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Abstract
Moving icebergs represent a major problem for shipping, as well as for oil
and gas installations in ice infested waters. To be able to take actions against
hazardous icebergs, it is necessary to develop models for prediction of iceberg
drift trajectories. Many models have been developed in order to do so, using
different approaches. These approaches can be divided into two main cate-
gories, dynamic models and statistical models. The main difference between
the approaches is that dynamic models forecast drift relying on the Newto-
nian equations utilizing forcing data, while the statistical models are based
on an optimum statistical prediction using prior velocities to forecast the drift.
This thesis will present the general physical and statistical theory iceberg drift
models rely upon, and review a selection of different iceberg models.

The main goal of this thesis is to evaluate the forecasting capabilities of two dif-
ferent iceberg drift models, implemented in a software module calledOpenBerg.
A model making accurate drift predictions could be utilized both operationally,
and for research purposes. One of the models is a deterministic model, relying
on dynamic equations. The other is a hybrid model which utilizes dynamic
forecasting of components considered predictable (such as winds and tides),
while modelling the residual component using statistical methods.

To evaluate the software module, sensitivity studies were utilized to determine
the effect of certain parameter choices. An ensemble analysis was performed
on a selected track section, and the results were used to create confidence
bounds for the predictions.
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1
Introduction
Drifting icebergs can representmajor problems for shipping traffic, as well as for
oil and gas installations. The icebergs represent hazards to the lives and health
of people working in the danger zones, as well as to property such as ships
and oil platforms. Ever since the RMS "Titanic" famously sank after colliding
with an iceberg in the North Atlantic Ocean in April of 1912, intensive efforts
have been made to chart iceberg positions (Bigg et al., 1996). Nevertheless,
icebergs continues to this day to be dangerous for various operations in ice
infested regions. Due to the danger they represent, it is important to monitor
and predict the drift trajectory of icebergs, in order to be able to take actions
against those that are hazardous.

1.1 Background
Many models have been developed in order to predict iceberg drift trajectories.
The most intuitive approach to modelling iceberg drift is by using a Newtonian
dynamic approach. In such models all significant forcing components are
required to be specified separately in terms of physical parameters associated
with the iceberg itself and the surrounding environments (Marko et al., 1988).
Experiences with suchmodels have shown that they are sensitive to errors in the
forecasts of various forcing components. Especially the sea water velocity has
proven difficult to predict (Garrett, 1985). As this is a major forcing component,
it makes dynamic iceberg drift prediction very sensitive to errors in the input

1



2 CHAPTER 1 INTRODUCT ION

data representing the forcing fields due to currents.

Due to these limitations of dynamic approaches, statistical approaches to ice-
berg drift modelling have been developed. These models allows the dynamics
of the iceberg motion to be excluded from the computations. The input infor-
mation is instead derived from recent observed iceberg motions. This approach
produce predictions in the form of relative probabilities of possible trajectories
based on the previous observations. The correlation between the observed
motion and predicted motion is diminishing the further into the future we pre-
dict. When making forecasts on a long term basis, the predicted positions will
eventually be completely based on estimated values. Thus, small errors in the
short term prediction becomes large in the long term. Therefore the statistical
models are only considered applicable to short term forecasting.

1.2 Scope
This thesis will look into iceberg drift modelling from a few angles. First a
survey of existing iceberg drift models is presented. Some space is also used
to describe the theoretical dynamics and statistics these models are commonly
based upon. It will in closer detail examine one particular deterministic model
and one statistical model in order to give a deeper understanding of different
approaches to the forecasting of iceberg drift trajectories.

In addition, a recently developed software module has been made available for
testing. This module is designed for comparing the performance of two different
iceberg trajectory models. One is a model based on the statistical approach, but
is designed to also include certain dynamic components. The other is a dynamic
model, using a deterministic approach to create the drift forecast. The module,
named OpenBerg, was developed by Ron Saper at the Water and Ice Research
Laboratory, Carleton University Department of Geography and Environmental
Studies. It is operating within the OpenDrift framework, which was developed
by Knut-Frode Dagestad at the Norwegian Meteorological Institute.

The review will include test runs of OpenBerg compared to observational data
to evaluate the performance. This data includes observed iceberg trajectories
from the Baffin Bay, off the north-east coast of Canada. Such data is absolutely
necessary in order to run the statistical model. It is also utilized to analyse
the accuracy of both models. The result from the test runs will be used to
further comment on the best method for prediction of short term iceberg drift.
Uncertainty range of input fields will be estimated. Choice of important model
parameters will be discussed, and an ensemble system will be established. The
ensemble will be based on perturbation of some of the model parameters, and
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of the forcing fields within defined uncertainty ranges.

1.3 Objectives
The general objective of this thesis is to perform an in-depth study of existing
iceberg drift models. This includes a review of the theoretical basis for the
statistical approach, and a survey of the driving forces guiding iceberg drift in
deterministic models. This study will include a discussion on which forces play
a significant role and which may be neglected, and describe how significant
forces are accounted for in relevant models.

If it, through the study in this thesis, is possible to confirm the accuracy of
the OpenBerg module it would be a large step closer to making this model
operational.

The specific objective of the thesis is to review the implementation, and anal-
yse the performance of the OpenBerg module. To analyse the performance,
ensemble analysis will be utilized to estimate the distribution parameters of
the predictions. Assuming a known distribution, these parameters can be used
to estimate the probability of an iceberg being a given distance from the
prediction.

In other words, the main research question to be answered in this thesis is
whether either of the models implemented in the OpenBerg module are suited
for operational use.

1.4 Structure of the Thesis
The thesis is divided into 6 chapters including the introduction.

Chapter 2 presents the dynamic and statistical theory behind iceberg drift
modelling, and reviews the approaches in various existing models along the
way.

Chapter 3 reviews the observation data and the forcing data sets utilized for
testing the OpenBerg module.

The methodology is presented in chapter 4. In this chapter the specific models
implemented in the OpenBerg module is discussed. In addition, the OpenDrift
framework and the OpenBerg module is described in more detail, and the
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methods used in the result analysis are presented.

In chapter 5 the results from the test runs and the analysis are summa-
rized.

Chapter 6 summarizes the results, proposes some future work and presents a
conclusion



2
Theory
In order to take action against hazardous icebergs, close to shipping lanes
or well sites, forecasting of drift paths is necessary. Models that have been
developed for this purpose fall into two main categories; deterministic models
and statistical models.

Deterministic models relies on the governing dynamic equations for the various
sources of forcing upon the iceberg. This approach is rather intuitive, and
could be described as the combination of various forcing vectors to obtain a
future position prediction. These kind of models are rather robust in terms
of accuracy, given that the model input includes good forecasts of the local
conditions. However, problems occur when the forecasts of the various forcing
conditions is not accurate. Especially low frequency currents in the ocean are
difficult to predict (Garrett, 1985). These currents are those due to mechanisms
such as tides, large scale circulation and gyres. On time scales as short as 1-2
days or shorter these currents have a high variance, which makes them difficult
to predict (Dijkstra and Ghil, 2005).

Due to the issues related to unpredictable forcing components, a statistical ap-
proach was proposed. This method extrapolates a drift path as a weighted sum
of previously measured velocities. The major difference from the deterministic
approach is that statistical models relies on previous measurements of velocity,
rather than forcing components based on forecasts. This method will therefore
avoid problems from erroneously predicted sources of forcing data.

5
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Statistical models may allow for some use of deterministic components if the
source of forcing is predictable. The statistical method employed by OpenBerg
use deterministic prediction for forcing due to wind and tides, and extrapolates
drift due to other sources based on previous velocities (this extrapolated residual
component mainly consists of the forcing from the ocean current).

This chapter will present the theory behind the particular deterministic and
statistical models employed by OpenBerg, as well as alternative existing mod-
els.

2.1 Definitions
Some terms that is useful to understand properly before reading this report is
defined in this section.

Eulerian Flow Field This is a way of looking at fluid motion that focuses on
specific locations in a space which the fluid flows through (Batchelor, 2000). A
simple way of thinking of this is by sitting by the riverside and watching water
pass your, fixed, location.

Lagrangian Flow Field This specification of the flow field is an approach
to fluid motion where the observer follows one individual parcel of the fluid
as it is displaced (Batchelor, 2000). A plot of the position for one individual
parcel moving in time and space produces the path line of the parcel. This can
be visualized similarly to the Eulerian field, but now as floating down a river
at the same speed as the water.

Velocity Auto Correleation Function (ACF) The acf is the function
which describes the correlation between the velocity of an object at one point
in timewith a delayed copy of itself, as a function of the time delay. A Lagrangian
version of the acf is used in the statistical model in order to extrapolate future
velocity.

The Ekman Depth The Ekman depth is the depth of the layer in a fluid
where there is a force balance between pressure gradient force, Coriolis force
and turbulent drag. And hence the top layer of the fluid where the surface
drag plays no role.

Inertial Waves Inertial waves is a kind of internal wave which can be
propagated in an incompressible, rotating fluid. These waves are due to the
Coriolis force which occur in rotation. Inertial waves flow through the interior
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of the fluid, not at the surface. And, since the Coriolis force do no work on the
moving fluid, the energy in such waves is entirely kinetic (Landau and Lifshitz,
1987).

2.2 Dynamic Modelling of Iceberg Drift
When modelling the drift of any types of particles, icebergs are no different,
the fundamental fluid dynamics are essential. In addition there are several
external forcing components which are necessary to take into account, the
various models weigh these different components differently. Some, as that of
Wesche and Dierking (2016), models are constructed as to view the effects of a
single forcing component.

In this section we will discuss the fluid dynamics briefly, and look closer at the
various forcing components significant for iceberg drift. Along the way various
approaches used in different models will be reviewed.

2.2.1 Fluid Dynamic Equation of Motion
The starting premise of geophysical fluid dynamics is that the dynamics of
e.g. atmospheric and oceanographic motions are determined by the systematic
application of the fluid continuum equations of motions (Pedlosky, 2013). The
equations of motions and the Coriolis force are discussed in more detail in
appendix A, but a brief outline is presented here.

To describe the motion, required dynamical variables are generally the density
ρ, the pressure p, the velocity vector u. To close the system to other variables
we assume the condition of mass conservation to be valid, and constant density.
The condition of mass conservation requires the absence of sources or sinks of
mass in the fluid. It is formulated by the continuity equation,which is expressed
as

∂ρ

∂t
+ ∇ · ρu = 0, (2.1)

where ∇ is the vectorial differential operator, and t is time. Equation 2.1 states
that the local increase of density with time,must be balanced by a divergence of
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the mass flux ρu. For constant density this condition can be simplified:

∇ · u = 0. (2.2)

If the density is not considered constant, one would have to consider thermo-
dynamics to account for its variations. In relation to iceberg drift it is very
reasonable to consider the density to be constant, and no additional variables
are traditionally considered to be relevant.

For constant density, the system is closed such that we have four variables,p and
u = (u,v,w). We need four equations to solve this system. One of equations
is the continuity equation, derived in equation 2.2. The other three are the
equations of motion in the three directions. The most natural frame from which
to describe atmospheric and oceanic motions, is one which rotates with the
Earth’s angular frequency Ω, due to our perspective lining on the surface of
the planet. From this frame of reference the momentum equation for a pocket
of sea water can be expressed as (e.g. Pedlosky, 2013)

ρ

[
du
dt
+ f × u

]
= −∇p + ρ∇Φ +F , (2.3)

where d
dt is the time derivative, ∇ is the vectorial differential operator, and the

non-conservative forces F . Φ is the total potential, and accounts for potentials
due to both conservative body forces (such as gravity), and the perceived
potential due to the centripetal acceleration. f is the Coriolis parameter, it is a
function of the latitude angle φ and can be expressed as

f = 2Ωsinφ. (2.4)

Equation 2.3 states that the mass per unit volume times the acceleration (from
the rotating frame of reference) is equal to the sum of the pressure gradient
force −∇p, the body force per unit mass ρ∇Φ and the non-conservative forces
F .

F may represent any non-conservative force, and is independent of the frame
of reference. This term account for all external forcing. In the following section,
it is discussed at length which forcing components are significant in iceberg
modelling.



2.2 DYNAMIC MODELL ING OF ICEBERG DRIFT 9

2.2.2 Forcing Components
External forcing components usually included by various existing models, are
forces due to air drag Fa , water drag Fw , the water pressure gradient force Fp ,
forces due to wave radiation stress Fr , and the Coriolis force f × V. Where V
is the velocity of the iceberg. Some models (e.g Kubat et al., 2005) include
a term Fam accounting for the momentum of the wake formed behind the
iceberg called added mass. Certain models also account for sea-ice drag, but
drift within sea ice is not a problem of interest for this thesis and will not be
discussed in detail.

A balance equation of linear momentum including all the components men-
tioned above may be expressed as (e.g Kubat et al., 2005)

m
(dV
dt
+ f × V

)
= Fa + Fw + Fr + Fp + Fam . (2.5)

The left hand side is similar to equation A.20 but now applied to a drifting
iceberg of massm, moving at velocity V, and f is the Coriolis parameter.

Now let us take a closer look at the terms on the right hand side. The force due
to air drag in its exact form can be expressed as (Smith, 1993)

Fa =
1
2
ρaCaAa |Va − V|(Va − V), (2.6)

where ρa is air density, Ca is the the non-dimensional air drag coefficient, Aa
is the cross-sectional sail area, Va is the wind velocity, and V is the iceberg
velocity. The sail is the part of the iceberg above the waterline, as sketched in
figure 2.1.

There are some dispute on how to take into account in the wind drag in a
simple and accurate fashion. According to Smith (1993) the wind drag should
always be proportional to the square of the relative wind velocity (Va −V) (the
difference between wind velocity and iceberg velocity). Garrett et al. (1985a)
found, through cross-correlation of wind and iceberg velocity components, that
the correlation between components in the same direction was consistent with
the iceberg moving at a fraction of about 1.8% of the wind speed. However,
it is commonly accepted that the drift velocity of an iceberg relative to the
ocean current is at about 2% of the wind speed (e.g. Smith, 1993; Bigg et al.,
1997). This fraction is so small that some, e.g. Kubat et al. (2005), for simplicity
choose to replace the relative velocity by the wind velocity Va itself.
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In a similar way the force due to water drag can be expressed as

F1w =
1
2
ρwCwAw |Vw − V|(Vw − V), (2.7)

where ρw is the water density,Cw is the non-dimensional coefficient for water
drag andAw denotes the cross sectional vertical area of the iceberg exposed to
the water normal to the current (Gaskill and Rochester, 1984). Vw is the water
current velocity vector. The superscript above Fw denotes the versions of this
expression, as alternative versions will be presented below. For instance in the
model presented by Kubat et al. (2005) the keel (the part of the iceberg below
the water surface) is considered to consist of layers, each of 10 m depth. This
model implements a modified version of equation 2.7

F2w =
1
2
ρwCw

∑
k

Aw (k)|uw (k) − V|(uw (k) − V), (2.8)

where Aw (k) is the vertical area of layer k, and uw (k) is the water current
acting on layer k. This description of the water drag allows us to use more
complex, layered, forcing data to predict the drift. In Turnbull et al. (2015) the
water drag is described similarly to how it is presented in Kubat et al. (2005),
but another term is included in order to account for the drag along the bottom
of the iceberg. The expression then is modified into a third version:

F3w = F2w + (ρwCdwAb )|uw − V|(uw − V), (2.9)

where Cdw is the non-dimensional skin drag coefficient of water along the
bottom surface of the iceberg, Ab is the horizontal area of the iceberg bottom
and uw is the ocean current velocity along the bottom horizontal surface.

