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Abstract

We present an implementation and application of electron dynamics based on real-time

time-dependent density functional theory (RT-TDDFT) and relativistic 2-component

X2C and 4-component Dirac–Coulomb (4c) Hamiltonians to the calculation of electron

circular dichroism (ECD) and optical rotatory dispersion spectra. In addition, the

resolution-of-identity approximation for the Coulomb term (RI-J) is introduced into

RT-TDDFT and formulated entirely in terms of complex quaternion algebra. The

methodology is applied to molecules of the dimethylchalcogenirane series, C4H8X (X

= O, S, Se, Te, Po, Lv). The spectra obtained by non-relativistic and relativistic

methods start to disagree for Se and Te, while dramatic differences are observed for
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Po and Lv. In the case of Po, the non-relativistic ECD spectrum gives the visual

impression of being the mirror image of the relativistic spectrum in a certain frequency

region, clearly demonstrating the need for a relativistic approach. The X2C approach,

even in its simplest one-particle form, reproduces the reference 4c results surprisingly

well across the entire series while offering an 8-fold speed-up of the simulations. An

overall acceleration of RT-TDDFT by means of X2C and RI-J increases with system

size and approaches a factor of almost 25 when compared to the full 4c treatment,

without compromising accuracy of the final spectra. These results suggest that one-

particle X2C electron dynamics with RI-J acceleration is an attractive method for the

calculation of chiroptical spectra in the valence region.

1 Introduction

Chirality, i.e. non-superimposability of an object and its mirror image, is a ubiquitous phe-

nomenon in chemistry and a prime example of the relationship between molecular structure

and properties. A pair of enantiomers, i.e. a chiral molecule and its mirror image, differs

in its interaction with other chiral objects, including molecules or light. Notably, enan-

tiomers possess different indices of refraction for left- and right-handed circularly polarized

light.1 The difference in the real (dispersive) part of the index of refraction is called circu-

lar birefringence and leads to optical rotation, i.e. rotation of the plane of polarization of

linearly polarized light passing through an optically active medium, whereas the difference

in the imaginary (absorptive) part of the index of refraction is called circular dichroism

and leads to the generation of ellipticity in the linearly polarized light.1–3 Optical rotation

is measured either as the difference in refractive indices or as the angle of rotation of the

linearly polarized light. Similarly, circular dichroism is measured either as the difference

in extinction coefficients or as the induced ellipticity. The dependence of these properties

on the frequency of light is called optical rotatory dispersion (ORD) or circular dichroism

(CD) spectroscopy, respectively. CD spectra can be measured in the UV/Vis or X-ray re-
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gions as a result of transitions between electronic states – (X-ray) electron circular dichroism

((X)ECD).4 In the IR region, the transitions occur between vibrational states resulting in

vibrational circular dichroism (VCD).5 All these chiroptical spectroscopies play a crucial

role in the identification of compounds or in the determination of absolute configurations,

presenting a challenge for theory in terms of ensuring reliable computational results and an

opportunity for theoretical chemistry to aid in the analysis of experimental data.6–9

The first-principles quantum-chemical determination of indices of refraction, or chiropti-

cal spectra in general, requires the calculation of microscopic frequency-dependent molecular

property tensors. In the context of time-dependent density functional theory (TDDFT),

there are two main approaches that can be used. The first approach is based on perturba-

tion theory and can proceed in two ways. One either calculates excitation energies and the

corresponding transition moments followed by applying lineshape functions to the calculated

stick spectra.10–12 Alternatively, one calculates the spectrum directly in the frequency do-

main using damped response theory.13 Several applications to the calculations of chiropical

properties have been reported and reviewed for TDDFT14–21 as well as for post-Hartree–Fock

methods such as coupled cluster (CC) theory.22,23

The second approach, which has gained increasing attention in recent years, considers the

dynamics of molecules under the influence of external fields by propagating the electronic

state directly in time, so called real-time (RT) TDDFT,24–31 or similar post-Hartree–Fock

dynamical approaches.32–37 Frequency-dependent molecular properties are then recovered as

Fourier transforms of time-dependent properties recorded in the course of the simulations.

Compared to perturbation theory-based approaches, real-time methods allow the description

of molecules under strong external fields or external fields with complicated time dependence.

Moreover, they can access spectra in various regions from a single run and do not require

the evaluation of response kernels. On the other hand, long time propagations present a

challenge in terms of computational cost, prompting the development of various acceleration

techniques such as the Padé approximants,38 or the resolution-of-identity (RI) technique

3



presented in this paper. Pioneering applications of RT-TDDFT to CD spectra have already

been presented at the non-relativistic level of theory utilizing both real-space grids39,40 and

Gaussian orbitals.41 For more information on real-time methodologies the reader is referred

to a recent review by Goings, Lestrange and Li.42

In order to correctly describe molecules containing atoms from across the whole periodic

table, one needs to take relativistic effects into account.43 A typical approach in relativistic

quantum chemistry is to combine the 4c one-electron Dirac operator with a non-relativistic

Coulomb interaction between the electrons into the 4c Dirac–Coulomb (DC) Hamiltonian.

This currently represents the “gold standard” in relativistic quantum chemistry and can

be used to benchmark more cost-effictive approximate methods. One rung below the 4c

Hamiltonians are the 2-component (2c) Hamiltonians, some of the popular and variation-

ally stable ones being the second-order Douglas–Kroll–Hess (DKH2) Hamiltonian,44–46 the

zeroth-order regular approximation (ZORA) Hamiltonian,47,48 the normalized elimination

of small component (NESC) Hamiltonian,49,50 and the closely related “exact” 2-component

(X2C) Hamiltonian.51–55 The X2C Hamiltonian in particular has seen growing interest in the

relativistic quantum chemistry community in recent years,56,57 as it allows for a reduction of

the original 4c problem to 2c form at the expense of simple algebraic operations, thus yield-

ing significant acceleration and still preserving most of the crucial relativistic contributions.

The first implementation of 4c RT-TDDFT has been presented by Repisky et al.58 followed

by its application to X-ray absorption near-edge structure (XANES) spectra.59 Later, it has

been shown that the X2C transformation can be applied in the time-dependent context as

well, provided the external field has a small amplitude or frequency.60,61

In this paper we present an implementation of 4c- and X2C-based relativistic electron

dynamics and their application to chiroptical spectra of the benchmark dimethylchalcogeni-

rane series, C4H8X (X = O, S, Se, Te, Po, Lv). We begin by defining the central chiroptical

property tensor, then continue with the description of the relativistic density matrix prop-

agation, and further formulate the RI approximation within RT-TDDFT. The paper ends
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with a discussion of the results, with an emphasis on relativistic effects and the accuracy

and performance of the X2C method in combination with the RI acceleration.

