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I Abstract

Waves that are reflected and refracted by material bodies also transfer mo-
mentum to these bodies. This means that the wave field induces a force on
the bodies, and multiple reflections between bodies induce forces between
them.

Light is an electromagnetic wave phenomenon, and the waves carry en-
ergy and momentum. Hence, any object that is scattering and refracting
light is also acted upon by a light induced force. This force is a tiny force
and is usually ignored, but if the objects are small enough the force induced
by the light field would dominate all other forces. Due to this it is possible
to manipulate small objects using light from a laser.

This thesis is based on an experiment on optical binding of two dielectric
spheres, where the spheres were small enough to make the force induced
by the light field the dominating force. In the experiment bistability and
hysteresis in the equilibrium separations of the optically bound dielectric
spheres were observed in one dimension. In this thesis the experiment will
be modeled with a simplified setup, and the goal is to see if it is possible to
find bistability in two dimensions also. Numerical approximations are used
to calculate the wave field, and from this the force on the objects can be
found.
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III Nomenclature

α : constant, interval variable
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∆x : grid size

δ(x) : two dimensional Dirac delta function

δij : Kronecker’s delta

ε : electrical permittivity of material

ε0 : permittivity of free space, ε = 8.85× 10−12C2/Nm

ε : variable

ζ : space variable in R2

θ, ϑ, Θ : polar coordinates

λ : wave length

µ : magnetic permeability of material, micro

µ0 : permeability of free space, 4π × 10−7N/A2

ρ : polar coordinate

τ : period, τ = 2π\ω

ϕ : wave function

ϕi : incoming wave

ϕr : reflected wave

ϕt : transmitted wave

ψ : scalar function

Ω, Ωj : domain

Ωc : domain, complement of Ω

ω : angular frequency

Am : variable for ϕi

Ax, Ay, Az : complex amplitudes

a : cylinder radius
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B : magnetic induction (field)

B0 : norm of magnetic induction

b : vector

b : confocal parameter

c : speed of light, c = 3.00× 108m/s

D : electric displacement (field), D = εE in linear material

d : distance between cylinders/spheres

dx : infinitesimal

∂Ω : boundary of Ω

dv
dx , v ′(x) : derivative of v(x)

d2v
dx2 , v ′′(x) : two times derivative of v(x)

∂xv, vx, ∂v
∂x : partial derivative of v

∂v
∂n , ∇v · n, ∂nv : directional derivative of v in the direction of n

E : electric field

E0 : norm of electric amplitude

ex, ey, ez : unit vectors in the cartesian coordinate system

F : Force

f : force vector

f : scalar function

Gj : Green’s function for domain j

H : magnetic field, H = 1
µ0

B

H
(1)
m , H(2)

m : Hankel function of the first and second kind

I : identity matrix

I : intensity of Gaussian beam

i : imaginary unit, index

Jj : Laser source
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j : index, function

Km : modified Bessel function of the second kind

k : propagation (or wave) vector

k : wave number, k = ω
c , Boltzmann’s constant

L : length scale

l : index

M : block matrix

m : index, meter, milli

N : number of grid points, newton

n : normal vector

n, nj : refraction index

P : total energy flux, power

p : variable

Qm : constant for ϕt

q = (x ′, y ′) : space coordinate in R2

q : variable

R = (x, y) : space coordinate in R2

R : polar coordinate

Rj : variable, Rj = knjr

Rm : constant for ϕr

r, r : polar coordinate

S : Poynting’s vector

Sm : constant for ϕr

T : Maxwell’s stress tensor

T : time

Tm : constant for ϕt
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t : tangential vector

t : time variable

V : volume, potential, spheres

v : vector

W : beam radius for Gaussian beam, watt

W0 : beam waist for Gaussian beam

X : vector

x, y, z : space coordinates in R

x = (x, y), x = (x, y, z) : space coordinate in Rd, d = 2, 3

Ym : Bessel function of the second kind

ẑ : fourier transform of z

|z| : absolute value of z

||z|| : norm of z

zT : transpose of z

< z > : time average of z

z∗ : complex conjugate of z ∈ C

z̃ : dimensionless variable

L : differential operator, L = ∇2 + k2n2
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C,S : contours, surface

∇2v : Laplacian operator applied to v

∇v : gradient of v

∇× v : curl of v

∇ · v : divergence of v
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1 Introduction

Waves that are reflected and refracted by material bodies also transfer mo-
mentum to these bodies. This means that the wave field induces a force on
the bodies, and multiple reflections between bodies induce forces between
them.

Light is an electromagnetic wave phenomenon, and is described by the
same theoretical principles that determine all forms of electromagnetic radi-
ation [1]. These waves carry energy and momentum, which can be imparted
during interaction with matter. Hence, any object that is scattering and
refracting light, is also acted upon by a light induced force. However, this
force is tiny for ordinary sized objects and is therefore usually ignored. On
the other hand, the force induced by the light field would dominate all other
forces if the objects were small enough. Due to this, it is possible to manip-
ulate small objects using light from a laser. The first known experimental
demonstration of this phenomenon dates from 1971 [2]. Ever since, the
technique has been extended and greatly refined, and today plays a major
role in the ongoing nanotechnology revolution, where the goal is to engineer
structures on the scale of molecules.

The interaction between objects and light waves can be treated in dif-
ferent ways, depending on the ratio between the size of the object and the
wavelength of the light. If the wavelength is much smaller than the object,
the interaction can be treated analytically using the geometric optics ap-
proximation [3]. In the opposite case, where the wavelength is much larger
than the size of the object, the dipole approximation would be used [4]. And
last, for the case where the wavelength of the wave field is of the order of the
size of the bodies, only very symmetrical situations can be given an analytic
treatment. A combination of analytical and numerical approximations, or a
purely numerical approach, would be necessary for most realistic situations.
If the goal is to calculate the refracted and scattered wave field in space,
domain methods are most commonly used. They include finite difference,
finite element and spectral (fourier) methods.

According to the Minkowski form of the Energy-Momentum tensor for a
material body [5], when light interacts with homogeneous dielectric bodies,
the force on the bodies can be calculated from the light field on the surface of
each body. In this situation the boundary integral method would be used for
calculating the force [6, 7, 8]. Boundary integral formulations eliminate two
of the problems for the domain methods. The bounding surfaces are usually
compact so the method is formulated on a finite domain, and sharp jumps
in the refraction indices at the surfaces are not a problem since the method
uses only the field values on the boundary. In addition, the method reduces
the dimension of the problem by one, which leads to a large reduction in the
size of the computational problem.

This thesis is based on an experiment on optical binding of two dielectric
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spheres performed by Metzger et al. [9]. In the experiment they considered
the case of small particles modeled as dielectric spheres, interacting through
the optical field generated by counterpropagating laser beams from nearby
optical waveguides. They observed bistability and hysteresis in the equilib-
rium separations of the optically bound dielectric spheres in one dimension.

The numerical calculation in the paper by Metzger et al. [9], was per-
formed using the paraxial wave equation. In this method one assumes that
the wave vectors for the wave field only have a small transverse component,
and that there is no backscattering. In their experiment the spheres were
so large that both assumptions are highly questionable. In this thesis the
aim is to calculate forces and light scattering by using the boundary integral
method. This method is not subject to any limitations on wave vectors or
backscattering.

The setup for the problem in this thesis will have some simplifications
compared to the setup for the experiment. First of all, the problem will be
reduced from three dimensions involving spheres, to two dimensions involv-
ing infinitely long cylinders. In addition, only one laser beam will be used
instead of two in the experiment. The two beams were incoherent, so this
is in fact equivalent in a certain sense. In Chapter 3 this reduction in the
number of sources will be discussed in more detail.

In the next chapter a brief resumé of the experiment performed by Met-
zger et al. [9] will be given, and the third chapter explains the setup for the
problem handled in this paper. The fourth chapter will describe the exact
solution for one cylinder, and an approximate solution to the same problem
will be derived in chapter five. Then chapter six and seven will model the
experiment by introducing a second cylinder and a Gaussian beam model-
ing the laser. A scaling of the problem is performed in chapter eight, while
in chapter nine the force on the particles will be calculated. In the end a
conclusion will be given.
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2 Optical Binding of Two Dielectric Spheres

As mentioned in the introduction, an experiment on optical binding of two
dielectric spheres is the background for this paper. In the experiment they
found that by using a dual-beam fiber optic trap, bistability and hysteresis
in the equilibrium separations of a pair of optically bound dielectric spheres
were observed in one dimension [9]. The observations were in agreement
with a coupled system model, in which the dielectric spheres modified the
field propagation. Also, the field self-consistently determined the optical
forces on the spheres. The results from the experiment revealed up to then
unsuspected complexity in the coupled light-sphere system. A resumé from
the experiment, based on the article by Metzger et al. [9], will be given in
the following.

2.1 Experimental setup

The one-dimensional optically bound system, consisted of an isolated pair
of colloidal microspheres that were held in a dual-beam, optical-fiber trap.
The setup for the whole system with spheres and lasers can be seen in
Figure 1. The equilibria positions were explored thoroughly, and revealed
up to then unsuspected complexity. One was the observation of bistability in
the sphere separations depending on the difference in the refraction indices
for the spheres and the host medium. In addition, hysteresis in the trap
equilibrium separations when varying the fiber separation was observed.

The setup for the model comprised two laser fields of wavelength λ, coun-
terpropagating along the z -axis, which interacted with a pair of transparent
dielectric spheres. The spheres were immersed in a host medium with a
refraction index lower than for the spheres. The counterpropagating fields
originated from two fibers placed on each side of the two spheres, making
a symmetrical system along the horizontal line, as seen in Figure 1. The
output field was modeled as identical collimated Gaussian beams with spec-
ified spot size and power. The spatial evolution of the counterpropagating
fields due to the spheres were modeled by the paraxial wave theory which is
described in Ref. [10].

The counterpropagating fields for a given configuration of the two spheres,
were in turn used to calculate the optical force acting along the horizontal
axis on each sphere. The two counterpropagating beams were assumed to be
mutually incoherent, hence any interference between them were neglected.

The coupled equations for the counterpropagating fields and the optical
forces acting on the spheres, were solved numerically to find the equilibrium
sphere spacing where the net force acting on each sphere was zero. The
equilibrium spacing was found to be stable when the derivative of the total
force, with respect to the sphere separations, was less than zero at the zero
crossing. It was assumed in the model that the spheres would remain well
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Figure 1: Setup from the experiment. Laser and first beam splitter (BS)
for optical tweezers coupled through a dichroic beam splitter. Second beam
splitter for fiber coupling (F1 and F2) with neutral density filters (ND). The
magnified inset shows both fibers mounted on the cover slip. The array is
formed between the two fiber-faces and observed from underneath the setup
through the microscope objective and the dichroic beam splitter with a CCD
camera [9].

confined in the plane transverse to the horizontal axis by virtue of the optical
forces provided by the transverse structure of the counterpropagating fields.
Hence the sphere motion was confined to the horizontal axis.

The bistability result from the experiment can be seen in Figure 2. It
shows the numerically predicted sphere equilibrium separations together
with the experimental results. It can be seen from the figure that for
∆n <= 0.076 only one equilibrium is present, while for ∆n > 0.076 three
equilibrium states appear. The middle solution was found to be unstable
though. So the coupled light-matter system exhibits regions of stability,
namely two stable solutions for a given set of parameters.

Now, the goal of this paper is to model the experiment. But there will
be some simplifications compared to the setup from the experiment. These
simplifications will be covered in the next chapter.
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Figure 2: Result from the experiment with numerical data (dots) and ex-
perimental results (crosses with error bars). The crosses indicate the over
all mean sphere separation d, and the error bars represent the distribution
of the mean values with their standard deviations. The test was performed
by changing the refraction index for the host medium (deionized water and
sucrose solutions), and the spacing d between the spheres [9].

3 Setup for the Problem

Numerical calculations will be performed to try to find results that are sim-
ilar to those found in the experiment summarized in the previous chapter.
The numerical approximations will be performed on a simplified system
compared to the setup that was used in the experiment, and these simpli-
fications might lead to different results. The conclusion in the end of the
paper will show if this is the case, or if the results are similar to those found
in the experiment despite the simplifications. The simplifications described
in the rest of this chapter are introduced in order to make the problem more
tractable from a numerical point of view.

3.1 Problem in two dimensions

Instead of spheres that were used in the experiment, infinitely long cylinders
will be used for the problem covered in this paper. Hence the setup will
be in two instead of three dimensions, which will reduce the size of the
computational problem quite a lot. The question is how different the waves
will act in two compared to three dimensions.
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3.2 One laser beam

In the experiment two laser beams were used, one placed on each side of the
two spheres, making a symmetrical system about the y-axis. The distance
between the two spheres was varied, and the situation of interest was when
the total force on each sphere was zero. In this paper, only one laser beam
will be used, and it will be placed on the left side of the two cylinders. This
simplification can be introduced because the beams used in the experiment
were incoherent. The reduction in the number of sources is supported in the
following.

Let J1 and J2 be two laser sources and let E1, B1 and E2, B2 be the
electromagnetic fields generated by each source separately. Due to the lin-
earity of Maxwell’s equations in a dielectricum [11], the fields generated by
the combined sources are

E = E1 + E2 and B = B1 + B2 (3.1)

The average force on an object V is given as [12]

fav =
∫
∂V

< T > ·n dS (3.2)

Where < > is time average, and T is the Maxwell stress tensor given as [11]

T = εEE +
1
µ0

BB− 1
2
I
(
εE ·E +

1
µ0

B ·B
)

(3.3)

The stress tensor for the field generated by the combined sources is given as

T = ε(E1 + E2)(E1 + E2) +
1
µ0

(B1 + B2)(B1 + B2)

− 1
2
I
(
ε(E1 + E2) · (E1 + E2) +

1
µ0

(B1 + B2) · (B1 + B2)
)
(3.4)

And the time averaged stress tensor can then be written as

< T > = < T1 > + < T2 > + ε< E1E2 > + ε< E2E1 > +
1
µ0
< B1B2 >

+
1
µ0
< B2B1 > −

1
2
I
(
ε< E1 ·E2 > + ε< E2 ·E1 >

+
1
µ0
< B1 ·B2 > +

1
µ0
< B1 ·B2 >

)
(3.5)

Due to the incoherence of the sources J1 and J2,

< E1E2 >=< E2E1 >=< B1B2 >=< B2B1 >= 0 (3.6)
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And the time average over the dot products are also zero. Hence, the time
averaged stress tensor is written as

< T >=< T1 > + < T2 > (3.7)

From this, the average force is found to be

fav =
∫
∂V

(< T1 > + < T2 >) · n dS = f1 + f2 (3.8)

The forces are therefore additive for incoherent sources. Now, let V1 and
V2 be two spheres placed symmetrical with respect to the midplane and the
sources J1 and J2, see Figure 3.

�
��
V1

�
��
V2

J1

��

��

HH

@@

J2

@@

HH

��

��

Figure 3: Two spheres, V1 and V2, and two sources, J1 and J2, placed
symmetrical about the y-axis.

