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Summary 
G-protein coupled receptors (GPCRs) are targets for 1/3 of the drugs available on the 

market making research on this class of proteins a very hot topic in the field of drug 

discovery. γ-amino butyric acid (GABA) and glutamate are respectively the main 

inhibitory and the main excitatory neurotransmitters in the mammalian central nervous 

system (CNS). The GABAB receptor (GABAB-R) and the metabotropic glutamate receptors 

1-8 (mGlu1-8-Rs) belong to family C GPCRs and are functional dimers. They are potential 

drugs targets for the treatments of CNS disorders among others. GABAB-R is also involved 

in drug and alcohol addictions. The actual therapeutic treatments for CNS diseases come 

with serious side-effects due to off-target binding. Allosteric modulators (AMs) might 

hold the opportunity to design more selective drugs with less unwanted effects as the 

allosteric binding sites are less conserved than orthosteric binding sites. An allosteric 

binding site has been identified in GABAB-R and mGlu-Rs. The 3D structure of the GABAB-

R is unknown while experimental structures of the mGlu1-R and mGlu5-R are available. 

Though, the activation mechanism of these receptors remains unclear to this date.  
In the first part of the present study, using the computational technique of homology 

modelling, several spatial conformations of the subunit GABAB2 were predicted. These 

theoretical 3D models were used to map the residues of the putative allosteric pocket of 

GABAB-R. They were also employed in a ligand- and structure-based virtual ligand 

screening to retrieve potential AMs for the GABAB-R within a database of 8 million 

commercial compounds. 55 compounds were bought and the experimental testing 

confirmed that 8 of the identified compounds act as allosteric modulators for the GABAB-

R. 

In the last part of this study, the experimental structure of mGlu1-R was employed as 

a model to investigate the activity mechanism of several AMs. Using the computational 

technique of non-biased molecular dynamics (MD) simulation, several partially 

overlapping binding pockets were identified. The role of water molecules was also 

demonstrated to be critical for the protein-ligand interactions and activation. One of the 

AMs with agonist activity induced the opening of a water channel extended from the 

cytosol up to a region proposed to be important for activation. These results are in lines 

with other studies performed on GPCR family A members.  

The presentation of the first AMs discovered via in silico efforts and the allosteric 

pocket for the GABAB-R will be of big help for future drug discovery campaigns. The 
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results of the MD simulations might help to find a general mechanism of activation for the 

GPCRs.  
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1. Introduction 
The adult human central nervous system (CNS) contains approximately 86 billion 

nerve cells (neurons) (Herculano-Houzel, 2009), that communicate with each other via 

chemical synapses. The communication requires release of chemical substances, 

neurotransmitters, which interact with membrane proteins called neurotransmitter 

receptors. These receptors are located both in pre- or post-synaptic cellular membranes. 

Some neurotransmitters trigger the firing of the neurons by depolarisation of the cellular 

membrane while other trigger inactivation of the neuron by hyperpolarisation of the 

cellular membrane. So far, more than 100 different neurotransmitters have been 

identified and categorized into two broad categories: neuropeptides and small-molecule 

neurotransmitters (Purves et al., 2001). In the last category, we find the biogenic amines 

(dopamine, noradrenaline, epinephrine, histamine and serotonin) and the amino acids, 

which includes neurotransmitters such as γ-amino butyric acid (GABA) and glutamate 

(Purves et al., 2001). Two mains groups of neurotransmitter membrane receptors 

coexist: 1.- ionotropic receptors (ligand-gated ion channels) giving fast responses lasting 

for a few milliseconds (e.g. reflexes). 2. - metabotropic receptors (G-protein coupled 

receptors) giving slower and longer lasting responses than the ionotropic receptors.  

1.1. Glutamate and GABA neurotransmitters in the CNS 

Glutamate is the main excitatory neurotransmitter in the mammalian CNS (Pol et al., 

1990). Glutamate is synthesised locally in the axon terminal, due to its incapacity to cross 

the brain blood barrier (BBB), and is released into the synaptic cleft upon depolarisation. 

The glutamate reuptake is performed by transporter proteins, located in the membrane 

of glial cells and in presynaptic neurons, called excitatory amino acid transporters 

(EAATs). 

Glutamate exerts its function by activating ionotropic receptors that mediate fast 

excitatory synaptic transmission. Autoregulatory receptors on the presynaptic neuron 

regulate the increase or decrease of neurotransmitter release. So far, three ionotropic 

glutamate receptors have been identified and named after their pharmacological profile: 

ionotropic N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-isoxazole-4-

propionate (AMPA) and kainate (KA) receptors (D T Monaghan et al., 1989; Hollmann 

and Heinemann, 1994).  
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The glutamate receptor family also contain eight metabotropic receptors (mGlu1-8-Rs) 

responsible for slow synaptic activation (seconds) and cellular excitability. The mGlu-Rs 

are subdivided into three subgroups according to their sequence homology, 

pharmacological profile and guanine nucleotide binding protein (G-protein) coupling. 

Group I, consisting of mGlu1- and mGlu5-R, are located predominantly postsynaptic 

(Pittaluga, 2016) and are responsible for excitation. When activated, mGlu1- and mGlu5-

R couple with Gq and G11 G-proteins giving stimulation of the phospholipase C (PLC) 

signalling cascade and triggering of calcium mobilization from endoplasmic reticulum 

that leads to firing of postsynaptic neurons (Niswender and Conn, 2010). Group II, 

consisting of mGlu2- and mGlu3-R and group III, consisting of mGlu4-6-7-8-Rs, are usually 

located on presynaptic neurons as auto- or hetero receptors. Group II as well as mGlu4- 

and mGlu8- have also been described to be expressed on postsynaptic neurons (Bradley 

et al., 1996; Koulen and Brandstätter, 2002; Muly et al., 2007), where they couple with 

the Gi and Go G-proteins and inhibit adenylate cyclase, resulting in decreased release of 

neurotransmitters into the synaptic cleft and reduction of the excitability of postsynaptic 

neurons (Niswender and Conn, 2010). For all mGlu-Rs, exceptions of the expression, 

localisation and G-protein coupling described above can be seen in several areas of the 

brain (see examples in Niswender and Conn, 2010), and only general trends are listed 

above. For instance, mGlu5-R was demonstrated to be capable of forming weak Gs 

coupling when activated by the agoPAM VU0424465 (Nasrallah et al., 2018).  An agoPAM 

is a positive allosteric modulator (PAM) with agonist activity (see below).  

GABA is synthetized from glutamate and in general is giving the opposite effect of 

glutamate, as GABA is the main inhibitory neurotransmitter in the mammalian CNS. GABA 

exerts its biological functions by activation of three types of membrane receptors: the 

ionotropic receptors GABAA and GABAC and the metabotropic GABAB receptor (GABAB-

R). The action of GABA in the synaptic cleft is terminated by reuptake by the GABA 

transporters (GAT) located in the neurons and glial cells (see review Krirschuk and Kilb, 

2012; Scimemi, 2014). The GABAB-R is expressed on both pre- and post-synaptic neurons 

and couples to the Gi and Go G-proteins. When activated, GABAB-R inhibits adenylate 

cyclase giving a decrease in intracellular cAMP levels (Figure 1).  
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Figure 1: Effectors of the GABAB receptors. Effects of the GABAB receptor activation when located in presynaptic/postsynaptic neuron. ATP: Adenosine Triphosphate, cAMP: Cyclic 

adenosine monophosphate, GDP: Guanosine Diphosphate, GTP: Guanosine Triphosphate, VGCC: Voltage Gated Calcium Channels, GIRK: G-protein-coupled inwardly-rectifying potassium. 

(modified from Gassmann and Bettler, 2012). 
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The presynaptic GABAB-Rs function as auto- and hetero receptors, and the activation 

results in reduced neurotransmitter release, primarily through the inhibition of calcium-

dependent neurotransmitter release. Presynaptic activation not only reduces the release 

of GABA, but also the release of serotonin, noradrenaline and dopamine (Conn et al., 

2014). The Gα subunit inhibits adenylyl cyclase while the Gβɣ complex inhibits voltage 

gated calcium channels (VGCCs) (Figure 1) (Kohl and Paulsen, 2010). 

Activation of postsynaptic GABAB-R results in inhibition of adenylate cyclase and 

triggers the opening of G-protein-coupled inwardly-rectifying potassium (GIRK) 

channels via Gβɣ activity, leading to K+ efflux and hence hyperpolarisation (Figure 1). 

The eight mGlu-Rs and the GABAB-R s all belong to family C of G-protein coupled 

receptors (GPCRs), and share the same structural and mechanistic characteristics.  

1.2. G-protein coupled receptors 

The GPCR superfamily is one of the largest and oldest, and members are found in all 

kingdoms: animal, plant, fungi and protozoa (Perez, 2003; Xue et al., 2008). Studies have 

estimated that 2 % percent of the human genome is coding for GPCRs, giving more than 

800 human GPCRs (Fredriksson et al., 2003). GPCRs are transmembrane proteins sharing 

a motif of seven transmembrane α-helixes. Their role is to transduce external stimulus to 

the inside of the cell. GPCRs are activated by a variety of ligands: from photons and ions 

to neurotransmitters, lipids and peptides. GPCRs obtained their name since it was 

discovered that upon activation they couple to G-proteins at the intracellular side of the 

membrane. GPCRs have also been seen to undergo conformational change and G-protein 

coupling without external stimulus present (see review Costa and Cotecchia, 2005), 

which is known as constitutive activity. GPCRs can also activate other signalling pathways 

by coupling to arrestins (see below). GPCRs are involved in the regulation of a wide 

variety of cellular and physiological functions, which means they are also involved in 

numerous pathological processes which explains why this protein class is the most 

studied for drug discovery (see overview Hauser et al., 2017). About 1/3 of the drugs on 

the market target GPCRs (Hauser et al., 2017; Overington et al., 2006) but the targeted 

GPCRs represent only a fraction of the GPCRs expressed in the human body (Hauser et al., 

2017). 

1.2.1. G-protein coupled receptor families  

The International Union of Basic and Clinical Pharmacology (IUPHAR) is responsible 

for an international classification system for human GPCRs. The classification is based on 
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the amino acid sequences similarities of their transmembrane domain; hence they are 

divided into 5 mains families (or classes). The classification system is often termed the 

GRAFS classification based on the names of the families as follows: Glutamate (family C), 

Rhodopsin (family A), Adhesion, Frizzled (family F) and Secretin (family B) (Civelli et al., 

2013; Gloriam et al., 2007). Another overlapping classification system is also used that 

splits GPCRs into a clan system from A to F. The largest family is family A containing all 

receptors binding biogenic amine neurotransmitters, peptides and hormones as well as 

the receptors responsible for vision, olfaction and type 2 taste receptors. Family B mainly 

consists of receptors activated by peptides. Family C contains receptor activated by 

amino neuromodulators, calcium and pheromones and the taste receptors of type 1. The 

members of each family are then subdivided according to sequence similarities, 

pharmacological profiles and G-protein coupling. Numerous orphan receptors with 

unknown endogenous ligands are also found within the families A and C (Pándy-Szekeres 

et al., 2018). 

1.2.2. Activation of signalling pathways 

GPCRs are known to adopt multiple conformations depending on the ligand bound, 

and one receptor may couple to several signalling cascades. According to the 

conformation adopted upon activation, the triggered intracellular signalling cascade 

differs, and is now distinguished between G-protein-dependant signalling and G-protein 

independent signalling (Figure 2, Hilger et al., 2018). 

G-proteins are heterotrimeric proteins consisting of the subunits Gα, Gβ and Gɣ. In the 

inactive form, all subunits are found as a heterotrimer located at the membrane with a 

guanosine diphosphate (GDP) bound at the Gα subunit. The activation of GPCR triggers a 

conformational change of the 7TM bundle and then the coupling with a G-protein. The 

GPD is exchanged for a guanosine triphosphate (GTP) followed by the dissociation of the 

heterotrimer to Gα-GTP and the dimer Gβɣ. Each subunit interacts with its target(s), the 

effectors. Effectors are enzymes or ion channels that modulate the levels of molecules 

often called the second messengers. The Gα subunit has a GTPase activity and as such, 

cleaves GTP to GDP which triggers the deactivation of the G protein and the reassembly 

of the subunits as a heterotrimeric complex (Figure 2, Oldham and Hamm, 2008).  