2 Theory

2.1 Chiroptical properties

The central microscopic molecular property that can be directly related to ORD and ECD

is the electric dipole–magnetic dipole (Rosenfeld) tensor β.2,62 In the sum-over-states for-

malism, the ij Cartesian component of this tensor reads (in atomic units)

βij(ω) = −2
∑

p6=q

= (〈p|µi|q〉 〈q|mj|p〉)
Ω2
qp − ω2

, (1)

where p and q are many-particle stationary states, Ωqp = Eq − Ep, is the energy/frequency

difference, m is the magnetic dipole and µ the electric dipole moment operator, respectively.

The Rosenfeld tensor connects the induced electric dipole moment to the time derivative of

a magnetic field (B) as well as the induced magnetic moment to the time derivative of an

electric field (E):1

µind
i (ω) = βij(ω)Ḃj(ω) + . . . , (2)

mind
i (ω) = −βji(ω)Ėj(ω) + . . . (3)

The ellipses stand for higher-order terms in electric and magnetic fields that can be neglected

for isotropic samples and the weak-field regime, as considered in this study. In the next

section, we outline how to obtain the Rosenfeld tensor from electron dynamics simulations

using Eq. (3).
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2.2 Relativistic electron dynamics for chiroptical properties

The dynamics of electrons in the presence of a time-dependent external field is described

by the Liouville–von Neumann equation,63 which for RT-TDDFT in an orthonormal basis

takes the form

i
∂D(t)

∂t
= [F(t),D(t)] . (4)

In Eq. (4), D(t) is the one-electron reduced density matrix and F(t) is the Fock matrix con-

structed from D(t). Eq. (4) is, therefore, non-linear and requires sophisticated propagation

techniques.64–70 Our implementation utilizes the Magnus expansion truncated to first order

combined with an extrapolation–interpolation scheme.58 The Fock matrix F(t) in Eq. (4)

can be expressed as

F(t) = h + VXC[ρ(t)] + G[D(t)] + Vext(t), (5)

where h is the one-electron part, VXC is the exchange–correlation potential matrix, and G

is the two-electron part containing the Coulomb interaction J and, in the case of hybrid

functionals, also the exchange interaction K. Vext(t) is the time-dependent external field

matrix that governs the time evolution of the system.

In 4c DC relativistic electron dynamics, the one-electron part is the matrix representation

of the 4c one-electron Dirac Hamiltonian combined with the non-relativistic electron-nuclear

Coulomb interaction. Similarly, the two-electron term is constructed by assuming an in-

stantaneous, non-relativistic Coulomb interaction between electrons. Likewise, the DFT

exchange–correlation term is used in its non-relativistic, non-adiabatic form.

The X2C Fock matrix is constructed by a block diagonalization of the original 4c Fock

matrix and discarding the block with negative-energy eigenspectrum. In an ideal case, such

a procedure would require the X2C block-diagonalization of two-electron terms in each time

step which leads to a method even more expensive than the full 4c treatment. Therefore, in

practice, approximate solutions are sought after, both in the static71–75 as well as dynamic

(time-dependent) case.60,61 In our present implementation, we apply the one-electron X2C
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approximation that only considers the block-diagonalization of the one-electron term, i.e.

h4c → hX4C ≡ U†h4cU =




hX4C
+ 0

0 hX4C
−


 → hX2C ≡ hX4C

+ , (6)

while adding the untransformed two-electron large–large block. The decoupling matrix U is

built in a static case from eigenvectors of h4c by solving algebraic equations.53–55 In the dy-

namical regime, the decoupling matrix is in general time dependent, however, we neglect this

time dependence by invoking an adiabatic approximation valid under conditions discussed

in our previous work.60 The detailed derivation of the X2C variant of the Liouville–von

Neumann equation, as well as the decoupling procedure in the time regime can be found in

earlier work by Konecny et al.60 and Goings et al .61

To calculate ECD and ORD spectra, the external perturbation potential in Eq. (5) takes

the form of an electric pulse described within the dipole approximation as Vext(t) = −P·E(t),

where P is the matrix representation of the electric dipole moment operator and E(t) =

κδ(t − t0) is the external electric field with the vector amplitude κ and δ-functional time

dependence. The ground-state self-consistent field (SCF) density matrix D0 is perturbed by

this pulse, D(t0) = exp[−iP ] D0 exp[ iP ],58 and evolved from an initial time t0 in a series of

discrete time steps of length ∆t. In each time step tj, the induced magnetic dipole moment

is calculated from a trace of the magnetic dipole moment matrix and the time-dependent

density matrix

mind(tj) = Tr[MD(tj)]−mstatic, (7)

where the static magnetic moment is calculated as mstatic = Tr[MD0]. The recorded mag-

netic dipole moments are subsequently transformed to the frequency domain by means of a

discrete Fourier transformation, while introducing an artificial damping factor γ to ensure
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finite width of the spectral lines

mind(ωk) =
n−1∑

j=0

mind(tj)e
−γ tj exp

{
2πi

jk

n

}
k = 0, 1, . . . , n− 1. (8)

Here, n is the number of time steps and ωk = 2πk/∆t is the k-th frequency point.

The frequency-dependent induced magnetic moment in Eq. (8) can be related to the

expansion in Eq. (3) as

mind
i (ω) = iβji(ω)κj, (9)

provided that higher order terms have been neglected in Eq. (3) and a δ-type impulse electric

field was assumed as discussed in the previous paragraph. The final expression for the

Rosenfeld tensor thus reads

βji(ω) = −im
ind
i (ω)

κj
. (10)

The ORD spectral function is then proportional to the real part of βji(ω) (or the imaginary

part of mind
i (ω)), and the ECD spectral function is proportional to the imaginary part of

βji(ω) (or the real part of mind
i (ω)).

A finite-basis representation of the magnetic dipole moment operator, denoted as M in

Eq. (7), has the following forms in non-relativistic (nr) and 4c theories (in Hartree atomic

units):

mnr = − 1

2c
rg × p, (11)

m4c = −1

2
rg ×α. (12)

Here α is the vector composed of Dirac’s α matrices, p is the non-relativistic momentum

operator and rg = r − Rg is the electron position operator relative to a fixed gauge, Rg.

All calculations presented in this paper assume the gauge placed in the centre of mass of the

molecule. In 4c theory, the operators are represented in a restricted kinetic balance (RKB)

basis X4c, where the individual large (L) and small (S) component basis elements are defined

8



as

X4c
µ =




XL
µ 0

0 XS
µ


 , XL

µ = σ0 χµ(r), XS
µ =

1

2c
(σ · p) χµ(r). (13)

Here, σ0 is a 2×2 unit matrix, σ is the vector composed of Pauli matrices, and the functions

χµ(r) are elements of a real scalar basis set, in our implementation chosen to be Gaussian-

type orbitals (GTO). The elements of the 4c magnetic dipole moment matrix in the RKB

basis are

M4c
µν = − 1

4c




0 〈χµ|(rg × σ)(σ · p)|χν〉

〈χµ|(σ · p)(rg × σ)|χν〉 0


 . (14)

In X2C theory, the magnetic dipole matrix is given by a picture-change transformation of

the original 4c dipole moment matrix using the aforementioned decoupling matrix U and

leaving only its upper diagonal block, i.e.