Let f1 and f2 be the forces on V1 and V2 from the combined sources, and
let fij be the force on object i induced by source j. This gives

f1 = f11 + f12 (3.9)
f2 = f21 + f22 (3.10)

The symmetry of the setup gives

f11 = −f22, and f21 = −f12 (3.11)

The force f, which determines the relative acceleration of the spheres, is
given as f = f2− f1. This, together with the relations found in the equation
above, gives the following expression for the force:

f = f21 − f11 − f11 + f21 = 2 (f21 − f11) (3.12)
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Thus, the force f is zero if and only if f21 − f11 = 0, which only involves
forces from source one. This shows that it is possible to use only one source
in this paper.

The actual motion of the scattering objects will be different for one and
two sources. In the experiment the situation of interest was when the total
force on each sphere was zero, hence the spheres were standing still. For the
simplified problem with only one laser beam, the corresponding situation
will be when the force on cylinder one, equals the force on cylinder two.
Then the two cylinders will move with a constant distance between them,
which will be analogous to the situation in the experiment where the two
spheres were standing still.

3.3 One cylinder and a planar wave

In the beginning of the paper a couple of extra simplifications will be used.
The numerical procedures will first include only one cylinder in the system,
and the incident wave will have the form of a plane wave. For this situa-
tion the exact solution can be calculated. An approximation to the exact
solution will then be derived and compared to the exact solution, to see if
they resemble each other. If the approximative solution is good, it will be
developed further to include two cylinders and a Gaussian beam modeling
the laser.

Hence the problem in two dimensions is the following: An infinitely long
cylinder is placed along the z -axis. A light-source placed far away from the
cylinder sends out waves that have the form of plane waves when they reach
the cylinder. Figure 4 gives a sketch of the problem. A plane wave will hit
the cylinder, Ω, and will be scattered depending on the refraction indices of
the cylinder and the host medium.

��
��

Ω-ϕi
-

6

x

y

Figure 4: A source is sending out waves from far away. When these waves
are getting close to the cylinder, they can be seen as plane waves (the par-
allel lines in the figure). When a wave hit the cylinder, it will be scattered
based on the refraction indices of the cylinder and the host medium. The
wavelength and the diameter of the cylinder, are of the same order of mag-
nitude.
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In the next chapter the exact solution for the wave field arising from this
setup will be calculated.

4 Exact Solution for One Cylinder

The goal for this chapter is to find the exact solution of the wave function for
the scattering in the two-dimensional problem given in the previous chapter.
The solution will be calculated both on the boundary of the cylinder, and
for a given domain. To solve the problem, the starting point will be the
governing equations of electromagnetics, namely the Maxwell equations.

4.1 Maxwell’s equations

The Maxwell equations in a material with no free currents and charges are
given as [11]:

∇×E +
∂B
∂t

= 0 (4.1)

∇×H− ∂D
∂t

= 0 (4.2)

∇ ·B = 0 (4.3)
∇ ·D = 0 (4.4)

The basic electromagnetic fields are the electric field E and the magnetic
induction field B. In addition there are the magnetic field H and the electric
displacement field D. The relations between the magnetic induction field B
and the magnetic field H, and between the electric field E and the electric
displacement field D, are given as

D = D[E,B] (4.5)
H = H[E,B], (4.6)

called the constitutive relations, meaning they describe the medium [13].
Assuming the field strengths are so small that the regime is linear, and

the medium is nonmagnetic and isotropic, E(x, ω) and D(x, ω) are related
by a scalar dielectric constant ε(x, ω), also known as the electric permittivity
of the material. The variables are the space coordinate, x, and the frequency,
ω. By choosing an appropriate value for the dielectric constant in the fre-
quency range of the source, which is a continuous laser operating at a single
frequency, the frequency dependence of ε(x, ω) can be ignored. The two
other fields, B(x, ω) and H(x, ω), are related by µ(x, ω), the magnetic per-
meability of the material. Since the material is nonmagnetic, µ(x, ω) = µ0,
where µ0 = 4π× 10−7N/A2 is the permeability of free space. Taking all the
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given information into account, the constitutive equations can be given as
[11]:

D(x) = ε(x)E(x) (4.7)

H(x) =
1
µ0

B(x) (4.8)

The source sending out light waves is assumed to be monochromatic,
meaning that the electromagnetic radiation is of a single wavelength. The
equation for the source-field is given as:

J(x, t) =
1
2
{
J(x)e−iωt + J∗(x)eiωt

}
(4.9)

A good laser operating in continuous mode approximates such a source very
well.

From the form of the source-field, the electric and the magnetic fields
are given as

E(x, t) =
1
2
{
E(x)e−iωt + E∗(x)eiωt

}
(4.10)

H(x, t) =
1
2
{
H(x)e−iωt + H∗(x)eiωt

}
(4.11)

Now, using what was found in Equations 4.7-4.11, Maxwell’s equations sim-
plifies to

∇×E− iωµ0H = 0 (4.12)
∇×H + iωεE = 0 (4.13)

∇ · εE = 0 (4.14)
∇ ·H = 0 (4.15)

These stationary Maxwell equations will be used in the next section to derive
the Helmholtz equation.

4.2 Helmholtz’s equation

The well-known Helmholtz equation is often found in the study of physical
problems involving wave phenomena. The equation will be derived from
Maxwell’s equations. The first step is to introduce the standard definition
for the refraction index of a non-magnetic material, given as [11]

n(x, ω) =

√
ε(x, ω)
ε0

(4.16)

Here ε0 is the permittivity of free space, which can be found from c−2 = ε0µ0,
where c is the speed of light in vacuum, and the value of µ0 was given in the
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previous section. So for a given frequency domain the dielectric constant ε
can be written as

ε(x) = ε0n
2(x) (4.17)

The problem in this paper involves an infinitely long cylinder, with a
given refraction index, placed along the z -axis. The refraction index is
constant both in the domain inside the cylinder and in the domain outside
the cylinder, that is the host medium. So the refraction index is stepwise
constant, and is written nj , where j = 0, 1 represents the outer domain
and the cylinder respectively. Now, using the expression for ε that was
found above, the divergence equation of the electric field, Equation 4.14, is
rewritten as

∇ · (εE) = 0
∇ · (ε0n

2(x)E) = 0
∇ · (n2(x)E) = 0 (4.18)

The electric field is assumed to be parallel to the cylinder axis (z -axis),
hence the electric field is transverse to the propagation direction of the wave,
and only has a z -component. This means that the field can be written as
E(x, y, z) = E(x, y)ez, and since the refraction index only depends on x and
y, Equation 4.18 is automatically true and is rewritten as

∇ ·
(
n2(x) E

)
= ∂zn

2(x, y)E(x, y) = 0
∇ ·E = 0 (4.19)

So the divergence of the electric field E is zero in homogeneous regions.
Calculating the curl of Maxwell’s Equation 4.12, and using the relation

for the curl of the H-field found in Equation 4.13, gives the following

∇×∇×E = iωµ0 (∇×H)
= iωµ0(−iωε0n

2(x)E)

=
(
ωn(x)
c

)2

E (4.20)

Here µ0ε0 has been replaced by c−2. The same calculation can be written
another way by applying the vector identity for ∇×∇×, which gives [12]

∇×∇×E = ∇ (∇ ·E)−∇2E

= −∇2E (4.21)

The fact that the divergence of E is zero has been used to get this result.
Now, putting Equations 4.20 and 4.21 together gives(

∇2 +
(
ωn(x)
c

)2
)

E = 0(
∇2 + k2n2(x)

)
E = 0 (4.22)
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The wave number k comes from the relation: k
def
= ω/c, where ω is the

angular frequency of the wave, and c is the speed of light as mentioned
earlier. Equation 4.22 is known as Helmholtz’s equation.

4.3 Bessel’s equation

When looking for a solution to Helmholtz’s equation in cylindrical (or spher-
ical) coordinates, the Bessel equation often arises. So in this section Bessel’s
equation will be derived from Helmholtz equation.

As mentioned in Section 4.2, the electric field is transverse to the prop-
agation direction of the waves. Hence, the electric field only has a z -
component: E = (0, 0, Ez). Set Ez = ϕ, where ϕ is the wave function.
The Helmholtz equation for the wave function then becomes

∇2ϕ+ k2n2(x)ϕ = 0 (4.23)

The system is oriented so that a plane wave enters from the left, prop-
agating in the x -direction, see Figure 4 on page 8. Using polar coordinates
the Helmholtz equation for ϕ can be written as

∇2ϕ(r, θ) + k2n2(r, θ)ϕ(r, θ) = 0 (4.24)

The cylinder is placed with its center in the origin, hence r is the distance
from the origin, and θ is the angle for vector r with θ ∈ [0, 2π]. Since ϕ(r, θ)
is periodic in θ, the wave function can be written as the following sum:

ϕ(r, θ) =
∑
m

ϕm(r)eimθ (4.25)

The unknown ϕm(r) needs to be found to get an expression for the wave
function.

Given a function f(r, θ), the Laplace operator ∇2 in cylindrical coordi-
nates gives

∇2f(r, θ) =
1
r

∂

∂r

(
r
∂f

∂r

)
+

1
r2

∂2f

∂θ2
(4.26)

Replacing f with the wave function ϕ, that was found in Equation 4.25,
gives

∇2(
∑
m

ϕm(r)eimθ) =
1
r

∂

∂r

(
r
∂

∂r

∑
m

ϕm(r)eimθ
)

+
1
r2

∂2

∂θ2

∑
m

ϕm(r)eimθ

=
∑
m

(
1
r
ϕ′m(r)eimθ + ϕ′′m(r)eimθ − m2

r2
ϕm(r)eimθ

)
(4.27)

From this, the polar form of the Helmholtz equation for the wave function
can be written as∑
m

[
ϕ′′m(r)eimθ +

1
r
ϕ′m(r)eimθ −

(
(
m

r
)2 − k2n2(r)

)
ϕm(r)eimθ

]
= 0 (4.28)
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Each term in the sum is a coefficient of the exponential function eimθ, and
these are linearly independent. Due to this, all the terms in the sum must
be zero, so each m gives

ϕ′′m(r) +
1
r
ϕ′m(r) +

(
k2n2(r)− (

m

r
)2
)
ϕm(r) = 0 (4.29)

This equation resembles the well-known Bessel equation given as [14]

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0 (4.30)

It can be seen that with a few operations, Equation 4.29 can be transformed
into Bessel’s equation when n(r) is constant. Remember that n(r) is a
stepwise constant function written as nj , where j = 0, 1 depending on the
domain. First, the equation is multiplied by r2 to get

r2ϕ′′m(r) + rϕ′m(r) + (k2n2
jr

2 −m2)ϕm(r) = 0 (4.31)

Second, comparing this equation with Bessel’s equation, shows that k2n2
j

should equal one. To achieve this, r is replaced by a new variable Rj = knjr.
The derivatives of ϕ(Rj) then become

ϕ′(Rj) =
dϕ

dRj

dRj
dr

= knj
dϕ

dRj
(4.32)

ϕ′′(Rj) = k2n2
j

d2ϕ

dR2
j

(4.33)

Introducing Rj and the new derivatives for ϕ into Equation 4.31 gives

R2
jϕ
′′
m(Rj) +Rjϕ

′
m(Rj) + (R2

j −m2)ϕm(Rj) = 0 (4.34)

Hence, Bessel’s equation for the wave function ϕm has been derived from
Helmholtz’s equation found in Equation 4.24. This means that the solution
to Helmholtz’s equation can be found as Bessel functions, known solutions
to Bessel’s equation. Before these functions are investigated any further, the
different waves arising from the scattering of a plane wave will be discussed.

4.4 Incident, reflected and transmitted waves

The plane wave coming from the source far away from the cylinder is called
the incident wave ϕi. The scattering of a plane wave hitting a cylinder with
a different refraction index, results in a reflected wave, ϕr, and a transmitted
wave, ϕt. The reflected wave together with the incident wave form the wave
field outside the cylinder, while the transmitted wave forms the wave field
inside the cylinder. From this the wave function ϕ(r, θ) can be written as

ϕ(r, θ) = ϕi(r, θ) + ϕr(r, θ), r ≥ a (4.35)
ϕ(r, θ) = ϕt(r, θ), r < a (4.36)
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Where a is the radius of the cylinder.
The wave function ϕ represents the z -component of the electric field

vector Ez, so the wave function is continuous across the interface between
the cylinder and the host medium. Also the magnetic field, given as

H =
1

iωµ0
∇×E

=
1

iωµ0
(∂yϕ,−∂xϕ, 0), (4.37)

is continuous across the interface since the material is nonmagnetic. When
the magnetic field is continuous, so are ∂xϕ and ∂yϕ, and hence the normal
derivative of the wave function, ∂nϕ, is also continuous across the interface.
From this, the boundary conditions for Helmholtz’s equation are given as

ϕt(a, θ) = ϕi(a, θ) + ϕr(a, θ) (4.38)
∂nϕt(a, θ) = ∂nϕi(a, θ) + ∂nϕr(a, θ) (4.39)

As mentioned in the end of the previous section, the basis functions for
ϕ are the Bessel functions. The ones that will be used as a basis here,
are the Bessel functions of the first and the second kind, Jm(r) and Ym(r)
respectively. Figure 5 shows the characteristics for these two Bessel functions
of order zero and order one.

Figure 5: The Bessel function of the first kind is given in the upper plot
and the Bessel function of the second kind is given in the lower plot. Both
functions are given in the zeroth and first order. The Bessel function of the
second kind is singular at x = 0.

The incident field ϕi(r, θ) is periodic in θ and can thus be written as
ϕi(r, θ) =

∑
mAm(r)eimθ. The reflected and the transmitted waves are
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written with the given basis of Bessel functions. Hence, the three wave
types are given as

ϕi(r) =
∑
m

Am(r)eimθ (4.40)

ϕt(r) =
∑
m

(TmJm(r) +QmYm(r))eimθ (4.41)

ϕr(r) =
∑
m

(RmJm(r) + SmYm(r))eimθ (4.42)

Where Tm, Qm, Rm and Sm are unknown constants that must be found.
Having these three equations and the two boundary conditions given in
Equations 4.38 and 4.39, one more condition is needed to make the system
solvable, and that is the radiation condition. Arnold Sommerfeld defined the
condition of radiation for a scalar field satisfying the Helmholtz equation
as “the sources must be sources, not sinks, of energy. The energy which
is radiated from the sources must scatter to infinity; no energy may be
radiated from infinity into the [. . . ] field.” [15]. Hence, a wave that is
reflected from the cylinder, should not return back again. To make sure
this does not happen, the reflected wave function will be written in terms
of the Hankel functions, H1

m(r) and H2
m(r). The Hankel functions, also

known as Bessel functions of the third kind, are two linearly independent
functions, which solve the Bessel equation. The functions are defined as
H

(1,2)
m (r) = Jm(r) ± iYm(r) [14]. Where i is the imaginary unit. The new

equation for the reflected wave with Hankel functions as a basis is given as

ϕr(r) =
∑
m

(
RmH

(1)
m (r) + SmH

(2)
m (r)

)
eimθ (4.43)

The Hankel functions for large arguments, r >> 1, are given as [16]

H(1)
m (r) ≈ 1√

r
eir (4.44)

H(2)
m (r) ≈ 1√

r
e−ir (4.45)

The time variation e−iωt was previously assumed and suppressed, but taking
this into account for the Hankel functions of large arguments, gives the
following

1√
r
eire−iωt =

1√
r
ei(r−ωt) (4.46)

1√
r
e−ire−iωt =

1√
r
e−i(r+ωt) (4.47)

It can be seen from these equations that the phase velocity for the Hankel
function of the first kind is positive, which means the wave is going outwards.
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The phase velocity for the Hankel function of the second kind is negative,
hence it represents a wave going inwards. The reflected wave expression
should not include a wave that goes inwards according to the Sommerfeld’s
radiation condition mentioned earlier in this section. Hence H(2)

m should not
be a part of ϕr(r, θ), so Sm in Equation 4.43 must be zero.