Activation of a GPCR may also leads to coupling to arrestins and thus, to activation of 

G-protein independent pathways. The GPCR needs to be phosphorylated by a G-protein-

coupled receptor kinase (GRK) at the intracellular part of the receptor before coupling 
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with an arrestin. There are four subtypes of arrestins (arrestin 1-4). Arrestin-2 and 

arrestin-3 are also called β-arrestin1 and β-arrestin2. Arrestins are activated by coupling 

with a phosphorylated GPCR. Once formed, the GPCR-arrestin complex triggers arrestin- 

dependant signalling pathways such as activation of mitogen-activated protein kinases 

(MAPKs) or SRC kinases (Hilger et al., 2018). The coupling to arrestin can also lead to 

internalisation of the complex for GPCR recycling or degradation (Figure 2). For full 

review of both type of signalling pathways please see Hilger et al., 2018.
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Figure 2 G-protein-coupled receptor signal transduction. Illustration of the G-protein-dependant and -independent signalling pathways upon GPCR activation. ATP: Adenosine 

Triphosphate, GTP: Guanosine Triphosphate, GDP: Guanosine Diphosphate, GRK: G-protein-coupled receptor kinase, NL: N lobe of arrestin, CL: C lobe of arrestin, MAPKs:  mitogen-activated 

protein kinases. (modified from Hilger et al., 2018.) 
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1.2.3. General structural knowledge 

The GPCRs are also named 7TM receptors since they share a common domain of 7 

membrane-spanning segments conserved through the evolution despite quite low amino 

acid sequence similarities (<15% between family A and C, Paper 1). The membrane 

spanning segments constitutes of 7 transmembrane α helices (TM), labelled TM 1-7 from 

the N- to the C-terminus (Figure 3). The helices are linked to each other by intracellular 

and extracellular loops (ICL 1-3 and ECL 1-3 respectively, Figure 3). Some of the GPCRs 

have an eighth helix located at the C-terminal intracellular part and parallel to the lipid 

membrane. The pattern of TM organization is the same in all GPCR families, generating a 

circular bundle with the N- and C-termini located extracellularly and intracellularly, 

respectively.  

 
Figure 3 Schematic view of the organisation of the termini, loops and 7 TM helices of a GPCR.TM: Transmembrane 

helix, EL: Extracellular Loop, IL: Intracellular Loop (modified from Gacasan et al., 2017) 

Up to the year of 2000, the structural knowledge about GPCRs was limited and was 

based on indirect knowledge from molecular biology studies, amino acid sequence 

analysis and the electron microscopy maps of rhodopsin (see review Costanzi et al., 

2009). The release of the x-ray crystal structure of the membrane domain of bovine 

rhodopsin in 2000 was a major breakthrough (Palczewski et al., 2000). Other important 

breakthroughs in the field was the release of the x-ray crystal structure of an engineered 
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human β2-adrenergic receptor (β2-AR, Cherezov et al., 2007) in complex with the agonist 

carazolol, and later the human β2-AR coupled with a bovine Gs G-protein (Chung et al., 

2011) as well as the experimental structure of rhodopsin bound to arrestin (Kang et al., 

2015). In addition, the first representatives of the family B (Siu et al., 2013), C (Doré et 

al., 2014; Wu et al., 2014) and Fizzled members (Wang et al., 2013) were resolved in 2013, 

2014 and 2013 respectively.  

At present (June, 2018), 252 GPCR x-ray crystal structures of 67 unique receptors are 

available in the PDB with a majority belonging to family A (Pándy-Szekeres et al., 2018). 

Only 20% of the 252 x-ray structures are in an active conformation (from family A and 

B), the others being either in an intermediate state or an inactive conformation. Recently, 

four experimental structures of GPCRs bound to their G-protein were resolved by cryo 

electron microscopy (cryo-EM): the human rhodopsin, human adenosine A1 and μ-opioid 

receptors bond to the G-protein Gi (Draper-Joyce et al., 2018; Kang et al., 2018; Koehl et 

al., 2018) as well as the serotonin 5-HT1B receptor coupled to the Go G-protein (García-

Nafría et al., 2018). 

In spite of the low sequence similarities between the TM helices of the GPCRs, the 

helical packing is very well conserved throughout the entire superfamily (Cvicek et al., 

2016), and multiple sequences motifs are also conserved within each of the families. 

Based on family A studies, an active conformation of a GPCR is primarily characterised by 

an outward movement of the intracellular part of TM6 compared to the inactive 

conformation, which opens the binding pocket for the G-protein (Rasmussen et al., 2011). 

Based on the analysis of active and inactive x-ray crystal structures of rhodopsin, 

muscarinic M2 and β2-AR receptors, Cvicek et al. identified that the difference between 

an active and an inactive conformation could be resumed to changes in terms of 

molecular contacts involving only 15 different residues (Cvicek et al., 2016). 

 

1.3. Family C of G-protein coupled receptors 

1.3.1. General structure and binding pockets 

GPCRs members of the family C are functional dimers. Compared to family A, family C 

receptors possess an additional domain located at the N-terminus, termed the Venus 

Flytrap (VFT). The binding pocket for endogenous ligands, also named the orthosteric 

binding pocket, is located within the 7TMs of family A receptors. For family C, this binding 

pocket is located in the VFT (Figure 4). The VFT is connected to the 7TM domain via a 
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cysteine-rich linker domain (CRD), however, this domain is lacking in the GABAB-R 

(Figure 4). An allosteric binding pocket has been described and confirmed experimentally 

within the 7TM bundle, located in a region corresponding to the orthosteric binding 

pocket of family A (Doré et al., 2014; Wu et al., 2014).  

 

 
Figure 4 illustration of a GPCR family C member, the GABAB-R (modified from Conn et al., 2009) 

1.3.2. The GABAB receptor 

1.3.2.1. Structural knowledge 

GABAB-R is a functional heterodimer of two protomers (GABAB1a or GABAB1b and 

GABAB2, (Robbins et al., 2001). Two ligand-binding sites have been characterised for the 

GABAB-R. GABA and other orthosteric compounds bind to the extracellular VFT of GABAB1 

(Brown et al., 2015). The allosteric modulators (AMs) bind GABAB-R in a binding site 

mapped in the 7TM domain of the GABAB2 (Figure 4) (Binet et al., 2004; Dupuis et al., 

2006). The dimer of the VFT domains of GABAB-R as well as the VFT of the GABAB2 alone 

(Geng et al., 2012) were resolved by x-ray crystallography in apo form and in complex 

with agonists or antagonists (Geng et al., 2013). These crystal structures showed that the 

VFT of the GABAB1 closes upon binding of an agonist, while antagonists stabilise an open 

GABAB1 VFT conformation. The VFT of GABAB2 remains in an open state both when 
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agonists or antagonists bind the VTF of GABAB1. No orthosteric binding site is present in 

the VFT of GABAB2 (Kniazeff et al., 2002), which is responsible for coupling to G proteins 

(Galvez et al., 2001). To date, no experimental structures of the heptahelical domain of 

the GABAB-R is available.  

GABAB1 cannot be expressed alone at the membrane due to the presence of an 

endoplasmic retention sequence (ERS) at its C-terminal (Margeta-Mitrovic et al., 2000). 

The ERS is hidden through a coil-coil interaction when both subunits are presents (Calver 

et al., 2001; Pagano et al., 2001).  

1.3.2.2. GABAB receptor as drug target  

The GABAB-R is considered as a putative target for new drug development in 

numerous neurological and neuropsychiatric disorders including anxiety and depression, 

epilepsy, autism spectrum disorders, drug and alcohol addiction, schizophrenia, as well 

as other conditions such as muscle spasticity, gastrointestinal reflux disorder, and pain 

(Brown et al., 2015; Cryan and Kaupmann, 2005; Lehmann et al., 2012). The GABAB-R has 

been linked with depression for 30 years (see review Ghose et al., 2011). The GABAB-R as 

a pharmacological target in anxiety and major depressive disorder (MDD) has been 

controversial since both agonists and antagonists have shown to exhibit antidepressant 

activity (Frankowska et al., 2007). The GABAB-R has a very complex signalling network 

and different signalling systems are dominating in different brain regions (Gassmann and 

Bettler, 2012; Pin and Bettler, 2016). As a consequence, an active compound may create 

diverse and sometimes opposite effects depending on where the compound acts, and the 

dominating signalling system in that area. This may also explain that both agonists and 

antagonists have shown antidepressant effects.  

The only marketed drug targeting the GABAB-R is the orthosteric compound baclofen, 

a selective agonist (Bowery, 1993). Baclofen is used to treat spasticity (Penn and Kroin, 

1987) and has also been demonstrated to treat alcohol dependence (Morley et al., 2014; 

Pastor et al., 2012). No antagonists or AMs targeting the GABAB-R have yet been marketed 

as a drug but several are at the stage of clinical trials (see below). 

 

1.3.3. Metabotropic glutamate receptors  

1.3.3.1. Structural knowledge 

Like the GABAB-R, the mGlu-Rs are functional dimers. For a long time, it was 

anticipated that mGlu-Rs only form homodimers, however, recently it was discovered 
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that they also can form heterodimers (Doumazane et al., 2010; Moustaine et al., 2012; Yin 

et al., 2014). A study showed that the pharmacological profile of the heterodimer is 

different from the homodimers. For instance, the mGlu2:mGlu4-R heterodimer showed a 

pharmacological profile different from that of the mGlu2-R and mGlu4-R homodimers (Yin 

et al., 2014). Within a dimer (both homo- and heterodimers), only one of the protomers 

couples with G-proteins upon activation (Moustaine et al., 2012).  

The VFT domains of most mGlu-Rs have been solved by x-ray crystallography, while 

the 7TM domains of mGlu1-R (Wu et al., 2014) and mGlu5-R (Christopher et al., 2015, 

2018; Doré et al., 2014) are known from x-ray crystallography. In the x-ray structure of 

the TM domain of the mGlu1-R (Wu et al., 2014), the receptor is found as a homodimer, 

however, the interface of contacts between the two protomers may be an artefact of the 

crystallisation process as described by a paper investigating the promoters interface by 

cysteine cross-linking of the mGlu2-R (Xue et al., 2015).  

1.3.3.2. Metabotropic glutamate-receptors as drug target 

The wide distribution of metabotropic glutamate receptors throughout the CNS is 

linking the mGlu-Rs to numerous brain functions and hence to dysfunctions. Dysfunction 

of glutamatergic neurotransmission is connected to numerous CNS disorders (for review 

see Gregory et al., 2013; Niswender and Conn, 2010) such as depression (Pilc et al., 2008), 

anxiety (Swanson et al., 2005), schizophrenia (Moghaddam, 2004), Parkinson disease 

(Masilamoni and Smith, 2018), L-DOPA-induced dyskinesia (Sebastianutto and Cenci, 

2018), Fragile X syndrome (Michalon et al., 2012), and epilepsy (Alexander and Godwin, 

2006; Ngomba and van Luijtelaar, 2018).  

The distribution of mGlu-R subtypes is not homogenous in the brain, so targeting the 

correct subtype is necessary for a successful treatment of a disease. For instance, group I 

mGlu-Rs are connected to depression, while group II is connected to anxiety and 

schizophrenia. Group III members have been linked to Parkinson disease, addiction and 

depression ( Gregory et al., 2013; Niswender and Conn, 2010). 

1.4. Mechanism of GPCR activation 

GPCRs show constitutive activity, indicating that they are in equilibrium between 

populations of inactive and active receptor conformations without external stimuli 

present (Costa and Cotecchia, 2005). Different chemical compounds induce different 

receptor conformations, changing the equilibrium between active, intermediate and 
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inactive conformations. Most of the mechanistic activation features are protein specific, 

or family specific, but some features are accepted as common among GPCRs. 

1.4.1. Family A 

The first available 3D structures of GPCRs in active conformations were family A 

members, and most of the publications concerning mechanism of activation were from 

this family. A list of all active GPCRs 3D structure is available on the website of the 

GPCRdb (Pándy-Szekeres et al., 2018). At present, (June, 2018) 17 active state receptor 

3D structures are available, but only for family A and B.  

The most obvious difference between active and inactive conformations is a large 

outward movement of the intracellular part of TM6 in the active conformation compared 

with the inactive. This movement allows G-protein to interact with the receptor. An ionic 

lock is present in approximately 50 % of all family A GPCRs, and the outward movement 

of TM6 requires a breakage of the ionic lock. The ionic lock is formed between two well-

conserved charged amino acids: an arginine from the D/ERY motif in position 3.50a 

(TM3), and a D/E in position 6.50a (TM6) (Trzaskowski et al., 2012).  

Upon activation, W6.48a, from the CWxP motif found in TM6, is moved inward 

(Trzaskowski et al., 2012), but this movement is not seen in all x-ray crystal structures of 

activate GPCRs and was not proposed as a common activation feature. 

The motif NPxxY at the intracellular end of TM7 is known as the activation switch. 

During activation of family A members, Y7.53a.48c (Y in NPxxY) is moved inward to fill up 

the space created by the outward movement of TM6 (Rasmussen et al., 2011; 

Trzaskowski et al., 2012). This switch is also named the “tyrosine toggle switch” in the 

scientific literature.  

A hydrophobic hindering mechanism (HHM) involving the position F6.44a, L3.43a and 

X6.40a (with X a bulky amino acid) was also proposed. It was suggested that during 

activation there is rearrangements of these residues and creation of a water channel 

within the receptor (Tehan et al., 2014). Another study also found that the 

reorganisations of hydrophobic amino acids receptor during the activation process 

permits the creation of a water channel. One of these rearrangements was identified to 

Y7.53a from the NPxxY motif (Yuan et al., 2014).  
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1.4.2. Family C 

1.4.2.1. VFT 

The first step in the activation of family C GPCRs is closing and stabilisation of the VFT. 

For GABAB-R, only GABAB1 binds GABA, while both protomers of an mGlu-R dimer bind 

glutamate. The closing of GABAB1-VFT is enough for full activation of the GABAB-R. For 

mGlu-R, the closing of one VFT is enough for getting an activate receptor but is not 

sufficient for maximal activation of the receptor (Kniazeff et al., 2004).  

After closing of GABAB1-R, the VFT is reoriented and inter-contacts between the two 

lower lobes of GABAB1-R and GABAB2-R are formed. The CRD linking the VFT domains and 

the 7TM domain was demonstrated to be necessary for an the allosteric communication 

between the VFT domain and the 7TM domains of the mGlu-Rs (Rondard et al., 2006). 

