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Integrative metabolic and 
transcriptomic profiling of prostate 
cancer tissue containing reactive 
stroma
Maria K. Andersen1, Kjersti Rise2, Guro F. Giskeødegård1, Elin Richardsen3,4, Helena Bertilsson2,5, 
Øystein Størkersen6, Tone F. Bathen   1, Morten Rye2,7 & May-Britt Tessem1

Reactive stroma is a tissue feature commonly observed in the tumor microenvironment of prostate 
cancer and has previously been associated with more aggressive tumors. The aim of this study was to 
detect differentially expressed genes and metabolites according to reactive stroma content measured 
on the exact same prostate cancer tissue sample. Reactive stroma was evaluated using histopathology 
from 108 fresh frozen prostate cancer samples gathered from 43 patients after prostatectomy 
(Biobank1). A subset of the samples was analyzed both for metabolic (n = 85) and transcriptomic 
alterations (n = 78) using high resolution magic angle spinning magnetic resonance spectroscopy 
(HR-MAS MRS) and RNA microarray, respectively. Recurrence-free survival was assessed in patients 
with clinical follow-up of minimum five years (n = 38) using biochemical recurrence (BCR) as endpoint. 
Multivariate metabolomics and gene expression analysis compared low (≤15%) against high reactive 
stroma content (≥16%). High reactive stroma content was associated with BCR in prostate cancer 
patients even when accounting for the influence of Grade Group (Cox hazard proportional analysis, 
p = 0.013). In samples with high reactive stroma content, metabolites and genes linked to immune 
functions and extracellular matrix (ECM) remodeling were significantly upregulated. Future validation 
of these findings is important to reveal novel biomarkers and drug targets connected to immune 
mechanisms and ECM in prostate cancer. The fact that high reactive stroma grading is connected to BCR 
adds further support for the clinical integration of this histopathological evaluation.

The tumor microenvironment (TME) has in recent years gained attention for its role in cancer cell and tumor 
development. TME, considered to consist of non-malignant cells and their products, is more genetically stable 
than cancer cells and supports and allows cancer cells to develop1,2. In prostate tumors, TME include activated 
fibroblasts called cancer associated fibroblasts (CAFs), immune cells and vasculature cells. It is often the site of 
chronic inflammation and extracellular matrix (ECM) remodeling, similar to what occurs during wound-healing 
with an increase of activated fibroblasts2,3. Such inflammatory TME is usually referred to as ‘reactive stroma’. In 
prostate cancer, a transition from healthy stroma to reactive stroma has been characterized by a replacement of 
smooth muscle cells by CAFs and immune cells3.

For prostate cancer, the current gold standard for predicting clinical outcome is histopathological evaluation 
through the Grade Group system4. This system sets a grade based on the morphological appearance of prostate 
glands and cancerous epithelial cells. However, the tumor area can contain clinically relevant histopathologic 
information that is not captured by the current grading system. Ayala et al. were the first to develop a grading 
system for reactive stroma in prostate cancer and to show that a higher level of reactive stromal response is 
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connected to biochemical recurrence (BCR)5. Since then, several studies have linked high reactive stroma content 
to a worse clinical outcome, including BCR6–9, development of castration-resistant prostate cancer10 and prostate 
cancer-specific mortality11. In particular, evaluating the tumor stroma was shown to be of extra value in cases 
were the Grade Group system failed to accurately predict outcome6. Although validation and standardization is 
needed, incorporating reactive stroma into the clinical histopathology evaluation, along with Grade Group, shows 
potential to optimize prognostic stratification of prostate cancer patients.

As reactive stroma appears to play a significant role in cancer development12, it is of interest to understand 
its underlying molecular mechanisms. These insights may provide new prognostic markers and therapeutic tar-
gets. Some molecular features of reactive stroma have already been identified. Smooth muscle differentiation 
markers such as calponin and desmin are commonly reduced in reactive stroma3,5,9,10,13. In contrast, vimentin, 
pro-collagen and tenascin-C, markers for activated fibroblasts and ECM remodeling, are elevated in reactive 
stroma in prostate cancer tissue3,10,13,14. Reactive stromal cells have also been suggested to promote angiogenesis 
in the tumor area15. Dakova et al.16 performed global gene expression on laser dissected prostate tissue sam-
ples, identifying several differentially expressed genes between reactive and normal stroma. These included genes 
related to functions such as neurogenesis and DNA repair16. Thus, research on proteins and gene expression has 
revealed changes associated with ECM remodeling, angiogenesis and DNA repair. In contrast, metabolic patterns 
related to reactive stroma content in prostate cancer tissue are currently unknown. Metabolic reprogramming is 
a hallmark of cancer and several metabolic alterations has been identified in prostate cancer tissue compared to 
normal tissue through metabolic profiling, including increase of choline17 and sarcosine18, and decrease of poly-
amine and citrate levels19.

The aim of our study was to combine histopathology determined reactive stromal grading (RSG) with inte-
grative analysis of metabolomics and transcriptomics data from the same prostate cancer tissue sample, thereby 
investigating the molecular characteristics of reactive stroma in prostate cancer. Further we investigated how the 
expression of significant genes and metabolites of reactive stroma are correlated, and investigated biochemical 
recurrence of patients with high reactive stroma content.

Methods
Patients and tissue collection.  This study was approved by the Regional committee for Medical and 
Health Research Ethics (REC) central Norway (identifier 4.2007.1890). All experiments were carried out in 
accordance to the ethical regulations of REC. All tissue donors signed a written informed consent.

Tissue used for this study was donated and collected in 2007 and 2008 ensuing radical prostatectomy. None 
of the patients received neoadjuvant therapy prior to surgery. A two mm thick tissue slice was cut from the mid-
dle of the prostate gland perpendicular to the urethra. The slice was snap frozen in liquid nitrogen on average 
15 minutes after surgical removal and stored at −80 °C as previously described by Bertilsson et al.20. Between 
four and eleven core tissue samples (three mm diameter) were later collected from each prostate slice (Fig. 1a). 
In total 158 samples were collected from 43 patients. We obtained at least five years of clinical follow-up from 
the hospital patient records (Braadland et al.21) including T-stage, clinical Gleason score (postoperative), tumor 
volume, preoperative serum prostate specific antigen (PSA) measurements and biochemical recurrence (defined 
as PSA ≥0.2 ng/ml). The clinical Gleason scores were translated into the new Grade Group system as described 
by Gordetsky and Epstein4.