A last simplification to the wave functions can be done to ϕt. The Bessel
function of the second kind, Ym, is singular for r = 0. Since the solution
must be smooth, Qm in Equation 4.41 is set to zero.

So now, introducing the new basis for ϕr, the simplification for ϕt, and
then replacing r with Rj = knjr, which was found in the previous section,
the incident, reflected and transmitted waves are found to be

ϕi(kn0r) =
∑
m

Am(kn0r)eimθ (4.48)

ϕr(kn0r) =
∑
m

RmH
(1)
m (kn0r)eimθ (4.49)

ϕt(kn1r) =
∑
m

TmJm(kn1r)eimθ (4.50)

Here n0 is the refraction index of the host medium, and n1 is the refraction
index of the cylinder.

The next step will be to find the unknown coefficients of these equations,
Am, Rm and Tm.

4.4.1 The incident wave

The incident wave is, as mentioned earlier, a plane wave and can be written
as ei(k·x−ωt) [12], where k is the propagation vector, and the amplitude of
the wave has been set to one. The incident wave travels in the x -direction,
hence the scalar number k · x simplifies to kn(x)x. Also, the time variation
has been suppressed, so the plane wave is written as eikn(x)x = eikn0r cos(θ),
where n(x) is set to n0 since the incident wave is found in the host medium.
This expression for a plane wave will now be used for calculating Am in the
expression for the incident wave ϕi, see Equation 4.48. The 2π-periodicity
of eikn0rcos(θ) implies that

eikn0r cos(θ) =
∑
m

Am(kn0r)eimθ, (4.51)

where

Am(kn0r) =
1

2π

2π∫
0

eikn0r cos(θ)e−imθ dθ (4.52)
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Using Euler’s formula: eix = cos(x) + i sin(x) [12], the expression for Am
can be split in two integrals which gives

Am(kn0r) =
1

2π

2π∫
0

(eikn0r cos(θ) cos(mθ)) dθ − i

2π

2π∫
0

(eikn0r cos(θ) sin(mθ)) dθ

(4.53)
The latter integral is rewritten as follows

2π∫
0

(eikn0r cos(θ) sin(mθ)) dθ =

π∫
−π

(eikn0r cos(θ+π) sin(mθ +mπ)) dθ

= (−1)m
π∫
−π

(e−ikn0r cos(θ) sin(mθ)) dθ

= 0 (4.54)

Here, the fundamental formulas for angle addition in trigonometry given as
[17]

cos(mθ −mπ) = cos(mθ) cos(mπ) + sin(mθ) sin(mπ) (4.55)
sin(mθ −mπ) = sin(mθ) cos(mπ)− cos(mθ) sin(mπ), (4.56)

are used. The result in Equation 4.54 is zero because the integrand is odd.
Now, by splitting up the first integral in Equation 4.53, the expression for
Am changes to

Am(kn0r) =
1

2π

π∫
0

(eikn0r cos(θ) cos(mθ)) dθ +
1

2π

2π∫
π

(eikn0r cos(θ) cos(mθ)) dθ

(4.57)
Then the integral limits are changed in order to get the same interval

Am(kn0r) =
1

2π

π∫
0

(eikn0r cos(θ) cos(mθ)) dθ+
1

2π

π∫
0

(eikn0r(− cos(θ)) cos(mθ+mπ)) dθ

(4.58)
The cosine-expression in the latter integral is replaced using the fundamental
formula of angle addition given in Equation 4.55, so Am is rewritten as

Am(kn0r) =
1

2π

 π∫
0

(eikn0r cos(θ) cos(mθ)) dθ + (−1)m
π∫

0

(e−ikn0r cos(θ) cos(mθ)) dθ


(4.59)

Bessel’s first integral is found to be [18]

Jm(z) =
i−m

π

π∫
0

(eiz cos(θ) cos(mθ))dθ (4.60)



18 4 EXACT SOLUTION FOR ONE CYLINDER

This integral is recognized in Equation 4.59, and simplifies the expression
for Am to

Am(kn0r) =
im

2
Jm(kn0r) + (−1)m

im

2
Jm(−kn0r) (4.61)

Given the following relation between two Bessel functions of the first kind
[14],

Jm(−z) = (−1)mJm(z), (4.62)

the final expression for Am(kn0r) can be written as

Am(kn0r) = imJm(kn0r) (4.63)

Hence the incident wave is found to be

ϕi =
∑
m

imJm(kn0r)eimθ (4.64)

4.4.2 Reflected and transmitted waves

Knowing Am, it is possible to find the unknown values for the reflected
and the transmitted waves found in Equations 4.49 and 4.50. Using the
boundary condition given in Equation 4.38 on page 14 where ϕi + ϕr = ϕt
when r = a gives∑

m
Am(kn0r)eimθ +

∑
m

RmH
(1)
m (kn0r)eimθ =

∑
m

TmJm(kn1r)eimθ∑
m

(
imJ(kn0r) +RmH

(1)
m (kn0r)− TmJm(kn1r)

)
eimθ = 0 (4.65)

In the latter equation, each term in the sum is a coefficient of the exponential
function eimθ, and these are linearly independent. Hence, each term must
be zero, which gives the following

imJm(kn0r) +RmH
(1)
m (kn0r)− TmJm(kn1r) = 0 (4.66)

Another equation is found by using the second boundary condition given
in Equation 4.39 on page 14, where ∂nϕi + ∂nϕr = ∂nϕt for r = a. This
gives

imn0J
′
m(kn0r) + n0RmH

′(1)
m (kn0r)− n1TmJ

′
m(kn1r) = 0 (4.67)

Then there are two equations and two unknowns, hence there is a solvable
system for Rm and Tm:

imJm(kn0r) +RmH
(1)
m (kn0r)− TmJm(kn1r) = 0 (4.68)

imn0J
′
m(kn0r) + n0RmH

′(1)
m (kn0r)− n1TmJ

′
m(kn1r) = 0 (4.69)
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From these two equations, expressions for Rm and Tm are found to be the
following:

Rm = im

(
n1Jm(kn0r)J ′m(kn1r)− n0J

′
m(kn0r)Jm(kn1r)

n0Jm(kn1r)H
′(1)
m (kn0r)− n1J ′m(kn1r)H

(1)
m (kn0r)

)
(4.70)

Tm = imn0

(
Jm(kn0r)H

′(1)
m (kn0r)− J ′m(kn0r)H

(1)
m (kn0r)

n0Jm(kn1r)H
′(1)
m (kn0r)− n1J ′m(kn1r)H

(1)
m (kn0r)

)
(4.71)

Now all the unknowns for the wave functions are found, and it is possible
to calculate ϕ(r, θ) for all points in a given domain. To summarize the results
found in this section, the wave functions are as follows:

ϕi(kn0r) =
∑
m

imJm(kn0r)eimθ (4.72)

ϕr(kn0r) =
∑
m

RmH
(1)
m (kn0r)eimθ (4.73)

ϕt(kn1r) =
∑
m

TmJm(kn1r)eimθ (4.74)

Where Rm and Tm are given by Equations 4.70 and 4.71. For points outside
the cylinder, the equation for the wave function is written as

ϕ(r, θ) =
∑
m

(imJm(kn0r) +RmH
(1)
m (kn0r))eimθ, (4.75)

while inside the cylinder, the equation for the wave function is given as

ϕ(r, θ) =
∑
m

TmJm(kn1r)eimθ (4.76)

The solution on the boundary of the cylinder, where r = a, can be calculated
using any of these two equations.

So the exact solution to the Helmholtz equation for the wave function is
found. The solution is calculated numerically, and the procedures used in
the calculations are explained shortly in the next section. Some results for
the exact solution can also be found there.

4.5 Numerical computation and results

The exact solution has been solved numerically by a program made in Mat-
lab. The program is based on the equations found in this chapter. The code
in its entirety can be found in Appendix A, together with some explana-
tions to the procedures. A short description of the code will be given below
together with some results.

The program uses built-in algorithms for the Bessel functions to solve
the problem. The solution for the wave function, ϕ(r, θ), can be calculated
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on the boundary of the cylinder, along the line y = 0, or for a given domain
in R2. The equation for the wave function includes a summation over m that
is supposed to go from −∞ to ∞, but the series are truncated in order for
computation to be possible. So the program summaries the wave function
over a given interval for each point where the solution is sought.

Figure 6 shows the result for ϕ(r, θ) on the boundary of the cylinder as
ϕ versus θ, and also an intensity plot of ϕ for the whole domain. In Figure 7

Figure 6: The left figure shows the exact solution for the wave function on
the boundary of the cylinder. The right figure shows an intensity plot of the
wave function for a given domain, where the cylinder is placed at the origin.
The colors in the intensity plot shows the highest intensity in red, and the
lowest in blue. Data used in the test can be found in the titles.

the result for the wave function is plotted along the x -axis. The edges of the
cylinder are marked as stars in the figure. The value of the wave function
increases significantly behind the cylinder. The same can be seen in the
intensity plot in Figure 6, where the red area behind the cylinder marks the
area with the highest values for the wave function.

In the next chapter an approximate solution to this problem will be
derived, and the result will be compared with the exact solution that was
found here in this chapter.
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Figure 7: The exact solution for the wave function along the x -axis. The
black stars mark the edges of the cylinder. Data used in the test can be
found in the title.

5 Boundary Integral Method

Having found the exact solution to the wave function in the problem with
one cylinder placed at the origin, the next step is to find an approximate
solution to this problem. The approximate solution will be derived using
the boundary integral method [6]. This method makes it possible to derive
the value for the wave function ϕ(r, θ) in a given domain, just by knowing
the solution to the wave function and its normal derivative on the boundary
of the cylinder.

In the end of this chapter the approximative solution will be compared to
the exact solution found in the previous chapter. The solutions will be com-
pared both on the boundary of the cylinder, and for a given domain. This
will show how good both the boundary integral method, and the numerical
approximation are.

As for the exact solution, the Helmholtz equation found on page 11,
Equation 4.22, will be used as the starting point.

5.1 Deriving the boundary integral equations

The Helmholtz equation is given as

∇2ϕ(x) + k2n2
jϕ(x) = j(x), (5.1)

where the inhomogeneous part j(x) is due to the source. The domain inside
the cylinder is denoted as Ω and has refraction index n1, while the domain
outside the cylinder is denoted as Ωc and has refraction index n0.
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Introducing the linear operator L = ∇2 + k2n2
j , the Helmholtz equation

can be written as
Lϕ(x) = j(x) (5.2)

The Helmholtz equation found in Equation 5.1, is a two-dimensional differ-
ential equation that can be reduced to a one-dimensional integral equation.
The first step is to introduce the Green’s function, Gj , which is any solution
of

LGj(x, ζ) = δ(x− ζ) (5.3)

Here j = 0, 1, depending on the domain (0 for Ωc and 1 for Ω), and δ(x− ζ)
is the two-dimensional Dirac delta-function. x and ζ are arbitrary points in
R2. The Green’s function that is sought here should satisfy the radiation
condition that was given in Section 4.4.

Notice that for two different scalar functions, ϕ and ψ, the linear operator
L gives:

ϕLψ − ψLϕ = ϕ(∇2 + k2n2
j )ψ − ψ(∇2 + k2n2

j )ϕ = ϕ∇2ψ − ψ∇2ϕ (5.4)

And from Green’s second identity [19], the following is found for an arbitrary
volume V, with ϕ and ψ both being twice continuously differentiable in V:∫

V

(
ϕ∇2ψ − ψ∇2ϕ

)
dV =

∮
∂V

(ϕ∂nψ − ψ∂nϕ) dS (5.5)

Equations 5.4 and 5.5 then give∫
V

(ϕLψ − ψLϕ) dV =
∮
∂V

(ϕ∂nψ − ψ∂nϕ) dS (5.6)

Replacing the scalar function ψ in this equation, with the Green’s function
introduced in Equation 5.3 yields∫

V
(ϕLGj −GjLϕ) dV =

∮
∂V

(ϕ∂nGj −Gj∂nϕ) dS (5.7)

For arbitrary points inside the cylinder, that is ζ ∈ Ω, the equation is
rewritten as ∫

Ω
(ϕLG1 −G1Lϕ) dV =

∮
∂Ω

(ϕ∂nG1 −G1∂nϕ) dS∫
Ω

(ϕ(x)δ(x− ζ)−G1(x, ζ)j(x)) dV (x) =
∮
∂Ω

(ϕ∂nG1 −G1∂nϕ) dS (5.8)

Where
∫

Ω ϕ(x)δ(x− ζ) dV = ϕ(ζ). The domain inside the cylinder is source
free, hence j(x) = 0 and Helmholtz’s equation is homogeneous. So for
arbitrary points ζ ∈ Ω and x ∈ ∂Ω, the identity for ϕ(ζ) is given as

ϕ(ζ) =
∮
∂Ω

(ϕ(x)∂nG1(x, ζ)−G1(x, ζ)∂nϕ(x)) dS(x) (5.9)
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For the domain outside the cylinder, the source makes the Helmholtz
equation inhomogeneous with j(x) 6= 0. For this domain Equation 5.7 gives∫

Ωc
(ϕLG0 −G0Lϕ) dV = −

∮
∂Ω

(ϕ∂nG0 −G0∂nϕ) dS∫
Ωc

(ϕ(x)δ(x− ζ)−G0(x, ζ)j(x)) dV (x) = −
∮
∂Ω

(ϕ∂nG0 −G0∂nϕ) dS (5.10)

The minus signs in front of the boundary integrals are due to the orientation
of the normal vector. The normal vector for the domain outside the cylinder
points in the opposite direction to the normal vector for the domain inside
the cylinder, see Figure 8. The normal vector for the domain outside the
cylinder is set to be in the negative direction, which leads to the minus signs
in the equations. So, for arbitrary points ζ ∈ Ωc and x ∈ ∂Ω, the identity
for ϕ(ζ) is given as

ϕ(ζ) =
∫

Ωc
G0(x, ζ)j(x) dV (x)−

∮
∂Ω

(ϕ(x)∂nG0(x, ζ)−G0(x, ζ)∂nϕ(x)) dS(x)

(5.11)

��
��
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�� Ωc

� n

Figure 8: The illustration shows the orientation of the normal vector. For
the domain inside the cylinder, Ω, the normal vector points outwards (left
figure), while the normal vector for the domain outside the cylinder, Ωc,
points inwards (right figure). The outwards direction has been set to be the
positive one.

The volume integral in the equation above is the particular solution to
the Helmholtz equation when j(x) 6= 0 and n(x) = n0. ϕi(ζ) is the field at
ζ generated by the source in the absence of the scattering object. This is
by definition the initial field, hence it is replaced for the particular solution,
and the identity for the wave function simplifies to

ϕ(ζ) = ϕi(ζ)−
∮
∂Ω

(ϕ(x)∂nG0(x, ζ)−G0(x, ζ)∂nϕ(x)) dS(x) (5.12)

Two identities for ϕ(ζ) are now found, one for ζ ∈ Ωc and one for ζ ∈ Ω.
The two identities are summarized in Equations 5.13 and 5.14. In both cases
x is on the boundary of the cylinder, x ∈ ∂Ω, while ζ is either inside the
cylinder, or in the complement domain, Ωc. To find equations for ϕ(ζ), ζ
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needs to approach the boundary ∂Ω from the outside and from the inside for
Equations 5.13 and 5.14 respectively. This will be done in the next section.