The molecular mechanism of signalling between the VFTs and the 7TM domains is still 

unknown both for GABAB-R and the mGlu-Rs (Rondard et al., 2017). Studies on mGlu 

receptors and other family C members have shown that a receptor truncated of its VFT 

domain (Binet et al., 2004; Goudet et al., 2004; Ray et al., 2005; Rovira et al., 2015) or 

locked by cysteine cross-links in an inactive state (Xue et al., 2015) can still be activated 

by agoPAMs.  

1.4.2.2. 7TM domain 

Based on an in vitro cysteine crosslinking study of the mGlu2-R it was suggested that 

during activation, the contact interface between the protomers is changing from TM4-5 

in the inactive conformation to TM6 in the active conformation (Xue et al., 2015), and only 

one of the protomers couples to the G-protein.  

The model for activation of mGlu-Rs described by Rondard and Pin (Rondard and Pin, 

2015) proposed an activation time windows of 50 milliseconds (ms) between the 

orthosteric ligand binding and formation of the active receptor conformation. As in family 

A GPCRs, an ionic lock was also identified in the crystal structures of the mGlu1-R and 

mGlu5-R between a glutamic acid in TM6 and a lysine in TM3 (Christopher et al., 2015, 

2018; Doré et al., 2014; Wu et al., 2014). This ionic lock is supported by polar interaction 

with a serine in ICL1, and suggested to be important for activation (Doré et al., 2014). A 

second ionic can be found in the experimental structures of mGlu1-R and mGlu5-R 

between the glutamate in TM6 and a lysine in TM7 (Christopher et al., 2015, 2018; Doré 

et al., 2014; Wu et al., 2014). 
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No experimental structures of an active state of a family C member is available, but MD 

simulations of mGlu-Rs with PAMs described weakening of this ionic lock (Dalton et al., 

2017), and similar effects have also been described by site directed mutagenesis (Doré et 

al., 2014). 

1.4.3. GPCR ligands 

Orthosteric compounds compete with the endogenous agonist for the binding at the 

orthosteric binding site. An orthosteric compound can either act as an agonist or an 

antagonist. When an endogenous agonist binds at the active site, the agonist stabilises the 

receptor in an active conformation. The magnitude of activation obtained by agonist 

binding depends on: the affinity for the binding site, and its efficacy. A full agonist has a 

high efficacy and activates the receptor to its fullest whereas a compound with less 

efficacy (less receptor activation capacity) than the full agonist is a partial agonist (Figure 

5). Compounds that bind the receptor without triggering any effect (do not activate or 

turn off the constitutive activity, but has affinity), thus impairing its activation upon 

binding, are referred to as antagonists. An inverse agonist has a negative efficacy on the 

receptor activation by decreasing the constitutive activity of the receptor upon binding 

(Figure 5).  

 
Figure 5 Dose response curve for the different type of orthosteric compounds. 

AMs are ligands that bind the same target, but to a topologically different binding site 

than the orthosteric compounds. AMs can be of all sizes, from an ion to big chemical 

entities (Katritch et al., 2014). Allosteric modulation is an old concept known for at least 
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50 years, but has become an emerging topic in the pharmacology of GPCRs during the last 

years (Conn et al., 2009, 2014; Wootten et al., 2013). AMs may alter the affinity and/or 

efficacy of an orthosteric agonist, thus enhancing or inhibiting the receptor activation. 

AMs are characterized as PAMs when they increase the effects of the orthosteric agonist, 

or negative allosteric modulator (NAMs) when they decrease the effects of the orthosteric 

agonist (Figure 6).  The AMs act by modulating the agonist affinity, the receptor efficacy 

or both, depends on the chemical properties of the AMs. In principle, the AMs act only 

when an agonist is present at the orthosteric site and do not trigger any effect on the 

receptor by itself. Nevertheless, some PAMs have been identified to have intrinsic agonist 

activity, and thus are called agoPAMs (Conn et al., 2014). Recently, strong agonist 

properties were identified for the GABAB-R PAMs CGP7930 and rac-BHFF, and a weak 

activation for GS39783 without any agonist present. In the same study several specific 

PAMs for GABAB-R were also identified (Lecat-Guillet et al., 2017). 

 

 
Figure 6 PAM Simple schematic representation of PAM (a) and NAM (b) activity using typical dose-

response curves (modified from Niswender and Conn, 2010). 

1.4.4. Allosteric GPCR modulation 

In order to give a therapeutic effect, orthosteric drugs need to bind to its target. 

However, no compound is fully specific, and hence the ligands interact with other 

receptors/sites than the target. The “off-target binding” may lead to unwanted effects.  

The design of subfamily specific orthosteric compounds for family A GPCRs is impaired 

by relative high conversation of orthosteric binding sites between family A members. 

Further, the high conservation of the orthosteric binding site for glutamate between the 

mGlu-Rs is also making the design of orthosteric mGlu-R ligands with specificity for a 
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particular mGlu-R very challenging (Wu et al., 2014). The allosteric binding sites are 

generally less conserved than the orthosteric between family members, and hence may 

give the opportunity to design compounds with higher specificity for the targeted 

receptor than the orthosteric site, and several unwanted side effects may be avoided.  

Unlike orthosteric ligands, AMs do not compete with endogenous ligands for their 

binding site, and lower dosages may be required than for orthosteric compounds. It is 

therefore also less likely to develop tolerance for allosteric than for orthosteric drugs. 

Allosteric compounds would also give the possibility of “fine tuning” the response 

induced by binding of the endogenous orthosteric compound (Conn et al., 2009). In 

conclusion, the use of AMs as drugs may help to obtain a more specific binding, and hence 

lead to higher selectivity and fewer side effects. AMs cooperate with the orthosteric 

endogenous compound and may lead to therapeutic effect at lower dosages than 

traditional agonists or antagonists.  

 

In spite of that, the design of AMs for family C members is very complex as the first 

experimental structures of mGlu1-R and mGlu5-R have been available only recently (Doré 

et al., 2014; Wu et al., 2014). The 3D structure of the 7TM of the GABAB-R is still unknown 

making the design of AMs for GABAB-R especially challenging. GABAB-R share a sequence 

identity of 19% and 22% with mGlu1-R and mGlu5-R respectively. The difficulties are also 

due to possible hetero dimerization as previously described, biased signalling (see 

below), and that the relationships between the AM binding and the affinity/coupling 

efficacy of orthosteric binding site are not easy to interpret. Furthermore, some AMs for 

the GABAB-R have been seen to be species-dependant (Sturchler et al., 2017). In addition, 

the exploitation of SAR data is not straightforward as small changes in the residues 

shaping the binding pocket or in the chemical structure of the ligand can radically 

changes the activity of AMs or even abolish the compound activity or change PAMs into 

NAMs or vice versa (for a review see Conn et al., 2014). Such changes are termed 

“molecular switches” and have been seen both for mGlu2-R and mGlu5-R (Gregory et al., 

2013b; Pérez-Benito et al., 2017; Wood et al., 2011). Recently, it was suggested that these 

small chemical changes might have crucial impacts on the network of water molecules 

that is formed within the binding pocket (Christopher et al., 2018). This is also what we 

observe in paper 3, where we used different types of AMs complexed with mGlu1-R to 

investigate modulator induced conformational changes on the 7TM bundle.  
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1.4.4.1. Family A GPCR modulators as drugs  

To this date, no AMs targeting GPCRs for the treatment of brain disorders have been 

marketed, but long lasting efforts have brought several AMs to present ongoing clinical 

trials (Hauser et al., 2017). However, several marketed drugs in other disease areas are 

GPCR AMs, such as the drug Cinacalcet from Amgen, a specific PAM for the calcium 

sensing receptor, used in the treatment of hyperthyroidism (Lindberg et al., 2005) or the 

well-known drug Maraviroc, from Pfizer to treat HIV, is a NAM for the C-C chemokine 

receptor type 5 (Dorr et al., 2005).  

Allosteric binding pockets have been identified within the 7TM and connecting loops 

of several family A receptors. In the x-ray crystal structure of the M2 muscarinic 

acetylcholine receptor, the allosteric compound AM LY2119620 binds within the ECLs of 

the 7TM bundle (pdb id 4MQT, Kruse et al., 2013). Sodium has also been identified to act 

as a PAM for multiple family A GPCRs (Katritch et al., 2014). The sodium binding site is 

found at the midrange of the receptor and displayed in the crystal structure of the 

adenosine receptor A2a in complex with the inhibitor ZM241385 (PDB code 4EIY, Liu et 

al., 2012). MK-7622, a muscarinic M1 receptor PAM developed by Merck to treat 

Alzheimer, was in Phase II clinical trials before the compound was stopped (Uslaner et 

al., 2018), and to the best of our knowledge no further testing have been performed. A list 

of AMs targeting GPCR of class A, B and C can be found in the supplementary data of the 

comprehensive review written by Conn et al. (Conn et al., 2014) as well as in the review 

by Hauser et al. (Hauser et al., 2017). 

1.4.4.2. Allosteric modulators of GABAB-receptor 

It has been demonstrated that allosteric modulators of GABAB-R may be pathway-

dependent and species selective (Sturchler et al., 2017). It has also been shown that 

calcium might act as a PAM for GABAB-R by binding at the VFT (Galvez et al., 2000). Only 

a few PAMs and a couple of NAMs are available for the GABAB-R, and up to date no AMs 

targeting the GABAB-R is marketed as a drug. However, some PAMs are in clinical trials 

such as the compound ADX71441 which is in phase 1 clinical trials for approval to treat 

Charcot-Marie-Tooth Type 1A disease (CMT1A) and alcohol and nicotine dependences 

(ADDEX website). 
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1.4.4.3. Allosteric modulators of metabotropic glutamate receptors 

No endogenous AMs have been identified so far for mGlu-Rs, but numerous synthetic 

AMs have been developed for most mGlu-Rs (Goudet et al., 2018,) but none of them are 

yet in clinical use. 

mGlu2-R and mGlu5-R are the predominant targets for drugs discovery among the 

mGlu-Rs, with numerous patents and several drug candidates in clinical trials, such as the 

specific mGlu5-R NAM fenobam, which was recently solved by x-ray crystallography in 

complex with the mGlu5-R (PDB id 6FFH, Christopher et al., 2018). This compound was 

discovered through a HTS campaign and was tested as an anxiolytics in the 1980s (Berry-

Kravis et al., 2009) and is now tested, like mavoglurant, in a phase II clinical trial to treat 

Fragile X syndrome (Berry-Kravis et al., 2016). The publication of the crystal structures 

of the 7TM of mGlu1-R and mGlu5-R was a breakthrough for structure-based drug design 

(SBDD) of mGlu-R modulators (Doré et al., 2014; Wu et al., 2014). Chloride anions were 

also demonstrated to be strong PAMs for mGlu-Rs by exerting their effect at the VFT (Tora 

et al., 2015). 

1.4.5. Biased signalling  

GPCR activation leads to activation of G-proteins and/or arrestin signalling pathways 

and some ligand have also been identified to favour one signalling pathway over others 

(Rajagopal et al., 2010; Smith et al., 2018). Compounds, including some GABAB-R PAMs 

have also been revealed to differentiate between different G-protein signalling pathways 

(Sturchler et al., 2017). This concept is known as functional selectivity or ligand bias 

(Figure 7). When a receptor in general is favouring one pathway in front of others, it is 

termed receptor bias, such that a ligand binding two receptors may favour G-protein 

coupling in one and arrestin in the other (Figure 7). The concept of biased signalling, in 

addition to the increased understanding of GPCR signalling pathways and disease 

mechanisms, may suggest that compounds with ligand bias for GPCR promoting 

beneficial pathways while blocking potential deleterious signals may be favourable 

drugs. Ligand bias increases the complexity for drug design by adding another ligand 

property to be refined but it also allows the design of compounds potentially more 

specific in relation to the disease targeted.  
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Figure 7 Biased signalling. A. Balanced signalling. B. Biased ligand. C. Biased receptor. Purple: arrestin-biased, Blue: 

G protein-biased, GRK: G protein-coupled receptor kinase. (modified from Rajagopal et al., 2010) 

 

1.5. Molecular modelling in preclinical drug discovery  

1.5.1. Modern drug discovery  

A modern drug discovery process can be split into three main axes: 1.- The discovery 

phase, done in the laboratory with identification of the target and discovery of 

compounds of interest (hits), and improvements of the hits to lead compounds. 2. - 

Preclinical tests, performed on animals to establish the pharmacokinetics, and toxicology 

profiles of the compounds. 3. - Clinical trials, performed in humans to assess the efficacy, 

the side effects and the safety of the putative drugs (Rang et al., 2011).  

The cost for bringing a new drug to the market is estimated to several billions dollars 

and the process can last up to 15 years (Dickson and Gagnon, 2004; Mullard, 2014). 

Hence, all steps in the drug discovery process need to be optimized and the use of in silico 

methods during the drug discovery campaign has become of common practice.  

