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Abstract 

Objective:  Current systems to evaluate outcomes from tissue-engineered cartilage (TEC) are 

sub-optimal. The main purpose of our study was to demonstrate the use of second harmonic 

generation (SHG) microscopy as a novel quantitative approach to assess collagen deposition in 

laboratory made cartilage constructs. 

Methods: Scaffold-free cartilage constructs were obtained by condensation of in vitro expanded 

Hoffa’s fat pad derived stromal cells (HFPSCs), incubated in the presence or absence of 

chondrogenic growth factors (GF) during a period of 21 d. Cartilage–like features in constructs 

were assessed by Alcian blue staining, transmission electron microscopy (TEM), SHG and two-

photon excited fluorescence microscopy. A new scoring system, using second harmonic 

generation microscopy index for collagen density and distribution, was adapted to the existing 

“Bern score” in order to evaluate in vitro TEC. 

Results: Spheroids with GF gave a relative high Bern score value due to appropriate cell 

morphology, cell density, tissue-like features and proteoglycan content, whereas spheroids 

without GF did not. However, both TEM and SHG revealed striking differences between the 

collagen framework in the spheroids and native cartilage. Spheroids required a four-fold 

increase in laser power to visualize the collagen matrix by SHG compared to native cartilage. 

Additionally, collagen distribution, determined as the area of tissue generating SHG signal, was 

higher in spheroids with GF than without GF, but lower than in native cartilage. 

Conclusion: SHG represents a reliable quantitative approach to assess collagen deposition in 

laboratory engineered cartilage, and may be applied to improve currently established scoring 

systems.  

Keywords: Second harmonic generation microscopy, Two-photon excited fluorescence 

microscopy, Hoffa’s fat pad derived stromal cells, Chondrogenesis, Tissue-engineered 

cartilage.  
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Introduction 

 

Tissue-engineered cartilage (TEC) represents an encouraging approach for the treatment of 

articular cartilage lesions. Efforts to develop laboratory-grown cartilage implants to treat 

cartilage defects has grown exponentially over the last two decades1, 2. The quality of the 

resulting tissue depends on several critical parameters including the cell source, the presence of 

chondrogenic growth factors, a suitable and biocompatible cell carrier and other extrinsic 

factors such as oxygen tension and mechanical loading3, 4. TEC must be capable of enduring 

similar environmental strains as native cartilage. Even though TEC shows promising results in 

the laboratory their clinical translation is limited5. One of the main challenges is to achieve the 

proper assembly of the immature extracellular matrix (ECM) components into functional 

structures that mimic those of native tissue. Most literature within the field of laboratory-grown 

engineered cartilage provides data on ECM gene expressions or proteins but fails to show the 

degree of tissue maturation through the density and complexity of the collagen network3, 4, 6.  

 

In order to have a common ground for assessing the quality of engineered neocartilage, a 

standardised grading system is essential. The Bern score7 is widely used, and modified versions 

have been proposed8, 9. This score is based on the proteoglycan content from safranin-O 

(alternatively Alcian blue) staining, together with a morphological assessment of the cells, cell 

density, and heterogeneity of the constructs (Table 1). However, the Bern score does not take 

into account the collagen fraction of the ECM. This is a major limitation as the collagen matrix 

is an essential component to yield the necessary mechanical support for articular cartilage. 

Common stains used for collagen (such as Masson’s trichrome or picrosirius red) often yield 

very weak staining with engineered cartilage as the collagen fibres are typically insufficiently 

developed10. Immunohistochemical detection of collagen I and II provides only qualitative 
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information and is not sensitive to fibrils maturation, organization and size. The low collagen 

content in TEC often make immunolocalization of collagens by traditional immunostaining 

methods less reproducible and reliable11, 12. Furthermore, immunostaining-based approaches 

are subjected to variations related to different affinities of antibodies from different 

manufacturers.  

 

A number of label-free approaches exist to image cartilage, comprising some advantages and 

limitations. Thus, infrared spectroscopy (IRS)13, micro-computed tomography (micro-CT)14, 

magnetic resonance imaging (MRI)15, and polarised light microscopy (PLM)16 have also been 

used to measure collagen content in native cartilage, mostly to analyse repaired tissue or to 

assess osteoarthritis development. However, IRS and micro-CT are complicated and often 

associated with lack of molecular specificity, while MRI resolution is suboptimal to visualize 

tissue constructs like other histological techniques and it could be more challenging with TEC. 