ϕ(ζ) = ϕi(ζ)−
∮
∂Ω

(ϕ(x)∂nG0(x, ζ)−G0(x, ζ)∂nϕ(x)) dS(x), ζ ∈ Ωc (5.13)

ϕ(ζ) =
∮
∂Ω

(ϕ(x)∂nG1(x, ζ)−G1(x, ζ)∂nϕ(x)) dS(x), ζ ∈ Ω (5.14)

5.2 The wave function ϕ on the boundary ∂Ω

The goal now is to find equations for ϕ(ζ) on the boundary of the cylinder.
To find these equations, the analytic expressions for the Green’s function,
Gj(x, ζ), and its normal derivative, ∂nGj(x, ζ), are needed. They will be
derived next.

5.2.1 The Green’s function

The Green’s function is a type of function that can be used to solve inho-
mogeneous differential equations with some given boundary conditions [11].

The first part of the calculation is to move the origin of the coordinate
system to the point x, define a new vector R = x − ζ, and then take the
two-dimensional fourier transform [20] of the Green’s function, Gj , which
gives

Ĝj(q) =

∞∫
−∞

∞∫
−∞

Gj(R)e−iq·R dR (5.15)

Here q = (x ′, y ′) and R = (x, y). The inverse Fourier transform is given as
[20]

Gj(R) =
(

1
2π

)2
∞∫
−∞

∞∫
−∞

Ĝj(q)eiq·R dq (5.16)

Taking the Fourier transform of the Helmholtz equation for the Green’s
function, given as (∇2

x + k2n2
j )Gj(R) = δ(R), leads to

(k2n2
j − x ′2 − y ′2)Ĝj(q) = 1 (5.17)

Now, changing to polar coordinates by setting q = (ρ cos(θ), ρ sin(θ)),
R = (R cos(ϑ), R sin(ϑ)), and dx dy = ρ dθ, and then replacing the fourier
transform of Green’s function in Equation 5.16 with the expression found in
Equation 5.17 yields

Gj(R,ϑ) =
(

1
2π

)2
∞∫

0

1
−ρ2 + k2n2

j

2π∫
0

eiρR(cos(θ) cos(ϑ)+sin(θ) sin(ϑ)) ρ dθ dρ

(5.18)
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By utilizing the formula for angle addition given in Equation 4.55 on page
17, and also changing the angle variable to θ

′
= θ−ϑ which does not change

the final result, the Green’s function simplifies to

Gj(R,ϑ) = −
(

1
2π

)2
∞∫

0

ρ

ρ2 − k2n2
j

2π∫
0

eiρR cos(θ) dθ dρ (5.19)

The Bessel function of the first kind and zeroth order can be given as
the integral [11],

J0(z) =
1

2π

2π∫
0

eiz cos(θ) dθ, (5.20)

which resembles the latter integral of Equation 5.19. The Green’s function
is rewritten as

Gj(R,ϑ) = − 1
2π

∞∫
0

ρJ0(ρR)
ρ2 − k2n2

j

dρ (5.21)

To avoid the singularity for ρ = ±knj in the equation, an infinitely small,
positive imaginary part, ε, will be added to knj , i.e., knj → knj + iε. This
gives k2n2

j → (knj + iε)2 = −(ε− iknj)2 [8]. In addition the modified Bessel
function of the second kind is given as [21]

K0(αknj) =

∞∫
0

xJ0(αx)
x2 + k2n2

j

dx (5.22)

And so the equation for the Green’s function changes to

Gj(R,ϑ) = − 1
2π

lim
ε→∞

∞∫
0

ρJ0(Rρ)
ρ2 + (ε− iknj)2

dρ = − 1
2π

lim
ε→∞

K0(R(ε− iknj))

= − 1
2π
K0(−iknjR) (5.23)

Finally the modified Bessel function of the second kind, K0, relates to the
Hankel function of the first kind the following way: Km(z) = π

2 i
m+1H

(1)
m (iz)

[22]. From this, the Green’s function for the two-dimensional Helmholtz
equation is simplified to

Gj(x, ζ) = − i
4
H

(1)
0 (knj ||x− ζ||) (5.24)

The solution satisfies the radiation condition found on page 15.
Then the normal derivative for the Green’s function can be derived. A

directional derivative for a function, f, is given as ∂vf = ∇f · v , v being
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the direction in which the derivative is taken [19]. The vectors x and ζ are
written as x = (x, y) and ζ = (x ′, y ′), and the derivative of the Hankel
function of order zero is given as ∂zH

(1)
0 (z) = −H(1)

1 (z) [16]. Hence the
normal derivative of the Green’s function is derived in the following way

∂nGj(x, ζ) = ∇x

(
− i

4
H

(1)
0 (knj ||x− ζ||)

)
· n(x)

=
iknj

4
H

(1)
1 (knj ||x− ζ||)∇x(||x− ζ||) · n(x)

=
iknj

4
H

(1)
1 (knj ||x− ζ||)

[
2(x− x′) + 2(y − y′)

2
√

((x− x′)2 + (y − y′)2)

]
· n(x)

=
iknj

4
H

(1)
1 (knj ||x− ζ||)

x− ζ
||x− ζ||

· n(x) (5.25)

So now the Green’s function and its normal derivative are found, and
the solutions are summarized below

Gj(x, ζ) = − i
4
H

(1)
0 (knj ||x− ζ||) (5.26)

∂nGj(x, ζ) =
x− ζ
||x− ζ||

· n(x)
iknj

4
H

(1)
1 (knj ||x− ζ||) (5.27)

5.2.2 Principle value integrals

Having found both the Green’s function and its normal derivative, the next
step will be to let ζ ∈ Ω and ζ ∈ Ωc approach the boundary ∂Ω. A problem
occurs when ||ζ − x|| → 0, due to the characteristic of the Hankel functions,
which the Green’s function and its normal derivative are based on. For small
arguments the Hankel functions of the zeroth and first order are given as
[16]

lim
z→0

H
(1)
0 (z) ≈ 2i

π
log(z) lim

z→0
H

(1)
1 (z) ≈ − 2i

zπ
(5.28)

Hence for small arguments, the Green’s function and its normal derivative
are both singular. This situation will occur when ζ approaches x. However,
both integral equations for ϕ(ζ) are still integrable in the sense of Cauchy’s
principal value integral (PV). A principal value integral is given as [8]

lim
ε→0

∫
Sε
dS(x) = PV

∫
S
dS(x) (5.29)

Where the contour Sε approaches the closed contour S when ε→ 0. For the
problem at hand, the contour Sε, or actually Sε + Cε, will have a semicircle
with radius ε at the point on the boundary where ζ = x, see Figure 9. The
contour Cε is the part that goes around the semicircle, while Sε is the rest
of the boundary. The semicircle is very small as ε→ 0, and due to this it is
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Cε
Sε

Ω

�
���

ζ

x
���n

εx−ζ

Figure 9: A semicircle is made on the boundary of the cylinder where
||x− ζ|| → 0. This has been done to avoid the singularity in the Green’s
function and its normal derivative at this point. The semicircle is very small
and is assumed not to have any influence on the scattering of a wave.

assumed that the semicircle will not have any influence on the scattering of
the wave.

The semicircle will now be introduced to the identities for ϕ, starting
with the domain inside the cylinder. The identity for the wave function in
this domain was found in Equation 5.14 on page 24 as

ϕ(ζ) =
∫
∂Ω

(ϕ(x)∂nG1(x, ζ)−G1(x, ζ)∂nϕ(x)) dS(x), ζ ∈ Ω (5.30)

Now, the semicircle arises by replacing the boundary ∂Ω by the contour
Cε + Sε. The first part of the integral in the above equation can then be
rewritten as∫

∂Ω
(ϕ∂nG1) dS =

∫
Sε

(ϕ∂nG1) dS +
∫
Cε

(ϕ∂nG1) dS (5.31)

The x-value follows the semicircle and is given as x = ζ + εeiθ, where the
angle is defined as 0 ≤ θ ≤ π. The most interesting part in the equation
above is the integral over Cε. By replacing the normal derivative ∂nG1,
with the expression found in Equation 5.27, the integral over the semicircle
becomes∫
Cε

(ϕ∂nG1) dS =
ikn1

4

∫ π

0

x− ζ
||x− ζ||

·n(x)H(1)
1 (kn1ε)ϕ(ζ+ εeiθ)ε dθ (5.32)

Where x−ζ
||x−ζ|| · n(x) = 1 as ε → 0, and ϕ(ζ + εeiθ) → ϕ(ζ). Hence the

equation can be rewritten as∫
Cε

(ϕ∂nG1) dS ≈ ikn1ε

4
H

(1)
1 (kn1ε)ϕ(ζ)π (5.33)
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Using the approximation of the first order Hankel function for small argu-
ments, found in Equation 5.28, the integral over Cε simplifies to∫

Cε
(ϕ∂nG1) dS ≈ ikn1ε

4
−2i
kn1επ

ϕ(ζ)π =
1
2
ϕ(ζ) (5.34)

So as ε→ 0, the contour Cε + Sε approaches the boundary ∂Ω and gives

lim
ε→0

∫
Sε+Cε

(ϕ∂nG1) dS = PV

∫
∂Ω

(ϕ∂nG1) dS +
1
2
ϕ(ζ) (5.35)

Now the same procedure is performed on the second part of the integral
in Equation 5.30. First the semicircle is introduced with the new contour
Cε + Sε to give∫

∂Ω
(G1∂nϕ) dS =

∫
Sε

(G1∂nϕ) dS +
∫
Cε

(G1∂nϕ) dS (5.36)

Again the x-value is given as x = ζ+εeiθ, and 0 ≤ θ ≤ π. Using the Green’s
function found in Equation 5.26, the integral for Cε turns out to be∫

Cε
(G1∂nϕ) dS = − i

4

∫ π

0
H

(1)
0 (kn1ε)∂nϕ(ζ + εeiθ)ε dθ (5.37)

And as ε→ 0, ∂nϕ(ζ+ εeiθ)→ ∂nϕ(ζ). Now recall the approximation of the
zeroth order Hankel function for small arguments, found in Equation 5.28,
which simplifies the integral over the semicircle to∫

Cε
(G1∂nϕ) dS ≈ − i

4
2i
π

log(kn1ε)∂nϕ(ζ)επ

=
ε

2
log(kn1ε)∂nϕ(ζ) = 0 (5.38)

Hence, there is no contribution from the semicircle, and the limit when ε
approaches zero will be just the principal value integral itself:

lim
ε→0

∫
Sε+Cε

(G1∂nϕ) dS = PV

∫
∂Ω

(G1∂nϕ) dS (5.39)

Replacing the integrals in Equation 5.30 with the principal value integrals
found in Equations 5.35 and 5.39 give

ϕ(ζ) = PV

∫
∂Ω
ϕ∂nG1 +

1
2
ϕ(ζ)− PV

∫
∂Ω
G1∂nϕdS (5.40)

Hence the equation for ϕ(ζ) with ζ, x ∈ ∂Ω, is given as

1
2
ϕ(ζ) = PV

∫
∂Ω

(
ϕ(x)∂nG1(x, ζ)−G1(x, ζ)∂nϕ(x)

)
dS(x) (5.41)
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Now there is one equation and two unknowns, namely ϕ and ∂nϕ. One more
equation is needed to solve the system.

The second equation is found by letting ζ approach the boundary ∂Ω
from the outside. For this situation the semicircle will go inwards, see Figure
10. Still the semicircle is so small that even though it goes inwards, it is
assumed that it will not have any influence on the scattering of the wave.
The identity for ϕ(ζ) with ζ ∈ Ωc, was found in Equation 5.13 on page 24
as

ϕ(ζ) = ϕi(ζ)−
∫
∂Ω

(ϕ(x)∂nG0(x, ζ)−G0(x, ζ)∂nϕ(x)) dS(x) (5.42)

The semicircle is introduced to the first part of the integral in this identity

Cε

Sε

Ωc

A
A
AU

ζ

x
ε�

��
n x−ζ

Figure 10: “Inwards” semicircle on the boundary of the cylinder where
||x− ζ|| → 0. The semicircle has been made to avoid the singularities that
arise for the Green’s function and its normal derivative when x = ζ. The
semicircle is so small that it is assumed not to have any influence on the
scattering of a wave.

to give ∫
∂Ω

(ϕ∂nG0) dS =
∫
Sε

(ϕ∂nG0) dS +
∫
Cε

(ϕ∂nG0) dS (5.43)

So for x to follow the semicircle, set x = ζ − εeiθ, and −π ≤ θ ≤ 0. Using
the expression for the normal derivative of the Green’s function, found in
Equation 5.27, gives the following for the integral over Cε

∫
Cε

(ϕ∂nG0) dS =
ikn0

4

0∫
−π

x− ζ
||x− ζ||

· n(x)H(1)
1 (kn0ε)ϕ(ζ − εeiθ)ε dθ (5.44)
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Where x−ζ
||x−ζ|| ·n(x) = −1 since x− ζ points in the opposite direction as the

normal vector, see Figure 10. As ε → 0, ϕ(ζ − εeiθ) → ϕ(ζ). This together
with the approximation for the Hankel functions for small arguments, found
in Equation 5.28 on page 26, gives∫

Cε
(ϕ∂nG0) dS ≈ −ikn0

4
−2i
kn0επ

ϕ(ζ)επ = −1
2
ϕ(ζ) (5.45)

And Equation 5.43 is then rewritten as

lim
ε→0

∫
Sε+Cε

(ϕ∂nG0) dS = PV

∫
∂Ω

(ϕ∂nG0) dS − 1
2
ϕ(ζ) (5.46)

Now the same procedure is performed on the second part of the surface
integral in Equation 5.42. The semicircle is introduced and the new contour
Cε + Sε replaces the boundary ∂Ω∫

∂Ω
(G0∂nϕ) dS =

∫
Sε

(G0∂nϕ) dS +
∫
Cε

(G0∂nϕ) dS (5.47)

As before x = ζ − εeiθ, and −π ≤ θ ≤ 0. Replacing G0 with the expression
for the Green’s function, found in Equation 5.26, gives the following for the
integration over the semicircle∫

Cε
(G0∂nϕ) dS = − i

4

∫ π

0
H

(1)
0 (kn0ε)∂nϕ(ζ − εeiθ)ε dθ (5.48)

Letting ε approach zero, ϕ(ζ − εeiθ)→ ϕ(ζ). Then by replacing the Hankel
function with the approximation for small arguments, the integral over the
contour Cε will be∫

Cε
(G0∂nϕ) dS ≈ − i

4
2i
π

log(kn0ε)∂nϕ(ζ)επ

=
ε

2
log(kn0ε)∂nϕ(ζ) = 0 (5.49)

So there is no contribution from the semicircle, and the limit when ε ap-
proaches zero will be just the principal value integral itself.

lim
ε→0

∫
Sε+Cε

(G0∂nϕ) dS = PV

∫
∂Ω

(G0∂nϕ) dS (5.50)

Hence a new equation for ϕ(ζ), with ζ, x ∈ ∂Ω, is given as

ϕ(ζ) = ϕi(ζ)− PV
∫
∂Ω
ϕ∂nG0 dS +

1
2
ϕ(ζ) + PV

∫
∂Ω
G0∂nϕdS

1
2
ϕ(ζ) = ϕi(ζ)− PV

∫
∂Ω

(
ϕ(x)∂nG0(x, ζ)−G0(x, ζ)∂nϕ(x)

)
dS(x) (5.51)
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Finally there are two equations for two unknowns, and the system is
solvable. The unknowns are ϕ and ∂nϕ on the boundary of the cylinder,
and the equations are given as

1
2
ϕ(ζ) =

∮
∂Ω

(
ϕ(x)∂nG1(x, ζ)−G1(x, ζ)∂nϕ(x)

)
dS(x) (5.52)

1
2
ϕ(ζ) = ϕi(ζ)−

∮
∂Ω

(
ϕ(x)∂nG0(x, ζ)−G0(x, ζ)∂nϕ(x)

)
dS(x) (5.53)

With ζ, x ∈ ∂Ω. From these two equations the unknowns will be found by
numerical approximation using a program made in Matlab. More about this
in Section 5.4. First the equations for calculating the wave function for the
whole domain will be derived.

