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First-principle predictions of electronic structure and properties of solid-state materials containing
heavy elements pose numerous challenges to computational methods, as variational treatment of
relativistic effects is in many cases required and because multiple wave-function components coupled
by the spin–orbit interaction increase the complexity of the formalism and the computational cost.
Here, we present the first full-potential method for solids and surfaces that solves the fully-relativistic
4-component Dirac–Kohn–Sham equation within the framework of atom-centered Gaussian-type
orbitals (GTOs), thus also allowing for a seamless transition to the methodology commonly used
studies of molecules with heavy elements. We provide a detailed description of how key components
of such a method are altered in the 4-component scheme, and show the necessary steps that need
to be overcome when employing GTOs on periodic systems. Finally, we demonstrate the validity
of the method on 3-dimensional silver halide (AgX) crystals with strong scalar-relativistic effects,
and 2-dimensional honeycomb structures (silicene and germanene) exhibiting the quantum spin Hall
effect.

I. INTRODUCTION

Relativistic effects on band structures and properties
of solids containing heavy elements have for a long time
been known to have a significant impact on both core
and valence electrons.1 The effects of relativity on the
spectroscopic properties of electrons close to the nuclei
(X-ray spectroscopy) were studied as early as in 1933.2 In
contrast, the importance of relativistic effects on valence
states located close to the Fermi level was not appar-
ent until 19573 when Mayers observed a large relativistic
contraction of the 6s orbital and a corresponding expan-
sion of the 5d orbital in heavy elements such as mer-
cury. Such changes in the size of the atomic orbitals due
to relativity can lead to dramatic changes in the struc-
tural and physical properties of solids.4–6 For instance,
Christensen demonstrated that these relativistic effects
are responsible for the stable phase of lead being the
face-centered cubic (FCC) crystal structure, in contrast
to the diamond-like structure adopted by other group 14
elements (C, Si, Ge and Sn).4 It has also been shown
that relativistic effects need to be included in theoreti-
cal models of solids in order to explains why the ground
state of CsAu is insulating and not metallic.7 Relativity
have also been shown to significantly increase the volt-
age of the lead-acid-battery reaction used in car batteries
by 1.7-1.8 V out of the total 2.13 V,8 and lead to a de-
crease in the melting temperature of mercury by 105 K,9

making mercury the only metal that is liquid at room
temperature. A protruding manifestation of relativity
in quantum mechanics – the spin–orbit coupling (SOC)
– leads to a splitting of bands in materials lacking space
inversion symmetry.10–12 These splittings can be remark-
ably large in transition-metal dichalcogenides,13–16 and
are then often referred to as “giant SOC”. SOC plays
a paramount role in the field of spintronics,17–19 topo-
logical insulators,20,21 and related spin-Hall effects.22–24

SOC has also been shown to open the band gap in 2-
dimensional honeycomb systems25–28 and change the sta-
ble phase of Flerovium (Fl, element 114) from FCC to a
hexagonal close packed (HCP) structure.29

Materials exhibiting some of the unique properties
mentioned above are rare,30 however, and the search for
novel materials must be aided by first-principle calcula-
tions.31 Modeling spin–orbit-coupled solid-state systems
is far from straightforward, and at the fully-relativistic
level of theory with variationally included SOC, Kohn–
Sham (KS) density functional theory (DFT)32,33 is today
the only affordable first-principle method for such stud-
ies due to its very favorable compromise between accu-
racy and computational feasibility. However, we note the
promising recent works of Sakuma et al.34 and Scherpelz
et al.35 at the GW level of theory.

A critical choice in the modeling of solids is the repre-
sentation of the one-particle basis functions. There are
two major families of basis sets: local functions (e.g.
atom-centered orbitals) and plane waves. Plane waves
are ill-suited to capture rapid oscillations of wave func-
tions in regions close to the nuclei, and are for this rea-
son often combined with pseudopotentials.36 For heav-
ier elements, these pseudopotentials can be constructed
from relativistic all-electron calculations.37,38 The use of
pseudopotentials sacrifices the possibility to model the
nodal structure of the wave functions close to the nu-
clei and introduces uncontrollable transferability errors.
This makes all-electron methods in some cases the pre-
ferred method, e.g. for calculations of nuclear magnetic
resonance (NMR) shifts.39

Relativistic all-electron calculations are possible us-
ing the relativistic Korringa–Kohn–Rostoker (KKR)
method40–43 or by extending Slater’s augmented plane-
wave (APW) method44 to the Dirac Hamiltonian.45,46

The APW method divides space into spheres centered
at atoms and an interstitial region, and requires solving



2

a secular energy-dependent equation for each band to
match KS orbitals at boundaries of the spheres. This ap-
proach results in equations with a nonlinear dependence
on energies. The method is very accurate, but com-
putationally expensive. To mitigate the computational
cost, the APW method can be linearized,47,48 leading to
the linear-APW (LAPW) and linear muffin-tin orbitals
(LMTO) methods, enabling the use of a full potential for
all electrons. The LMTO approach has been extended
to the relativistic domain 49–52. Relativistic extension
of LAPW was first developed by MacDonald et al.53 and
later by Wimmer et al..54 MacDonald et al. included
SOC by a two-step variational method, the so-called
second-variational approach, i.e. as a post processing to
the spin-non-polarized scalar-relativistic self-consistent
procedure. This process is performed on a smaller set of
scalar-relativistic eigenfunctions, thus reducing the com-
putational effort considerably. The second-variational
approach was later extended and implemented in some
of the modern program packages,55–57 where the second-
variational inclusion of SOC can be employed both self-
consistently as well as non-self-consistently.

Both the full-potential LMTO and LAPW methods
suffer from limitations when treating systems with deep-
lying valence and extended core states.58 If SOC is
included, severe convergence problems can be encoun-
tered.59 These limitations are due to the insufficient flex-
ibility of the finite scalar-relativistic basis set for describ-
ing Dirac p1/2 states in the core region.53,59 Convergence
is achieved when the basis is augmented by Dirac p1/2

local orbitals in the second variational step.60–62 Huhn
and Blum carried out a benchmark study and a compar-
ison of various LAPW strategies for the evaluation of the
SOC contribution.62

More recently, the linearized methods were generalized
by Blöchl to include the pseudopotential approximation,
establishing the projector augmented wave (PAW) tech-
nique.63,64 PAW introduces pseudopotentials as a well-
defined approximation, and hence brings transferability
errors under control, enabling all-electron calculations of
properties in a pseudopotential framework. However,
the complexity of the PAW approach makes its exten-
sion to e.g. include hybrid density functionals and the
study of response properties difficult. A fully relativis-
tic PAW method for both Dirac-type (4-component) and
Pauli-type (2-component) equations was formulated by
Dal Corso.65

An alternate strategy to the use of plane waves, is
to expand the KS orbitals in a set of local functions.
Such full-potential methods employing numerical orbitals
have been extended to include scalar relativistic correc-
tions,66,67 as well as 4-component (4c) SOC.68–71 Alter-
natively, basis functions can be constructed by placing
analytic Slater-type orbitals (STOs) or Gaussian-type
orbitals (GTOs) on atom centers. 2-component (2c)
techniques using STOs were implemented by Philipsen
et al.72,73 and Zhao et al.74 Relativistic calculations on
solids with GTOs were reported with scalar-relativistic

corrections,75,76 as well as approximate 2c schemes solv-
ing Pauli-type equations,77,78 or approaches based on
using the Douglass–Kroll–Hess Hamiltonian.79,80 While
calculations that include scalar-relativistic corrections on
solids are common,66,67,75,76 the inclusion of SOC in non-
relativistic implementations poses severe methodological
complications due to the appearance of multiple spinor
components of the wave functions as well as the need to
use complex algebra.

We here present the first fully-relativistic all-electron
full-potential GTO-based method, directly solving the 4c
Dirac–Kohn–Sham (DKS) equation for solid-state sys-
tems while treating SOC variationally during the self-
consistent optimization procedure. The approach builds
on a transparent and efficient quaternion-based formu-
lation of the 4c method employing a Kramers-restricted
basis. The variational treatment of SOC is mandatory
in studies of materials containing heavy elements, where
SOC splittings are of the same magnitude as the effects
of the crystal potential, and for which the evaluation of
perturbational or non-self-consistent SOC can be insuffi-
cient.34,62,81

Our approach builds on previous nonrelativistic meth-
ods for handling periodic systems with GTOs. This in-
cludes the pioneering works of Pisani, Dovesi et al.82–84

and a recent implementation of  Lazarski et al.,85 that
we have combined with integral screening techniques uti-
lizing quaternion algebra86,87 as implemented in the 4c
ReSpect program package.88 In contrast to plane waves,
GTOs can treat both core and valence electrons on an
equal footing, the quality being independent on a fixed
linearization energy. We will demonstrate that GTOs are
a convenient and computationally efficient approach for
full-potential relativistic calculations. The local nature
of the GTOs makes them amendable to highly efficient
linear scaling techniques, as the GTOs better reflect de-
cay properties of operators and density matrices.89 In ad-
dition, because periodicity is embedded explicitly in the
local basis, systems that are periodic in 1 or 2 dimensions
(polymers and slabs) can be studied using atom-centered
GTOs while avoiding the requirement to repeat the poly-
mer or slab in the non-periodic dimensions.90 This elim-
inates the concern in calculations on such systems using
plane waves that there will be spurious self-interactions
between the system studied and its periodic images.

The rest of the paper is organized as follows: In Sec-
tion II we establish the main principles of our 4c GTO-
based method for the solid state. In Section II A we con-
centrate on the general formulation of the working equa-
tions, in Section II B we define the 4c density and the den-
sity matrix in real-space GTOs, Section II C shows con-
sequences of the time-reversal symmetry on the structure
of operators in both real space and reciprocal space, and
these concepts are further developed in Section II D in a
quaternion formulation. In Section II E we derive how the
Coulomb potential and energy are evaluated using the 4c
real-space GTOs, before we in Section II F analyze the
problem of the long-range electrostatic lattice sums, and
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describe its solutions within our theoretical framework.
In Section II G we derive the exchange–correlation contri-
butions. Practical implementation details and approxi-
mations required in realistic calculations are described in
Section III. Results for the silver halide crystals and the
2-dimensional hexagonal structures are shown and dis-
cussed in Section IV, before we in Section V give some
concluding remark and an outlook.