In addition, PLM is also concerned with lack of molecular specificity compared to electron-

microscopic stereology16. Notably, transmission electron microscopy (TEM) requires rigorous 

sample preparation17, and at high magnification it gives information on fibrils composition and 

organization, but only permits visualization of tissue regions at a nanoscale, which complicates 

the generalization of the assessments. .  

 

Second harmonic generation (SHG) microscopy is a technique which can be used for 

quantitative, label-free imaging of collagen in cartilage and is highly sensitive to the ordering 

of the collagen molecules at the fibril level. It, therefore, represents a promising alternative to 

traditional staining techniques and could be used in an extension of the Bern score to also 

evaluate the collagen fraction of the ECM.  
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SHG is a nonlinear optical effect that is exhibited by non-centrosymmetric molecules. In this 

process, two photons of a certain wavelength (typically around 800 nm) are converted into a 

single photon with half the wavelength. The process is strongly enhanced if multiple molecules 

are aligned within the focal volume. Collagen fibrils are non-centrosymmetric and consist of 

aligned and ordered collagen molecules and thus yield a strong SHG signal without any 

labeling. Three-dimensional (3D) imaging is possible due to the intrinsic confocality of 

multiphoton microscopy. Unlike traditional techniques, no extensive sample preparation is 

necessary due to the endogenous nature of the signal. This allows for real-time, and non-

destructive imaging of the temporal development of engineered tissues18, 19. Example 

applications are assessment of early stage osteoarthritic human cartilage20, in vivo cartilage 

repair in a rabbit model21, 22, and scaffold-based TEC19, 23, 24. The technique has also been 

applied successfully to label-free imaging of the ECM in numerous different tissue types such 

as blood vessels, cornea, liver, bone, skin, and tumour25-27. 

 

The SHG signal provides a measure of the size, amount, and structure of collagen fibrils23, 24. 

The signal scales quadratically with the molecular concentration and the direction of the emitted 

SHG signal is dependent on the size of the fibrils28, 29. Larger fibrils and thicker fibres lead to 

an increase in forward second harmonic generation (FSHG) but do not affect the backward 

second harmonic generation (BSHG) 30, 31.  In addition, the SHG intensity depends on the angle 

between the laser polarization and the collagen fibril. Polarization-resolved SHG has been 

reported to be able to distinguish between different collagen types32, 33. Since no commercial 

systems for nonlinear optical microscopy are currently delivered with polarization optics 

control, we have opted to base our proposed scoring system on SHG signals without 

polarization-resolved measurement. Such a system has a larger potential for wide-spread 

adoption.  
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The aim of this paper is to introduce SHG as a method to assess the quality of in vitro TEC and 

to define a new index based on this signal that can be used as an extension to the existing Bern 

score, thus providing a more accurate assessment of TEC. We denote the new scoring parameter 

as second harmonic generation index (SHGI). The unique characteristics of SHG microscopy 

make it a valuable label-free technique to measure sub-resolution structural information of the 

collagen matrix with high sensitivity and specificity.  

 

Materials and Methods 

 

HUMAN MATERIALS 

 

Human tissue specimens were collected at the University Hospital of Northern Norway. Fresh 

Hoffa’s fat pad and macroscopically good-looking cartilage samples were collected from knee 

joints of three patients aged between 45 and 60 years scheduled for total knee replacement 

surgery. All patients provided written informed consent. The project was approved by the 

Regional Ethical Committee of Northern Norway (REK Nord 2014/920). 

 

ISOLATION AND CULTURE OF HOFFA’S FAT PAD DERIVED STROMAL CELLS  

  

Hoffa’s fat pad derived stromal cells (HFPSCs) were isolated using a mixed enzymatic-explant 

method as previously described3. Briefly, Hoffa’s fat pad specimens were washed three times 

with sterile Dulbecco’s phosphate buffered saline (DPBS; Cat. no. D8537; Sigma-Aldrich). The 

fat tissues were carefully separated from the synovial membrane and minced into small pieces 

for enzymatic digestion in collagenase XI solution (Cat. no. C9407; Sigma-Aldrich) at a final 
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concentration of 1.25 mg/mL for 1.5 h on a shaker at 37 °C. Partially digested tissues were 

collected from the bottom fraction after centrifugation for 10 min at 800g and subsequently re-

suspended in a growing medium containing high glucose Dulbecco’s Modified Eagle Medium 