5.3 The wave function for the whole domain

The boundary integral method uses the solution of the wave function and
its normal derivative on the boundary of the cylinder, to calculate the wave
function for the whole domain [6]. Now, recall the identities for the wave
function found in the end of Section 5.1 given as

ϕ(ζ) = ϕi(ζ)−
∮
∂Ω

(ϕ(x)∂nG0(x, ζ)−G0(x, ζ)∂nϕ(x)) dS(x), ζ ∈ Ωc (5.54)

ϕ(ζ) =
∮
∂Ω

(ϕ(x)∂nG1(x, ζ)−G1(x, ζ)∂nϕ(x)) dS(x), ζ ∈ Ω (5.55)

All the variables on the right hand side of these two equations are known
from the last section. Hence, after calculating the unknown values for ϕ and
∂nϕ on the boundary of the cylinder, the two equations above are used for
calculating the wave function for any ζ. That is the beauty of the boundary
integral method, which makes it easy to find ϕ(ζ) for a whole domain, as
long as the values on the boundary are known. As for the values on the
boundary, the values for the wave function in the domain will be calculated
in Matlab.

5.4 Numerical computations and results

The calculation of the boundary values for the wave function ϕ, and its nor-
mal derivative ∂nϕ, is computed numerically by a program made in Matlab.
These values are then used further in the program to calculate the wave
function for a given domain. A short explanation to the procedures will be
mentioned here, but the code in its entirety and a more detailed description
of the code can be found in Appendix B.
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5.4.1 The numerical algorithm

The equations for the wave function on the boundary of the cylinder are
solved numerically by building a matrix M, two vectors X and b, and then
solving the equation MX = b by a so-called matrix left division in Matlab:
X = M\b. Matlab executes the calculation as a Gaussian elimination [23].

The matrix M is a block-matrix that is build up from Equations 5.52 and
5.53. It contains the values for the Green’s function and its normal derivative
on the boundary of the cylinder. This results in a 2× 2 block-matrix:

M =

(
∂nG0 G0

∂nG1 G1

)
(5.56)

The elements in each block represents all the different combinations for the
variables x and ζ on the boundary of the cylinder.

The first half of vector b contains the known incident wave function ϕi,
which is found in the equation for the domain outside the cylinder. The rest
of b is filled up with zeros. Then there is vector X, which is the unknown
vector representing the ϕ’s and ∂nϕ’s that are sought. By performing the
matrix left division mentioned above, the unknown values on the boundary
are found.

Having found the values on the boundary of the cylinder, due to the
beauty of the boundary integral method, ϕ(ζ) can easily be calculated for
all ζ in the domain, using Equations 5.54 and 5.55. In the program, ϕ(ζ)
for the cylinder is calculated from the following dot product of two vectors

ϕ(ζ) =
[
∂nG1

G1

]
·
[
ϕ

∂nϕ

]
(5.57)

Another dot product calculates ϕ(ζ) for ζ outside the cylinder to be

ϕ(ζ) = ϕi(ζ) −
[
∂nG0

G0

]
·
[
ϕ

∂nϕ

]
(5.58)

In both cases, the Gj ’s and ∂nGj ’s are vectors representing the Green’s
function and its normal derivative for one value of ζ and all the corresponding
values of x. Hence they are vectors the same length as the number of points
found on the boundary of the cylinder. The vectors represented by ϕ and
∂nϕ in the equations above have the same length, and contains the values for
the wave function and its normal derivative in each point on the boundary.
A more detailed description of the program can be found in Appendix B.

5.4.2 Compare result with exact solution

The numerical solution of the boundary integral method, and the exact solu-
tion found in Chapter 4, will now be compared to see how good the approx-
imative method is. Figure 11 shows the exact solution and the numerical
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Figure 11: The exact solution compared to the numerical solution on the
boundary of the cylinder. The two solutions are hard to separate from each
other, but a part of the plot has been magnified on the right side to be able
to see a difference. Data from the test can be found in the titles.

solution on the boundary of the cylinder. The two graphs seem to cover each
other almost completely. The difference is visible only by magnifying a part
of the graph (see the right plot in the figure). The mean difference of the
real values for the two solutions is found to be in the order of 10−3, and the
maximum absolute difference for the real values is found to be about 10−2.
These numbers, in addition to the figure, show that the two solutions are
quite similar, even with a fairly low number of grid-points on the boundary
(100 points are used here). The conclusion is that the numerical solution is
found to be close to the exact solution on the boundary.

The exact and the numerical solutions are also compared to each other
for the wave function along the x -axis. This can be seen in Figure 12. The
two graphs follow each other quite well except for the spikes that arise on
the boundary of the cylinder for the numerical solution. Some difference is
also seen inside the cylinder.

Finally the two solutions are compared to each other by intensity plots
of the wave function for the whole domain. This comparison gives an idea
on the accuracy of the boundary integral method, which is used for the
calculation. The total error in the approximative solution also includes
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Figure 12: The exact and the numerical solution for the wave function along
the x -axis are compared in the figure. The numerical solution has some
irregularities on the boundary of the cylinder due to the characteristics of
the Hankel functions. Outside the cylinder the two solutions follow each
other quite well, but some differences can be seen in the domain inside the
cylinder. The data used for the test can be found in the title.

some numerical errors. The intensity plots can be seen in Figure 13, and the
differences between the two solutions are found to be mainly quantitative.

So by looking at Figures 11 to 13 it can be seen that the numerical
solution has some irregularities around the boundary of the cylinder due to
the characteristic of the Hankel functions for small arguments. But since
only the values on the boundary of the cylinder, which was seen in Figure 11,
will be used in the final calculations, the numerical solution is found to be
a good approximation of the exact solution. The method will be developed
further to include two cylinders, and later also a Gaussian beam.
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Figure 13: The exact solution for the wave function (left) is here compared
with the numerical approximation of the boundary integral method (right),
by intensity plots. The numerical solution has some irregularities on the
boundary of the cylinder due to the characteristics of the Hankel functions.
Except from this, the two solutions coincide with each other quite well. The
data used for the test can be found in the title.

6 Two Cylinders

In the previous chapter a numerical solution for one cylinder placed in a host
medium, was computed. The solution was found to be close to the exact
solution found in Chapter 4. The numerical solution will now be extended
to include two cylinders. As for the setup from the experiment reviewed
in Chapter 2, the two cylinders will be placed on the x -axis, symmetrical
around the y-axis. The first part of this chapter will derive the boundary
integral equation for two cylinders, and then the solution for the whole
domain will be calculated. In the end of the chapter the solution will be
validated by comparing it with the exact solution for one cylinder.

6.1 The boundary integral equation for two cylinders

With two cylinders in the system, the influence between the cylinders needs
to be taken into account, in addition to the influence from the plane wave.
The equations for the wave function ϕ for this problem, will be similar to the
equations for the problem with only one cylinder, but the influence between
the cylinders will add a new term to these equations.
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6.1.1 The wave function on the boundaries

For the problem with one cylinder, the equations for ϕ(ζ) on the boundary
of the cylinder were found in Section 5.2, Equations 5.52 and 5.53 to be

1
2
ϕ(ζ) = ϕi(ζ)−

∫
∂Ω

(
ϕ(x)∂nG0(x, ζ)−G0(x, ζ)∂nϕ(x)

)
dS(x) (6.1)

1
2
ϕ(ζ) =

∫
∂Ω

(
ϕ(x)∂nG1(x, ζ)−G1(x, ζ)∂nϕ(x)

)
dS(x) (6.2)

Where ζ, x ∈ ∂Ω. For a system with two cylinders there are two boundaries,
so ∂Ωj with j = 1, 2 denotes the boundary of cylinder one and cylinder
two respectively. In addition, Ω1 and Ω2 denote the domain inside the
two cylinders, while Ω0 = (Ω1 + Ω2)c denotes the domain outside the two
cylinders, i.e. the host medium.

The two cylinders will affect each other as mentioned, but this only
relates to the equation for the outer field Ω0. Hence Equation 6.1 for the
outer domain, will have an additional term involving the influence from a
second cylinder. This new term will be similar to the boundary integral that
is already there, but for the new term the integration will be over the other
cylinder. Equation 6.2 for the domain inside a cylinder, will be the same
as before, only the subscript numbers will change. So, for the problem with
two cylinders, the equations for ϕ(ζ) with ζ ∈ ∂Ω1, which is the boundary
of cylinder one, are given as

1
2
ϕ1(ζ) = ϕ1

i (ζ)−
∮
∂Ω1

[ϕ1(x)∂nG0(x, ζ)−G0(x, ζ)∂nϕ1(x)] dS(x)

−
∮
∂Ω2

[ϕ2(x)∂nG0(x, ζ)−G0(x, ζ)∂nϕ2(x)] dS(x) (6.3)

1
2
ϕ1(ζ) =

∮
∂Ω1

[ϕ1(x)∂nG1(x, ζ)−G1(x, ζ)∂nϕ1(x)] dS(x) (6.4)

And the equations for ϕ(ζ) with ζ ∈ ∂Ω2, which is the boundary of cylinder
two, are given as

1
2
ϕ2(ζ) = ϕ2

i (ζ)−
∮
∂Ω1

[ϕ1(x)∂nG0(x, ζ)−G0(x, ζ)∂nϕ1(x)] dS(x)

−
∮
∂Ω2

[ϕ2(x)∂nG0(x, ζ)−G0(x, ζ)∂nϕ2(x)] dS(x) (6.5)

1
2
ϕ2(ζ) =

∮
∂Ω2

[ϕ2(x)∂nG2(x, ζ)−G2(x, ζ)∂nϕ2(x)] dS(x) (6.6)

Here Gj with j = 0, 1, 2, represents the Green’s function in the host medium,
cylinder one and cylinder two respectively, and ϕj represents the wave func-
tion on boundary j. Note that the Green’s function and its normal derivative
with subscript zero, G0 and ∂nG0, are different in all the four integral terms
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where they arise. The subscript just shows that the function is calculated
for the outer domain where the refraction index is n0, but the values of x
and ζ are different. More about this in Section 6.2 where the numerical
computation and the results are discussed.

6.1.2 The wave function for the whole domain

In the same way as for the problem with one cylinder studied in Chapter 5,
the domain solution for the problem with two cylinders can be found easily
by applying the boundary integral method [6]. The equations for the wave
function ϕ(ζ) in a given domain with only one cylinder present, were found
in Section 5.3 on page 31 to be

ϕ(ζ) = ϕi(ζ)−
∮
∂Ω

(ϕ(x)∂nG0(x, ζ)−G0(x, ζ)∂nϕ(x)) dS(x), ζ ∈ Ωc (6.7)

ϕ(ζ) =
∮
∂Ω

(ϕ(x)∂nG1(x, ζ)−G1(x, ζ)∂nϕ(x)) dS, ζ ∈ Ω (6.8)

For the case with two cylinders, the equations for the wave function in the
outer domain, will have the same additional terms as the equations for the
boundary solution, see Equations 6.3 and 6.5. The new terms represent
the influence from the second cylinder. Hence, for the situation where two
cylinders are placed in a host medium, the wave function ϕ(ζ) for the whole
domain is found by the following equations:

ϕ(ζ) = ϕi(ζ)−
∮
∂Ω1

(ϕ1(x)∂nG0(x, ζ)−G0(x, ζ)∂nϕ1(x)) dS(x)

−
∮
∂Ω2

(ϕ2(x)∂nG0(x, ζ)−G0(x, ζ)∂nϕ2(x)) dS(x), ζ ∈ Ω0 (6.9)

ϕ(ζ) =
∮
∂Ω1

(ϕ1(x)∂nG1(x, ζ)−G1(x, ζ)∂nϕ1(x)) dS(x), ζ ∈ Ω1 (6.10)

ϕ(ζ) =
∮
∂Ω2

(ϕ2(x)∂nG2(x, ζ)−G2(x, ζ)∂nϕ2(x)) dS(x), ζ ∈ Ω2 (6.11)

The unknowns ϕj(x) and ∂nϕj(x) on the right hand side of these equations
were just found, so the wave function can easily be calculated for all values
of ζ. The calculations for the wave field ϕ(ζ) with two cylinders present,
will as all the previous calculations be performed in Matlab.

6.2 Numerical algorithm

The calculation of the wave function for two cylinders has been performed
by numerical approximations in Matlab. First, a program calculates the
values for ϕj and ∂nϕj on the boundaries of the two cylinders. Then these
values will be used further to calculate the wave function for a given domain.
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A short explanation of the procedures performed in the numerical approach
will be given next, but the code in its entirety, together with a more detailed
explanation can be found in Appendix C.

The program made in Matlab to perform the calculations for two cylin-
ders, is similar to the program made for one cylinder, which was discussed
in Section 5.4. The equation for this problem was given as MX = b. For
the problem with two cylinders the same equation will be used, only now
the block matrix M will be larger, consisting of more blocks than for the
problem with one cylinder. The two vectors, X and b, will also be larger
due to the increased number of unknowns.

Matrix M is based on Equations 6.3 to 6.6. Notice that the Green’s
function and its normal derivative with index zero, G0 and ∂nG0, are differ-
ent depending on the boundary for which the unknowns ϕj(x) and ∂nϕj(x)
are to be found. The Green’s function and its derivative are functions of ζ
and x, where ζ will be on the boundary on the cylinder where the values are
sought, and x will follow the integration path, which can be each of the two
boundaries. Hence, when calculating the values on the boundary of cylinder
one, G0 and ∂nG0 will be denoted as G11 and ∂nG11 when the integration is
over ∂Ω1, and G12 and ∂nG12 for the integration over ∂Ω2. And equivalent
for the calculation of the values on the boundary of the second cylinder, G0

and ∂nG0 will be denoted as G21 and ∂nG21 when the integration is over
∂Ω1, and G22 and ∂nG22 for the integration over ∂Ω2. All in all, this gives
the following block matrix:

M =


∂nG1 G1 0 0

0 0 ∂nG2 G2

∂nG11 G11 ∂nG12 G12

∂nG21 G21 ∂nG22 G22

 (6.12)

Then there is vector b, which contains the incident wave vectors from
Equations 6.3 and 6.5. The vectors ϕ1

i and ϕ2
i contain the values of the

incident wave for each point on the boundaries of the two cylinders, and
together they fill up half of vector b. The other half of the vector contains
just zeros since the other two Equations 6.4 and 6.6, do not add any terms
to the right hand side of the matrix equation. From this, b is written as:
[0 0 ϕ1

i ϕ
2
i ]
T .