MX2C =
[
U†M4cU

]
+
, (15)

which resembles the decoupling procedure for h4c outlined in Eq. (6).

2.3 Resolution-of-identity for the Coulomb problem in RT-TDDFT

In the relativistic two- and four-component molecular electronic structure calculations, the

Coulomb term in the Fock matrix

Jµν(t) =
∑

κλ

[Ωµν |Tr(ΩκλDλκ(t))], (16)

requires the evaluation of four-centre electron repulsion integrals (ERIs)

[Ωµν |Ωκλ] ≡
∫

X†µ(r1)Xν(r1)
1

r12
X†κ(r2)Xλ(r2)dr1dr2, (17)
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where Xµ refers to a multicomponent basis which, in accordance with Eq. (13), can be either

Xµ = XL
µ for 2c theory or Xµ = X4c

µ for 4c theory. Due to the multicomponent nature, all

elements associated with the basis, density matrix, or Coulomb matrix have an internal 2×2

or 4×4 structure, a fact that is indicated by bold symbols in our notation. Likewise, Tr() in

Eq. (16) denotes the matrix trace over the multiple components.

To accelerate the evaluation of J by means of the resolution-of-identity, the electron

repulsion integrals in Eq. (16) are approximated in the sense of a Dunlap’s robust fit76 by

[Ω̃µν |Ωκλ] such that the residual Coulomb-repulsion integral,

[∆Ωµν |∆Ωκλ] = [Ωµν |Ωκλ]− [Ω̃µν |Ωκλ], (18)

is bilinear in errors ∆Ωµν and ∆Ωκλ. It is customary to approximate the pairs of basis

functions |Ωµν ] as a superposition of real, scalar, atom-centered auxiliary basis functions |α],

then

|∆Ωµν ] = |Ωµν ]−
∑

α

cµνα |α]. (19)

The individual expansion coefficients cµνα are then obtained by minimizing the residual

Coulomb-repulsion integral with respect to cµνα . This leads to a set of linear equations

∑

β

[α|β]cµνβ = [α|Ωµν ], (20)

whose solution when inserted into the expression for J with approximate integrals gives

Jµν(t) ≈
∑

κλ

∑

αβ

[Ωµν |α][α|β]−1[β|Tr(ΩκλDλκ(t))]. (21)

The original problem involving the evaluation of four-centre integrals is thus factorized into

the product of two- and three-centre integrals, and the procedure is customarily denoted as

the resolution-of-identity approximation for the Coulomb term (RI-J). The RI-J technique

is widely used in non-relativistic molecular electronic structure calculations as it is known
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to affect the ground-state molecular energy by only 0.1 mHartree per atom, provided pre-

optimized auxiliary sets are employed.77 The approach has recently been extended also to

the relativistic 4c domain.78,79 However, it is not known if the RI-J approach is numerically

stable for RT-TDDFT covering large time-propagation ranges.

In our implementation of RI-J within RT-TDDFT, the Coulomb term in Eq. (21) is cal-

culated at every time point tj in three steps: (a) 3-center ERIs are evaluated and contracted

on-the-fly with the time-dependent density matrix,
∑

κλ[α|Tr(ΩκλDλκ(tj))] ≡ dα(tj); (b) the

linear set of equations derived from Eq. (20),
∑

β[α|β]cβ(tj) = dα(tj), is solved by means of

a Cholesky decomposition; (c) 3-center ERIs are evaluated once again and contracted on-

the-fly with the scalar expansion coefficients,
∑

β[Ωµν |β]cβ(tj). The most time-consuming

part of the algorithm is the first step, as its floating point operations (FLOPs) increase

in the relativistic regime due to the multicomponent character of the density matrix and

basis elements as compared to the non-relativistic RT-TDDFT. However, the FLOPs can

be greatly reduced in this case by reformulating the problem into the complex quaternion

algebra, HC, also known as biquaternion algebra. For example, every complex 2c density

matrix D(t) ∈ C2N×2N , which is Hermitian and does not impose any time-reversal symmetric

structure

D(t) =




D11 D12

D21 D22


 , D11,D12,D21,D22 ∈ CN×N , (22)

can be mapped onto the matrix of complex quaternions, QD(t) ∈ HN×N
C :

D→ QD = (0D + i 4D) + (1D + i 5D)̌i+ (2D + i 6D)ǰ + (3D + i 7D)ǩ (23)

where i stands for the imaginary unit and 1, ǐ, ǰ, and ǩ denote the basis elements of HC

which obey the identities

ǐ2 = ǰ2 = ǩ2 = ǐǰǩ = −1. (24)

Note that these relations also determine all the possible products of ǐ, ǰ and ǩ. The complex
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quaternion constituents 0−7D ∈ RN×N are given by

0D = <(D11 + D∗22)/2; 4D = =(D11 −D∗22)/2 (25)

1D = =(D11 + D∗22)/2; 5D = −<(D11 −D∗22)/2

2D = <(D12 −D∗21)/2; 6D = =(D12 + D∗21)/2

3D = =(D12 −D∗21)/2; 7D = −<(D12 + D∗21)/2

and have the following matrix properties

kD = kD
T

; lD = −lDT
; k ∈ 0, 5, 6, 7; l ∈ 1, 2, 3, 4. (26)

Considering the properties in Eq. (26) as well as the fact that the matrix of 2c overlap

distributions, Ω(r) ≡
(
XL
)†

XL ∈ C2N×2N(R3), has in its complex quaternion representation

only one non-zero component, i.e.

Ω→QΩ =0Ω, (27)

the entire contribution to
∑

κλ[α|Tr(ΩκλDλκ(tj))] arises only from a single component of the

complex quaternion trace:

2
∑

κλ

[α|0Ωκλ]
0Dλκ(tj). (28)

Note that the proposed quaternion-based 2c RI-J procedure gives rise to exactly the same

number of real arithmetic operations as RI-J in the 1c unrestricted SCF.

In the 4c case, the formulation and evaluation of the Coulomb term in terms of complex

quaternion algebra is slightly more elaborate. First, it involves a reordering of basis set

components discussed by Saue et al.,80 followed by a mapping of the 4c time-dependent

density matrix D(t) ∈ C4N×4N and of the 4c overlap distribution matrix Ω(r) ≡ (X4c)
†
X4c ∈

C4N×4N(R3) into complex quaternions in the sense of Eq. (23), the latter being

Ω(r)→QΩ(r) =0Ω +1Ωǐ+2Ωǰ +3Ωǩ ∈ H2N×2N
C (R3). (29)
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Here, the imaginary quaternion constituents 4−7Ω(r) ∈ R2N×2N(R3) are zero, whereas the

real constituents 0−3Ω(r) ∈ R2N×2N(R3) are non-zero and for k, l ∈ x, y, z read

0Ωµν =



χµχν 0

0 (∇kχµ)(∇kχν)


 , 1Ωµν =




0 0

0 εzkl(∇kχµ)(∇lχν)


 ,

2Ωµν =




0 0

0 εykl(∇kχµ)(∇lχν)