(DMEM; Cat. no. D5796; Sigma-Aldrich) supplemented with L-ascorbic acid (62 mg/L) (Cat. 

no.103033E; BDH Laboratory), penicillin and streptomycin (1 %) (P/S; Cat. no. P4333; Sigma-

Aldrich) and 20 % foetal bovine serum (FBS; Cat. no. S0115; Biochrom) and incubated at 37 

°C in a humidified atmosphere containing 5 % CO2. After initial cell attachment for 24 h, the 

primary culture of HFPSCs were expanded in 10 % FBS supplemented conditioning medium 

and basic fibroblast growth factor (25 ng/mL) (bFGF; Cat. no. 100-18C; Peprotech) was added 

to the culture medium upon reaching 50 % confluence.  

 

CHONDROGENESIS OF HFPSCs AND 3D CULTURE 

 

Chondrogenesis of HFPSCs was achieved using the pellet culture system as previously 

described3. Briefly, HFPSCs at passage three were harvested and transferred to each well of a 

poly-HEMA (Cat. no. P3932; Sigma-Aldrich) coated conical-bottom 96 well culture plate (Cat. 

no. 249935; Thermo Scientific) at a density of 5 x 104 cells in 150 µl, followed by centrifugation 

of plates for 10 min at 1100g. Chondrogenesis was induced by incubation in the serum-free 

chondrogenic medium for 21 d in low oxygen (3 % O2). The chondrogenic medium contained 

high glucose DMEM, L-ascorbic acid (62 mg/L), P/S (1 %), dexamethasone (1 µg/mL) (Cat. 

no. PZN-3103491; Galenpharma), Insulin-transferrin-selenium supplement (ITS) (1:1000) 

(Cat. no. 354351; BD Biosciences), transforming growth factor β3 (10 ng/mL) (TGF-β3; Cat. 

no. 100-36E; Peprotech) and bone morphogenic protein 2 (100 ng/mL) (BMP-2; Cat. no. 120-

02C; Peprotech). In this study, the growth factors-free medium was identical to the 

chondrogenic medium but did not include TGF-β3 and BMP-2. 
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PREPARATION OF TISSUE SECTIONS FOR NON-LINEAR MICROSCOPY 

 

Native cartilage (n = 3), spheroids with growth factors (GF) (n = 1, diameter ≈ 1.4 mm) and 

spheroids without GF (n = 1, diameter ≈ 0.6 mm) were harvested, washed in ice-cold DPBS 

and fixed in 4 % formalin overnight. Fixed materials were embedded in agarose blocks (1 %) 

and transferred further into paraffin blocks. Paraffin-embedded sections (4 µm) were heated at 

60 °C for 1 h prior to de-waxing and a series of xylene and ethanol washes followed by 

mounting a cover slip with Histokit (Cat. no. 1025/500; Glaswarenfabrik Karl Hect). 

 

STAINING OF EXTRACELLULAR MATRIX PROTEOGLYCANS BY ALCIAN BLUE 

 

Metachromatic staining was done in this study as previously described3. Briefly, Alcian blue 

solution (Cat. no. A5268; Sigma-Aldrich) was used to stain 4 µm sections for 30 min. Nuclear 

fast red solution (Cat. no. N3020; Sigma-Aldrich) was used to counterstain the sections for 5 

min. Finally, the sections were dehydrated in a series of ethanol and xylene wash followed by 

mounting a cover slip with Histokit. Images were taken using bright field light microscopy 

(Leica DMI6000B). Stained sections were scored blindly by three different observers.  

 

TRANSMISSION ELECTRON MICROSCOPY 

 

Ultra-structural analysis was studied using TEM as previously described3. Briefly, after 

harvesting, tissues were fixed overnight in McDowell’s fixative34 and prepared according to 

our standard laboratory procedure. Sections were cut on a Leica Ultracut S (Vienna, Austria). 
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TEM images were taken with a JEOL 1010 (Tokyo, Japan) electron microscope and a Morada 

camera system (Olympus Soft Imaging Systems, Germany). 