 

1.5.1.1. Drug-likeness 

A drug-like compound is a compound that is sharing certain physicochemical 

properties with other molecules acing as drugs. The rule of five (RO5) also called 

Lipinski’s rules of 5 were initially published in 1997 (Lipinski et al., 2001). They are a set 

of guidelines or strategies for designing oral drugs with good bioavailability. After 
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analysing marketed oral drugs and drugs validated in phase II or III of clinical trials, 

Lipinski came up with four properties favouring oral administration and 90 % 

bioavailability (good aqueous solubility and intestinal permeability): molecular weight 

below 500 Daltons, the logarithm of the octanol-water partition coefficient (log P) <5, no 

more than 5 hydrogen bond donors and a maximum of 10 H-bond acceptors. If the 

compound of interest is breaking more than one of these rules, it most likely has low 

bioavailability after oral administration.  

For CNS drugs, others parameters such as their capacity to pass the blood–brain 

barrier (BBB) and their affinity for transporter proteins found in the BBB need to be taken 

into account. Hence, a compound satisfying the Lipinski rules and in addition has a total 

number of oxygen plus nitrogen atoms < 5 (Norinder and Haeberlein, 2002) might have 

good BBB penetration, and if the drug in addition has a polar surface area (PSA) < 60-70 

(Kelder et al., 1999) or a log P – (N+O) > 0 (Norinder and Haeberlein, 2002), the 

compound most likely penetrates BBB and may be CNS active.  

The RO5 filtering is usually one of the first steps done to reduce the number of 

compounds from a chemical database during drug development but the administrative 

route of the drug should also be considered. The chemical space of putative “drug-like 

compounds” was estimated to be between 1023 and 1060 molecules (Polishchuk et al., 

2013) while there are more than 20,000 proteins in the human genome. Thus, the use of 

screening techniques is necessary for a fast identification of hit compounds for a given 

target protein as the number of potential compound-protein associations is very huge. 

The screening can be performed in vitro by high-throughput screening (HTS) 

techniques. HTS requires the design of fast and sensible techniques. The quite small 

numbers of compounds that can be tested in a short amount of time and the cost 

associated limit the use of HTS as the initial screening in drug discovery campaigns 

(Hawkins and Stahl, 2018). In silico methods can be used to handle massive amounts of 

data in a short time and require less resources than traditional in vitro methods. This 

makes such approach a suitable alternative for initial screening in the first stage of a drug 

discovery campaign. These methods are often termed as computer-aided drug design 

(CADD).  

 



22 
 

1.5.2. Molecular mechanics and force fields 

“Molecular modelling encompasses all theoretical methods and computational 

techniques used to mimic and study the structure and behaviour of molecules, ranging 

from small chemical systems to large biological molecules and material assemblies.” 

(definition from https://www.nature.com/subjects/molecular-modelling). During the 

last decades, molecular modelling has evolved with the increase of central processing 

unit (CPU) power, and is today commonly used in drug discovery to:  

x Quick identification of hit compounds (screening) 

x Identify ligand structures that can be obtained from suppliers or synthesised  

x Improve a hit into a lead compound  

x Predict the activity/toxicity of a chemical compound  

x Analyse protein-ligand interactions through docking and molecular dynamics 

(MD) simulations (also applicable for protein-protein interactions)  

x Find structurally similar compounds  

x Generate pharmacophore models, structure–activity relationship (SAR), 

fingerprinting, and other ligand-based methods. 

The description of molecules is done using mathematical terms. According to the aim 

of the calculations and size of the molecular system different approaches are used to 

describe the system: quantum mechanics (QM), molecular mechanics (MM) or a hybrid 

method using both (QM/MM).  In QM, molecules are described at the atomic scale with 

each subatomic particle considered as individual entities. In MM, the movements of 

electrons are ignored. Hence, each atom composing the molecular system is described as 

spheres linked to the others by springs (Höltje, 2008). The spheres are centred on the 

nucleus with a volume corresponding to their van der Walls (vdW) radius. The springs 

represent the bonded interaction (covalent bonds) and the electrons are non-described.  

An in silico description of a full protein by QM is currently not possible due to large 

CPU demands (Bordner, 2012). On the other hand, it is possible to use a hybrid QM/MM 

approach to evaluate the contribution of residues or water molecules involved in the 

protein-ligand interactions or to study a chemical reaction (Gräter and Li, 2015). In a 

hybrid QM/MM approach, the binding site and the ligand are described using QM, while 

the remaining part of the system is described by MM. MM is more commonly employed 

https://www.nature.com/subjects/molecular-modelling
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to describe large biological system like protein complexes, having a balance between the 

accuracy of the description and CPU costs.  

In MM, the total energy function, or the potential energy function, links the geometry 

of a molecular system to its energy (Bordner, 2012). The total energy (Etot) of a system is 

calculated by summing the different forces involved in the covalent interactions of the 

system (Ebonded) and the interactions between all pairs of atoms not bonded chemically 

(Enon-bonded,). Ebonded is the sum of the energy terms expressing bond- stretching and -

compressing (Ebond), angle bending (Eangle) and torsion (Edihedral). Enon-bonded is the sum of 

the energy terms representing the electrostatic (Eelectrostatic) and van der Waals (EvdW) 

interactions (Bordner, 2012) . The total energy of the molecular system can be written as 

(equation 1): 

 

Etot = Ebonded + Enon-bonded  

Ebonded = Ebond + Eangle + Edihedral   (1) 

Enon-bonded=EvdW + Eelectrostatic 

 

The different terms of the potential energy function are usually described as harmonic 

potentials with optimal values (reference values) calculated or obtained from ab initio 

quantum calculations and experimental data (Bordner, 2012). The collection of the 

unstrained values together with empirically derived parameters (the force constants) are 

called force fields (Lindahl, 2015). A deviation from the reference value (positively or 

negatively) results in an energy penalty. The form of the potential energy function and 

the optimal values in the parameter file can vary between force fields depending for what 

they are designed for (Bordner, 2012). One geometry of the molecular system is 

associated with one Etot and by mapping all the Etot a system can take; a landscape of 

potential energy can be drawn (Figure 8) with only one global minima (in blue on the 

figure) and several local minima.  
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Figure 8 Illustration of a landscape of total potential energy for a given protein with multiple local minima and one 

global minima ( from http://www1.lsbu.ac.uk/water/images/dry_surface.gif). 

1.5.3. Molecular modelling techniques  

As previously mentioned, the number of putative compounds with drug-like 

properties is very huge, and hence, in silico screening techniques are used to rapidly 

discriminate inactive compounds from those susceptible to be active. Compounds 

predicted in silico as highly active are further tested by experimental methods. These in 

silico steps are referred to as Virtual screening (VS), which can be considered as the in 

silico parallel to HTS. 

VS methods can be divided into two main approaches: structure-based and ligand-

based VS methods (Cross, 2018). The structure-based methods can be employed when 

the structure of the target protein is known at the atomic level. That can be 3D structures 

obtained by experimental methods (x-ray crystallography, Nuclear Magnetic Resonance, 

sometimes also cryo-EM) or by homology modelling. Ligand-based methods can be 

employed when we have information about known active ligands for the target protein. 

In the studies that the thesis is based upon, we have utilized a combination of both 

methods. Homology modelling technique is considered as structure-based method as it 

uses knowledge about the 3D structure of homologous proteins as templates. In the 

following, I will explain in more detail the in silico methods that have been used during 

the PhD project.  

http://www1.lsbu.ac.uk/water/images/dry_surface.gif
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1.5.3.1. Databases 

Independent of the VS approach used for the identification of new compounds, a 

critical point is the choice of compound database for the screening. A chemical database 

for screening can contain several million compounds. The compounds can be of all origin, 

natural products, stable theoretical compounds (Ruddigkeit et al., 2012), or commercially 

available synthetic compounds. Chemical databases can be from commercial vendors, 

academic, private (pharmaceutical companies), and be general or more focused libraries 

of compounds. A typical updated database might contain from thousand up to several 

million diverse compounds, and hence, it is essential to handle the database with care. 

The databases should be pre-optimized to: 

x Remove duplicates 

x Eliminate extra chemical entities, like ions or solvent from the compound of 

interest 

x Check correct representation (3D) of the compounds. 

x Only keep compounds compatible with the aims of the project 

 

1.5.3.2. Ligand-based methods 

1.5.3.2.1. Fingerprinting 

Ligand-based methods use information from the structure of known ligands for the 

target protein to identify new compounds (Wishart, 2015). Both 2D and 3D ligand-based 

methods can be employed. Binary fingerprinting is a 2D ligand-based method (Cereto-

Massagué et al., 2015; Hawkins and Stahl, 2018). The chemical structure of a set of known 

target binders can be described by binary fingerprints (bit strings, Figure 9). These 

fingerprints are then used to screen in silico databases to identify compounds containing 

similar binary fingerprints, with the aim of retrieving putative new ligands for the target 

protein (Willett, 2006).  
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Figure 9 Binary fingerprint. Illustration of binary fingerprints. Each chemical moiety of the molecule will activate a 

specific bit. At the end, the molecule is described as a string of 0 and 1 where 1 indicates presence of a chemical moiety, 

while 0 indicates that the moiety is not present. https://i571.wikispaces.com/file/view/Picture_18.gif 

Multiple types of fingerprints exist to describe chemical features, and several should 

be tested to identify the best for a particular set of compounds (Duan et al., 2010). Once 

the type of fingerprint is selected, a similarity search is performed in the chemical 

database to retrieve similar compounds using similarity metrics like the Tanimoto 

coefficient (Tc, equation 2, Cereto-Massagué et al., 2015). Tc is a value between 0 and 1 

with 0 indicating the two compounds are completely dissimilar, while 1 indicate that the 

compounds are identical. 

  

𝑻𝒄 = 𝒄
𝒂+𝒃−𝒄

  (2) 

 

In equation 2, a is the number of bits activated in compound A, and b the number of 

bits activated in compound B. C is the number of common activated bits for molecule A 

and B. 

 

1.5.3.3. Pharmacophore modelling  

Ligand-based 3D pharmacophore models are representations of the 3D structural 

features necessary for activity among a group of known active compounds (Horvath, 

2010), while structure-based pharmacophore models are generated based on protein–

ligand complexes from experimental studies or docking. Structure-based and ligand-

based pharmacophore models express the set of chemical features (hydrogen bonds 
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donor/acceptor, hydrophobic, etc,) a ligand (active or inactive) should possess or not in 

order to obtain activity for the target protein (Figure 10).  

The building of ligand-based pharmacophores is done by generating and aligning 

conformations of the known compounds in order to identify the crucial chemical 

functions needed for activity (Horvath, 2010). Several pharmacophore models can be 

generated from the same set of ligands, and their quality is assessed using scoring metrics 

such as the Youden index (Youden, 1950) that was used in paper 2. The selected 

pharmacophore models (ligand-based or structure-based) are then used to screen a 

database to retrieve compounds that match with the models (Labute, 2018).  

 
 
Figure 10 Pharmacophore models. Illustration of a structure-based (A) and a ligand-based (B) pharmacophore 

models with the definition of different chemical features found in the ligand(s)- Yellow spheres: hydrophobic, red spheres 

hydrogen bonds donor and green sphere: hydrogen bonds acceptor. (Kaserer et al., 2015) 
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1.5.3.4. Structure-based methods 

1.5.3.4.1. Homology modelling 

When the atomic resolution 3D structure of the target protein is unknown, 

computational methods can be used to predict the 3D structure. Several molecular 

modelling methods are available for structural predictions including ab initio and 

homology modelling techniques. The most used method for such predictions is homology 

modelling, where the 3D structure of a homologues protein (template structure) is used 

as a starting point to construct a theoretical 3D model of the target protein. This 

technique is possible due to a higher conservation of the 3D structure than the sequence 

(Chothia and Lesk, 1986). The evolution of secondary structures is also slower than of 

loops, hence secondary structures are more conserved than loops between homologue 

proteins. In order to construct reliable models, it is important that a template structure 

with appropriate amino acid sequence homology and related function to our target is 

available. Thus, every new experimental structure is not only a success for the subfamily 

the solved protein belongs to but also for all its structural homologues. It is generally 

believed that a sequence identity of at least 30 % between the template and target is 

necessary to obtain reliable models of membrane proteins (Forrest et al., 2006). 

Structural experimental studies of membrane proteins are not straight forward and the 

number of GPCR structures with known 3D structure is still quite limited (Pándy-

Szekeres et al., 2018), although it has been a huge increase in the number of available 

GPCR structures during recent years (Cvicek et al., 2016). For each solved GPCR structure, 

the number of GPCR members that can be predicted by homology modelling is also 

increasing. 

The homology modelling method contains several steps (Figure 11) (Simms, 2010);  

1. Template identification: A blast search is performed with the sequence of the 

target protein against structures in the PDB databank. Usually, the 3D structure(s) with 

the highest sequence identity with the target will be selected as template(s).  

2. Template-target alignment: the sequence of the target protein and the sequence 

extracted from the crystal structure of the template are aligned. The sequence alignment 

is a critical step; the conserved residues need to be correctly aligned to generate reliable 

models. To identify conserved residues a multiple sequence alignment (MSA) is usually 

constructed.  
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3. Model building: This is the step where the theoretical 3D model of the target 

protein is built. The conformations of conserved amino acids are copied from the 

template, while the conformations of non-conserved amino acids are built or generated 

by searching rotamer libraries. Due to high structural flexibility, some loops are often 

lacking in the experimental 3D template structures, and these missing parts need to be 

generate by ab-initio or knowledge-based approaches. 

