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SUMMARY 

Staphylococcus aureus is an efficient human colonizer and pathogen. However, the molecular 

mechanisms involved in the interaction of S. aureus with the host during colonization and 

infection is not fully understood. Increasing incidences of antibiotics resistance by S. aureus 

demand development of alternative strategies to combat S. aureus infections. However, this 

requires an adequate understanding of the determinants involved in S. aureus colonization 

and infection of its host. This thesis is aimed at understanding the role of two S. aureus cell 

wall anchored proteins, Serine-aspartate repeats containing protein D (SdrD) and S. aureus 

surface protein G (SasG) in the bacterial adhesion and immune evasion.  

In Paper I, we identified desmoglein 1 (Dsg1) as the host ligand for SdrD using the yeast 

two-hybrid assay. The interaction between SdrD and Dsg1 is specific as shown by the 

concentration dependent binding of recombinant SdrD to immobilized recombinant Dsg1 in a 

solid phase ligand-binding assay. Furthermore, using in vitro cell adhesion assay, we showed 

that this interaction between SdrD and Dsg1 promotes adhesion of S. aureus to human 

keratinocytes. 

In Paper II, using multiple sequence alignment and phylogeny analyses, we showed the 

genetic variability in the A region sequences of sdrD gene in S. aureus isolates from anterior 

nares of healthy adults. We classified these variations into seven sdrD variants. In addition, 

we showed that these genetic variations occurred within several regions of the SdrD protein. 

However, the variations are concentrated on the N2-N3-B1 subdomains and R domain of 

SdrD. In addition, the variations within the N2-N3-B1 subdomains were mostly surface 

associated. Functional analyses using in vitro cell adhesion assay showed a significant 

difference between two of the sdrD variants. 

In Paper III, we showed that SasG expression promoted bacterial adhesion to human 

keratinocytes. Furthermore, we showed that expression of the S. aureus sasG gene was 

upregulated in human blood and that early expression of SasG in bacteriological medium is 

induced by the presence of serum components. However, SasG did not promote the bacterial 

survival in an ex vivo human blood model but promoted bacterial aggregation in the presence 

of serum components.  

Taken together, findings in this thesis indicate the complexities of the mechanisms involved 

in S. aureus interaction with the host. S. aureus colonization and evasion of host immune 

defense mechanisms is essential for subsequent development of infections. Additional studies 

are required to further elucidate these S. aureus virulence factors 
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INTRODUCTION 

The interaction between S. aureus and human has garnered lots of interest in recent times. S. 

aureus persistently colonizes the squamous epithelium of the anterior nares of approximately 

20-30% of the healthy adult human population, but can also be found in other body sites1,2. 

Even though colonization is asymptomatic, S. aureus colonization is an important risk factor 

for infection1,3,4.  

S. aureus possesses a repertoire of virulence factors which aids its ability to survive and 

cause infections in humans5,6. Despite advances made in healthcare treatment, S. aureus 

remains a leading cause of nosocomial infections among hospital patients7,8. S. aureus is an 

opportunistic pathogen and causes infections ranging from mild skin infections to severe 

infections9. In addition, the development of antibiotic resistance by S. aureus has further 

compounded S. aureus infections7,10. 

Challenges posed by these and many more, necessitates the need for an adequate 

understanding of the mechanisms deployed by S. aureus to successfully colonize and infect 

its host. Improved understanding could lead to the development of alternative therapies to 

combat S. aureus infections. 

This study will increase the understanding of the determinants involved in S. aureus 

colonization and infection of humans, with focus on the role of two specific S. aureus cell 

wall anchored proteins.  

 

1 STAPHYLOCOCCUS AUREUS 

S. aureus was first described by Sir Alexander Ogston in the 1880s. He observed a grape-

like cluster of bacteria from slide preparations of pus from post-operative wounds and 

abscess patients11,12. In 1884, Rosenbach was able to successfully isolate and grow the 

bacteria on solid medium. He named the bacteria Staphylococcus aureus because of the 

characteristic yellowish pigmentation of their colonies13. The yellow pigmentation of the 

colonies is due to the production of carotenoids called staphyloxanthin14. 
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S. aureus belongs to the phylum Firmicutes, class Bacilli, order Bacillales, family 

Staphylococcaceae, genus Staphylococcus. The genus comprises 53 species and 28 

subspecies (http://www.bacterio.net/staphylococcus.html, accessed 23 July 2018). Aside 

from S. aureus, it has other staphylococci including S. epidermidis, S. hemolyticus, S. 

saprophyticus, S lugdunensis. The S. aureus coccus size is about 0.5-1.0 µm in diameter and 

appears in pairs, short chains or grape-like clusters microscopically15. S. aureus is a 

facultative anaerobe, Gram-positive, non-motile and non-spore forming microbe. Their cell 

wall is made up of peptidoglycan, teichoic acid and other surface associated protein16–18. 

