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Abstract

Effects arising from the special theory of relativity significantly influence
the electronic structure and properties of molecules and solid-state mate-
rials containing heavy elements. At the same time, the inclusion of the
relativistic effects in theoretical and computational models increases their
methodological complexity and the computational cost. In the solid state,
additional challenges to the mathematical and algorithmic robustness of
methods arise due to the infinite extent of the systems.

In this thesis, I present two extensions of quantum-chemical relativistic
methods based on Gaussian-type basis functions in the study of the elec-
tronic ground-state of molecules: band-structure calculations of materials
in the solid state, and simulations of the response of molecules that are sub-
jected to an external time-dependent field by propagating their perturbed
state in real time. The development of the relativistic methods for solids
was preceded by an independent implementation of the theory at the non-
relativistic level. In comparison to methods based on plane waves, the use
of Gaussian-type basis functions in the solid-state community is limited.
The relativistic method presented here is the first ever implementation of
the Dirac-type equations using Gaussian-type basis functions for solid-state
systems, and can be used to study one-, two-, and three-dimensional pe-
riodic systems on an equal footing for the entire periodic table. The time
propagation method is a technically simpler alternative to perturbation ap-
proaches, and is applied here to probe relativistic effects on absorption and
X-ray spectra, and nonlinear optical and chiroptical properties of molecules.
Our work in the both areas provides a technology with the potential to
predict properties of novel materials, and to support the interpretation of

experiments.
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Notations and conventions

Here I summarize basic conventions and notations used throughout this
thesis.
Unless otherwise stated, Hartree atomic units are employed:

1
=1,

¢ 471'80

where h is the reduced Planck constant, e is the elementary charge, m, is
the electron mass, and g is the vacuum permittivity. We use the following
derived units:

o mee? a Amegh?
"7 (4megh)?’ 0~

)
mee?

where ag is the Bohr radius, and Fj, is the Hartree energy. The speed of
light in atomic units is

¢ =137.035999 074 ag ELhi~ L.

Some conventions:

e Operators are not denoted with a hat, and vectors and matrices are
not typeset in bold (except three-dimensional vectors).

e 2-component Pauli-type wave functions and 4-component Dirac-type

wave functions are referred to as spinors and bispinors, respectively.

e Square brackets denote vectors and matrices acting in the space of
Kramers pairs, whereas matrices acting in the space generated by
the large and small components of the basis are typeset with round
brackets.

e Integration over R3 is assumed, whenever the integration domain is

not denoted explicitly, i.e. [...= [gs....

e The most important equations are typeset in a frame.



Common notation:

iff

oo

T, X,y

m,m’,n

R,C,Z

Yoo Ue = uyy,
Xa("" 7Xb<r) S C4X1
Xu(T), xo (1) € CH
pp(T), pq(r) € CH1
(r)

52']'

Eijk

On

]In

A® B

o = (04,04,0:)
f() ~ g(a)
*’T

(A) = (4), = WI|A|Y)
[A, B

{A, B}

Tr A

(asx — x0)

if and only if, equivalence
four-vector coordinates
3-dimensional vectors

3-dimensional lattice vectors

real numbers, complex numbers, integers
Einstein summation convention

basis bispinors

matrix of basis functions
4-component SCF solutions
3-dimensional Dirac delta function
Kronecker delta (= Kronecker symbol)
Levi-Civita symbol

zero n X m matrix

= diag(1...1), n X n identity matrix
tensor product of matrices A and B
vector of Pauli matrices

limg o f(2)/9(z) =1

complex and Hermitian conjugation
expectation value of an operator A
= AB — BA, commutator

= AB + BA, anti-commutator

trace of A



Introduction

What I cannot create, I do not understand. Know how
to solve every problem that has been solved.

Richard Feynman

Scientific progress happens in two ways, either driven by
new ideas or by new tools. The first half of the twentieth
century was the time of new ideas, the second half was
the time of new tools. New ideas are more exciting but
new tools are often more important. For the twenty-first
century, it seems that the most important contribution of
physicists is to build new tools for other sciences.

Freeman Dyson

The 20th century gave rise to two fundamental physical theories that
changed our understanding of the world. Einstein’s theory of relativity'
enabled us to comprehend the relationship between space and time, re-
solved the inconsistency of Newtonian mechanics with Maxwell’s equations
of electromagnetism, and eventually lead to the geometric theory of grav-
itation. Quantum theory described matter at the microscopical level, and
lead to the unified theory of the electromagnetic, weak, and strong inter-
actions (the Standard Model). Applications of quantum mechanics affect
our everyday lives, and range from laser and semiconductor (transistors and
light-emitting diodes) technologies to magnetic resonance imaging used in
medicine. Quantum mechanics also explains the chemical bond,? which
plays an important role in molecules, including large biological complexes.
Quantum chemistry, quantum computing, condensed matter physics, and



quantum optics are some of several fields of science that apply quantum
theory to various domains.
The original quantum mechanics, governed by the Schrodinger equa-

3 is incompatible with the laws of the theory of relativity, and does

tion,
not account for relativistic effects, i.e. effects arising from the finite speed
of light. This problem was solved by Dirac in 1928 who formulated the
relativistic counterpart of the Schrédinger equation for the electron, known
as the Dirac equation.? It was quickly realized from studies of X-ray spec-
troscopy of heavy elements that relativity affects electrons close to the nu-
clei,® but the influence of relativity was later observed on valence states as
well. 6

The importance of including relativistic effects in theoretical models of
molecules and solids containing heavy elements is well established today.
For instance, relativity explains the chemical differences between gold and
silver, ™ including the yellow color of gold,'® why mercury is in its liquid

11,12

state at room temperature, and why lead-acid batteries commonly used

in cars work while tin-acid batteries do not work. 3 Relativistic effects cause

14-17

significant structural changes in stable phases of solids, and can alter

the electronic ground state from metallic to insulating.'® Topological insu-

19-21 2224 and various two-dimensional systems such as

25-27

lators, spintronics,

transition-metal dichalcogenides and graphene-like honeycomb struc-

28-31 have recently been of particular interest in solid-state research.

tures
Proper modeling of the fascinating properties of these systems requires that
the coupling between the electron’s spin and its angular momentum is taken
into account; this so-called spin—orbit coupling naturally arises from the
Dirac equation.

The role of computer simulations in aiding both theory and experiment
has been increasing with the ever-growing power of computers and robust-
ness of the computational methods. Determining many properties of re-
alistic molecules and materials requires solving very complicated quantum
mechanical equations. In principle, all information about an electronic state
of a system is encoded in the many-electron wave function. However, solving
the Schrédinger equation to obtain this wave function for large molecules
and solids is an impossible task — we are cursed by an unfavorable scal-
ing feature of the many-electron Schrédinger equation. Hence, a sequence
of sophisticated approximations and simplifications that make the problem



manageable must be introduced. One of the goals of theoretical physicists
and chemists is to develop techniques for feasible computer simulations of
a wide range of phenomena of complex systems. These techniques must at
the same time retain the ability to capture the elements of the theory that
are essential for a proper description of the studied phenomena.

The objective of this doctoral thesis has been to advance the relativistic
methods that are used to study the electronic structure and properties of
molecules containing heavy elements to two distinct areas. The primary
focus of this work has been the extension of the relativistic procedure that
obtains the electronic ground state of molecules to treat systems in the
solid state. The secondary task has been to subject molecules to a time-
dependent external field, and propagate the perturbed electronic state in
real time to probe various spectroscopic properties of the molecules. The
relativistic effects have served as a uniting theme for these two objectives
— the relativistic methods that account for the complex multi-component
structure of wave functions are not as developed as their nonrelativistic
counterparts. This fact is even more pronounced in the solid-state realm,
where the infinite nature of the systems demands careful handling of both
the mathematical and the algorithmic aspects of the method. The goal
of this work has been to provide a technology and a tool that has the
potential to predict properties of novel materials, aiding experiment as well
as theoretical understanding. All methods developed as part of this work
were implemented in the relativistic RESPECT program package,? and have
used the vectorized integral library INTEREST,3? and exchangecorrelation
contributions have been evaluated using the XCFUN library. 34

This thesis is composed of five scientific articles referred to as Paper
I-V in the text, and four introductory chapters. The first four papers deal
with the real-time propagation method: we first introduced the method
to the relativistic domain in Paper I, where we describe the details and
the implementation of the approach; in Paper II we applied the propa-
gation method to study the Lg, 3-edge X-ray spectroscopy; the method is
further enhanced in Paper III and IV to allow for relativistic treatment
of large molecules, and we study nonlinear optical properties (Paper III)
and chiroptical properties (Paper IV) of molecules. Finally, Paper V is
a manuscript, where we for the first time establish the relativistic method
for band structure calculations of solid-state (periodic) systems based on



the Dirac-type equations and Gaussian-type orbitals. In the manuscript,
we discuss this approach in great detail.

The aim of the four chapters in this thesis is to provide the necessary
background to the scientific papers, and to introduce the basic principles
used throughout the various topics that are discussed there. The purpose
of this introductory text is more pedagogical than scientific, and the text
is addressed to a reader interested in entering some of the fields addressed
here. The detailed scientific introduction to each of the mentioned topics
can be found in the individual papers. The reader is assumed to have
some basic knowledge of a finished master student in physics or chemistry.
This includes comprehension of fundamental concepts of quantum theory,
linear algebra, multivariable calculus, and the Hartree-Fock method; some
expertise in the Lagrangian and Hamiltonian mechanics, electromagnetism,
and occupation number representation (second quantization) is needed only
briefly in some sections.

The chapters are structured as follows. In Chapter 1, Dirac’s relativistic
one-electron quantum mechanics? is formulated and adapted to finite basis
calculations.®> Furthermore, time-reversal symmetry is discussed in the con-
text of the relativistic framework. Chapter 2 summarizes the foundations
of the Hartree-Fock and Kohn—Sham self-consistent field theories in the
language of the one-electron density matrix.3% The framework developed in
these two chapters is then applied in Chapter 3 to the time domain, and in
Chapter 4 to the solid-state systems. Chapter 3 contains a description of the
method based on solving the Liouville-von Neumann equation by propagat-
ing the density matrix in real time. Our scientific contributions in Paper
I-IV are summarized at the end of Chapter 3. Chapter 4 introduces the
underlying elements of the band structure theory, and summarizes the con-
tributions in Paper V, while showing some of the necessary modifications

to the self-consistent method described in Chapter 2.



Chapter 1

Relativistic quantum theory

There is nothing more practical
than a good theory.

Kurt Lewin

In this chapter I outline the Dirac’s relativistic quantum theory of the
electron,® and provide a language and basic concepts of the relativistic quan-
tum mechanics that are employed throughout this thesis to study properties
of molecules and solids. Needless to say, the chapter serves merely as an
introduction to this rich topic, and I refer the interested reader to the text-
books of Dyall and Faegri,?” Reiher and Wolf,® and the review article of
Saue?” for further reading.

Historically, relativistic quantum mechanics is a predecessor to quantum
electrodynamics (QED), which is the fundamental fully Lorentz invariant
quantum theory of interacting electrons, positrons, and photons. When
considering a low-energy scale that is of interest in the areas of solid-state
physics and chemistry, QED treatment of particles can safely be neglected
for all except the heaviest elements of the periodic table, or in cases where
very high accuracy of results is desired. However, relativity cannot be ne-

glected entirely, as we discussed in the Introduction.



6 Chapter 1. Relativistic quantum theory

VAV

Figure 1.1. A curve depicting motion of a relativistic particle in 4-

dimensional Minkowski spacetime.

1.1 The Dirac equation

1.1.1 Relativistic Hamiltonian

One way to derive the one-electron Dirac equation is to formulate the rel-
ativistic Hamiltonian which is then quantized in the spirit of Dirac’s orig-
inal work. Consider a particle moving along a curve I' in 4-dimensional
Minkowski space with the metric tensor n = diag(l,—1,—1,—1) (see
Fig. 1.1). In absence of external fields the action integral S can be written
as an integral of Lorentz-invariant infinitesimal spacetime intervals ds over
the curve T, i.e.