The last vector, X, contains the unknown values of ϕj(x) and ∂nϕj(x)
on the two boundaries, so X = [ϕ1(x) ∂nϕ1(x) ϕ2(x) ∂nϕ2(x)]T .

As for the problem with one cylinder, the matrix equation is solved in
Matlab using Gaussian elimination: X = M\b. The unknown values on the
two boundaries are then retrieved from vector X.

Now having found the unknown values for the wave function and its nor-
mal derivative on the boundaries of the two cylinders, the boundary integral
method makes it easy to calculate the wave function for the whole domain.
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ϕ(ζ) is calculated from Equations 6.9 to 6.11, which give the following vector
products for the wave function in the different domains.

ϕ(ζ) =


∂nG1

G1

0
0

 ·


ϕ1

∂nϕ1

ϕ2

∂nϕ2

 , ζ ∈ Ω1 (6.13)

ϕ(ζ) =


0
0

∂nG2

G2

 ·


ϕ1

∂nϕ1

ϕ2

∂nϕ2

 , ζ ∈ Ω2 (6.14)

ϕ(ζ) = ϕi(ζ)−


∂nG11

G11

∂nG12

G12

 ·


ϕ1

∂nϕ1

ϕ2

∂nϕ2



−


∂nG21

G21

∂nG22

G22

 ·


ϕ1

∂nϕ1

ϕ2

∂nϕ2

 , ζ ∈ Ω0 (6.15)

A more detailed description of the programming procedures can be found
in Appendix C.

6.3 Validating the solution

In this section the solution of the wave field from the problem with two
cylinders, will be compared with the exact solution for one cylinder. De-
spite the fact that the result found in this chapter is based on a problem
with two cylinders, it is possible to compare the result with the exact so-
lution for one cylinder by doing some adjustments. One method is to set
the refraction index of one of the cylinders equal to the index of the host
medium. Then this cylinder should be “invisible” to the waves, and should
not contribute anything to the result. Another method is to move one of the
cylinders far away from the other one. In this case, the wave field around
one cylinder should not be influenced by the other cylinder as long as the
distance between them is large enough.

First the method with the refraction index will be tested. One cylinder
is centered about the origin to get the same setup as for the exact solution
found in Chapter 4. The other cylinder is placed on the right side of the first
cylinder. It does not matter though where this second cylinder is placed,
since it has the same refraction index as the surroundings, and hence should
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be “invisible”. Figure 14 shows the solution for two cylinders with the given
setup, together with the exact solution for one cylinder that was found earlier
in this paper. The boundaries of the cylinders are marked with circles. The

Figure 14: The numerical solution for the wave field for the problem with
two cylinders is given in the left figure. Notice that the refraction index of
the right cylinder has the same value as for the host medium, and hence it
should not contribute anything to the wave field. But it can be seen in the
figure that the field inside this cylinder is different from the corresponding
domain in the figure on the right side. Hence, the domain is affected by the
second cylinder to some extent. The values used in the calculation can be
found in the title.

numerical solution has some irregularities on the boundaries of the cylinders
due to the characteristic of the Hankel functions. In addition the field inside
the second cylinder seems to be affected by the wave, even though the wave
should not see this cylinder.

The wave field is also calculated along the x -axis for both the exact and
the numerical solutions. The comparison between the two solutions along
the x -axis can be seen in Figure 15. The irregularities on the boundaries of
the two cylinders are easier to see in this plot. These irregularities arise due
to the characteristic of the Hankel functions for small arguments. As for
the intensity plot, the wave field for the numerical solution inside the sec-
ond cylinder, which should be invisible, is different from the exact solution.
Hence, except for the domain inside the second cylinder, the solution for the
rest of the field seems to resemble the exact solution to a great extent. So
all in all the numerical solution seems to be quite good.
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Figure 15: The exact solution for one cylinder is plotted together with the
numerical solution for two cylinders. For the numerical solution the cylinder
centered about x = 6 has the same refraction index as the surroundings, and
hence it should be invisible and not affect the wave field. The figure shows
that the cylinder is not completely invisible to the wave field. Both cylinders
are marked with black stars in the plot.

The second method was to move one of the cylinders far away from
the other one. Again, one cylinder is placed at the origin, while the other
cylinder will be placed at a distance, a million times the radius of the first
cylinder, away from the origin. For this method the two cylinders have the
same refraction index, which is different from the index of the host medium.
For the given distance, the two cylinders should not have any influence on
each other. Figure 16 shows the solution for two cylinders, where one of
them is too far away to make the picture, together with the exact solution
for one cylinder. The two solutions resemble each other quite well, and it is
hard to separate the exact solution from the numerical solution.

The numerical solution is also compared to the exact solution for the
values of the wave function along the x -axis. In Figure 17 it can be seen
that the two solutions resemble each other quite well, except for the values
on the boundary, and also some small differences in the wave field inside the
cylinder. The same could be seen in the intensity plot.

From these last few figures, the conclusion is that the numerical solution
resembles the exact solution to a great extent. The only differences visible
to the naked eye, are some irregularities on the boundaries of the cylinders,
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Figure 16: The left figure shows the numerical solution for the problem with
two cylinders. The cylinders have the same refraction index, but the second
cylinder is placed at a distance of 106 times the radius of cylinder one. At
this distance the second cylinder should not influence on the field around
the other cylinder, and the result should equal the exact solution for one
cylinder seen in the right figure. The solutions seem to resemble each other
quite well. The data used in the calculations can be found in the title.

Figure 17: The exact solution for one cylinder along the x -axis, together with
the numerical solution for two cylinders. The numerical problem includes
two cylinders, but one is placed far away and hence the cylinders have no
influence on each other. The stars mark the edges of the cylinder.



6.4 Wave field for two cylinders 43

and also some small differences in the fields inside the cylinders. So the
tests that have been performed to validate the numerical solution for two
cylinders, show that both the numerical method and the boundary integral
method makes a good approximation to the exact solution.

6.4 Wave field for two cylinders

The numerical solution of the problem with two cylinders has been compared
with the exact solution, and is found to be a good approximation. The
resulting wave field for two cylinders can be seen in Figure 18. Some of

Figure 18: The resulting wave field for the problem with two cylinders placed
symmetrical around the y-axis. A plane wave enters from the left, and the
cylinders have the same refraction index, which is different than for the
surroundings. The data from the calculations can be found in the title.

the boundary values stand out in the field, showing where the cylinders are
situated. These values are due to some irregularities that will occur for
small arguments in the calculations, which is the case near the boundaries.
The same can be seen in Figure 19, where the solution of the wave function
calculated along the x -axis. The irregularities on the boundaries of the
cylinders are easier to see here.

The setup for the program is now approaching the setup for the experi-
ment that was summarized in Chapter 2. Two cylinders are place symmet-
rical around the y-axis, and a planar wave enters from the left. The next
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Figure 19: The solution of the wave function for the problem with two
cylinders placed symmetrical around the y-axis. The solution is calculated
along the x -axis, and some irregularities can be seen on the boundaries of
the cylinders. The data used in the calculations can be found in the title.

step in the approach is to replace the plane wave with a Gaussian beam.

7 Gaussian Beam

A plane wave has been used as the incident wave in the calculations so far,
but to approach the setup from the experiment this paper is based on, the
plane wave will now be replaced with a two-dimensional Gaussian beam.

7.1 The Gaussian beam equation

In optics, and especially in laser optics, one often encounters Gaussian
beams, which is a solution to the paraxial Helmholtz equation [1]. The
power of the beam is mainly concentrated within a small cylinder surround-
ing the beam axis. The intensity distribution for any transverse plane, is a
circularly symmetric Gaussian function centered about the beam axis. For
instance, the transverse profile of the intensity of the beam with a power P
can be described as a Gaussian function in the following way [24]:

I(r, z) =
2P

πW 2(z)
exp

(
−2

r2

W 2(z)

)
(7.1)

Here r is the distance from the center of the beam, and z is the distance from
its waist. W (z) is the beam radius defined as the distance from the beam
axis (where the peak value of the beam intensity is assumed), to where the
intensity drops to 1\e2 of the maximum value. The function’s width has its
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minimum at the beam waist, W0, and from here it grows gradually in both
directions. The wavefronts are nearly planar near the waist of the beam,
but they gradually curve and become approximately spherical far from the
waist. Under ideal conditions, the light from a laser takes the form of a
Gaussian beam [1]. A sketch of a Gaussian beam can be seen in Figure 20.

Figure 20: Diagram of Gaussian beam parameters. W0 is the beam waist
radius, W(z) is the beam radius, b is the confocal parameter of the beam
and Θ is the total angular spread of the beam far from its waist [25].

This paper deals with a two dimensional problem, hence a two dimen-
sional Gaussian beam will be used. The beam should propagate in the pos-
itive x -direction, and the focal point of the Gaussian beam will be located
at (−x0, y0).

The electric field is, as mentioned earlier in the paper, parallel to the
cylinder axis (z -axis), and hence the electric field only has a z -component.
The spatial distribution of the amplitudes Ez and Ey, in the plane located
at x = x0, can be given as [26]

Ez(−x0, y, z) = E0 exp
[
−(y − y0)2

W 2
0

]
(7.2)

Ey(−x0, y, z) = 0 (7.3)

Where W0 is the beam waist radius. The field components in Cartesian
coordinates can be expanded in an angular spectrum of plane waves [27]

Ex(x, y, z) =
∫ ∞
−∞

Ax(p, q) exp [ikn0(px+ qy)] dq (7.4)

Ey(x, y, z) =
∫ ∞
−∞

Ay(p, q) exp [ikn0(px+ qy)] dq (7.5)

Ez(x, y, z) =
∫ ∞
−∞

Az(p, q) exp [ikn0(px+ qy)] dq (7.6)

Where p2 + q2 = 1.
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The complex amplitudes Ax, Ay and Az are determined from the electric
field components in the plane x = −x0, and are given as

Az(p, q) =
1
λ

∫ ∞
−∞

Ez(−x0, y, z) exp [−ikn0(px+ qy)] dy (7.7)

=
1
λ

∫ ∞
−∞

E0 exp
[
−(y − y0)2

W 2
0

]
exp [−ikn0(px+ qy)] dy (7.8)

=
E0
√
πW0

λ
exp

[
−1

4
k2n2

0W
2
0 q

2

]
exp(ikn0pz0 − ikn0qy0)(7.9)

In a similar way Ay(p, q) will be zero, since Ey(x0, y, z) = 0, and also
Ax(p, q) = 0 [26]. Hence

Ex(x, y, z) = 0, Ey(x, y, z) = 0 (7.10)

And the equation for Ez is given as

Ez(x, y, z) =
E0
√
πW0

λ

∞∫
−∞

exp
[
−1

4
k2n2

0W
2
0 q

2

]
exp
(
ikn0[p(x+x0)+q(y−y0)]

)
dq

(7.11)
Where Ez satisfies the Helmholtz equation(

∇2 + k2
)
Ez(x, y, z) = 0 (7.12)

So the equation that will be used as the Gaussian beam in this paper is
Equation 7.11. In the next section some comments are made about the
numerical procedures, and in Section 7.3 the field for the Gaussian beam is
compared with the field for the plane wave. Also, the result for the wave
field with two cylinders and a Gaussian beam as the incident wave, can be
found in this section.

7.2 Numerical implementation

The values for the Gaussian beam are found numerically in Matlab by a
function that uses the built-in algorithm quadl to solve the integral in the
equation for the beam. The algorithm approximates the integral, to within
an error of 10−6, using recursive adaptive Lobatto quadrature [23]. Except
for this algorithm, the rest of the calculation of the Gaussian beam is straight
forward. The code for the numerical implementation of the Gaussian beam
can be view in Appendix C.

7.3 Comparison and results

The values for the incident wave ϕi, will now be calculated from the equa-
tion for the Gaussian beam (see Equation 7.11), instead of the plane wave
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Figure 21: The figure at the top shows an intensity plot of a planar wave,
while the bottom figure shows an intensity plot of a Gaussian beam. The
Gaussian beam has a more narrow intensity field, and its wavefront goes from
being almost planar in the beginning, to having a more spherical shape in
the end. The data used in the calculations can be found in the titles.

equation used earlier in the paper. Figure 21 shows the difference in the
intensity field of a Gaussian beam versus a plane wave. The differences be-
tween the two wave types are clear. The Gaussian beam has a more narrow
intensity field, and the change of the wavefront shape, from nearly planar
in the beginning to a more spherical shape in the end, can be seen in the
figure.

The power of the beam is mainly concentrated within a small cylinder
surrounding the beam axis. So by moving the source in the y-direction,
away from the center of the cylinder, the intensity-field of the beam that
hits the cylinder will be lower. This can be seen in Figure 22 where the
source has been placed at two different y-values, while the cylinder stays at
y = 0. The highest value is found when the source is placed at y = 0 as
expected, since the intensity is highest at the beam axis.

In the rest of this paper, the Gaussian beam replaces the planar wave
as the incident wave ϕi, in the calculations for the wave field. Figure 23
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Figure 22: The value of the wave function along the x -axis for two different
positions of the source. The source has been moved to a higher y value in
the red graph, which gives a lower intensity on the field around the cylinder.
The data used in the calculations can be found in the title.

Figure 23: Solution of the wave field for two cylinders when the incident
wave is a Gaussian beam (left figure), and when the incident wave takes the
form of a plane wave (right figure). The cylinders are here placed at (∓3, 0).
The rest of the data used in the calculation is given in the title.
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shows the result for the wave field, with the Gaussian beam as the incident
wave. The figure also shows the result when the incident wave is a plane
wave, just to see the difference between the two. The cylindrical shape of
the Gaussian intensity field around the x -axis is easy to see in the figure.
Other than that, the intensity field behind the cylinders resembles for the
two wave types. However, this does not mean that they have the same values
here, just that they have the same intensity distribution in that area.

The Gaussian beam has now been embodied into the program for cal-
culating the wave field, so the program should resemble the setup from the
experiment summarized in Chapter 2 quite good. Hence, the calculations of
the forces acting on the two cylinders can be performed. But first the next
chapter will go through some scaling of the equations that are used.

8 Scaling Laws

The problem in this paper is a small scale problem, and the diameter of the
cylinders is in the size of micrometers. Scaling laws give the opportunity to
scale this up to a larger scale problem that might be easier to work with,
for instance for an experiment. In the following chapter some scaling laws
will be given, and a scaling parameter for the forces that are sought will be
found.

8.1 Scaling Maxwell’s equations

Maxwell’s equations for a source free dielectricum were found in the begin-
ning of Chapter 4 to be

∇×E + ∂tB = 0 (8.1)
∇×B− µ0ε0n

2(x)∂tE = 0 (8.2)
∇ ·B = 0 (8.3)

∇ · (n2(x)E) = 0 (8.4)

Here the constitutive equations found on page 10,

B(x) = µ0H(x) (8.5)
D(x) = ε0n(x)E(x) (8.6)

have been used to replace the H- and D-fields in Maxwell’s equations from
Chapter 4, with the B- and E-fields respectively. The rest of the parameters
are as before the refraction index n, the magnetic permeability µ0, and the
electric permittivity ε0.