 

 
Figure 11 Homology modelling steps. Schematic representation of the main steps for building a theoretical 3D 

model of a protein. 

1.5.3.4.2. Docking and scoring 

When a detailed 3D structure of the target protein is available from experimental 

studies or homology modelling, it is possible to predict the binding orientation (docking 

pose) of a ligand in the binding pocket of the target protein (Figure 12). The docking 

approach is commonly used in drug discovery to predict putative binders from a set of 

compounds , to split between true ligand (true positive) and decoys (true negative), and 

to rank between a set of compounds (Sliwoski et al., 2014). 

The docking procedure consists of two steps: 1) a search algorithm that explores 

different binding poses of the ligands inside the binding pocket of the protein 2) a scoring 

function that predicts the strength of the protein-ligand interactions of the docking pose. 
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Figure 12 Docking. Illustration of the docking procedure (Tenorio et al., 2013) 

The binding of a ligand to a protein was described by the “key-lock principle”, but 

today we know that this is a dynamics process where both the ligand and the protein 

undergo conformational changes adopting to the structure of each other (Vogt and Di 

Cera, 2013). The previous and the present concepts are reflected in the different 

approaches of docking available: Rigid and semi-flexible docking. The computation of the 

ligand and protein flexibility increases the time and CPU cost for the process.  

In rigid docking, both the compounds and the protein are kept rigid. Hence, the only 

degree of freedom for the compounds within the binding pocket is rotation and 

translation. Such approach is very fast and allow the screening of databases of millions of 

compounds. The flexibility of the ligand in rigid docking can be taken into account by 

prior generation of ligand conformations. A more CPU costly method adds another degree 

of freedom to the ligands, the torsion. This is the default procedure for docking with the 

software Glide (Friesner et al., 2004). The ligand is fully flexible while the protein is kept 

rigid. Docking methods that encompasses flexibility of both the protein and ligand 

(flexible docking) have also been developed and is implemented in several docking 

programs (Lexa and Carlson, 2012). However, it is still too computationally intensive 

(Lexa and Carlson, 2012) to be the default procedure for SBDD. 

 The 3D geometry of proteins in x-ray crystal structure reflects the most populated 

conformation during the crystallization. As mentioned above, the binding pocket of a 

protein adapts to its ligand. Hence, if a crystal structure was solved with a ligand, the 

binding pocket conformation might not be ideal for optimal docking results of even close 

ligand analogues if the protein is kept fully rigid. In silico methods may be used to explore 

alternative proteins conformations, including induced fit docking (paper 1), Monte-Carlo 

and MD simulations (see below and paper 3). Monte-Carlo simulation is a stochastic 

process independent to time, contrary to MD simulation. Further, the protein flexibility 
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can also be taken into account by docking the same set of ligands to several conformations 

of the binding pocket (Gabrielsen et al., 2012, paper 1, paper 2). 

Scoring functions are used to rank different docking poses by assigning a score value 

to the poses, which reflects a predicted in silico affinity. This step is also important since 

wrong evaluation of poses leads to a wrong selection of ligands for further testing. Hence 

scoring functions help to discriminate “real” ligands (true positive) for the target protein 

among numerous other ligands but can also help to determine the correct binding pose 

when several docking poses are proposed for a same ligand (Orry and Abagyan, 2011).  

The evaluation of a docking pose is performed by calculating its absolute binding 

energy for the protein target by resolving the free energy of binding (∆𝐺) given by the 

Gibbs Helmholtz equation (equation 3) with ∆𝐻 as the enthalpy change, T the 

temperature, ∆𝑆 the entropy change, R the gas constant and Keq the equilibrium constant. 

The ∆𝐺 calculations are CPU demanding, and hence approximations are used to increase 

the output speed.   

 

∆G = ∆H − T∆S =  −RT ln K𝑒𝑞  (3) 

 

Prior to docking, the location of the ligand binding site in the protein need to be 

determined based on knowledge about the binding pose from 3D structure complexes, or 

for example from site directed mutagenesis data. Ligand QSAR data may also guide in the 

determination of the binding site. Then the docking grid has to be calculated. Each grid 

point represents the physicochemical properties of the binding site. The docking 

software then fits the ligand into the grid points to generate the optimal ligand-protein 

binding (Friesner et al., 2004).  

 

1.5.3.4.3. Molecular dynamics simulations 

The aim of molecular dynamics (MD) simulation is to mimic protein motions in silico 

over time. MD simulations are computationally very costly, and the protein motions are 

usually only studied for time periods of nanoseconds (ns) to microseconds (µs)(Lindahl, 

2015). However, the increasing power of calculation available open new perspectives of 

longer time scales of simulations, especially with the general-purpose graphic processing 

unit (GPGPU) calculations (Loukatou et al., 2014) or dedicated hardware like the Anton 

supercomputer (Shaw et al., 2008). MD simulations also use force fields to compute the 
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energy of the molecular system as a function of geometry, although MD simulations using 

QM (Nurisso et al., 2011) or hybrid combination of QM/MM are also available. The 

interacting forces are calculated from the potential energy expression and the atoms are 

treated as particles that move in accordance with Newton’s second law (Lindahl, 2015) 

also called the equation of motion (equation 4).  

 

Fi = miai = mi
d2ri(𝑡)

d𝑡2   (4) 

 

The ensemble of forces applied on particles, 𝐅𝐢, is equal to the product of the masse of 

the particles, 𝐦𝐢, by their acceleration, 𝐚𝐢. The particles represent atoms composing the 

molecular system. The acceleration is the second derivative of the position of a particle 

with respect to time.     

By knowing the position of the particle and the velocity vectors it is possible to 

describe the evolution of the molecular system over time and to draw an MD trajectory. 

This is done by integrating the equation for each time steps, Δt. The time step should not 

be longer than the fastest movements in the molecular system, otherwise it would lead 

to unreliable simulations (bonds vibration: 10-14-10-13 second). However, if the time step 

is too small, the simulation will be too computationally demanding. Usually the time step 

is in the time scale of 1-2 fs (Lindahl, 2015).  

MD simulation of proteins need to pass several steps in order to obtain a stable 

distribution of energy (velocity) throughout the molecular system before the 

“production” phase can start (Nurisso et al., 2011). The production phase is then used to 

analyse the protein motions and protein-ligand interactions. 

The different steps in an MD of a membrane protein can be as follows (paper 3): 1. - 

Preparation of the protein/complex: adding of hydrogen atoms and removal of steric 

clashes. 2. – Embedding the system into a dual lipid membrane layer (the choice of the 

lipid depends of the purpose of the study and the temperature used for the MD). 3. - 

Neutralization of the molecular system with counter ions. NaCl can be added to mimic 

natural settings. The system is solvated with water molecules (Figure 13) 5. - Relaxing 

the molecular system and heating to the desired running temperature. 6. - The production 

run.  

During the relaxation phase, putative constraints applied on different components of 

the system are released step by step, usually followed by a few ns of unconstrained MD 
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before the production phase. One of the crucial steps is the distribution of velocity, which 

will affect the initial direction the simulation will take.  

After the recent success of several studies (see examples Dalton et al., 2017), MD 

simulation has turned to be an well accepted tool and its applicability is well established, 

also for membrane proteins (Miao and McCammon, 2016; Velgy et al., 2018). For 

instance, using the especially designed supercomputer Anton (Shaw et al., 2008), 

activation of the β2 adrenergic receptor was simulated (Dror et al., 2011). MD simulation 

can be used to study time-dependent protein-ligand interactions, the binding/unbinding 

of a ligand with a target (Marino and Filizola, 2018), protein folding, study the binding 

mode of a ligand or family of ligands in order to improve their structure or to generate 

mutated target to validate generated hypothesis (Carlsson and Persson, 2011).  

 

 
Figure 13 : MD system. Illustration of a prepared MD simulation complex of a membrane protein. Crystal structure of 

mGlu1-R in complex with the ligand FITM (rainbow color, PDB code 4OR2, (Wu et al., 2014)) imbedded in a dual lipid 

membrane (in black) with chloride (green spheres) and sodium (red spheres), and solvated in water (red dots). 
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2. Aim of the study 
As described in the introduction, GPCRs are involved in numerous physiological 

processes and diseases. Approximately one third of present drugs target GPCRs. 

Traditional drugs are orthosteric ligands and may be associated with numerous non-

wanted effect due to off-target interactions. Allosteric modulators have several 

advantages in front of traditional agonists and antagonists, and allosteric binding sites 

have been identified in both the GABAB-R and the mGlu-Rs.  

Allosteric modulators of the GABAB-R may have a huge potential as drug candidates in 

several disease areas, few PAMs are already known, but only a couple of NAMs. VS 

combined with experimental in vitro studies have gained success in identifying hit 

compounds that can be developed into lead candidates for drug discovery (Ripphausen 

et al., 2010). The 3D structure of the 7TM domain of GABAB2-R subunit has not been 

resolved experimentally. In order to screen for new allosteric ligand candidates by 

combining in silico and in vitro studies we need a structural model of the GABAB2-R 

subunit. 

The molecular mechanisms of allosteric modulation are not well understood, 

especially for family C GPCRs. It is not clear how the binding of an allosteric modulator 

can induce conformational changes leading to positive or negative allosteric modulation. 

MD simulations can be used to study induced conformational changes of proteins upon 

ligand binding and may help to gain insight into the allosteric binding process. 

The particular aims of the present study were therefore: 

x Generate homology models of the transmembrane domain of the GABAB2-R 

containing the allosteric binding site with conformations compatible with the 

known active PAMs 

x Propose amino acids of the GABAB-R involved in binding of AMs  

x Establish a combined ligand-based and-target based VS approach that is using 

the GABAB2-R models to screen filtered databases of commercial vendors to 

identify and select putative new AMs for further in vitro characterization.  

x Study the impact of the binding of different AMs on the conformation and 

dynamics of the crystal structure of mGlu1-R with non-biased MD simulations.  
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3. In silico methods in the studies  

3.1. Software choices 

3.1.1. Paper 1  

The Modeller software (Fiser and Šali, 2003) was employed to generate GABAB2 –R 

models. The induced-fit docking was performed using with the Schrödinger Induced Fit 

Docking (IFD) protocol (Small-Molecule Drug Discovery Suite 2014-1: Schrödinger Suite 

2014-1). The different 3D structures of GABAB2-R models were prepared with the one-

step protein preparation workflow in Schrödinger Maestro. The clustering of the PAMs 

was handle using Schrodinger Canvas software (Schrödinger Release 2014-1:). Docking 

of the PAMs was performed using the Schrödinger Virtual Screening Workflow (VSW) 

tool with the Glide Standard Precision (SP) method (Small-Molecule Drug Discovery Suite 

2014-1:) and the OPLS2005 force field (Banks et al., 2005). The evaluation of the ligand 

specificity of the different GABAB2-R models was done using the Boltzmann-enhanced 

discrimination of receiver operating characteristic (BEDROC) method (Truchon and 

Bayly, 2007). The protein-ligand interaction analysis was done using in-house scripts of 

Structural Interaction Fingerprints (SIFt, Mordalski et al., 2011). 

3.1.2. Paper 2 

ADMET filtering of the assembled database was performed using Schrödinger Qikprop 

(Schrödinger Release 2014-1:). Pharmacophore models were generated with the Phase 

software from the Schrodinger Suite (Schrödinger Release 2014-1:). The conformations 

were sampled using the software ConfGen (Schrödinger Release 2016-1:) The structure-

based VS workflow was handled using the VSW tool from the Schrodinger Suite with SP 

methods (Schrödinger Release 2016-1:). The scoring of the docking poses of the screened 

ligand was calculated with Prime (Schrödinger Release 2016-1:) and the MM-GBSA 

approach (Li et al., 2011). The clustering and fingerprint of the output were performed 

with the Canvas software (Schrödinger Release 2016-1:).  

3.1.3. Paper 3:  

The mGlu1-R:NAM complex was obtained from the x-ray crystal structure of mGlu1-R 

co-crystalized with FITM (PDB code 4OR2, Doré et al., 2014)). The missing loops in the 

mGlu1-R x-ray crystal structure were built using Schrödinger Prime (Schrödinger Release 

2016-4:). The PAM and agoPAM selected for running the MD simulation were prepared 

with LigPrep (Schrödinger Release 2016-4:). The docking was performed with 
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Schrödinger Glide software (Schrödinger Release 2016-4:) and score using Prime and the 

MM-GBSA approach (Schrödinger Release 2016-4:). The MD simulations were performed 

using Desmond (Schrödinger Release 2016-3:) with the OPLS3 force field (Harder et al., 

2016). Analysis of MD trajectories was performed with the module “simulation 

interaction diagram” (SID) in Maestro. Visual Molecular Dynamics 1.9.3 (VMD) developed 

by the Theoretical and Computational Biophysics group at the University of Illinois at 

Urbana-Champaign (http://www.ks.uiuc.edu/Research/vmd/) was employed to analyse 

interhelical hydrogen bonds and the ionic interactions during MD simulations. The 

analysis of hydration points was performed by using a script developed by Johann 

Hendrickx (https://gitlab.univ-nantes.fr/hendrickx-j/protein\_hydration\_sites.git). 