S = k/rx/@, (1.1)

where k is a dimensionality constant. Let x* denote coordinates in
Minkowski space for u = 0,1,2,3; and 20 = ct, where ¢ is the speed of
light and ¢ denotes time. Using time ¢ to parameterize I as z# = xH(t), we

to
S=k [ \[nwirivdt, 1.2
" Ny THT (1.2)

because ds? = 1, dzdz” and dz* = i*dt (the dot denotes the time deriva-

obtain

tive, and Einstein summation convention is implied). Expanding the sum

S = kc/f WJ1- (1.3)

where v2 = v2 = (&) + (£2)” + (¢%) is the particle’s speed. We identify
the Lagrangian as the integrand

over i and v gives

L(z,v) = key/1 — —. (1.4)



1.1. The Dirac equation 7

The dimensionality constant k is determined by expanding the square root
for v < ¢, and requiring that in the limit of ¢ — oo the Lagrangian coincides

with the nonrelativistic kinetic energy (up to an additive constant). Then

one finds that £ = —me, where m is the particle’s rest mass. Hence
2 v?
L(z,v) = —mc™|[1 - —. (1.5)
c

To obtain the Hamiltonian H = v - p — L, we evaluate the particle’s mo-
mentum p:

OL(x,v) __mv (1.6)

D .
ov /1 o 10)72
Then the relativistic free particle Hamiltonian H = H(x, p) is

H = ¢\/m?2c? + p2. (1.7)

The Hamiltonian for a particle in the presence of external fields that are de-

termined by a scalar potential p(x) and a vector potential A(x) is acquired
from Eq. (1.7) by using the minimal coupling substitution,' hence

H = cvVm?2e® + w2 + qp(x), (1.8)

where

©=p—qA(x) (L9)

is the canonical momentum, and ¢ is the particle’s charge.

1.1.2 Quantization

Presence of the square root in the relativistic Hamiltonian in Eq. (1.8)
makes construction of a relativistic quantum theory far from straightfor-
ward. Dirac sought an equation that is linear in space and time, and pro-
posed a strategy based on the assumption, that the expression under the

! Alternatively, we could introduce the generalized potential energy into the relativistic
Lagrangian in Eq. (1.5) to obtain the Lagrangian of a relativistic charged particle in the
presence of external fields:

L(z,v) = —mc®y[1 — Z—j —qo(x) + qz - A(x).

This Lagrangian would directly yield the Hamiltonian in Eq. (1.8), justifying the use of
the minimal coupling substitution.



8 Chapter 1. Relativistic quantum theory

square root can be written as a perfect square?

m2c? 4+ 7?2 = (a - 7w + Bmc)? (1.10)

for some unknown parameters @ and 5. In order for the assumption in
Eq. (1.10) to be valid, the parameters a and § must satisfy the following

relations:
B2 =1, (1.11a)
i + o =0, (1.11b)
Qi + ooy = 252‘]', (1.110)

for i = 1,2,3, where d;; is the Kronecker delta. Clearly, these equations
imply that o and § must anticommute, and thus they cannot belong to a
commutative algebra, such as algebras of real or complex numbers. Within
matrix algebra, Egs. (1.11) can be satisfied by the 4 x 4 matrices

(02 o (I 02
T o R

where o is the vector of the Pauli matrices, 0y is the 2 X 2 zero matrix,
and I is the 2 x 2 unit matrix. From the multiplication rule of the Pauli
matrices, it follows that

Qi = 5”'}14 + igijkzka (1.13)

where €;5;, is the Levi-Civita symbol, ¥ = [; ® o is the 4-component spin
operator, ® denotes the tensor product of matrices, and i is the complex
unit.

In principle, to satisfy the perfect square in Eq. (1.10), it is sufficient
that ajo; = 45, because it gives (a-m)* = w2 However, the correct
quantum-mechanical interaction of the magnetic field with the electron spin
represented by the Pauli matrices o is only obtained when the full expression
in Eq. (1.13) is used:

(-7 =n?—¢% B, (1.14)

where B = V x A is the magnetic field.
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1.1.3 Time-dependent Dirac equation

Let us insert Eq. (1.10) into the Hamiltonian in Eq. (1.8), and quantize the
position and the momentum according to the correspondence principle. Let
V(r) = qp(r) denote the scalar potential (in energy units). Furthermore,
let us substitute m = 1 and ¢ = —1 for the electron rest mass and charge
in atomic units, respectively. Then the time-dependent Dirac equation is

oY
i 1.1
1 T hp, (1.15)
where
hp = ca -+ B+ V(r) (1.16)

is the one-electron Dirac Hamiltonian,
7 =—iV + A(r) (1.17)

is the electron’s canonical momentum operator,” and

_ _ (¥E(r)
e = (00) s

is the 4-component wave function of the electron; ¥~ and ¥° being the
large (L) and small (S) spinor components of the wave function, respec-
tively. Contrary to the Schrédinger equation, the one-electron Dirac equa-
tion remains invariant under a Lorentz transformation, and thus constitutes
a relativistic extension of the nonrelativistic quantum mechanics. In the rel-
ativistic quantum chemistry schemes that employ 4-component Dirac-type
equations, and 4-component wave functions and operators, are referred to
as 4-component (4c) methods. The methods that approximate the Dirac
equation by eliminating the small-component wave function, establishing
2-component wave functions are described as 2-component (2c). Nonrela-
tivistic methods based on the Schréodinger equation are called 1-component
(1c) methods.

The Dirac equation can be used to express the electron density and
current density using 4c¢ wave functions. Multiplying Eq. (1.15) from the
left with Hermitian conjugate of the wave function ¥’ gives
10

ot

2The version of 7 that is used here is different than in Eq. (1.9), T assume it should

it =5 = o (ca- (—iV + A(r) + B2 + V(7)) ¥

be clear from the context, which 7 is used.
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Adding this equation to its Hermitian conjugate we obtain the continuity
equation
dp
ot
where we defined the electron probability density p and the probability cur-

+V-j=0, (1.19)

rent density j as

p(r.t) = i (e, 1)y (r, 1), (1.20)
jlr,t) = @Z)T(r, t)cah(r,t). (1.21)

Note that the relativistic 4c expression for the current density is formally
simpler than its nonrelativistic counterpart (omitting the arguments (r,t))

(07 (V) - 0(V)) (1.22)

jn.r. = Z

for a 1c wave function 1, where the star (*) indicates complex conjugation.

1.1.4 Time-independent Dirac equation

In analogy with the nonrelativistic case, the time-independent Dirac equa-
tion takes the form of

hD¢n = 5n¢na (1‘23)

where 1, = 1, () are the stationary states and e, are their energies. Since
the Dirac Hamiltonian is not bounded from below, solutions of Eq. (1.23)
constitute two sets, separated by an energy gap® A ~ 2¢?. The sets are
referred to as the positive-energy and the negative-energy states. To obtain
energies of the electronic states that are directly comparable with the non-
relativistic energies, it is a common practice to shift the energy scale of the
Dirac Hamiltonian by ¢?. Then the Dirac Hamiltonian becomes

[ V(r) co -
fp = (ca - V(r)— 2c2> '

(1.24)

Such a shift only changes the global phase of the wave function, and hence
has no physical meaning.

3This gap ezactly equals 2¢? in the absence of external potentials V' and A. Inclusion
of the Coulomb potential from the nucleus in the Dirac equation gives rise to bound states
with energies located inside the gap, but close to its upper (and lower) boundary. As a
consequence, the gap is slightly shrunk.
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1.2 Restricted kinetic balance

In order to solve Eq. (1.23) for given potentials V' and A, eigenfunctions
1, must be represented in an approximate manner. One such common
representation is an expansion in a given fixed basis composed of some
known functions x,(r). Such an expansion is exact in principle, but in
computer implementations the expansion must be truncated, giving rise
to numerical errors. In the context of relativistic methods, the 4c Dirac
Hamiltonian in Eq. (1.24) couples the large and small component of the wave
functions. Early finite basis calculations using the Dirac Hamiltonian were
hindered by convergence problems,%4! because the basis did not respect
this coupling. *>*3 The coupling condition can be seen by writing Eq. (1.23)
as

V(r)ypl+ co - pY¥ = eyl (1.25a)
co -pr—f—(V(r) — 202) V¥ = ey, (1.25b)

where we omitted the vector potential for clarity, and dropped the index n.
We can express the small component ¥° from the second equation as

1 o-p 1 I
S f— R ~ — .
cp” = 5¢ 2V2(7") 1zp 20' pY (asc — 00). (1.26)

If we insert this expression in the limit of ¢ — oo to Eq. (1.25a), we imme-
diately recover the nonrelativistic Schrodinger equation. However, this is
only true for a complete (infinitely large) basis. To obtain a correct nonrel-
ativistic limit of the kinetic energy operator in an incomplete basis, Stanton
and Havriliak suggested to employ the condition in Eq. (1.26) at the ba-
135,

sis leve This means that the small-component basis functions X}j are

generated from the large-component basis functions Xﬁ as

1

X (1) = 5 0 px(T) | (1.27)

The condition in Eq. (1.27) is referred to as restricted kinetic balance (RKB),

and was later generalized to incorporate a nonzero vector potential A in the

study of magnetic properties.**
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1.3 Modified Dirac equation

From now on we shall assume that A = 0, omitting the vector potential
from the following discussions. A 4c wave function ¢ (r) is expanded using
4c basis functions x,(r) as

P(r) = xu(r)c, (1.28)
where .
Xu(r) 02
xu(r) = | ™ ) (1.29)
g < (A
is a 4 x 4 matrix of basis functions, and ¢ = (cf,ds)T is a 4c vector

of expansion coefficients. Letting g, () denote scalar basis functions, we
construct X{Z and XE to satisfy the RKB condition in Eq. (1.27), hence

Xp (1) =T & gu(r), (1.30a)
X (r) = 2%0 - PYu(r). (1.30b)

If we insert the expansion in Eq. (1.28) into the time-independent Dirac
Eq. (1.23), apply XL,(’I‘) from the left, and integrate over the spacial coor-
dinates r, then we obtain the matrix form of the Dirac equation

pLL T cr, S 09 cr,
= , 1.31
( T ﬁvss - T) <Cs> c (02 ﬁT Ccs ( )

where
Sy =L ® / g5 (r) g (r)d®r, (1.32a)
T =L ® / gZ(r)p;g#/(r)dgr, (1.32D)
VL — T, @ / gL () () gy (r)dPr, (1.32¢)
vis = [0 PV )@ - plgu(r)dir, (1.324)

Matrix Eq. (1.31) is referred to as the modified Dirac equation.*® Since the
speed of light only appears in the denominator, the nonrelativistic limit
can simply be obtained by putting ¢ — oo, which gives ¢; = cg and,
subsequently, the Schrédinger equation.
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One of the advantages of Eq. (1.31) is that we can isolate the scalar-
relativistic spin-free contributions from the terms that couple various spin
components. The only non-scalar terms arise from the small-component
potential Vfi/ defined in Eq. (1.32d). Applying the multiplication rule of
the Pauli matrices on the operator (o - p)V(r)(o - p) yields

(0-p)V(eg -p)=pV -p+(pV xp)-io. (1.33)

From this equation we can see, that only the second term is non-diagonal in
the spin space. This term is responsible for the spin—orbit coupling (SOC),
and neglecting it results in the scalar relativistic form of the Dirac equa-
tion.“% Note, that because of the SOC term, the Dirac Hamiltonian does

not commute with the total spin operator! s = diag(o/2,0/2).

1.4 Time reversal symmetry

The concept of time reversal (TR) symmetry plays a central role in the
works included in this thesis [Paper I-V]. Therefore, here I provide a short
summary of the main definitions and results that are then build on in our
articles.