 

SECOND HARMONIC GENERATION MICROSCOPY 

 

Images were collected on a confocal microscope (TCS SP8, Leica) equipped with a Ti:Sapphire 

laser (Chameleon Vision-S, Coherent) tuned to an excitation wavelength of  890 nm. For 

imaging, a 25x, 0.95 NA water immersion objective and 0.9 NA collector lens were used. The 

two-photon fluorescence (TPEF) was acquired simultaneously with SHG. In the epi-direction, 

two HyD detectors combined with a 500-550 nm and 435-455 nm bandpass filter were used to 

record TPEF and backward (B) scattered SHG, respectively. Forwards (F) scattered SHG was 

acquired in the transmitted direction using a 435-455 nm band-pass filter in front of a PMT. All 

images were 1024x1024 pixels and covered an area of 232x232 µm.  

 

Native cartilage was used as a reference to adjust microscope settings, including illumination 

intensity. To ascertain the reproducibility of the method, native cartilage from three different 

donors were used. For spheroids with and without growth factors, we have used cells from only 

one donor since inter-donor comparisons was not the aim of this study and it would not have 

added meaningful information to the reproducibility of the approach. All images from cartilage 

were taken from the middle zone to avoid the intra-sample variations due to inherent tissue 

zonation. Identical settings, except illumination intensity, was used to image spheroids. The 

laser power used to image native cartilage was about 20mW. Due to a sparser collagen network 

in the spheroids, the laser power was increased until the BSHG intensity was approximately 

equal to that generated by native cartilage, i.e. the intensity distributions peaked at the same 

gray level (50 in a scale of 0 to 255) (Fig 5 d). If a similar intensity was not achieved at a relative 
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increase in laser power (rP) of four times the original, then the sample was imaged at this limit. 

For visual presentation, the square root of the SHG and TPEF intensity are displayed in the 

images. For analysis, the original images were used. All samples were imaged with the same 

microscopic settings. To test the reproducibility of reference samples, five areas in each donor 

were imaged and the laser power was adjusted until the BSHG intensity was equal. The 15 

separate reference settings were used to image and analyse a single area in both types of TEC.  

 

Larger fibrils and thicker fibres lead to an increase in FSHG but do not affect the BSHG30, 31. 

In order to compare FSHG and BSHG, the ratio between the FSHG and BSHG (F/B-ratio) was 

calculated for every pixel within a region of interest for each sample. Image processing and 

analysis was performed in Matlab (Mathworks) and ImageJ. 

 

SECOND HARMONIC GENERATION INDEX 

 

The SHGI was generated from two individual parameters: the necessary relative increase in 

laser power (rP) and the area (A) covered by the collagen matrix (Table 2).  

 

PARAMETER 1: COLLAGEN DENSITY 

 

The density of the collagen network is related to the laser power required to image the sample. 

To create a relatively objective grading, the laser power used to image the spheroids is increased 

until the SHG signal is of similar intensity as that in native cartilage, or until the laser power is 

quadrupled compared to the one used to image native cartilage. An increase in relative laser 

power (rP) indicates a less developed collagen network in the tissue-engineered sample.  
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PARAMETER 2: COLLAGEN DISTRIBUTION 

 

After imaging, the collagen distribution in the image was determined by segmenting the image 

to determine the area containing significant collagen content. To determine a good threshold, a 

few regions containing solely ECM (and no lacunae) were selected in the BSHG images of 

native cartilage. An intensity histogram of the combined areas was made, and a Gaussian curve 

was fitted to the lower half of the distribution. The threshold was defined to be the average 

minus three standard deviations (𝜇𝜇 − 3𝜎𝜎). This is an appropriate threshold to distinguish 

between the collagen network and background because the difference in SHG signal between 

native and engineered cartilage has been compensated for by adjusting the laser power. The 

percentage of area covered by collagen, (A) is used to grade the collagen distribution. 

 

Results 

 

CHONDROGENESIS OF HFPSCs IN 3D CULTURES AND HISTOMORPHOLOGY 

 

TEC was achieved by applying the pellet culture system to HFPSC previously expanded in 

monolayer cultures. To test the sensitivity of the SHGI, we made HFPSC spheroids incubated 

in the presence or absence of growth factors. Metachromatic staining of spheroids with GF 

demonstrated good cartilage-like morphology with abundant proteoglycans in the ECM, and 

cells with round shaped morphology (Fig. 1 c and d). In contrast, spheroids without GF 

demonstrated low intensity and areal coverage of Alcian blue stain, high density of cells with 

irregular morphology, and a lack of lacunae-like structures (Fig. 1 e and f). Histological scoring 

of samples using the standard Bern score is presented in (Fig. 2). 
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ULTRASTRUCTURAL ANALYSIS OF 3D SPHEROIDS 

