirements

If the tasks or the problems are performed in close cooperation with an
external company, the candidate should follow the guidelines or other
directives given by the management of the company.

The candidate does not have the authority to enter or access external
companies’ information system, production equipment or likewise. If such
should be necessary for solving the task in a satisfactory way a detailed
permission should be given by the management in the company before
any action are made.

Any travel cost, printing and phone cost must be covered by the
candidate themselves, if and only if, this is not covered by an agreement
between the candidate and the management in the enterprises.

If the candidate enters some unexpected problems or challenges during
the work with the tasks and these will cause changes to the work plan, it
should be addressed to the supervisor at the UiT or the person which is
responsible, without any delay in time.

Submission requirements

This thesis should result in a .nal report with an electronic copy of the
report including appendices and necessary software, source code,
simulations and calculations. The .nal report with its appendices will be
the basis for the evaluation and grading of the thesis. The report with all
materials should be delivered according to the current faculty regulation.
If there is an external company that needs a copy of the thesis, the
candidate must arrange this. A standard front page, which can be found
on the UiT internet site, should be used. Otherwise, refer to the “General
guidelines for thesis” and the subject description for master thesis.

The advisor(s) should receive a copy of the the thesis prior to submission
of the .nal report. The .nal report with its appendices should be
submitted no later than the decided .nal date.

	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem description
	1.2 Objectives
	1.3 Research questions

	2 State-of-the-art review
	2.1 Classification
	2.2 Representation
	2.3 Other systems

	3 Method
	3.1 Introduction
	3.2 Assess requirement instrumentation and equipment
	3.2.1 Choosing software and hardware rig
	3.2.2 Review software and hardware rig

	3.3 Prepare and conduct fall experiments
	3.3.1 Develop apps for collecting data
	3.3.2 Conduct fall experiments and collect data

	3.4 Pre-analysis of data from fall experiments
	3.4.1 Research collected data from SensorTags
	3.4.2 Research collected data from iPhone and Apple Watch

	3.5 Train and validate machine learning system
	3.6 Develop prototype (SafeWalk)

	4 Results
	5 Discussion of results
	6 Further development
	7 Conclusion
	A Flowchart of working process
	B Conceptual model of falls prevention technology
	C Analysis of data collected from 3 SensorTags
	D Analysis of data collected from in-built iPhone and Apple Watch motion sensors
	E Source code
	F Thesis description document