Peptidoglycan forms the bulk of the cell wall and is composed of a matrix of disaccharide 

chains cross-linked to one another19. Peptidoglycan of actively dividing cell is susceptible to 

the endopeptidase lysostaphin20. Teichoic acid makes about 30-40% of S. aureus cell wall 

weight and is linked with the peptidoglycan21. In addition, some S. aureus strains are also 

coated with a polysaccharide layer called capsule, which envelops their cell surface22. S. 

aureus expresses coagulase, an extracellular protein that binds to prothrombin and converts 

fibrinogen to fibrin15. Furthermore, they are catalase-positive and cause haemolysis when 

grown on blood agar plates15. 

S. aureus is part of the normal microbial flora of humans. It can inhabit diverse ecological 

niches within the human body, where it can thrive as an innocuous microbe or cause 

infections9,15,23. The bacterium is commonly found in the anterior nares of healthy adults1,2. In 

addition, S. aureus has also been indicated in animals such as dog, cat and pigs etc.24. S. 

aureus also possesses the ability to grow in harsh conditions such as high salt (10 % NaCl) or 

low pH conditions (≈ 4.0)15. 

 Clinical Significance  1.1

S. aureus is the most common human pathogen of the genus Staphylococcus and is the 

etiological agent for several human diseases25. Infections caused by S. aureus can be 

classified based on the site and mechanism of occurrence into (1) local infections, associated 

with skin and soft tissue infections (SSTIs), (2) systemic infections such as bacteraemia, 

sepsis, pneumonia etc., (3) invasive device entry infection associated with patients on 

dialysis, intravascular catheters etc., and (4) toxin associated diseases such as toxic shock 

syndrome and staphylococcal scalded skin syndrome (SSSS) etc.9,26,27. 
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Therapeutic interventions to combat S. aureus infections have been further compounded by 

the development of resistance to most known antibiotics especially to methicillin and other 

beta-lactam antibiotics10. Epidemiological studies have shown that S. aureus strains including 

the methicillin-resistant S. aureus (MRSA) strains are responsible for about 30% of deaths in 

USA28. To further give credence to its clinical significance to public health, S. aureus was 

listed as one of the “ESKAPE pathogens”8, which are fundamentally a list of pathogens 

recognized as leading causes of nosocomial infections and development of antimicrobial 

resistance7,29. 

MRSA was first identified as a nosocomial pathogen in the United Kingdom in 196130. 

Initially considered confined to hospital settings, MRSA was identified within the community 

in the USA in 198031. Since then, MRSA strains have been identified within the community 

and hospitals in other parts of the world (reviewed in32,33). Despite increased awareness about 

MRSA, the bacterium remains a main public health priority in most European countries34. 

Infections caused by MRSA strains are generally classified into two groups: hospital-

associated MRSA (HA-MRSA) and community-associated MRSA (CA-MRSA). In order to 

group these infections, different guidelines have been adopted. These guidelines include 

evidence based on epidemiological data of the infection35, pulsed-field gel electrophoresis 

(PFGE) profiles36 and the antibiotics susceptibility profiles of the isolated strain37. Overall, 

these groupings are essential to determine the antibiotic regimen needed to combat MRSA 

infection38. HA-MRSA infections need a more extensive and broad-spectrum based 

antibiotics treatment compared with CA-MRSA infections38. It was originally thought that 

HA-MRSA strains and CA-MRSA strains are epidemiologically distinct from each other39. 

However, CA-MRSA strains such as USA300 has moved into the hospital and established 

itself as a hospital associated strain40,41.  

HA-MRSA strains cause invasive infections while CA-MRSA strains are largely responsible 

for skin and soft tissue infections39,42. However, CA-MRSA strains have also been indicated 

in more invasive infections43,44. S. aureus strains responsible for HA-MRSA and CA-MRSA 

infections have certain attributes which make them unique from each other. The increased 

susceptibility of CA-MRSA strains to antimicrobials other than β-lactam antibiotics is 

because these strains contain one staphylococcal cassette chromosomes mec (SCCmec) 

element (type IV)45. On the other hand, HA-MRSA strains contain type I, II and III 
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SCCmec46,47. In addition, CA-MRSA strains have genes encoding Panton-Valentine 

leukocidin (PVL), which is not found in HA-MRSA strains39,48. 