The parameters in Maxwell’s equations above, are then scaled as follows:

E = E0 Ẽ, B = B0 B̃, x = L x̃, t = T t̃ (8.7)
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The marked parameters are dimensionless. Using these relations, the curl
of a function is written as ∇x× = 1

L∇̃x̃× and the time derivative is written
as ∂t = 1

T ∂t̃. Hence, the dimensionless Maxwell equations are given as

∇̃ × Ẽ +
LB0

TE0
∂t̃B̃ = 0 (8.8)

∇̃ × B̃− LE0

TB0
µ0ε0n

2(x̃) ∂t̃Ẽ = 0 (8.9)

∇̃ · B̃ = 0 (8.10)
∇̃ · (n2(x̃)Ẽ) = 0 (8.11)

To get rid of the constant in front of the time derivative in the first of these
four equations, a suitable scaling for B, or B0, is found to be

LB0

TE0
= 1 → B0 =

T

L
E0 (8.12)

Replacing B0 in Equation 8.9 with this expression, gives a new constant in
front of the time derivative: (LT )2µ0 ε0 n

2(x̃). Then µ0ε0 is replaced with
c−2, where c is the speed of light, which gives ( LTc)

2 n2(x̃). To get rid of the
remaining constants, a length scale L is given, and the time-scale is chosen
so that L

T = c → T = L
c . Hence, only n2(x̃) remains in front of the time

derivative. This simplifies Maxwell’s equations further to give

∇̃ × Ẽ + ∂t̃B̃ = 0 (8.13)
∇̃ × B̃− n2(x̃)∂t̃Ẽ = 0 (8.14)

∇̃ · B̃ = 0 (8.15)
∇̃ · (n2(x̃)Ẽ) = 0 (8.16)

There are now two free variables; E0 and L. The latter one, L, used as
the length scale, is fixed by setting it equal to the size of the scattering
particles. In the problem at hand, the particles are in the size of microns,
so L = 1µm = 10−6m. The other free variable, E0, will be calculated from
the initial field from the laser beam. In experiments it is common to give
the total energy flux from the initial field measured in watt. An expression
for E0 involving the total energy flux, P, will be derived in the following.

8.2 The total energy flux

The energy per unit time, per unit area, transported by the electromagnetic
field is called the Poynting’s vector, and is given as [12]

S =
1
µ0

E×B (8.17)

The energy flux is then given as the energy per unit time crossing the in-
finitesimal surface da, that is S · da. Hence, the total energy flux P, through
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a surface S, is given as the surface integral over the average Poynting’s vector
[28]

P =
∫
S
< S > ·n da (8.18)

And the average Poynting’s vector is given as

< S >=
1
τ

∫ τ

0
S(t) dt, τ =

2π
ω

(8.19)

Where ω is the angular frequency.
For stationary fields, the electric field and the magnetic induction field

can be written the following way

E(x, t) =
1
2
{
E(x)e−iωt + E∗(x)eiωt

}
(8.20)

B(x, t) =
1
2
{
B(x)e−iωt + B∗(x)eiωt

}
(8.21)

From these stationary fields, the average Poynting’s vector is found to be

< S > =
1
τ

∫ τ

0

1
4µ0

[E×Be−2iωt + E∗ ×B + E×B∗ + E∗ ×B∗e2iωt] dt

=
1

2µ0
Re {E×B∗} (8.22)

Hence, the total energy flux given in Equation 8.18 is rewritten as

P =
1

2µ0

∫
S
Re {E×B∗} · n dS (8.23)

To find the value for this total energy flux, the E- and B-fields must be
calculated. This will be done in the next section.

8.3 The electric field and the magnetic induction field

The electric field only has a z -component as mentioned earlier in the paper,
so the field can be written as

E = ϕ(x, y)ez (8.24)

Here ϕ is a wave function, which solves the two dimensional Helmholtz
equation (∇2 + k2n2

j )ϕ = 0. The corresponding B-field is found from the
Maxwell equation ∇×E = iωB found in Section 4.1 on page 10, which gives

B =
1
iω
∇×E

=
1
iω

(∂yϕex,−∂xϕey) (8.25)
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For the scattering field from a cylinder, it is assumed that the source
produces a wave of the same type, which means that the incident wave can
be written as ϕi(x, y)ez. The source is a model of a laser beam, and must
be a solution to the Helmholtz equation. This holds for the Gaussian beam
that was found in Chapter 7 on page 46 and given as

Ez(x, y, z) =
E0
√
πW0

λ

∞∫
−∞

exp
[
−1

4
k2n2

0W
2
0 q

2

]
exp
(
ikn0[p(x+x0)+q(y−y0)]

)
dq

(8.26)
Assuming that the transverse profile of the wave is gaussian for x = −x0,
the incident wave takes the following form

Ei = ϕi(−x0, y) = E0e
−y2/W 2

0 (8.27)

Where W0 is the beam waist radius. So now, expressions for the electric
field E, and the magnetic induction field B, are found and will be used for
calculating the Gaussian beam amplitude E0 from the total energy flux P.

8.4 Gaussian beam amplitude

Having found the electric field E, the magnetic induction field B can be
calculated from Equation 8.25, and then the total energy flux is calculated
from the expression found in Equation 8.23. The normal vector in this
equation points in the direction of the wave propagation, so the normal
vector can be replaced with ex. This, together with the expressions for the
E- and B-fields, give the following calculation for the total energy flux:

P =
1

2µ0

∫
S
Re {E×B∗} · n dS

=
1

2µ0

∞∫
−∞

Re

{
ϕ
i

ω
∂xϕ

∗ex + ϕ
i

ω
∂yϕ

∗ey

}
· ex dy

=
1

2µ0

∞∫
−∞

Re

{
ϕ
i

ω
(−ikn0)ϕ∗ex

}
· ex dy

=
1

2µ0

∞∫
−∞

kn0

ω
ϕϕ∗ dy (8.28)

Where ∂xϕ is found from Equation 8.26. The integration is over an infinitely
strip, so that the computed total energy flux P, is computed in power per
unit length.
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The simplified expression for the Gaussian beam found in Equation 8.27
is put into the equation for P above, which gives

P =
1

2µ0

∞∫
−∞

kn0

ω
|E0|2 e−2y2/W 2

0 dy

=
1

2µ0

kn0

ω
|E0|2

∞∫
−∞

e−2y2/W 2
0 dy

=
1

2µ0

kn0

ω
|E0|2

√
πW 2

0

2
(8.29)

Hence the expression for E0, the amplitude for the Gaussian beam, is found
to be

|E0| =

√
P2
√

2µ0ω√
πW0kn0

(8.30)

The total energy flux P is usually a known constant in an experiment.
For the experiment that is the background for this paper, P was given as
100mW . In this paper, P is computed in power per unit length along the z -
axis of the cylinder. So by assuming that the power per length is the same as
the total power (in three dimensions) used in the experiment, P = 100mW
will be used in the calculations here. Values for the magnetic permittivity
µ0, the angular frequency ω, the beam waist W0 for the gaussian beam, the
wavenumber k, and the refraction index n0, are all given earlier in the paper.

In the next chapter the force on the two cylinders in the problem will be
calculated, and the expression for E0 that was just found, will be used to
scale the force on the cylinders.

9 Forces on the Cylinders

Now when the wave solution is found, and the Gaussian beam has been
introduced, the setup finally resembles the setup from the experiment this
paper is based on. So the next step is to calculate the force on the two
cylinders. In the experiment, the situation of interest was when the total
force on the two cylinders was zero. In this paper a simplified setup with
the problem in two dimensions, and with only one source is used, so the
situation of interest is a little different compared to the experiment. Here,
the situation where the force is the same on both cylinders is the one that is
sought. In the end of the chapter, the result of the force calculation from the
experiment in three dimensions, will be compared to the force calculation in
two dimensions found here. The result will show if it is possible to model the
three dimensional situation from the experiment, with the two dimensional
situation covered in this thesis.
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As mentioned in the introduction, due to the Minkowski form of the
Energy-Momentum tensor for a material body, the force on a cylinder can
be calculated just by knowing the wave field on the boundary of the cylinder
[5]. From this, the total force on a cylinder is given as [12]

f =
∮
S

T · dn (9.1)

Where T is Maxwell’s stress tensor, the stress tensor of an electromagnetic
field, on the boundary of a cylinder. So to find the total force, Maxwell’s
stress tensor needs to be calculated.

9.1 Maxwell’s stress tensor

The Maxwell stress tensor was given in Chapter 3 on page 6 to be

T = ED + HB− 1
2
I (E ·D + H ·B) (9.2)

Elementwise it can be written as

Tij = ε

(
EiEj −

1
2
δij(E ·E)

)
+

1
µ0

(
BiBj −

1
2
δij(B ·B)

)
(9.3)

The Kronecker delta, δij , takes the value one if the indices are the same,
and zero otherwise. Physically, the stress tensor can be seen as the force
per unit area (or stress) acting on a surface [29].

9.2 Time-averaged force

The force on the cylinders is averaged over time, and the time-domain av-
erage of the force for a period τ = 2π

ω , is found to be

fav =
∮
S

1
τ

τ∫
0

T dt

 · n dS =
∮
S
< T > ·n dS (9.4)

Writing the electromagnetic fields with the time-dependency eiωt gives

E =
(
E0e

−iωt + E∗0e
iωt
)

(9.5)

B =
1
µ0

(
B0e

−iωt + B∗0e
iωt
)

(9.6)

Using these expressions for the electromagnetic fields, the stress tensor found
in Equation 9.2 can be written as

T = ε (E0e
−iωt + E∗0e

iωt)(E0e
−iωt + E∗0e

iωt)

+
1
µ0

(B0e
−iωt + B∗0e

iωt)(B0e
−iωt + B∗0e

iωt)

− 1
2

I
[
ε (E0e

−iωt + E∗0e
iωt) · (E0e

−iωt + E∗0e
iωt)

+
1
µ0

(B0e
−iωt + B∗0e

iωt) · (B0e
−iωt + B∗0e

iωt)
]

(9.7)
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From this, the time averaged stress tensor is found to be

< T > =
(
ε0n

2
0(E0E∗0) +

1
µ0

(B0B∗0)− 1
2

I
[
ε0n

2
0(E0 ·E∗0) +

1
µ0

(B0 ·B∗0)
])

+ c.c.

=
1
µ0

(
ε0µ0n

2
0(E0E∗0) + (B0B∗0)− 1

2
I
[
ε0µ0n

2
0(E0 ·E∗0) + (B0 ·B∗0)

])
+ c.c.

Where c.c denotes the complex conjugate. The scaling parameters found
in Chapter 8 will now be introduced to this time average stress tensor. In
Equation 8.12 on page 50, the norm of the magnetic induction B0, is found
to be B0 = T

LE0 = 1
cE0. And since ε0µ0 = c−2, the expression for <T>

simplifies to

< T >=
B2

0

µ0
T̃, (9.8)

where T̃ is given as

T̃ =
(
n2

0 (Ẽ0Ẽ∗0) + (B̃0B̃∗0)− 1
2

I
[
n2

0 (Ẽ0 · Ẽ∗0) + (B̃0 · B̃∗0)
])

+ c.c. (9.9)

So T̃ is a nondimensional stress tensor. Using this tensor, the time average
force is rewritten as

fav =
B2

0

µ0

∮
S

T̃ · n dS (9.10)

Equations for the electric field E and the magnetic induction field B, for
the problem with two cylinders, will be derived in the next section.

9.3 The electromagnetic fields, E and B

Writing the electric field E and the magnetic induction field B, in terms of
the wave function ϕ, the following expressions were found in Section 8.3 on
page 51:

E = (0, 0, ϕ) (9.11)

B =
1
iω

(ϕy, −ϕx, 0) (9.12)

To be able to calculate the average force from Equation 9.10, the partial
derivatives ∂xϕ and ∂yϕ of the wave function, needs to be found. The
wave function and its normal derivative have been calculated earlier in this
paper. The partial derivatives ∂xϕ and ∂yϕ, can be calculated from the
normal derivative ∂nϕ, and the tangential derivative ∂tϕ. The tangential
derivative is not known, but it can be calculated through central difference
[20]. The tangential derivative for each point m, on the boundary of one of
the cylinders, is given as

∂tϕm =
ϕm+1 − ϕm−1

2a∆θ
(9.13)
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Where a is the radius of the cylinder, ∆θ is the angle grid-size, and ϕm is
the value of the wave function in point m. So now both the tangential and
the normal derivatives of the wave function are known, and ∂xϕ and ∂yϕ
will be calculated next.

A directional derivative of a function, f, was given in Section 5.2 on page
25 as

∂vf(x) = ∇f(x) · v (9.14)

Here the directional derivative is taken in the direction of v. Using this
formula, ∂xϕ and ∂yϕ can be written as

∂xϕ = ∇ϕ · ex (9.15)
∂yϕ = ∇ϕ · ey (9.16)

The unit vectors, ex and ey, relates to the unit normal vector, n, and the
unit tangential vector, t, in the following way:

ex = (ex · n) n + (ex · t) t (9.17)
ey = (ey · n) n + (ey · t) t (9.18)

Hence the partial derivative ∂xϕ, can be written as

∂xϕ = ∇ϕ ·
(

(ex · n) n + (ex · t) t
)

= (ex · n)(∇ϕ · n) + (ex · t)(∇ϕ · t)
= (ex · n)∂nϕ+ (ex · t)∂tϕ (9.19)

And the partial derivative ∂yϕ, similarly becomes

∂yϕ = ∇ϕ ·
(

(ey · n) n + (ey · t) t
)

= (ey · n)∂nϕ+ (ey · t)∂tϕ (9.20)

So all the unknown values that were sought are found, and the E- and
B-fields can be written in terms of the wave function and its derivatives:

E = ϕez (9.21)

B =
1
iω

(
[(ex · n)∂nϕ+ (ex · t)∂tϕ] ex

− [(ex · n)∂nϕ+ (ex · t)∂tϕ] ey
)

(9.22)

These expressions will now be used to calculate the average Maxwell stress
tensor and then to calculate the force on the cylinders.
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9.4 Calculating the force

Now that the partial derivatives are known, T̃ from the averaged Maxwell
stress tensor can be written in terms of ϕ, ∂xϕ and ∂yϕ, instead of E and
B. The expression for T̃ is found in Equation 9.9, and in terms of vectors
the equation can be rewritten as

T̃ = n2
0


 0

0
ϕ

 [0, 0, ϕ∗]− 1
2

I


 0

0
ϕ

 ·
 0

0
ϕ∗



 (9.23)

+
1
ω2


 ϕy

−ϕx
0

 [ϕ∗y, −ϕ∗x, 0
]
− 1

2
I


 ϕy

−ϕx
0

 ·
 ϕ∗y
−ϕ∗x

0



+ c.c.

Where the star, *, denotes the complex conjugate of a vector. The tensor
gives a 3-by-3 matrix for each point on the boundary of each cylinder. Since
the problem in this paper is in two dimensions, the tensor is reduced to a
2-by-2 matrix representing the x- and y-directions.