3.2. Alignment and homology modelling (paper 1) 

A published alignment between the mGlu1-R and the human CXCR4 receptor (PDB ID: 

3ODU as well as other family C GPCRs (Wu et al., 2014) was used as initial alignment for 

constructing the homology models. The templates sequences and the GABAB2 sequence 

were added and manual adjustments performed. The homology modelling technique was 

chosen over ab initio for the building of the 3D models of GABAB2 subunit due to the 

availability of templates. Furthermore, the variety function of MODELLER was used to 

build models with different conformations to scan the conformational space of GABAB2. 

The numbers of generated models from each template were set to 100 due to the capacity 

of the VSW module to handle 100 different receptors maximum in one run. 

The evaluation of the models to enrich known active compounds against decoys is a 

common procedure and has been used with success in other complicated modelling 

projects (Carlsson et al., 2011; Kufareva et al., 2014; Phatak et al., 2010; Rodríguez et al., 

2014). To refine the models and decrease the bias inherited from the templates, 

additional conformations of the models were generated by IFD.  

 

3.3. Virtual Ligand Screening 

The Virtual Screening Workflow of the Schrodinger Suite was used for the multistep 

docking and ranking procedure. A database was assembled by merging 5 commercial 

datasets of ligands. Before the in silico VS, the database had to be filtered. Hence, an 

ADMET filtering was performed using physicochemical parameters derived from the 

https://www.google.com/url?q=https://gitlab.univ-nantes.fr/hendrickx-j/protein%5C_hydration%5C_sites.git&sa=D&source=hangouts&ust=1523601741846000&usg=AFQjCNHzs14nXDjzG1u2AjqxLw1Gt_se1w


39 
 

known actives followed by a pharmacophore mapping. One pharmacophore model was 

generated for each cluster of known PAMs selective for GABAB2-R. 

After the ligand-based approaches, the database was docked into the eight selected 

GABAB2-R models from paper 1, each of them specific for only one cluster of PAMs. 

3.4. Molecular dynamics simulations 

In order to create the mGlu1-R:PAM and mGlu1-R:agoPAM complexes, both ligands 

were docked into the crystal structure of mGlu1-R (PDB code 4OR2, Doré et al., 2014)) 

while the mGlu1-R:NAM complex was from the PDB-database (PDB code 4OR2, Doré et 

al., 2014)). 

Non-biased MD simulations were run on GPU to access the μs timescale of simulation 

with a reasonable amount of computational time. During the simulations, Nosé–Hoover–

Langevin dynamics were used to simulate the NPT ensemble, in which the number of 

atoms (N), the pressure (P) and temperature (T) were fixed with T = 310 K, and P = 

1.01325 bar. To orient the complexes in the membrane, all inputs were superimposed 

with the pre-orientated mGlu1-R structure from the Orientations of Proteins in 

Membranes (OPM) database (Lomize et al., 2006). The TIP3P water model from the 

OPLS3 force field was used as the solvent and the systems were neutralized using Cl- and 

Na+ as counter ions and 0.15M NaCl were added.  
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4. Summary of results  

4.1. Paper 1 

Freyd, T., Warszycki, D., Mordalski, S., Bojarski, A.J., Sylte, I and Gabrielsen, M (2017) 

Ligand-guided homology modelling of the GABAB2 subunit of the GABAB receptor. 

PLoS One, DOI 10.1371/journal.pone.0173889 

All known PAMs for GABAB-R were retrieved from the scientific literature and 

clustered into 5 structural clusters. Using 6 templates from GPCR families A, B and C, 600 

crude homology models were built. The initial models were then ranked by their capacity 

to discriminate the clusters of known PAMs from property matched decoys. Additional 

500 models were generated using the IFD techniques and tested like the first 600 models. 

After evaluation, 8 models were selected based on their specificity for the different 

clusters of known PAMs. No models were found specific for cluster 3 of PAMs, but cluster 

3 shown good binding for some of the other models. Unambiguously, the models based 

on the family C templates were the best to enrich known PAMs.  

By analysing the protein-ligand interactions of the selected models with their specific 

clusters of PAMs, 24 residues belonging to TM3-5-6-7 were identified to shape the 

putative PAM allosteric binding site of GABAB2-R. The putative allosteric binding pocket 

identified in GABAB2 is rather hydrophobic like in mGlu1-R and mGlu5-R and several 

residues were conserved within the mGlu1-8-R allosteric binding sites. 

9 residues were proposed as hot spots as they were in range of interaction with the 

known PAMs in more than 95 % of the docking experiments in the eight selected GABAB2 

models. Out of the 9 residues, 8 correspond to positions that were found to be involved 

in AM binding in other family C members (Pándy-Szekeres et al., 2018). Some of the hot 

spots identified for the GABAB2-R PAMs were located at positions with low conservation 

among mGlu-Rs (Doré et al., 2014). 

4.2. Paper 2 

Freyd, T., Wushur, I., Evenseth, L.M., Warszycki, D.,, Brandski P., Pilc, A., Bojarski, A.J., 

Gabrielsen, M. and Sylte, I. (2018) A virtual ligand screening approach for new GABAB 

receptor modulators. Manuscript. 

Using the GABAB2-R models from paper 1, a VS campaign was established to identify 

putative GABAB-R AMs. A database of 8.2 million compounds was assembled by merging 

the databases of 5 commercial vendors. Ligand-based methods were employed for a 
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multistep filtering. ADMET filtering was performed followed by 3D pharmacophore 

filtering of the database. Pharmacophore models were generated for each of the 5 clusters 

of known PAMs (paper 1). The ligand-based approach decreased the number of 

compounds from 8.2 million compounds to 8021 unique compounds.  

The remaining compounds were docked into the 8 selected homology models from 

paper 1. After docking, a final step of MM-GBSA calculation was performed on the top 

10% of the docking poses. After MM-GBSA, the 20 best scoring compounds in each of the 

8 GABAB2-models were considered for visual inspection and following selection for 

purchasing. In the selection, their 3D structure, structural similarity with known PAMs 

(paper 1), ranking after MM-GBSA and their binding pose were taken into account, and 

55 ligands were purchased for experimental validation. A functional assay studying the 

generation of cAMP was established and the effect of the purchased compounds in 

modulating the cAMP response was studied using Chinese hamster ovary (CHO) cells 

overexpressing the GABAB-R (B1a/B2) and native CHO cells. Out of the purchased 

compounds, experimental studies identified 3 putative PAMs (compounds 35, 38 and 

TI400), and 4 putative NAMs (compounds 3, 5, 6 and 36). In the paper enclosed with the 

thesis, we do not give names or show structures of these compounds to ensure the 

securing of intellectual property rights. 

4.3. Paper 3 

Freyd, T., Hendrickx, J., Sylte, I and Gabrielsen, M. (2018) Opening of an intracellular 

water channel in the metabotropic glutamate receptor 1 by a positive allosteric 

modulator with intrinsic agonist properties. Manuscript. 

The x-ray crystal structure of mGlu1-R in complex with the NAM FITM (PDB id 4OR2, 

(Wu et al., 2014)) was used as a starting point for MD simulations studying the 

interactions of allosteric modulators within the 7TM of the mGlu1-R. We were using 

mGlu1-R since the x-ray structure of the GABAB2-R is not known. Non-biased MD 

simulations were run for 2μs for mGlu1-R in complex with a FITM (NAM), VU0487351 

(PAM) or VU0486321 (agoPAM).  

FITM stabilized an inactive conformation very similar to its crystal structure but with 

a flip of the FITM in the binding pocket and the formation of a small α helix in the modelled 

part of ICL2. A part of this loop is not complete in the x-ray crystal structure and was 

modelled.  
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Both PAM and agoPAM moved in the binding pocket. The PAM moved slightly deeper 

into the intracellular side, while the agoPAM moved upwards very early in the simulation. 

By analysing the position of water molecules over time, we identified several hydration 

points (presence of water >90% of the time frames). The location of these hydration 

points was ligand specific and their position were similar to that of crystallographic water 

molecules found in mGlu5-R experimental structures (Christopher et al., 2018). In a 

shallow binding pocket located in the vicinity the compounds formed by the extracellular 

ends of TM3-4-5 and ECL2, five hydrations points were identified for the mGlu1-R:NAM, 

two for the mGlu1-R:PAM, but none for the mGlu1-R:agoPAM complex. The reason for that 

was that the upward movement of the agoPAM destroyed the hydrogen bonding network 

of the water molecules within this shallow pocket. 

Two ionic locks have been identified in all experimental structures of mGlu1-R and 

mGlu5-R between TM3-TM6 and TM3-TM7. During the MD simulation with the mGlu1-

R:agoPAM the ionic locks were shifting partners and included amino acids in TM3, TM6, 

TM7 and ICL1. This shift was possible for two reasons: 1. -Unfolding of a small helix in 

ICL1, which is present in all available x-ray crystal structures of mGlu-Rs (Christopher et 

al., 2015, 2018; Doré et al., 2014; Wu et al., 2014). 2. -Anticlockwise rotation of the 

intracellular end of TM7 when seen from the bottom. Further, the rotation of the side 

chain of F8317.53a.48c allowed water molecules to penetrate higher into the receptor from 

the intracellular part creating a water channel. These changes and formation of the water 

channel were not observed during MD with the mGlu1-R:NAM and mGlu1-R:PAM 

complexes.
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5. Discussion 
GPCRs are interesting drug targets as they regulate important cellular processes and 

are involved in numerous diseases. Several family C GPCRs have been found to be 

putative drug targets in different neurological and neuropsychiatric disorders. The 

GABAB-R has an inhibitory function in the CNS and is considered a drug target in several 

diseases including anxiety, depression, schizophrenia, pain, epilepsy, drug addiction, 

muscle spasticity and gastrointestinal reflux disorder (Brown et al., 2015; Cryan and 

Kaupmann, 2005; Lehmann et al., 2012). The mGlu-Rs are considered drug targets in 

disorders such as depression and anxiety, schizophrenia, epilepsy, Parkinson disease, and 

Fragile X syndrome (Alexander and Godwin, 2006; Gregory et al., 2013a; Masilamoni and 

Smith, 2018; Michalon et al., 2012; Moghaddam, 2004; Ngomba and van Luijtelaar, 2018; 

Niswender and Conn, 2010; Pilc et al., 2008; Sebastianutto and Cenci, 2018; Swanson et 

al., 2005) 

The recent breakthroughs in GPCRs 3D structures with the release of at least one 3D 

structure from each of the main GPCR families have given incredible tools for SBDD. 

Structurally and functionally, the family C members are somewhat different as they 

contain a large extracellular VFT domain where orthosteric compounds bind. The first 3D 

structures of the 7TM domain from family C members, the mGlu1-R (Wu et al., 2014) and 

mGlu5-R (Doré et al., 2014), gave insight into their 3D structure and function. However, 

only crystal structure of GPCRs family C members in complex with NAMs, and none with 

PAMs are available so far, and hence SBDD strategies must take that into consideration 

when searching for new PAMs or in modelling studies with PAMs. These 3D structures 

also serve as a starting point for homology modelling of other family C GPCRs. We have 

used these structures, together with templates from family A and B, to generate GABAB2-

R models as described in paper 1.  

The aim for constructing the models was to establish a ligand- and structure-based VS 

campaign for identifying new GABAB-R modulators (paper 1&2). The known PAMs were 

used to screen an assembled database containing altogether 8.2 million compounds 

available for purchasing. This was done by deriving the physicochemical properties hold 

by known PAMs for GABAB and by generated pharmacophore models for each of the 5 

structural clusters of known PAMs. The cured database was then docked into the 8 

selected GABAB2-R homology models from paper 1 to select putative new AMs for further 

experimental validation. The initial in vitro screening verification indicated that several 
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of the tested compounds are putative PAMs or NAMs, indicating that the established VS 

approach is functioning. 

 The increasing number of new compounds for the different family C receptors during 

the last years are aiding in SAR studies and provide tools to understand the pharmacology 

and molecular mechanism of action of these receptors. New family C compounds and 

structural information about the receptors facilitate experimental and theoretical studies 

of the mechanistic link between the allosteric and orthosteric binding pockets, and also 

about the signal biasing. In order to identify AM induced conformational changes upon 

binding, complexes of the x-ray structure of mGlu1-R with NAM, PAM and agoPAM were 

studied by running 2 μs of non-biased MD simulations (paper 3). 

  

5.1. Virtual screening in search for new GABAB allosteric modulators (paper 1 & 2) 

5.1.1. Ligand-based approach (paper 2) 

Ligand-based techniques are using structural information from active and inactive 

compounds to identify new compounds structurally resembling known active 

compounds. This strategy is best performing when a large set of compounds representing 

a broad structural diversity is available for the target. The search for known GABAB-R 

compounds in the scientific literature resulted in 72 PAMs and a couple of NAMs. The 

PAMs were from patents and series of synthesised PAMs used for in vitro screening 

efforts. 72 PAMs must be considered as a quite limited number, hence limiting the 

chemical space we were working with. The PAMs were grouped into 5 structural clusters 

representing the chemical diversity of the known PAMs.  

When the database of compounds for screening was assembled, several filtering steps 

were used in order to filter out the compounds, keeping only those fitting our aim. The 

first step, ADMET filtering also included physicochemical properties derived from known 

PAMs. As no pharmacophore models were able to match all PAMs, several 

pharmacophores models were generated based on the different clusters of known PAMs. 