The success of S. aureus as an infectious microbe reflects its possession of an array of 

abilities. These abilities enable to survive long on inanimate objects, effectively colonize and 

exist as an asymptomatic microbe on its host. Furthermore, expression of virulence factors 

implies it is able to enhance its virulence while damping effects of the host defence 

system5,49,50. 

 Molecular Typing of S. aureus  1.2

Characterization of S. aureus isolates is important to determine their genetic relatedness and 

develop intervention during investigation of epidemic spread especially for MRSA strains. A 

number of molecular typing methods have been developed over the years and some of these 

are expatiated below. 

1.2.1 Multilocus Sequence Typing (MLST) 

MLST is a molecular typing method based on assessing the genomic variation within 

housekeeping genes. For S. aureus isolates characterization, MLST is based on the 

sequencing of about 450-500 bp internal fragments of seven housekeeping genes, that is 

carbamate kinase (arcC), shikimate dehydrogenase (aroE), glycerol kinase (glpF), guanylate 

kinase (gmk), phosphatase acetyltransferase (pta), triosesphonate isomerase (tpi) and acetyl 

coenzyme A acetyltransferase (yqiL)51. These sequences are submitted to the online S. aureus 

MLST database (http://saureus.mlst.net). Based on the variations within each gene sequence, 

an allelic identification number is assigned. The combination of allelic numbers for the seven 

genes gives a unique allelic profile called the sequence type (ST) for each S. aureus isolate. 

Further analysis to group related STs and assignment to MLST clonal complexes (MLST- 

CC) is performed using eBURST (http://saureus.mlst.net/eburst)52. 

1.2.2 Staphylococcus aureus Protein A (spa) Typing 

spa typing is a molecular typing method based on variations within the spa gene of S. aureus 

isolates53. Using spa typing, as a molecular typing method is quite attractive because of its 

simplicity as it relies on amplification of sequences of a single gene. Furthermore, it is 

inexpensive and less laborious compared to MLST. The spa gene encodes Staphylococcal 
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Protein A, made up of a signal sequence, IgG binding domains and polymorphic X region. 

The X region consists of tandem repeats usually 24bp in length. Differences within these 

repeats can be attributed to deletions, duplications and point mutations54. These genetic 

differences generate unique spa profiles, which are used to characterize S. aureus isolates53. 

Genetic relatedness of the spa-types is inferred by using the ‘based upon repeat pattern’ 

(BURP) algorithm, which clusters the spa types into spa-clonal complexes (spa-CCs)55. 

 

2 S. AUREUS COLONIZATION  

 Significance of Colonization 2.1

Humans are constantly exposed to S. aureus in their environment and our body provides a 

range of ecological niches for the S. aureus and other microbes to thrive56. However, not 

every exposure to S. aureus will lead to successful colonization. S. aureus colonization of its 

host involves a complex interplay of factors from the bacterium and its host57. Longitudinal 

studies have shown that 20-30% of the healthy adult population is persistently colonized by 

the S. aureus in their anterior nares1,2,58,59. S. aureus colonization requires that the bacterium 

is able to adhere to the receptors present at the ecological niches. Furthermore, it must also be 

able to thrive and not be eradicated by the host defence mechanisms or resident 

microbiota60,61.  

S. aureus colonization is an important and essential risk factor for subsequent development of 

S. aureus infection and hospital acquired infections1,4,62,63. Danbolt established the first 

correlation between nasal carriage and furunculosis skin infection in 1932 (reviewed in23). In 

addition, correlation between S. aureus nasal carriage and infections such as continuous 

peritoneal dialysis (CPD) related infections64, HIV65, post-operative infections66,67 and foot 

ulcer68 have been observed. Studies have shown that the infecting strains are S. aureus strain, 

which had colonized its carriers’ nares62,69,70. In addition, patients colonized with MRSA 

before hospital admission, have a higher risk of developing MRSA infections71–73 and serve 

as depots for transmission to other patients74.  
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 Sites of S. aureus Colonization 2.2

The primary ecological niche for S. aureus colonization in human is the nose63,75. However, 

S. aureus have been reported to colonize other sites within the human body including skin75, 

perineum76, vagina77, axillae78, pharynx75,77, gastrointestinal tract75,79,80, urinary tract and 

throat81,82. Exclusive S. aureus throat, intestinal and pharynx colonization without nasal 

carriage have been reported79,81–83. In addition, some studies show higher incidences of S. 

aureus prevalence in the throat and pharynx compared to the nasal carriage81,84. The ability of 

S. aureus to survive in different ecological niches of the human body shows its versatility and 

diversity in colonizing its host. 