Histopathological evaluation.  From one side of each fresh frozen tissue sample, a four µm tick cryosec-
tion was stained with hematoxylin and eosin (HE). All HE-stained slides (n = 158) were evaluated independently 
by two experienced uropathologists (E.R. and Ø.S.). Percentage of cancer, normal epithelium and healthy stroma 
were determined along with Grade Group4. Reactive stroma content was defined as the percentage of stroma that 
was reactive within the tumor area, according to the reactive stroma grade (RSG) system developed by Ayala et al.5.  
Each sample was given a grade ranging from 0 to 3: RSG 0 containing 0–5% reactive stroma; RSG 1, 6–15% reac-
tive stroma; RSG 2, 16–50% reactive stroma and RSG 3, 51–100% reactive stroma. Normal prostatic stroma with 
a high number of smooth muscle cells were characterized by a strong red eosinophilic staining, and the cells by 
having a large cytoplasm, rounded nuclei and organization into bundles (Fig. 2a). When the stroma gets reactive 
there will be a replacement of smooth muscle cells by CAFs and immune cells, and the stroma will appear with 
a paler eosinophilic coloring (Fig. 2b–d). Kappa-statistics was used to calculate a quality score between the two 
pathologists for both Grade Group and RSG22. Later, consensus was reached between the pathologists when there 
was disagreement on RSG. With disagreement on Grade Group, an independent previous histopathological eval-
uation by a third pathologist was used to find consensus20.

Metabolomics.  Metabolite data was obtained by high-resolution magic angle spinning magnetic resonance 
spectroscopy (HR-MAS MRS) on fresh frozen tissue samples. HR-MAS MRS spectra were acquired on a Bruker 
Advance DRX600 (14.1 T) spectrometer (Bruker BioSpin, Germany) with a 1H/13C MAS probe. LCModel was 
applied to quantify 23 metabolites from the spectra23,24. Further details of the HR-MAS MRS procedure, spectral 
pre-processing and metabolite quantification are described by Giskeødegård et al.19. Furthermore, samples con-
taining >50% tumor (n = 85) were selected for molecular and statistical analysis to ensure that the metabolomics 
profiles mainly represented tumor areas.

RNA microarray.  After HR-MAS MRS, the tissue samples were homogenized and mRNA was extracted. 
Isolated mRNA was amplified with Illumina TotalPrep RNA amplification Kit (Ambion Inc.) and relative gene 
expression was subsequently measured with Illumina Human HT-12v4 Expression Bead Chip (Illumina). A com-
prehensive overview of the protocol and data preprocessing is reported by Bertilsson et al.25. Here we also selected 
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samples with >50% tumor content (n = 78) for further gene expression analysis (GEA). There was an overlap of 
76 samples which were subjected to both metabolite and gene expression analysis (Fig. 1b).

Multivariate and statistical analysis.  Biochemical recurrence (BCR) -free survival analysis included 
Kaplan Meier and Cox proportional hazards analysis and were performed with the survival package in the R 
environment. BCR was defined as serum PSA >0.2 ng/mL, confirmed by two independent measurements. 
Time-to-event was set as the number of days between radical prostatectomy and confirmed BCR. Three patients 
were lost to follow-up and two patients received adjuvant treatment before BCR. As the adjuvant treatment could 
be influencing the time to BCR, these patients were removed from survival analysis, resulting in a total of 38 
patients. As multiple samples were collected from each patient, the sample with the highest RSG was selected as 
representative for a patient in survival analysis (patient RSG). Patients were divided into a low RSG (RSG 0 and 
1) group and high RSG (RSG 2 and 3) group due to the low numbers of RSG 0 and RSG 3 patients. Covariates 
included in Cox proportional hazard was low vs high RSG and clinical Grade Group. For Kaplan-Meier, a log-rank 
test was used to calculate significance. In addition, to correct for the possible confounding effect of clinical Grade 
Group and T-stage, a second Kaplan-Meier analysis was performed after removing patients with clinical Grade 
Group ≥4, as this produced the same median Grade Group and T-stage in both the low and high RSG group. 
Pearson correlations between RSG and clinical Grade Group, and RSG and preoperative PSA of the patients were 
also performed.

Multivariate analysis of the metabolite dataset (23 metabolites, n = 85) was performed in PLSToolbox in the 
MatLab 8.6.0 (The Mathworks, Inc, USA) environment. The dataset was preprocessed by autoscaling. Supervised 
orthogonal partial least squares discriminant analysis (OPLS-DA) was used to examine metabolic differences 
between high and low RSG using leave-10%-of-patients-out cross-validation and permutation testing for analyz-
ing model reliability (1000 permutations).

Figure 1.  Methodology flowchart. (a) Samples were collected from fresh frozen human prostate tissue 
and cryosections were stained with hematoxylin and eosine. Two pathologists evaluated Grade Group and 
reactive stroma grade (RSG). Samples with >50% tumor content were selected for further metabolomics and 
transcriptomics analysis. Data analysis included survival analysis (Kaplan-Meier and Cox hazard proportional 
analysis) with biochemical recurrence as endpoint, multivariate orthogonal partial least squares discriminant 
analysis (OPLS-DA), linear mixed models (LMM), gene expression analysis (GEA) and Pearson correlation 
between selected genes and metabolites. GEA results were used for enrichment analysis. (b) Venn diagram of 
samples used for metabolomics, transcriptomics and both.
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Univariate analysis of the 23 quantified log-transformed metabolites was performed with linear mixed models 
(LMM) in R with the nlme package26. The relationship between each metabolite concentration and RSG was mod-
eled while correcting for multiple samples per patient. Correct model assumptions were confirmed by qq-plots 
of model residuals.