 , 3Ωµν =




0 0

0 εxkl(∇kχµ)(∇lχν)


 , (30)

where ε is the Levi-Civita symbol. In the formulation presented, the evaluation of the 4c

trace in expression
∑

κλ[α|Tr(ΩκλDλκ(tj))] reduces only to the following four terms

2
∑

κλ

3∑

k=0

[α|kΩκλ]
kDλκ(tj) (31)

that require just real (time-reversal symmetric) constituents of the complex quaternion den-

sity matrix. Note that the use of quaternion algebra for reducing computation burden of

relativistic 4c calculations has already been advocated by several authors, with a primary

focus either on the diagonalization80–82 or on the relativistic point group symmetry.83 All

these approaches, however, are limited to Kramers-restricted (closed-shell) molecular cases

and thus involve only the real quaternions. Instead, the present approach based on a gen-

eralized concept of complex quaternions focuses mainly on reducing arithmetic operations

associated with the Fock matrix construction. In addition, the use of complex quaternions

allows to elegantly address Kramers-unrestricted (open-shell) regime, which is indispensable

in the real-time TDDFT calculations.

3 Computational details

Geometries for lighter dimethylchalcogeniranes C4H8X with X = O, S were taken from

other study,19 while for X = Se, Te, Po, Lv the geometries were optimized using the ADF
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program suite84–86 with the scalar ZORA Hamiltonian (Se, Te) and with the spin-orbit ZORA

Hamiltonian (Po, Lv), employing the PBE functional87–89 and the ZORA/TZ2P Slater-type

orbital (STO) basis set.90 All geometries can be found in the Supporting Information.

All property calculations were performed with a developer’s version of the ReSpect pro-

gram91 using the PBE functional.87–89 All-electron GTO basis sets were employed in their

uncontracted form, namely Dyall’s augmented cVDZ basis92–94 for Te, Po and Lv, and Dun-

ning’s augmented cc-pVDZ basis95–97 for all other elements. The auxiliary basis sets for

the RI-J procedure were generated by an adjusted even-tempered algorithm98 and are avail-

able in the Supporting Information. The numerical integration of the exchange–correlation

potential was done with an adaptive molecular grid of medium size (program default), em-

ploying a noncollinear approach within the Kramer’s unrestricted formalism as specified in

Komorovsky et al.99 In 2c and 4c calculations, atomic nuclei of finite size were approximated

by the Gaussian charge distribution model.100 For the evaluation of four-center two-electron

repulsion integrals in the 4c theory, we employed an atom-pair approximation where all in-

tegrals over the atom-centered small-component basis functions XS are discarded unless the

bra and ket basis pairs share the same origin, i.e. [XS
AX

S
B|XS

CX
S
D]δABδCD. Here, δ is the

Kronecker delta function over atomic centers A, B, C, and D.

The elements βji of the Rosenfeld tensor were calculated using Eq. (10) from three

simulations where the molecules were perturbed by external electric fields in directions

x, y, and z. The amplitude of the delta function perturbation was in each simulation

κi = 0.0001 au, i ∈ {x, y, z}. The time evolution was carried out for 30000 time steps

of length 0.15 au (0.0036 fs) which corresponds to a total simulation time of approximately

109 fs and frequency-domain resolution 0.0014 au (0.038 eV). Convergence thresholds for the

microiterations in the Magnus propagator were set to 10−6. The transformation to the fre-

quency domain was performed by the discreet Fourier transformation utility in the SciPy

package.101 The final spectra were broadened by a damping factor γ = 0.004 au (see Eq. (8)).
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4 Results and discussion

We demonstrate the use of relativistic electron dynamics for the calculation of chiroptical

properties of a series of dimethylchalcogeniranes C4H8X, where X = O, S, Se, Te, Po, Lv

(see Figure 1).

CH3CH3

X

Figure 1: Structural formula of (2R,3R)-2,3-dimethylchalcogenirane C4H8X (X = O, S, Se,
Te, Po, Lv).

Dimethyloxirane is a prototypical chiral molecule used as a benchmark system for chi-

roptical properties, whereas dimethylthiirane and other heavier analogues were selected to

determine the effect of relativistic treatment on the spectra and to assess the performance

of X2C and RI-J acceleration. In order to allow a direct comparison with our results, all

spectral functions are reported in atomic units as the isotropic value of the Rosenfeld tensor:

S(ω) =
1

3

∑

i

βii(ω), (32)

and can easily be related to other spectral functions just by multiplication with a suitable

scalar factor.20,61

We first investigate the performance of the RI-J technique in the context of time-dependent

relativistic methods by calculating ECD and ORD spectra of dimethyltelirane with and with-

out the RI-J approximation. The final spectra obtained with the 4c Hamiltonian are reported

in Fig. 2, whereas corresponding results for the X2C Hamiltonian are available in the Sup-

porting Information. Visual inspection of the lines in Figure 2 shows perfect agreement

between the pairs of 4c and RI-J 4c spectra in the valence region. However, it is desirable to

quantify this agreement. In time-independent RI-J calculations, it is customary to assess the
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Figure 2: The comparison of 4c ECD and ORD spectra (in atomic units) of Te-based system
calculated with and without the RI-J acceleration. The simulation proceeded for 15000 time
steps of length 0.15 au.

RI-J by evaluating the energy difference per atom:77 ∆E = |Eexact − ERI−J|/Natom. Here,

we extended this concept to the time domain by time-averaging ∆E:

∆E(t0, tmax) =
1

tmax − t0

∫ tmax

t0

|Eexact(t)− ERI−J(t)|
Natom

dt (33a)

≈ 1

nsteps

nsteps∑

j=1

|Eexact(tj)− ERI−J(tj)|
Natom

. (33b)

Eq. (33a) thus defines the difference between the exact energy per atom and its RI-J ap-

proximant over a whole interval of propagation from t0 to tmax. Since the propagation is

performed in a series of discrete time steps, Eq. (33b) is used in practice. For the simulation

that yields to the spectra on Figure 2, ∆E(0 au, 2250 au) is equal 1.4 · 10−6 au, which agrees

with ∆E observed in the static case. Since the main quantities of interest in RT-TDDFT

property calculations are frequency-dependent spectral functions, ∆E(t0, tmax) may not be

the most suitable quantity to measure the performance of RI-J. Therefore, we also applied
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the following measure for the spectral-function error:

∆S(ω0, ωmax) =
1

ωmax − ω0

∫ ωmax

ω0

|Sexact(ω)− SRI−J(ω)|
Natom

dω (34a)

≈ 1

nsteps

nsteps∑

j=1

|Sexact(ωj)− SRI−J(ωj)|
Natom

, (34b)

where again, Eq. (34a) is the definition for an ideal continuous case whereas Eq. (34b) is its

discretized variant used in practice. The values of ∆S(ω0, ωmax) for ECD and ORD spectra

presented on Figure 2 are, respectively:

∆SECD(0 au, 0.44 au) = 1.3 · 10−4

∆SORD(0 au, 0.44 au) = 4.1 · 10−4

Encouraged by these results we applied the RI-J accelerated simulations to the remain-

ing systems. Graphs in Fig. 3 show how ECD spectra obtained from non-relativistic and

relativistic methods differ across the series. While there is practically no difference for O and

S (depicted in the Supporting Information), the differences become noticeable starting with

Se and Te. For the Po- and Lv-substituted systems the 1c results cannot be considered even

an approximation of the relativistic results. Particularly, for the Po system the 1c spectra

resemble the mirror image of the relativistic spectra in a region from approximately 4.5 to

7 eV meaning that an assignment of absolute configuration just from this spectral region

would be wrong. The result for the Po system demonstrates the possibility of 1c and 4c

spectra looking like mirror images, a phenomenon that can span over a larger spectral range

for a different system making 1c calculations unsuitable for interpreting ECD measurements

in molecules where relativistic effects are prominent. Moreover, Fig. 3 shows that the X2C

approach reproduces the reference 4c results surprisingly well across the entire series with

only minor differences for the heaviest elements. Similar conclusions can be drawn about

the ORD spectra as supported by the Figures available in the Supporting Information.
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Figure 3: The comparison of 1c, 2c (X2C) and 4c (DC) ECD spectra (in atomic units)
of dimethylchalcogeniranes computed using PBE functional with RI-J acceleration. The
corresponding spectra are labelled by the chemical symbol of the heteroatom. ORD spectra
can be found in the Supporting Information.
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Finally, to assess the acceleration of RT-TDDFT achieved by the introduction of the RI-J

technique we report in Table 1 the average time per microiteration of the propagation solver.

These values were obtained from the first 50 time steps (each time step required on average

approximately 3 microiterations) and the achieved accelerations range from 2.1 for the X2C

Hamiltonian of C4H8Se to 4.0 for 4c Hamiltonian of C4H8Lv. Note that these values do

not reflect the actual acceleration associated with the evaluation of the Coulomb term but

rather refer to the whole microiteration speed-up that also involves a diagonalization. Since

the diagonalization step dominates in some cases, the overall effectiveness of RI-J may be

reduced within RT-TDDFT when compared to the time-independent regime. However, a

positive observation is that for both relativistic Hamiltonians, larger systems benefit more

from RI-J. This trend is more pronounced for the 4c Hamiltonian, where the calculation

of the two-electron contribution is by far the most time-consuming step. Moreover, orbital

basis-function products over both the large and small component basis are fitted by identical

auxiliary basis set. The observed acceleration when going from 4c to X2C ranges from 7.6

to 8.8 and agrees with our previous findings.60 The overall acceleration provided by the

combination of the X2C and RI-J methodologies ranges from 14.3 to 23.5 for the systems

studied when compared to the full 4c treatment, without compromising the accuracy of

final spectra. These results suggest that one-particle X2C electron dynamics with RI-J

acceleration is a viable and promising method for calculations of chiroptical spectra in the

valence region.
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Table 1: Wall-clock times per microiteration (in seconds) and achieved accelerations for
the relativistic electron dynamics simulations with 4c and X2C Hamiltonians using exact
four-centre integrals or the RI-J technique. The accelerations are reported in parentheses.
The calculations were performed with OpenMP parallelization on a single node equipped
with dual-socket Intel Xeon processor (E5-2680v3, 2.5 GHz) with 12 CPU cores per socket.

Heteroatom
4c X2C

exact RI-Ja exactb RI-Jc

O 11.0 5.9 (1.9) 1.4 (7.7) 0.8 (1.9)
S 12.4 6.2 (2.0) 1.6 (7.6) 0.8 (2.0)
Se 15.7 7.1 (2.2) 2.1 (7.6) 1.0 (2.1)
Te 23.4 9.1 (2.6) 3.1 (7.6) 1.3 (2.3)
Po 42.7 11.6 (3.7) 4.9 (8.7) 1.8 (2.7)
Lv 50.6 12.7 (4.0) 5.7 (8.8) 2.2 (2.7)

a acceleration calculated as time ratio of exact vs. RI-J for 4c
b acceleration calculated as time ratio of 4c vs. X2C for exact J
c acceleration calculated as time ratio of exact vs. RI-J for X2C

5 Conclusions and Perspectives

We have presented an implementation of relativistic Liouville–von Neumann electron dy-

namics based on 4c Dirac–Coulomb and 2c X2C Hamiltonians and its application to the

prediction of chiroptical spectra via the analysis of time-dependent induced magnetic dipole

moments. The implementation was further enhanced by the resolution-of-identity approxi-

mation for the Coulomb term (RI-J), a relativistic formulation of which has been presented

for the first time in terms of complex quaternion algebra. The proposed methodology was

assessed on the dimethylchalcogenirane series, C4H8X (X = O, S, Se, Te, Po, Lv), and it

was observed that while the RI-J alone offers a speedup at least of a factor two, the combi-

nation of the X2C Hamiltonian and RI-J can lead to almost 25-fold acceleration compared

to the full 4c treatment. The calculation for the dimethylchalcogeniranes showed increasing

importance of relativistic effects with increasing atomic number. Most notably, for the Po

system, the 1c ECD spectrum was a mirror image of the relativistic spectrum in a certain

frequency region, highlighting the necessity of a relativistic treatment when interpreting
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spectra of molecules containing heavy elements. Furthermore, the X2C approach, even in its

simplest one-particle form, reproduced the reference 4c results surprisingly well across the

entire series. All these findings suggest that the RI-J-based relativistic electron dynamics,

in particularly when combined with the X2C Hamiltonian, is a viable and promising tool for

the calculation of chiroptical spectra in the valence region.

The methodology presented can be further extended by introducing the RI approxima-

tion for the exchange term (RI-K), allowing accelerated calculations also with hybrid DFT

functionals. In addition, chiroptical spectroscopy in X-ray regions is another exciting area

of research where relativistic corrections are expected to play a significant role and this line

of investigation is currently pursued in our laboratory.
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1 Molecular geometries

Table 1: Molecular geometry of dimethyloxirane in Å (taken from Srebro et al.1).

Atom x y z

C -0.5972470 -0.0937810 -0.4278450
C 0.5972490 -0.0937800 0.4277950
O -0.0000170 1.1417930 0.0000170
C -1.9791090 -0.3871020 0.0939390
H -0.4434820 -0.3018460 -1.4872730
H 0.4434500 -0.3019120 1.4872090
C 1.9791270 -0.3870870 -0.0939200
H -2.2393330 -1.4382610 -0.0649790
H -2.7225440 0.2268110 -0.4227770
H -2.0426510 -0.1686000 1.1621540
H 2.2391470 -1.4383500 0.0646400
H 2.7226020 0.2265060 0.4231170
H 2.0428320 -0.1681980 -1.1620470

Table 2: Molecular geometry of dimethylthiirane in Å (taken from Srebro et al.1).

