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Abstract 

The placebo effect is considered the core example of mind-body interactions. However, 

individual differences produce large placebo response variability in both healthy volunteers and 

patients. The placebo response in pain, placebo analgesia, may be dependent on both the opioid 

system and the dopaminergic system. Previous studies suggest that genetic variability affect the 

function of these two systems. The aim of the present study was therefore to address the 

interaction between the single nucleotide polymorphisms (SNPs) Opioid Receptor Mu 1 

(OPRM1) rs1799971 and Catechol-O-methyltransferase (COMT) rs4680 on placebo analgesia. 

Two hundred and ninety-six healthy volunteers participated in a repeated measures 

experimental design where thermal heat pain was used as pain stimuli. Participants were 

randomized either to a placebo group receiving placebo cream together with information that 

the cream would reduce pain, or to a natural history group receiving the same pain stimuli as 

the placebo group without any application of cream or manipulation of expectation of pain 

levels. The results showed that the interaction between OPRM1 rs1799971 and COMT rs4680 

was significantly associated with the placebo analgesic response. Participants with OPRM1 

Asn/Asn combined with COMT Met/Met and Val/Met reported significant pain relief after 

placebo administration, whereas those with other combinations of the OPRM1 and COMT 

genotypes displayed no significant placebo effect. Neither OPRM1 nor COMT had any 

significant influence on affective changes after placebo administration. As shown in the present 

study, genotyping with regard to OPRM1 and COMT may predict who will respond favorably 

to placebo analgesic treatment. 

Keywords: Placebo effect; Pain; Placebo analgesia; experimental pain; genotyping; OPRM1 

rs1799971; COMT rs4680; repeated measures. 
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Introduction 

The placebo effect in pain, placebo analgesia, is probably the best-studied example of placebo 

responses. The placebo analgesic effect is shown to have several biological and psychological 

correlates [7; 11; 40], but show substantial inter-individual variability [41]. Exclusion of 

placebo responders from drug-trials might reduce statistical noise [39] and decrease the costs 

of drug development by allowing for smaller sample sizes [20]. Moreover, recognition of 

placebo responders may also be important for how health-personnel communicate with 

patients and for selection of treatments [10; 20]. Unfortunately, earlier studies on predictors 

for the placebo response in pain have revealed mixed results [22], it has been suggested that 

genetic factors, which are stable traits across contexts, may be linked to placebo analgesia 

[20]. 

Opioid antagonists may reverse placebo analgesia [5; 24; 49], and endogenous opioid activity 

in cerebral pain-related networks is related to placebo analgesic responses [43]. One genetic 

factor that may influence on this system is the SNP OPRM1 A>G rs1799971 in the opioid 

receptor mu 1 gene. This SNP leads to a substitution of asparagine (Asn) to aspartic acid 

(Asp) at codon 40 and subsequent removal of a putative N-linked glycosylation site in the 

receptor [8]. Individuals with Asn/Asn display higher placebo responses compared to those 

with the Asp/Asp [32]. In addition, the SNP COMT A>G rs4680 in the Catechol-O-

methyltransferase gene may affect sensory processing [13; 23]. This SNP leads to a 

substitution of an amino acid i.e, Valine (Val) to methionine (Met) at codon 158 – which 

reduces the enzyme enzymes activity, i.e., degradation of catecholamines [25]. Thus, SNP 

rs4680 is associated with sensitivity to experimental pain [13; 48]. Yu and colleagues [47] 

showed that higher number of COMT Met-alleles were linearly associated with higher 

experimental placebo analgesia, whereas Hall and colleagues [19] found similar results with 

higher placebo responses in patients with irritable bowel syndrome. 
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The COMT SNP rs4680 may influence the affective components of pain [48] and pain 

catastrophizing [18]. Generally, reduction of negative emotions is concomitant with placebo 

analgesia [14]. Previous findings show that COMT Met/Met carriers display larger placebo 

analgesic responses than the Val/Met or Val/Val combinations [19; 47]. Thus, it can be 

anticipated that Met/Met carriers show larger reductions in negative emotions after placebo 

administration compared to those with COMT Val/Met and Val/Val.  

 Previous data suggest that the opioid and catecholaminergic systems may influence each other. 