Univariate GEA was carried out with the lumi and limma packages in R for the 23 444 probes, representing 
16 312 genes. Samples with low RSG were compared to samples with high RSG. The result of the GEA was further 
used to remove duplicated probes so that the dataset only contained one probe per gene. The probe with the low-
est adjusted p-value from the GEA was selected for further analysis. The significantly upregulated and downreg-
ulated genes were separated into two gene lists, and used for enrichment analysis with Enrichr27,28. Results from 
the background library Gene Ontology (GO) Biological Process 2018 were exported.

Pearson correlation between significant metabolites (n = 5) and the most significantly expressed genes 
involved in relevant biological processes (n = 42) was calculated in R. Due to lack of normal distribution, the 
metabolite data was log2-transformed prior to correlation analysis. Five metabolites were selected based on sig-
nificance in LMM analysis and/or a loading score of ≥±3.0 (first latent variable, OPLS-DA). The genes were 
selected based on an adjusted p-value < 0.001 from GEA (n = 98, Supplementary Table S1). These genes were 
manually annotated through genecards.org, and genes with a clear relation to biologically relevant processes were 
selected for correlation analysis (n = 42).

Unadjusted p-values of ≤0.05 were considered significant for univariate tests and LMM on the metabolic data-
set due to a low number of variables (n = 23). Benjamini-Hochberg adjusted p-values ≤ 0.05 were considered sig-
nificant for GEA, enrichment analysis and gene-metabolite correlations. All confidence intervals (CI) were 95%.

Results
Histopathology.  A total of 158 samples from 43 patients were histologically evaluated for Grade Group, tumor 
content and RSG (Fig. 1). Before consensus between pathologists was reached on tumor containing samples (n = 108), 
the original evaluations gave a kappa score of 0.64 and 0.30 for Grade Group and RSG, respectively. An overview of 
histopathology and clinical data are listed in Table 1.The majority of samples (n = 48, 55.2%) and patients (n = 24, 

Figure 2.  Photomicrographs (x20) of representative hematoxylin and eosinofil stained slides of histopathology 
of prostate tissue cryosections with reactive stroma grade (RSG) 0–3. (a) Normal prostatic tissue with reactive 
stromal grade (RSG) 0 (<5% reactive stroma). Stroma is mostly consisting of smooth muscle cells making 
up bundles. (b) RSG 1 (6–15% reactive stroma) and Grade Group 4. The majority of stroma still has a strong 
eosinophilic stain, with a few cells with paler staining appearing, in addition to the presence of more fibroblasts. 
(c) RSG 2 (16–50% reactive stroma) and Grade Group 3. The reactive stroma is more prominent by a weaker 
eosinophilic stain. (d) Sample with RSG 3 (>50% reactive stroma) and Grade Group 3. Here, nearly all normal 
stroma is replaced by reactive stroma with pale eosinophil staining.
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63.2%) were scored as RSG 1, while the least prevalent score was RSG 3 with four samples (4.6%) and two patients 
(5.3%). There was a clear correlation between clinical Grade Group and RSG of patients (R = 0.56, = . ∗ −p 0 23 10 3). 
There was also a weak, but significant, correlation between RSG and Grade Group in the samples (R = 0.25, p = 0.018). 
There was no correlation between preoperative PSA levels and patient RSG (R = 0.015, p = 0.93).

High RSG predict shorter BCR-free survival independent of Grade Group.  A total of 38 patients had 
sufficient clinical follow-up data and were included in survival analysis where low RSG (n = 26) was compared to high 
RSG (n = 12). Kaplan-Meier analysis showed significantly better BCR-free survival in patients with low RSG, having 
92.3% recurrence-free survival, and high RSG patients having 25.0% recurrence-free survival after 5 years of follow-up 
( = . ∗ −p 2 09 10 7) (Fig. 3a). However, the low and high RSG patient groups had a different median clinical Grade 
Group of 2 and 4, respectively (two-sided t-test, p = 0.013). In addition, these two groups also had a significant different 
median T-stage of T2c for low RSG and T3a for high RSG (two-sided t-test, = . ∗ −p 0 16 10 3). A second Kaplan-Meier 
analysis was therefore performed for patients with Grade Group ≤3, resulting in a total of 29 patients. This second 
selection of low (n = 24) and high RSG (n = 5) patients had the same median Grade Group of 2 and median T-stage of 
T2c and still displayed a significant recurrence-free 5-year survival difference (BCR-free survival 95.8% for low RSG 
and 60% for high RSG, p = 0.009) (Fig. 3b). Multivariate Cox proportional hazard model of all 38 patients provided 
hazard ratios of 16.44 (p = 0.013, CI = 1.81–149.20) for RSG and 1.95 (p = 0.018, CI = 1.12–3.40) for Grade Group.

Reactive stroma shows metabolic alteration.  Multivariate OPLS-DA analysis using quantified values 
for 23 metabolites showed a significant difference between high and low RSG (p = 0.014, accuracy 64.9%, sensi-
tivity 75.0% and specificity 54.9%, Fig. 4a,b). The loadings depicted in Fig. 4b show that there are lower levels of 
citrate and spermine and higher levels of leucine in samples with high RSG.

RSG 0 RSG 1 RSG 2 RSG 3 Total

Samples with >50% tumor used for metabolomics (n = 85)

Samples (percent) 11 (12.9%) 47 (55.3%) 23 (27.1%) 4 (4.7%) 85

Median Grade Group (range) 3 (1–5) 1 (1–5) 3 (1–5) 4.5 (3–5) 2 (1–5)

Mean tumor percent (range) 89.5 (70–100) 82.3 (60–92.5) 83.2 (62.5–100) 88.1 (72.5–97.5) 83.6 (60–100)

Samples with >50% tumor used for transcriptomics (n = 78)

Samples (percent) 10 (12.8%) 41 (52.3%) 23 (29.5%) 4 (5.2%) 78

Median Grade Group (range) 2.5 (1–5) 1 (1–5) 3 (1–4) 4.5 (3–5) 2 (6–10)

Mean tumor percent (range) 87.5 (70–100) 83.2 (57.5–95) 83.2 (62.5–100) 88.1 (72.5–97.5) 84.0 (57.5–100)