II. THEORY

A. General framework

In this section we outline the basic GTO-based scheme
we use to solve the 4c DKS equations for periodic sys-
tems. Unless otherwise stated, we employ atomic units,
setting the elementary charge e, the electron rest mass
me and the Planck’s constant ~ to unity. Throughout
this paper, Einsteins’s implicit summation over repeated
indices will be used.

The fundamental building units are the scalar atom-
centered normalized primitive Cartesian GTOs91,92

gµ(r) ≡ N (x−Ax)lx(y−Ay)ly (z−Az)lze−α(r−A)2 , (1)

where N is the normalization constant, α is the Gaus-
sian exponent, l ≡ (lx, ly, lz) is the Cartesian angular
momenta, and A and r are the nuclear and electron co-
ordinates, respectively. Basis representations of the solu-
tions to the DKS equations is constructed in three steps.
First, 4c basis bispinors χµ for a reference unit cell are
formed

χµ(r) ≡
(
χLµ(r) 02

02 χSµ(r)

)
, (2)

using 2c spinors χLµ and χSµ defined for the so-called large
(L) and small (S) components, respectively, as

χLµ(r) ≡ I2 ⊗ gµ(r), (3a)

χSµ(r) ≡ 1

2c
(σ · p)gµ(r), (3b)

where I2 is the 2 × 2 identity matrix, σ are the Pauli
matrices, p ≡ −i∇ is the electron momentum opera-
tor, and c is the speed of light. The construction of the
small-component basis in Eq. (3b) utilizes the restricted
kinetically balanced (RKB) condition which is essential
to achieve variationally stable 4c solutions in a finite ba-
sis.93 Second, the basis for periodic systems is obtained
by translating χµ from the reference unit cell to the unit
cell m as

χµm(r) ≡ χµ(r −m), (4)

where the unit cell position vector m is

m = miai, mi ∈ Z, i = 1, . . . , d. (5)

Here, Z denotes the field of integers, d is the number
of periodic dimensions, and ai are the primitive vectors
that constitute a Bravais lattice. Since all unit cells are
equivalent, we choose the central unit cell m = 0 to be
the fixed reference unit cell. Third, symmetry-adapted
Bloch functions for each k-point from the first Brillouin
zone K are constructed from the real-space GTOs as the
Fourier series

ϕµ(k; r) =
1√
|K|

∑

m

eik·mχµm(r), (6)

where the infinite lattice sum is over the whole Bravais
lattice. |K| is the volume of the primitive reciprocal
unit cell (first Brillouin zone), and enters the normal-
ization constant to ensure an approximate normalization
of the Bloch functions. The symmetry-adapted functions
in Eq. (6) satisfy the Bloch condition

ϕµ(k; r +m) = eik·mϕµ(k; r), (7)

by construction, and ϕµ(k; r) can thus be used as basis
functions that block-diagonalize a translationally invari-
ant Hamiltonian.

Our aim is to solve the 4c DKS equations

F̂ψp(k; r) = εp(k)ψp(k; r), (8)

for each band p. Here εp(k) and ψp(k; r) are the en-
ergy and the crystalline orbital (CO) of the p-th band,

respectively, and F̂ is the 4c Fock operator

F̂ =

(
V (r) cσ · p
cσ · p V (r)− 2c2

)
, (9)

consisting of the one-electron Dirac Hamiltonian94 and
the potential V (r), which in the context of KS DFT
contains the mean-field Coulomb potential and the
exchange–correlation potential.95–97 Such an approach
approximates the two-electron interaction with an in-
stantaneous Coulomb operator, neglecting the relativistic
corrections to the electron–electron interaction. We ex-
pand the solutions ψp(k; r) of Eq. (8) in terms of the
Bloch functions in Eq. (6):

ψp(k; r) = ϕµ(k; r)cµp (k), (10)

where cµp(k) are the 4c CO expansion coefficients. In-
serting the expansions in Eqs. (10) and (6) into Eq. (8),

multiplying the equation with ϕ†µ′(k; r) from the left and
integrating over spatial coordinates r, yields the matrix
form of the DKS equation in reciprocal space

F (k)c(k) = S(k)c(k)ε(k), (11)

where ε(k) is the diagonal matrix of the band energies.
F (k) and S(k) are reciprocal-space forms of the Fock and
overlap matrices, respectively (see Appendix A):

Fµµ′(k) =
∑

m

eik·mFµ0,µ′m, (12a)

Sµµ′(k) =
∑

m

eik·mSµ0,µ′m, (12b)
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and

Fµ0,µ′m =

∫

R3

χ†µ0(r)F̂χµ′m(r)d3r, (13a)

Sµ0,µ′m =

∫

R3

χ†µ0(r)χµ′m(r)d3r. (13b)

We have here exploited the translational invariance of the
Fock operator, which allows us to consider only the ref-

erence unit cell m = 0 for the bra function χ†µ0, and

to solve Eq. (11) independently for each k. Finally,
we express the real-space integrals in Eqs. (13) utiliz-
ing Eqs. (2) and (3) to obtain the 4c matrix forms for
Fµ0,µ′m and Sµ0,µ′m:

Fµ0,µ′m =

(
VLL T
T 1

4c2VSS − T

)

µ0,µ′m

, (14)

Sµ0,µ′m =

(
S 02

02
1

2c2 T

)

µ0,µ′m

, (15)

where the indices µ0, µ′m are applied to each element of
the matrices individually and

Sµ0,µ′m = I2 ⊗
∫

R3

gµ0(r)gµ′m(r)d3r, (16a)

Tµ0,µ′m = I2 ⊗
∫

R3

gµ0(r)
p2

2
gµ′m(r)d3r, (16b)

VLLµ0,µ′m = I2 ⊗
∫

R3

gµ0(r)V (r)gµ′m(r)d3r, (16c)

VSSµ0,µ′m =

∫

R3

[(σ · p)gµ0(r)]
†
V (r) [(σ · p)gµ′m(r)] d3r.

(16d)

Integrals over the GTOs in Eqs. (16) are evaluated an-
alytically using the recurrence scheme of Obara and
Saika.92,98 If we now let

T =

(
02 T
T −T

)
, V =

(
VLL 02

02
1

4c2VSS
)
, (17)

be the 4c kinetic energy matrix and the potential matrix,
respectively, where we have omitted the µ0, µ′m indices,
the DKS Fock matrix in Eq. (14) can be partitioned as:

F = T + V = T + J + V XC. (18)

Here, J is the Coulomb and V XC is the exchange–
correlation contribution to the potential matrix V (the
evaluation of these contributions will be discussed in
more detail in Sections II E and II G, respectively). The
Coulomb matrix J contains both the electron-nuclear in-
teraction and the Hartree mean-field interaction term.
The exact exchange matrix required for Hartree–Fock
theory or hybrid DFT is omitted in this work.

Within the framework of DFT, Eq. (11) must be solved
self-consistently, since V contains the mean-field poten-
tial as well as the exchange–correlation potential, both
of which depend on the electron density and its gradi-
ents and which are constructed from the COs ψi(k; r).
Eq. (11) is solved in an iterative manner: its solutions are
used to build a new Fock matrix F , Eq. (11) is then solved
for this updated potential until convergence is reached.

B. Density and density matrix

In this section we formulate the real-space 4c reduced
one-electron density matrix Dµm,µ′0 and the electron
density ρe for periodic systems that are used in practice
for the construction of the Fock matrix [Eq. (14)] instead
of ψi(k; r).

The reciprocal-space density matrix expressed in terms
of COs is a diagonal matrix, where the diagonal elements
form an occupation vector fp(k) for each band p. fp(k) is
a zero-temperature limit of the Fermi–Dirac distribution

fp(k) =
1

eβ(εp(k)−µ) + 1

β→∞−→ ϑ (µ− εp(k)) , (19)

where µ is the Fermi level chemical potential, β is
the inverse temperature, and ϑ is the Heaviside step
function. Bands corresponding to positronic (negative-
energy) states are left vacant. If we let f(k) denote the
diagonal matrix of occupation numbers, we can write the
k-space density matrix in its block-diagonal form as

D(k,k′) = δ(k − k′)D(k), (20)

D(k) = c(k)f(k)c†(k), (21)

where δ is the Dirac delta function. Inverting the Fourier
series in Eq. (6), gives

χµm(r) =
1√
|K|

∫

K
e−ik·mϕµ(k; r)d3k, (22)

which we use together with Eq. (20) to obtain the real-
space density matrix as a quadrature

Dµm,µ′m′ =
1

|K|

∫

K
eik·(m−m

′)Dµµ′(k)d3k,

where Dµµ′(k) are elements of the matrix defined in
Eq. (21). In practice, it is enough to restrict ourselves
only to nonequivalent elements (see Appendix A):

Dµm,µ′0 =
1

|K|

∫

K
eik·mDµµ′(k)d3k. (23)

The electron charge density can be evaluated as (the
minus sign is for the electron charge)

ρe(r) ≡ −
∑

p

∫

K
Tr
[
ψp(k; r)ψ†p(k; r)fp(k)

]
d3k, (24)

where the trace (Tr) indicates a sum of diagonal elements
of the resulting 4× 4 matrix. Equivalently, we can write

ρe(r) = −
∫

K
Tr
[
ϕµ′(k; r)Dµ′µ(k)ϕ†µ(k; r)

]
d3k, (25)

= −
∑

mm′

Tr
[
χµ′m′(r)Dµ′m′,µmχ†µm(r)

]
. (26)
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Let us define the 4c overlap distribution function

Ωµm,µ′m′(r) ≡ χ†µm(r)χµ′m′(r)

=

(
ΩLL(r) 02

02 ΩSS(r)

)

µm,µ′m′
.

(27)

If we use

Ωµm,µ′m′(r) = Ωµ0,µ′m′−m(r−m), (28)

together with the translational invariance of the density
matrix

Dµ′m′,µm = Dµ′m′−m,µ0, (29)

then the electron charge density becomes (after changing
the summation variables)

ρe(r) = −
∑

mn

Tr
[
Ωµ0,µ′m(r − n)Dµ′m,µ0

]
. (30)

We now collect indices µ0, µ′m ≡ u and µ′m, µ0 ≡ ū,
and introduce a shorthand notation for the trace in real
space for an arbitrary operator A

AuD
ū ≡

∑

m

Aµ0,µ′mD
µ′m,µ0. (31)

We can then express the total charge density as a sum of
nuclear and electronic contributions

ρ(r) =
∑

n

ρ̃(r − n), (32)

ρ̃(r) = ρ̃n(r) + ρ̃e(r), (33)

obtained from the auxiliary densities ρ̃n and ρ̃e translated
from the reference unit cell to the cell n. The auxiliary
densities for the reference unit cell are defined as

ρ̃n(r) ≡
∑

A

ZAδ(r −A), (34a)

ρ̃e(r) ≡ −Tr
[
Ωu(r)Dū

]
, (34b)

where A labels atoms in the reference unit cells, ZA and
A being their charge and position, respectively. Let

N =
∑

n

1 (35)

be the infinite number of unit cells in a crystal and Ne

the number of electrons per unit cell. The electron charge
density ρe must integrate to minus the total (infinite)
number of electrons, i.e.