For example, individuals with reduced enzymatic degradation of the catecholamines display 

reduced regional release of endogenous opioids during pain [48]. The aim of the present study 

was therefore to address the interaction between the OPRM1 rs1799971 and COMT rs4680 on 

placebo analgesia. We hypothesized that subjects with OPRM1 Asn/Asn in combination with 

COMT */Met reported significantly higher placebo analgesic responses compared to 

individuals with other combinations of the OPRM1 and COMT genotypes. Furthermore, we 

hypothesized that reduction in negative emotions after placebo administration mediated the 

placebo analgesic response and that those with COMT Met/Met genotype should display higher 

reduction in negative emotions compared to participants with the COMT */Val genotype.   

 

Methods 

Participants 

The experiment included a total of 327 healthy Caucasian participants with a mean age of 23 

years (SD = 3.3), 200 (61.2%) of whom were women. Participants were recruited by flyers on 

the campus of the University of Tromsø, Norway. The study protocol was approved by the 

Regional Committee for Research Ethics in Health Sciences and Medicine, project number 

2013/966. A previous publication reports on parts of the sample included in this article [15]. 
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The participants signed an informed consent where they stated that they had no history of 

ongoing disease or any history of serious disease. Volunteers that used any type of prescribed 

medications or any type of analgesic medicine or therapy were not included in the study. 

Pregnant women were not allowed to participate. The participants were informed in the consent 

that the experiment tested the genetic influence of the effect of a commonly used local 

anesthetic cream. All participants received a gift card worth 200 NOK (approx. 25 USD) for 

reimbursement of expenses due to their participation in the study.   

 

Study Design 

The design of the study was an experimental design with repeated measurements, consisting 

of a calibration procedure, two pretests and three posttests. Participants were randomized into 

three groups: The placebo group that got a moisturizing cream with no analgesic properties 

(E-45, Crookes Healthcare, UK), the natural history group receiving no treatment during the 

procedure, or the lidocain-prilocain cream group that received a commonly used local 

anesthetic cream (Emla, AstraZeneca, Norway). The experiment was run double blind for the 

groups were a cream was applied, but there was no concealment of the natural history group. 

The group receiving the Emla cream was employed in the design to assure blinding of the 

experimenters, and these data were not used in the final analyses. Randomization to the 

groups was performed prior to the start of the experiment. Participants were allocated to the 

different groups according to their participant number. The participant numbers and group 

allocations were randomized by using the online web-service https://www.random.org/lists/. 

Thirty-one (9.4%) of the participants were randomized into the lidocain-prilocain cream 

group. Thus, data from 296 participants were included in the final analyses. The sample size 

estimation was based on findings in two previous studies of the Norwegian population where 

approx. 75% had Ans/Asn and 25% had */Asp [30],  whereas 23% had Val/Val, 43% had 

https://www.random.org/lists/
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Val/Met and 34% had Met/Met [23]. In order to obtain group sizes to include an adequate 

number of */Asp carriers, > 250 participants had to be included. The participants were 

randomized into the different groups according to their participant number. The experiment 

was executed according to a double-blind procedure in the placebo and Emla conditions 

where application of a placebo or Emla was required. The University hospital pharmacy at the 

University Hospital of Northern Norway produced 100-mL tubes of Emla cream 

(AstraZeneca, London, United Kingdom) and placebo cream (E45 Cream; Crookes 

Healthcare, Nottingham, United Kingdom). All tubes were numbered according to a list of 

codes and had an identical design. The code list was created by the university hospital 

pharmacy and was kept by the supervisor of the study, who did not participate directly in the 

experimental work. Thus, the experimenters were unaware of whether a true anesthetic cream 

or the placebo cream was applied. We chose the E45 cream as the placebo cream based on its 

similarities to Emla in color, odor, and consistency. A dose of 3 g of Emla or placebo was 

used for each participant, similar to Aslaksen et al [4].  

 

Procedure 

The experiment occurred inside a steel cubicle (2.8 X 2.8 m) where the participants were placed 

in a comfortable chair. The cubicle was shielded from sound and electricity, and the temperature 

was kept at 20 °C. We applied thermal stimuli to the left underarm to induce pain. To assure an 

equal pain level across participants at the start of the experiment, a calibration procedure was 

performed. The calibration procedure estimated the stimulation intensity in °C sufficient to 

evoke a pain intensity of 60 on a 100-point computerized visual analog scale (VAS). In order 

to approximate the stimulus intensity needed to produce a rating of 60 on the VAS, we predicted 

the stimulus intensity by using Stevens's power equation [37] VAS=b(t-t0)
c. In this equation b 

is a scaling factor, t is the stimulus temperature, t0 is the intercept where VAS is assumed to be 
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zero which was set to 35°C, and c is the exponent which defines the shape of the stimulus 

response function which was estimated based on the 8 calibration trials [28]. The individually 

calibrated temperature was used throughout the experiment for each participant.  