Clinical variables of Patients (n = 38)

Patients (percent) 2 (5.3%) 24 (63.2%) 10 (26.3%) 2 (5.3%) 38

Recurrence, 5 year follow-up (percent) 0 1 (4.2%) 7 (70.0%) 1 (50.0%) 11 (28.9%)

Mean age at operation (range) 58.5 (56–61) 61.4 (48–69) 62.1 (48–68) 68.5 (68–69) 61.8 (48–69)

Median Grade Group (range) 2 (2) 2 (1–5) 3.5 (1–5) 5 (5) 3 (1–5)

Median pathological stage (range) T2c (T2c) T2c (T2a–T3b) T3a (T2c–T3b) T3b (T3a–T3b) T2c (T2a–T3b)

Mean preoperative serum PSA (range) 8.0 (5.2–10.7) 10.8 (3.7–45.8) 10.6 (5.2–17.0) 9.75 (5.6–13.9) 10.3 (3.7–48.8)

Table 1.  Histology of samples and clinical data of patients. RSG = reactive stroma grade, PSA = prostate 
specific antigen.

Figure 3.  Kaplan-Meier plots of biochemical recurrence (BCR). Kaplan-Meier analysis were performed on (a) 
all patients (n = 38) and (b) patients with low-to-medium Grade Group (≤3) (n = 29).
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Univariate LMM testing of each quantified metabolite modeled against RSG values 0–3 resulted in four sig-
nificant metabolites (Fig. 4c). Taurine (p = 0.018) was found at elevated levels, while citrate (p = 0.027), spermine 
(p = 0.031) and scyllo-inositol (p = 0.009) were found at lower levels with increasing RSG.

Genes involved in immune responses and ECM remodeling are upregulated in reactive 
stroma.  Gene expression analysis (GEA) was performed comparing high RSG to low RSG. A total of 609 and 
471 genes were up- and downregulated, respectively. Enrichment analysis was performed with Enrichr using 
gene lists of significantly up- and downregulated genes, which produced 339 significantly upregulated and seven 
significantly downregulated enriched biological process terms in high compared to low RSG (Supplementary 
Table S2). All biological terms with a combined score (calculated by Enrichr) over 30 are presented in Fig. 5. Of 
these terms (n = 22), all were upregulated and 18 were related to the immune system, three to cell signaling and 
one was related to extracellular matrix.

Correlation between selected genes and metabolites.  A total of 42 upregulated genes and five metab-
olites (spermine, taurine, scyllo-inositol, leucine and citrate) were selected for correlation analysis. Immunology 
and ECM were considered relevant biological processes to reactive stroma based on our enrichment results and 
the literature29,30, and were along with level of significance, used as selection criteria for the genes. Nine genes 
were related to ECM and 33 were related to immunology, which could be further categorized into various differ-
ent functions of the immune system and ECM (Fig. 6). Of the selected genes, four immunology-related genes, 

Figure 4.  Metabolite analysis in samples with high and low reactive stroma grading (RSG). (a) Scores plot 
and (b) loadings plot from OPLS-DA model where low RSG (RSG 0 and 1, n = 58) were compared to high 
RSG (RSG 2 and 3, n = 27). Variables in the loadings plot are color-coded by variable importance in the 
projection (VIP), which is an estimate of each variables contribution to the model. Metabolites with a loadings 
score ≥3.0 or ≤−3.0 are indicated by * (c) Univariate linear mixed model (LMM) regression coefficients 
with increasing RSG. Error bars represent standard error and significant metabolites are indicated by *. 
Abbreviations: CA = classification accuracy, GPC = Glycerophosphocholine, GPE = Glycerophosphoethanol, 
PC = phosphocholine, PEA = phosohpoethanolamine and GPE = Glycerophosphoethanol.
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CTSC, AIF1, CD8A and CD86, were not correlated with any of the metabolites. Taurine was correlated with all the 
remaining 38 genes, while scyllo-inostol only correlated with one gene, C1QA. Citrate and spermine were neg-
atively correlated to all genes, while taurine, scyllo-inositol and leucine were positively correlated with all genes 
that had a significant correlation.

Discussion
In this study we have demonstrated that reactive stroma content in human prostate cancer tissue is associated with 
metabolic and transcriptomic alteration, and significantly influence biochemical recurrence. The gene expression 
analysis showed that reactive stroma is clearly connected to inflammatory responses, one of the triggers of cancer 
initiation31. Our results suggest that grading of reactive stroma could be a valuable supplement to Grade Group.

Although the Grade Group system is currently the gold standard for assessing patient prognosis and aggres-
siveness of prostate cancer, there is still a need for improvements especially within Grade Group 2 and 329. 
Histological reactive stroma grading could provide further strength to the Grade Group evaluation and improve 
patient prognosis assessment6–9,11. In our study, both the Kaplan-Meier and the Cox analysis showed a signifi-
cantly worse BCR-free survival in patients with a high compared to low RSG, even when accounting for Grade 
Group (p = 0.009 and p = 0.013, respectively) (Fig. 3).

This indicates that reactive stroma content can provide additional information beyond the Grade Group sys-
tem used for current patient prognosis assessment in prostate cancer, which is in line with previous studies6–9,11. 
However, RSG is not entirely independent of Grade Group, as illustrated by our correlation analysis and previous 
studies7,11,14. This suggest that a reactive stromal response is coevolving with cancer aggressiveness and supporting 
tumor progression.

Our statistical analysis of 23 different tissue metabolites indicated that the levels of spermine, citrate, taurine, 
leucine and scyllo-inostol were different between low and high RSG (Fig. 4). Since RSG and Grade Group are 
correlated with each other, it is not possible to robustly assess whether the changes in these metabolites are due to 
reactive stroma or Grade Group. Spermine and citrate are normally found at high levels in healthy prostate tissue 
compared to other human tissues, as these metabolites are secreted by the gland32. We have previously shown 
lower spermine and citrate levels to be predictors of aggressive cancer19,21. Reduced citrate and spermine levels 
have not previously been connected to typical processes involved in reactive stroma, such as inflammation and 
ECM remodeling as presented in this study. It is therefore possible that the reduced levels of citrate and spermine 
are a result of tumor cell growth rather than high RSG, and further studies are necessary to assess the connection 
to inflammation and ECM remodeling.