Let IC denote the 4c one-electron TR, operator. K is required to change
the sign of the momentum operator, but leave the position operator un-

changed, hence
KrK' =, KpK' = —p. (1.34)

Consequently, the angular momentum operator I = r X p and the 4c spin

operator s = X /2 transform as

KIKT = —1, KsK = —s. (1.35)
It follows for the a¢ and 8 matrices that

Kak' = —a, KBKT = 8. (1.36)

Demanding that K is a linear operator leads to a contradiction of Eqs. (1.34)

with the canonical commutation relation [x;,p;] = id;;. The problem is re-

“This definition of the spin operator trivially extends the standard 2c definition o /2.



14 Chapter 1. Relativistic quantum theory

solved by defining K as an antilinear, and antiunitary operator.” An explicit

form of K that satisfies the desired properties can be written as374748

K= —i (Uy 02> Ko, (1.37)

02 O‘y

where Ko denotes the complex conjugation operator. It follows from this
definition that

Kt = —K, (1.38a)
KK =14. (1.38b)

The conditions in Eqgs. (1.34) and (1.36) imply (], -] denotes the commuta-
tor.)
[C,hp] =0 (1.39)

for the Dirac Hamiltonian hp in absence of magnetic fields (A = 0). Ap-
plying K to the time-dependent Dirac Eq. (1.15) from the left, and using
Eq. (1.39), we prove the following theorem:

Theorem 1. Let ¢(r,t) = ¢ be a solution to the time-dependent Dirac
equation z%—lf = hpt, where hp = co - p + B + V(r). Then p(r,t) =
Ki(r,—t) is a solution of the same equation.

Similarly, letting KC act on the time-independent Dirac Eq. (1.23), we

can prove:

Theorem 2 (Kramers). Let ¢(r) =1 be a solution to the time-independent
Dirac equation hp = e, where hp = ca - p + B2 + V(7). Then (r) =
ICip(r) is a solution with the same energy €. In addition, 1 and 1) are
orthogonal, i.e. (|1) = 0.

5 An operator K is called antilinear iff
K(af +bg) =a"Kf+b"Kg

for arbitrary complex numbers a,b € C and functions (vectors) f,g. In addition, iff
K'K =1, then K is called antiunitary. Compared to linear operators, Hermitian conju-
gation of an antilinear operator is defined with an extra complex conjugation, hence

(f.Kg)=(K'f,9)",

where (-,) denotes an inner product.
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Proof. The first part follows from Eq. (1.39). To prove the orthogonality,
consider:

— (Klg) = (Ke|K*) = (KIKeIKy) " = ()" = (Kly).-
O

According to Theorem 2, eigenstates of the one-electron Dirac Hamil-
tonian are doubly degenerate.® Therefore, we can compose a symmetry-
adapted basis consisting of pairs {|p), |p)}, where |p) = K |p). Such pairs of
two time-reversal related states are called Kramers partners. An operator
A is called TR-symmetric iff it commutes with K, i.e.

[A, K] = 0. (1.40)

TR-symmetric operators acquire a special structure when expressed in the
basis of Kramers pairs.*” 5! This can be seen by evaluating elements of
a TR-symmetric operator A. Let a = (p|A|p) and b = (p|A|p) denote 2
distinct elements of A. It follows for the 2 remaining elements, that

(p|Alp) = (KplAlp) = (p|KTAlp)" = — (pIKA|p)* = — (p|AK|p)" = —b*
and
(plAlp) = (pIKTAK|p)" = (p|AKTK|p)" = (p|Alp)* = a*.

Therefore, the operator A can be written as

A= l “ b*] : (1.41)

-b* a

A matrix that has the TR-symmetric structure of Eq. (1.41) can compactly
be decomposed using a matrix basis consisting of the Pauli matrices times
the imaginary unit ¢ and the identity matrix. Hence

3
A= Z Ale, = Aleg, (1.42)
q=0

5In fact, this is true for any system with half-integer total spin described by a TR-

symmetric Hamiltonian.
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where
A® = Rea, eo = Iy, (1.43a)
A =Ima, e1 = ios, (1.43b)
A? = Reb, ey = 10y, (1.43c)
A% =TImb, e3 = i0y. (1.43d)

Such a decomposition enables encoding of 4 complex-matrix elements of TR-
symmetric operators using 4 real-valued elements AY. The decomposition in
Eq. (1.42) provides a non-redundant framework for 2c and 4c operators, and
can be exploited to greatly reduce computational effort when constructing
these operators. For more complicated operators’ the computational savings
can exceed the obvious factor of 2. Adaptations of this scheme in a more

general context of complex AY are shown and discussed in Paper IV and V.

1.5 Two-component Hamiltonians

The study of molecules and solids within the framework of self-consistent
field (SCF) theory poses a twofold computational challenge: Construction
of an effective one-electron Hamiltonian and its subsequent diagonalization.
Inclusion of relativistic effects at the 4c level of theory increases computa-
tional complexity for both these SCF steps. For this reason, approxima-
tions that circumvent the need to compose the full 4c¢ Dirac Hmailtonian
are sought.

Perhaps the most obvious way to eliminate the small component wave
function ¢° is to insert the exact expression for 1° in Eq. (1.26) to
Eq. (1.25a):

1
V(rjp* + 5o -pR(e)o - pp* = ey”, (1.44)
where .
e—=V(r)\~
=\1+—F—) - 1.4
REe) = (145557 (1.45)
Expanding R(e) ~ 1 — 5_2‘22)(r) and correcting the norm of the large compo-

"Such as the Coulomb mean-field or exchangecorrelation contributions to the poten-
tial, see Chapter 2.
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nent 1’ yields an approximate 2¢ Pauli Hamiltonian

p? pt 1 1
hp=—4+V -+ = (VV)+ = [(VV) xp|- 1.46
b=V P V) 5 (V) xple (146)

used when it is sufficient to treat the relativistic effects perturbationally.®
Shortcomings of the Pauli Hamiltonians can be circumvented by developing
the zeroth-order regular approximation (ZORA) to the coupling.®?®* This

approximation leads to a variationally stable ZORA Hamiltonian

2¢2

5o P). (1.47)

1
hzora =V + 5(0 “p)

However, the appearance of the potential V' in the denominator hinders
analytical evaluation of the Hamiltonian in a finite basis, and numerical
integration schemes are preferred.

Alternatively, a unitary Foldy—Wouthuysen-type transformation® that
block-diagonalizes the Dirac Hamiltonian can be composed. The matrix
formulation of such a transformation leads to the exact 2-component (X2C)
Hamiltonian.%% % An application of the X2C procedure to many-electron
problems involves in its simplest form the one-electron Dirac Hamiltonian.
Its eigenvectors are then used to find an explicit form of the decoupling
matrix U. The matrix U is parameterized as

(1+ RTR)~1/2 0 1 —Rt
UZ( 0 (1+RRT)—1/2> <R 1 ) (148)

where R is a 2 x 2 matrix determined by requiring that®®

L L ~
cg o2\ [(ey O
v (ﬁ cS>_<0 a_>’ (1.49)

which is equivalent to requiring that U block-diagonalizes the one-electron
Dirac Hamiltonian hp. Here we denoted the positive-energy and negative-
energy matrix blocks with + and —, respectively. This leads to the linear
matrix equations

' —RieY =0, (1.50a)
Rel 4+ ¢ =0, (1.50b)

8The variational approach is hindered by the presence of the —p* operator which makes
the Pauli Hamiltonian unbounded from below.
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that are solved to find R. Computational savings are obtained by removing
the negative-energy blocks from the subsequent SCF procedure, giving rise
to an approzimate 2c method. In addition to reducing the number of the
wave function components to 2, such a scheme avoids evaluation of expensive
two-electron terms in the 4c basis. In Paper III and IV we extend this
X2C approach to the time-dependent SCF in the study of relativistic effects
on time-dependent response properties.

1.6 Interacting electrons

So far our discussion only involved the one-electron Dirac Hamiltonain.
However, in molecular and condensed-matter systems, electron—electron in-
teractions cannot be neglected. We could now shift our focus to QED, which
is the Lorentz invariant quantum theory of electrons, positrons and photons.
Such an approach would require introducing concepts of quantum field the-
ory, and would result in equations that are immensely complicated to solve
for polyatomic systems. The difficulties can vastly be mitigated by realizing
that some QED processes, such as the electron—positron pair creation, are
not relevant for the low-energy range that is of interest in molecular and
condensed-matter sciences. 38

The electromagnetic (photon) field can be split into an external field
and an internal field. The external field contains the interaction of elec-
trons with nuclei as well as various electric and magnetic fields that are
introduced when studying response properties. The internal electromag-
netic field describes electron—electron interactions, and is approximated by
the nonrelativistic instantaneous Coulomb interaction. The described pro-
cess yields the many-electron Hamiltonian known as the Dirac—Coulomb
Hamiltonian that takes the following form:

NC 1 Nc
i=1 1,j7#1
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where
hp(i) = ( V,(fi). ca.i o > ’ (1.52)
=— (1.53)

r; and p; are the position and momentum operators of the i-th electron,
respectively, o; are Pauli matrices for the i-th electron, and N, denotes the
total number of electrons. Note, that the Dirac-Coulomb Hamiltonian is
not Lorentz invariant.

In this entire work we use the Dirac—Coulomb Hamiltonain in the con-
text of Hartree-Fock (HF) theory and density functional theory (DFT). An

5960 _ can be

additional relativistic two-electron term — the Breit operator
introduced to the two-electron Hamiltonian in Eq. (1.53). However, such
an approach would require an extension of conventional density function-
als to incorporate dependence on the current density,%' and is usually not

necessary when studying molecular systems and solids.






Chapter 2

Self-consistent field theory

If you are receptive and humble,
mathematics will lead you by
the hand.

Paul Dirac

Practical calculations of electronic structure and response properties of
molecules and solids must always involve a set of sophisticated approxima-
tions. In principle, one should solve the Schrédinger (or Dirac—Coulomb)
equation with the many-body Hamiltonian acting on the many-body wave
function. Such a wave function depends on coordinates (and spin) of all
electrons and nuclei, and the associated equation is immensely complicated
to solve. The problem is significantly simplified by assuming the Born—
Oppenheimer approximation, which enables decoupling of the electronic
and nuclear degrees of freedom.%? This common approximation stems from
the fact that nuclei are much heavier than electrons, and is employed here
as well as the included works [Paper I-V]. As a consequence, it is suf-
ficient to limit our discussion to the electronic Hamiltonian, that depends
parametrically on the nuclear coordinates.! The many-electron Hamiltonian
adopted in this work takes the form of the Dirac—Coulomb Hamiltonian in
Eq. (1.51), and acts on the many-electron multi-component wave function.

The many-electron Schrodinger equation is still far too complicated
to solve for realistic systems, and electronic structure theory provides a

!The Born-Oppenheimer approximation justifies our restriction to the electronic
Hamiltonian when discussing the relativistic theory in Chapter 1.

21
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plethora of approximate methods to obtain the ground state wave function
and energy. I refer the interested reader to the book of Helgaker, Jorgensen
and Olsen,% and the book of Piela% for more information about these
methods. In this work we restrict ourselves to the methods based on self-
consistent field (SCF) theory, where the many-electron problem is replaced
by a set of effective one-electron problems.

The rest of this chapter contains an overview of key principles that
are required to formulate relativistic SCF methods. These principles are
expanded to the time domain in a study of real-time electron dynamics in
Paper I-1V, and applied to band-structure calculations of materials in the
solid state in Paper V. These topics will be introduced in Chapters 3 and 4.

2.1 Hartree—Fock and Kohn—Sham

Effective one-electron equations can be constructed by approximating the
many-electron wave function with a single Slater determinant consisting
of several one-electron wave functions, called spinorbitals. These spinor-
bitals are determined variationally to minimize the total energy of the sys-
tem. The variational principle together with the single-determinant ansatz
for the wave function yield a set of nonlinear equations for the unknown
spinorbitals, known as the Hartree-Fock (HF) equations. If no assumption
is made for the spin components of the spinorbitals, the HF method is then
called the general HF (GHF) method, in which the spinorbitals are com-
plex functions with mixed spin components.”? The major downside of the
HF method is that it does not account for electron correlation, i.e. that the
true many-electron wave function should be represented as a linear combina-
tion of Slater determinants. Post-HF methods mitigate the lack of electron
correlation in the HF method at the expense of great computational effort.