∫

R3

ρe(r)d3r = −NNe. (36)

Hence, we can infer from Eq. (32) that the auxiliary elec-
tron density ρ̃e integrates to minus the number of elec-
trons per unit cell Ne. Moreover, integration of Eq. (34b)
gives

Tr
(
SuD

ū
)

= Ne, (37)

where Su ≡ Sµ0,µ′m is the 4c overlap matrix from
Eq. (15). Note, however, that whereas the total electron
density ρe is a periodic function with the lattice period-
icity, the auxiliary density ρ̃e is not periodic. Nuclear
charge densities follow the same arguments. In addition,
partitioning the total density in Eqs. (32) and (33) into
contributions from individual unit cells ensures that the
lattice sum over n is performed in a charge-neutral man-
ner,99,100 i.e.

∀n :

∫

R3

ρ̃(r − n)d3r = 0, (38)

provided that there is no excess of positive or negative
charge in a unit cell.

C. Time reversal symmetry

In the present work, we solve the DKS equation in
k-space [Eq. (11)] by exploiting the time reversal (TR)
symmetry of the Fock operator. In the absence of
a vector potential and in non-magnetic systems, TR-
symmetric operators attain a special structure in the so-
called Kramers-restricted basis.101–104 This allows us to
reduce the computational and memory resources needed
in a calculation and it also facilitates the interpretation
of band structures. Here we will generalize the concept
of a Kramers-restricted GTO basis to reciprocal space,
and explicitly show the structure of the TR-symmetric
operators expressed in this basis.

We start by briefly reviewing the TR operator, which
is an antilinear one-electron operator defined in the 4c
realm as102,104,105

K = −i
(
σy 02

02 σy

)
K0, (39)

where K0 denotes complex conjugation. The TR oper-
ator satisfies K† = −K and K†K = I4. An operator Â
is time-reversal symmetric iff it commutes with K ([·, ·]
denotes a commutator):

[
Â,K

]
= 0. (40)

Let us express the TR-symmetric operator Â in the
Kramers-restricted basis {|p〉 , |p̄〉}, where |p̄〉 ≡ K |p〉 de-

notes the Kramers partner of |p〉. If a ≡ 〈p|Â|p〉 and

b ≡ 〈p|Â|p̄〉 label two distinct elements of A, then the
remaining 2 elements are given by

〈p̄|Â|p〉 = 〈Kp|Â|p〉 = 〈p|K†Â|p〉∗ =

= −〈p|KÂ|p〉∗ = −〈p|ÂK|p〉∗ = −b∗

and

〈p̄|Â|p̄〉 = 〈p|K†ÂK|p〉∗ = 〈p|ÂK†K|p〉∗ =

= 〈p|Â|p〉∗ = a∗.
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Hence the matrix representation of the operator Â has
the following TR-symmetric structure:

A =

(
a b
−b∗ a∗

)
. (41)

Note, that the Hermitian adjoint of an antilinear operator
involves complex conjugation of the inner product.

The RKB basis defined in Eq. (2) is Kramers-restricted
in real space, and can be written as102,103

χµ(r) =

(
a b
−b∗ a∗

)
gµ(r), (42)

where

a ≡
(

1 0
0 ∇z

2ic

)
, b ≡

(
0 0

0 ∇x

2ic −
∇y

2c

)
, (43)

where we rearranged the 4 × 4 matrix to emphasize the
TR-symmetric structure of the basis. Using the transfor-
mation in Eq. (6), we obtain the 4c Kramers-restricted
Bloch functions that constitute our basis in k-space, and
which acquire the structure

ϕµ(k; r) =

(
a(k; r) b(k; r)
−b∗(−k; r) a∗(−k; r)

)

µ

, (44)

where

a(k; r) =
1√
|K|

∑

m

eik·ma gµ(r −m), (45a)

b(k; r) =
1√
|K|

∑

m

eik·mb gµ(r −m). (45b)

As a consequence of the Kramers-restricted basis, the
TR-symmetric operator Â takes the matrix form of

Aµ0,µ′m =

(
a b
−b∗ a∗

)

µ0,µ′m

, (46)

in real space, and after the transformation to k-space
[Eqs. (12)], we have

Aµµ′(k) =

(
a(k) b(k)
−b∗(−k) a∗(−k)

)

µµ′
, (47)

where aµµ′(k) =
∑

m eik·maµ0,µ′m (and likewise for b).
We now prove two important corollaries of the TR sym-

metry in our scheme, namely: 1) that the band energies
have a k-inversion symmetry (as in the nonrelativistic
case); and 2) that the density matrix inherits the TR
structure from the Fock matrix. In addition, it can be
shown that a new Fock matrix constructed from the TR-
symmetric density matrix is also TR-symmetric. This
implies that the TR structure is persevered in the self-
consistent procedure, allowing us to impose this struc-
ture in the algorithm, significantly reducing computa-
tional and memory demands in the calculations. Let us

assume the TR structure in Eq. (47) for the Fock ma-
trix F (k), and apply K from the left to the eigenvalue
problem in Eq. (11)

KF (k)c(k) = KS(k)c(k)ε(k). (48)

Since K commutes with the real-space Fock matrix, and
trivially also with the overlap matrix S(k), it follows that

KF (k) = F (−k)K, (49a)

KS(k) = S(−k)K. (49b)

Flipping k→ −k in Eq. 48 gives

F (k)Kc(−k) = S(k)Kc(−k)ε(−k). (50)

Because the energies ε(k) are real, we can infer that
{c(k),Kc(−k)} both are solutions of the eigenvalue equa-
tion Eq. (11) with energies {ε(k), ε(−k)}, and thus form
a Kramers pair. Let us introduce the following notation
for the Kramers partners:

c̄(k) = Kc(−k), (51a)

ε̄(k) = ε(−k), (51b)

f̄(k) = f(−k), (51c)

where the last equation follows from Eq. (19). In addi-
tion, Eqs. (51) imply that the density matrix in recip-
rocal space has the TR-symmetric structure of Eq. (47).
To prove this, we use the block-diagonal structure of the
operator K, and without loss of generality we restrict
ourselves to a 2× 2 Fock matrix with solutions

c(k) =

(
cu(k) c̄u(k)
cl(k) c̄l(k)

)
, (52)

where u and l denote the upper and lower spinor com-
ponents, respectively. The second column is related to
the first via the TR operation Eq. (51a), thus c̄u(k) =
−cl∗(−k) and c̄l(k) = cu∗(−k). The density matrix ele-
ment Dlu then satisfies

Dlu(k) =cl(k)f(k)cu∗(k) + c̄l(k)f̄(k)c̄u∗(k)

=− c̄u∗(−k)f̄(−k)c̄l(−k)

− cu∗(−k)f(−k)cl(−k)

=−Dul∗(−k).

Similarly Dll(k) = Duu∗(−k). It follows that the real-
space elements of the density matrix obtained from
Eq. (23) have the TR structure in Eq. (46).

D. Quaternion operators

Owing to the specific structure of TR-symmetric oper-
ators, a compact notation which leads to a very efficient
computer implementation can be achieved with the use
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of quaternion algebra (or its isomorphisms).86,87,102,103

This formulation identifies the integrals that are non-
redundant and non-zero when constructing operators in
the RKB basis Eq. (2), and allows us to formulate an ef-
ficient relativistic algorithm to solve the DKS equation.
Let Rex and Imx denote the real and imaginary parts of
a complex number x, respectively. Then a TR-symmetric
matrix A is written as

A =

(
a b
−b∗ a∗

)
=

3∑

q=0

Aqeq ≡ Aqeq, (53)

where

A0 = Re a e0 = I2 ≡ 1, (54a)

A1 = Im a e1 = iσz ≡ ǐ, (54b)

A2 = Re b e2 = iσy ≡ ǰ, (54c)

A3 = Im b e3 = iσx ≡ ǩ, (54d)

and ǐ, ǰ, ǩ are fundamental quaternion units obeying

ǐ2 = ǰ2 = ǩ2 = ǐǰǩ = −1. (55)

The Hermitian conjugation of A changes the sign of the
three imaginary components, so that

A† = (A0e0 +A1e1 +A2e2 +A3e3)†

= A0,T e0 −A1,T e1 −A2,T e2 −A3,T e3, (56)

where Aq,T denotes the transpose of the real matrix Aq.
We decompose the TR-symmetric matrices according to
Eq. (53) and refer to Aq as quaternion components re-
gardless of whether eq are interpreted as matrices or
quaternion units. All algebraic manipulations can be per-
formed in an equivalent manner in both algebras, and it
is only a matter of personal preference to select a suit-
able representation. However, we emphasize that encod-
ing complex 4c TR-symmetric matrices using four real
Aq components reduces the number of non-zero terms by
a factor of two, and often reveals important structures of
the operators, facilitating further reductions.87

Matrix elements of a 4c TR-symmetric operator Â in
the basis defined in Eqs. (42) and (4) are expressed in
real space as

Aµ0,µ′m = Aqµ0,µ′meq, (57)

where Aqµ0,µ′m are 2× 2 real matrices:

Aqµ0,µ′m =

(
ALL,q ALS,q

ASL,q ASS,q

)

µ0,µ′m

. (58)

Reciprocal-space quaternion components of A are defined
by the Fourier series

Aqµµ′(k) =
∑

m

eik·mAqµ0,µ′m, (59)

and form a quaternion (dropping the µµ′ indices)

A(k) = Aq(k)eq, (60)

with complex-valued components Aq(k).
During the self-consistent procedure, we exchange the

quaternion form of the Fock matrix with its complex form
Eq. (47), and vice versa. Whereas the quaternion form
is more beneficial in real space to facilitate the integral
evaluation when assembling the Fock matrix, the matrix
form is inevitable in the diagonalization step of the pro-
cedure. Additionally, if we establish a direct connection
between these forms in reciprocal space, we avoid unnec-
essary computations of the Fourier series, because there
are considerably fewer nonzero quaternion components
than complex matrix elements. Therefore, we use the
definitions in Eqs. (54) together with Eq. (60) to com-
pose a complex matrix

A(k) ≡
(

A0(k) + iA1(k) A2(k) + iA3(k)
−A2(k) + iA3(k) A0(k)− iA1(k)

)
. (61)

This matrix is consistent with Eq. (47), because the
definition of the reciprocal-space quaternion components
[Eq. (59)] implies

Aq∗(k) = Aq(−k). (62)

Inverting this process allows us to map a complex matrix

A(k) =

(
a(k) b(k)
c(k) d(k)

)

with assumed TR symmetry [c(k) = −b∗(−k), d(k) =
a∗(−k)] to a complex quaternion with components given
by

A0(k) =
1

2
[a(k) + d(k)] , (63a)

A1(k) =
1

2i
[a(k)− d(k)] , (63b)

A2(k) =
1

2
[b(k)− c(k)] , (63c)

A3(k) =
1

2i
[b(k) + c(k)] . (63d)

For k = 0 quaternion components Aq(0) are real, and
Eqs. (63) coincide with the definitions in Eqs. (54).