Atom x y z

C 0.6009830 -0.3748390 0.4305560
C -0.6009830 -0.3748360 -0.4305330
S 0.0000110 1.3232590 -0.0000030
C 1.9454160 -0.8191970 -0.0941400
H 0.4192650 -0.6096550 1.4763780
C -1.9454370 -0.8191770 0.0941330
H 2.0395690 -1.9083680 -0.0141890
H 2.7591460 -0.3677950 0.4779230
H 2.0700040 -0.5361380 -1.1412780
H -2.0395890 -1.9083540 0.0142600
H -2.7591220 -0.3678220 -0.4780360
H -2.0700860 -0.5360360 1.1412370
H -0.4192400 -0.6096780 -1.4763470
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Table 3: Molecular geometry of dimethylselenirane in Å (this work). For details of the
geometry optimization, see the section ”Computational Details” in the article.

Atom x y z

C 0.598868 -0.473269 0.429905
C -0.598884 -0.473257 -0.429896
Se 0.000016 1.390212 -0.000003
C 1.939688 -0.912693 -0.094737
H 0.412624 -0.693331 1.484674
C -1.939718 -0.912638 0.094740
H 2.023880 -2.010994 -0.043920
H 2.759539 -0.485927 0.496724
H 2.073138 -0.601351 -1.138778
H -2.023938 -2.010937 0.043933
H -2.759551 -0.485856 -0.496734
H -2.073167 -0.601280 1.138777
H -0.412642 -0.693334 -1.484662

Table 4: Molecular geometry of dimethyltelirane in Å (this work). For details of the geometry
optimization, see the section ”Computational Details” in the article.

Atom x y z

C -0.595298 -0.637224 -0.426550
Te 0.000003 1.465245 -0.000004
C 1.931244 -1.094842 -0.095258
H 0.406448 -0.836593 1.484878
C -1.931199 -1.094906 0.095274
H 1.986245 -2.196736 -0.065058
H 2.756973 -0.701143 0.509907
H 2.082850 -0.771002 -1.133263
H -1.986153 -2.196804 0.065076
H -2.756955 -0.701248 -0.509880
H -2.082810 -0.771079 1.133282
H -0.406428 -0.836599 -1.484879
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Table 5: Molecular geometry of dimethylpolonirane in Å (this work). For details of the
geometry optimization, see the section ”Computational Details” in the article.

Atom x y z

C 0.582458 -0.811260 0.419128
C -0.582429 -0.811296 -0.419124
Po 0.000002 1.501260 -0.000003
C 1.938957 -1.200949 -0.096654
H 0.407189 -0.957600 1.488311
C -1.938910 -1.201017 0.096656
H 2.044400 -2.300593 -0.078200
H 2.744366 -0.779628 0.516911
H 2.084964 -0.866136 -1.132181
H -2.044257 -2.300671 0.078354
H -2.744313 -0.779848 -0.517017
H -2.084997 -0.866069 1.132126
H -0.407159 -0.957632 -1.488302

Table 6: Molecular geometry of dimethyllivermorirane in Å (this work). For details of the
geometry optimization, see the section ”Computational Details” in the article.

Atom x y z

C 0.554073 -1.290694 0.400657
C -0.554050 -1.290748 -0.400753
Lv 0.000001 1.563333 -0.000005
C 1.958571 -1.466624 -0.099547
H 0.405397 -1.334331 1.484824
C -1.958500 -1.466782 0.099635
H 2.265748 -2.520981 0.009913
H 2.679151 -0.859934 0.463054
H 2.043989 -1.207386 -1.163679
H -2.265541 -2.521209 -0.009513
H -2.679254 -0.860202 -0.462860
H -2.043687 -1.207421 1.163767
H -0.405501 -1.334300 -1.484951
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2 Auxiliary basis sets

Table 7: Exponents of the auxiliary basis associated with the uncontracted aug-cc-pVDZ
GTO basis of hydrogen.

s p d f

6.7740000000E+01 2.8140000000E+00 2.8140000000E+00 2.1140000000E+00
1.0190000000E+01 1.1733460560E+00 1.1733460560E+00 4.9400000000E−01
2.3180000000E+00 4.8924696770E−01 4.8924696770E−01
6.5160000000E−01 2.0400000000E−01 2.0400000000E−01
2.7784878230E−01
1.1847751040E−01
5.0520000000E−02

Table 8: Exponents of the auxiliary basis associated with the uncontracted aug-cc-pVDZ
GTO basis of carbon.

s p d f g

1.6472000000E+04 3.7420000000E+01 3.7420000000E+01 2.1940000000E+00 2.1940000000E+00
2.4700000000E+03 8.2660000000E+00 1.3177992110E+01 6.6241980650E−01 6.6241980650E−01
5.6160000000E+02 2.4000000000E+00 4.6408197780E+00 2.0000000000E−01 2.0000000000E−01
1.5854000000E+02 9.9667271050E−01 1.6343315450E+00
5.1180000000E+01 4.1389853830E−01 5.7555339960E−01
1.7994000000E+01 1.7188390750E−01 2.0268942170E−01
7.4140088900E+00 7.1380000000E−02 7.1380000000E−02
3.0547698020E+00
1.2586467970E+00
5.1859611780E−01
2.1367546000E−01
8.8040000000E−02

Table 9: Exponents of the auxiliary basis associated with the uncontracted aug-cc-pVDZ
GTO basis of oxygen.

s p d f g

3.0660000000E+04 6.8920000000E+01 6.8920000000E+01 4.6280000000E+00 4.6280000000E+00
4.5980000000E+03 1.5498000000E+01 2.3887475780E+01 1.4074032830E+00 1.4074032830E+00
1.0448000000E+03 4.5600000000E+00 8.2793310930E+00 4.2800000000E−01 4.2800000000E−01
2.9460000000E+02 1.8346255420E+00 2.8695925840E+00
9.5100000000E+01 7.3812519260E−01 9.9459261960E−01
3.3520000000E+01 2.9697002880E−01 3.4472297020E−01
1.3569436890E+01 1.1948000000E−01 1.1948000000E−01
5.4931270160E+00
2.2237064550E+00
9.0019225580E−01
3.6441235100E−01
1.4752000000E−01
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Table 10: Exponents of the auxiliary basis associated with the uncontracted aug-cc-pVDZ
GTO basis of sulfur.

s p d f g

7.4820000000E+05 1.1488000000E+03 1.1488000000E+03 1.6380000000E+00 1.6380000000E+00
1.1210000000E+05 2.7160000000E+02 4.3536518370E+02 5.7521821950E−01 5.7521821950E−01
2.5520000000E+04 8.6380000000E+01 1.6499202920E+02 2.0200000000E−01 2.0200000000E−01
7.2300000000E+03 3.1740000000E+01 6.2527668100E+01
2.3660000000E+03 1.2416000000E+01 2.3696352460E+01
8.5760000000E+02 5.2405186630E+00 8.9802984360E+00
3.3560000000E+02 2.2119068830E+00 3.4032984660E+00
1.3894000000E+02 9.3359691520E−01 1.2897611960E+00
6.7341564760E+01 3.9405058450E−01 4.8878579390E−01
3.2639170470E+01 1.6632002600E−01 1.8523704470E−01
1.5819582640E+01 7.0200000000E−02 7.0200000000E−02
7.6674496100E+00
3.7162664060E+00
1.8012033600E+00
8.7300887230E−01
4.2313072920E−01
2.0508338420E−01
9.9400000000E−02