Citrate and spermine concentrations were negatively correlated with selected genes (selected based on signif-
icance level in GEA), while leucine and taurine concentrations were positively correlated with the selected genes 
(Fig. 6). A high number of significant correlations are to be expected since both the genes and the metabolites 
were selected based on analysis which compared low RSG to high RSG. However, our analysis reveals in which 
direction these metabolites and genes interact. Interestingly, taurine was significantly positively correlated with 
the highest number of genes (38 of 42). Taurine is known to be a prevalent metabolite in most tissues and one of 
its functions is protection against oxidative stress produced by inflammatory reactions33. In prostate cancer, an 
elevation of taurine levels compared to healthy tissue is reported34,35, but no significant difference in taurine has 
been found in this cohort, neither between cancer and non-cancer tissue nor between low and high Grade Group 
prostate cancer19. Significantly higher levels of taurine in reactive stroma (p = 0.018) suggest that elevated taurine 
levels may be a response to inflammation in reactive stroma. Scyllo-inostol concentrations were significantly 
elevated in high RSG compared to low RSG in univariate (p = 0.009), but not multivariate analysis. Although pre-
viously found to be elevated in prostate cancer34, no biological process has been suggested and its potential role in 
prostate cancer remains unclear. The amino acid leucine is another metabolite found at higher levels in high RSG 

Figure 5.  Enrichment analysis of Gene Ontology (GO) Biological Processes using Enrichr. Analysis was based 
on output from gene expression analysis (GEA) comparing low RSG (RSG 0 and 1) to high RSG (RSG 2 and 3). 
The figure includes all biological process terms with a combined enrichment score over 30.
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samples (Fig. 4b). Leucine is a key amino acid of proteoglycans such as decorin and biglycan. These molecules 
function as building blocks during ECM remodeling and are found with elevated expression in tumor stroma36. 
Biglycan expression was upregulated among high RSG samples in this study ( = . ∗ −p 1 23 10 4) and is previously 
reported to attract pro-inflammatory macrophages in both cell culture and mice37. In sum, our metabolic profile 
appears to be linked to inflammation and ECM remodeling.

The results from gene enrichment analysis indicated that genes involved in immunity, cell signaling and extra 
cellular matrix were particularly important when comparing low and high RSG (Fig. 5). Cellular signaling path-
ways are known to be reprogrammed in cancer cells38 and our results from the enrichment analysis may therefore 
represent both cancer cell and the cross-talk between cancer cells and reactive stroma. One known example is 
transforming growth factor-β (TGF-β), significantly upregulated in our GEA (p = 0.003, Supplementary Data S1), 
which is secreted by cancer cells, activates fibroblasts and promotes ECM remodeling39. Remodeling of the ECM 
is, together with inflammation, a feature of the reactive stroma40, and is parallel to chronic wound repair.

Figure 6.  Correlation analysis between selected metabolites and genes. Values are Pearson correlation 
coefficients. Values marked with red (positive correlation) or blue color (negative correlation) were significant 
after Benjamini-Hochberg adjustment, while values marked with light grey were non-significant. Color 
intensity corresponds to the correlation coefficient value.
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Among the genes which were selected based on level of significance between low and high RSG and their 
involvement in immunity and ECM remodeling, we found 12 genes that were specifically involved in pathogen 
responses, such as phagocytosis, pathogen pattern recognition and antigen processing (Fig. 6). Additionally, bio-
logical processes related to interferon signaling were particularly enriched (Fig. 5). Interferons are a group of 
signaling proteins which are secreted from cells as a response to pathogen infections41. Infectious pathogens like 
bacteria and viruses may be involved in chronic inflammation and further progression of cancer42. In previous 
studies different pathogens were correlated with prostate cancer initiation, including high risk human papil-
loma virus (HR-HPV)43, Enterobacteriaceae species44 and Porpionibacterium acnes44–47. In our study, both the 
genes CD6 and CD14, which are directly involved in recognition of surface bound bacterial lipopolysaccharide 
(LPS)48,49, were expressed higher in high RSG samples. The fact that genes specifically involved in both recognition 
and destruction of pathogens are among the most highly expressed genes in high RSG, suggest the presence of 
infectious agents contributing to the reactive stromal response. Future studies using sensitive methods suitable 
for detecting suspected pathogens are needed.

Several genes involved in immune cell activation were differentially expressed between high and low RSG 
(Fig. 6). Many of these genes are involved in regulation of inflammatory responses, by modifying the functions of 
T-cells, macrophages and natural killer cells, and can either be pro-inflammatory or inhibit immune responses. 
These genes include CCL5 and CSF1R. CCL5 is a pro-inflammatory chemokine that attracts immune cells such as 
macrophages, T-leukocytes, eosinophils and basophiles50. CCL5 has previously been linked to cancer progression 
in prostate51. CSF1R is a pro-inflammatory receptor mainly found on macrophages and monocytes. It is thought 
to trigger recruitment, growth and proliferation of these cells in cancer, and blocking this receptor was found to 
suppress tumor growth in combination with irradiation therapy in prostate cancer patients52. These data indicate 
that the tissue is inflamed by the actions of an array of immune cells.

Several genes related to remodeling of the ECM were upregulated in reactive stroma in this study (Fig. 6). One 
of the key contributors to reactive stroma is a group of activated fibroblasts, CAFs. The function of these cells is 
to remodel the ECM53. CAFs have an elevated production of α smooth muscle actin (α-SMA) and fibroblast acti-
vation protein (FAP) compared to other cells in the tissue53,54. FAP is selectively expressed by activated fibroblasts 
during either wound-healing responses or by CAFs in epithelial cancers55,56, and was found to have increased 
expression in high RSG in our cohort (p = 0.001). Expression of α-SMA is also a key characteristic of CAFs, but it 
was not found to be differentially expressed in reactive stroma of this study (p = 0.34). A possible explanation for 
this observation is that α-SMA is also produced by smooth muscle cells40, so any increase in fibroblast-derived 
α-SMA may be hidden by a reduction of smooth muscle-derived α-SMA.