 Nasal Colonization by S. aureus 2.3

S. aureus nasal carriage influences the bacterial colonization of other parts of the human 

body85. This implies that S. aureus nasal carriage most likely serve as a repository for the 

dispersal of S. aureus into environment or colonization of other body parts86. Habits such 

as nose picking could be an avenue for transfer of S. aureus carried in the nose to other areas 

of the human body87. In addition, patients and healthcare workers nasally colonized by S. 

aureus can also spread the bacterium to non-colonized persons in hospital settings74,88.  

Based on the risk posed by S. aureus nasal carriage, calls to develop effective nasal 

decolonization strategies have increased89,90. Decolonization of S. aureus in the anterior nares 

following courses of intranasal application of the antibiotics mupirocin has  been reported91,92. 

In addition, nasal decolonization treatment also eliminated S. aureus from the hands of health 

workers93. Eradication of S. aureus in the anterior nares in the patients reduced the 

occurrence of S. aureus infections94–96. Application of mupirocin has also been used to 

eradicate MRSA carriage97. These observations further strengthen the notion that the nasal 

environment provides a very viable environment for the colonization and subsequent 

propagation of S. aureus. However, despite the success of mupirocin in eradicating S. aureus 

nasal colonization, S. aureus has developed resistance to the antibiotic98. 

In human nose, the main ecological niche of S. aureus is the moist squamous epithelium of 

the anterior nares of healthy adults in a general population2,63,99. This has been further 

supported by in vitro cell studies, which showed an increased adherence of S. aureus to 

desquamated epithelial cells isolated from the anterior nares100,101. However, S. aureus also 
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colonize other regions nose as well, from mid region nares to the deeper regions of the 

nose102. Interestingly, Kaspar et al., observed within the sampling population of their study 

that the posterior region of the nose was consistently colonized compared to the anterior 

nares103. The surface of the anterior nares is lined with a skin-like epithelium while the 

middle and posterior region of the nose is lined with pseudostratified columnar ciliated 

epithelium102,104,105. The role of these different surface cellular constituents on nasal 

microbiota has been suggested102. However, in another study where the human nasal 

microbiome evaluated, they concluded that the epithelium constituent does not affect the 

nasal microbial diversity103, but a large proportion of the participants in the study had chronic 

nasal inflammation.  

The nasal cavity poses some obstacles which could make S. aureus nasal colonization 

challenging. As an entrance into the olfactory and respiratory system, the nose serves as a 

filter for air coming into the system105. Its production of mucus traps particulate molecules 

including bacteria in its mucus blanket106. In addition, cells of the nasal epithelium are 

constantly being shed, which further removes microbes from the nose. Aside from this, the 

nasal environment contains antimicrobial compounds such as lysozyme, lactoferrin and 

secretory IgA107. Interaction of the resident nasal microflora also influences S. aureus nasal 

colonization and persistence102,108. Bacteria such as Corynebacterium pseudodiphtheriticum, 

S. epidermidis and S. lugdunensis adversely influence S. aureus colonization while C. 

accolens promotes S. aureus growth102,109,110. 

For S. aureus to successfully colonize human nasal cavity, the bacteria should be able to 

multiply and overcome the defence mechanisms encountered in the nose104,111. S. aureus 

binds to the mucus components both in vitro and in vivo and probably could influence its 

effective clearance from the nasal cavity112,113. Although, nasal secretions from S. aureus 

carriers contain a higher concentration of α-defensins and β-defensins114, S. aureus survives 

better in nasal fluids of S. aureus nasal carriers compared to non carriers99. In addition, 

haemoglobin found in nasal secretions from S. aureus carriers promote surfaces colonization 

by the bacterium115. Furthermore, there are increasing evidences of S. aureus being able to 

persist within the cells of the nasal tissue116–118. Recurrent S. aureus infections such as 

rhinosinusitis are due to the intracellular localization of S. aureus119,120. 
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2.3.1 Patterns of Nasal Colonization 

Nasal colonization by S. aureus involves a complex array of factors (reviewed in23,104,121), 

which are not fully understood yet. S. aureus nasal carriers within the healthy adult human 

population have been classified into two categories; persistent carriers and non-persistent 

carriers2. This classification replaced the traditional S. aureus nasal carriers types, which 

were persistent carriers, intermittent carriers and non-carriers75. There have been questions 

regarding the best definition for and/or criteria to use to classify a person as a persistent 

carrier of S. aureus. However, a international guideline has been adopted and is based on the 

“culture rule”59. Persistent carriers are defined as those who have at least two positive culture 

from nasal sample taken one week apart while non-persistent carriers have one positive S. 

aureus culture59.  