So now, having found T̃, the force one each cylinder can be calculated.
The boundaries of the cylinders are parametrized to give the following

fav =
B2

0

µ0

∮
S

T̃ · n dS

=
ãLB2

0

µ0

2π∫
0

T̃ · n dθ

≈ ãLB2
0

µ0


N∑
j=1

αj+1∫
αj

T̃ · n dθ

 (9.24)

Where ã is the scaled radius, and L is the length scale.
The grid size on the boundary of the cylinders is small, with ∆θ << 1.

Hence, the values of T̃ · n are assumed to be constant over the interval
[αj , αj+1]. Then the expression for the force can be rewritten as

fav =
ã∆θLB2

0

µ0


N∑
j=1

(T̃ · n)(θj)

 (9.25)

Where (T̃ ·n)(θj) is the dot product of the tensor and the normal vector in
point θj .

All the calculations in this chapter has been performed in Matlab. The
next section gives a short explanation to these procedures.



58 9 FORCES ON THE CYLINDERS

9.5 Numerical algorithm

The code for the numerical calculation of the force on the cylinders, can be
found in its entirety in Appendix D. In the following a short summary for
the procedures performed in Matlab will be given.

To find the force on a cylinder, first of all the values for the wave func-
tion ϕ, and its normal derivative ∂nϕ, are calculated at each point on the
boundary. These values were calculated in Chapter 5 for the problem with
one cylinder, and in Chapter 6 for two cylinders. Having found these values,
the tangential derivative for the wave function is calculated using central dif-
ference, as shown in Equation 9.13. The derivative is calculated pointwise
around the boundary, using the value of the wave function ϕ.

Having both the tangential and the normal derivatives, the partial deriva-
tives, ∂xϕ and ∂yϕ, are calculated using Equations 9.19 and 9.20. The
calculations are straightforward as long as the normal and the tangential
derivatives are known. Next, the tensor T̃ is calculated from the expression
found in Equation 9.23. The tensor gives a 3 × 3 matrix for each point
on the boundary, which is reduced to a 2 × 2 matrix since the problem is
only in two dimensions. Then the stress tensor is multiplied by the normal
vector at each point on the boundary, and the vectors that come out of this
multiplication are summarized for each cylinder. This results in one force
vector for each cylinder. Finally the average force is found by multiplying
the force vector by ã∆θLB2

0
µ0

as given in Equation 9.25.

9.6 Results from the Force Calculation

So, having found the force on the two cylinders in the problem, it is time
to compare the result with the result from the experiment. The Matlab
program that was made for calculating the force on the cylinders, has been
run with refraction indices and distances between the cylinders equivalent
to the values that were used in the experiment. The calculations have been
performed with 800 grid points on the boundary of each cylinder to get
as good result as possible. Time, and memory size of the computer, were
limiting the number of grid points that could be used. Figure 24 shows the
force on the two cylinders vs the distance between them, for two different
refraction indices in the host medium. The oscillations seen for the force on
the cylinder closest to the source (cylinder 1), were also found by Karasek
et al. [30]. The oscillations are probably caused by the interference of the
field from a single incident beam that are scattered by both cylinders.

To be able to make a comparison between the result found in this paper
and the result from the experiment, the force is calculated for the same
distances and refraction indices that were used in the experiment. Figure 25
shows the result from the experiment (same as Figure 2 on page 5), together
with the result found in this paper. The distances between the two cylinders
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Figure 24: The force on the two cylinders for two different refraction indices.
The force on the cylinder closes to the source (cylinder 1) have a noticeable
oscillatory behavior, while the force on the second cylinder is a quite smooth
graph.

Figure 25: This figure without the stars, were shown in Chapter 2. It
shows the result from the experiment with numerical data marked with blue
dots, and the experimental results as red crosses with error bars. The black
stars show where the values of the force difference, found by the numerical
approximation in this paper, is below 5e−14.
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that hold the three lowest values for the force difference, are marked as black
stars for each refraction index. As mentioned earlier, the situation of interest
in the experiment was when the total force on each cylinder were zero, while
here the force on cylinder one should equal the force on cylinder two, in
order to imitate the setup from the experiment with only one source. That
is why the lowest values of the force difference and not the force is marked.
Several stable configurations were also found by Karasek et al. [30], but
they found stable configurations mostly inside the blue “half circle” for the
upper half of the refraction index interval.

The potential for the force difference between the two cylinders is then
calculated using the following relation

F = −∇V, (9.26)

where V is the potential, and F is the force. The equation is solved using
backward difference, and Figure 26 shows four examples of the potential for
some different refraction indices.

Figure 26: Potential for the force difference between the two cylinders for
four different refraction indices.

In Figure 25, the result from the experiment was compared with the force
difference that was found earlier in this chapter. The result from the exper-
iment can also be compared with the minimum values of the potential for
each refraction index. The distance between the cylinders that corresponds
to the lowest potential is marked as black stars in Figure 27. It seems like
the stars in this figure are approaching asymptotic values in two areas of the
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Figure 27: The minimum of the potential for each refraction index is marked
in the figure. Notice the asymptotic behavior near ∆n = 0.071 and ∆n =
0.090.

refraction index interval. That is around ∆n = 0.071 and ∆n = 0.090. The
same can be seen in Figure 25. Physically this means that if the cylinders
are placed in a stable equilibrium, and then the refraction index of the host
medium is changed to a value close to one of the values that were noticed
in the figure, the cylinders would collide. For other refraction indices, the
distance would change until equilibrium were found again, but for two areas
in the refraction index interval there seem to be no equilibrium, hence the
cylinders would collide. For some of the potential graphs that were shown
in Figure 26 some oscillations could be seen. These oscillations are found for
potentials around the ∆n values mentioned above, and they show a region
of several equilibrium configurations. The kinetic energy of the Brownian
motion of the cylinders are found to be much lower than the work needed to
move the cylinders from these equilibriums, which means that the positions
are stable.

By examining all the results that are found in this section, there are evi-
dently something happening around the refraction indices corresponding to
∆n = 0.071 and ∆n = 0.090. After doing some calculations and some test-
ing of the data, the numerical values of the wave function on the boundary of
the cylinders are found to be quite inaccurate for the refraction indices that
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were just mentioned. The numerical calculation of the wave function on the
boundary of a cylinder, was found to be quite good when it was examined in
the end of Chapter 5, even for a relatively low number of grid points. See for
instance Figure 11 on page 33. But it seems that for a few values of ∆n, the
numerical solution does not resemble the exact solution well enough. Figure
28 shows the numerical solution and the exact solution of the wave function
on the boundary of a cylinder when ∆n = 0.0715. The difference between

Figure 28: The numerical approximation of the wave solution on the bound-
ary is not very good for ∆n = 0.0715.

the two solutions is quite large, and far away from the accuracy that was
found when the solutions were compared earlier in the paper, as mentioned
above. There the difference between the exact solution and the numerical
solution was not possible to see with the naked eye, while the difference in
Figure 28 is quite substantial. For ∆n = 0.090 the difference between the
exact and numerical solutions is also found to be quite large. But except
for some values of ∆n that are close to the two mentioned values, the rest
of the refraction indices give results that are in the same order of accuracy
as what was found in Chapter 5.

It is not easy to say why the accuracy are so bad in these two areas.
The values of the wave function on the boundary of the cylinders have been
calculated from the integral equations that were found in Chapters 5 and
6. The integral equations are solved using a midpoint rule to make the
numerical computations easier and faster. That is, instead of performing
an integration, the midpoint in the interval multiplied by the width of the
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interval was chosen as the value. This is not a very accurate way of solving
the integral equations, but it was though of as a good enough approximation
if the intervals on the boundary were small enough. The difference between
solving the equations by integration, and by the midpoint rule, is found using
the built-in function quadl in Matlab [23]. This function approximates an
integral within an error of 1e-6. The integral equations for the wave function
for ∆n = 0.0715 is solved using quadl, and the result from this integration
can be seen in Figure 29, where it is compared with the exact solution of
the wave function, and the numerical solution that was found earlier in the
paper. Clearly the midpoint approach is not good enough, while the result

Figure 29: A better approximation of the wave function is found using the
built-in function quadl in Matlab. The exact solution is almost covered by
the solution found using the integration function quadl.

from quadl covers the exact solution quite good.
The way the integral equations have been solved using the midpoint

rule, is definitely something that should have been improved, but since the
problem with certain refraction indices was discovered so late in the pro-
cess, there is not enough time to make the changes. At least the result for
most of the refraction indices are found to be quite accurate. Figure 30
shows the wave function on the boundary of a cylinder for the three dif-
ferent approaches using another ∆n. The figure shows the situation that
is representative for most refraction indices, where the difference between
using the quadl function and the midpoint rule is not that substantial. The
right plot in the figure has been magnified quite a bit to be able to separate
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Figure 30: The solution on the boundary of the cylinder is, for most refrac-
tion indices, found to be quite good as this plot shows. But it was seen in
Figure 28 that there are some refraction indices that give quite inaccurate
results for the wave function.

the three solutions from each other. Table 1 shows parts of the vector for
the wave function found using the three different methods. The result for
two different refraction indices, one “good” and one “bad”, are given at two
different places on the boundary. By looking at the numbers in this table,
the solution found using the integration function is clearly a better choice.
The value of ϕinteg is a better solution than ϕnum for all the real numbers
in the table. For the imaginary numbers, it is found that ϕnum is actually
closer to the exact values for the second example of the vector of the wave
function for ∆n = 0.085 (the last three rows). But the values for this re-
fraction index is closer to each other than for ∆n = 0.0715, hence using the
integration method has a bigger value for the two areas on the refraction
index interval that have been mentioned.
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Table 1: The table gives some example values of the wave function on the
boundary of the cylinder for the exact solution, the numerical solution, and
the solution found using the integration function quadl from Matlab. Exam-
ples are given for two different refraction indices, and for two different areas
on the cylinder.

∆n = 0.0715 The value of ϕ on the boundary, for θ ∈ [1.732, 1.771] (800 grid points)

ϕex -0.1942-0.8742i -0.2770-0.8524i -0.3573-0.8230i -0.4345-0.7864i -0.5078-0.7430i -0.5766-0.6931i

ϕinteg -0.1909-0.8456i -0.2738-0.8224i -0.3541-0.7916i -0.4311-7536i -0.5043-0.7087i -0.5728-0.6574i

ϕnum -0.2340-0.9282i -0.3169-0.9050i -0.3973-0.8742i -0.4744-0.8362i -0.5476-0.7914i -0.6163-0.7401i

∆n = 0.0715 The value of ϕ on the boundary, for θ ∈ [2.242, 2.282] (800 grid points)

ϕex 0.4626-0.8266i 0.4019-0.8600i 0.3394-0.8885i 0.2755-0.9123i 0.2105-0.9312i 0.1448-0.9452i

ϕinteg 0.4724-0.7862i 0.4118-0.8203i 0.3494-0.8497i 0.2855-0.8745i 0.2204-0.8945i 0.1545-0.9097i

ϕnum 0.4319-0.8678i 0.3714-0.9019i 0.3090-0.9313i 0.2451-0.9560i 0.1801-0.9760i 0.1143-0.9912i

∆n = 0.085 The value of ϕ on the boundary, for θ ∈ [1.732, 1.771] (800 grid points)

ϕex -0.1615-0.8617i -0.2433-0.8432i -0.3229-0.8174i -0.3997-0.7844i -0.4729-0.7447i -0.5421-0.6986i

ϕinteg -0.1641-0.8623i -0.2460-0.8427i -0.3256-0.8156i -0.4023-0.7814i -0.4754-0.7404i -0.5444-0.6930i

ϕnum -0.1663-0.8726i -0.2483-0.8529i -0.3280-0.8258i -0.4047-0.7916i -0.4779-0.7507i -0.5470-0.7033i

∆n = 0.085 The value of ϕ on the boundary, for θ ∈ [2.242, 2.282] (800 grid points)

ϕex 0.5148-0.7804i 0.4580-0.8179i 0.3992-0.8510i 0.3385-0.8795i 0.2765-0.9034i 0.2134-0.9227i

ϕinteg 0.5174-0.7720i 0.4608-0.8102i 0.4019-0.8441i 0.3413-0.8735i 0.2792-0.8984i 0.2160-0.9187i

ϕnum 0.5185-0.7763i 0.4619-0.8144i 0.4031-0.8482i 0.3425-0.8775i 0.2804-0.9023i 0.2173-0.9225i
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10 Conclusion

This chapter concludes the thesis by describing the achievements and out-
lining directions for future work.

10.1 Achievements

The goal for this thesis was to calculate forces and light scattering on two
dielectric, infinitely long cylinders placed in a host medium, in order to find
bistability. The background for the problem is an experiment on optical
binding of two dielectric spheres performed by Metzger et al. [9]. In the
experiment bistability and hysteresis in the equilibrium separations of the
optically bound dielectric spheres were observed in one dimension.

The setup that has been used in this paper is a simplified version of
the setup from the experiment. In the experiment two light sources were
used, while in this paper only one source has been used. The reduction in
the number of sources were validated in Chapter 3. In addition the three
dimensional spheres that were used in the experiment, has been reduced to
a two dimensional problem using infinitely long cylinders in this thesis. The
waves were expected to behave somewhat different in two compared to three
dimensions, but not necessarily affect the bistability that was found in three
dimensions.

A method for calculating the force on the two cylinders has been devel-
oped, and the result has been compared with the result from the experiment.
In the end no bistability was found in two dimensions. The reason why no
bistability was found might be because the wave behave differently in two
dimension, or that the numerical approximation was just not good enough.
Or it might be that some of the assumptions that were taken in the exper-
iment were not good enough. For instance was backscattering of the waves
not taken care of. So maybe the bistability was found by coincidence.

Another observation is that in the experiment the bistability disappeared
when the difference in the refraction index between the spheres and the host
medium got large enough. Increasing the difference in the refraction index
leads to stronger bindings between the spheres, which might be the reason
why the bistability disappeared. In two dimensions the bindings were found
to be stronger than in three dimensions, and this might be the reason why
no bistability is found. It might be possible to find areas with bistability in
two dimensions by increasing the refraction index of the host medium, but
unfortunately the numerical approximation would not handle smaller values
of ∆n very well.

Even though no bistability was found for the problem in this paper,
another interesting phenomenon was discovered. When plotting the lowest
values for the force differences between the two cylinders in a refraction in-
dex versus displacement diagram, the result indicated an asymptote near
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two of the refraction indices. The same asymptotic behavior was found
when looking at the minimum values of the potential for different refraction
indices. This was seen in Figures 25 and 27 in the previous chapter. When
looking into this phenomenon it was discovered that the calculation of the
wave function on the boundary of a cylinder is quite inaccurate for certain
values of the refraction indices. The inaccuracy was traced back to a sim-
plified solution of the integral equations for the wave function. A midpoint
rule was used instead of performing an integration, and for some reason this
method were quite inaccurate for some of the refraction indices, while for
other indices it gave results quite near the exact solution.

10.2 Future work

Below some issues that should be developed further are mentioned.

� The integral equations that was solved to find the wave function in this
paper was solved using a midpoint rule. That means that the value
in the middle of the interval multiplied by the width of the interval
is used as an approximation for the integration. This is not a very
accurate method. A better method should be developed for solving
the integrals in a more accurate, but efficient way. The time it takes
to perform numerical calculations will always be an issue.

� Developing a method to solve the system in three dimensions to see if
the bistability can be found then.

� The asymptotic behavior that was found around two values of the
refraction indices is another interesting issue to investigate further.
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