 

TEM was used for visualization of the ECM and cellular characteristics in spheroids and 

cartilage. TEM images showed a clear difference in collagen structures and orientation when 

comparing native cartilage and spheroids. Spheroids with GF showed relatively abundant ECM 

with identifiable and randomly oriented collagen fibrils (Fig. 3 b, e and h). In contrast, collagen 

fibrils were densely packed and arranged in regular patterns in native cartilage (Fig. 3 a, d and 

g). In spheroids with GF, the presence of collagen fibrils was prominent around the pericellular 

regions and gradually replaced with smaller collagen fibrils in the interterritorial space (Fig. 3 

b, e and h). Spheroids without GF had cells that were packed more densely with irregular shapes 

and less ECM production (Fig. 3 c, f and i).  

 

ANALYSIS BY SHG 

 

Native cartilage generated a strong SHG signal from the dense and homogenous ECM with a 

sparse distribution of lacunae (Fig. 4). The FSHG signal showed enhanced contrast as compared 

to the BSHG which was more homogeneous.  The different donors generated similar SHG and 

TPEF intensities except one donor that displayed a strong homogeneous TPEF background 

from the matrix (Fig. 4 a). At the same laser power as used for native cartilage, the spheroids 

generated negligible SHG signal (rp=1, Fig. 4). A four-fold relative increase (rP) in laser power 

gave images that showed the ECM clearly (rp=4, Fig. 4). However, increasing the laser power 

above that threshold resulted in photo-damage of the samples. Spheroids with GF showed 

cartilage-like appearance with clear lacunae-like structures and ECM production (Fig. 4 b, e 

and h). However, the collagen deposits were more irregular and uneven when compared to 
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native cartilage. The spheroids without GF generated a weaker SHG signal even at maximum 

laser power (Fig. 4 c, f and i).  

 

At a four-fold increase in laser power, there was still a reasonable area that contained SHG 

signal above the threshold, defined as collagen matrix in the spheroids with GF (A=37%, Fig. 

5 b and e). In contrast, spheroids without GF displayed a minimal area that contained an SHG 

signal above threshold (A=9%, Fig. 5 c and f). Using five different areas in each donor as a 

reference confirmed that there was a clear trend in amount of collagen matrix for each 

experimental sample (Fig. 5 g), which is also distinguishable when using a single donor (Fig. 4 

h), despite inter and intra variation caused by the change of a reference sample. Results from 

SHGI along with standard Bern score for samples are presented in Fig. 2. The F/B-ratio was 

similar for all samples, despite their difference in overall SHG intensity (Fig. 6).  

 

Discussion 

 

The main objective of this study was to assess collagen deposits in TEC by means of SHG 

microscopy and to include an index based on this measurement in existing Bern score for 

assessment of TEC. The application of SHG microscopy to analyse cartilage is still in its 

infancy, but has recently been used to analyse TEC19, 21, 23, 24, 35.  

 

Due to a sparser collagen matrix in spheroids compared to native cartilage, a noticeable 

difference was observed in the SHG intensity (Fig. 4 d-i). Weak SHG signals in TEC have also 

been reported in previous studies19, 23. However, at a four-fold increase in power (rp), the 

collagen matrix in spheroids became clearly visible (right column, Fig. 4 d and e). Ample 

differences in the collagen network were confirmed by TEM examination of the samples, which 
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revealed a lack of collagen fibres and presence of only sparsely distributed fibrils in spheroids 

with GF compared to native cartilage (Fig. 3 a, b, d, e, g and h). Spheroids without GF displayed 

a strong TPEF signal while almost no SHG was detectable (Fig. 4). This is in agreement with 

the results from histology and TEM (Fig. 1 e and f, and 3 c, f and i), which demonstrated a very 

high density of cells, with a sparsely formed ECM.  

 

Based on the original scoring system spheroids with and without GF resulted in Bern scores of 

8 and 1 in a scale of 9, (Fig. 2). However, with the SHGI extended Bern score, spheroids with 

and without GF resulted in scores of 9 and 1 in a scale of 12, which provides a more precise 

assessment of the constructs when compared to native cartilage (Fig. 2). The inclusion of the 

SHGI into the existing scoring categories revealed a more complete description of the ECM 

constructs that balanced the high Bern score obtained by scoring only proteoglycans staining. 