We now rewrite all operators in Eqs. (16) that en-
ter the DKS equation in the language of quaternions.
Scalar operators S, T , and VLL have a trivial structure
in the spin space, therefore their corresponding quater-
nions have nonzero real part (0-th component) and zero
imaginary part. On the other hand, the operator VSS
contains Pauli matrices, and thus is a general quaternion
VSS = VSS,qeq. The Fock matrix in Eq. (14) can then
be expressed as (omitting µ0, µ′m indices for clarity)

F =

(
VLL,0 T 0

T 0 1
4c2VSS,0 − T 0

)
e0 +

(
0 0
0 1

4c2VSS,i
)
ei,

(64)
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for i = 1, 2, 3. It is convenient to rewrite the potential
V in terms of the 4c overlap distribution Ω defined in
Eq. (27). We accomplish this by rewriting Eq. (16d) as

VSSµ0,µ′m =

∫

R3

[(σ · p)gµ0(r)]
†

[(σ · p)gµ′m(r)]V (r)d3r.

The small-component overlap distribution is a product
of small-component basis functions [Eq. (3b)], so

ΩSSµ0,µ′m =
1

4c2
[(σ · p)gµ0]

†
[(σ · p)gµ′m] . (65)

The potential therefore becomes

VLLu =

∫

R3

ΩLLu (r)V (r)d3r, (66a)

1

4c2
VSSu =

∫

R3

ΩSSu (r)V (r)d3r, (66b)

where u ≡ µ0, µ′m, and the overlap distributions are
quaternions

ΩLLu (r) = ΩLL,0u (r)e0, (67a)

ΩSSu (r) = ΩSS,qu (r)eq. (67b)

Explicit forms of the quaternion components of ΩSS can
be identified if we apply the multiplication rule for the
Pauli matrices to Eq. (65), i.e.

ΩSSµ0,µ′m =
1

4c2
(∇gµ0)

† · (∇gµ′m) I2

+
1

4c2
(∇gµ0)

† × (∇gµ′m) · iσ.
(68)

This analysis shows that in order to build 4c complex
matrices for the Coulomb and exchange–correlation op-
erators, it is sufficient to evaluate integrals in Eqs. (66)
for 5 components of the overlap distribution – one for the
LL sector, and 4 for the SS sector. The k-space matrix
is then obtained by computing the Fourier series of these
5 components [Eq. (59)] and arranging them according
to Eq. (61). Moreover, one can obtain a spin-free form
of the DKS equation in solids by omitting the imagi-
nary quaternion terms that are associated with the spin–
orbit interaction, in analogy to the procedure proposed
by Dyall for molecules.106

We conclude this section by employing the quaternion
formalism to express expectation values (traces with the
density matrix) of TR-symmetric operators appearing in
the DKS equation. Suppose a matrix A has the same
structure as the potential V , i.e. does not couple the
large and small components of the wave function, and its
LL quaternion has zero imaginary part. Its trace with a
density matrix D, as defined in Eq. (31), is obtained by
using the traceless property of the Pauli matrices as

Tr
[
AuD

ū
]

= Tr

[(
ALL 02

02 ASS

)

u

(
DLL DLS

DSL DSS

)ū]

=2
(
ALL,0u Dū

LL,0 +ASS,0u Dū
SS,0 (69)

− ASS,iu Dū
SS,i

)
,

implicitly summing over u and i = 1, 2, 3. Note that de-
spite the general TR-symmetric structure of the density
matrix, only its corresponding 5 elements are required to
evaluate the trace. Eq. (69) also holds for the electron
density in Eq. (34b) when substituting Au → Ωu(r). The
kinetic energy operator T [Eq. (17)] has a different struc-
ture than the potential V . We evaluate its trace with the
density matrix to compute the kinetic energy per unit cell
as

Ek

N
= Tr

[
TuD

ū
]

= Tr

[(
02 T
T −T

)

u

(
DLL DLS

DSL DSS

)ū]
.

It follows that

Ek

N
= 2T 0

u

(
Dū
SL,0 +Dū

LS,0 −Dū
SS,0

)
. (70)

E. Coulomb potential and energy

Using the auxiliary charge density ρ̃ from Eq. (32),
we can express the Coulomb contribution J to the Fock
matrix in Eq. (18)

J(r) = −
∫

R3

ρ(r′)d3r′

|r − r′| , (71)

as

J(r) = −
∑

n

∫

R3

ρ̃(r′)d3r′

|r − r′ − n| . (72)

We see that the Coulomb potential is a periodic function
with the lattice periodicity, given that the lattice sum
over n runs over the entire infinite lattice. Any trunca-
tion of this sum (for instance, for numerical purposes)
will violate the translational symmetry. We express the
non-equivalent matrix elements of J in the real-space ba-
sis defined in Eqs. (4) and (2) as

Jµ0,µ′m =

∫

R3

χ†µ0(r)J(r)χµ′m(r)d3r.

Since the Coulomb potential J(r) is diagonal in the 4×4
bispinor space, it follows that

Ju =

∫

R3

Ωu(r)J(r)d3r

= −
∑

n

∫

R3×R3

Ωu(r1)ρ̃(r2)

|r1 − r2 − n|
d3r1d

3r2,
(73)

where u ≡ µ0, µ′m, and Ω is the 4c overlap distribution
defined in Eqs. (27) and (67). Substituting the nuclear
and electronic auxiliary densities [Eqs. (34)], we obtain

Ju =
∑

n

[
Jn
u(n) + Je

u(n)
]
, (74a)

Jn
u(n) =

∑

A

∫

R3

−ZAΩu(r)

|r −A− n|d
3r, (74b)

Je
u(n) =

∫

R3×R3

Ωu(r1) Tr [Ωv(r2)Dv̄]

|r1 − r2 − n|
d3r1d

3r2. (74c)
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Note that in Eq. (74c), the sum over v ≡ ν0, ν′n′ is im-
plied. This sum over v together with the lattice sum over
n in Eq. (74a) must be computed for each u ≡ µ0, µ′m,
making this term the most computationally expensive to
evaluate.

The expression for the Coulomb energy in a periodic
system can be obtained in a similar manner. Inserting
the auxiliary density to

EC =
1

2

∫

R3×R3

ρ(r1)ρ(r2)

|r1 − r2|
d3r1d

3r2, (75)

gives

EC

N
=

1

2

∑

n

∫

R3×R3

ρ̃(r1)ρ̃(r2)

|r1 − r2 − n|
d3r1d

3r2. (76)

If we divide the density into nuclear and electron contri-
butions, and use the definitions in Eqs. (74b) and (74c),
we obtain

EC

N
=

1

2

∑

n

Enn(n) + 2 Tr
[
Jn
u(n)Dū

]
+ Tr

[
Je
u(n)Dū

]
,

(77)
where

Enn(n) =
∑

AB

ZAZB
|A−B − n| (78)

is the nuclear–nuclear repulsion energy, and the bar
over the sum indicates that the divergent self-interaction
terms are excluded. The traces of the 4c matrices Jn

u(n)
and Je

u(n) with the density matrix are evaluated using
Eq. (69). In Eq. (77) we grouped the electron–nuclear
and nuclear–electron terms together — this is only pos-
sible if

∑
n J

n
u(−n) =

∑
n J

n
u(n), so the lattice sum must

contain both the n and −n unit cells for each n. This
is true for the infinite lattice sum, but should be taken
into account when designing approximations to the lat-
tice sum.

F. Treatment of electrostatic lattice sums

A complication that emerges when studying periodic
systems is the evaluation of the electrostatic lattice sums∑

n that appear in the Coulomb potential [Eq. (74a)] and
the Coulomb energy [Eq. (77)]. The difficulty originates
in the long-range nature of the electrostatic Coulomb in-
teraction, and manifests itself in two ways. One issue is
the question of the convergence itself. The lattice sums
of individual electronic and nuclear contributions to the
potential and energy are divergent, hence they must be
treated in a charge-neutral manner, such as in Eqs. (74a)
and (77). Assuming that the unit cell is electrically neu-
tral, the charge-neutral lattice sums are convergent. Un-
fortunately, their convergence is often only conditional,
and therefore the result is not determined uniquely un-
less physical arguments are incorporated. In such cases,

the results can be shown to depend both on the choice
of the unit cell shape,107 as well as on the implemented
summation technique.108 The convergence problems were
rigorously investigated by de Leeuw et al.,109 who intro-
duced convergence factors to enforce absolute converge
on the lattice sums. The second complication is the very
slow convergence of the sums. Even if the sum is ab-
solutely convergent, imprudent truncation of the sums
severely distorts the potential and breaks its translational
invariance. To enable the evaluation of the electrostatic
potential and energy, the Coulomb operator is expanded
in a spherical multipole expansion [Eq. (B6) with P = 0
and Q = n]

1

|r1 − r2 − n|
= RT (r1)Θ(n)R(r2), (79)

where R is the vector of scaled regular solid harmonics,
and Θ is the interaction tensor, defined in the work of
Watson et al.110 (also see Ref. 111 and Appendix B).
The Coulomb problem is then reduced to the computa-
tion of the lattice sum of the spherical interaction tensors.
Nijboer and De Wette proposed a universal method for
computing such lattice sums.112 Their approach is based
on an Ewald-like partitioning of the sums into terms that
converge rapidly in direct space, and terms that converge
rapidly in reciprocal space. In this work, we follow a
scheme that employs a renormalization identity, first in-
troduced by Berman and Greengard,113 and then later
reformulated by Kudin and Scuseria.114 Contrary to the
approach of Kudin and Scuseria, we factor out the sum
of the interaction tensors Θ(n), as shown later in this
section. Because the sum of the interaction tensors only
depends on the lattice parameters, we pre-calculate it
before proceeding to the solution of the DKS equations.