After calibration, the participants received two pain stimulations in the pretest. The duration of 

the stimulations (pretests and posttests) were 10 seconds from when the thermode reached the 

calibrated target temperature (43°C-47°C) until the start of the return to baseline at 32°C. The 

temperature of the thermode increased/decreased by 10°C/second. The interval between pre-

test 1 and pre-test 2 was 30 seconds. The post-tests 1, 2 and 3 had the same temperature, duration 

and intervals as the pre-tests. Immediately after the pretests, the information about the treatment 

was provided to the participants allocated to the treatment groups where they received either 

placebo or Emla. The participants in the placebo group were told, “the cream that will be applied 

to your arm reduces pain. The substance in the cream is used as a local anesthetic in many pain-

reducing remedies and is effective in the treatment of heat pain”. The participants were also 

told that there would be a break for a few minutes to allow the cream to produce the analgesic 

effect. In the natural history group, no cream was applied, and no information about the 

treatment was provided. The participants were told that there would be a break of a few minutes 

and that they could relax and wait. Measures of perceived stress were obtained because 

reduction in these measures are shown to be associated with successful induction of placebo 

analgesia [14]. Subjective stress was measured on a numerical rating scale with a range from 0 

to 100 before the calibration procedure, after the pretests, after the treatment, and after the last 

posttest. The stress measurement was performed similar to previous studies [2; 4]. Saliva 

samples for genotyping were obtained immediately after the last stress measurement. The group 

of experimenters consisted of four females and two males with a mean age 24 years. The 

experimenters were psychology students who had extensive experience in performing 

experimental lab-procedures on human subjects. Three experimenters performed each 
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experimental run, thus each participant interacted with three experimenters. The experimental 

procedure had a total duration of approximately 45 min.  

 

Genetic analyses 

Collection of saliva and extraction of genomic DNA was done using an Oragene RNA sample 

collection kit (DNA Genotech Inc. Kanata, Ontario, Canada) according to the manufacturer’s 

instructions. SNP genotyping was carried out using predesigned TaqMan SNP genotyping 

assays for OPRM1 rs1799971 and COMT rs4680 (Applied Biosystems, Foster City, CA, USA). 

Approximately 10 ng genomic DNA was amplified in a 5-µl reaction mixture in a 384-well 

plate containing 1x TaqMan genotyping master mix (Applied Biosystems) and 1x assay mix, 

the latter containing the respective primers and probes. The probes were labeled with the 

reporter dye FAM or VIC to distinguish between the two alleles. After initial denaturation and 

enzyme activation at 95 °C for 10 min, the reaction mixture was subjected to 60 cycles of 95 

°C for 15 s and 60 °C for 1 min. The reactions were performed on an ABI 7900HT sequence 

detection system. Negative controls containing water instead of DNA were included in every 

run. Genotypes were determined using the SDS 2.2 software (Applied Biosystems). 

Approximately 10% of the samples were re-genotyped, and the concordance rate was 100%. 

 

Statistical analyses 

Continuous data were analyzed with linear mixed models (LMM) and binary logistic regression 

was used to test the interaction effect of OPRM1 by COMT on the placebo response. Area under 

the curve (AUC) for the logistic regression model was calculated by saving the probability 

values from the regression, and the calculated probabilities were then tested in a receiver 

operating characteristic (ROC) curve with the placebo response (dichotomized) as the state 
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variable. Bootstrapping with 1000 samples was performed to test the stability of the regression 

coefficients and p-values. The software was SPSS version 24 (IBM, SPSS, USA). OPRM1 

Asn/Asp (N = 58) and Asp/Asp (N = 7) were combined into */Asp (N = 65) similar to e.g. [30; 

32]. Group (placebo, natural history), OPRM1 genotype, COMT genotype, and Trial were 

entered as fixed factors and sex was a covariate in the repeated LMM. LMM was chosen 

because this method is suitable for analyzing data with unequal group sizes, handle missing 

data without losing power in the analyses compared to standard general linear models, and 

allows combinations of both fixed and random effects [45]. An autoregressive covariance 

structure of the data (AR1) was found to produce the best fit in the LMM, shown by Akaikes 

information criterion and the –2 log likelihood parameter. The participants were assumed to 

exhibit significant individual variance, and the individual variance was treated as the only 

random effect in the repeated measures analysis. The p-values for pairwise comparisons within 

interactions were adjusted for multiple comparisons with Bonferroni corrections. Thus, the 

reported p-values for comparisons in interactions are the adjusted values. To analyze the 

mediation effect of stress on placebo analgesia, a regression based method with bootstrapping 

(Process Procedure for SPSS, release 2.16.3) was used [21].  An alpha value of .05 was used in 

all analyses. 