Collagen is the most abundant type of protein making up the ECM, and various collagen genes had increased 
expression in high RSG samples in our study. In cancer, breakdown and re-deposition of collagen is common and 
causes cancer progression through destabilization of cell polarity and cell-to-cell adhesion57. Collagen building is 
thought to be partly organized by the proteoglycan biglycan58. Biglycan is encoded by the gene BGN, which was 
higher expressed in high RSG ( = . ∗ −p 0 12 10 3). Up-regulation of BGN has previously been linked to poor prog-
nosis in prostate cancer59. Another proteoglycan encoding gene which were higher expressed in high RSG, 
MXRA5, has a similar function to BGN and is associated with several forms of cancers60. These findings reflect the 
remodeling of ECM which occurs in reactive stroma, and suggest that a higher number of CAFs are likely present 
due to the high expression of FAB, a selective marker for activated fibroblasts.

Even though stromal grading shows clinical potential, RSG evaluation will still need standardization before it 
can be implemented in the clinic, clearly indicated by the kappa score for RSG (κ = 0.30) which was considerably 
lower than for Grade Group (κ = 0.64). To our knowledge, no kappa score was included in any of the previous 
published studies, and it is therefore not possible to compare the robustness of our evaluation to others. Progress 
are being made to optimize characterization of reactive stroma61 and there is a need to quality check and quan-
tify the variation between individual pathologists. In addition, evaluating RSG on cryosections caused further 
limitation in this study due to common lower staining quality compared to sections from formalin fixed paraffin 
embedded tissue. There is higher requirement for section quality and staining when assessing RSG compared to 
assessing Grade Group.

In this study we have demonstrated that reactive stroma grading of prostate cancer offer additional prognostic 
value as a supplement to the clinical Grade Group assessment. However, for applying RSG in the routine clinical 
assessment, more standardized scoring criteria is needed. Metabolic and translational differences between sam-
ples with high and low reactive stroma content were also identified. In particular, genes related to immunology 
and ECM remodeling were upregulated in samples with high reactive stroma content. Molecular understanding 
of the reactive stroma may lead to new diagnostic and therapeutic tools. Identifying therapeutic targets residing 
in reactive stroma, could be of particular benefit due to the higher degree of genetic stability compared to cancer 
cells. Hence, such therapeutic targets might be less prone to treatment resistance.

References
	 1.	 Palumbo, A., de Oliveira Meireles Da Costa, N., Bonamino, M. H., Ribeiro Pinto, L. F. & Nasciutti, L. E. Genetic instability in the 

tumor microenvironment: a new look at an old neighbor. Mol. Cancer 14, 145, https://doi.org/10.1186/s12943-015-0409-y (2015).
	 2.	 Bianchi-Frias, D. et al. Cells comprising the prostate cancer microenvironment lack recurrent clonal somatic genomic aberrations. 

Mol. Cancer Res. 14, 374–384 (2016).
	 3.	 Tuxhorn, J. A. et al. Reactive stroma in human prostate cancer induction of myofibroblast phenotype and extracellular matrix 

remodeling. Clin. Cancer Res. 8, 2912–2923 (2002).
	 4.	 Gordetsky, J. & Epstein, J. Grading of prostatic adenocarcinoma: current state and prognostic implications. Diagn. Pathol. 11, 25, 

https://doi.org/10.1186/s13000-016-0478-2 (2016).
	 5.	 Ayala, G. et al. Reactive stroma as a predictor of biochemical-free recurrence in prostate cancer. Clin. Cancer Res. 9, 4792–4801 

(2003).

http://dx.doi.org/10.1186/s12943-015-0409-y
http://dx.doi.org/10.1186/s13000-016-0478-2


www.nature.com/scientificreports/

1 0SCIeNTIfIC REPorTS |  (2018) 8:14269  | DOI:10.1038/s41598-018-32549-1

	 6.	 McKenney, J. K. et al. Histologic grading of prostatic adenocarcinoma can be further optimized: analysis of the relative prognostic 
strength of individual architectural patterns in 1275 patients from the Canary retrospective cohort. Am. J. Surg. Pathol. 40, 
1439–1456 (2016).

	 7.	 Yanagisawa, N. et al. Stromogenic prostatic carcinoma pattern (carcinomas with reactive stromal grade 3) in needle biopsies predicts 
biochemical recurrence-free survival in patients after radical prostatectomy. Hum. Pathol. 38, 1611–1620 (2007).

	 8.	 Billis, A. et al. Adenocarcinoma on needle prostatic biopsies: does reactive stroma predicts biochemical recurrence in patients 
following radical prostatectomy? Int. Braz. J. Urol. 39, 320–327 (2013).

	 9.	 Tomas, D. et al. Intensity of stromal changes predicts biochemical recurrence-free survival in prostatic carcinoma. Scand. J. Urol. 
Nephrol. 44, 284–290 (2010).

	10.	 Wu, J. P. et al. Intensity of stromal changes is associated with tumor relapse in clinically advanced prostate cancer after castration 
therapy. Asian J. Androl. 16, 710–714 (2014).

	11.	 Sæter, T. et al. The prognostic value of reactive stroma on prostate needle biopsy: A population-based study. Prostate 75, 662–671 
(2015).

	12.	 Shiao, S. L., Chu, G. C.-Y. & Chung, L. W. K. Regulation of prostate cancer progression by the tumor microenvironment. Cancer Lett. 
380, 340–348 (2016).

	13.	 Tomas, D. & Kruslin, B. The potential value of (Myo)fibroblastic stromal reaction in the diagnosis of prostatic adenocarcinoma. 
Prostate 61, 324–331 (2004).

	14.	 Silva, M. M. Jr. et al. Characterization of reactive stroma in prostate cancer: involvement of growth factors, metalloproteinase matrix, 
sexual hormones receptors and prostatic stem cells. Int. Braz. J. Urol. 41, 849–858 (2015).