When an iceberg is moving relative to stationary water is creates waves as the
iceberg is pushing water out of the way. This force is called the wave radiation
force. The forces acting on the iceberg due to this effect can be isolated and
linearised. This simplification does, however, require the assumption that the
forces due to interaction between the iceberg and the moving water flow
is isolated from the wave radiation force (i.e. accounted for by other force
components). Whereas the interaction between the iceberg and the stationary
flow exclusively happens in the wave radiation force (Hover and Triantafyllou,
2009).
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If thewave radiation force force is absorbed at a deep verticalwall, itsmagnitude
is (Smith, 1993)

Fr =
1
4
ρwдa

2L, (2.10)

where g is the gravitational constant and L is the length of the iceberg normal
to incident waves of amplitude a. This force represents an imperfect transfer
of momentum between the waves and iceberg. It is relative to the shape of
the iceberg, and is smaller for shapes that is not perfect reflectors. If the shape
iceberg reflects the waves perfectly the magnitude of this force can be doubled.
While waves with long wavelengths (wavelength greater than L) may pass
without being reflected nor absorbed, and thereby having negligible effect on
Fr . Using the assumptions that the expression in equation 2.10 is applicable to a
moving iceberg and that this force works in the wind direction, the expression
for the wave radiation force will be (Bigg et al., 1997)

F1r =
1
4
ρwдa

2L
Va
|Va |
, (2.11)

where the superscript above Fr denotes the version of the expression and
Va still is the wind velocity vector. Other proposed expressions for this force
have been presented, where it is formulated as a perfect reflector but rather
introduce a wave force coefficient Cwf (see for example Kubat et al., 2005;
Carrieres et al., 2001). Where Cwf would not be constant, but rather depend
on the iceberg length L in relation to ocean wavelength. The version presented
in Carrieres et al. (2001) is on the form

F2r =
1
2
Cwf ρwgH2Lκ, (2.12)

where κ is the unit wave direction vector and H is the wave heigth (H = 2a).
Carrieres et al. (2001) stresses that this term only accounts for swell waves,
waves formed due to wind over extended periods of time (not created by local
wind conditions), and not wind waves created by local wind. This is because
it is assumed that equation 2.6 accounts for the effects of the wind waves. In
Kubat et al. (2005) on the other hand it is accounted for the wind waves, in
addition to swell waves, in the expression for the wave radiation force. It is
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expressed on the form

F3r =
1
2
Cwf ρwga2L|Va |Va . (2.13)

In Kubat et al. (2005) it is assumed that, when implementing equation 2.13, the
direction of the wind waves is the same as the wind direction. The direction of
the swell waves will have to be provided as input to the model.

Fp denotes the pressure gradient force, and can be expressed in terms of the
horizontal pressure field P (in the water), iceberg mass m and water density
ρw such that

Fp = −m∇P/ρw ,

where ∇ is the horizontal pressure gradient. This term represents the forces
acting upon an iceberg by the pocket of water surrounding it, and governed
pressure gradients in the water at either side of the icebergs. These effects are
created by tides, large scale circulation, gyres ect.. And in a sense this is the
basic force creating motion in the water around the iceberg.

There are some small variations in different models in how they account for
these forces. For instance the model presented in Kubat et al. (2005) expresses
these forces in terms of the Coriolis parameter and the mean water flow, such
that

F1p =m(
dVmw

dt
+ f × Vmw ), (2.14)

where Vmw is the mean water current velocity for a given volume of water,
and m is the iceberg mass. The superscript above Fp again denotes the version
of the expression. This an expression for the sum of inertia and Coriolis forces
on a volume of displaced water.

In Bigg et al. (1997) Fp is described by rearranging the equation for motion for
Vmw (in terms of forces per unit mass):

dVmw

dt
+ f × Vmw = −

1
ρ
∇P +

1
ρ

∂τ

∂z
. (2.15)
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In equation 2.15, τ is the surface wind stress, and z is the vertical coordinate.
In this approach the effects on Fp by surface wind stress is assumed to reduce
to the product of the inverse Ekman depth E−1k (described in section 2.1) and
the surface wind stress, atleast in practice. The surface wind stress can be
expressed as (Gill, 1982)

τs = 1.5 × 10−3ρa |Va |Va .

This results in the alternative expression for the pressure gradient force exerted
on the iceberg

F2p = −m
∇P

ρw
+
τs
Ek
, (2.16)

where ρw is the water density and the Ekman depth is considered to be equal
to the draft of the iceberg with a maximum value of 90 m (Bigg et al., 1997).
The draft of an iceberg is visualized in figure 2.1.

There are some dispute about whether the ocean should be assumed to be in
steady geostrophic equilibrium (e.g. Smith and Banke, 1983), which implies
that the pressure force per unit mass on an iceberg is described solely by the
term f × Vmw . Others (e.g. Bigg et al., 1996) argue that the dominant term
in large oceanic regions is the material derivative dVmw/dt (including non-
linear advection terms), and that this term is the principal factor necessary to
reproduce accurate iceberg drift distributions. In tropic regions the Coriolis
parameter is small,whichwould effectwhich term is dominant. This is, however,
not considered in any of the reviewed models as it is rare for icebergs to survive
long enough for this effect to be relevant.

The wake of a drifting iceberg contains a large amount of water which is
travelling at some fraction of the velocity of the iceberg. When the iceberg
velocity changes a new wake is formed, and the momentum in this wake must
be included in the force equations acting on the object. The observed effect
of the water entrained in the wake, is that it adds to the mass of the drifting
iceberg. In equation 2.5, Fam represents the force contribution from this added
mass. In actuality it is accounted for by substituting the massm in equation
2.5 by (m +mam).mam is the added mass and is assumed to be some ratio of
them massm. For instance Kubat et al. (2005) worked with an assumed added
mass ratio of half the mass of the iceberg.
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2.2.3 Iceberg Geometry
One major challenge for accurate trajectory prediction for icebergs is the ability
to accurately describe the shape of the iceberg. For an operational model one
must assume that in most cases the information about the shape and size of
the iceberg is limited at best. In addition degradation of the iceberg over time
and turnover (icebergs flipping upside-down) are problems that also makes
the acquisition of accurate measurements more difficult.

The one measure of an iceberg which is generally easier to acquire than any
other is the waterline length, which is defined as the largest horizontal distance
across the iceberg at the waterline. An estimate of this measure is possible
to determine from most data sources, be it from direct observation, aircraft
photography or even satellite imagery. Barker et al. (2004) makes an attempt
to describe the full geometry of an iceberg using only the waterline length,
which Kubat et al. (2005) later implemented into their model.

Figure 2.1 visualizes the various terms utilized to describe the iceberg geometry
to clarify the dimensions discussed. The draft, or keel, is defined as the part of
the iceberg below the waterline. The sail is the part above the waterline.

Figure 2.1: A simple sketch showing important terms used for describing iceberg
geometry.

To find a relationship between waterline length L and the draftD of the iceberg,
both measured in meters, Barker et al. (2004) curve-fitted measured dimension
data. This data included height, length, width, draft, mass and cross-sectional
area from several icebergs. They were able to find a relationship by fitting a
power curve, similar to relationships presented in earlier works (e.g. Hotzel
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and Miller, 1983; El-Tahan and Davis, 1985):

D = 2.91L0.71. (2.17)

However, an issue with this relation is that it includes dimensional parameters,
and both the draft and waterline length parameters should be measured as a
distance (meters). The power relation therefore does not accurately represent
this relation. To avoid this problem, regression analysis was used instead.
A dimensionless linear relationship was obtained to minimize the effects of
erroneous data:

D = 0.7L. (2.18)

Barker et al. (2004) account for the geometry of the iceberg draft by including
into the model a set of parameters describing the keel geometry. These param-
eters are determined to fit a set of linear relations describing the keel-area
of sections, where each section is of 10 m thickness. An expression for the
cross-sectional area of the sail (the part of the iceberg above the water) is
similarly described, but only by a single linear relation determined by input
parameters.

The way the aforementioned parameters were determined by Barker et al.
(2004), was by plotting waterline length versus cross-sectional area on available
data. The relationship which best related the sail areaAs , observed in the data,
to the waterline length was expressed as

As = a0L + b0, (2.19)

where a0 and b0 are the parameters determined by curve-fitting the data.
Similarly, as the keel-area is split into vertical layers, each layer k needs an
equation to describe the relation between the cross-section A(k) and the
waterline length. This can be expressed as

A(k) = akL + bk , (2.20)

where ak and bk are individual parameters for each layer of the keel.
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A set of equations were originally developed for describing icebergs with drafts
up to 160 m from a dataset where the largest measured draft was 120 m. All
parameters were determined by curve-fitting available data. Later the equation
parameters were improved upon by examining the relation between keel cross-
sectional areas at adjacent depths. The result from this examination were the
ability to produce simulated keel areas for keel depths of up to 200 m. The
resulting equation parameters developed by Barker et al. (2004) are presented
in table 2.1.

TheOpenBerg softwaremodule,which is discussed in detail in chapter 4, applies
the parameters in table 2.1 when estimating the draft used for deterministic
trajectory modelling.

Table 2.1: Resulting parameters for calculating vertical cross-sectional areas from the
studies of Barker et al. (2004). These parameters are used to create com-
posite icebergs in the OpenBerg software module.

Heigth/Depth (m) a(k) b(k)
Layer 1 0-10 9.5173 -25.94
Layer 2 10-20 11.1717 -107.50
Layer 3 20-30 12.4798 -232.01
Layer 4 30-40 13.6010 -344.60
Layer 5 40-50 14.3249 -456.57
Layer 6 50-60 13.7432 -433.33
Layer 7 60-70 13.4527 -519.56
Layer 8 70-80 15.7579 -1111.57
Layer 9 80-90 14.7259 -1125.00
Layer 10 90-100 11.8195 -852.90
Layer 11 100-110 11.3610 -931.48
Layer 12 110-120 10.9202 -1007.02
Layer 13 120-130 10.4966 -1079.62
Layer 14 130-140 10.0893 -1149.41
Layer 15 140-150 9.6979 -1216.49
Layer 16 150-160 9.3216 -1280.97
Layer 17 160-170 8.9600 -1342.95
Layer 18 170-180 8.6124 -1402.52
Layer 19 180-190 8.2783 -1459.78
Layer 20 190-200 7.9571 -1514.82

Using the equations defined by table 2.1 combined with the relation found
in equation 2.18, composite icebergs can be created. Two examples of such
composites are presented in figure 2.2.
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Figure 2.2: Composite icebergs, created using equations from table 2.1 (Barker et al.,
2004).

2.2.4 A Numerical Solution
By calculating the forces in equation 2.5, the acceleration of the iceberg, a, is
obtained as a function of time and velocity

a(t ,V) =
dV
dt
. (2.21)

The integral of equation 2.21 can be solved numerically, and the solution pro-
duces the velocity of the iceberg. This velocity is used to update the iceberg
position. Previous models have used the traditional (forward) Euler approach,
which uses the value of the acceleration at time step i to proceed to the next
step, i + 1. However, this could lead to unstable solutions (especially if the size
of the time steps is large). Therefore it is suggested by Kubat et al. (2005) an
implicit Euler approach, also known as the backward Euler approach. In this
method the acceleration at the next time step, i + 1, is estimated in advance
and used to update the velocities. This results in a solution which is stable for
relatively large time steps.
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The form of the implicit Euler approach, based on equation 2.21, is

Vi+1 = Vi + ai (ti+1,Vi+1)∆t (2.22)

where the subscripts denotes time steps (see for example Press et al. (1989)).
This expression is used to compute the approximation of the future velocity.
It can be further linearized using a first-order Taylor expansion of a around
Vi :

Vi+1 = Vi + ∆t

[
ai (ti+1,Vi ) +

∂a
∂V

����
Vi
(Vi+1 − Vi )

]
(2.23)

Where ∂a
∂V is a matrix of partial derivatives, the element includes the water

drag and the Coriolis force term from 2.5. By solving equation 2.23 we obtain
the velocity components for time step i + 1, given solely by values at time step
i (Kubat et al., 2005)

Vi+1 = Vi + ∆t

[
I − ∆t

∂a
∂V

]−1
ai , (2.24)

Where I is the identity matrix, and

[
I − ∆t ∂a∂V

]
is a matrix from which we can

obtain the velocity components by inversion.

2.2.5 Experiences With Dynamic Iceberg Modelling
The results from the studies of Kubat et al. (2005) serves as a good introduction,
and provides an overview of earlier modelling studies. They ran tests of their
model by simulating drift tracks to ensure accuracy, and by performing a
parametric study by examining changes of predicted tracks to varying input
parameters and environmental forces. Their results showed that:

• Water current has the most pronounced effect on the forecast. Using the
vertical profile of water current provided the best agreement between
predicted and observed tracks. Employing a current averaged over the
iceberg’s keel depth yielded smaller errors than detailed water current
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vertical profiles. However, using surface current values only, led to signif-
icant errors.

• The waterline length does also have a strong influence on the drift
predictions. This result was not surprising as this parameter was used
to calculate both the mass of the iceberg and the keel cross-sectional
area. The results showed that using a value between the mean of the
length and width (largest and smallest dimensions at the waterline) and
the largest dimension at waterline, gave the best fit with observed track.
How to determine the best estimates of the waterline variable requires
more work according to Kubat et al. (2005).

• Waves might have a pronounced role in some cases. However, the data
used for testing did not include measurements for wave conditions. Some
tests were run considering wind waves with values for wave height within
a reasonable range. The test showed that heights below 0.5m did not have
prominent effect on the predicted track, but as wave height increased
above 0.5 m, the effects became more pronounced. Unfortunately the
lack of data impeded the ability to draw proper conclusions about the
effects of wave height.

• Water and air drag coefficients had little effect on the predictions. Tests
showed that the icebergs drift path closely followed the mean water
current (averaged over keel depth). As such, the relative velocity between
the iceberg and water current is usually small, which indicates that the
value of water drag coefficients have limited effect on the drift.

Advantages in dynamic models include:

• The dynamic models does not require any knowledge about the iceberg
velocity to be able to predict the future trajectory. If an iceberg is observed
the model can predict the future position based only on input data
describing the surrounding forcing fields.

• With good estimates of parameters and good measurement and forecast
values for environmental factors, Kubat et al. (2005) found their model
to be reasonably accurate on time scales between 48 and 64 hours.

• Dynamic modelling allows for analysis of which forcing factors are most
important for prediction of iceberg drift tracks.

Drawbacks in dynamic models include:

• Themodel is heavily impacted by the accuracy and availability of forecasts



20 CHAPTER 2 THEORY

from atmosphere, ocean and wave models. Inaccuracies in these models
will in turn deteriorate the drift predictions.

• The problem of accurately representing the iceberg’s geometry is chal-
lenging. Even using the waterline length L to estimate it, as described
above, proves to be difficult. It is not easy to determine which repre-
sentation of L provides the most accurate prediction tracks. Whether
the description of the geometry is actually important is an interesting
question, and a sensitivity study of this parameter was performed as a
part of the research in this thesis.

2.3 Statistical Forecasting of Iceberg Drift
Statistical forecasting of iceberg drift bases the prediction of future position
mainly on measured data of previous iceberg motions. This approach has
also been dubbed time series modelling by some authors (e.g. Moore, 1985).
The predictions produced are in the form of relative probabilities of possible
trajectories. Therefore this approach needs only actually measured data to
generate the model, thereby avoiding the problems regarding unpredictable
input parameters in the deterministic approach. The underlying dynamics
of the model do not directly enter into the computations, instead the input
information is derived from the spatial and temporal correlations of recent and
historical movements of the iceberg.