Table 11: Exponents of the auxiliary basis associated with the uncontracted aug-cc-pVDZ
GTO basis of selenium.

s p d f g

1.9127200000E+07 1.6008600000E+04 1.6008600000E+04 7.2370000000E+02 7.2370000000E+02
2.8642000000E+06 3.7938000000E+03 6.9638238710E+03 2.8548312910E+02 2.8548312910E+02
6.5182000000E+05 1.2294200000E+03 3.0292994330E+03 1.1261657730E+02 1.1261657730E+02
1.8462400000E+05 4.6700000000E+02 1.3177609350E+03 4.4424668900E+01 4.4424668900E+01
6.0232000000E+04 1.9571200000E+02 5.7323282850E+02 1.7524517740E+01 1.7524517740E+01
2.1744000000E+04 8.7028000000E+01 2.4935924780E+02 6.9130221910E+00 6.9130221910E+00
8.4802000000E+03 4.2060078210E+01 1.0847256370E+02 2.7270294410E+00 2.7270294410E+00
3.5168000000E+03 2.0327367960E+01 4.7186126720E+01 1.0757508610E+00 1.0757508610E+00
1.5331800000E+03 9.8240874910E+00 2.0526209390E+01 4.2435915700E−01 4.2435915700E−01
6.9686000000E+02 4.7479189250E+00 8.9290073420E+00 1.6740000000E−01 1.6740000000E−01
3.2806000000E+02 2.2946389820E+00 3.8841644160E+00
1.7272955510E+02 1.1089844080E+00 1.6896316280E+00
9.0945251520E+01 5.3596510220E−01 7.3499850490E−01
4.7884328590E+01 2.5902852090E−01 3.1972815450E−01
2.5211969680E+01 1.2518683470E−01 1.3908340230E−01
1.3274560470E+01 6.0502000000E−02 6.0502000000E−02
6.9892974580E+00
3.6799921990E+00
1.9375828060E+00
1.0201725780E+00
5.3713941240E−01
2.8281366750E−01
1.4890653830E−01
7.8402000000E−02
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Table 12: Exponents of the auxiliary basis associated with the Dyall’s uncontracted aug-
cVDZ GTO basis of tellurium.

s p d f g h

1.4953444840E+08 1.3701663080E+07 1.3701663080E+07 1.5456833860E+04 1.5456833860E+04 8.3289284000E+00
3.8813319000E+07 2.1085007000E+06 6.0791290230E+06 7.0754527930E+03 7.0754527930E+03 3.5941697710E+00
1.2710888240E+07 4.5193789000E+05 2.6971769390E+06 3.2388283830E+03 3.2388283830E+03 1.5509866000E+00
4.5563571000E+06 1.1820846860E+05 1.1966785720E+06 1.4825919420E+03 1.4825919420E+03 6.6929488250E−01
1.7530636720E+06 3.6128920800E+04 5.3094017840E+05 6.7866481530E+02 6.7866481530E+02 2.8881980000E−01
7.0811241600E+05 1.2610109940E+04 2.3556657530E+05 3.1066264320E+02 3.1066264320E+02
2.9867503200E+05 4.9178810600E+03 1.0451575090E+05 1.4220757540E+02 1.4220757540E+02
1.3075468420E+05 2.0935165200E+03 4.6371358780E+04 6.5096318930E+01 6.5096318930E+01
5.9230908400E+04 9.5377669800E+02 2.0573960360E+04 2.9798206780E+01 2.9798206780E+01
2.7677094200E+04 4.5763501400E+02 9.1282174140E+03 1.3640297060E+01 1.3640297060E+01
1.3304489560E+04 2.2799873800E+02 4.0499909460E+03 6.2439228360E+00 6.2439228360E+00
6.5621381200E+03 1.1680842800E+02 1.7968926370E+03 2.8581908600E+00 2.8581908600E+00
3.3129881000E+03 6.3951927240E+01 7.9724206600E+02 1.3083529710E+00 1.3083529710E+00
1.7083289340E+03 3.5013303990E+01 3.5371891380E+02 5.9890594460E−01 5.9890594460E−01
8.9727700600E+02 1.9169577980E+01 1.5693736610E+02 2.7415257070E−01 2.7415257070E−01
5.0985067420E+02 1.0495231190E+01 6.9629685950E+01 1.2549488400E−01 1.2549488400E−01
2.8970731250E+02 5.7460773400E+00 3.0893172770E+01
1.6461746780E+02 3.1459435440E+00 1.3706626860E+01
9.3538925410E+01 1.7223855860E+00 6.0813313450E+00
5.3150681310E+01 9.4299597680E−01 2.6981540610E+00
3.0201276220E+01 5.1628475040E−01 1.1971121000E+00
1.7160966950E+01 2.8266286400E−01 5.3113252510E−01
9.7512033730E+00 1.5475625540E−01 2.3565191540E−01
5.5408280620E+00 8.4728139510E−02 1.0455361440E−01
3.1484089130E+00 4.6388158000E−02 4.6388158000E−02
1.7889886810E+00
1.0165390160E+00
5.7761772490E−01
3.2821390110E−01
1.8649767870E−01
1.0597169720E−01
6.0215230000E−02
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Table 13: Exponents of the auxiliary basis associated with the Dyall’s uncontracted aug-
cVDZ GTO basis of polonium.