We now apply the spherical multipole expansion in
Eq. (79) to derive expressions for the Coulomb poten-
tial and energy. First we split the infinite lattice sum
over n in Section II E

∑

n

=
∑

n∈NF

+
∑

n∈FF

, (80)

where NF is the near-field and FF is the far-field of the
reference unit cell n = 0. FF is constructed to con-
tain all unit cells for which a universal multipole expan-
sion in Eq. (79) centered in n = 0 produces a globally
valid approximation to the integrals in Eqs. (74). A re-
maining finite array of unit cells constitutes the NF. Our
partitioning scheme is similar to those discussed in previ-
ous studies.85,110,115 Inserting the multipole expansion in
Eq. (79) into Eqs. (73) and (76) gives the corresponding
contributions to the far-field potential and energy

JFF
u = qTuΛQ, (81)

EFF
C

N
=

1

2
QTΛQ. (82)

We have here defined the lattice sum of interaction ten-
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sors

Λlm,jk ≡
∑

n∈FF

Θlm,jk(n), (83)

elements of the 4c electronic multipole moment operator

qlmu ≡ −
∫

R3

Ωu(r)Rlm(r)d3r, (84)

and the total multipole moments of the reference unit
cell

Qlm =

∫

R3

ρ̃(r)Rlm(r)d3r. (85)

Inserting the definition of the auxiliary density from
Eqs. (33) and (34) to Eq. (85) gives a more convenient
expression for the total multipole moments

Qlm =
∑

A

ZAR
lm(A) + Tr

[
qlmu Dū

]
, (86)

where we implied the summation over u as defined in
Eq. (31). The trace of qlmu with the density matrix is
computed as in Eq. (69). Notice that the total charge
Q00 = 0, because R00 = 1, q00

u = −Su, and Tr [SuD
ū] =

Ne. Furthermore, Q1m is the total (electric + nuclear)
dipole moment, which is gauge origin independent. To
summarize, by employing the multipole expansion we ac-
complished two tasks: We isolated the slow-converging
lattice sum

∑
n, facilitating its subsequent computation,

and we factorized the complicated six-dimensional two-
electron integrals in Eq. (74c) into a product of simpler
three-dimensional one-electron integrals [Eq. (84)]. In
this way we obtained a very efficient scheme to incorpo-
rate the potential generated by the infinite lattice.

Analysis of the multipole expansion reveals that the
problem of the conditional convergence of the Coulomb
series can be attributed to non-zero unit cell dipole and
quadrupole moments.109 In fact, the 3-dimensional lat-
tice sums of the Θ1m,00 and Θ00,1k elements of the inter-
action tensor that enter the far-field potential [Eq. (82)]
are divergent. To rectify this, we introduce fictitious
point charges at unit cell face centers, as was done in pre-
vious studies.99,116 For each of the three periodic dimen-
sions i = 1, 2, 3, two charges ±zi are placed at opposing
walls ±ai

2 for each unit cell. This procedure guarantees
that the unit cell remains charge neutral. Furthermore,
every unit cell wall is shared by 2 unit cells, and thus
contains 2 fictitious charges with opposite signs, cancel-
ing each other. Note that this scheme is valid for arbi-
trary unit-cell geometries. The values zi are determined
so that they eliminate the unit cell dipole moment µ, and
they are obtained by solving a linear system of equations

ziai = −µ. (87)

To understand how the inclusion of fictitious charges re-
solves the problem of the conditional convergence, let us
enclose a crystal sample in a finite volume, and examine

the limit of the (finite) lattice sum over unit cells inside
the volume as the volume approaches infinity. The lattice
sum in the Coulomb potential and energy can be shown
to contain surface-dependent terms that are linear and
quadratic in the position, and hence break the periodicity
of the potential.108,117 These terms do not vanish in the
limit of the infinite volume, and thus the limit gives dif-
ferent results for different volume shapes. The fictitious
charges included as described above only cancel inside
the volume, not on its surface, and serve to compensate
the ambiguous linear (charge–dipole) surface terms in the
potential. Quadratic (charge–quadrupole) surface terms
could be eliminated similarly, but because they simply
shift the potential by a constant, they are ignored in this
work. Such shifts affect absolute band energies, but do
not alter the total energy or the band gaps.

We conclude this section by adapting the renormaliza-
tion procedure of Kudin and Scuseria114 to the evalua-
tion of the lattice sum in Eq. (83). Instead of a direct
calculation, the sum Λ is obtained as a limit

Λ = lim
t→∞

Λt. (88)

Λt are partial sums that are computed by iterating the
recurrence equation

Λt+1 = Λ1 + U(Λt)W, (89)

where

U(Λtlm,jk) =
1

3l+j+1
Λtlm,jk (90)

is the scaling operator, and

W =

1∑

µ1...µd=−1

W (µiai) (91)

is a matrix consisting of a sum of translation tensors W
defined in Appendix B. The recurrence scheme is initi-
ated by

Λ1 =
∑

n∈FF1

Θ(n) ≡
∑

n1...nd∈FF1

Θ(niai), (92)

where FF1 contains all unit cells that are in the far-field
of the central reference unit cell, but are in the near-
field of the supercell composed of the original near-field.
To illustrate this, let the near-field supercell be a block
(in crystallographic coordinates) consisting of unit cells
with indices ni = −Ni, . . . , Ni for each of the periodic
dimensions i = 1, . . . , d. Thus the total number of unit

cells in such a block is
∏d
i=1(2Ni + 1). Then

FF1 =

{
(n1 . . . nd) ∈ Zd; 1 ≤ max

i=1...d

( |ni| − 1

Ni

)
≤ 3

}
.

(93)
In contrast to a naive term-by-term summation, the re-
currence formula [Eq. (89)] converges rapidly to its limit,
and in practice only a few iterations are needed. We
provide a formal derivation of Eq. (89) in Appendix C.



11

G. Exchange–correlation contribution

We here derive the exchange–correlation (XC) con-
tribution to the Fock operator and the energy of peri-
odic systems. We assume the non-relativistic generalized
gradient approximation (GGA) for the XC energy func-
tional.118,119 Within the Kramers-restricted (closed shell)
framework GGA-type XC functional is expressed as

EXC [n,∇n] ≡ EXC =

∫

R3

εXC(r)d3r, (94)

where εXC(r) ≡ εXC [n,∇n] (r) is the XC energy density,
and n(r) is the total electron probability density obtained
from the electron charge density in Eq. (30) as n(r) ≡
−ρe(r). For periodic systems, the integration over R3 can
be limited to an integration over the central reference unit
cell, because the electron density is a periodic function
with the lattice periodicity, and consequently εXC(r +
m) = εXC(r). Letting Cm denote the unit cell positioned
at the lattice point m, we obtain

EXC =
∑

m

∫

Cm
εXC(r)d3r =

∑

m

∫

C0
εXC(r +m)d3r

=
∑

m

∫

C0
εXC(r)d3r = N

∫

C0
εXC(r)d3r,

where N is the total number of unit cells. Therefore, the
XC energy per unit cell is

EXC

N
=

∫

C0
εXC(r)d3r. (95)

The XC functional has a complicated dependence on
the electron density, and the integral in Eq. (95) must
therefore be integrated numerically. Because the inte-
grand εXC is a highly inhomogeneous function in real
space containing cusps, a robust numerical technique is
needed. In this work we follow the integration scheme
developed by Towler et al.,84 which is an extension of
Becke’s atomic partitioning method120 to periodic sys-
tems. Towler et al. introduced a weight function wA(r)
for each atom A in the reference unit cell, and define it
for all other unit cells Cm using translations:

wAm(r) ≡ wA(r −m). (96)

The weight functions are constructed to be normalized
to unity for each point r, i.e.

∑

Am

wAm(r) = 1. (97)

The detailed process of forming the weight functions can
be found in Refs. 84 and 120. Inserting the weights into
Eq. (95) gives

EXC

N
=

∫

C0
εXC(r)

∑

Am

wA(r −m)d3r

=
∑

Am

∫

C−m

εXC(r)wA(r)d3r.

It follows, that

EXC

N
=
∑

A

∫

R3

εXC(r)wA(r)d3r. (98)

For a discrete set of grid points g, the integral is replaced
by a weighted sum

EXC

N
→
∑

g

εXC(g)w(g), (99)

where the sum is over an integration grid composed of
the joined atomic grids and, similarly, the weights w(g)
contain all atomic weights wA(g).

The XC potential is defined as the functional derivative
of the XC energy:

V XC(r) =
δEXC

δn(r)
=

∂εXC

∂n(r)
−∇ · ∂εXC

∂∇n(r)
, (100)

where V XC(r) ≡ V XC [n,∇n] (r). Since V XC is a pe-
riodic function, we can express its non-equivalent ma-
trix elements in the real-space basis defined by Eqs. (4)
and (2) as the derivative

V XC
u =

∂EXC

∂Dū
. (101)

Applying the chain rule

∂EXC

∂Dū
=

∫

R3

δEXC

δn(r)

∂n(r)

∂Dū
d3r, (102)

and the identity

Ωu(r) =
∂n(r)

∂Dū
, (103)

yields

V XC
u =

∫

R3

V XC(r)Ωu(r)d3r. (104)

Because the integral in Eq. (104) is handled numerically,
it is more convenient to use integration by parts to apply
the derivative in the expression for V XC(r) in Eq. (100)
to the overlap distribution Ωu. Let us denote

V 0
XC(r) ≡ ∂εXC

∂n(r)
, V iXC(r) ≡ ∂εXC

∂ (∇in(r))
, (105a)

Ωu,0(r) ≡ Ωu(r), Ωu,i(r) ≡ ∇iΩu(r), (105b)

for i = x, y, z. Eq. (104) can then be written as

V XC
u =

∫

R3

V αXC(r)Ωu,α(r)d3r, (106)

where α = 0, x, y, z. To arrive at a working expression
for the XC potential, we insert the weight functions into
Eq. (106), and get

V XC
u =

∫

R3

V αXC(r)Ωu,α(r)
∑

Am′

wA(r −m′)d3r.