Variations within reference samples could be a source of uncertainty in the proposed SHGI 

(Fig. 5 g and h). The relative laser power (rp) in our low collagen content TEC was constant, 

independently of the reference sample used. However, the area giving sufficient collagen signal 

(A) is more sensitive than if a clear peak could be achieved in the intensity histogram (Fig. 5 e 

and f). As a counter measure both the SHGI subcategory based on relative laser power (rp) and 

collagen area (A) have a quite crude division, which limits the effect on the overall SHGI grade.   

 

The F/B ratio can be used as an additional tool to assess collagen fibres in TEC. However, the 

F/B ratio is affected by multiple properties of collagen fibres and fibrils, their diameter, 

uniformity of fibrils within the fibre, and density30, 36. Thicker fibres/fibrils and the bundling of 

collagen fibrils into fibres lead to an increase in FSHG but hardly affects the BSHG, thereby 

giving an increase in the F/B-ratio. However, previous studies have shown by numerical 

simulation that the F/B ratio is unchanged by variation of filling ratio, and collagen fibrils within 
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the focal volume, even though densely packed collagen fibrils give an increase in overall 

signal28, 37. In our study, we observed no difference in F/B ratio when comparing the collagen 

network of the spheroids with native cartilage (Fig. 6). This confirms the interpretation that the 

lower SHG signal from the engineered cartilaginous tissue was due to a decrease in collagen 

density, rather than smaller fibrils. The brighter fibrillar structure visible in the pericellular 

region of the spheroids with GF demonstrated no difference in F/B-ratio compared to the 

surrounding matrix, which agrees with the interpretation that the increase in intensity was 

caused by densely packed fibrils in this area.  

 

Previously published studies have not used SHG in a scoring system and referenced the 

assessments with native cartilage. In line with our study, both Olderoy et al.23 and Filova et 

al.38 reported relatively evenly distributed SHG signal from TEC generated under certain 

conditions. However, the intensity of the signal was not compared to that of native cartilage, 

and therefore it is difficult to determine the density of the collagen matrix from solely evaluating 

the SHG signal. Maehara et al.19 created TEC using collagen type I gel scaffolds. In these 

samples, the produced collagen II generated such a weak SHG signal compared to the thick 

collagen type I fibers in the scaffold that the generated matrix was observed as dark areas in the 

bright scaffold. The signal generated by the collagen in the scaffold would interfere with the 

(rp) adjustment. It will, therefore, be more troublesome to apply the SHGI to TEC that have 

used collagen-based scaffolds. It is acknowledged that the use of mechanical stimulation, such 

as compressive, and shear forces, promotes collagen production and improves collagen 

orientation during in vitro chondrogenesis39, 40. Hence, we presume that SHGI could be 

improved in TEC if mechanical stimulation is applied during in vitro chondrogenesis, or if 

constructs are matured by transient in vivo incubations. 
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The current study is focused on assessing the robustness of the experimental technique with a 

special emphasis on the variability of the reference samples. To validate the technique with 

respect to biological variability of the TEC, a larger data set and quantitative comparison with 

a gold standard for collagen content, e.g. TEM, is needed. Another limitation is that without 

polarization-resolved SHG microscopy, it is not possible to discern between different collagen 

types. This is a relevant issue since identification of different collagens permits the 

differentiation between different cartilaginous tissues. In most instances, TEC produce both 

collagen type I and type II. Polarization-resolved SHG could provide additional information on 

the proportion of collagen type I and II in the constructs32, 33, 41. However, as mentioned in the 

introduction, no commercial nonlinear microscopes are currently delivered with polarization 

optics control and its reproduction would require substantial technical expertise. In addition, 

most analytical models of polarization-resolved SHG images requires ordered fibrils which lie 

in the imaging plane and might not be possible to use on the disordered collagen structure of 

TEC. Under such circumstances, specific immunodetection of collagens would provide 

qualitative information on the collagen types present in the ECM. Future work will emphasize 

the use of polarization techniques along with the newly proposed SHGI in order to evaluate the 

applicability to TEC.  