	15.	 Yang, F. et al. Stromal expression of connective tissue growth factor promotes angiogenesis and prostate cancer tumorigenesis. 
Cancer Res. 65, 8887–8895 (2005).

	16.	 Dakhova, O. et al. Global gene expression analysis of reactive stroma in prostate cancer. Clin. Cancer Res. 15, 3979–3989 (2009).
	17.	 Awwad, H. M., Geisel, J. & Obeid, R. The role of choline in prostate cancer. Clin. Biochem. 45, 1548–1553 (2012).
	18.	 Sreekumar, A. et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457, 910–914 

(2009).
	19.	 Giskeødegård, G. F. et al. Spermine and citrate as metabolic biomarkers for assessing prostate cancer aggressiveness. PLoS One 8, 

e62375, https://doi.org/10.1371/journal.pone.0062375 (2013).
	20.	 Bertilsson, H. et al. A new method to provide a fresh frozen prostate slice suitable for gene expression study and MR spectroscopy. 

Prostate 71, 461–469 (2011).
	21.	 Braadland, P. R. et al. Ex vivo metabolic fingerprinting identifies biomarkers predictive of prostate cancer recurrence following 

radical prostatectomy. Br. J. Cancer 117, 1656, https://doi.org/10.1038/bjc.2017.346 (2017).
	22.	 Cross, S. S. Kappa statistics as indicators of quality assurance in histopathology and cytopathology. J. Clin. Pathol. 49, 597–599 

(1996).
	23.	 Provencher, S. W. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson. Med. 30, 

672–679 (1993).
	24.	 Opstad, K. S., Wright, A. J., Bell, B. A., Griffiths, J. R. & Howe, F. A. Correlations between in vivo 1H MRS and ex vivo 1H HRMAS 

metabolite measurements in adult human gliomas. J. Magn. Reson. Imaging 31, 289–297 (2010).
	25.	 Bertilsson, H. et al. Changes in gene transcription underlying the aberrant citrate and choline metabolism in human prostate cancer 

samples. Clin. Cancer Res. 18, 3261–3269 (2012).
	26.	 Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. R Core Team (2014) nlme: linear and nonlinear mixed effects models. R package 

version 3.1–117, http://CRAN.R-project.org/package=nlme.
	27.	 Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128, 

https://doi.org/10.1186/1471-2105-14-128 (2013).
	28.	 Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–97, 

https://doi.org/10.1093/nar/gkw377 (2016).
	29.	 Krušlin, B., Ulamec, M. & Tomas, D. Prostate cancer stroma: an important factor in cancer growth and progression. Bosnian J. Basic 

Med. 15, 1–8 (2015).
	30.	 Bussard, K. M., Mutkus, L., Stumpf, K., Gomez-Manzano, C. & Marini, F. C. Tumor-associated stromal cells as key contributors to 

the tumor microenvironment. Breast Cancer Res. 18, 84, https://doi.org/10.1186/s13058-016-0740-2 (2016).
	31.	 Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).
	32.	 Lynch, M. J. & Nicholson, J. K. Proton MRS of human prostatic fluid: Correlations between citrate, spermine, and myo‐inositol levels 

and changes with disease. Prostate 30, 248–255 (1997).
	33.	 Marcinkiewicz, J. & Kontny, E. Taurine and inflammatory diseases. Amino Acids 46, 7–20 (2014).
	34.	 Swanson, M. G. et al. Proton HR-MAS spectroscopy and quantitative pathologic analysis of MRI/3D-MRSI-targeted postsurgical 

prostate tissues. Magn. Reson. Med. 50, 944–954 (2003).
	35.	 Hahn, P. et al. The classification of benign and malignant human prostate tissue by multivariate analysis of 1H magnetic resonance 

spectra. Cancer Res. 57, 3398–3401 (1997).
	36.	 Bi, X. L. & Yang, W. Biological functions of decorin in cancer. Chin. J. Cancer 32, 266–269 (2013).
	37.	 Schaefer, L. et al. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. 

J. Clin. Invest. 115, 2223–2233 (2005).
	38.	 Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
	39.	 Rowley, D. R. Transforming Growth Factor-β in Cancer Therapy, Volume II. 30, 475–505 (Springer, 2008).
	40.	 Barron, D. A. & Rowley, D. R. The reactive stroma microenvironment and prostate cancer progression. Endocr. Relat. Cancer 19, 

R187–R204 (2012).
	41.	 Pestka, S., Krause, C. D. & Walter, M. R. Interferons, interferon-like cytokines, and their receptors. Immunol. Rev. 202, 8–32 (2004).
	42.	 Vandeven, N. & Nghiem, P. Pathogen-driven cancers and emerging immune therapeutic strategies. Cancer Immun. Res. 2, 9–14 

(2014).
	43.	 Singh, N. et al. Implication of high risk human papillomavirus HR-HPV infection in prostate cancer in Indian population-a 

pioneering case-control analysis. Sci. Rep. 5, 7822, https://doi.org/10.1038/srep07822 (2015).
	44.	 Yow, M. A. et al. Characterisation of microbial communities within aggressive prostate cancer tissues. Infect. Agent. Cancer 12, 4, 

https://doi.org/10.1186/s13027-016-0112-7 (2017).
	45.	 Bae, Y. et al. Intracellular Propionibacterium acnes infection in glandular epithelium and stromal macrophages of the prostate with 

or without cancer. PLoS One 9, e90324, https://doi.org/10.1371/journal.pone.0090324 (2014).
	46.	 Kakegawa, T. et al. Frequency of Propionibacterium acnes Infection in Prostate Glands with Negative Biopsy Results Is an 

Independent Risk Factor for Prostate Cancer in Patients with Increased Serum PSA Titers. PLoS One 12, e0169984, https://doi.
org/10.1371/journal.pone.0169984 (2017).

	47.	 Cavarretta, I. et al. The Microbiome of the Prostate Tumor Microenvironment. Eur. Urol. 72, 625–631 (2017).
	48.	 Sarrias, M. R. et al. CD6 binds to pathogen-associated molecular patterns and protects from LPS-induced septic shock. Proc. Natl. 