It follows that the XC potential becomes

V XC
u =

∑

Am′

∫

R3

V αXC(r)Ωu,α(r +m′)wA(r)d3r. (107)
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III. IMPLEMENTATION DETAILS

We have implemented the method described in Sec-
tion II in the 4c ReSpect88 program package. Matrix
representations of operators in real space are obtained
by evaluating the integrals in Eqs. (16) over the RKB
Cartesian GTOs using the highly efficient and vectorized
integral library InteRest.98 The entire implementation
is parallelized using the OpenMP application program-
ming interface to allow for multithreaded execution of
the program on shared memory architectures.

Before proceeding to the main self-consistent field
(SCF) procedure, i.e. the iterative solution of Eq. (11),
we perform these steps:

• Exploit the exponential decay of a product of two

GTOs χ†µ0χµ′m as their centers become more dis-
tant in order to generate a finite list of significant
4c overlap distributions.

• Form an array of NF unit cells.

• Calculate and store the infinite lattice sums Λlm,jk
of the interaction tensor in Eq. (83) using the pro-
cedure described in Section II F.

• Evaluate the 4c overlap matrix in reciprocal space
using Eqs. (12b) and (15) and compose a unitary

matrix L(k) =
(
X†S(k)X

)−1/2
that transforms

the Cartesian GTOs to orthonormalized spheri-
cal GTOs. X denotes here the the Cartesian-to-
spherical transformation matrix.

During the SCF cycle, operators depending on the
density matrix must be reevaluated. The most time-
consuming part is the computation of the 2-electron
Coulomb integrals in Eq. (74c) for n restricted to the NF
unit cells. Therefore, we employ a variety of approxima-
tions and estimates to facilitate this step. First, centering
the multipole expansion at the center of the overlap dis-
tribution Ωu that indexes the Fock matrix, enabling us
to approximate many integrals within the NF using the
multipole expansion

Je
u(n) ≈ qTu (P )Θ(n− P )Q, (108)

where P is the center of Ωu, and

qlmu (P ) = −
∫

R3

Ωu(r)Rlm(r − P )d3r, (109)

is the translated electronic multipole moment opera-
tor. Second, we apply the quaternion adaptation of the
Cauchy–Schwarz inequality to obtain an upper estimate
of the remaining 2-electron integrals, discarding integrals
that contribute negligibly to the Fock matrix. Details
of this integral screening will be published elsewhere.86

Finally, the 2-electron integrals that contain a product
of two small-component overlap distributions ΩSSu (r1) =

χSS†µ0 (r1)χSSµ′m(r1) and ΩSSv (r2) = χSS†ν0 (r2)χSSν′n′(r2) are

only computed if: 1) the bra basis function µ0 shares the
same center with the ket basis function µ′m; and 2) the
bra basis function ν0 shares the same center with the
ket basis function ν′n′. We tested and tuned these ap-
proximations to ensure that the quality of results is not
affected.

To include the XC contributions to the potential and
the energy, we calculate the electronic density

n(r) =
∑

n

Tr
[
Ωu(r − n)Dū

]
, (110)

and its gradients on the grid (see Section II G), where
the trace is expressed as in Eq. (69). The XC potential
and its derivatives vα(r) are obtained from the XCFun
library121 and used to construct the XC Fock matrix el-
ements in Eq. (107).

The Coulomb and XC contributions are used to assem-
ble the nonzero real-space quaternion components of the
Fock matrix in Eq. (14), which are then transformed to
k-space, evaluating the Fourier series in Eq. (59). The 4c
k-space Fock matrix is composed using Eq. (61). The ki-
netic operator is added in a similary way. The orthonor-
mal basis representation of the Fock matrix is obtained
as F (k) → L†(k)F (k)L(k). The Fock matrix is diago-
nalized, and from its band energies εp(k), an occupation
vector fp(k) is formed [Eq. (19)]. The k-space density
matrix is obtained in the orthonormal basis according to
Eq. (21), and transformed as D(k)→ L(k)D(k)L†(k).

The new density matrix in real space Dµm,µ′0 is con-
structed by calculating the integral in Eq. (23) over the
first Brillouin zone. The integral is approximated by a
sum over a Γ-centered uniform grid of k-points with equal
weights |K|/N , where N is the total number of sampled
k-points. Specifically, let bi denote the primitive vec-
tors in reciprocal space for i = 1, . . . , d. Then the grid
consists of k-points defined as

k =

d∑

i=1

ki
Ni
bi, ki = −Ni − 1

2
, . . . ,

Ni − 1

2
, (111)

where Ni is the total number of k-points in the i-th
crystallographic direction. Such an integration scheme
does not capture the discontinuity of the integrand at
the Fermi surface arising in metallic systems. However,
in this work we study systems with a nonzero band gap,
and the integration scheme proved sufficiently accurate.

In order to accelerate the SCF convergence, we extrap-
olate the real-space Fock matrix using the linear combi-
nation of Fock matrices from the current and the previous
SCF cycles, before transforming it to reciprocal space.
The extrapolation coefficients are determined from the
direct inversion of the iterative subspace (DIIS) proce-
dure of Pulay,122,123 applied only to the Γ-point (k = 0),
i.e. using error vectors defined as e = [F (0), D(0)]
(in the orthonormal basis). Such a restriction has been
demonstrated to be satisfactory for solid-state calcula-
tions.85,124,125
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IV. RESULTS

To asses the performance of our methodology, we have
performed calculations of the energy gaps at different k-
points for the 3-dimensional silver halides (AgX, X=Cl,
Br, I) using both the fully-relativistic 4c and the non-
relativistic 1-component (1c) density functional level of
theory. The ionic AgX crystals are known to display large
scalar-relativistic effects, but with only a minor SOC.74,76

To better assess how well our approach can treat SOC ef-
fects, we also study the 2-dimensional graphene-like hon-
eycomb structures of silicene and germanene,26 and SOC
effects in particular.

All relativistic calculations were performed using a
Gaussian finite nucleus model, as described by Visscher
and Dyall.126 The finite nucleus model is required in or-
der to regularize the singularity of the small-component
wave function evaluated at nucleif when point nuclei as
this is otherwise difficult to capture with a finite basis set
and point-like nuclei.

A. Silver halide crystals

We have performed calculations on the silver halide
crystals in their NaCl-type FCC crystal phase. Equilib-
rium lattice constants are taken from the recent work
of Zhao et al..74 In this work, they calculated the band
gaps of the silver halides at the 2c level of the theory us-
ing STOs, and we will use their results as a reference for
our calculations. We employed nonrelativistic XC func-
tionals: the LDA-type functional SVWN5127,128 and the
GGA-type functional PBE.129 The numerical integration
required for the XC contributions was performed on a
grid consisting of 302 angular points for each atom, 80 ra-
dial points for the Ag atoms, and 70 radial points for the
halide atoms. Reciprocal space integration was evaluated
on a uniform mesh of 7× 7× 7 k-points [Eq. (111)]. For
the large component basis, we used the all-electron pob-
TZVP basis set of triple-ζ quality optimized for solid-
state calculations by Peintinger et al.;130 we uncontracted
the basis functions, as is commonly done in relativistic
calculations. However, the pob-TZVP basis set does not
contain basis sets for heaviest elements such as Ag and
I. Therefore, we employed the uncontracted all-electron
double-ζ basis sets of Dyall131,132 for these elements. The
small-component basis functions were generated on-the-
fly using the RKB condition in Eq. (3b). In order to alle-
viate the convergence problems that often hamper solid-
state calculations due to diffuse functions in the basis
sets,75,130,133 we modified the Dyall’s double-ζ basis set
by deleting the most diffuse s and diffuse p function on
Ag, both having exponents < 0.05 in atomic units.

Table I shows our results of the 4c and 1c calculations
of the energy gaps for the AgX systems. The vertical (di-
rect) band gaps are obtained at a set of special k-points:
Γ, L, and X. The results show that the ionic AgX com-
pounds are indirect semi-conductors, with the band gap

TABLE I. Energy band gaps of 3-dimensional AgX systems
obtained for various k-points and XC functionals at the fully-
relativistic 4c and nonrelativistic 1c level of theory. Equilib-
rium lattice constants (a0) are taken from Ref. 74. Numbers
in parenthis have been taken from Ref. 74. Note that the rel-
ativistic results of Ref. 74 have been obtained at the 2c X2C
level of theory.

gap (eV)
AgCl a0 (Å) L–L Γ–Γ X–X L–Γ

LDA-1c 5.421 4.48 3.80 5.39 1.42
(4.05) (3.72) (5.16) (1.37)

LDA-4c 5.354 3.99 3.32 4.13 0.59
(3.58) (3.32) (3.91) (0.58)

PBE-1c 5.692 5.18 3.53 5.45 1.74
(4.72) (3.44) (5.29) (1.67)

PBE-4c 5.612 4.67 2.95 4.20 0.89
(4.27) (2.99) (4.03) (0.88)

AgBr a0 (Å) L–L Γ–Γ X–X L–Γ
LDA-1c 5.661 4.04 3.34 4.75 1.48

(3.70) (3.20) (4.74) (1.31)
LDA-4c 5.586 3.44 2.49 3.57 0.38

(3.15) (2.43) (3.56) (0.29)
PBE-1c 5.937 4.76 3.15 4.83 1.77

(4.31) (2.97) (4.81) (1.57)
PBE-4c 5.843 4.13 2.34 3.67 0.70

(3.77) (2.25) (3.67) (0.60)

AgI a0 (Å) L–L Γ–Γ X–X L–X
LDA-1c 5.998 4.44 3.62 3.66 1.06

(3.38) (3.52) (3.66) (1.06)
LDA-4c 5.901 3.45 2.18 2.82 -0.10

(2.62) (2.17) (2.84) (-0.08)
PBE-1c 6.280 5.12 3.28 3.58 1.62

(3.91) (3.14) (3.56) (1.60)
PBE-4c 6.169 4.14 1.96 2.75 0.50

(3.17) (1.90) (2.76) (0.49)

occurring between the L and Γ points for AgCl and AgBr,
and between the L and X points for AgI. This agrees with
the findings of previous studied.74,76 All band gaps are
signficantly reduced when including relativistic effects.
Overall, our results agree well with those presented in
Ref. 74; we reproduce the general trends as well as the
difference between the relativistic and the nonrelativistic
calculations.