A conceptually very different approach is based on Kohn—-Sham (KS)
density functional theory (DFT),5%65 and its relativistic extension.%” DFT

2Compared to the unrestricted HF (UHF), where we assume that the individual com-
ponents of the spinorbitals are real functions, and that there is no mixing of the spin
components, i.e. all spinorbitals contain exactly one nonzero spin component. Within
the UHF method, there are two sets of spatial functions (orbitals), one for each spin
component. Restricted HF (RHF) additionally assumes, that the orbitals for both spin
components are identical. See Piela,%* for example.
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provides a principally exact mapping between the many-electron wave func-
tion and a much simpler object: the electron (probability) density p. The
total energy F is then written as a functional of the electron density

/p r)d*r + F[p), (2.1)
Flp] = Ulpl, (2.2)

where T'[p] is the kinetic energy functional, Ul[p] is the electron—electron
interaction energy functional, and v is the external potential, containing
electron—nuclear attraction. Unfortunately, the exact expression for the
F[p] functional (called the universal functional) in Eq. (2.2) is not known,
and hence must be modeled. Kohn and Sham introduced a fictitious sys-
tem of non-interacting electrons moving in an effective external potential,
constructed so that the fictitious system has the same electron density as
the real interacting system.% The system is described by a set of effec-
tive one-electron equations (the KS equations) that are formally similar to
the HF equations. The problem of the unknown kinetic energy functional
Tp] is partially alleviated, because expressing the kinetic energy of the
non-interacting system KS 7y is straightforward, leaving only the difference
T — Ty undetermined. The terms in the energy functional are rearranged as

Elpl =Tl + [ p(r)o(r)d*r + Eulol + Bl (2.3)

Exclp] = T[p] — Tolp] + Ulp] — Eulpl, (2.4)

d3 2.
// |7“1—"°2| i (2:5)

is the Hartree (or Coulomb) energy functional, and Ex.[p] is the exchange—

where

correlation (XC) energy. Tp[p] is understood as an implicit functional of
the density, obtained from the solutions of the KS equations. The main
advantage of the KS approach is that the first four terms in Eq. (2.3) are
known explicitly, and are inexpensive to calculate, while only the XC en-
ergy remains to be determined. Fx. is typically much smaller than the three
other terms, and is modeled using local density approximation % (LDA),
generalized gradient approximation”™ (GGA), or hybrid functionals™ that
contain the HF exact exchange admixture. There are more cases of the den-
sity functionals; the hierarchy of various approximations for the functional
(“Jacob’s ladder”) can be found in the work of Perdew and Schmidt.
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Despite having very different origins, the resulting HF and KS equations
are similar at a practical level, and we refer to them commonly as the SCF
equations. 4c variants of the HF and KS equations are called the Dirac—
Hartree-Fock (DHF') and Dirac-Kohn-Sham (DKS) equations to explicitly
highlight that the nonrelativistic one-electron Hamiltonian is replaced by
the 4c Dirac Hamiltonian in Eq. (1.24). Owing to the one-electron nature
of the KS equations, KS DFT facilitates incorporation of electron correlation
effects roughly at the cost of the HF method, which is in contrast to post-HF
methods.

2.2 Density matrices

There are multiple ways of encoding information about a state of a system
in quantum mechanics. Representing the state with the many-electron wave
function can be somewhat cumbersome, and as we will see here, expectation
values of many operators only require knowledge of simpler, quantities called
reduced density matrices. The excellent book of McWeeny?® covers the
broad topic of the density matrices and their applications in various subfields
of molecular quantum mechanics. The reduced density matrices can be
defined either as integrals of the many-electron wave function, or using the
occupation number representation (also known as “second quantization”).

36,63 which allows us to

Here we employ the second-quantized formulation,
obtain expressions directly in a discrete basis (such as atomic orbitals).
Let H denote a many-electron Hamiltonian [for instance the Dirac—

Coulomb Hamiltonian in Eq. (1.51)]:
Ne 1 N
H=Y i)+ 3 g(i.d), (26)
i=1 i,ji

where h(i) is a one-electron operator, and ¢(i, j) is a two-electron interaction

operator. Let y,(7) denote given basis functions constituting a complete

basis. Then the occupation number representation of the Hamiltonian is®
1
H = h%ala® + §g“bcda2a;radac, (2.7)

3Here we do not assume, that the basis is orthonormal (only complete), so we dis-
tinguish between covariant and contravariant indices, see Appendix A and the works of
Head-Gordon et al. ™™



2.2. Density matrices 25

where the covariant expressions for h and g are obtained as

b = / () hxp(r)dr € €, (2.8)
Gabod = / / )X (r2) g1, o) xe(r ) xa(ra)PridPra € C. (2.9)

hep and gepeq are called the one- and two-electron integrals, respectively.
Here we assumed that the two-electron operator ¢ is independent of elec-
trons’ momenta p; and po, but no assumption was made for the one-electron
part h. a:fl and a® are the electron creation and annihilation operators, re-
spectively, satisfying the following anti-commutation relations ({-, -} denotes
the anti-commutator):

{a% a}} = 67, (2.10a)
{a%,a’} =0, (2.10b)
{af,al} = 0. (2.10¢)

In case the Hamiltonian being considered is the Dirac—-Coulomb Hamiltonian
in Eq. (1.51), the one-electron part h is the 4c matrix in Eq. (1.52), and
the basis functions x, are 4c column vectors of functions. The two-electron
terms g have a trivial multi-component structure. Here, indices a,b,c,d
reflect the internal structure of the basis, so that Ay, and ggpeq are complex
numbers.*

The reduced density matrices can be defined by taking the expectation
value of the Hamiltonian in Eq. (2.7). Let |¥) denote an orthonormal many-
electron state. Then the total energy is

1
= (U|H|V) = h% D", + 2gab re (2.11)
where we defined the one- and two-electron reduced density matriz as

Ulalab| W), (2.12)
R <\Il]ajla2adac\\ll> , (2.13)

* Alternatively, it is possible to use the 4 x 4 matrix form of the basis functions x, ()
in Eq. (1.29), hy, is then a 4 X 4 complex matrix. This distinction is not relevant for what
follows in this chapter, so for simplicity the approach based on the scalar h,, elements
was chosen.
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respectively. These definitions are extended to the time domain in Chap-
ter 3. To simplify our notation, let us introduce traces of the one- and

two-electron quantities as

Try hD = h%, D, = hg, D", (2.14)
Tro gI' = g“bchCdab = gabchCdab. (2.15)

The total energy then becomes

1
E=Tr1hD + 3 Tra 9T (2.16)

2.3 Electron density

Generally, a knowledge of the N-electron density matrix is sufficient to
calculate the expectation value of N-electron operators. For instance, for
a given one-electron operator A, its expectation value is a simple trace
with the one-electron density matrix, i.e. Tri AD = AgDb. If a one-
electron operator A has a trivial multi-component structure, and contains
no derivatives in the coordinate representation, the expectation value (A)
can be further simplified with the use of the electron density p. The relation
between the one-electron density matrix and the electron density can be
understood from the following analysis. The expectation value of A in the

coordinate representation is
(A) = A Db = / d3T1d3T2ASSI(T1,TQ)DSIS(TQ,Tl), (2.17)
where s, s’ denote four individual bispinor components, and
D (r1,m3) = (W ] 1 (o) a® (7 ]\11> (2.18)

is the coordinate representation of the one-electron density matrix. a*(r)
and a®(r) are transformed creation and annihilation operators (also known
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as the field operators), respectively, obtained as®

a*(r) = x5*(r)al?, (2.19)
a®(r) = x5 (r)a®. (2.20)

Inserting these expression to Eq. (2.18) gives the transformation identity
D (4, m) = X3 (r1) Dx3 *(r2). (2.21)
Let us assume that A takes the following special form®
Agg (r1,72) = 0(1r1 — 12)055 A(T1), (2.22)
where d(r) is the Dirac delta function. Eq. (2.17) can then be written as
Ay — / &BrA(r)Tr D(r,7) = / A(r)p(r)dPr, (2.23)

where Tr indicates the trace over the 4 bispinor components, and we defined
the 4c spin-less electron density

’p(r) =TrD(r,r) ‘ (2.24)

The electron—nuclear interaction potential is an example of an operator
that satisfies Eq. (2.22), and thus can be evaluated as an integral over
the electron density. On the other hand, the nonrelativistic kinetic energy
operator (—%) contains the second derivative; its relativistic counterpart
a - p is additionally spin-dependent, hence knowledge of the full density
matrix may be required.

In practice, the electron density can be evaluated using the given basis
functions x,. Inserting the transformation identity for the density matrix
[Eq. (2.21)] to Eq. (2.24) gives

b
p(r) = Tr [xa(r) D" (r)] (2.25)
5 These relations are consequences of applying the resolution of identity as follows:

a'(r) vac) = |r) = > (alr) |a) = Zxa Zxa a™ |vac),

a

where |vac) is the vacuum state, and we omitted s for simplicity. Likewise for the anni-
hilation operator.

5The trivial multi-component structure is a generalization of the concept of spin-free
operators.
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If we define the overlap distribution function as a product of two basis

functions:
Qab = XL(T)Xb(T)a (226)

and use the cyclic permutation in Eq. (2.25), we obtain

p(r) =T Q(r)D| (2.27)

2.4 SCF equations

2.4.1 Total energy

So far, no approximation has been made, and the expressions for the energy
in Eq. (2.16) and the electron density in Eq. (2.27) are exact, given that
we know the density matrices. Unfortunately, determining Dba and FCdab
remains to be the challenging task, and we must resort to approximations.
We can make a key observation by assuming, that if |¥) corresponds to a
single Slater determinant composed of the occupied spinorbitals with indices
1,7, k,l, then a straightforward computation gives

TY,, = o610] — 86l (2.28)
and, more generally, in an arbitrary basis:
re , = pe, D% — D¢ DY . (2.29)
This motivates us to define the difference two-electron density matrix
r<,=r<,6 - D¢, D% + DD, (2.30)

Substituting this for I'“_, in the energy Eq. (2.16) gives

1 1 _
E = Tr (h + 5 (D] - K[D])) D+ Toogl, (2.31)
where
Jab[D] = gacbdDdca (232)

Kab[D] = gacddeCa (233)
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are the Coulomb (or Hartree) and the exact exchange operators, respec-
tively. Neglecting T yields the well know expression for the HF energy

Fur = Ty (h + 5 (D) - K[D])) D (2.34)

The KS expression for the total energy is similar:

Bics =Ty (h+ 5J1D]) D + Exclg | (2.35)

From a practical point of view, the only difference between the KS and
HF energy is that the KS energy does not contain the HF exact exchange
operator K, and instead includes the approximate exchange and correlation
contributions Fy.. Hybrid DFT introduces some portion of K to the KS
energy. !