This section will take an in-depth look at a statistical approach attempting to
create an optimum model where the future velocity of an iceberg is a weighted
sum of previous velocities. The theory presented here is based heavily on the
model presented by Garrett (1985).

2.3.1 Prediction Using Minimum Square Error as Criteria
First, we restrict ourselves to a single component of the velocity u(t), for
modelling. The goal is to develop amodel predicting this variable using previous
(observed) velocities of the iceberg. The best estimate û(t) of a future value
can be estimated from a linear combination of the N previous velocity steps
un where n = 1, . . . ,N , and each step is weighted by a parameter αn (Garrett,
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1985):

û(t) =
N∑
n=1

αnun . (2.25)

One will be able to predicate this future value in continuous time, as the
weights can be estimated as continuous functions in time. More details about
the weights are discussed in section 2.3.2 and 2.3.4.

What the "best" estimate actually is, depends on howwe determine the criterion.
The approach presented here defines the best estimate as the one which
minimizes the mean square error (mse) across several iterations, using the
formula in equation 2.25. The error will in this particular case be defined as the
difference between measured velocity u, and estimated velocity û. The mse
can then be defined (Garrett, 1985):

e = [u(t) − û(t)]2 = [u(t)]2 − 2
N∑
n=1

αnu(t)un +
N∑
n=1

N∑
m=1

αnαmunum . (2.26)

From equations 2.25 and 2.26 it is a well known result (the Gauss-Markov
theorem) that the coefficients αn can be obtained from the set of simultaneous
equations

∑
m

unumαm = u(t)un (2.27)

found by minimizing the mse with respect to αn (detailed proof for Gauss-
Markov is available in e.g. Davis (1977)). The Gauss-Markov theorem also lets
us rewrite the mse as

e = [u(t)]2 −
∑
n

∑
m

(Cov−1)nm[u(t)un][u(t)um] (2.28)

whereCov is theN byM covariancematrixwith elementsunum , and (Cov−1)nm
is element (n,m) of the inverse of Cov (Garrett, 1985).

The covariance vector, u(t)un , and the covariance matrix are in general the
values of the auto covariance at a certain time lag for the velocity values for a
single iceberg trajectory.
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Provided that the collected data is adequate to compute these covariances, this
approach could in principle be implemented to predict future velocity which
in turn can be used to predict future positions of an iceberg.

2.3.2 Prediction for an Exponentially Decaying LagrangianACF
Garrett (1985) assumed the drift to be a stationary process, such that u will
also be stationary. The legitimacy of this assumption is debatable as the drift
can only be considered stationary for short periods of time. Just how long this
period is needs more extensive research. This thesis is testing the prediction
capabilities of the OpenBerg module for iceberg trajectories on periods of up
to 48 hours.

To estimate the weights, αn , in equation 2.25, a useful tool is the the velocity
acf. We will consider the inputs un , the values of u at different times. Further
we assume variance u2, and the acf (Garrett, 1985)

R(τ ) =
u(t)u(t + τ )

u2
.

If we consider the values of u at times −t1, −t2, −t3,..., the set of equations
from equation 2.27 can be expressed as the matrix product:


1 R(t2 − t1) R(t3 − t1) . . .

R(t1 − t2) 1 R(t3 − t2) . . .
...

...



α1
α2
...

 =

R(t + t1)
R(t + t2)
...

 . (2.29)

Now recall that for a real stationary process R(τ ) = R(−τ ), such that e.g.
e−γ (t1−t2) = e−γ (t2−t1). Then assume that the acf is exponentially decaying in
time, and substitute for R(τ ) = e−γ τ such that this product becomes


1 e−γ (t2−t1) e−γ (t3−t1) . . .

e−γ (t2−t1) 1 e−γ (t3−t2) . . .
...

...



α1
α2
...

 =

e−γ (t+t1)

e−γ (t+t2)

...

 .
= e−γ (t+t1)


1

e−γ (t2−t1)

...

 . (2.30)
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Which has the quite simple solution

α1 = e−γ (t+t1),α2 = α3 = · · · = 0. (2.31)

This mean that the best prediction for the change in velocity at time t + t1,
is that measurement times the acf at time lag t + t1. It also implies that
earlier velocity measurements do not provide any extra information. For large
time changes this implies that the best prediction for velocity change is zero.
Therefore the best statistical prediction of total velocity for large time changes
will be the mean of past samples(Garrett, 1985).

2.3.3 Prediction of Position
Previously the inputs u(−t1),u(−t2), . . . , ect. was considered. Moving on we
will consider how to obtain the predicted position by evaluating the output
(Garrett, 1985):

x(t) =

∫ t

0
u(t ′)dt ′. (2.32)

To evaluate the reliability of the model, the root mean square error of the
velocity estimate could be considered before calculating the predicted position.
But there are, as we will see below, no guarantee that the best estimate for the
velocity will produce the best estimate for the position.

To obtain the optimum predictor of position, x̂(t), (rather than the optimum pre-
dictor of velocity) using equation 2.32, we must retain the left side of equation
2.27 while replacing the right hand side, u(t)un , by (Garrett, 1985)

x(t)un = u2
∫ t

0
R(t ′ + tn)dt

′ = u2
∫ t+tn

tn
R(τ )dτ . (2.33)

The value of x̂(t), obtained by solving this integral, is the same as the value
obtained by integrating the best estimate of u(t) at each instant. If we solve
equation 2.33 for R(τ ) = e−γ τ we get

x(t)un = u2
(
γ−1(1 − e−γ τ )e−γ tn

)
. (2.34)

Next the optimum estimate of position is obtained by using only the most recent
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velocity estimate. Taking the most recent time estimate at t1 = 0, equation
2.34 becomes

x̂(t) = γ−1(1 − e−γ t )u(0). (2.35)

Combining equation 2.32 and the estimate in equation 2.35, the root mean
square error (rmse) for the position estimate is (Garrett, 1985)

RMSE =

√
(x(t) − x̂(t))2 =

√
u2γ−1 f (γt), (2.36)

where

f (γt) = (2γt − 3 + 4e−γ t − e−2γ t )
1
2 . (2.37)

Note that the root mean square error for the position is proportional to the
velocity fluctuation and decay time and will vary in time only due to the factor
f (γt). For small time intervals, γt � 1, this implies small growth in error, but
for large time intervals, γt � 1, the position error will behave like the fluid
dynamical equivalent of a random walk (Taylor, 1922).

If we take the rmse when no prediction is made (i.e. x̂(t) = 0), f be-
comes

f0(γt) = (2(γt − 1 + e−γ t )
1
2 . (2.38)

This function will behave as γt for γt � 1, and as a random walk for γt �
1.

Figure 2.3 show a plot of f (γt) and f0(γt), i.e. perfect prediction and no
prediction respectively. Graph (a) and (b) both display the same functions,
but on different intervals, as to describe the change in behaviour for different
scales of γt . Comparing the two plots show how the error in the perfect
predictor (f (γt)) behaves, compared to no prediction (f0(γt)), for different
time scales.

This implies that the statistical method can be useful for short term prediction,
but that the loss of memory will eventually lead to a large accumulation of
errors such that even the best possible prediction is hardly better than no
prediction at all (Garrett, 1985).
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Figure 2.3: Both plots (a) and (b) show f (γt) and f0(γt) from equations 2.37 and 2.38.
The curves show the behaviour of the rmse in the optimum prediction
(f ), versus no prediction at all (f0). Plot (a) is of interval [0, 1] and plot
(b) of interval [0, 10].

2.3.4 The Effect of Noise
Garrett (1985) found that effects of noise in the observational velocity data
complicated the prediction scheme. In the presence of noise, the acf behaved
more like R(τ ) = Ae−γ τ for τ > 0, whereA is a noise constant (R(0) is naturally
still equal to 1). To account for these effects the one-dimensional model above
needs to be expanded.

We want to obtain optimum prediction of position

x̂(t) =
N∑
n=1

αnu(−tn), (2.39)

given the acf, R(τ ) = Ae−γ τ . This leads to the set of equations

N∑
m=1

R(|tm − tn |)αm =

∫ t

0
R(t ′ + tn)dt

′, (2.40)

where the coefficients αm are functions of time.

Before the acf was assumed to be R(τ ) = e−γ τ , and the coefficients αn were
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determined to be

α1 = e−γ (t+t1),α2 = α3 = · · · = 0.

This implied that the the number of steps used for prediction did not matter.
As we will see, this is no longer the case.

In the modified acf, the measure of noise A is a constant smaller than 1 and
decreases as the noise increases. Recall that R(0) = 1, then if every tn is
separated by one time unit we obtain new coefficients expressed as

αn = Aγ−1n e−γ t1(1 − e−γ t )βn, (2.41)

corresponding to (Garrett, 1985)


1 Ae−γ Ae−2γ . . .

Ae−γ 1 Ae−γ . . .
...

...



β1
β2
...

 =

1
e−γ

...

 . (2.42)

In the limit A = 1 this corresponds to the noise-free instance, and equation
2.42 implies β1 = 1, β2 = β3 = · · · = 0. In the other limit, A → 0, we get
β1 = 1, β2 = e−γ , . . . . This case is not of interest as it means that the data
would be completely distorted by noise, and no sensible prediction would be
possible to make.

In the interval 0 < A < 1 the solution to equation 2.42 cannot be expressed as a
linear combinations of the two solutions in the limits. However, as A decreases
it is clear that the significance of weights other than α1 increases. To analyse
the effects of noise in the model it is useful to look at the mean square position
error normalized by the mean square speed. For an AFC R(τ ), the normalized
error e is

e(t) =
(x(t) − x̂(t)2

u2
= 2

∫ t

0

∫ t ′

0
R(t ′′)dt ′′dt ′ −

N∑
n=1

αn

∫ t

0
R(t ′ + tn)dt

′.

(2.43)

Accounting for the presence of noise (equations 2.41 and 2.42), this expression
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can be modified to

γ

√
e(t)

A
=

√√√
2(γt − 1 + e−γ t ) −A(1 − e−γ t )2e−γ t1

N∑
n=1

βne−γ tn. (2.44)

By introducing the noise term s the error is increased, because the trajectory
is less predictable. But it is also reduced, due to that no more than a frac-
tion A of the total variance is associated with persistent and diffusive ocean
currents(Garrett, 1985).

The optimum prediction using this scheme will only be obtained when N →∞.
Figure 2.4 is a graphical representation of the rmse for various values of N,
compared to the rmse for the perfect prediction and no prediction shown in
figure 2.3. Garrett (1985) argues that noise significantly increases the error of
the optimum prediction, but that it converges towards the limit value by the
time N is about 10. It is also suggested by Garrett (1985) that the rmse is not
significantly greater than the limiting value (at N →∞) for N = 1.

Therefore Garrett (1985) suggests to retain the one-term prediction scheme,
but one where the weight α1 is reduced using equations 2.42 and 2.41, with
parameters suitable for the noise level. Failure to reduce the weight does
not degrade the prediction seriously at low noise levels, but for high noise
levels failure to do so can lead to predictions worse than that of the random
walk.

2.3.5 Two Dimensional Model
One way to allow for modelling in two dimensional (2d) is to use complex
numbers to account for the two components of motion. We denote the complex
velocity w = u + iv, and the position z = x + iy. The prediction for 2d can be
expressed as the linear combination

ẑ(t) =
N∑
n=1

αnwn, (2.45)

where αn are complex coefficients. wn is the observed velocity in the N-th
velocity step previous to the time of the prediction, which can be denoted
wn = w(−tn).
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Figure 2.4: Plot that show the scaledrmse of the position for noisy data, from equation
2.44, as thin lines. It also includes f (γt) and f0(γt) from figure 2.3 as the
thicker lines. The rmse for the noisy data are plotted with A = 0.7 and
γ = 1

15 for three different values of N, N=1,2,10. Figure is adapted from
Garrett (1985), page 261.



2.3 STAT IST ICAL FORECAST ING OF ICEBERG DRIFT 29

We seek the complex coefficients which minimizes the mean position error.
The position error may be expressed in terms of z or in terms of x and y:

Mean position error = (z − ẑ)(z∗ − ẑ∗) = (x − x̂)2 + (y − ŷ)2,

where ’∗’ denotes the complex conjugate. To determine the complex coeffi-
cients, we obtain a set of equations (corresponding to equation 2.40) (Garrett,
1985)

N∑
m=1

W ∗(tm − tn)αm =

∫ t

0
W (t ′ + tn)dt

′, (2.46)

where

W (τ ) = R(τ ) + iC(τ ). (2.47)

with R(τ ) defined as the acf for either u or v, and C(τ ) defined as the cross-
correlation function u(t)v(t + τ ):

R(τ ) = u(t)u(t + τ ) or R(τ ) = v(t)v(t + τ )

C(τ ) = u(t)v(t + τ )

We have (in equation 2.46) assumed that the mean square speed is equal in
the two directions (u2 = v2).

Now the normalized mean square position error can be extended into 2d,
expressed as (Garrett, 1984)

e(t) =
[(x − x̂)2 + (y − ŷ)2]

2u2
= 2

∫ t

0

∫ t ′

0
R(t ′′)dt ′′dt ′−

N∑
n=1

αn

∫ t

0
W ∗(t ′−tn)dt

′.

(2.48)
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Inertial Waves
Before we try to solve equation 2.46 let us discuss an implication of the
2d extension. It allows for inclusion of inertial waves into the model. The
velocity vector of the inertialwaves rotates clockwisewith the Coriolis frequency
(Coriolis parameter), f . Note that due to the properties of the acf and the
cross-correlation function we know that:

R(τ ) = R(−τ ),

R(0) = 1,

C(−τ ) = −C(τ )

and,

C(0) = 0

This impliesC(τ ) < 0 for a small and positive τ . Now we can extend the model,
if we remember that R(0) = 1, we obtain for τ , 0 (Garrett, 1985)

W (τ ) = A1e
−γ1 |τ | +A2e

−γ2 |τ |ei f τ (2.49)

The first term in equation 2.49 accounts for the isotropic, non-rotating, low
frequency motions. While the second term accounts for the inertial wave. The
decay term e−γ2 |τ | allows for finite bandwidth and decorrelation of the inertial
waves across a time −γ−12 .

The factors A1 and A2 account for the noise level. A1 + A2 = 1 implies no
noise, while A1 +A2 < 1 implies the presence of noise (Garrett, 1985).

Solving the 2D Model
Now we move on to determining the 2d parameters. The solution to the set of
equations 2.46 may be written as (Garrett, 1985)

α = α 1 + α 2 (2.50)
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with

α 1 = A1γ
−1
1 (1 − e

−γ1t )e−γ1t1β
1

(2.51)

and

α 2 = A2(γ2 − i f )
−1[1 − e−(γ2+i f )t ] × e−(γ2+i f )t1β

2
(2.52)

The two coefficients β
1
and β

2
must for

M =


1 A

−γ1
e +A2e

−(γ2−i f ) . . .

A
−γ1
e +A2e

−(γ2+i f ) 1 . . .
...

...

 (2.53)

satisfy

Mβ
1
=


1

e−γ1
...

 (2.54)

and

Mβ
2
=


1

e(γ2+i f )

...

 (2.55)

For different values of the parameters A1, A2, γ1, γ2 and N , equations 2.54
and 2.55 are solvable for β

1
and β

2
. These solutions can be used to evaluate

the error defined in equation 2.48. It is argued by Garrett (1985) that (as
before) the rmse was not significantly reduced for N more than one, and it is
recommended to stick to the one-term prediction scheme.