 

Results 

Descriptive data for the sample is shown in Table 1. No deviation from the Hardy-Weinberg 

equilibrium was observed (OPRM1 χ2 (288) = 1.81, p = .17; COMT χ2 (298) = .39, p = .55)  

Pain levels were not different in the pretests between the placebo and the natural history group 

(p =.34), thus, the calibration procedure equalized individual differences in pain reports in the 

pretests. However, when analyzing pain reports, the random effect parameter in the LMM 
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showed that individual differences accounted for a significant portion of the total variance in 

pain data (Variance = 277.29, 95% CI [230.11–334.16], SE = 26.39, Wald Z = 10.51, p < .001). 

Males reported lower pain compared to females (F (1, 271.19) = 15.27, p < .001), but there 

were no sex differences between the placebo group and the natural history group (F (1, 271.19) 

= 1.69, p = .20). The group by trial interaction was significant (F (4,693.06) = 4.74, p = .001) 

with lower pain reports in the placebo group compared to the natural history group. Thus, a 

significant placebo effect was observed. 

Moreover, a significant main effect of the OPRM1 genotype was found, where subjects with 

Asn/Asn reported lower pain than */Asp carriers (F (1, 270.68) = 13.52, p < .001). In contrast, 

no main effect of the COMT genotype was observed (F (2, 271.04) = .05, p = .95). Subjects 

with Asn/Asn reported a significant placebo effect compared to */Asp carriers shown by the 

interaction of group by trial by OPRM1 genotype (F (8, 693.08) = 12.36, p < .001), where 

significant differences between the two alleles were found in the two last posttests (both p’s < 

.001). The non-significant interaction group by trial by COMT genotype (F (16, 693.28) = 1.31, 

p = .19) revealed a tendency towards significance, where subjects with Met/Met and those with 

Val/Met in the placebo group reported descriptively lower pain in the posttest compared to 

participants with Val/Val. 

In order to test the hypothesis that subject with the OPRM1 Asn/Asn in combination with the 

COMT */Met may report increased placebo analgesic responses we examined the interaction 

group by trial by OPRM1 genotype by COMT genotype. The results showed a non-significant 

interaction (F (20, 467.32) = 1.55, p = .063). Nonetheless, significant differences between the 

placebo group and the natural history group were observed in posttest 2 (Asn/Asn and Met/Met 

p < .001 / Asn/Asn and Val/Met p = .008;) and 3 (Asn/Asn and Met/Met p < .001 / Asn/Asn 

and Val/Met p < .001) with Bonferroni adjusted pairwise comparisons, see Figure 1. On the 
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other hand, subjects with other combinations displayed no significant placebo effects. All fixed 

effects based on the linear mixed model are shown in Table 2.   

To further validate the interaction effect in the repeated LMM, we examined the placebo 

response in the placebo group defined as a change score (pretest – posttest) larger than 13 points 

on the visual analog scale [15; 38] to test the interaction effect of OPRM1 Asn and COMT Met. 

A binary logistic regression model with the placebo responding as the dependent variable, and 

OPRM1 by COMT as the predictor was fitted. The reference category was OPRM1 */Asp and  

COMT Val/Val). The interaction OPRM1 by COMT was significant (Wald (2) = 16.54, p < 

.001). AUC = .71, 95% CI [.61 - .79], SE = .047, asymptotic p < .001). Participants with two 

specific combinations exhibited significantly higher placebo responses than the reference 

group. These were participants with OPRM1 Asn/Asn and COMT Met/Met (B = 1.4, Wald (1) 

= 8.67, OR = 4.07, 95% CI [1.6 – 9.45] p = .003), and those with OPRM1 Asn/Asn and COMT 

Val/Met (B = 1.83, Wald (1) = 16.61, OR = 6.2, 95% CI [2.52 – 10.45], p < .001). The other 

combinations of OPRM1 and COMT were not significantly different from the reference group. 