In order to establish a connection between the J matrix appearing in the
HF and KS energy expressions, and the Coulomb energy in Eq. (2.5), let us
insert the two-electron integrals in Eq. (2.9) to Eq. (2.32), set g(r1,72) =

m, and calculate the energy. We obtain
1 1 Try (2(r1)D) Try (2(r2) D
Euy=-TnJD = 7// n (Ur)D) Ty (Uro)D) s, 5,0 (236
2 2 ‘7“1 — ’l°2|

After realizing that the traces are the electron densities [Eq. (2.27)] we
recover Eq. (2.5). Similarly, using Eq. (2.33) we can write the exact exchange
energy as

By= LT KD = 1// Iy (Ur) DUra)D) s, s, (2.37)
2 2 |r1 — 72|

We note that these expressions for the Coulomb and exact exchange energy
are general, and can be used both in the 1c, 2c, and 4c frameworks. The
product of the two traces in the Coulomb energy makes its implementation
much simpler compared to the exact exchange energy, which cannot be
factorized, and usually requires more operations to compute. For the hybrid-
type functionals, the F,. term is approximated as

Eye = /5xc[p, Vo, (r)dr + EEx, (2.38)

where ¢ is a weight factor for the HF exchange contribution, and ey is a
function of the density and its gradient; the factor £ multiplies the exchange
part of eyc.
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2.4.2 One-electron equations

The HF and KS energy require knowledge of the one-electron density matrix.
Once D is determined, the electron density needed for the Fy. term can be
constructed from Eq. (2.27). Within the HF and KS framework the one-
electron density matrix is composed approzimately, i.e. from the solutions
of the effective self-consistent one-electron equations.” These equations can

36,63,64

be derived by applying the variational principle, and take the form

Fop(r) = eppp(r), (2.39)

where F' is the Fock operator, ¢, are the molecular orbitals (MOs) and ¢,
are the orbital energies. Expanding the MOs as

ep(r) = Xa(r)c?, (2.40)

are the MO expansion coefficients, gives the matrix form of

[Fe = See} (241)

Here, ¢ labels the diagonal matrix of spinorbital energies,

where c® »

Eq. (2.39)

Sap = /XL(T)Xb(T)dST (2.42)

is the overlap matriz, and the Fock matrix F' is obtained as the energy

derivative oF
Fop=—. 2.4
ab ana ( 3)
Evaluating the derivative gives
(F=h+J—¢K+V<) (2.44)
where (exelp, Vp, €] = exe)
// ab Tl TI'1 (r2>D) d3’l°1d3’l"2, (245&)
r1 — 7
Q(r1) DR
Ko|D] = / / (Qr) DRAr2))ap g3,.. 31, (2.45b)
r1— 7
Xlp, Vp, €] = Oxc Qup(r) + Oexc VQu(r)dr (2.45¢)
ab p? p7 - 8p(’r‘) ab 8Vp(’r’) ab . .

"Such a density matrix corresponds to a state described by a single Slater determinant,
compared to the exact density matrix which corresponds to the true wave function.



2.5. Gaussian-type functions 31

The expressions for J and K are identical to those in Egs. (2.32) and (2.33).
The Fock matrix in Eq. (2.44) corresponds to hybrid DFT, however, setting
¢ = 1 (for which V*¢ = 0) yields the HF method, and setting £ = 0 one
recovers pure KS DFT.

The density matrix expressed in the basis of MOs is the diagonal oc-
cupation matrix f, containing ones and zeros for the occupied and vacant
spinorbitals, respectively. MOs corresponding to the negative-energy states
are left vacant. The AO density matrix is obtained by transforming f as

D = cfcl. (2.46)

The SCF Eq. (2.41) is nonlinear (self-consistent), due to the dependence
of the Fock matrix on the the density matrix which is determined from
the coefficients c¢. Therefore, Eq. (2.41) must be solved iteratively. The
convergence of the SCF procedure was dramatically improved by Pulay 776
who introduced the direct inversion of the iterative subspace (DIIS) scheme.
DIIS involves construction of an error vector evaluated as the commutator
[F, D] in each cycle. The error vectors from the current and the previous
cycles then enter a minimization procedure that yields a set of coefficients

used to extrapolate the Fock matrix.

2.5 Gaussian-type functions

In this section we briefly discuss the fundamental build units of the SCF
method used in this work, i.e. atom-centered normalized primitive Carte-
sian Gaussian-type orbitals (GTOs).”"™® Cartesian GTOs are defined as

gu(r) = N(z — A (y — A (2 — A,)ze =47, (2.47)

where N is the normalization constant, a is the Gaussian exponent,
l = (I3,1y,1.) are the Cartesian angular momenta, and A and r are the
nuclear and electron coordinates, respectively. In most cases, integrals con-
taining GTOs can be evaluated analytically using various recurrence re-
lations. %7 GTOs gu constitute a set of scalar lc basis functions; the 4c
basis is constructed by employing Eqs. (1.29) and (1.30) to respect the RKB
condition (see Section 1.2).

One of the major advantages of the GTO basis is that matrix elements
of many operators expressed in this basis decay rapidly with an increasing
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separation of the Gaussian centers. This is a consequence of the Gaussian
product rule: 3

e~alr—A)?—B(r—B)* _ e_“(B_A)QB_p(T_P)Q» (2.48)

where we defined

af
a+p’

aA+ B
a+p

pP=a+ S, P

w (2.49)

Here we can see that the factor e #(B=4)” in the product ensures the expo-
nential decay as the distance between A and B increases.

The computationally most expensive part of the SCF algorithm is the
evaluation of the two-electron integrals in Eq. (2.9), and their subsequent
contraction with the density matrix in Eqgs. (2.45a) and (2.45b). Due to
the incredibly large number of the two-electron integrals in solid-state cal-
culations in Paper V|, these integrals are approximated using the spherical
multipole expansion.®® This approximation requires making the extent of
the Gaussian products finite. We define the extent of the Gaussian product
ry asT980

rp=p Y2erfc e, (2.50)

where ¢ is a small positive threshold, and
(o]

erfe(z) = 2z eV dt (2.51)

™ Jx

is the complementary error function. This definition ensures that integrating
a normalized Gaussian over the region beyond its extent gives a negligible

2\/5/ e P dy = . (2.52)
T Tp

contribution



Chapter 3

Real-time electron dynamics

Big things have small
beginnings.

David in Prometheus

This chapter introduces the main principles that are further developed
and applied in Paper I-IV in the study of the response of molecules to
external time-dependent fields. Perturbing the ground state of a molecule
with a time-dependent electric or magnetic field causes the system to en-
ter a state that is a superposition of all excited states. Propagating this
state in time enables probing various spectroscopic properties, such as va-
lence absorption spectroscopy [Paper 1], core electron (X-ray) spectroscopy
[Paper II], electronic circular dichroism (ECD) and optical rotatory dis-
persion (ORD) [Paper IV], and nonlinear optical processes [Paper III].
Relativity plays an important role in many of these properties, since it af-
fects the structure of orbitals — scalar relativity induces shifts in orbital
energies, and the SOC additionally splits the otherwise degenerate orbital
energies. Hence the excited states that involve excitations to and from such
orbitals are qualitatively differently described at the nonrelativistic and rel-
ativistic levels of theory. This is particularly true for core-lying orbitals,
where the relativistic effects are known to be most prominent, and can be
observed also for light elements of the periodic table.

So far we have only considered the electronic ground state, and the static
SCF method described in Chapter 2 was designed to yield the approximate
ground state energy and the optimized HF or KS orbitals and their corre-

33
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sponding energies. In this chapter we extend the previous SCF formalism
by including an explicit time-dependence to the one-electron Hamiltonian
to account for the time-dependence of the external fields. The time evolu-
tion of the system characterized by this Hamiltonain can be approximately
described by the time-dependent SCF (TDSCF) equation, which is a time-
dependent analogue of the static SCF. We solve this equation directly in
the time domain, and propagate the one-electron time-dependent density
matrix. This is in contrast with the more common perturbative approach,
where the linear response theory is developed,® ! and equations in the
frequency domain are formulated.®%6 The differences between the two ap-
proaches will also be discussed here. When the TDSCF equation is solved in
the time domain, this method is sometimes referred to as real-time TDSCF
to distinguish it from the perturbative frequency-domain based methods.

3.1 Liouville-von Neumann equation

3.1.1 Time-dependent Hartree—Fock

The time-dependent analogue of the HF equation can be derived by apply-
ing similar arguments as for its static counterpart (see Section 2.1). Ap-
proximating the many-electron wave function at each time ¢ with a single
Slater determinant, and employing the time-dependent variational principle
yields a set of nonlinear equations for the time-dependent spinorbitals36:87-89
— their time evolution is governed by the time-dependent Fock operator.
These equations can be recast into the Liouville-von Neumann (LvN) equa-
tion for the one-electron density matrix.

Here, we pursue an alternative path to the LvN equation at the HF
level.?0 We first derive an exact equation for the time evolution of the one-
electron density matrix, then introduce the HF approximation to obtain the

LvN equation. Let

1
H(t) = h%(t)ala® + §g“bcda2a;radac (3.1)
be an explicitly time-dependent Hamiltonian, where
hao(t) = [ X)L € C. (32)

Jabed = // XE(r) X (72) g (71, 72) X (1) Xa(P2) dPr1dPry € C. (3.3)
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Here, the interaction of electrons with an external time-dependent field is
incorporated in the one-electron Hamiltonain A(t). Furthermore, let |¥(t))

denote the orthonormal time-dependent many-electron state satisfying

.0
i P(2)) = H(t) [¥(2)) . (3-4)

The definitions of the density matrices in Egs. (2.12) and (2.13) can straight-
forwardly be extended to the time domain as

aja%ac| (1)) . (3.6)

Taking the time derivative of Eq. (3.5), and applying Eq. (3.4) gives

. 8 b o t b
i3 D alt) = (W) | [H), afa] | w(t)). (3.7)
The commutator in this equation can be evaluated utilizing algebraic rules

for commutators and anti-commutators together with Eqgs. (2.10). It follows,
that Eq. (3.7) can be written as

+&D(#) = [n(e), D) + 5 T 5.7 (3.8)

where we defined the following shorthand notation:

gabcd = gade - gabdcv (393‘)
(90)%.q = g%, ;T . (3.9b)
(Tr; X)%, = X%, | (3.9¢)

for any two-electron operator X. Eq. (3.8) is an exact equation determining
the time evolution of the one-electron density matrix. Unfortunately, this
equation cannot be solved, because the two-electron density matrix I'(t) is
not known. Hence we could follow a similar procedure that we used to obtain
Eq. (3.8) to derive a similar time-dependent equation for I'(¢). However,
this equation would then contain the undetermined three-electron density
matrix. Continuing this process for the three-, four-,...electron density
matrices would yield a system of linear differential equations for the density
matrices that is essentially equivalent to the time-dependent Schrédinger
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equation for the many-electron equation. This system of equations can
easily be decoupled by introducing the HF approximation (see Section 2.4)

Pelp(t) = D (1) D%(t) — D%(8) D% (1) (3.10)
in Eq. (3.8). We obtain the time-dependent HF equation
S [;D(t)} S =F(t)D(t)S — SD(t)F(t), (3.11)
where F'(t) is the time dependent Fock matrix
F(t) = h(t) + J[D(t)] — K[D(t)], (3.12)

J and K are defined in Egs. (2.32) and (2.33). We introduced the overlap
matrix S [Eq. (2.42)] so that we adhere to the commonly used notation
where the Fock matrix elements transform covariantly as F;, and the den-
sity matrix elements transform contravariantly as D% (see Appendix A). In
an orthonormal basis (S =1) Eq. (3.11) becomes

0
i D(t) = [F(2), D)) | (3.13)

This equation is sometimes referred to as the Liouville-von Neumann equa-
tion or the TDSCF equation, and plays the central role in Paper I-IV.
Note, that due to the dependence of the Fock matrix on the density matrix,

this is a nonlinear equation.

3.1.2 Time-dependent density functional theory

Developing the time-dependent equivalent of the KS DFT requires deeper
considerations.®” The Runge-Gross theorem establishes a mapping between
the time-dependent electron density and an external potential ! — the time-
dependent generalization of the Hohenberg—Kohn theorem. Van Leeuwen’s
theorem then connects two systems with two different interaction poten-
tials.”? Choosing one of the systems to be a fictitious non-interacting system
substantiates the use of the time-dependent variant of the KS method. The
resulting equation is the same as Eq. (3.13) except that the Fock matrix is

given as
E(t) = h(t) + J[D()] — EK[D(E)] + V*[p(t), Vp(t), ], (3.14)

where ¢ is a weight of the exact exchange term (§ = 0 for pure DFT func-
tional), and V*¢ is given by Eq. (2.45c¢).