The generated pharmacophores were then employed to reduce the database from 5 

million to 8021 unique compounds. The majority of these compounds were from the 

output of the clusters 3 pharmacophore model (paper 2). Cluster 3 contained the largest 

number of known PAMs in original clustering of known PAMs and was also the 

structurally most diverse cluster. The diversity of the ligands in cluster 3 might explain 

why no cluster specific GABAB2-R models were identified in paper 1. 
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5.1.2. Structure-based approach (paper 1) 

The 3D structure of 7TM domain GABAB2-R is unknown, and the homology modelling 

approach was selected for generating models due to the availability of templates from 

family A, B and C. The homology models were evaluated by docking of known GABAB-R 

PAMs and decoys to identify cluster specific models. The use of known ligands to select 

and train the homology models was performed as it has already been used successfully 

by the Carlson group during the GPCR dock 2013 (Rodríguez et al., 2014) and other 

studies where ligands and experimental results were included as guidelines during the 

modelling (Carlsson et al., 2011; Cavasotto et al., 2008, 2008; Evers and Klebe, 2004; 

McRobb et al., 2010; Phatak et al., 2010). By using known ligand to guide the modelling, 

it permitted the incorporation of experimental data into the models, and hence increase 

the chances to model reliable conformations. This may also reduce the number of false 

positive but limits the conformational space of the AMs binding the models. However, the 

use of multiple conformations of the receptor in the screening may account for structural 

flexibility, which may help to identify more diverse ligands during the VS. 

The first 600 homology models had poor BEDROC values, hence representing non-

optimized conformations of the receptor which were not very prominent to rank the 

known PAMs in front of inactive compounds and decoys. The use of IFD improved the 

models as determined by the increased BEDROC scores (paper 1). Most probably, similar 

results could have been achieved by running MD simulations but it would have required 

more time and analysis. Not surprisingly the GABAB2-R models based on mGlu-Rs seemed 

to be lot more accurate than models based on templates from family A and B. This was 

expected due to their higher sequence identity and functional similarities with GABAB2-R 

compared to the other templates. Seven out of the eight selected cluster-specific models 

were generated from mGlu-R templates.  

We mapped the putative allosteric binding pocket of GABAB2-R to 24 residues, and we 

also proposed 9 residues as “hot spots” when considering all models. However, when 

considering only the models based on mGlu-R templates, we could increase these 

numbers to 25 and 13 residues, respectively (paper 1). The putative allosteric pocket of 

GABAB-R was very hydrophobic. This was also reflected by the pharmacophore models 

for the clusters of the known PAMs, which hold multiple hydrophobic and at least one 
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aromatic feature (paper 2) and also by the 55 compounds selected for in vitro testing. Of 

those, 3 were put aside due to solubility issue. 

The allosteric binding pockets of mGlu1- and mGlu5-R s and their co-crystalized ligands 

are also hydrophobic (Christopher et al., 2015, 2018; Doré et al., 2014; Wu et al., 2014). 

During the MD simulation of the mGlu1-R:PAM complex, all direct protein-ligand 

interactions were hydrophobic (paper 3). These results fit well with the theory that AMs 

are rather hydrophobic compounds (Smith et al., 2017).  

Despite having templates available, the modelling was challenging. The quite few 

PAMs available for GABAB-R gives quite low structural diversity, and in addition, the 

sequence identify between the GABAB2-R and the templates were only 10-20 %. Usually, 

it is recommended to have 30 % sequence identity to build reliable models of membrane 

proteins (Forrest et al., 2006). The difficulty of such modelling was well illustrated by the 

results of the last GPCR Dock 2013 with the modelling of the Class F smoothened (SMO) 

receptor. The closest template had 14 % sequence identify and the median 7TM RMSD of 

the models proposed was of 6.13 Å and 10.66 Å for the binding pockets (Kufareva et al., 

2014). Even if the sequence identity between GABAB2-R and the templates was higher, it 

would still be difficult to detect the smaller subpockets located within the binding pocket. 

For instance, a small subpocket is present in the allosteric pocket of mGlu5-R and is 

proposed to play a role in ligand specificity (Doré et al., 2014; Harpsøe et al., 2017). This 

subpocket is not present in mGlu1-R (Wu et al., 2014) and probably in none of the family 

C members (Harpsøe et al., 2015).  

 

5.1.3. Target-based screening of the filtered database 

Ligand binding is a dynamic process introducing conformational changes both into the 

ligand and the receptor (Vogt and Di Cera, 2013). Structure-based techniques use the 

knowledge about the structure of the target to predict the strength of the interaction with 

putative new compounds. It also helps to identify the necessary structural 

physiochemical properties that active or inactive compounds should hold to exert their 

activity. Atomic resolution structures from x-ray crystallography studies are 

recommended for the structure-based screening, but there are several reports 

successfully using high quality homology models for the structure-based approach 

(Carlsson et al., 2011; Gabrielsen et al., 2012; Ripphausen et al., 2010). 
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Traditionally, a structure-based VS is performed by using a rigid protein and flexible 

compounds. A rigid protein may be a limitation for the VS, as the conformation of the 

active site used in the screening is dependent on the structure of the co-crystallized 

ligand. This may induce a bias into the screening. In order to introduce flexibility, we have 

used multiple conformations of the GABAB2-R in the screening process. The eight selected 

models from paper 1 were employed for the screening of the database, as each of them 

might represent information about the real binding pocket and together account for 

receptor flexibility. Due do the relatively low number of compounds to screen (8021), 

semi-flexible docking was employed and the top 10 % of the poses was kept for further 

scoring with MM-GBSA. The MM-GBSA method is very appropriate for ranking 

compounds as a certain correlation can be found between the calculated and the 

experimental binding energies (Du et al., 2011; Tripathi et al., 2015) but the calculated 

binding energies are not accurate compared with in vitro measurements, and should 

mainly be used for a relative ranking.  

A selection of compounds for in vitro validation was done due to the limit of time, 

budget and capacity. Hence, we did not discriminate between the models and preselected 

the 20 ligands with the best MM-GBSA score from each model for further selection giving 

a total of 134 unique compounds. All 134 compounds were clustered and those that were 

identified among the best in more than one model were automatically selected. The 

selection of the compounds to purchase was done such that all clusters were represented 

among the preselected. The similarities with known PAMs were also taken into account. 

Compounds more dissimilar to known PAMs and with good scoring were preferred. The 

initial in vitro experiments identified novel NAMs and PAMs. This indicates that we have 

established a VS approach that functions and that homology modelling can be used to find 

AMs for GABAB-R.  The preliminary results are encouraging and more testing is necessary. 

If these compounds are not future drugs, they still are important research tools. 

The use of MODELLER to generate several models from each template, and the 

technique of IFD may have limited putative template bias. In addition, among the hits 

both NAMs and PAMs were confirmed by in vitro testing (paper 2) despite using models 

trained with known PAMs only (paper 1). It means that we might have the correct binding 

pocket (or parts of it) and that PAM and NAMs have a very similar and overlapping 

binding pockets within the 7TM of GABAB2-R. It has recently also been demonstrated that 

CLH304, a specific NAM for GABAB-R, binds in the 7TM bundle of GABAB2-R (Sun et al., 
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2016). Our results are in accordance with the results of other family C members, 

indicating that PAM and NAM share a similar binding pocket (Harpsøe et al., 2017).  

A question is if the structure-based approach was necessary to identify the AMs. Both 

the ligand-based and the structure-based approaches are known to give false positives. 

By using a combination of both methods, we intended to decrease the number of false 

positives and to bypass the limitations discussed above. In addition, it helped us to 

evaluate compounds from the ligand-based approach before purchasing.  

 

5.1.4. Conclusion and further studies  

We have established a VS protocol combining ligand- and structure-based techniques. 

To our knowledge, we are the first to provide an atomic-resolution description of the 

allosteric binding pocket of the GABAB2-R in complex with PAMs. We are also the first to 

present new AMs for GABAB-R using a VS campaign. The experimental testing confirmed 

the identification of both NAMs and PAMs for GABAB-R. These results will help further 

studies on GABAB-R, and help to increase the diversity of ligands available for the 

receptor which have huge potentials as drug target for brain disorders.  

We have proposed potential residues important for binding of PAMs in the 7TM of 

GABAB2-R. The features for NAMs have been grasped as we were able to identified both 

NAMs and PAMs, supporting that the binding pocket of NAMs and PAMs are overlapping.  

In order to confirm that we have mapped the correct allosteric pocket of GABAB-R in 

the homology models, in vitro experimental studies are needed. Site direct-mutagenesis 

studies of the suggested hot spot residues would be helpful for further evaluation of the 

homology models. However, the optimal would be an experimental structure of the 7TM 

domain of the GABAB2-R.  

The identified hits from the initial screening need to be further tested for complete 

characterisation of dose-response relationships and also to be tested for biased 

signalling. Additional cellular assays must be established to study potential biased 

signalling of the compounds. Postsynaptic GABAB-R activation results in opening of G-

protein-coupled inwardly-rectifying potassium (Kir/GIRK) channels, giving slow 

inhibitory post-synaptic potentials (Chalifoux and Carter, 2010). GABAB-R activation also 

promotes the entry of calcium into the cell (Meier et al., 2008; New et al., 2006; Park et 

al., 2010). Finally, postsynaptic GABAB-R activation also induces phosphorylation of 

extracellular signal-regulated protein kinases 1/2 (ERK1/2) in hippocampus and 
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cerebellum (Im and Rhim, 2012; Tu et al., 2007). Therefore, cellular assays for GABAB-R 

mediated ERK1/2 phosphorylation, calcium mobilization and potassium efflux must be 

established to study the novel compounds. 

5.2. Mechanisms of allosteric modulation (paper 3)  

The mGlu-Rs are also interesting drug targets as they are involved in numerous 

diseases. The releases of the crystal structures of mGlu1-R and mGlu5-R in complex with 

NAMs was a breakthrough for SBDD for compounds targeting mGlu-Rs (Doré et al., 2014; 

Wu et al., 2014). Limited information is available about the structural features giving 

NAM, PAM and agoPAM activity. In the literature we identified a PAM and an agoPAM 

both specific for mGlu1-R (Garcia-Barrantes et al., 2016). They were structurally very 

similar, and hence very interesting to study in order to understand the mechanism giving 

differences in their biological characteristics. The communication link between the 

allosteric binding site in the 7TM and the orthosteric pocket located in the extracellular 

VFT is still unknown. Only an inactive conformation of mGlu1-R is available, hence we are 

lacking details about the dynamics of the receptor. A way to reach this goal is to employ 

MD simulations. A proposed model suggested that a mGlu-R needs 50 ms for complete 

activation from orthosteric binding to G-protein activation and that a 7TM might need 15 

ms to turn to an active form (Rondard and Pin, 2015). Simulation of the millisecond time 

scale is not available commonly unless using dedicated hardware like the supercomputer 

Anton (Shaw et al., 2008). Thus, we knew in forehand that μs simulations would not be 

long enough to observe major larger movements connected to activation. 

Using the inactive crystal structure of mGlu1-R in complex the NAM FITM and in 

complex with the docked PAM (VU0487351) and agoPAM (VU0486321), we investigated 

the modulator induced conformational changes into the 7TMs upon binding by running 

2μs of non-biased MD simulations. We intended to observe differences at the binding site 

between the AMs to understand the binding mechanism, and if the AMs could induce local 

differences into the allosteric mGlu1-R protomer. We aimed to used mGlu1-R as a model 

system for family C members. We consider our results as very interesting and they are in 

agreement with other published studies on mGlu-Rs.  

As expected, the simulation of the mGlu1-R:NAM complex was stable and no major 

changes into the receptor were observed. The amide moiety of the NAM FITM flipped but 

this was not novel as it has already seen by others (Harpsøe et al., 2015; Pérez-Benito et 
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al., 2017). Three overlapping binding pockets were identified. Between NAM and PAM 

pockets a slight difference was seen at the intracellular direction of the binding pocket. 

While the NAM, FITM, was interacting with TM6, the PAM, VU0487351, interacted at the 

interface of TM3-TM7. The overlapping of PAM and NAM pockets was in accordance with 

an extensive review of directed mutagenesis studies of family C members which 

concluded than PAM and NAM pockets are overlapping, but with some residues specific 

for both of them (Harpsøe et al., 2017). Based on studies of mGlu4-R, the location of the 

binding site responsible for agoPAM activity have been suggested to be located at the top 

of the 7TM bundle corresponding to the orthosteric binding site found in family A 

members (Rovira et al., 2015). Our results are in accordance with that. In the very first ns 

of the simulation, the agoPAM moved upward with its furan moiety entering a shallow 

pocket located at the top of the receptor delimited by TM3-4-5. It corresponded to the 

pocket responsible for agoPAM activity in mGlu4-R. In addition, the corresponding pocket 

is filled with crystal water molecules in the mGlu5-R crystal structures. The most hydrated 

among them is the mGlu5-R co-crystalized with the NAM MPEP (PDB code 6FFI, 

Christopher et al., 2018). Note that no water molecules were found in the entire 

experimental structure of mGlu1-R (Wu et al., 2014). 

Water molecules play very important roles in structural biology, in protein structures 

or to mediate protein-ligand interactions. By following the positions of the water 

molecules during the simulations, we described several hydration points, meaning that 

waters molecules are present at this peculiar position >90% of the MD frames considered.  