Further analysis of the rmse using various values for the parameters, and
even choosing noise parameters that are slightly off from the true value of
the process in question, leads Garrett (1985) to conclude that the single-term
predictor is fairly robust.
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2.3.6 Confidence Limits
Assuming that the rmse for the position (i.e. variance) may be calculated, and
that it has some error distribution, a confidence limit for the prediction may
be acquired. The probability, P(d), of an iceberg being a distance r ′ from the
predicted position may be calculated from the assumed distribution (usually
Gaussian). Given a probability p that a circle of radius r around the predicted
position contains the iceberg we have that

∫ r

0
P(r ′)dr ′ (2.56)

And a confidence limit, for any chosen p, for the iceberg position may be
acquired by solving equation 2.56 for r .

2.3.7 An Overview of Statistical Iceberg Modelling
The statistical model presented in this chapter allows for predictions of iceberg
trajectories based on initial velocities, while also accounting for inertial oscil-
lations (assuming the process is stationary). It will at any instant provide a
predicted trajectory and, assuming isotropy, a circle about particular points of
interest where the radius is describing a particular confidence interval.

An example of a prediction is displayed in figure 2.5. In this example mean
tides and inertial waves are ignored, and a one-term predictor is used for
implementation. The predictions are made with prediction intervals of one
hour. Parameter values are chosen by Garrett (1985) based on analysis of a
data set from The Labrador shelf (off the east coast of Canada).
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Figure 2.5: Predicted drift trajectory and circles of radius equal to the rmse for
position. Initial velocity for the track was (0.0, 0.05)ms−1 with A1 = 0.7,
A2 = 0.1, γ−11 = γ

−1
2 = 15h and (u ′)2 + (v ′)2 = 0.06m2s−2 for the total

mean velocity including noise. This case use the one term predictor and a
mean flow of (0.3, 0.0)ms−1. The distance is measured in kilometres. The
figure is adapted from Garrett (1985), page 264.

Advantages in statistical models include:

• It does not call for an extensive data set when predicting the future
trajectory of an iceberg, as prediction using N > 1 does not significantly
reduce the error.

• It is robust to slight mistakes in the estimation of its parameter.

• Simplicity of implementation and calculation of the scheme.

Drawbacks in statistical models include:

• A finite decorrelation time. For any statistical prediction where the decor-
relation is finite, the error soon becomes rather large. This implies that
the model will only be reliable for short term predictions.

• For cases with relatively small mean flow, circles marking the bounds of
the confidence limits can grow upstream relative to the mean flow. This
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makes it possible for the model to increase the chances of collision with a
certain target, even after the the mean flow has carried the iceberg past
the target.



3
Data Set
This chapter will discuss the data used to run and test the OpenBerg module.
The observed iceberg tracks used in this thesis were kindly provided by Dr.
Luke Copeland. Dr. Copeland is a Professor and University Research Chair
in Glaciology of the Department of Geography, Environment and Geomatics,
at the University of Ottawa (uo). The data consisted of gps tracking data
of several icebergs which calved in the Baffin Bay during the late summer of
2016.

To produce drift forecasts using the OpenBerg dynamic model and statistical-
plus model, forcing data was needed. Current data was taken from the Regional
Ice Ocean Prediction System (riops) data set, accessed via the THREDDS-
server connected to the open source portal Ocean Navigator. The wind data
used was from from the European Reanalysis 5 (era5) data set, produced by
the European Centre for Medium-Range Weather Forecasts, accessed using the
Climate Data Interface (cdi). In addition, tidal current data was generated
for each track using the WebTide model distributed by the Bedford Institute of
Oceanography.

3.1 The 2016 Baffin Bay Data Set
The observation data provided for use in this thesis originates from nine
different icebergs drifting in Baffin Bay. The tracks were obtained utilizing

35
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deployed beaconswith Iridium-connectedRockSTARgps trackers that transmit
their position hourly. The gps beacons were deployed in the summer of 2016
and each track transmitted data over periods from a few weeks up to several
months, with some drifts of more than 1000 km. All tracks are plotted in figure
3.1.

Figure 3.1: Plot of the observed tracks for all icebergs in the Baffin Bay data set. The
end point of each track is represented by a larger marker.

In addition to the tracking data the set included extensive photos of each
iceberg. For the analysis part of this thesis a subsection of one particular track
was isolated and utilized. Figure 3.2 show a picture of the selected iceberg
which is labelled S Nares Strait.
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Figure 3.2: Image taken of the iceberg labelled SNaresStrait on the day the gps
beacon was deployed. Image courtesy: Luke Copeland uo.

Unfortunately, due to the use of helicopter to deploy the tracker it was difficult
to take images with a proper perspective to get a sense of the size of the iceberg.
The picture taken from the surface of the same iceberg is shown in figure 3.3,
helps give some perspective.

3.1.1 Observed Trajectories
The OpenBerg module was initially constructed by Ron Saper to suit data
consisting of tracks from 2012 in the vicinity of the Hibernia GBS (a large
offshore oil-platform). This data was based on surface radar tracks collected
by Provincial Air Lines, and are encoded in text files containing a series of
timestamps with associated latitudes and longitudes. The Baffin Bay data was
provided in CSV-format, which unfortunately was not a format that the module
instantly could read. However, it proved to be quite trivial to modify the data
into suitable text files using built in tools in Windows.
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Figure 3.3: Image taken from the top of the iceberg labelled S Nares Strait on the day
the gps beacon was deployed. Image courtesy: Luke Copeland uo.

3.2 The RIOPS Current Data Set
Theriops data set has been produced as a part of the Global Ocean Data Assim-
ilation Experiment (godae), an international collaboration project initiated to
provide global and regional ocean forecasting systems (GODAE, 2010).

The riops data set was utilized to account for the water velocity due to
currents not caused by the diurnal tides. After some attempts to download
the data to a local repository, it turned out to be more practical to access the
data directly from the server whenever running a prediction. This saves disk
space, and time spent downloading and formatting large files. The model still
runs quite fast (30-45 seconds for a 48 hour prediction) even when accessing
the online source. It does make the model dependent on internet access to be
operational, but this can easily be worked around by downloading the data of
interest.

The data was accessible in the netCDF-format, which was convenient as the
OpenDrift framework includes netCDF-readers. It was, however, some issues
adapt the readers to accept the polar stereographic projection used in the
riops data. With some help from the developers this problem was solved,
future versions of the OpenDrift framework will include a feature to read such
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projections. It was also necessary to modify the readers to expect the variable
names corresponding with the riops-data.

The data of interest contained in the riops data set were the u- and v-
components of the current velocity. The spatial resolution of the riops is in
the range of 4-5 km, with data for 50 different depths at each point (Dupont
et al., 2002). The step size in depth is increasing as we go deeper. There are
13 steps for the first 21 meters and within the next 10 steps the depth is 109
meters. The deepest level included is 5875 meters.

3.3 The ERA5Wind Data Set
The wind data contains forecast data for the u- and v-components of the wind
velocity 10 meters above the sea surface. The spatial resolution is 31 km, and
temporal resolution is 3 hours (Hersbach andDee, 2016). The data was provided
in GRIB-files containing data for one calendar month. Each velocity component
had to be downloaded in separate files. Conversion to netCDF-format, necessary
to fit the OpenBerg module, was done in a Linux environment using Climate
Data Operators (cdo)-utilities. The files were concatenated into a single file
containing both velocity components using netCDF Operators (nco) in a Linux
environment.

Literature on the uncertainty in era5 was hard to acquire. However, a report
by Dee et al. (2011) was available on the predecessor to the era5 system,
the European Reanalysis-Interim (era-interim) data assimilation system. In
this report, the rmse of the wind forecasts made by era-interim was in the
range from [3.7, 4.0] m/s for short term forecasts. In the analysis presented in
this thesis, we assume that the uncertainty in the era5 system is as good, or
better.

3.4 The WebTide Tidal Current Data Set
It is common in most locations that the principal lunar semi-diurnal tidal com-
ponent, also known as the M2 tidal component, is the largest tidal constituent.
Harmonic analyses of the tidal constituents in the Baffin Bay are mostly semi-
diurnal in character (Greisman et al., 1986).

Tidal forcing data due to the M2 component was acquired from the WebTide
Arctic Data, issued by the Bedford Institute of Oceanography. This model uses
sea surface height assimilation and bathymetry to estimate the tidal currents
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and heights. WebTide is issued with a graphical user interface (gui) including
a function called WebTrack, which allows tidal current data to be generated
along entire tracks for the correct times.

WebTide is limited to only provide tidal currents at a fixed depth of 50 meters.
The model has however been validated using tidal component estimation
techniques, and the M2 current component produced by WebTide was found to
be accurate to within a few cm per second (Dunphy et al., 2005, p. 19).



4
Methodology
The goal of this thesis is to analyse the performance of the module OpenBerg,
operating within the the software framework OpenDrift, for iceberg drift fore-
casting. OpenBerg is constructed with an aim to compare the performance of
a trajectory model using a statistical approach with a trajectory model using a
deterministic approach. The performance of the models will be reviewed for
forecasts of up to 48 hours.

In this chapter we will discuss the two different models implemented by
OpenBerg. The software framework OpenDrift will be discussed. And we will
also look at how OpenBerg implements the models discussed, and review some
design choices of the implementation. In addition, methods of result analysis
will be reviewed.

4.1 The Deterministic Model
The most intuitive way of describing the motion of an iceberg is in terms of
the various forces exerted on it, and many models have been developed using
the dynamic equations to predict the drift. A selection of such models has been
discussed in chapter 2.

In such approaches special care is needed when dealing with the Coriolis force,
and the force associated with the sea surface slope. Some models are designed
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to account for these effects such that even without forcing due to wind, the
iceberg moves relative to the water. This is clearly an improbable proposition,
a more accurate approach would be to derive the sea surface slope from the
equations of motion for the water (Garrett, 1985).

It is useful to consider an iceberg in an idealized situation, located in an
unsteady current but not affected by any external forces such as wind. It
appears reasonable to suggested that the iceberg will not be able to attain
the maximum speed of the water current, if such a speed duration is too
short to accelerate the iceberg up to maximum speed. Garrett (1985), however,
believes that this interpretation is based on the misconception that the iceberg
is accelerated by the water drag. And that the iceberg in such a situation is
actually accelerated by the same pressure gradients which accelerate the water
itself. Therefore the iceberg will respond in exactly the same way as the water
these gradients displace.

Garrett (1985) does point out that the water drag becomes relevant in the
presence of external forces, and a full dynamic equation such as equation
2.5 should therefore be considered. But the icebergs response to changes in
wind is relatively short (a few hours), especially in relation to the typical time
scale of significant changes in wind. Therefore Garrett (1985) believes it is
generally adequate to neglect the rate of change of the iceberg velocity relative
to the water. And in expansion also assume equilibrium between air and water
drag, the Coriolis term times the relative velocity, and possibly the wave forces
too.

These assumptions leaves a quasi-steady model, which still can be quite com-
plicated, with concerns related to shape of the iceberg and values of drag
coefficients. To avoid these complications it may be adequate to assume that
an iceberg moves downwind relative to the water at a constant fraction of the
wind speed. This fraction was discussed in section 2.3.1, and is in the Open-
Berg module set to be 2%. When creating ensembles for analysis, this fraction
was varied in order to find the model variance in relation to this and other
parameters.

The OpenBergmodule implements a deterministicmodel similar to the dynamic
model proposed by Kubat et al. (2005). This model was developed as an
integral part of an operational model to forecast the drift and deterioration of
icebergs developed by the Canadian Ice Service (cis). Motivation behind the
development of this particular model was the demand for reliable iceberg drift
forecast in the Grand Banks region off the coast of Canada, due to offshore
developments.

In the model presented by Kubat et al. (2005), the iceberg drift is modelled
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by considering the various forces acting upon the iceberg and solving the
linear momentum equation 2.5. The basic momentum equation used in this
model is defined in section 2.3 in equation 2.5. The model is built upon a
collection of models addressing dynamic drift of icebergs such as EI-Tahan et al.
(1983), Banke and Smith (1984), Murphy and Anderson (1985), and Bigg et al.
(1997).

Kubat et al. (2005) does, however, also incorporate new features such as a more
detailed environmental forcing input. Notably water drag forces are calculated
using current values for every 10 meter vertical interval. This calls for a more
detailed description of the icebergs keel geometry.

OpenBerg utilizes a deterministic reference implementation in order to avoid
the need to provide drag coefficients for wind and current. This deterministic
approach does not use a force balance equation. Wind and tidal effects are
modelled as additive components of drift. The drift due to winds is a fixed
fraction of the wind speed set to the value discussed above (2%). The iceberg
drift due to tides is modelled as equal to the velocity of the tidal current.

OpenBerg accounts for the drift due to current as a weighted average of the
current vector at different depths across the draft of the iceberg. The weighting
is based upon the cross-sectional area of each depth slice, calculated according
to the method of Barker et al. (2004).

The overall drift is the sum of wind, tidal and current drift components.

4.2 The Statistical Model
The statistical approach to modelling iceberg drift in the OpenBerg module
uses the first N hourly observations of a trajectory to estimate and extrapolate
drift. The drift is calculated as a weighted sum of these measured velocities.
The weights used in the OpenBerg module are related to the Lagrangian acf,
similar to the model presented by Garrett (1985). OpenBerg utilizes a single
term prediction scheme as suggested in section 2.4, but allows the user to
choose the time difference between the two observed points which is utilized
to estimate the trajectory. In this one-term implementation, the extrapolation
weight may be described as the slope of the predicted trajectory.

The extrapolation is implemented using a simple equation. When the N first
points in the observed trajectory are used to estimate the extrapolation param-
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eters this can be expressed as

pn = Stn + pN , (4.1)

where pn is the position at the point in time we wish to estimate, tn is the time
difference between point N and point n, and S is the slope of the projection
trajectory. The slope is the parameter the first N points are used to estimate.
The slope is estimated using the expression

S =
D

∆t
, (4.2)

where D is the distance between the first observation and observation in point
N, and ∆t is the time difference between the same points.

Figure 4.1 includes two simple sketches to illustrate how the single term
prediction extrapolates drift into the future, based on equation 4.1 and 4.2.
The difference between figure 4.1a and 4.1b show how the choice of the
parameter N effects the prediction. A longer time interval between points
makes the prediction less prone to errors due to small scale oscillations in the
trajectory.

Garrett (1985) cites the search for oil and gas in some offshore regions of Eastern
Canada as the motivation for the developing his model. The statistical approach
was used due to experiences with unpredictable low frequency currents in the
ocean. Data analysis performed by Garrett et al. (1985a) lead to the conclusion
that such low frequency currents tend to decorrelate over rather short scales
in time and space. Therefore prediction schemes for these currents based
on measurements, even quite close to a location of interest, are not reliable.
Deterministic models are sensitive to error in the input data, and a method to
avoid the problems related to unpredictable currents was needed.

Numerical prediction schemes for ocean currents based on the deterministic
approach has also been proposed (e.g. Robinson et al., 1984). However, such
a model would have to rely upon extensive input of initial values, as well as
being computationally very heavy.

A modified implementation of the statistical approach can easily be designed
such that the more predictable forcing components, such as wind or tides, are
accounted for using dynamic modelling. In OpenBerg this is accomplished by
simply subtracting the estimated drift components, due to wind and tides from
the dynamic model, before calculating the weights. Then the projection of
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(a) (b)

Figure 4.1: In both sketches the pointsmarked t0, t1, t2, t3 and t4 are observed positions.
The points marked with a red circle, are those used to estimate the slope
(speed and direction) of the green prediction trajectory. Time steps are
marked, on the predicted track, at the same frequency they occur in the
observations. The spacing between these steps are determined by the
estimated slope. Figure(a) show a sketch of an extrapolated trajectory
with N=2, which means that the first two observations is used to estimate
the slope parameter. Figure(b) show a similar sketch of an extrapolated
trajectory, where the first five observations is used to estimate the slope
parameter (N=5).

the trajectory, due to the residual forcing, is extrapolated using the statistical
method. In the end we can add the component trajectories to find the output
forecast.