Notable exceptions to the agreement with Ref. 74 are
the L–L direct gaps, particularly those of AgI. There-
fore, we conducted additional tests at the 1c level with
the PBE functional, and found these differences to orig-
inate in the different basis sets used. Table II contains
results obtained with the uncontracted Dyall’s double-ζ
(DZ), the valence double-ζ (VDZ), and the valence triple-
ζ (VTZ) basis sets. We tested the original (molecular)
basis sets, where we kept the diffuse exponents, as well
as the reduced versions (denoted with an ‘r’ in front of
the basis name), where we have deleted diffuse exponents
smaller than 0.1 (in atomic units). The discrepancies re-
main also with the larger rVDZ and rVTZ basis sets, as
long as the diffuse exponents are not included, and in
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TABLE II. Nonrelativistic 1c energy band gaps of 3-
dimensional AgX systems calculated with different basis sets.
All results are obtained with the PBE functional. Compar-
isons are made with non-relativistic literature values obtained
using either STOs and plane waves and taken from Ref. 74.

gap (eV)
AgCl L–L Γ–Γ X–X L–Γ
rVDZ 5.22 3.51 5.41 1.72
rVTZ 5.23 3.60 5.35 1.83
VDZ - - - -

STO, Ref. 74 4.72 3.44 5.29 1.67
PW, Ref. 74 4.76 3.44 5.29 1.69

AgBr L–L Γ–Γ X–X L–Γ
rVDZ 4.96 3.07 4.86 1.67
rVTZ 4.73 3.02 4.75 1.63
DZ 4.47 2.94 4.82 1.56

VDZ 4.41 2.96 4.83 1.56
STO, Ref. 74 4.31 2.97 4.81 1.57
PW, Ref. 74 4.35 2.96 4.79 1.58

AgI L–L Γ–Γ X–X L–X
rDZ 5.12 3.28 3.58 1.62

rVDZ 4.87 3.30 3.60 1.62
rVTZ 4.66 3.74 3.50 1.56
DZ 3.99 3.11 3.54 1.59

VDZ 3.95 3.14 3.56 1.59
STO, Ref. 74 3.91 3.14 3.56 1.60
PW, Ref. 74 3.92 3.13 3.54 1.58

some cases the differences are even bigger for the larger
rVTZ basis than for the rVDZ basis. This issue is re-
solved when the diffuse exponents in the original basis
sets are kept, and our results agree very well with those
in Ref. 74 already when the smallest DZ basis set is
used. In comparison, Zhao et al.74 adopted a Slater-type
quadruple-ζ (QZ4P) basis set developed by van Lenthe
and Baerends,134 also eliminating diffuse s and p func-
tions. Additionally, Zhao et al. claim that they tested
AgCl with a DZP Slater-type basis, and the calculated
band gaps were differing marginally (< 0.1 eV) from the
results obtained with QZ4P. As a consequence, Zhao et
al. arrive at the conclusion that the band gaps should be
well converged already with the DZP basis. This is line
with the findings of Te Velde and Baerends that a rea-
sonable basis-set limit (with errors < 10−3 a.u. in cohe-
sive energies per atom) for densely packed systems can be
reached already with a STO basis set of double-ζ quality,
provided it contains polarization functions.135 Consider-
ing that GTOs and STOs only differ in the radial part,
one would expect that a similar behaviour should be seen
also for GTOs. We confirmed this observation. However,
great care must be taken when adopting basis sets for
solid-state calculations, and we do not generally recom-
mend deleting diffuse exponents for heavy elements. Op-
timized solid-state GTO basis sets have been developed
by Peintinger et al.130 for the lighter elements of the pe-
riodic table, but this work needs to be extended to the
elements in the lower parts of the periodic table as well.

TABLE III. Band gaps of 2-dimensional honeycomb struc-
tures at the fully-relativistic 4c and nonrelativistic 1c level of
theory. Geometries are taken from Ref. 26.

band gap [meV]
method basis silicene germanene
PBE-1c pob-TZVP 0.026 0.028
PBE-4c pob-TZVP 1.548 25.1
PBE-4c cc-pVDZ 1.596 24.3
Ref. 26 1.55 23.9

B. Honeycomb structures

To validate our method on systems larger spin–orbit
effects, we have also calculated the band structure of
the heavier 2-dimensional analogues of graphene: silicene
and germanene. Both systems have been found to be sta-
ble in a low-buckled hexagonal geometry,26 contrary to
the truly planar graphene. To compare our calculated the
band gaps with literature values, we used the geometries
from Ref. 26, and the nonrelativistic PBE functional.129

The integration grid for the XC contributions contained
80 radial points per atom, and Lebedev quadrature grid
points of an adaptive size in the angular part.136 Recip-
rocal space integration was performed on a uniform grid
of 31 × 31 k-points. We employed the uncontracted all-
electron pob-TZVP130 and cc-pVDZ137 basis sets.

Table III collects our calculated band gaps at the 1c
and 4c levels of theory at the Dirac points of the silicene
and germanene . For comparison, we report in Table III
also the results of Liu et al.26 calculated using the rel-
ativistic pseudopotential PAW approach.65 Since these
graphene-like structures exhibit a quantum spin Hall ef-
fect,25,26,28 the existence of a nonzero gap is solely due to
SOC. Hence, the nonrelativistic band gaps should then be
strictly zero. The numbers in Table III do not display this
feature exactly, but we attribute the very small values of
the nonrelativistic gaps to numerical noise. The small
discrepancies between our work and Ref. 26 for the ger-
manene gap can be caused by methodological differences
in the two approaches, such as the use of a pseudopoten-
tial approximation in Ref. 26 or the basis set choice in
this work. In contrast to the planar graphene, the buck-
led geometry of the silicene and germanene enhances the
SOC effect,26 placing silicene and germanene among ma-
terials with promising technological applications.

V. CONCLUSION AND OUTLOOK

We have presented a first-principle full-potential rela-
tivistic method and its implementation for solving the 4c
Dirac–Kohn–Sham equation for periodic systems employ-
ing a local basis composed of Gaussian-type orbitals. The
proposed method accounts variationally for both scalar-
relativistic as well as spin–orbit effects, which allow us to
study solids across the entire periodic table in a uniform
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and consistent manner. The explicit built-in periodicity
allows for a treatment of systems of arbitrary dimension-
ality without having to introduce nonphysical replicas of
the systems studied in non-periodic dimensions. We for-
mulated key principles of the method in the 4c Kramers-
restricted framework, exploiting the time-reversal struc-
ture of operators in real and reciprocal space, and showed
how to assemble the real-space Coulomb and exchange–
correlation operators in this framework. We have dis-
cussed the conditionally-convergent electrostatic infinite
lattice sums arising in studies of periodic systems, and
we adopted the multipole expansion and an iterative
renormalization procedure to calculate the lattice sums
of the interaction tensor. To accelerate the calculations,
some explicit 2-electron integrals were neglected based
on an efficient screening scheme, or approximated with
a multipole expansion. The method has been imple-
mented in the 4c ReSpect88 code, using the vectorized
integral library InteRest.98 Finally, we have presented
some example calculations using this methodology for 3-
dimensional silver halide crystals in their FCC phase, and
2-dimensional honeycomb structures featuring the quan-
tum spin Hall effect. Energy band gaps were calculated
at various special k-points. Overall, our results agreed
very well with other published findings.

The methodology presented in this papers holds
promise in the computational study of solid-state ma-
terials. The 4c scheme is conceptually simpler and more
transparent than approximate 2c techniques, and can be
used to produce reference results to benchmark more ap-
proximate methods, and in this way increase confidence
in approximate schemes and thus pave the way for com-
putational studies of more complex materials. Further-
more, the full-potential formalism adopted here enables
investigations of unique features of spin–orbit coupled
materials, such as magnetic response properties and core-
electron (X-ray) spectroscopy, where a full relativistic de-
scription is needed. We also believe that the method can
prove valuable in a search for materials with non-trivial
topological properties.
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Appendix A: Translation symmetry

In this appendix, we review some consequences of
the translational symmetry on operators in various ba-
sis representations. We will here only be concerned with
discrete translations, i.e. translations by an arbitrary
integer-modulated lattice vector m, defined by Eq. (5).
Let tm denote a translation operator for the lattice vector
m, defined by an application to a function f :

(tmf)(r) ≡ f(r −m). (A1)

An operator A is translationally invariant iff it commutes
with the translation operators for all lattice vectors m
([·, ·] denotes a commutator):

[A, tm] = 0. (A2)

Clearly, the momentum operator p, as well as the spin
operator σ are translationally invariant. As a conse-
quence, the composite operators p2/2 (nonrelativistic ki-
netic energy) and σ · p are also translationally invariant.
For this reason, we can omit the spin- and momentum-
dependence of an operator A from the following discus-
sion without loss of generality. Let A(r) be the coor-
dinate representation of A. Translation invariance of A
[Eq. (A2)] then requires

A(r +m) = A(r). (A3)

Matrix elements of A expressed in the discrete real-space
basis of Eq. (4) are obtained as

Aµm,µ′m′ =

∫

R3

χ†µm(r)A(r)χµ′m′(r)d3r. (A4)

For any lattice vector n, it follows, that

Aµm,µ′m′ = Aµm+n,µ′m′+n = Aµ0,µ′m′−m, (A5)

implying that the real-space matrix elements of transla-
tionally invariant operators have a Toeplitz structure. In
addition, if the operator A is Hermitian, then

A†µ0,µ′m = Aµ′0,µ−m, (A6)

where A† denotes the Hermitian conjugate within the
4× 4 bispinor space.

Reciprocal-space elements of A for k,k′ ∈ K are ac-
quired by using Eq. (6) together with Eq. (A5):

Aµµ′(k,k
′) =

1

|K|
∑

mm′

e−ik·meik
′·m′Aµ0,µ′m′−m.