3.2. Evolution operator 37

3.2 Evolution operator

Various time propagation schemes for the Schrodinger?® and the LvN equa-

d.?*98 To formulate a solution of Eq. (3.13) directly

tion have been studie
in time domain, it is convenient to define the evolution operator (matrix) U

as a unitary transformation
D(t) = U(t,t"\D("\UTU(t,t). (3.15)

Given that we know the density matrix at time ¢/, the evolution operator
allows us to express D in an arbitrary time ¢. It is easy to show the following
properties of U:

Ut,t) =1, (3.16a)
Ults, t1) = Ults, t2)U(ta, 11), (3.16b)
Uf(tl,tz) = U(tg,tl). (3.16(3)

3.2.1 Dyson series

To determine U we insert Eq. (3.15) into the LvN Eq. (3.13). It follows that
o + e f
(i — FU) DU~ UD (iU - FU)' =0, (3.17)

where U = U(t,t'), D = D(t'), and the dot denotes the time derivative.
Carefully considering the free parameters of U, and projection properties of
D, it can be show that it is sufficient to satisfy

iU(t,t) = F)U(t,t). (3.18)

This differential equation for U can be transformed to the integral form
t
Ut,t)y=1—i [ F(r)U(r,t)dr. (3.19)
t/

Replacing U — Uy on the right-hand side, and U — Ug4; on the left-hand
side of this equation, and solving the so-obtained recurrence relation, yields
the evolution operator in the form of the Dyson series:

Ut t') = i (_ni')n tdtl.../t dtn  T{F(t1) ... F(ty)}, (3.20)
n=0 ' ¢ ¢
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or, in a shorthand notation:

U(t,t') = Texp [—z tF(T)dT:| . (3.21)
Here, T designates that the product of Fock matrices is time-ordered.!
Terms in the time-ordered product are sorted from the left to right in a
descending order of their corresponding value of ¢, 7.e. the term with the
highest value of time is the first on the left. This time-ordering accounts for
the fact that the Fock matrices expressed at different times do not generally
commute. If the Fock matrix is time-independent (F'(t) = Fp), Eq. (3.21)
simplifies to

Up(t,t') = e~ o=, (3.22)

3.2.2 Magnus expansion

A numerical evaluation of the Dyson series in Eq. (3.20) is cumbersome due
to the time-ordering operator T'. Expanding and truncating the series to
approximate the evolution operator will break essential properties of the
time propagation, such as the idempotency of the density matrix, and this
can cause various numerical instabilities in the implementation.?*%97 To
mitigate these issues Magnus proposed an alternative form of the expan-
sion.”? This expansion is known as the Magnus ezpansion and takes the

form of

U(t,t') = eAH), (3.23)
where

=3 A, (3.21)
n=1

and the first three terms are given as®8%

_ i/t dty (1), (3.25a)
Ag(t,t) = — =(—i) /t dto / dt1[F(t1), F(t2)], (3.25b)
Ag(t, 1) /t dts /t dt /t dt[F(t1), [F(t2), F(t3)]]

+ [[F(to,F(tz)J JF(ty)]. (3.25¢)

1See Tannor®®, for example.
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When the series in Eq. (3.24) is truncated after any number of terms, the
evolution operator will remain to be exactly unitary, which will preserve the

properties of the density matrix.

3.3 Perturbation operator

The interaction of a studied system with an external field enters the Hamil-
tonian via its one-electron part h(t) = h + h/(t), where h is the time-
independent part describing the system itself (e.g. the Dirac Hamiltonain
in Eq. (1.24)), and A/(t) contains the interaction with external fields. As a
consequence, the time-dependent Fock matrix in Eq. (3.14) can be written
as

F(t) = F[D(t),t] = Fy[D(t)] + V1), (3.26)

where Fy[D(t)] contains the terms that implicitly depend on time via the
density matrix and the electron density:

R[D(®)] = h+ J[D@)] = EK[D(H)] + V*[p(t), Vp(t), &, (3.27)

and V(¢) is the explicitly time-dependent part. In Paper I, II, and IV
Vext(¢) is chosen to take the form of a homogeneous electric field with a

delta-function time dependence, i.e.
V() = —ké(t) - p, (3.28)

where pp = —r is the electron dipole moment operator, and « represents
the strength and the orientation of the electric field. Generally, V*(¢) can
have the form of

VE(t) = k(t)P(t), (3.29)

where k(t) is a “small” time-dependent amplitude of the perturbation, and
P(t) is a one-electron operator, very often time-independent.? Finally, in

83,85,86 y7ext ig 5 periodic function modulated by a factor et

response theory
to account for the perturbation that is slowly switched on, v > 0 is a small

real number. Specifically

V() =k Py r (3.30)
k

2The purpose of the factorization of V°** to the amplitude and the operator part is
that one can later construct a perturbation expansion, given that the amplitude is small.



40 Chapter 3. Real-time electron dynamics

Here, k runs over a finite list of chosen frequencies wy, Py is the one-electron

operator associated with this frequency, and ry, is its amplitude.®

3.4 Real-time propagation vs. response theory

Solutions to Eq. (3.13) can be sought in the form of the perturbation ex-
pansion

t
D(t) =D© +/ dty DU (¢ — t))k(t1)+
—0oQ

L , (3.31)
+—/ dtl/ dtoDP (t — t1,t — t2)k(t)k(t2) + - . .,
2! —0o0 —o0
where k(t) is the time-dependent amplitude of the external field, and
DU are the perturbed density matrices. For k(t) = 3 kpe “*H7 (see
Eq. (3.30)) we obtain the equivalent expansion of the time-dependent den-

sity matrix in the frequency domain®3%°

D(t) =D + > ke D (wy,)e"wrtHrt
(3.32)

k
1 .
+ a1 Z ki D) (wy, wh et @rtww )it
T kK

If DO = Dy is the ground-state density matrix obtained from the time-
independent SCF, and we insert this expansion into the LvN Eq. (3.13),
neglecting the quadratic D® and higher terms, yields the linear response

equation.®* Due to the dependence of several terms in Eq. (3.27) on the den-

aFCLb [D]
aDed

the response equation, and complicate the implementation of its solution. !

enter
00

sity matrix (or density), the response kernels originating from

The approach based on the propagation of the density matrix in real
time has several advantages over the response theory. Direct solution of the
LvN equation only requires constructing the Fock matrix at each time step,
OFalD] tha¢ enter

aDcd
the linear response equation. Therefore, implementation of the real-time

and thus avoids the evaluation of the response kernels

method can use the same Fock-assembling routines as the SCF procedure,

and any acceleration techniques that enhance the Fock matrix construction

3To be precise, the list of k contains pairs of frequencies wy, and w_j = —wy for each
k,and k_, = K}, and P_j = P! must be satisfied so that V" is Hermitian.
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are directly transferred to the TDSCF'. The non-perturbational nature of the
method enables extraction of nonlinear optical properties, as demonstrated
in Paper III. TDSCF is well-suited for simulating electron dynamics in
strong fields, fast processes, and molecular dynamics. In addition, using
the d-type pulse to perturb a system simultaneously awakens all its excited
states, and one real-time simulation run can yield spectra in a large energy
window.

The real-time propagation method has some disadvantages. TDSCF re-
quires the development of a stable and robust time propagator — this task is
not straightforward even when the Magnus expansion Eq. (3.23) is employed
because of the implicit dependence of the unperturbed Fock matrix on time
(via the density matrix). From the computational perspective the real-time
method has a large prefactor, and may require long simulations with many
Fock matrix constructions, if spectra at high resolution are desired. Finally,
it is unclear how to identify the origin of individual excitations from the
real-time simulation. These issues will be addressed in the next section.
More information about the recent progress in real-time methods can be

found in the review of Goings, Lestrange and Li. 0!

3.5 Summary of contributions

I conclude this chapter by providing a summary of the main advancements
and results presented in Paper I-IV. These publications involve extending
the relativistic 4c and 2c¢ methods to the time domain, solving the LvN
Eq. (3.13) with the 4c Dirac Hamiltonian by propagating the one-electron
density matrix in real time. We apply this formalism to probe various

properties and spectroscopies.

3.5.1 Paperl

In this work we presented the first implementation of the 4c¢ real-time TD-
SCF. Initial versions of the solver that propagates the density matrix based
on the Magnus expansion Eq. (3.23) proved to be unstable, and we expe-
rienced catastrophic behavior after some propagation time. After several
tests we identified that the solver was not reflecting the nonlinear nature of
the LvN equation sufficiently, this was particularly true at the DFT level,
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Figure 3.1. Time development of the induced dipole moment and the ab-
sorption spectrum of the mercury atom obtained from the real-time propa-
gation after applying the delta-type pulse. We observed the singlet—triplet
transition (the first peak from the left) that is forbidden in the nonrela-
tivistic theory.

i.e. when the XC contributions were included. The Magnus expansion
was originally designed to solve linear differential equations, and to tackle
the nonlinear terms [see Eq. (3.27)] in the LvN equation, additional im-
provements to the propagation method are required to reach self-consistent
solutions. We tested various solvers, and introducing an extrapolation and
interpolation scheme”® stabilized the time propagation. The details of this
method can be found in Paper 1.

To obtain the absorption spectra, we first perturb the ground state of
a studied system with a delta-type pulse in Eq. (3.28). The propagated
density matrix is then used to calculate the induced dipole moment p(t)
at each time step. The absorption spectrum is constructed as the Fourier
transform of the dynamic polarizability that is obtained from the induced
dipole moments. Fig. 3.1 illustrates this process for the mercury atom. We
assessed the real-time method by comparing our results for the excitation
energies with the available relativistic linear-response time-dependent DF'T
results as well as with experimental data.

To facilitate the identification of the excitations, we introduced the
dipole-weighted transition matrix analysis. The analysis is performed in
the basis of the ground-state MOs, and relies on examining partial contri-

butions of the occupied—virtual spinorbital pair ai to the polarizability «(t),
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i.e.
1
Oén’m'(t) = ; [Pn,iaDai (t) + Pn@iDm(t)] , (333)

where n denotes the orientation of the external electric field, kappa is the
field strength, and P, is the electric dipole moment matrix. This decompo-
sition was later used by Bruner et al.'°? to accelerate the real-time method
by reducing the required simulation lengths.

Since the perturbation operator is proportional to the Dirac delta func-
tion, the initial perturbation can be performed analytically for the Fock
operator

F(t) = Fy[D(t)] + Ps(t), (3.34)

where P is an arbitrary one-electron operator. Then the perturbed density
matrix at t = 0T is expressed as

D(0T) = e7* P Dye'”. (3.35)

The proof of this statement in the TDSCF framework requires a careful
consideration of the nonlinear terms in the LvN equation, and is shown in
the Appendix of Paper I.

3.5.2 Paper II

Here, the method outlined in Paper I is applied to obtain the X-ray pho-
toabsorption cross section of the SFg molecule near Lo 3-edges of the sulfur
atom. The studied region of the spectrum is dominated by the excitation
from the core sulfur p orbitals. Located in the close vicinity of the nucleus,
core electron orbitals are most significantly affected by the relativistic ef-
fects. The three core p orbitals are split to two p3/; and one py/, orbitals
due to the spin-orbit coupling, giving rise to the Lo 3-edge resonances in
the photoabsorption spectrum. We performed both relativistic and nonrel-
ativistic calculations to demonstrate this effect.

We used the transition analysis developed in Paper I to assign the ir-
reducible representations of the octahedral point group (aig, tog, and egz) to
the individual resonances. Fig. 3.2 depicts the result of this analysis for the
first four most dominant resonances. The number of active virtual spinor-
bitals helped us determine the irreducible representation of the transition.

The initial absorption spectrum contained many resonances of unclear
origin in the sulfur L-edge region. Our transition analysis of those peaks
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Figure 3.2. The dipole transition analysis of the first four dominant
transitions in the X-ray absorption spectrum. More intense excitations are
shown with the more intense blue color. The numbers 17-22 on the z-axis
label the six sulfur p spinorbitals, the numbers on the y-axis label virtual
spinorbitals, where 71 is the first unoccupied spinorbital.
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Figure 3.3. Photoabsorption spectra of the SFg molecule from a simula-
tion using the full perturbation operator (left) and the restricted pertur-
bation operator (right).

revealed that they emerged from excitations from the valence states to non-
physical high-lying virtual orbitals. Such intruder states are merely arti-
facts of calculations that employ finite bases, and hinder the interpretation
of results. Therefore, we restricted the perturbation operator only to ex-
citations from the sulfur 2p spinorbital, zeroing all matrix elements that
correspond to nonphysical or unwanted excitations. Fig. 3.3 shows a com-
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parison between the spectrum obtained from a calculation with the full and
restricted perturbation operator, respectively. Note, that the restriction is
only applied to the perturbation operator, retaining the relaxation of all
spinorbitals during the time propagation.