The group sizes for the combinations of OPRM1 and COMT in the placebo group were: OPRM1 

Asn/Asn by COMT Met/Met (n = 35), OPRM1 Asn/Asn by COMT Val/Met (n = 54), OPRM1 

Asn/Asn by COMT Val/Val (n = 22), OPRM1 */Asp by COMT Met/Met (n = 7), OPRM1 */Asp 

by COMT Val/Met (n = 15), OPRM1 */Asp by COMT Val/Val (n = 9). The bootstrap with 1000 

samples revealed small bias values for the regression coefficients with bias = .03 for the OPRM1 

Asn/Asn by COMT Met/Met and bias = .04 for OPRM1 Asn/Asn by COMT Val/Met.  

 

By using a mediation analysis script for SPSS [21], we tested whether the placebo analgesic 

effect (first pretest – last posttest) was mediated by the change in stress (pretest – posttest), with 

OPRM1 genotype and COMT genotype as covariates. The results revealed a significant model 

(R2 = .28, p < .001) based on 5000 bootstrap samples where the change in stress was a significant 
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mediator for placebo analgesia, see Figure 2. Similar to the results from the repeated measures 

LMM, the OPRM1 and the combination OPRM1 Asn/Asn and COMT Met/Met genotype had 

significant main effects on placebo analgesia, whereas no such effects were shown for the 

COMT genotypes. Furthermore, neither the OPRM1 nor the COMT genotype had any 

significant relation to the change in self-reported stress, all p’s were > .10.   

 

Discussion 

The results from the present study suggests that the combination of specific SNPs in the genes 

encoding OPRM1 and COMT can serve as predictors for experimental placebo analgesic 

responding. Previous studies have revealed that the Asn/Asn and */Met separately may be 

associated with placebo analgesia [32; 47]. Still, this is the first study testing the interaction 

between these genotypes for placebo analgesic responding. In line with Pecina et al. [32], we 

found that subjects with Asn/Asn had significantly higher placebo responses compared to */Asp 

carriers. Hence, the predictive role of the OPRM1 genotype in placebo analgesia seems to be 

replicable. Previous studies have suggested that COMT Met homozygotes metabolize opioids 

more efficient compared to Val homozygotes [36]. Thus, the interaction effect observed in the 

present study could be related to a more efficient endogenous opioid system in OPRM1 

Asn/Ans and COMT Met/Met carriers.  

The logistic regression model suggested that the likelihood of reporting a placebo response 

were approximately 4 – 6 times higher in participants having the Met/Met or Val/Met – 

Asn/Asn combination compared to those with the Val/Val - */Asp combination. However, the 

strength of this result depends on the definition of the placebo response. In the present study, 

a valid placebo response was defined as a change score of 13 VAS-points or more [15; 16; 38] 

when examining the pre – post pain score in the placebo group. Hence, other cut-offs for a 
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valid placebo response would produce different odds-ratio values. Furthermore, the explained 

variance in the mediation analysis was 28%. This suggests that other factors are important for 

prediction of placebo analgesic responding, even if the included genetic variables explained a 

significant proportion of the variance in the present design.   

The sample size of the present study was larger than previous experimental studies 

investigating genetic influence on placebo analgesia. Nonetheless, the six combinations of 

OPRM1 and COMT had an uneven distribution of participants, and the OPRM1 */Asp + 

COMT Met/Met and OPRM1 */Asp + COMT Val/Val combinations consisted of 17 and 18 

subjects respectively, compared to the OPRM1 Asn/Asn + COMT Val/Met combination 

consisting of 102 subjects. Future studies testing the interaction of genotypes should therefore 

include a larger number of subjects, and in multi-center studies in order to increase power and 

reduce the impact of the natural skewness of the allelic distribution on statistical analyses. In 

the present study, data was analyzed with linear mixed models in order to statistically handle 

the uneven distributions across allelic combinations [45]. However, the results regarding the 

placebo analgesic effect for the OPRM1 */Asp + COMT Met/Met and OPRM1 */Asp + 

COMT Val/Val combinations should be interpreted with caution due to the limited number of 

subjects included in these groups.   