4.3 OpenDrift
OpenDrift is an open source Python framework, developed by Knut-Frode
Dagestad at the Norwegian Meteorological Institute. It was created for ocean
trajectory modelling which could be used for a variety of applications, such as
oil spill modelling, search-and-rescue simulations ect. OpenDrift is modular,
and supports simulation of transport of any kind of particles e.g. icebergs
(Dagestad et al., 2017).

It was constructed to be a framework for Lagrangian particle modelling. It
is designed for flexibility, and made easy for researchers to adapt and write
modules for their specific purpose.

OpenDrift uses offline trajectory computation, meaning that the trajectories are



46 CHAPTER 4 METHODOLOGY

computed after completion of the Eulerian simulation(s). Contrary to online
computation, where the trajectory is computed along with the velocity fields as
a part of the circulation model. This is advantageous because, for many cases,
the trajectories depend on forcing from several different Eulerian models (e.g.
wind, waves and currents). Offline models are also advantageous when testing
modifications to the algorithms, because the full Eulerian model does not have
to be rerun every time (Dagestad et al., 2017).

Most trajectory models are tied to specific applications, such as oil drift or
iceberg drift, and may not be applied to other applications without compro-
mising quality or flexibility. Many models are also impractical in that they
require specific file formats, which is time consuming and effort demanding.
OpenDrift has been developed with the aim to solve these and other general
issues with trajectory models. It has been designed to create a framework
that is able to perform all tasks commonly required for trajectory models, both
oceanic and atmospheric. A central task is to obtain forcing data from various
sources, and use this data to model the trajectory of the elements in space, and
potentially also transform other element properties (such as evaporation of oil
or degradation of an iceberg).

The OpenDrift framework is constructed with a core library aiming to extract
anything common to all trajectory models of various substances and objects
in the ocean and atmosphere. Several specific modules, which are ready-to-
use trajectory models, are bundled into the OpenDrift code repository. It also
includes a clean and generic user interface allowing for selection of module, a
corresponding object or medium type, and a location and time for seeding of
the object elements (Dagestad et al., 2017).

OpenDrift includes interfaces, called readers, suited for the most common for-
mats of forcing data. This allows, if necessary, different modules to be forced
by data from combinations of files and other sources. Readers have also been
modularised, which allows any developer to create an interface towards any
specific source of forcing data suitable for their needs.

After adding the readers of input data, but before running the Eulerian simula-
tion(s), elements need to be seeded. This process accesses all data around a
given number of positions and returns arrays with the values of interest. The
flow chart in figure 4.2 gives a good description of how the OpenDrift frame-
work operates. The output from this process includes the trajectory predictions
due to all input components. OpenDrift provides the option to store this result
in netCDF-format.

The separation of the OpenDrift core functionalities and the various modules,
provides flexibility for users as existing modules are easy to modify, and new
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ones are easy to create from scratch. OpenBerg, utilized for this thesis, is one
such module.

Figure 4.2: Flowchart of an OpenDrift simulation (Dagestad et al., 2017).

4.4 OpenBerg
OpenBerg is a Python software model, developed by Ron Saper at the Water
and Ice Research Laboratory (WIRL), Carleston University, intended for compar-
ing iceberg drift forecasting approaches. It is created as a module under the
OpenDrift framework with the initial purpose to produce results comparing
statistical and deterministic iceberg drift models. The work of Christopher
Garrett was used as reference baseline for the implementation of the statistical
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iceberg drift model (Garrett, 1985; Garrett et al., 1985a,b; Garrett, 1984). And
a deterministic model based on the dynamic model presented by Kubat et al.
(2005) is used.

OpenBerg is purpose-built scientific software developed to support one par-
ticular line of research. OpenBerg is still in the development stage and does
not yet support any user interface. OpenBerg currently only runs using scripts,
and it is necessary to edit Python code in order to control which tracks are
processed, edit default parameters ect. By the developers own admission, the
module is currently not suitable for real time forecast (Saper, 2017).

As the program operates under the OpenDrift framework it utilizes the included
reader modules for the interpretation of the various data sets. OpenBerg
does not require any other data than an observed trajectory to run. However,
if the deterministic model is to be able to make predictions, it has to be
provided readers with input data containing forcing fields for the track. The
pure statistical model is able to make predictions only based on observational
data of the iceberg motions.

A great advantage in the OpenBerg module is the ease with which one can
choose prediction scheme. The default scheme when running the model is the
Garrett inspired statistical-plus model. To run the deterministic model it is only
necessary to enter an additional system argument string when running the
script from the command window. The deterministic scheme runs when either
"det" or "Det" is entered as the system argument.

The greatest advantage the OpenBerg module provides, however, is the speed at
which it makes a prediction. A complete run of the deterministic model for, a 48
hour trajectory prediction, is finished in about 30 seconds. The statistical-plus
model, which does not need to process as much input data, finish the same run
in 5-10 seconds.

OpenBerg is equippedwith a plotting function to display the observed track, the
prediction track, and any component tracks used to create the prediction. These
component tracks may be due to a single forcing source or the extrapolated
component. This function is designed to make it easy to choose which of these
tracks to include in the plot, before initializing the model. It allows the option
to display any number of these tracks in the same figure.

4.4.1 Statistical-plus and Deterministic Forecast
The OpenBerg module utilizes the OpenDrift framework to run the Eulerian
simulations. These simulations operate according to the flow chart in figure
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4.2. The OpenBerg-module is the subclass defining the calculations that are
specific to an iceberg, discussed in this chapter and in section 2.2.

The input needed for these simulations are the vector fields of the various
forcing components driving the drift, and a file containing the coordinates
of observed iceberg track. The OpenBerg module expects files containing the
velocity fields of the following forcing components:

• Currents

• Tides

• Winds

The user also needs to define amap-projection that the trajectory predictions are
projected on to. Functions to create the map are provided with OpenDrift. The
output from the Eulerian simulations are the tracks, due to the various forcing
fields, guiding the iceberg drift. Alongside the simulations, the observational
data is converted to the same projection as the trajectory components in the
output.

The outputs from the Eulerian simulations are utilized differently in the
statistical-plus and deterministic models. In the deterministic model the out-
put trajectories from this model are simply added together to form the final
prediction trajectory. The statistical-plus forecast uses the statistical modelling
principles to replace the drift component due to currents, while still including
the drift components due to wind and tides from the Eulerian simulations. This
scheme uses these outputs from the Eulerian simulations and subtracts the
contributions of wind and tidal effects from the observation data. Next it uses
the first N hourly samples to estimate and extrapolate the residual component.
Finally the wind, tide and extrapolated components are added back together
to form the final statistical-plus prediction trajectory.

To illustrate the processing of the outputs from the Eulerian simulations in a
more comprehensible fashion, figure 4.3 show different steps of the process.
Each figure includes the same observed track but the other tracks included
differ. In figure 4.3a the deterministic components due to wind only and
M2 tide only are plotted, along with the residual track. The residual is the
remaining component, after subtracting the wind and tide tracks from the
observed trajectory. The model uses the first N time steps in the residual
track to extrapolate a prediction for this component. The residual trajectory is
replaced in figure 4.3b by the extrapolation component. Then the sum of all
components in figure 4.3b is added together and plotted as the statistical-plus
prediction in figure 4.3c. Due to the first N time steps being used to extrapolate,
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we can see in the plot that the prediction does not start until step N. Figure 4.3d
shows the deterministic prediction for the same trajectory, with all components
and the final prediction plotted together.

(a) Residual component. (b) Extrapolated residual component.

(c) Statistical-plus prediction. (d) Deterministic prediction.

Figure 4.3: Figure(a) shows a plot of the modelled trajectory components due to wind
only and M2 tide only, along with the observed trajectory, labelled actual,
and the residual component. The residual component is the result from
subtracting the wind and tide components from the observed trajectory.
Figure (b) shows the same trajectories as in (a), but the residual has been
replaced by an extrapolated component, labelled extrapolation. The first
N steps in the residual from (a) is used to extrapolate the component in
(b), therefore the first N steps in these components are equal in (a) and
(b). Figure (c) shows the statistical-plus forecast together with the actual
track. In this plot the stat-plus component is equal to the sum of the wind,
tide and extrapolated components. Figure (d) shows the corresponding
forecast using the deterministic model. All components are the same, but
the extrapolated component is replaced by the current only component.
The predicted trajectory, labelled predicted, is the sum of wind, tide and
current components.

In the current version of OpenBerg, only the observed trajectory is required as
input. It is possible to run the model with input data for just one or two, or
even none of the forcing fields. In this case, the model will assign the default
value of zero to the entire missing forcing field. As a result, the plus-function
will be turned off and the model prediction will be purely statistical.Hence, the
trajectory forecast is created by extrapolating the entire track. The deterministic
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model, on the other hand, will not be able to make any predictions without
any input forcing fields provided.

4.4.2 Updates by the Author
For the purpose of this thesis, some updates were necessary to customize the
module to the data. Some changes were made to make the module faster and
more practical for certain applications. For the purpose of the result analysis,
presented in chapter 5, it has also been added a few new functions to the
OpenBerg module. The following updates was made:

• The software is at the moment still of limited flexibility when it comes
to input formats. The readers provided with the OpenDrift framework
expected different variable names to those in the data sets used for this
thesis. To adapt the module to the format, some modifications of the
OpenDrift readers, utilized by OpenBerg, were required. The problem
was solved by changing the name expected by the readers.

• It was necessary to hard code an addition into the netCDF-reader module
for it to correctly interpret the map projection used in the files con-
taining the forcing data for currents. This data was stored on a polar
stereographic projection. Originally OpenBerg was only able to read a
longitude/latitude-grid projection.

• The version of OpenBerg, made available for this thesis, required that
forcing data due to currents was provided. This requirementwas removed
because this data is not utilized in the statistical-plus prediction, and
including it slowed down the run time considerably. In addition, this
dependency is impractical if such data is unavailable and one only wishes
to use the statistical-plus model.

• The prediction scheme was updated to include an option to adjust the
strength and direction of the trajectory components due to both currents
and winds. This was done to be able to perform an ensemble analysis.
The adjustments were made using simple geometry, explained in more
detail in section 4.4.3.

• A new function which calculates and plots the deviation of the predic-
tion from the observed path, was added to the OpenBerg module. This
function can also be utilized to store these values in text files for fur-
ther analysis. To calculate the distance between the two tracks at each
point the function uses the Haversine-formula. This formula calculates
the distance between two points on the surface of the Earth, using the
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longitude/latitude coordinates. A rendering of the Haversine formula is
showed in equations 4.3 through 4.6 (Rick, 1999):

dlon = lon2 − lon1,

dlat = lat2 − lat1,
(4.3)

a =
(
sin

(dlat
2

))2
+ cos(lat1) · cos(lat2) ·

(
sin

(dlon
2

))2
, (4.4)

c = 2 · arctan

( √
a√

(1 − a)

)
, (4.5)

d = R · c, (4.6)

where d is the distance between points p1 = (lon1, lat1) and p2 =
(lon2, lat2), and R is the radius of the Earth.

• Another function was built to plot the position of a single point of the
actual track relative to the position of the same point in the prediction.
This function is utilized to comment on the presence of a systemic error
in the model.

4.4.3 Analysis
To assess the performance of the model the original intention was to perform
an ensemble analysis of both the deterministic model and the statistical-plus
model. The aim was to determine the distribution of the predictions based on
the sensitivity to parameters and input forcing fields. However, the results from
the deterministic model proved to be so poor that this plan was changed and
the ensemble analysis was only preformed on the statistical-plus model.

The analysis of the deterministic model was reduced to a study of the sensitivity
to the size parameter. The reasons for choosing this method and the results
from the analysis is further discussed in chapter 5.

Ensemble analysis is utilized to determine the distribution parameters for the
predictions made by a model. Before the analysis can be performed, a reason-
able range must be determined within which the forcing fields (or parameters)
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are allowed to operate. Then an ensemble of predictions is produced where
these forcing fields are allowed to operate within the chosen range.

When an ensemble has been created, the distribution of the predictions can be
evaluated, and ensemble parameters can be estimated. Important parameters
to estimate is the variance and the sd. The mean error in the ensemble can
also be estimated. However, in the analysis this thesis performs, it makes more
sense that the error in the original prediction trajectory is assumed to be the
mean (as this is the basis for the ensemble).

To analyse the OpenBerg module, a small section of one of the tracks from the
Baffin Bay data set was chosen for testing. The same track section was used
to analyse both the deterministic and the statistical-plus model. To evaluate
the effect of uncertainty in the wind data, the direction and power of this
forcing component was manipulated to create ensembles. Different ensembles
were created for different values of N (the number of observations used to
extrapolate the residual component). A random number generator was used
to produce adjustment angles in a given range. The same generator was used
to produce factors (in a different range) which adjusted the strength of the
forcing field.

The method used to adjust the trajectories is based on simple geometry. Each
point in a trajectory can be described by a position vector relative to the
starting point of the trajectory, r = (x ,y). After adjusting the trajectories each
new position vector is described by a new set of coordinates, r̂ = (x̂ , ŷ). For each
position vector in a trajectory, the magnitude was calculated using Pythagoras
theorem

|r| =
√
x2 + y2. (4.7)

The angle of the vector θ , was calculated

θ = arctan(
y

x
). (4.8)

Then the magnitude was adjusted by a factor p, provided by the random
number generator

|r̂| = p |r|, (4.9)
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where r̂ denotes the adjusted vector. The angle was adjusted by an adjustment
angle ∆θ , provided by the random number generator

θ̂ = θ + ∆θ (4.10)

where θ̂ denotes the adjusted angle. Finally, the new vector coordinates are
calculated

x̂ = |r̂|cos(θ̂ )

ŷ = |r̂|sin(θ̂ )
(4.11)

Figure 4.4a shows a sketch of the adjusted position vector looks relative to
the original vector for a single point. In figure 4.4b an example is plotted
showing how an entire trajectory looks after adjustment, relative to the original
track.

(a) (b)

Figure 4.4: (a) is a sketch of a single position vector before and after it is adjusted
according to equations 4.7 through 4.11. (b) displays an example plot of
how an entire trajectory looks, relative to the original track, after adjusting
the coordinates in all points. The track labelled current only is the original,
and the one labelled new current is the adjusted track. The value of the
parameters used is p = 1.5 and ∆θ = 45◦.



5
Results and Discussion
This chapter will include results and discuss the performance of the OpenBerg
module. Predictions using the pure statistical scheme, the deterministic scheme,
and the statistical-plus scheme will be presented.

The discussions regarding the statistical model will be limited and does not
include an extensive performance analysis. These results are included in order
to show the reader how this component of themodelworks, and show the results
from this scheme. The results and discussions about the prediction capabilities
of the deterministic and statistical-plus schemes are discussed more thoroughly.
The analysis is performed based on a sensitivity study on the deterministic
model and an ensemble analysis on the statistical-plus model.

5.1 A Consideration of Track Selection and
Choice of Analysis Method

All the tracks from the Baffin Bay data set are plotted in figure 3.1. As evident
from the plot, the length of each path varies considerably. Some of the tracks
appeared to be grounded for extended periods and were therefore useless
for testing of the OpenBerg model. There were, however, extended periods
available for several tracks. A small section of the track labelled SNaresStrait
was selected for the main part of the analysis.

55
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The SNaresStrait track is plotted in figure 5.1. The movements of this particular
iceberg were recorded from August 17 2016 until December 12 of the same year.
The following analysis aims to assess the short term prediction capability of
OpenBerg. Therefore only a 48 hour window from this track is selected for
analysis, from 2016-09-21 at 15:00 to 2016-09-23 15:00.