3.5.3 Paper 111

In this work we introduced the X2C transformation (see Section 1.5) to the
4c LvN equation to eliminate the positronic states. The main motivation
was to accelerate the time propagation, and to asses the X2C transformation
for the TDSCF equation. The results obtained at the 2c level of theory agree
perfectly with the reference 4c results. In addition, a speedup of 7 or more
was achieved by the X2C transformation. Hence, we demonstrated that the
relativistic real-time simulations are possible at a reduced price without the
loss of accuracy.

In time domain, the X2C decoupling matrix U is time-dependent, and
the X2C transformed LvN equation contains the term oc OU(t)/0t. How-
ever, we argue that the error from neglecting this term is of the same order
of magnitude as the error arising from the dipole approximation. Therefore,
the time-dependence of the decoupling matrix can safely be ignored within
the dipole approximation.

We exploit the nonperturbative nature of the real-time method to study
nonlinear optical properties, i.e. polarizability, first and second hyperpo-
larizability tensors. We obtain these properties in the frequency domain by
performing several simulations in the time domain with harmonic perturba-
tions. The (hyper)polarizabilities are extracted by identifying corresponding
terms in the perturbative expansion of the induced dipole moment.

3.5.4 Paper IV

Here, we extended the relativistic real-time solver to incorporate the mag-
netic dipole operator needed to study ECD and ORD spectra of chiral
molecules of the dimethylchalcogenirane series. The necessity to calculate
the chiroptical properties of these molecules at the relativistic level becomes
apparent for Po and Lv, but differences can already be observed for Se and
Te. In addition, the nonrelativistic ECD spectrum of Po is a mirror image of

its relativistic counterpart in a certain frequency region, hence interpreting
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the spectrum while ignoring the relativistic effects could yield qualitatively
incorrect conclusions.

From the methodological perspective further accelerations are intro-
duced here to facilitate the real-time simulations of electron dynamics of
larger molecules. Both the X2C transformation and the resolution-of-
identity approximation for the Coulomb term (density fitting) is formulated
for the first time in complex quaternion algebra. Both approximations in-
troduce only negligible errors, as we demonstrate by comparing the results
obtained at various approximation setups. Moreover, by introducing these
approximations the simulations are accelerated by a factor of almost 25
compared to the more exact calculations, making the real-time propaga-
tion method a competitive tool for studying electron dynamics subjected to
external fields.



Chapter 4

Periodic systems

He who fights with monsters
might take care lest he thereby
become a monster. And if you
gaze for long into an abyss, the
abyss gazes also into you.

Friedrich Nietzsche

Modeling materials in the solid state from first principles poses a
formidable challenge to available quantum-mechanical methods. This
fact is even more pronounced for relativistic methods, where conven-
tional approaches based on plane waves can suffer serious deficiencies.
Most quantum-chemical methods can straightforwardly be extended from
molecules to solids or periodic systems,' at least in principle. In practice,
new challenges arise at almost every level of reasoning. While it is not
immediately obvious why the transition from finite to periodic systems in-
troduces complications, deeper analysis reveals that the infinite aspect of
the systems must be considered across multiple domains of algorithms. In
view of this observation, Fulde questions whether the approaches based on
controlled and systematic approximations as used in quantum chemistry can
be realized in solid-state theory as well. '3 Despite the fact that the vast
majority of solid-state calculations are performed at the DFT level as is to-
day also the case for molecules, approximations that simplify and accelerate

L«Periodic systems” is a common name used for systems that periodically extend to
infinity in one, two or three spatial dimensions.

47



48 Chapter 4. Periodic systems

the computation must be employed to a degree that the reproducibility of
results across various approximation schemes can questioned. %4
Developing the relativistic 4c SCF method was the major part of my PhD
work, and this chapter constitutes an introduction to the topic; Paper V
outlines the theory and the method in greater detail. Formally, I only

introduce a few extra principles besides the ones presented in Chapter 2.

4.1 Translational invariance

4.1.1 Bravais lattice

A periodic system is constructed by periodically replicating a motif (unit
cell) in d periodic dimensions, where d = 1,2, 3. In our case, the unit cell can
be an atom, a molecule or even a set of molecules. The pattern according
to which the unit cell is replicated is given by the d primitive lattice vectors
a; fort=1,...,d. Then each unit cell position vector m can be written as

m = m'a,, mteZi=1,...,d. (4.1)

Fig. 4.1 shows and example of a two-dimensional hexagonal Bravais lattice
with two atoms in a unit cell. The unit cell m = 0 is usually referred to as

the central or reference unit cell.

Figure 4.1. Two-dimensional hexagonal Bravais lattice with two atoms
in a unit cell (blue and green).
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4.1.2 Bloch theorem

An operator A is translationally invariant iff it commutes with all translation
operators t,, for all lattice vectors m:

vm : [A, tm] =0, (4.2)
where t,,, is defined by its application to a function f as

(tmf)(r) = f(r + m). (4.3)

In the coordinate representation, operators depend on the electron coor-
dinates 7, its momentum p and spin given by o. Since translations only
affect the electron coordinates, the momentum operator p, as well as the
spin operator o are translationally invariant, and the condition in Eq. (4.2)
reduces to

Vm : A(r + m) = A(r), (4.4)

i.e. A(r) must be a periodic function with the lattice periodicity. Note
that the electron dipole moment ;1 = —r defining the external potential in
Eq. (3.28) is not periodic.

A periodic system consists of atoms placed in unit cells that are period-
ically replicated. The electron—nuclear attraction potential

V(r) = ZA ’r__AZan' (4.5)

therefore satisfies Eq. (4.4). Here, A labels the atoms in a unit cell, and
Z 4 and A is their charge and position, respectively. This means that the
one-electron Hamiltonian h commutes with all translation operators. The

consequence of this translational symmetry is called the Bloch theorem,%

which states: 64:106-108

Theorem 3 (Bloch). Let ¥(r) denote an eigenfunction of the transla-
tionally invariant one-electron Hamiltonian h, i.e. Ym : [h,ty,] = 0 and
hp(r) = e(r). Then (r) takes the form of

P(r) = eik'ru(r), (4.6)

for some k and a periodic function u; u(r +m) = u(r).
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Proof. Within quantum theory, commuting operators have a common set of
eigenfunctions. In case of the translational symmetry, each eigenfunction of
the Hamiltonian is also an eigenfunction of all the translation operators t,,
(there is no degeneracy). This is because the translational group is Abelian
(commutative), and the irreducible representations of an Abelian group are
one-dimensional (see Hamermesh'%?). Therefore, we can state that

tm¥(r) = Y(r +m) = Ap1p(r).
We require the electron density [Eq. (1.20)] to be periodic, so
p(r+m) =9 (r +m)p(r +m) = A0 (r)e(r) = A [*p(r) = p(r)

implies that A, = €™ for n,,, € R. To find the expression for 7,,, consider
a linear combination of lattice vectors m + In, where [ € Z. Hence,

b i (1) 2 €Mmting(7)

2 (r +m+In) = e () (r).
I follows, that 7, must be a linear function of m:
Nmtin = Tm + U,
and hence 7y, = k - m is the most general parameterization. Therefore,
(e +m) = (), (4.7)
Proving Eq.(4.6) is straightforward: Let us define u as
u(r) = e F T (r).
Clearly, u(r +m) = u(r). It follows, that ¥(r) = e* T u(r). O

As a consequence of the Bloch theorem, we can write the eigenfunctions
of h, here denoted as v, as

Yp(k;r) = eik""up(k:;r) , (4.8)

where u, are periodic functions with the lattice periodicity, p and k are
two quantum numbers that label the common eigenfunctions of A and ty,.
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The Bloch functions v, (k; r) satisfy the time-independent Schrédinger (or

Dirac) equation

hipp (ks 1) = ep(k)p(k;r) |, (4.9)

where e,(k) are called the band energies. The Bloch theorem is usually

applied in the context of band-structure calculations from the HF or KS
equations. However, the proof of the theorem that is presented here and in

64,106,107 only holds for the one-electron Hamiltonian, i.e.

many textbooks
without the terms that depend on the density matrix or the electron density.
The proper proof of the Bloch theorem in the SCF framework must consider

periodicity of these terms as well. 108

4.1.3 Reciprocal space

The vector k that labels the Bloch functions and the band energies is called
the quasimomentum, and belongs to the first Brillouin zone, labeled K. The
first Brillouin zone is the central unit cell of reciprocal space’ composed of
the inverse lattice vectors K that are defined using the primitive direct-

space vectors as
gEm— (4.10)

The inverse lattice is a Bravais lattice with primitive vectors b;, so K can

be written as

K = K'b,. (4.11)

The primitive vectors b; constitute a biorthogonal basis with respect to the

vectors a;, hence
a; - bj = 271'(51‘]'. (4.12)

It follows that the lattice vectors K constructed from Eq. (4.11) automati-
cally satisfy the requirement in Eq. (4.10). The inverse primitive vectors b;

in three dimensions are obtained from a; as

as X as

by = 2r (4.13)

ai - (a2 X a3)7

where applying cyclic permutations yield the expressions for the remaining
two vectors by and bs.

2Also referred to as inverse space or k-space.
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4.2 Band structure theory

4.2.1 Density of states

Solid-state calculations of the ground electronic state typically involve re-
porting k-dependent band energies ,(k), in addition to the cohesive ener-
gies.? Since the one-particle states form a continuum, one can calculate the
energy density of states (DOS) for three-dimensional periodic systems using

the band energies as®

N(e) = (2;)3 zp: /]C Bkd(c — ep(k)). (4.14)

The DOS function measures the number of states per unit energy, per unit
volume, near the energy €. Integrating N(e) over the entire energy range

gives

Ny,
/N Jde = —— Np|K| = (4.15)
) A
where V and |K| = 2”) are the direct- and reciprocal-space unit-cell vol-

umes, respectively, and Ny, is the total number of bands. Ny, is finite for
calculations that employ finite basis sets. In practical calculations, DOS
can be evaluated on a uniform grid of k-points. Using the substitution

1 ]IC\ 1
4.16
(2m)3 /;c )3 T VN Z (4.16)

where N is the total number of k-points, we obtain
N(e) N Z d(e — epk)- (4.17)

Determining the DOS has several advantages. Many properties, such as
the heat capacity, can be evaluated as energy integrals of the DOS. More-
over, the existence of the band gap of the ground state of a solid can be
recognized from the knowledge of its DOS; this is useful if the band energies
are not available.

3The cohesive energy is a measure of energy required to break bonds in a crystal, and
form separated neutral atoms in their ground electronic state at 0K temperature and at
atmospheric pressure. *°7
4This expression can trivially be modified for one- and two-dimensional periodic sys-

tems.
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4.2.2 Band structure diagrams

The band energies €, (k) are commonly shown in diagrams which contain the
k-points on the z-axis, and the band energies for each band p as functions
of k on the y-axis. For simplicity, for two- and three-dimensional systems
a path consisting of lines connecting special high-symmetry k-points in the
first Brillouin zone is formed. The band structure diagram can be used to
classify systems according to the size of their band gap between the occupied
and vacant bands as metals (zero band gap), semiconductors (small band
gap), or insulators (large band gap, e.g. > 4 eV).'9 Hence, insulators and
semiconductors only contain fully occupied or vacant bands, whereas metals
contain bands that are partially occupied.