Acad. Sci. USA 104, 11724–11729 (2007).
	49.	 Triantafilou, M. & Triantafilou, K. Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol. 23, 

301–304 (2002).

http://dx.doi.org/10.1371/journal.pone.0062375
http://dx.doi.org/10.1038/bjc.2017.346
http://CRAN.R-project.org/package=nlme
http://dx.doi.org/10.1186/1471-2105-14-128
http://dx.doi.org/10.1093/nar/gkw377
http://dx.doi.org/10.1186/s13058-016-0740-2
http://dx.doi.org/10.1038/srep07822
http://dx.doi.org/10.1186/s13027-016-0112-7
http://dx.doi.org/10.1371/journal.pone.0090324
http://dx.doi.org/10.1371/journal.pone.0169984
http://dx.doi.org/10.1371/journal.pone.0169984


www.nature.com/scientificreports/

1 1SCIeNTIfIC REPorTS |  (2018) 8:14269  | DOI:10.1038/s41598-018-32549-1

	50.	 Aldinucci, D. & Colombatti, A. The inflammatory chemokine CCL5 and cancer progression. Mediators Inflamm. 2014, 292376, 
https://doi.org/10.1155/2014/292376 (2014).

	51.	 Vaday, G. G., Peehl, D. M., Kadam, P. A. & Lawrence, D. M. Expression of CCL5 (RANTES) and CCR5 in prostate cancer. Prostate 
66, 124–134 (2006).

	52.	 Xu, J. et al. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate 
cancer. Cancer Res. 73, 2782–2794 (2013).

	53.	 Öhlund, D., Elyada, E. & Tuveson, D. Fibroblast heterogeneity in the cancer wound. J. Exp. Med. 211, 1503–1523 (2014).
	54.	 Levesque, C. & Nelson, P. S. Cellular constituents of the prostate stroma: Key contributors to prostate cancer progression and therapy 

resistance. Cold Spring Harb. Perspect. Med, https://doi.org/10.1101/cshperspect.a030510 (2017).
	55.	 Park, J. E. et al. Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. 

J. Biol. Chem. 274, 36505–36512 (1999).
	56.	 Brennen, W. N., Isaacs, J. T. & Denmeade, S. R. Rationale behind targeting fibroblast activation protein-expressing carcinoma-

associated fibroblasts as a novel chemotherapeutic strategy. Mol. Cancer Ther. 11, 257–266 (2012).
	57.	 Fang, M., Yuan, J., Peng, C. & Li, Y. Collagen as a double-edged sword in tumor progression. Tumour Biol. 35, 2871–2882 (2014).
	58.	 Ameye, L. et al. Abnormal collagen fibrils in tendons of biglycan/fibromodulin-deficient mice lead to gait impairment, ectopic 

ossification, and osteoarthritis. FASEB J. 16, 673–680 (2002).
	59.	 Jacobsen, F. et al. Up-regulation of biglycan is associated with poor prognosis and PTEN deletion in patients with prostate cancer. 

Neoplasia 19, 707–715 (2017).
	60.	 He, Y. et al. Matrix-remodeling associated 5 as a novel tissue biomarker predicts poor prognosis in non-small cell lung cancers. 

Cancer Biomark. 15, 645–651 (2015).
	61.	 De Vivar, A. D. et al. Histologic features of stromogenic carcinoma of the prostate (carcinomas with reactive stroma grade 3). Hum. 

Pathol. 63, 202–211 (2017).

Acknowledgements
This research was funded by the European Research Council (ERC) under the European Union’s Horizon 
2020 research and innovation program (grant agreement No. 758306), Norwegian University of Science and 
Technology (NTNU), the Liaison Committee between the Central Norway Regional Health Authority (RHA) 
and NTNU, Norwegian Cancer Society and The Northern Health Administration, UiT - The Arctic University 
of Norway. All tissue samples were collected and stored by Biobank1, St. Olav’s Hospital. HR-MAS MRS were 
performed at the MR Core Facility, NTNU. RNA microarray measurements the Genomics Core facility, NTNU, 
and Norwegian Microarray Consortium (NMC), a national platform supported by the functional genomics 
program (FUGE) of the research counsel of Norway. We would like to thank Alan Wright for quantification of 
metabolites with LCModel and Trond Viset for histopathological evaluation.

Author Contributions
M.K.A., G.F.G., T.F.B., M.B.R. and M.-B.T. contributed to the design of the study. H.B. and M.-B.T. developed and 
performed wet lab experiments. Histopathology evaluations were performed by E.R. and Ø.S. Data analysis was 
performed by M.K.A. and K.R. with the guidance of G.F.G., M.B.R. and M.-B.T. The manuscript was written by 
M.K.A., and all authors edited and approved the final manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-32549-1.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1155/2014/292376
http://dx.doi.org/10.1101/cshperspect.a030510
http://dx.doi.org/10.1038/s41598-018-32549-1
http://creativecommons.org/licenses/by/4.0/

	Integrative metabolic and transcriptomic profiling of prostate cancer tissue containing reactive stroma

	Methods

	Patients and tissue collection. 
	Histopathological evaluation. 
	Metabolomics. 
	RNA microarray. 
	Multivariate and statistical analysis. 

	Results

	Histopathology. 
	High RSG predict shorter BCR-free survival independent of Grade Group. 
	Reactive stroma shows metabolic alteration. 
	Genes involved in immune responses and ECM remodeling are upregulated in reactive stroma. 
	Correlation between selected genes and metabolites. 

	Discussion

	Acknowledgements

	﻿Figure 1 Methodology flowchart.
	Figure 2 Photomicrographs (x20) of representative hematoxylin and eosinofil stained slides of histopathology of prostate tissue cryosections with reactive stroma grade (RSG) 0–3.
	Figure 3 Kaplan-Meier plots of biochemical recurrence (BCR).
	Figure 4 Metabolite analysis in samples with high and low reactive stroma grading (RSG).
	Figure 5 Enrichment analysis of Gene Ontology (GO) Biological Processes using Enrichr.
	Figure 6 Correlation analysis between selected metabolites and genes.
	Table 1 Histology of samples and clinical data of patients.