Figure 5.1: Plot of the observed track of the iceberg labelled SNaresStrait, from the
Baffin Bay data set. The end point of the track is represented by a larger
marker. The section of the track used for analysis is marked with a black
box.

The initial intention was to adjust forcing due to wind and currents in order
to create ensembles to analyse the performance of the deterministic model.
However, the accuracy of the prediction output from this model turned out to be
so poor that there was no value in such an analysis. Therefore the performance
analysis of the deterministic model was limited to a sensitivity study of the
parameter describing the size of the iceberg. The reasoning behind limiting
the analysis is further discussed in the following sections.

The results from the statistical-plus model provided a more accurate prediction
relative to the observed gps-track, compared to the deterministic model. En-
sembles were created for this model by adjusting the power and the direction of
the wind component. Three ensembles were created using different number of
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observations, N, for extrapolation of the residual component. The tidal compo-
nent was not analysed using ensembles due to the well documented accuracy of
the prediction systems of this component (Greisman et al., 1986). In addition to
the expected accuracy of the tide component, its contribution to the projected
drift is relatively small compared to the other forcing components.

To be able to compare the prediction from the two models, the prediction has
to start at the same point. The statistical-plus model uses N hourly observations
preceding 15:00 2016-09-21 to extrapolate the predicted track. Therefore these
N-1 extra steps are included in the output trajectory plots from the statistical
and statistical-plus prediction schemes. If N=2 one extra point is included, if
N=10 nine extra points is included in the plot. Note that in figures displaying
outputs from the statistical and statistical-plus models, the prediction trajectory
is equal to the observed track for the first N steps in the plots. However, every
output displayed starts the prediction into the future at the same point in time
and predicts a 48 hour track. This mean that the time at the endpoint in all
plots is 2016-09-23 15:00.

5.2 The Statistical Model
In this section some results from testing the pure statistical model is presented.
The intention is to show how the techniques described in sections 2.3 and
4.2 performs in the version implemented in OpenBerg. No extensive analysis
of this model is attempted, as it is not able to account for variable forcing
conditions.

5.2.1 Prediction Output
The statistical predictions are made by running the statistical-plus model
without input forcing fields. Without forcing data provided as input to the
statistical-plus model, the extrapolated component is equal to the (entire)
prediction. The plots of the output from the statistical predictions includes
these two tracks labelled extrapolation and stat plus. Both these tracks are
included in order to make the plots more comparable to the statistical-plus plots
presented in upcoming sections. When the statistical-plus model is provided
with forcing data, these two trajectories will differ from each other. In addition,
the observed trajectory is also included in all plots.

In figure 5.2 we see the statistical prediction on the chosen track segment using
only two points (N=2) to extrapolate into the future. It appears that in this
short time span the extrapolated trajectory was able to predict the direction
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of the future drift quite well, but the length of the iceberg track is not quite
accurate. The error in the endpoint of this predicted track is 21.87km.

Figure 5.2: Plot of a statistical-plus prediction done without input forcing fields, for
the SNaresStrait iceberg with N=2. Included (in the plot) is the observed
trajectory, labelled actual, the drift forecast using the statistical-plus model,
labelled stat plus, and the extrapolated track, labelled extrapolation. As
no forcing data is provided as input the prediction is purely statistical.
Therefore, the statistical-plus prediction and the extrapolated track are
the same.

In figure 5.3 we see the same plot as in figure 5.2 but using six points (N=6) to
extrapolate into the future. In figure 5.3 both the direction and magnitude of
the predicted track is different from 5.2. The direction is not as accurate in the
new prediction, but the length of the track is more precise. The error in the
endpoint of the predicted track when N=6 is 15.11km.

In figure 5.3 it is also clearer to see that the start of the prediction is delayed by
N points, as the prediction track and the other tracks plotted are the same for
the first N points. Please note that prediction time is set such that the actual
prediction starts at the same point in both these plots and all other results
presented in this chapter.

In figure 5.4 we again see the track section as in figures 5.2 and 5.3, but now for
a statistical prediction with N=10. Again we see a change in the direction, and
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Figure 5.3: As figure 5.2, but with N=6.

a change in magnitude of the predicted track. This prediction is actually very
accurate, and follow the observed track closely along the whole track. And in
the end point the error is only 3.71km.

5.2.2 Discussion
The results presented in figure 5.4 looks promising, with a very accurate
prediction. But the problem with the pure statistical prediction model, is that
the one term prediction scheme is not able to account for oscillations that
may occur in the actual trajectory (within the period used to estimate the
extrapolation weight). Such a model is very sensitive to outliers in the sampled
observations, and it has no ability to predict the oscillating components of the
drift.

The result in figure 5.2 is quite lucky, in the sense that the direction was
accurate. It could just as easily suffer from a bad sample such as in the example
sketch in figure 4.1a. The distance between the first two points, used for
this extrapolation, obviously did not give a good representation of the future
velocity of the iceberg. This caused the error to eventually be quite significant,
even with the accurate representation of the direction.
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Figure 5.4: As figure 5.2 and 5.3, but with N=10.

The following two test runs presented in figures 5.3 and 5.4 showhow increasing
the time interval between the samples decreases the vulnerability to outliers.
The error decreases when N increases. A problem with just increasing N, is that
eventually the correlation between observations will be lost and the predictions
will not be of any value. Also, how large N should be is not obvious and depends
on what scale small oscillations in the track takes place, in both space and
time. These scales will be different for different tracks, and different track
sections.

A way to account for these oscillations and be able to use the statistical method
on a track where the oscillations are accounted for is to introduce the statistical-
plus model. By introducing some predictable forcing components, the statical
part of the modelling is required to account for less variation. Thereby it should
be less vulnerable to outliers in the sampling. A more detailed analysis of the
statistical-plus model is discussed in section 5.4, but first an analysis of the
deterministic model.
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5.3 The Deterministic Model
Results from the testing of the deterministic model is presented and discussed in
this section. First the output from the model applied to the chosen track section
is presented and commented on, then a sensitivity study of the iceberg-size
parameter is performed and discussed.

5.3.1 Prediction Output
The output from the deterministic model includes a predicted trajectory for
the iceberg along with separate predicted trajectories for every forcing compo-
nent.

The predicted trajectory using the deterministic model including all forcing
components yields the output plotted in figure 5.5. The black trajectory in
the plot, labelled actual, is the observed trajectory. All predicted tracks due to
individual forcing components (wind, tides and currents) are also plotted, with
labels wind only, M2 tide only and current only. The yellow trajectory labelled
predicted is the sum of all the forcing components, and is the outputted drift
forecast from the deterministic model.

Note that it is not possible to see the M2 tide only trajectory (the component
due to tidal effects), because it is covered by the other tracks. This is because
the track due to tides on its own only causes relatively small motions. The
estimated trajectory due to tides only causes the iceberg to oscillate about the
starting point. The tidal track is plotted together with the observed track in
figure 5.6 to illustrate this. The plot display the same track component as in
5.5, just slightly zoomed in.

From visual inspection of the result plotted in figure 5.5, it is obvious that
the prediction is not good as it deviates a lot from the observed track. The
prediction in the end point of the trajectory is off by 39.7 km. However, the
major issue is that the predicted trajectory moves in the opposite direction
of the observed track. Inspecting the various component trajectories, both
the current and wind trajectory components appears to be contributing to a
prediction that is moving in the wrong direction.
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Figure 5.5: Plot of observed trajectory, labelled actual, along with the drift forecast
using the deterministic model, for the iceberg labelled SNaresStrait. The
predicted trajectory is themodel prediction, and equals the sum of projected
trajectories due to tides, winds and currents. The individual component
trajectories are also included in the plot. The track labelled current only
is the component due to the current forcing field. The track labelled
wind only is the component due to the wind forcing field. The tidal forcing
component is labelledM2 tide only, however, it is relatively small compared
to the other trajectories plotted an is therefore not visible.

Figure 5.6: This is the same plot as in figure 5.5, but zoomed in and including only
the actual track and the trajectory component due to M2 tide only.

5.3.2 A Sensitivity Study
Due to the poor initial results from the deterministic model the decision was
made to perform a sensitivity study on the chosen parameter of iceberg size.
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This is a parameter which should be important to the response of the drift due
to current forcing, and it is interesting to see if varying the size of the iceberg
changes the predicted iceberg trajectory significantly.

The OpenBerg module models composite icebergs calculating size and shapes
based on equation 2.19, using the parameters listed in table 2.1. However, the
current version of OpenBerg is simplified such that it only has the option to
choose between four different sizes: SM, MED, LG and VLG. In table 5.1 the
waterline lengths and keel depths corresponding to the different size labels are
listed. This rigid implementation is practical if the model is to be applied to an
iceberg where the exact measure of the waterline length is uncertain. And it
makes a parameter sensitivity study even more relevant.

Table 5.1: Corresponding waterline lengths (L) and keel depths to the different size
options available in the OpenBerg module. L is inserted into equation 2.19
using parameter values from table 2.1 to create composite icebergs.

Size Label Waterline Length (L) Keel Depth
’SM’ 37.5 m 30 m
’MED’ 90.5 m 60 m
’LG’ 160.5 m 110 m
’VLG’ 277.5 m 200 m

The same track section as displayed in figures 5.5 through 5.9 was used for the
sensitivity analysis. The size class used to make the prediction trajectory in
figure 5.5 was LG. In figure 5.7 the observed track for the same track section
is plotted along with the predictions using all size classes. The difference we
observe between the different predictions is noticeable, but compared to the
actual error in the model it is insignificant. Clearly it not this parameter that is
the main source of error in the predictions.

It could be argued, from looking at the photographs in 3.2 and 3.3 that the
measurements of the SNaresStrait-iceberg corresponds better to size class
VLG than to LG. However, changing from LG to VLG only reduces the error
in the model from 39.7 km to 37.8 km. It is evident that this parameter
mainly contributes to the magnitude of the current component, the error in
the direction of the prediction is still just as significant.
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If it is assumed that more accurate forcing data is provided this analysis would
be a lot more interesting, as it clearly is a response in the predictions to this
parameter.

Figure 5.7: Plot of the sensitivity test to the size parameter. The black trajectory is the
observed drift path, while the other tracks are the predicted trajectories
for the various sizes available in the model. All forcing components are
included. The only difference, between the various predicted trajectories,
is that the iceberg size parameter is changed. The end point of each of the
prediction tracks are marked with a ×-marker.

5.3.3 Discussion
It could be argued that the other forcing components may be significant sources
of error as well, but it is very clear that the current component is not accu-
rate. In the following section we will see that we obtain a much improved
result using the statistical-plus model. The statistical-plus scheme replaces the
current component from the deterministic model by an extrapolated residual
component. The combination of these results points towards the current com-
ponent being the principal source of error in the deterministic output. This
aligns with the proposed need to develop methods which does not rely upon
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current forecasts as input for iceberg trajectory forecasting, which is discussed
in previous chapters.

It was of interest to see how much of an adjustment to the current component
was necessary to produce a prediction close to the observation. The current
component was manipulated and played with, while holding the other forc-
ing components constant, in order to find a good prediction. Eventually, by
adjusting both direction and power of the current forcing, the result in fig 5.8
was produced. The angle of the forcing was adjusted 162.5◦ clockwise and
the length of the component increased by a factor of 2.35. The error is forced
down to below 1 km in the end point of this manufactured prediction. The new
prediction trajectory actually follows the observed track quite close along every
step of the prediction.

Comparing the adjusted new current component to the original, unmanipulated,
component current only in figure 5.8 is disconcerting. It is clear that the
input forcing data for this point in time and space is not only inaccurate, but
completely wrong.

Any further analysis of the deterministic model was abandoned due to the
result from the initial test run and the sensitivity study. Combined with the
comparison to the statisticalmodel it was concluded that the error in the current
data was to great to produce any meaningful results using the deterministic
prediction scheme.

5.4 The Statistical-Plus Model
Results from the testing of the statistical-plus model is presented and discussed
in this section. First the output from the model applied to the chosen track is
presented and commented, then an ensemble analysis is performed where the
wind forcing field is adjusted to create the ensembles. To make the results in
this section comparable to the results using the statistical and deterministic
schemes, the analysis in this section is of the same track section that was used
in previous sections.

5.4.1 Prediction Output
The output from the statistical-plus scheme is in essence a made up of a com-
bination of the statistical model and the deterministic model. Each predicted
trajectory is made up of the same components as the deterministic output, but
with the current component replaced by an extrapolated residual component.
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Figure 5.8: Plot of the best result produced by adjusting the current forcing. Included
in the plot is the observed drift path in black, labelled actual, the original
current only track in blue, and the adjusted new current track in red. The
new current track equals the current only trackwith the power increased by
a factor of 2.35, and the angle adjusted by 162.5◦. The adjusted prediction
is included as the yellow predicted track, it is the sum of the new current
track, the tide only track and the wind only track. The tide and wind
components are the same as in 5.5.

This component is estimated in the same way as in the statistical model, but
after first subtracting the wind and tidal components from the observed track.
The first N observations in this residual track is used to extrapolate this com-
ponent into the future. If this description is unclear, a look at figure 4.3 may
be helpful.

The prediction from the statistical-plus model is plotted in figure 5.9. This
outputwas produced using the same input data as in the results presented in the
previous sections. In the presented result, N=6 time steps are used to estimate
the residual component. This component is plotted as the purple trajectory
labelled extrapolation in figure 5.9. Also plotted is the model prediction labelled
stat plus, the observed track labelled actual, and the wind component labelled
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wind only. The tidal component is excluded from the plot because it is to small
to see, but it is included in the prediction trajectory.

Figure 5.9: Plot of observed trajectory, labelled actual, along with the drift forecast
for the iceberg labelled SNaresStrait. This result was produced using the
statistical-plus scheme, with N=6. The track labelled extrapolation is the
extrapolated residual component. The track labelled wind only is the
projected component due to the wind forcing field. The stat plus trajectory
is the model prediction, it equals the sum of projected trajectories due to
tides and winds as well as the extrapolated component. The tidal forcing
component (which is the same as in figure 5.5) is not displayed in this
plot, but it is included in the stat plus trajectory.

In comparison to the deterministic forecast in figure 5.5, the prediction from the
statistical-plus model in figure 5.9 appears to be much better. The direction of
the predicted trajectory is significantly closer to the actual track. It is, however,
still off by 22.3 km in the final step of the prediction. This error is significant
considering that the iceberg only travelled 21.9 km in total, according to the
gps-data.

The deviation curves for the predictions in figures 5.9 and 5.5 are plotted in
figure 5.10. We can read from those plots that the deviation is smaller for
more or less every time step in the statistical-plus prediction, compared to the
deterministic prediction.



68 CHAPTER 5 RESULTS AND DISCUSS ION

(a) Deterministic

(b) Statisical-plus

Figure 5.10: Distance from the prediction to the observation. (a) is the plot for the
deterministic prediction displayed in 5.5, and (b) is the plot for the
statistical-plus prediction displayed in figure 5.9. The x-axis is the time
passed in hours, and the y-axis is the distance from the observed position
to the predicted position at the corresponding time. Note that the N=6
points used for extrapolation is included in figure (b).
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5.4.2 Ensemble Analysis
In order to analyse the performance of the statistical-plus model, an ensemble
analysis was performed. The aim was to determine the distribution of the pre-
dictions based on the sensitivity to parameters and input forcing fields.