As an example, let us consider a one-dimensional periodic system with
a lattice constant a. Eq. (4.12) implies that the reciprocal lattice constant

isb= %’r, and the first Brillouin zone is

IN

IC:{keR‘—W<k ”}. (4.18)
a a

Fig. 4.2 shows the band structure and the DOS of polyacetylene with al-

band energy [eV]

_n 0 z 0.0 0.2 0.4 0.6 0.8 1.0
k [Bohr™1] density of states [eV~1]

Figure 4.2. Band structure diagram (left) and DOS (right) of polyacety-
lene with alternating lengths of carbon—carbon bonds. The bands below
the dashed line are fully occupied, and the bands above the dashed line
are vacant, demonstrating that polyacetylene is a semiconductor with a
nonzero band gap.
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ternating lengths of carbon—carbon bonds that we have obtained from the
solution of the periodic KS equation. We can see that the DOS is zero for

the energies inside the band gap, classifying polyacetylene as a semiconduc-
tor, 110-112

4.3 Periodic SCF equation

The formulation of the SCF equations for periodic systems employing the
linear combination of atomic orbitals (LCAO) has been know for some time
for the HF method 3114 as well as for the DFT method. !0 Instead of
using reciprocal space to express the Fock operator, its matrix elements are
evaluated in real space. 17129 Here, I briefly summarize this approach.%4108
The SCF equation for a periodic system is essentially the same as

Eq. (2.39), i.e.
Fop(k;r) = ep(k)ep(ksT), (4.19)

except that the solutions ¢, (k;r) must satisfy the Bloch theorem
op(k;T +m) = e*™o, (k;7) (4.20)

for each lattice vector m defined in Eq. (4.1). To ensure that this condition
is fulfilled when an atom-centered basis is used, we construct a symmetry-
adapted basis as

Xpu(k;T) = T ™ i (1) (4.21)

for k € K. Here, Xum(r) are the atom-centered basis functions of the

periodic system, obtained for the unit cell m by translating the reference

unit cell m = 0 basis as

Xpum (1) = Xu(r —m). (4.22)

Eq. (4.19) written in this basis takes the form

| F(k)c(k) = S(k)c(k)e(k) | (4.23)

where c(k) is the matrix of the expansion coefficients (for each k-point),
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(k) is the diagonal matrix of band energies, and

F(k) = Z eik.mFHO’#/m, (4.24a)
m
Sy (k) = Z eik'msuo.;ﬂm, (4.24b)
m
The real-space matrix elements are evaluated as
FMQM’m = /]R?’ XLO(T)FXu/m(T)d3Ta (4.25&)
Spo,um = /R \ Xho (M) Xyurm (1) dr. (4.25b)

The density matrix is constructed using the diagonal matrix of occupation
numbers f(k) as
D(k) = c(k) f(k)c' (R), (4.26)

and transformed to real space by evaluating the reciprocal-space integral
’ 1 o ’
Dm0 — / e* DM (k) d k. (4.27)
K| Jk

We calculate this integral on a uniform grid of evenly distributed k-points,
however, for systems with the small or zero band gap, special techniques for
the integration in k-space must be invoked to capture possible oscillations

of the density matrix in reciprocal space. 1191217124

4.4 Summary of contributions in Paper V

The relativistic SCF methodology of Chapters 1 and 2 is extended to the
solid-state domain in Paper V in order to enable variational calculations
of relativistic band structures of periodic systems. Our method is based
on the atom-centered GTO basis functions defined in Section 2.5 that con-
stitute the 4c basis in Eq. (1.30) so that the RKB condition®® Eq. (1.27)
is satisfied. All matrix elements of operators are expressed in real space,

116,119,120,125 a1 transformed to

as in previous nonrelativistic approaches,
reciprocal space for the diagonalization step of the SCF procedure. The
real-space formulation of the 4c¢ Fock matrix enables us to employ a very
compact quaternion-based representation 751126 (see also Paper IV) that
exploits the time-reversal symmetry of the operators within the Kramers

restricted framework. 47:49:51
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In Paper V we show that the reciprocal-space matrices expressed using
the RKB atom-centered basis take the form of

_ [ ak) bk
A#H'(k) - (—b*(—k) a*(_k)>%u/ ’ (428)

which is a generalization of the time-reversal-symmetric structure in
Eq. (1.41) discussed in Section 1.4. This matrix structure requires using
quaternions with complex-valued components, in contrast to Eq. (1.42),
where the quaternion components were defined as real. If the SOC is not
neglected in the 4c (or 2c) theory,“® (see the discussion below Eq. (1.33)),
then the reciprocal-space Fock matrix has the structure of Eq. (4.28) with
b(k) # 0 and a(k) # a*(—k). The additional absence of space inversion sym-

127-131 In

metry in materials leads to the well-known spin splittings of bands.
Paper V we prove that the time-reversal-symmetric structures in reciprocal
and real spaces are preserved throughout the SCF procedure.

The electron density in Eq. (2.27) is adapted for periodic systems by

exploiting the translational invariance of the density matrix. Therefore,
Z Tr [ Q0 yurm (7 — 1) DX ™40 (4.29)

To ensure the convergence of the electrostatic lattice sums of Coulomb in-

132

teractions, 132 we construct the total charge density p° so that the unit cells

are electrically neutral 1337135 as
Mr) = Z P (r —mn), (4.30)

7 (r ZZA(ST— zTr[ w0 (F)DHTHO| L (431)

We evaluate the real-space Coulomb matrix by employing the tech-
niques based on the multipole expansion.”#" The infinite lattice sums of

interaction tensors are computed using the iterative renormalization proce-

136,137

dure, proof of which we provide in the appendix of V. The problems

associated with the conditional convergence of the three-dimensional lat-

132,138

tice sums are resolved by eliminating the unit cell dipole moment by

introducing fictitious charges on the unit cell face centers. 34139
Finally, we assessed the method by calculating the total energies and

the band gaps of the three-dimensional silver halides (AgX for X=Cl, Br,
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I) in their face-centered cubic (FCC) structure. We report the band gaps
evaluated at various special k-points. The unit cell of AgX has a nonzero
dipole moment, and thus these systems serve as a test of the validity of
the computational scheme for the most general case of the lattice sums
appearing in the Coulomb potential.

To examine the effect of the SOC, we calculated the relativistic and the
nonrelativistic band structures of the two-dimensional graphene-like honey-
comb systems (see Fig. 4.3), silicene and germanene, known to exhibit the

quantum spin Hall effect.?® 3!

Contrary to the graphene, its heavier coun-
terparts are stable in a buckled structure which further enhances the SOC.2?
Fig. 4.4 shows the first Brillouin zone of the two-dimensional hexagonal lat-
tice and the chosen path in reciprocal space used for the band structure
diagram in Fig. 4.5. Fig. 4.6 depicts the surface plot of the highest occupied
band and the lowest unoccupied band obtained at the relativistic level of
theory. Two Dirac cones can be seen in the plot, as well as the nonzero

(albeit very small) band gap between the bands at the Dirac points.®

QO O
QO 9 Q 9
Q9 9 Q 9 Q 9
Qo Q9 9 Q 9 Qo
Q 9 Q 9 Q O
Q 9 Q9 9
Q 9

Figure 4.3. Two-dimensional honeycomb structure of silicene and ger-
manene.

5The valence band and conduction band of some two-dimensional materials (such as
topological insulators) take the shape of two conical surfaces (Dirac cones) that meet
near the Fermi level at special k-points called Dirac points. Due to this linear dispersion
relation, these materials exhibit unusual transport properties and lead to various quantum
Hall effects. 140
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Figure 4.4. First Brillouin zone of the two-dimensional hexagonal lattice.
The path I'-M-K-T" is conventionally chosen for band structure diagrams.

band energy [eV]
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Figure 4.5. Band structure diagram (left) and the DOS (right) of the
two-dimensional germanene. The full and dashed colored curves were ob-
tained from the relativistic and nonrelativistic calculations, respectively.
The black horizontal dashed line depicts the Fermi level. The Dirac cone
is found in the K-point.
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Figure 4.6. Two-dimensional band structure surface plot of the highest
occupied band (blue) and the lowest unoccupied band (orange) of the two-
dimensional germanene obtained from the relativistic calculation. The plot
is constructed for the k-points in the first Brillouin zone. The small band
gap can be seen at the two distinct Dirac points.






Appendix A

Covariance and
contravariance

Components of vectors (functions), matrices (operators), and higher-
ranking tensors can transform in two distinct ways upon a change of basis.
For example, consider F' to be the Fock matrix expressed in some basis (e.g.
AOs), and F’ to be the Fock matrix expressed in some other basis (e.g. or-
thogonal AOs). Let L denote the transformation matrix between the two
bases. Then

F'=L'FL, F=(LH'FrLL (A1)

On the other hand, the density matrices D and D’ expressed in the corre-
sponding bases satisfy

D' =L 'D(LhH)™, D=L'D'L. (A.2)

These transformation relations ensure that the trace of the product of F

and D remains invariant upon the change of basis, 7.e.
Tr (F'D) = Tr (LTPLL™'D(LH) 1) = Tx (FD). (A.3)

Therefore, it is a common habit in multilinear algebra and tensor anal-
ysis to distinguish between the two types of tensor components (called co-
variant and contravariant) by typesetting their respective indices as sub-
scripts for covariant indices (e.g. A, ), and superscripts for contravariant

61
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indices (e.g. A*). Since covariant and contravariant components of a ten-
sor are the same when expressed in an orthonormal basis, this distinction
only becomes relevant when a non-orthonormal basis is considered.! Here
I briefly summarize the main implications of the concept of covariance and
contravariance to molecular quantum mechanics, while concentrating on the
common conventions used in the field, rather than a systematic explanation
of multilinear algebra. As a result of distinguishing between the two types
of indices, the overlap matrix will appear naturally in all expressions en-
countered in this work.”? Works of Head-Gordon et al.”™ contain more
detailed information on the tensor formalism in quantum chemistry.

Let x,(r) denote a (possibly non-orthogonal) basis function. Any well-
behaved function f(7) can be expanded as

f(r) = f'xu(r), (A.4)

where f# are the expansion coefficients. Since f* are vector components
with respect to the basis x,, they transform contravariantly, and are tra-
ditionally denoted with an upper index. The basis functions y,, transform
covariantly, and are thus denoted with a lower index. The overlap matrix

Sw = [ X (A.5)

plays a role of the metric tensor, and can be used to define covariant com-
ponents f,, as

Ju= S;wfy- (A.6)
Similarly, the inverse of the metric tensor S*¥ (defined by the identity

SpupSPY = (5Z) can be used to obtain contravariant components f* from

the covariant components f,, as
fH =81, (A.7)
Using the metric tensor S it is easy to prove the following index identity

u, vt = utvy, (A.8)

1To be precise, this is only true if a metric tensor is available to map each covariant
component onto a contravariant component and vice versa.

2This section was written as a consequence of the author’s own concern while an-
swering a seemingly trivial question “Why do overlap matrices even appear in equations?
Shouldn’t equations in physics be invariant with respect to the basis that is used to express
them?”.
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for any wu, v; the identity can be generalized to hold for arbitrary tensors.
In molecular quantum mechanics, matrix elements of an operator A are

naturally calculated using an integral over the basis functions x, and XL as

A, = / Xh(r) A (r)dPr, (A.9)

hence both indices pur transform covariantly, contrary to matrix elements
AF . which would correspondent to an operator in the linear-algebraic sense.
It is a common convention in quantum chemistry to imply that both in-
dices of operators are covariant, even when they are sometimes omitted.
Molecular orbitals ¢;(r) are expanded according to Eq. (A.4) as

op(r) = xu(r)cy, (A.10)

where ¢, are the molecular orbital (MO) coefficients. The one-electron
density matrix elements D*” transform contravariantly, so that expecta-
tion values A,, D" are invariant with respect to a change of basis. As a
consequence of these conventions, the overlap matrix must appear in some

expressions, e.g. a commutator of an operator F' with the density matrix
[F,D", = FF,DP, — D", F¥, (A.11)

becomes
[F, D]W = F., D" S5y, — Sup D Fyy. (A.12)

Theorem 4. Let L be a transformation matriz between a complete (non-
orthonormal) basis and an orthonormal basis, then

L'SL =1, L Sy LY | = Opq. (A.13)

Proof. The statement follows directly from the requirement that the metric
tensor expressed in the orthonormal basis equals the identity matrix, 7.e.
Spg = Opg- O
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