s p d f g h

1.2082641160E+08 9.4096618800E+07 9.4096618800E+07 7.8895340000E+04 7.8895340000E+04 2.2699010000E+03
3.2156279000E+07 2.5085746800E+07 4.4693153880E+07 3.5731617890E+04 3.5731617890E+04 9.9857008040E+02
1.1005933680E+07 7.4431520400E+06 2.1227946650E+07 1.6182812790E+04 1.6182812790E+04 4.3928885250E+02
4.1897553400E+06 2.4033507600E+06 1.0082656510E+07 7.3291791770E+03 7.3291791770E+03 1.9325102930E+02
1.7471976280E+06 8.2948161800E+05 4.7889682410E+06 3.3193776700E+03 3.3193776700E+03 8.5014586940E+01
7.7113614000E+05 3.0286604400E+05 2.2746204620E+06 1.5033427140E+03 1.5033427140E+03 3.7399438530E+01
3.5712541200E+05 1.1633338700E+05 1.0803784840E+06 6.8086236030E+02 6.8086236030E+02 1.6452682450E+01
1.7099447760E+05 4.6930347600E+04 5.1314831960E+05 3.0836185890E+02 3.0836185890E+02 7.2378295070E+00
8.4162470600E+04 1.9889575680E+04 2.4373050920E+05 1.3965676700E+02 1.3965676700E+02 3.1840507550E+00
4.2324712000E+04 8.8536362400E+03 1.1576489460E+05 6.3250405330E+01 6.3250405330E+01 1.4007209210E+00
2.1689297600E+04 4.1311721400E+03 5.4984953900E+04 2.8646043160E+01 2.8646043160E+01 6.1620220540E−01
1.1298632340E+04 2.0117606600E+03 2.6116251970E+04 1.2973763320E+01 1.2973763320E+01 2.7107838000E−01
5.9753482800E+03 1.0154692360E+03 1.2404459190E+04 5.8758039920E+00 5.8758039920E+00
3.2043764400E+03 5.2814975400E+02 5.8917569040E+03 2.6611455510E+00 2.6611455510E+00
1.7396896380E+03 2.8046375400E+02 2.7984129640E+03 1.2052300680E+00 1.2052300680E+00
9.5306768000E+02 1.5013633080E+02 1.3291646700E+03 5.4584745140E−01 5.4584745140E−01
5.3172359000E+02 8.3330172710E+01 6.3131451340E+02 2.4721374620E−01 2.4721374620E−01
3.0090339200E+02 4.6250748550E+01 2.9985601030E+02 1.1196285000E−01 1.1196285000E−01
1.7223990420E+02 2.5670554520E+01 1.4242287320E+02
9.9340857400E+01 1.4247928730E+01 6.7646717500E+01
6.0346199850E+01 7.9080283620E+00 3.2130220970E+01
3.6658268620E+01 4.3891932470E+00 1.5260919350E+01
2.2268654230E+01 2.4361340750E+00 7.2484922990E+00
1.3527451780E+01 1.3521275770E+00 3.4428227690E+00
8.2174679180E+00 7.5047141430E−01 1.6352405620E+00
4.9918329090E+00 4.1653417420E−01 7.7669164960E−01
3.0323691000E+00 2.3118897670E−01 3.6890591670E−01
1.8420613280E+00 1.2831682550E−01 1.7521956810E−01
1.1189897480E+00 7.1219691940E−02 8.3224192520E−02
6.7974830050E−01 3.9529068000E−02 3.9529068000E−02
4.1292402600E−01
2.5083733370E−01
1.5237516830E−01
9.2562744060E−02
5.6228726000E−02
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Table 14: Exponents of the auxiliary basis associated with the Dyall’s uncontracted aug-
cVDZ GTO basis of livermorium.

s p d f g h

1.0475656580E+08 1.4376923860E+08 1.4376923860E+08 5.7723723200E+05 5.7723723200E+05 5.6122452600E+03
2.7847249600E+07 5.4177527800E+07 7.3211391180E+07 2.6101586220E+05 2.6101586220E+05 2.5953315430E+03
9.4631792000E+06 2.0623771200E+07 3.7281325620E+07 1.1802648290E+05 1.1802648290E+05 1.2001873590E+03
3.5520448000E+06 8.1493086200E+06 1.8984712860E+07 5.3369364440E+04 5.3369364440E+04 5.5501567840E+02
1.4596926580E+06 3.3202379200E+06 9.6675565200E+06 2.4132626760E+04 2.4132626760E+04 2.5666192950E+02
6.3417355200E+05 1.3886311460E+06 4.9229951340E+06 1.0912321710E+04 1.0912321710E+04 1.1869096420E+02
2.9028326200E+05 5.9411092000E+05 2.5069293410E+06 4.9343474450E+03 4.9343474450E+03 5.4887551960E+01
1.3796094880E+05 2.5955201000E+05 1.2765998240E+06 2.2312194730E+03 2.2312194730E+03 2.5382246910E+01
6.7860999200E+04 1.1568360160E+05 6.5008099070E+05 1.0089156450E+03 1.0089156450E+03 1.1737788170E+01
3.4274375400E+04 5.2620500800E+04 3.3103975630E+05 4.5621275350E+02 4.5621275350E+02 5.4280328950E+00
1.7718812440E+04 2.4464394600E+04 1.6857487270E+05 2.0629086030E+02 2.0629086030E+02 2.5101442180E+00
9.3308277000E+03 1.1653792780E+04 8.5843126580E+04 9.3280862330E+01 9.3280862330E+01 1.1607932590E+00
4.9943101800E+03 5.7004058400E+03 4.3713765060E+04 4.2179858400E+01 4.2179858400E+01 5.3679823680E−01
2.7137991400E+03 2.8641798800E+03 2.2260294240E+04 1.9072941760E+01 1.9072941760E+01 2.4823744000E−01
1.4989755020E+03 1.4769429760E+03 1.1335575850E+04 8.6244269450E+00 8.6244269450E+00
8.4202016400E+02 7.7908137000E+02 5.7723980880E+03 3.8998042920E+00 3.8998042920E+00
4.7994850200E+02 4.1863419400E+02 2.9394695180E+03 1.7634184410E+00 1.7634184410E+00
2.7420654400E+02 2.2970272000E+02 1.4968616010E+03 7.9738478250E−01 7.9738478250E−01
1.6049087460E+02 1.3150879370E+02 7.6224456150E+02 3.6056246020E−01 3.6056246020E−01
9.6291864930E+01 7.5291066700E+01 3.8815664120E+02 1.6303958960E−01 1.6303958960E−01
5.7773523110E+01 4.3105442350E+01 1.9766041730E+02 7.3723448000E−02 7.3723448000E−02
3.4663156380E+01 2.4678613840E+01 1.0065431430E+02
2.0797319350E+01 1.4128934720E+01 5.1256043730E+01
1.2478046940E+01 8.0890603320E+00 2.6101037360E+01
7.4866213610E+00 4.6311274250E+00 1.3291391640E+01
4.4918487400E+00 2.6514008240E+00 6.7683551930E+00
2.6950348000E+00 1.5179729860E+00 3.4466392430E+00
1.6169762150E+00 8.6906587900E−01 1.7551268710E+00
9.7015893090E−01 4.9755529830E−01 8.9376059270E−01
5.8207928000E−01 2.8485904330E−01 4.5512835020E−01
3.4923792110E−01 1.6308674600E−01 2.3176431900E−01
2.0953696470E−01 9.3369992430E−02 1.1802099240E−01
1.2571870620E−01 5.3455941100E−02 6.0099650870E−02
7.5429140160E−02 3.0604454000E−02 3.0604454000E−02
4.5256234000E−02
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3 Additional chiroptical spectra
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Figure 1: The comparison of 2c X2C ECD and ORD spectra (in atomic units) of Te-based
system calculated with and without the RI-J acceleration. The simulation proceeded for
15000 time steps of length 0.15 au.
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Figure 2: The comparison of 1c, 2c (X2C) and 4c (DC) ECD and ORD spectra (in atomic
units) of dimethyloxirane and dimethylthiirane computed using PBE functional with RI-J
acceleration. The corresponding spectra are labelled by the chemical symbol of the het-
eroatom.
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Figure 3: The comparison of 1c, 2c (X2C) and 4c (DC) ORD spectra (in atomic units)
of dimethylchalcogeniranes computed using PBE functional with RI-J acceleration. The
corresponding spectra are labelled by the chemical symbol of the heteroatom.
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