The placebo analgesic response is based on self-reported pain. Thus, this response is complex 

and influenced by multiple other factors than genetics [10; 22]. Psychological traits and 

personality factors have previously been associated with placebo analgesia [17; 27; 31], 

however, broad personality factors and psychological traits do not necessarily capture the 

variability in states that influence whether a placebo is effective or not. Therefore, measures 

that are stable in different contexts, such as genetic factors/composition, should be included 

when the aim is to predict placebo analgesia [20]. In an experimental study on placebo 

analgesia, Yu et al. [47] combined data from resting-state functional magnetic resonance 
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imaging, personality measures and genotyping with regard to COMT. The results from that 

study showed significant contributions from all sources of the included data, and the 

explained variance in the design was 59%. Consequently, concomitant inclusion of multiple 

data sources could provide comprehensive conclusions about predictors for the placebo 

analgesic response. However, inclusion of several genotypes and other data sources and 

require larger samples than included in the present study and in those studies previously 

published on placebo analgesia and genetics.  

Moreover, other genotypes than those included in the present study might influence placebo 

responding. Studies investigating the endocannabinoid pathway have shown that this system 

may mediate placebo analgesia [6], and this is further supported by a study showing that genetic 

variability in the gene encoding the fatty acid amide hydrolase (FAAH) has an impact on 

placebo analgesic responding [33]. Thus, future studies should test combinations of FAAH, 

COMT and OPRM1 in large samples. To our knowledge, the present study is the first to include 

more than one SNP in the analysis of placebo analgesia.  

Genotypes that affect affective responses to pain stimuli might be candidates for predicting 

placebo analgesia. The results from the present study and several others (for an overview, see 

[1; 14]) suggests that emotional factors are central for the placebo analgesic response. Recently, 

we showed that subjects with COMT Met/Met displayed increased fear of pain compared to 

*/Val carriers [15], suggesting that COMT genotype may affect stable traits associated with, 

but not directly influence emotional activation after placebo administration. On the other hand, 

the Met/Met has earlier been linked to higher placebo responses in patients with irritable bowel 

disease [19], a condition associated with elevated pain related distress and unpleasantness.  

However, all participants in our study were healthy volunteers with no history of chronic pain 

and might therefore had different expectancies of a drug effect regarding analgesics compared 

to pain patients in need of pain relief. In addition, patients enrolled in an RCT probably display 
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higher emotional engagement regarding hope for improvement and the desire for relief [35] 

compared to healthy participants in an experimental pain study. Nonetheless, as shown in 

several earlier experimental studies on the mechanisms of the placebo analgesic response, 

emotional activation in the experimental setting affects the magnitude of the placebo response 

[14].  

As mentioned above, previous studies have revealed that the OPRM1 Asn/Asn, but also the 

COMT */Met may be associated with placebo analgesia. Moreover, we expected that COMT 

Met/Met carriers would display stronger reduction of negative emotions after placebo 

administration compared to those with the COMT */Val genotype. However, no such Met/Met 

effect was observed in the present study, and there was no effect of COMT on the change in 

stress. A possible explanation for the lack of support for our hypothesis may be the low stress 

levels in the pretests that may have produced a floor effect in the change data for stress. Thus, 

the placebo administration was probably not a sufficient reinforcement for further stress 

decrease in our sample of healthy volunteers. 

Taken together, the role of COMT in affective responses may be complicated. For example, 

Zubieta et al [48] found higher levels of affective responses to pain in subjects with the Met/Met 

compared to those with Met/Val or Val/Val. This is in line with studies showing that Met/Met 

carriers display more fear related behavior [44], but conflicts with studies showing that Met/Met 

carriers have larger placebo responses [19; 47] that theoretically should be associated with 

larger reduction of negative emotions [14]. On the other hand, the present study found no main 

effect of COMT on the placebo analgesic response or stress reduction, and the present study 

cannot be conclusive about the effect of COMT on emotional modulation in placebo analgesia.  
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Experimental pain reports vary across healthy individuals [9; 29]. A possible way to reduce this 

variability is calibration of the stimulus intensity before the experimental procedure [42], as 

performed in the present study. Nonetheless, pain ratings in the present study indicated intra-

individual variability across trials as shown by the significant random effect of individual 

variance. Moreover, the experience of pain may also depend on the modality of the test 

stimulus. Thermal heat is used in experimental pain studies, drug-development and for clinical 

purposes [26]. Hence, knowledge of factors that can improve prediction accuracy of placebo 

responding is important in studies employing thermal heat pain as the pain inducing stimulus. 

We conclude that genotyping with regard to OPRM1 and COMT may predict who will respond 

favorably to placebo analgesic treatment. Future studies should also test for other combinations 

of SNPs and preferably include other sources of data in order to provide accurate predictors for 

the placebo response.  
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