Several of the identified hydration points could be superimposed with water 

molecules found in the experimental structure of mGlu5-R in complex with the NAM 

MPEP (PDB code 6FFI, Christopher et al., 2018), which comforted us about the reliability 

of our results. The identified positions of the hydration points were rather specific for 

each of the AMs but with some resemblance. This was the case in the shallow pocket 

where the furan ring of the agoPAM was binding. During the simulation with mGlu1-

R:NAM, a stable water network was formed in the shallow pocket during the simulation. 

The position of the hydration point were matching the position of crystal water molecules 

s found in the x-ray crystal structure of mGlu5-R :MPEP. During the simulation of mGlu1-

R:PAM, less stable water molecules were found in this subpocket, while non for the 

agoPAM. Hence the degree of solvation of the pocket might be dependent of the activity 

of the AMs or it could also be completely ligand-dependant.   
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 Multiple of the hydration points were mediating protein-ligand interactions. For 

instance with the PAM, all the detected protein-ligand interaction were either direct 

hydrophobic bonds or water mediated polar interactions. A network of water molecules 

was linking PAM to N7605.47ac, Y6723.40a.44c and S8227.45a.39a. N7605.47ac and Y6723.40a.44c are 

suggested to be part of a “trigger switch” and “transmission switch” respectively (Pérez-

Benito et al., 2017). Similarly, a water-network was linking agoPAM to N7605.47ac and 

S8227.45a.39a. NAM was also interacting with N7605.47ac but no direct or indirect interaction 

with the “transmission switch” was observed. In all simulations, a hydration point was 

found deep in the binding pocket and coordinated by the residues Y6723.40a.44c, 

T7946.44a.46c and S8227.45a.39c. This hydration point corresponds to a crystal water 

molecule found in all experimental structures of mGlu5-R (Christopher et al., 2015, 2018; 

Doré et al., 2014). Studies indicate that perturbation of the network in this region could 

be responsible for the pharmacological mode-switching seen with several series of 

mGlu5-R AMs (Christopher et al., 2018; Doré et al., 2014; Harpsøe et al., 2015). 

An ionic lock has been described in 50 % of family A members and demonstrated to 

stabilize the receptor in an inactive position by holding TM6 in place. If not present, 

another set of interactions fulfil the same function. The breakage of this lock is a 

prerequisite for a fully activation of family A members. A similar ionic lock has been 

described for family C members, and its importance was revealed by a study on GABAB-R 

(Binet et al., 2007). This ionic lock is present in the crystal structure of mGlu1- and mGlu5-

R (Doré et al., 2014; Wu et al., 2014). In mGlu1-R it links E7836.33a.35c with K8347.51a.57c 

with stabilizing polar interaction with serines in ICL1 and strengthens the lock. In an MD 

study of mGlu4-R in complex with the PAM MPEP (Dalton et al., 2017), the ionic lock was 

seen to be less stable which were not observed in our case. They also simulated the 

mGlu5-R :MPEP complex, and in that receptor this ionic interaction was stable throughout 

the MD, which is in line with our results where the ionic interaction between E783 and 

K834 was stable for the MD simulation of NAM, PAM and agoPAM. 

5.2.1. Activations features 

 Yuan et al. (Yuan et al., 2014) managed to identify layers of hydrophobic residues in 

family A GPCRs that impair the movements of water molecules within the receptors. One 

of these layers is including Y7.53a in the NPxxY motif found in TM7 of family A GPCRs. 

Tehan et al. (Tehan et al., 2014) also predicted a similar mechanism, and that during the 

activation of family A GPCRs, there is rearrangement of hydrophobic residues which 
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allow the creation of a water channel close to the NPxxY motif. They called it the 

hydrophobic hindering mechanism (HHM). Yuan at al. notably demonstrated that the 

creation of a water channel was dependant of the conformations of Y7.53a. In mGlu1-R and 

in mGlu5-R, the residue corresponding to Y7.53a is F7.53a.48c. The neighbouring residue is 

M7.47c. Crystal water molecules are located below these two residues in the x-ray crystal 

structures of mGlu5-Rs. In mGlu1-R, these two positions correspond to M8307.47c and 

F8317.53a.48c. In the simulations with NAM and PAM, both residues maintained stable 

conformations similar to that in the crystal structure. On the other hand, at the end of the 

mGlu1-R:agoPAM simulation, TM7 did a clockwise rotation when seen from the top of the 

receptor, bringing the side chain of F8317.53a.48c outside of the bundle and the side chain 

of M8307.47c to a position corresponding to the previous location of F8317.53a.48c before the 

rotation. This helical rotation created a space which was filled with water molecules that 

were entering and could formed contact with the layer of water molecules at the bottom 

of the allosteric pocket (see above), creating a water channel from the intracellular end 

up to the allosteric binding pocket. This rotating mechanism that generates a water 

channel from the intracellular side of the receptor may apply to all mGlu-R and GABAB-R, 

as the bulky character is conserved in position 7.53a.48c as well as the hydrophobic 

profile in position 7.47c (Pándy-Szekeres et al., 2018). 

One the major movements during activation of family A members is the outward 

movement of TM6 to unveil the G-protein coupling site. Xue et al. (Xue et al., 2015) 

demonstrated with their work on mGlu2-R that upon activation, the interface of contacts 

between the protomers of mGlu2-R changed from TM4-5 to TM6. The shallow pocket that 

the furan moiety of agoPAM was occupying during the simulation was partly created by 

TM4 and TM5. Dalton et al. also mentioned that TM6 was rigid during the MD simulation 

of mGlu4-R:MPEP, and hence TM6 might not have the same role as seen in family A 

(Dalton et al., 2017). Our results indicate the same, and this is also is realistic since the 

other protomer may be connected by TM6 contacts (Xue et al., 2015). Due to the dimer 

interface interactions, TM6 might have difficulty to perform an outward movement when 

activated. Though, TM7 could be actually the helix than play a pivot role in mGlu-Rs 

activation (see previous paragraph). 

Evidences for potential activation features were also observed in ICLs of the 7TM 

bundle of mGlu1-R. Within the modelled part of ICL2, a stable small α-helix was formed 

during the last 500 ns of the simulation of mGlu1-R:NAM, but some conformations with 
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such an helix was seen around 1 μs of the simulation of mGlu1-R:PAM, while ICL2 in the 

mGlu1-R:agoPAM simulation stayed unordered during the entire simulation. The 

opposite was seen for the β2-AR; ICL2 was unfolded in the inactive form (PDB code 2RH1, 

Cherezov et al., 2007), while a small α-helix is present in the active conformation and 

found to interact with the G-protein (PDB code 3SN6, Rasmussen et al., 2011). In every 

experimental structures of mGlu-Rs (except for mGlu1-R which is unordered in this 

region) an α-helix is present in ICL1, and we identified the same in our mGlu1-R:NAM 

simulation. Using mGlu4-R in complex with the PAM MPEP, Dalton et al observed a partial 

unfolding of ICL1 during a 5μs MD. We did not observed the same in our simulation of 

mGlu1-R:PAM, but it was observed around 1 μs for the simulation of mGlu1-R:agoPAM as 

the distance E7836.33a.35c-S626ICL1 increased. The unfolding of ICL1 reoriented K624ICL1 

which caused instability in the ionic lock (E7836.33a.35c-K8347.51a.57c). 

An second ionic lock can also be found in all x-ray crystal structure of mGlu-Rs between 

TM3 and TM7 (Christopher et al., 2015, 2018; Doré et al., 2014; Wu et al., 2014). This 

corresponds to the ionic interaction E7836.33a.35c-K8347.51a.57c in mGlu1-R. During the 

simulation of mGlu1-R with NAM and PAM, this interaction is stable. For the agoPAM 

simulation, the distance between these two residues increased at about 1.85 μs. On the 

other hand, the distance between E7836.33a.35c and K624ICL1 decreased. As mentioned 

before there is a rotation of the intracellular part of TM7 at the end of the agoPAM 

simulation, apart its effects on F8317.51a.57c, this rotation also moved the side chain of 

K8347.51a.57c away, and hence K624ICL1 took its place to form a new ionic lock. This 

exchange could be plausible in all mGlu-R as this lysine in TM7 is conserved, and it is also 

conserved in both subunits of the GABAB-R. The lysine in ICL1 is also present in all these 

family C receptors, but in the GABAB1-R subunit where it is a glutamine. This is interesting 

since the GABAB1-subunit is not able to couple with G-proteins. 

Chloride is known to be a PAM for mGlu1-R and has been demonstrated to exert its 

activity at the VFT domain (Tora et al., 2015). Nevertheless, we have observed a chloride 

ion mainly coordinated by R6813.49a.53c and K6783.46a.50c  during the simulations with NAM 

and PAM. In mGlu1:agoPAM simulation, after the exchange of ionic partners (see above), 

K624 ICL1 also coordinated the chloride together with R6813.49a.53c and K6783.46a.50c. Serine 

residues from ICL1 and water molecules were also coordinating the chloride during 

periods of the simulations. It might be an artefact and more studies are needed to confirm 

that a chloride-binding site exists. Nevertheless, similar results have been seen in MD 
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simulation of our GABAB2 models generated in paper 1 (unpublished work) and within 

the x-ray crystal structure of mGlu5-R both in complex with the NAM mavoglurant (PDB 

id 4oo9, Doré et al., 2014) and in the apo form (unpublished work).  

Finally, we arrived at the same conclusion for our simulation with agoPAM as that of 

Dalton et al. for their mGlu4:MPEP simulation that the receptor achieved a more open 

intracellular conformation with longer distance between the ICLs and a more hydrated 

receptor. A water channel opening up from the intracellular part was observed during 

the agoPAM simulation. The existence of such water channel has already been proposed 

for GPCR family A (Tehan et al., 2014; Yuan et al., 2014).  

 

5.2.2. Conclusion and perspective 

Through non-biased MD simulations, we have analysed the induced conformational 

changes upon binding of different AMs for mGlu1-R. We have identified the agoPAM 

binding pocket in mGlu1-R and shown that it is overlapping with the pockets of NAM and 

PAM. We have also seen that agoPAM induced conformational changes generating 

differences in the network of water molecules compared the PAM and NAM, that may be 

connected to receptor activation. The changes were triggered by numerous 

conformational changes that may be extrapolate to others family C GPCRs. These 

conformational changes were not seen for the other AMs. 

In order to confirm our findings, in vitro site directed mutagenesis studies could be 

performed, but also in silico approaches could be used to further study these processes. 

Reproducing the same results should be achievable by running the same protomer with 

another agoPAM or with a mGlu5-R:agoPAM complex or at best by running the simulation 

of both mGlu1-R and mGlu5-R.  

Also, the dynamic of the GABAB-R should be study by tempting to run MD simulation 

in the same condition as we did in this thesis to confirm the conservation of the features 

of activation we have detected in mGlu1-R-agoPAM within family C members. 
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6. Conclusion
GPCRs are major drug targets being involved in the biological functions of the human

body and in the pathophysiology of diseases. Despite several decades of GPCR research, 

there is still a lot unknown about the structure and function of GPCRs, and their roles in 

disease mechanism and as therapeutic targets. GABAB-R and mGlu-Rs are targets for the 

treatments of several CNS disorders. The potential advantages of allosteric compounds 

hold strong hopes for the design of more selective drugs.  

In the present study, we have built multiple homology models of the TM-part of 

GABAB2-R that might represent putative conformations of the allosteric binding pocket as 

they could accommodate the known PAMs (paper 1). Several residues of the binding 

pockets were identified as the potential determinants for PAM binding and specificity to 

GABAB2-R. 

Both ligand and target structure information were merged in a hybrid VS approach. 

The homology models were used for screening of a filtered database and for guiding 

selection of compounds for in vitro testing. This strategy was successful as several novel 

NAMs and PAMs were identified. To our knowledge, this is the first study identifying 

GABAB-R AMs using an in silico VS strategy (paper 2). In line with other studies on other 

family C receptors and GABAB-R, these results shown that NAMs and PAMs might share 

an overlapping binding pocket in the 7TM bundle of the GABAB2-R. 

MD simulation techniques are helpful for a better understanding of the dynamic of a 

receptor and the structural effects upon ligand binding. Hence, the structural differences 

observed during the simulations of the 7TM domain of mGlu1-R in complex with a NAM, 

PAM and agoPAM would be valuable information for further work on family C members 

or to help designing in vitro experiments. 

Water molecules might play a crucial role in ligand binding and activation of GPCRs  

(Christopher et al., 2018; Yuan et al., 2014). During MD simulations we identified ligand 

specific hydration points within the binding pocket of mGlu1-R that may be connected to 

activation and the differences between NAM, PAM and agoPAM activity. Our studies also 

indicated the importance of water molecules for binding and activity, and that water 

molecules should be taken into account in drug design. The identification of a water 

channel within the 7TM domain of mGlu1-R as observed at similar regions in family A may 

suggest that this is a common feature among GPCRs of family A and C.  
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 GPCRs are, and still hot targets in drug discovery. The knowledge about these 

receptors will increase with the improvement of technology. Very recently (between the 

13th and the 20th of June, 2018) four experimental structures of family A GPCRs in 

complex with G-proteins were released. These structures were resolved with the 

technique of cryo-electron microscopy, which is a technique with huge improvements 

during the last years, also resulting in the Nobel Prize in Chemistry for 2017 

(https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2017/press.html). 

There are still a lot to discovery about GPCRs, and hopefully the results in the present 

thesis are a support for further GPCR research.  

https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2017/press.html
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