The most important parameter choice in the statistical-plus scheme is the
fraction of the wind speed at which the iceberg moves. There is also some
uncertainty related to the accuracy of both the direction and power in the wind
forcing data set. As mentioned above, the forcing due to tides was not analysed
using ensembles. This was due to their relatively small contribution to the drift
prediction, and the accuracy of existing tide models.

The wind speed fraction is the fraction of the wind speed at which the iceberg is
displaced. The default value of this parameter in the OpenBerg module is 0.02,
chosen based on previous studies and other models (e.g. Smith, 1993; Bigg
et al., 1997). Inaccuracies in the magnitude of the predicted wind component
could be caused by this wind fraction parameter being wrong. However, it might
also be caused by errors in the forcing field of the wind data. It is difficult to
determine which of these is the main source of any uncertainty and no attempt
has been made to separate them. And the parameter and forcing field are
evaluated as one common source of uncertainty in the ensemble analysis. The
direction of the forcing field in the wind data may also be a source of error,
and is included in the analysis.

To account for all the possible uncertainties in the drift forecast, related to the
wind forcing, the wind trajectory was adjusted to create ensembles. The ranges
of the parameters used to adjust the wind trajectory was chosen based on the
prior knowledge about the uncertainty in the data set, discussed in section 3.3.
The magnitude of the wind vectors in the era5 data set, along the track used
for analysis, was in the range [3.0,9.0] m/s. With the rmse reported by Dee
et al. (2011) (∼ 4.0 m/s), we get a range with uncertainty: [3.0 ± 4,9.0 ± 4]
m/s.

The power of the wind forcing was adjusted by multiplying the length of the
position vector (relative to the starting point) at each point in the wind track
by a power factor. The power factor was defined to be in the range [0.25,2],
which based on the prior knowledge was considered to account for the wind
speed uncertainty in the era5 data set. These factors were produced by a
random number generator producing numbers from a uniform distribution in
the given range.

No literature was found on the accuracy in the direction of the wind forecasts.
Therefore, to be sure that the ensemble accounted for the uncertainty in
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the direction of the wind, a wide range was used for this parameter in the
ensemble. The trajectory was adjusted by angles in the range [-45◦,45◦]. The
same uniform number generator that was used to produce the power factor
was used to provide the the angle values (but in the different range).

Note that for each time the wind is adjusted, a new residual track is estimated.
This mean that a change in wind forcing causes a corresponding change in
the extrapolated component. The results show that the effect on the prediction
reducing the magnitude of the wind component, was a shortening of the
projected iceberg track. Figure 5.11 shows a plot to illustrate this (the plots are
taken from one of the ensembles). More details on how the ensembles were
produces can be found in section 4.4.3.

(a) Original (b) Wind adjusted

Figure 5.11: Plots from the statistical-plus model displayed to illustrate the effect of
reducing the magnitude of the wind component. Included in each figure
is the observed track, labelled actual, the wind component, labelled wind
only, and the statistical-plus prediction, labelled stat plus. (a) show the
original prediction with no adjustment of the wind track. (b) show a
prediction (taken from the ensemble) where the length of the wind track
has been reduced by a factor of 0.52 (the direction of the wind was also
adjusted by 0.85◦).

Three different ensembles were created, each using a different number of
previous observations (N) to extrapolate the residual component. All sets
included 100 different predictions. One set was made with N=2, one with N=6
and one with N=10. In figure 5.12 the entire ensemble of predictions with N=6
are plotted along with the observed trajectory. The predictions in this plot are
distributed around the stat plus trajectory that is plotted in figure 5.9.

The same plot as figure 5.12, corresponding to the ensembles with N=2 and
N=10, is displayed in appendix B.
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Figure 5.12: In this figure the entire ensemble of predictions (using N=6 points to
extrapolate the residual) is plotted. The black trajectories are the pre-
dictions in the ensemble, while the observed trajectory is displayed in
red.

Results
For each individual prediction the deviation from the observation was cal-
culated. This data was used to estimate the variance at each point in the
ensembles. In addition it was for each of the ensembles created a scatter plot
like the one displayed in figure 5.13. This is a plot of the coordinates of the
end points for all prediction trajectories in the ensemble for N=6 relative to
the coordinates of the observed position in the same time step. This plot was
created to visualizes the distribution of the ensemble relative to the actual
observation.

If the prediction had been equal to the observed position, the distribution of
predictions in figure 5.13 would be around the observed position. In our case,
however, we see that all the predicted points are to the west/north-west of the
observation. The clustering of the ensemble, in an area which does not include
the observed position, suggests that there is either some systemic error in the
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Figure 5.13: This figure display a scatter plot of the end point coordinates of the
predictions, in the ensemble createdwith N=6, relative to the coordinates
of the observed position.

model or in how the ensemble is designed. This error is not accounted for
within the wind forcing uncertainty range allowed for in the ensemble. Also
the other ensembles, with different N, indicates the same type of error. Plots
of results from the other ensembles is displayed in appendix B.

The ensembles are used to estimate distribution parameters for the predic-
tions. The most important among them is the sd, as this is used to determine
confidence limits for the prediction. If we assume that the predictions in the
ensemble are Gaussian, a model is generally not considered to be making
predictions within a reasonable error range if the mean error is larger than
2sd. This distance corresponds to a confidence limit of approximately 95% for
a Gaussian distribution. Ideally, most predictions should be well within this
boundary if the model is to be considered operational.

The error mean and the sd for a selection time steps along the track in each
of the three ensembles are listed in tables 5.2 and 5.3. From table 5.2 it is clear
that the error is significantly reduced when increasing the number of points
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used for extrapolate from 2 to 6. The error is further reduced by increasing the
number of points from 6 to 10, but not at the same rate as from 2 to 6.

Table 5.2: This table contain themean error at certain time steps within each ensemble.
The error is measured as the deviation of the predicted trajectory from the
observation. Only every 7th time step is included to represent each ensemble.
Each ensemble is labelled by the number of points used to extrapolate the
residual component.

Time since start N=2 N=6 N=10
7 hours 5.637 2.795 3.144
14 hours 12.405 5.82 5.892
21 hours 19.312 8.576 7.538
28 hours 25.52 11.353 9.93
35 hours 35.775 18.267 16.093
42 hours 37.554 17.04 15.02
48 hours 41.965 18.994 16.334

Table 5.3: This table contain the standard deviation within each ensemble at certain
time steps, the unit is kilometres. These values are estimated using the
deviation from the observed position for each time step. Only every 7th
time step is included to represent each ensemble. Each ensemble is labelled
by the number of points used to extrapolate the residual component.

Time since start N=2 N=6 N=10
7 hours 0.669 0.991 1.043
14 hours 1.341 1.361 1.232
21 hours 2.834 2.139 1.516
28 hours 4.889 3.781 3.154
35 hours 6.967 5.318 4.704
42 hours 9.395 7.466 6.877
48 hours 10.874 8.508 8.001

Figure 5.14 displays a plot including a confidence boundary around some of
the points along the predicted trajectory. The radius of the boundary around
each point is 2sd, for the corresponding sd at each time step. The sd-value
used in the plot is the estimated value based on the ensemble analysis. This
plot visualizes what the results above also indicates; there is an error in the
model which is not accounted for within the wind-field variation allowed for
in the ensemble.

Due to the poor results displayed in figure 5.14 the confidence boundary
was increased to 3sd and a plot was created to see if this limit contained
the observed position. This limit is corresponding to a confidence limit of
approximately 99.7%. This limit is so close to 100% that if the observed
position is not within this boundary, the prediction is almost worthless. In
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Figure 5.14: This figure display a prediction output from the statistical-plus model
with N=6, labelled Stat plus. The observed track is included, labelled
Actual. In addition a confidence boundary with a radius of 2sd is plotted
around some of the points along the track. Each of these points is marked
with a color coded ×-marker. The point on the observed trajectory for
each corresponding time step is marked with a diamond marker of the
same color. As is evident from the plot, the sd increases with time. The
confidence boundaries are shaped like ellipses because themap projection
warps the relative dimensions in x- and y-direction on the plot.

figure 5.15 both of the confidence boundaries are plotted around the endpoint
in the prediction (just one point is included to make the plot easy to interpret).
We can see that the prediction is within the 3sd boundary. This is a positive
result and it shows that the model makes a prediction of some worth. A broader
analysis of its performance could prove the prediction on this particular track
section to be an outlier.

The result from the ensemble using N=10 is slightly improved compared to
the one in figure 5.14. However, result from the ensemble using N=2 is much
worse, and the observed prediction is not within the 3sd boundary. The result
from all three ensembles indicate the same error type.
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Figure 5.15: This figure display a prediction output from the statistical-plus model
with N=6, labelled Stat plus. The observed track is included, labelled
Actual. In addition the confidence boundaries with radius of 2sd and
3sd are plotted around the endpoint. The endpoints in the observed
and predicted tracks are marked with a black ×-marker. The confidence
boundaries are shaped like ellipses because the map projection warps
the relative dimensions in x- and y-direction on the plot.

Figures for all ensembles are included in appendix B.

5.4.3 Discussion
It is interesting to note that the error at the end point in the original prediction
trajectory was actually slightly higher than the ensemble error mean in all
three ensembles. The error of the original prediction in the end points were
45.3km for N=2, 22.3km for N=6, and 19.9km for N=10. This suggests that the
distribution of the predictions within each ensemble is not entirely Gaussian.
It is distributed this way due to the method used to create the ensembles,
particularly the number generation. The generator used produced numbers in
a uniform (not a Gaussian) range.
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Nevertheless, the confidence plot in figure 5.14 is considered to give a com-
prehensible representation of the model accuracy. We may assume that the
model predictions in general are Gaussian, and interpret the results in light of
this assumption. The sd from the non-Gaussian ensembles is after all just an
estimation in a preliminary study.

The results from the ensemble analysis indicate a systemic error in the statistical-
plus predictions. The predicted positions are more than 2sd from the observed
position for most points along the track. The only points in the predicted
trajectory close enough to be within the 2sd boundary are within 10 hours of
the starting point. On this time scale the spatial displacement is on a relatively
small scale, and correlation with the motion used to extrapolate has not yet
been deprecated much. It is therefore to be expected that predictions are more
accurate on this time scale.

The increased boundary displayed in 5.15 show that the prediction is within
3sd of the observation. This mean that it is not entirely improbable that
the variation allowed for in the wind component accounts for the error in the
prediction. If the output from this test run is an outlier. compared to an average
prediction, the model may perform on a level which is suitable for operational
use. However, a larger study including more test tracks must performed to
draw such a conclusion.

Another notable result is that the error is halved by increasing N from 2 to 6,
and further decreased increasing N to 10. This suggest that a larger interval
between the points used for extrapolation is able to represent future drift more
accurately. It is not possible to increase this interval indefinitely, as the forcing
conditions surrounding the iceberg changes in time. It is also relative to each
trajectory on what kind of time scales small changes in the direction happens,
which would determine the ideal interval between the points.

It is clear for this result that the 1 hour interval (N=2) is not sufficient to repre-
sent the future drift (of this particular track). Both sets of results using longer
intervals indicates that longer intervals are preferable. In many operational set-
tings it is reasonable to expect the number of previous observations to be quite
low. Therefore, it is not necessarily possible to choose the interval between
the observations (like we were able to during these test runs). However, these
results show the best accuracy when the interval between observations is 9
hours (N=10). Shorter intervals appears to be more vulnerable to small scale
oscillations in the trajectory. The test runs did not include the use of intervals
larger than 9 hours, and it can therefore not be commented on modelling using
larger intervals than this.

The statistical-plus model is designed to have short term prediction capabilities.
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Predictions extending longer into the future eventually loses the correlation
to the initial observations. It is not reasonable to expect accurate forecasts on
much longer time scales than 48 hours, which is why this was used as a limit
for the test runs included in this analysis. Similar analysis could be extended to
larger time scales, but the confidence boundaries on a prediction on such time
scales would be huge and of limited value in any operational setting.

This ensemble analysis points to errors in either the model or the input data.
For a model performing better (i.e. the observed position is well within the
2sd boundary estimated from the ensembles), we would be able to estimate
the uncertainty in the model using the same kind of analysis.

This study is limited to a single track, and an extended research is necessary
to draw strong conclusions about the model performance. Nevertheless, the
general idea of using an ensemble for exploring forecast uncertainty is sound.
To the author’s knowledge, this is the first time ensembles has been used to
analyse an iceberg drift model, and further research is worthwhile.





6
Conclusion
The motivation for the research presented in this thesis was the need to develop
tools to accurately predict iceberg drift, due to the hazards they represent for
offshore activities and shipping. A model with a known uncertainty range
would be very useful for operational applications.

The dissertation started by reviewing several approaches to iceberg drift mod-
elling. The physical principles and dynamic equations governing iceberg drift
were presented, and the theory on which statistical modelling is built was
discussed. Further, the computer module OpenBerg implementing two ice-
berg drift models were introduced. It implements one deterministic, and one
statistical model utilizing dynamic components. Next, a study of the short
term prediction capabilities of the two models in the computer module was
performed. An attempt was made to estimate the uncertainty range of the
statistical-plus model, an attempt that failed due to model errors.

Some outputs from the pure statisticalmodel were presented in the results. This
was only included to show how the statistical extrapolation is implemented,
and no extensive performance analysis was included for this scheme. However,
the actual accuracy of the predictions in these test runs was better than those
from either of the other models.

79
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6.1 Findings
The analysis performed in chapter 5 revealed several interesting results, sum-
marized below:

• It was found that the dynamic iceberg drift modelling is severely limited
by its dependency on input forcing data. If the forcing data is inaccurate,
the predicted iceberg drift trajectory is correspondingly erroneous. The
prediction output from the test runs in section 5.3 showed in particular
that the input forcing field for currents, in the cases investigated in this
study, was completely wrong. This agree with the statements made by
Garrett (1985).

• The sensitivity study of the iceberg size parameter revealed that the size
has a significant influence on the length of the predicted track. It showed
that the model project larger icebergs drift slower relative to smaller
icebergs. Unfortunately the poor accuracy of the prediction on the track
section analysed in this thesis limited more specific analysis of the effects
of changing this parameter. Also, it would be useful to have more exact
measurements describing the size of the modelled iceberg. This would
improve the ability to comment on how well this parameter actually
describe helps guide the prediction.

• The ensemble analysis of the statistical-plus model yielded results show-
ing large prediction uncertainty. The analysis showed that the variations
allowed for in the wind trajectory did not account for this uncertainty,
within the expected boundary of 2sd. This suggests that either the un-
certainty source is an error in the drift model itself, or that the range of
variation, allowed for in the wind data, was to small. The uncertainty
was, however, accounted for within a 3sd boundary (for two of the en-
sembles). This means that the error in the prediction output, for the
selected track, may be an extreme outlier. This call for an analysis of
predictions on a larger set of tracks.

• The test runs of the pure statistical model presented in section 5.2, quite
unexpectedly, provided the best results in any of the models. The sta-
tistical scheme is extremely vulnerable to changes in forcing conditions.
However, these results show that under stable forcing conditions (essen-
tially on short time intervals) the simple one term prediction scheme can
be very effective.

• The good results from the statistical scheme, compared to the statistical-
plus model, suggests that not only the deterministic model, but also the
statistical-plus model suffers from erroneous input forcing data. The one-
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term prediction, used in the statistical model, is essentially projecting a
track assuming constant forcing conditions. The results show that this
assumption gives a better representation of the forcing conditions than
the input forcing fields (due to winds and tides) does.

• The test runs of both the statistical and the statistical-plus models gave an
impression of how long the interval between observations used for the ex-
trapolation should be. It was clear that the 1 hour interval (N=2) was not
sufficient to represent the future drift. Increasing the interval yielded bet-
ter results, and the recommended interval between observations (based
on this study) is about 10 hours.