 

Conclusion 

 

In this study, we introduce SHG as a new, quantitative, and label-free approach to analyse the 

collagenous fraction in TEC and propose a new scoring system for based on the existing Bern 

score with an additional index representing quantitative assessments of collagen density and 

distribution by SHG. Introducing a new scoring that considers the collagen fraction in the 

matrix improves markedly the assessment of engineered cartilage.       
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Table 1. Proposed scoring categories for evaluation of chondrogenesis of tissue-engineered 

cartilage. Original Bern score: Category 1-3 and SHGI: Category 4 

Scoring Categories Score 

1. Uniformity and intensity of Alcian blue stain  

No stain 0 

Weak stain of matrix 1 

Moderate stain 2 

Strong stain of matrix 3 

2. Matrix formation based on proteoglycan staining  

No matrix formation 0 

Little matrix formation with high cell density 1 

Moderate matrix formation with relatively low cell density 2 

High matrix formation with low cell density 3 

3. Cell morphology  

Highly condensed and elongated cells 0 

Less condensed and elongated/rounded cells 1 

Mixed elongated/rounded cells with lacunae 2 

Rounded Cells with Lacunae/cartilage morphology 3 

4. Second harmonic generation microscopy index (SHGI)  

Combined score 0 0 

Combined score 1-2 1 

Combined score 3-4 2 

Combined score 4-6 3 

Overall Score Range 0-12 
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Table 2. Two individual parameters used to generate SHGI. 

 

 

SHGI Score 

1. Laser power required (compared to native cartilage), (rp)  

>4 times 0 

>3 to 4 times 1 

>2 to 3 times 2 

1 to 2 times 3 

2. Area covered by collagen (A)  

<25% 0 

25-50% 1 

50-75% 2 

>75-100% 3 

SHGI Range 0-6 
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Figure 1. Light microscopy images at different experimental stages. Light microscopy 

images of thin sections (4 µm), stained for proteoglycans with Alcian blue, and the nuclei 

counterstained with Sirius red, from (a and b) cartilage, (c and d) HFPSCs spheroid (+GF) and 

(e and f) HFPSCs spheroid (-GF) at low and high magnification with scale bar 200 µm and 5 

µm, respectively.  
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Figure 2. Visual histological grading of samples using standard Bern score and Bern score 

+ SHGI. 
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Figure 3. Transmission electron micrograph (TEM) images of of ultra-thin sections of 3D 

spheroids and cartilage. (a) Cartilage, (b) HFPSCs spheroid (+GF) and (c) HFPSCs spheroid 

(-GF) at 5000x magnification and scale bar: 10 µm. ECM of (d and g) cartilage, (e and h) 

HFPSCs spheroid (+GF) and (f and i) HFPSCs spheroid (-GF) at 8000x and 40000x 

magnification with 5 µm and 1 µm scale bar, respectively. Symbols: * = Cell, (ECM) = 

Extracellular matrix, (→) = Collagen fibril and (bold ↑) = Collagen fibres. 
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Figure 4. Second harmonic generation microscopy (SHGM) images of thin sections of 3D 

spheroids and cartilage. (a) Cartilage from three different donors, (b) HFPSCs spheroid (+GF) 

and (c) HFPSCs spheroid (-GF) imaged by TPEF, BSHG and FSHG to visualize the difference 

in generated signal.  All donors were imaged with the same microscope settings. The tissue-

engineered cartilage images were divided into four sections based on a relative increase in laser 

power (rp) of one, two, three and four times (left to right) compared to native cartilage. The rest 

of the microscope settings remained same between imaging. Scale bar: 50 µm.  
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Figure 5. Collagen distribution in ECM among different samples as shown by BSHG. (a) 

Cartilage, (b) HFPSCs spheroid (+GF) and (c) HFPSCs spheroid (-GF) with their corresponding 

intensity histograms (d, e and f). The images were segmented into background (red) and ECM 

containing collagen. The percentage of the image that contains collagen is depicted in the 

histograms. The tissue-engineered cartilage was imaged at rp=4. Five separate areas from each 

of the three cartilage donors were used as a reference sample. The same area as depicted in (b) 

and (c) were imaged and analysed as dictated by each reference sample. The average determined 

area with standard deviation was calculated for all reference samples (g), as well as the results 

based on the five references from each individual donor (h). Scale bar: 50 µm.  

 



32 
 

Figure 6. Changes in F/B-ratio in different samples. (a) Cartilage from three different donors, 

(c) HFPSCs spheroids (+GF) and (e) HFPSCs spheroids (+GF) (green: BSHG, blue: FSHG) 

with their corresponding   F/B ratio (b, d and f). Scale bar: 50 µm. 
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