Changing the summation variables yields

Aµµ′(k,k
′) = δ(k − k′)Aµµ′(k), (A7)

Aµµ′(k) =
∑

m

eik·mAµ0,µ′m, (A8)



16

where we have employed

δ(k) ≡ 1

|K|
∑

m

eik·m, (A9)

which is the Fourier kernel representation of the Dirac δ-
function. Notice, that the symmetry in Eq. (A5) resulted
in the block-diagonal reciprocal-space matrix [Eq. (A7)].
This argument can also be reversed, i.e. any block-
diagonal k-space matrix will have a Toeplitz structure
[Eq. (A5)] in real space. We have applied this argument
when constructing only the nonequivalent elements of the
real-space density matrix in Eq. (23). Finally, the sym-
metry in Eq. (A6) leads to matrices in the reciprocal
space that are Hermitian for each k individually:

A†µµ′(k) = Aµ′µ(k). (A10)

Therefore, provided that the Fock matrix in Eq. (14) sat-
isfies the combined translational and Hermitian symme-
try in Eq. (A6), the eigenvalues ε(k) in Eq. (11) are guar-
anteed to be real.

Translational symmetry allows us to assign finite ex-
pectation values of operators that naturally describe ex-
tensive properties, such as the kinetic energy of electrons.
Beginning with a divergent expression for the expectation
value of a translationally invariant one-electron operator

A (given that the density matrix is translationally invari-
ant as well), we can write

〈A〉 =
∑

mm′

Tr
[
Aµm,µ′m′D

µ′m′,µm
]

=
∑

m

1
∑

m′

Tr
[
Aµ0,µ′m′D

µ′m′,µ0
]
,

where Tr denotes the trace in the 4 × 4 bispinor space.
If we employ the short-hand notation from Eq. (31), and
realize, that

∑
m 1 ≡ N is the total (infinite) number of

unit cells, we can calculate the expectation value of A per
unit cell in the thermodynamic limit (N →∞) as

〈A〉
N

= Tr
[
AuD

ū
]
. (A11)

Appendix B: Spherical multipole expansion

Here we summarize the formulation of the spherical
multipole expansion needed to evaluate the far-field con-
tribution to the Coulomb operator. We follow the frame-
work of Helgaker et al.111 and Watson et al.110 The
Coulomb interaction operator |r1 − r2|−1 ≡ r−1

12 can be
expanded (as a function of 6 variables) around an arbi-
trary center (P ,Q) into a spherical multipole expansion
which takes the form

1

r12
=

∞∑

l=0

l∑

m=−l

∞∑

j=0

j∑

k=−j
Rlm(r1 − P )Θlm,jk(Q− P )Rjk(r2 −Q), (B1)

where

Θlm,jk(R) = (−1)jI∗l+j,m+k(R), (B2)

is the interaction tensor, Rlm(r) and Ilm(r) are the scaled
regular and scaled irregular solid harmonics, respectively,
defined as

Rlm(r) =
1√

(l −m)!(l +m)!
rlClm(ϑ, ϕ), (B3)

Ilm(r) =
√

(l −m)!(l +m)!r−l−1Clm(ϑ, ϕ). (B4)

Here Clm(ϑ, ϕ) are eigenfunctions of the angular momen-
tum operators L2, Lz, namely the spherical harmonics in
Racah’s normalization, obtained from the conventional
spherical harmonics Ylm(ϑ, ϕ) as

Clm(ϑ, ϕ) =

√
4π

2l + 1
Ylm(ϑ, ϕ). (B5)

We shall use the compact matrix notation

1

r12
= RT (r1 − P )Θ(Q− P )R(r2 −Q), (B6)

where R is a vector and Θ is a matrix defined by their re-
spective elements Rlm and Θlm,jk. The series in Eq. (B6)
is convergent for all points (r1, r2) that satisfy the con-
dition

|r1 − r2 +Q− P | < |Q− P |. (B7)

The scaled regular and irregular solid harmonics have the
following properties (λ ∈ R is an arbitrary scaling factor):

Rl−m(r) = (−1)mRlm∗(r), (B8a)

Il−m(r) = (−1)mI∗lm(r), (B8b)

Rlm(λr) = λlRlm(r), (B8c)

Ilm(λr) =
1

|λ|
1

λl
Ilm(r). (B8d)

The regular solid harmonics obey the addition theorem

Rlm(r − P ) =

l∑

j=0

j∑

k=−j
Rl−j,m−k(−P )Rjk(r), (B9)
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which can be written in the following matrix form

R(r − P ) = W (P )R(r), (B10)

where W is the translation tensor, its elements defined
as

Wlm,jk(P ) = Rl−j,m−k(−P ). (B11)

The translation tensor W can be used to evaluate the reg-
ular solid harmonics for shifted arguments. Moreover, we
can apply Eq. (B10) to derive a similar rule for the in-
teraction tensor. Multipole expansions of r−1

12 expanded

around 2 different centers (P ,Q) and (P̄ , Q̄) must coin-
cide, so that

1

r12
= RT (r1 − P )Θ(Q− P )R(r2 −Q)

= RT (r1 − P̄ )Θ(Q̄− P̄ )R(r2 − Q̄).

Applying the addition theorem [Eq. (B10)], we identify

Θ(Q− P ) = WT (P̄ − P )Θ(Q̄− P̄ )W (Q̄−Q). (B12)

Using W (0) = I, and setting P̄ = P and Q̄ = P +Q in
Eq. (B12), we obtain the corollary

Θ(Q− P ) = Θ(Q)W (P ). (B13)

In the present implementation we avoid using complex
numbers for multipole expansions by expressing interac-
tion and translation tensors in terms of the real (regular
and irregular) solid harmonics, which we construct from
recurrence equations (see Ref. 111) and we do therefore
not evaluate the zero imaginary part of the real-valued
Coulomb r−1

12 operator.

Appendix C: Lattice sum of interaction tensors

Here we prove the recurrence relation in Eq. (89), es-
tablishing a rapidly convergent scheme for the computa-
tion of lattice sums of spherical interaction tensors. Let
us begin by fragmenting the far-field (FF) into layers FFr
as follows: Let the near-field (NF) be a block consisting
of unit cells with indices ni = −Ni, . . . , Ni for each of
the periodic dimensions i = 1, . . . , d. For generic non-
cubic lattices, such an object has a diamond-like shape.
The first layer of the far-field, FF1, envelopes the NF by
placing supercells in all directions, each supercell having
as many unit cells as the NF itself. The process is then
repeated for the next layer of the far-field, FF2, with the
exception that the supercell now contains all unit cells in
both NF and FF1, as depicted in the following scheme:

. . . |
FF1︷ ︸︸ ︷

−3Ni − 1 . . .−Ni − 1︸ ︷︷ ︸
2Ni+1

|
NF︷ ︸︸ ︷

−Ni . . .− 1 0

NF︷ ︸︸ ︷
1 . . . Ni︸ ︷︷ ︸

2Ni+1

|
FF1︷ ︸︸ ︷

Ni + 1 . . . 3Ni + 1︸ ︷︷ ︸
2Ni+1

|
FF2︷ ︸︸ ︷

3Ni + 2 . . . 9Ni + 4︸ ︷︷ ︸
2(3Ni+1)+1

| . . . (C1)

Let Nir denote the upper extent of the far-field layer r
in the direction i, i.e. it is the index of the unit cell that
is the farthest from the center 0. Then Nir satisfies the
following recurrence relations (r = 0 labels the NF)

Ni0 = Ni,

Nir+1 = 3Nir + 1,
(C2)

which have the solution

Nir =
(2Ni + 1)3r − 1

2
. (C3)

The number of unit cells in layer r is given by

|FFr| = 3d(r−1)(3d − 1)|NF|, (C4)

where |X| denotes the number of elements of X. From
Eq. (C4), we can see that the sizes of the layers form a ge-
ometric sequence. Therefore, the partitioning in Eq. (C1)
divides the space into regions that become exponentially
larger with each new layer. Formally, we define FFr as

FFr =

{
(n1 . . . nd) ∈ Zd; 1 ≤ max

i=1...d

( |ni| − 1

Nir−1

)
≤ 3

}
.

(C5)

The overall far-field is then given by the union

FF =

∞⋃

r=1

FFr, (C6)

and the lattice sum in Eq. (83) becomes

Λ =
∑

n∈FF

Θ(n) = lim
t→∞

t∑

r=1

∑

n∈FFr

Θ(niai),

where we have abbreviated the summation indices as n =
(n1 . . . nd). It follows, that the lattice sum is obtained as
a limit of partial sums

Λ = lim
t→∞

Λt, (C7)

Λt =

t∑

r=1

∑

n∈FFr

Θ(niai). (C8)
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Let us consider the term t+ 1:

Λt+1 = Λ1 +

t+1∑

r=2

∑

n∈FFr

Θ(niai)

= Λ1 +

t∑

r=1

∑

n∈FFr+1

Θ(niai). (C9)

The following identity relates the two sums over different
layers of the far-field

∑

n∈FFr+1

Θ(niai) =
∑

n∈FFr

∑

µ∈P
Θ
(
(3ni − µi)ai

)
, (C10)

where P is the Cartesian power

P = {−1, 0, 1}d ,

for d = 3,P = {(±1,±1,±1), (±1,±1, 0), . . .} and con-
tains the reference unit cell and all its 26 nearest neigh-
bours.

Up to this point, the proof has been of a general na-
ture – we did not need to specify Θ or use its properties.
However, in order to obtain an applicable recursive for-
mulation, we need to express the term Λt+1 via the pre-
vious terms. To proceed, we therefore apply the addition
theorem in Eq. (B13), factorizing the interaction tensor
as

Θ
(
(3ni − µi)ai

)
= Θ

(
3niai

)
W
(
µiaI

)

≡ U
[
Θ
(
niai

)]
W
(
µiai

)
,

where W is the translation tensor [Eq. (B11)], and where
we have defined the scaling operator U as

U [Θlm,jk(n)] ≡ Θlm,jk(3n) =
1

3l+j+1
Θlm,jk(n). (C11)

Here we applied the scaling property of the irregular solid
harmonics [Eq. (B8d)]. Returning to Eq. (C9), this leads
to

Λt+1 = Λ1 +

t∑

r=1

∑

n∈FFr

∑

µ∈P
Θ
(
(3ni − µi)ai

)

= Λ1 + U
[

t∑

r=1

∑

n∈FFr

Θ
(
niai

)
]∑

µ∈P
W
(
µiai

)
.

If we define the aggregate translation matrix

W =
∑

µ∈P
W
(
µiai

)
≡

1∑

µ1...µd=−1

W (µiai), (C12)

then

Λt+1 = Λ1 + U
(
Λt
)
W, (C13)

which completes the proof.
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