6.2 Future Work
The testing and study of the OpenBerg module performed in this thesis was very
limited. A larger study of the performance is necessary to determine whether
the results from the analysis presented in this thesis is representative of the
general accuracy of the different modelling schemes.

The input data used to drive the model could also be put under closer scrutiny.
It is necessary with accurate representations of the forcing conditions to be
able to analyse the dynamic elements of the modelling. It was clear that the
prediction error in not only the deterministic model, but also the statistical-plus
model, was mainly due to error in the forcing fields. However, some last minute
testing of the model was performed on tracks located at different points in
time and space. These results suggest that the data give a good representation
of the forcing conditions in some cases. Unfortunately it was not possible to
make these test results presentable in time to include in the thesis. But they
suggest that the poor prediction results presented in the thesis may have been
an anomaly.

Recommended future research would include ensemble analysis of several
track sections, for both the deterministic model and the statistical-plus model.
It should be explored if there exist different data repositories which provide
more accurate forcing data. If this is not the case, development of systems to
provide improved input data are essential for both modelling schemes included
in OpenBerg.
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6.3 Conclusions
In chapter 1 themain objective presentedwas to determinewhether either of the
drift models implemented in the OpenBerg module are suited for operational
use. The clear conclusion based on the results is not yet. Non of the models
are currently suitable for operational use.

The pure statistical method appears to provide quite good accuracy, in the
short term, under stable conditions. However, it is not suitable for predictions
across larger time scales. The deterministic model proved to be too sensitive
to inaccuracies in the input data, as has been pointed out previously (by e.g.
Garrett, 1985) as a common problem in dynamic modelling. The results from
the statistical model, compared to results from the statistical-plus model, show
that also the statistical-plus model is sensitive to erroneous input data.

Overall, it appears that the main problem, when it comes to iceberg drift
forecasting, is the accuracy of the forcing data.
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A
Fundamental FluidDynamics
The starting premise of geophysical fluid dynamics is that the dynamics of
e.g. atmospheric and oceanographic motions are determined by the systematic
application of the fluid continuum equations of motions (Pedlosky, 2013).

To describe the motion, required dynamical variables are generally the density
ρ, the pressure p, the velocity vector u. In most real scenarios certain thermo-
dynamic variables like temperatureT , the internal energy per unit mass e, and
the specific entropy s is also needed. Some situations may require additional
variables, such as salinity, depending on the nature of the fluid. And in cases
where the thermodynamic state relations are simplified, some variables may
be neglected.

We will in this appendix examine which dynamical variables are relevant for
iceberg drift projection, through the lens of an Eulerian kinematic description
where the variables are functions of time.
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A.1 Nonrotating Coordinate Frame
To begin we will state the required equations of motions in a non-rotating
(inertial) frame of reference. These equations may be found in several fluid-
dynamics texts (e.g Pedlosky, 2013).

The condition of mass conservation, requiring the absence of sources or sinks
of mass in the fluid, is formulated by the continuity equation. The continuity
equation states that the local increase of density with time must be balanced
by a divergence of the mass flux ρu. It is expressed as

∂ρ

∂t
+ ∇ · ρu = 0. (A.1)

In equation A.1, ρ is the density, ∂
∂t is the time derivative, u is the velocity

vector, and ∇ is the vectorial differential operator. Newton’s law of motion for
a fluid continuum can be expressed on the form

ρ
du
dt
= −∇p + ρ∇ϕ +F (u). (A.2)

Equation A.2 states that the mass per unit volume times the acceleration is
equal to the sum of the pressure gradient force −∇p, the body force ρ∇ϕ
(where ϕ is the potential by which the conservative body forces such as gravity
can be represented) and the non-conservative forces F . F may represent any
non-conservative force, but in the case of ocean dynamics the main component
is the frictional force within the fluid.

If the density is not considered constant, the momentum and continuity equa-
tions are insufficient to close the dynamical system. In this case one would have
to consider thermodynamics to account for the variations in density. Luckily
for us it is very reasonable to consider the density to be constant, as an iceberg
is affected by relatively small pockets of sea water.

A.2 Rotating Coordinate Frames
The most natural frame from which to describe atmospheric and oceanic
motions, is one which rotates with the planetary angular frequency Ω, due to
our perspective lining on the surface of the planet. The phenomena themselves
do not change with the frame of reference, but how they are described does
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depend on our choice of frame. Observing an object fixed in inertial space
from a rotating frame of reference, the object will appear to be rotating and
accelerate (due to the curvature of its apparent trajectory).

This ambiguous viewpoint is resolved by modifying Newton’s law of motion.
Remember that the derived form in equation A.2 is only valid in an inertial
reference frame, so we must find the altered form of the equations of motion
when written entirely in terms of quantities directly observed from the rotating
frame.

First consider a vector of constant magnitude X which rotates with the angular
velocity Ω and angle α between X and Ω, as figure A.1 sketches.

Figure A.1: X is a vector of constant length oriented at an angle α with respect to the
axis of rotation.

For the infinitesimal time step ∆t , X is rotated through the angle ∆θ = |Ω |∆t ,
where |Ω | is the magnitude of Ω. Then following Pedlosky (2013), and using
figure A.2 as a reference, the corresponding change in X is given as

X(t + ∆t) − X(t) ≡ ∆X = n|X|sin α ∆θ +O((∆θ )2), (A.3)

where O( ) symbolises that a variable quantity has a size exemplified by the
argument, and n is the unit vector in the direction of change in X. n must be
perpendicular to both Ω and X due to the definition of the rotation and the
fixed nature of X. We can state this mathematically as

n =
Ω × X
|Ω × X|

. (A.4)
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Figure A.2: X at a start time t and after an infinitesimal time step at time t + ∆t ,
showing the change X.

In the limit where the time step goes to zero, we get

lim
∆t→0

∆X
∆t
=
dX
dt
= |X|sinα

dθ

dt

Ω × X
|Ω × X|

, (A.5)

and as

|Ω × X| = |Ω | |X|sinα , (A.6)

equation A.5 for a vector X of fixed magnitude becomes

dX
dt
= Ω × X. (A.7)

From the perspective of an observer inside the rotating frame of reference
would see no change in X, while an observer in a non-rotating frame would
see it change as described by equation A.7. Both these observers would see the
same vector, as the vector is independent of the reference frame used to describe
it, but their perceptions of the rate of change of X will be different.

To show explicitly how the perspective is different from inside and outside the
rotating frame, Pedlosky (2013) suggests that we consider an arbitrary vector
Y. It exists in a reference frame rotating with angular velocity Ω in a Cartesian
coordinate system with unit vectors along each axis u1, u2 and u3, as in figure
A.3.
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Figure A.3: Orthogonal coordinate system with base vectors u1, u2 and u3, and the
vector Y. The system rotates with angular velocity Ω about an axis as
shown in the figure.

The vector Y, described from the rotating reference system, can be expressed
as

Y = Y1u1 + Y2u2 + Y3u3 (A.8)

where Yi = ui · Y for i = 1, 2, 3.

The derivative in time for Y for an observer within the rotating frame is

(
dY
dt

)
R
=
dY1

dt
u1 +

dY2

dt
u2 +

dY3

dt
u3, (A.9)

as the unit vectors are fixed in both length and direction. The subscript R
denotes that the equation is valid inside the rotating system. For the non-
rotating observer both the components of Y and the unit vectors change in
time. Then the time derivative of Y for an observer outside the rotating frame
will be

(
dY
dt

)
I
=
dY1

dt
u1 +

dY2

dt
u2 +

dY3

dt
u3 + Y1

du1

dt
+ Y2

du2

dt
+ Y3

du3

dt
, (A.10)

where the subscript I denotes that the equation is valid for an observer in the
non-rotating frame. Note that the scalar componentsY1,Y2 andY3 are common
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to both observers. Then by applying equation A.7 to each of the unit vectors
we get

Y1
du1

dt
+ Y2

du2

dt
+ Y3

du3

dt
= Y1Ω × u1 + Y2Ω × u2 + Y3Ω × u3

= Ω × (Y1u1 + Y2u2 + Y3u3)

= Ω × Y.

(A.11)

Then, by inserting equation A.9 and A.11 into A.10 it yields

(
dY
dt

)
I
=

(
dY
dt

)
R
+ Ω × Y. (A.12)

In conclusion we see that the rates of change in time for the same vector B are
perceived differently in the two frames (Pedlosky, 2013).

A.3 Equations of Motions in a Rotating Frame
If we choose a position vector of an arbitrary fluid element to be r, then
corresponding with equation A.12 we have

(
dr
dt

)
I
=

(
dr
dt

)
R
+ Ω × r, (A.13)

Equation A.13 implies that the velocity observed from the non-rotating frame is
equal to the velocity observed in the rotating frame in addition to the velocity
due to the effects of the rotation of the body, Ω × r. This may be expressed
as

uI = uR + Ω × r, (A.14)

where uI is the velocity seen in the non-rotaing frame and uR is the relative
velocity, as seen from the rotating frame. Further, Newton’s laws of motion
equates to the applied forces per unit mass to the acceleration in inertial space,
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i.e. as the rate of change in velocity as seen in the non-rotating frame. So by
applying equation A.12 to the velocity uI we get

(
duI
dt

)
I
=

(
duI
dt

)
R
+ Ω × uI . (A.15)

It is now necessary to eliminate uI from the right hand side of equation A.15,
in order to be able to describe the motions entirely in terms of quantities
observed from the rotating frame of reference. To do this we apply the result
from equation A.14 and get

(
duI
dt

)
I
=

(
duR
dt

)
R
+
dΩ

dt
× r + Ω ×

(
dr
dt

)
+ Ω × (uR + Ω × r)

=

(
duR
dt

)
R
+ Ω × (Ω × r) + 2Ω × uR +

dΩ

dt
× r.

(A.16)

The difference between the perceived accelerations in the different frames is
represented in equation A.16 as three additional terms. The two first terms are
known as centripetal acceleration Ω × (Ω × r), and the Coriolis force 2Ω × uR ,
the final term dΩ

dt × r is the acceleration due to variations in the rotation
rate.

The variation in rotation rate is negligible for oceanographic calculations,
unless the time scales are large enough for the rotation rate of the Earth
to change (Pedlosky, 2013). In the case of iceberg drift this variation has no
significant effect on the motion and is neglected altogether, and Ω is considered
a constant.

The centripetal acceleration can be expressed in terms of the perpendicular
distance vector from the rotation axis to the position of the fluid element. Using
this fact it allows us ultimately to express the centripetal acceleration in terms
of a potential function

ϕc =
|Ω × r|2

2
=
|Ω |2 |rp |2

2
, (A.17)

where r is the position vector for an element, and rp is the perpendicular
position vector from the rotation axis. And the expression for the centripetal
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acceleration becomes

Ω × (Ω × r) = −∇ϕc . (A.18)

This lead us to consider the centripetal acceleration as an additional force per
unit mass by D’Alemberts principle (Pedlosky, 2013). And ultimately, as the
centrifugal force can be expressed as this potential, it can be included in the
force potential in equation A.2 to result in a total potential of

Φ = ϕ + ϕc (A.19)

This leaves us with the Coriolis acceleration which is the most interesting of the
three additional terms in equation A.16, as it is the only term which explicitly
involves the velocity of the fluid and is responsible for any actual structural
change of the momentum equation for a uniformly rotating frame.

Note that the spatial gradients will appear identical from both the non-rotating
and rotating frames. Then for an observer in a uniformly non-rotating frame,
in light of the derivations above, the momentum equation A.2 becomes

ρ

[
du
dt
+ 2Ω × u

]
= −∇p + ρ∇Φ +F , (A.20)

where u is the velocity observed from the rotating frame. No matter from
which frame of reference they are perceived, p and Φ will be the same. On the
other hand the invariance of the form of the non-conservative force F , from
one reference frame to another, is relative to how it depends on the velocity
field. However, for a Newtonian fluid the non-conservative forces is perceived
as equal:

F (uI ) = F (uR) (A.21)

To describe the motions from the point of view of the rotating frame we move
the Coriolis term to the right side of equation A.20. Note that the Coriolis force
is always be perpendicular to the velocity and will not actually do any work.
If we align an observer with the rotating axis, the Coriolis force appears as a
force deflecting moving fluids to the right, as illustrated in figure A.4.



A .3 EQUAT IONS OF MOTIONS IN A ROTAT ING FRAME 95

Figure A.4: The diagram represents the relation between u, Ω and the Coriolis force,
−2Ω × u (per unit mass).

The factor 2Ω is known as the Coriolis parameter, f . It is twice the component
of the angular velocity about the local vertical. This mean that for any location
on the Earth’s surface this parameter is given as

f = 2Ωsinφ, (A.22)

where Ω is the Earth’s angular velocity and φ the latitude.





B
Figures
This appendix contains a list of figures displaying additional outputs from the
test runs and analysis of the statistical-plus model in OpenBerg. This collection
contains a selection of figures created using N=2 and N=10, corresponding
figures in the main text which was all created using N=6.

These various plots visualize the significance of the time interval between the
points used for extrapolation. The statistical-plus model is largely dependent
the time between these extrapolation points.
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B.1 Statistical-Plus Model

Figure B.1: Plot of observed trajectory, labelled actual, along with the drift forecast
for the iceberg labelled SNaresStrait. This result was produced using the
statistical-plus scheme, with N=2. The track labelled wind only is the pro-
jected component due to the wind forcing field. The track labelled residual
is the observed track minus the wind and tidal components. The track
labelled extrapolation is the extrapolated residual component, estimated
based on the first N points in the residual track. The stat plus trajectory
is the model prediction, it equals the sum of projected trajectories due to
tides and winds as well as the extrapolated component. The tidal forcing
component is not displayed in this plot, but is included in the stat plus
trajectory.
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Figure B.2: Same as B.1, but for N=10.
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Figure B.3: Distance from the prediction to the observation, for every point along
the track. This is the plot for the statistical-plus prediction with N=2,
displayed in figure B.1. The x-axis is the time passed in hours, and the
y-axis is the distance from the observed position to the predicted position
at the corresponding time. Note that the N points used for extrapolation
is included in the figure.
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Figure B.4: Same as B.3, but for the statistical-plus prediction with N=10.
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Figure B.5: In this figure the entire ensemble of predictions, using N=2 points to ex-
trapolate the residual, is plotted. The black trajectories are the predictions
in the ensemble, while the observed trajectory is displayed in red.
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Figure B.6: Same as B.5, but for N=10.
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Figure B.7: This figure display a scatter plot of the end point coordinates of the
predictions, in the ensemble created with N=2, relative to the coordinates
of the observed position.
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Figure B.8: Same as B.7, but for N=10.
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Figure B.9: This figure display a prediction output from the statistical-plus model
with N=2, labelled Stat plus. The observed track is included, labelled
Actual. In addition a confidence boundary with a radius of 2sd is plotted
around some of the points along the track. Each of these points is marked
with a color coded ×-marker. The point on the observed trajectory for
each corresponding time step is marked with a diamond marker of the
same color. As is evident from the plot, the sd increases with time. The
confidence boundaries are shaped like ellipses because the map projection
warps the relative dimensions in x- and y-direction on the plot.
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Figure B.10: Same as B.9, but for N=10.
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Figure B.11: This figure display a prediction output from the statistical-plus model
with N=2, labelled Stat plus. The observed track is included, labelled
Actual. In addition the confidence boundaries with radius of 2sd and
3sd are plotted around the endpoint. The endpoints in the observed
and predicted tracks are marked with a black ×-marker. The confidence
boundaries are shaped like ellipses because the map projection warps
the relative dimensions in x- and y-direction on the plot.
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Figure B.12: Same as B.11, but for N=10.
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