Persistent carriers are observed to have higher loads of S. aureus2,102,122,123 and are more 

prone to S. aureus infection62,64. In addition, persistent carriers can serve as reservoir for the 

subsequent transmission of S. aureus to other members of the population124. This might be 

due to the ability of S. aureus to survive longer in persistent nasal carriers compared to the 

non-persistent carriers2,58,125. Persistent carriers are mainly colonized by a single strain of S. 

aureus over a period of time while non-persistent carriers can be colonized by different S. 

aureus strains throughout their life1,2,126,. Furthermore, antibody profile responses between 

persistent carriers and non-persistent carriers also differs2. S. aureus carriers are reported to 

have higher immunoglobulin G (IgG) titers and IgA against the bacteria compared to non-

persistent carriers127. It is also thought that the continuous presence of S. aureus in persistent 

carriers provide a protective advantage for them4,128,129. This is logical since the infecting 

strains are usually the endogenous strains carried by the host4,62. Interestingly, when 

persistent S. aureus nasal carriers were artificially inoculated with mix of S. aureus inoculum, 

they reacquired their endogenous strain from the mix2,125. 

2.3.2 Structure and Components of Anterior Nares  

The anterior nares surface is covered with stratified squamous epithelium continuous with of 

the external skin118,130. The surface is made up of two layers, which are the epidermis, outer 

layer and dermis, the inner layer (Figure 1). Interspacing these two layers are structures 

including sweat glands, hair follicles and sebaceous gland131. The epidermis is a multilayered 

structure resting on the basement membrane, which separates it from the dermis. The 
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epidermis is divided into four strata including the stratum basale, stratum spinosum, stratum 

granulosum and stratum corneum from bottom to top. Overall, the different stratum work 

together to make the nasal epithelium impenetrable for microbes and also withstand 

environmental onslaught132. 

The delineation of the epidermis into the respective strata begins at the basal layer via a 

maturation process referred to as epidermal differentiation. Keratinocytes at the basal layer 

are undifferentiated, attached to the basement membrane and continuously dividing131. As the 

epidermis is continuously desquamated, the basal layer provides a continuous supply of new 

cells to keep the maturation process and renewal of the skin ongoing133. At a point, 

keratinocytes at the basal layer undergo transformation, detach from basement membrane, 

stops dividing and start to differentiate. Thereafter, they migrate outwards, undergoing a 

maturation process that gives rise to the distinct layers of the epidermis131,134.  

Due to stratification of the epidermis, cells within each stratum have their own characteristic 

cellular features and expressed proteins. Keratinocytes at the basal layer highly express 

keratins 5, 14 and 15135,136. However, keratin 1 (K1) and 10 (K10) replaces these proteins as 

the cells migrate through the spinosum136. Cells at the granular layer contain lamella bodies 

(LBs). LBs contain lipids such as phospholipids, glucosylceramides, sphingomyelin, and 

cholesterol137. During the transition of the cells to stratum corneum, LBs fuse with the plasma 

membrane and release their content into the intercellular space133,137. At the stratum corneum, 

the cytoplasmic membrane of cells is replaced by cornified envelope (CE). Proteins such as 

filaggrin, involucrin, loricrin together with K1 and K10 make up the CE138. Lipids formed 

from the contents of LBs become covalently attached to the cornified envelope, giving these 

cells their characteristic features. Cells at the corneum layer are flattened, devoid of 

organelles and tightly packed together132–134. This enables the stratum corneum to serve the 

physical barrier functions of the skin132. 

Aside from the keratinocytes present in the epidermis, other cells present are the Langerhans 

cells and the melanocytes, which are involved in immune and ultraviolet protection 

respectively (reviewed in139). The dermis is made up of connective tissue and other molecules 

including elastin fibers and collagen. The dermis also provides residence for immune cells 

including macrophage, dendritic cells and T helper cells139. 
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Figure 1. Structural components of the skin in the nasal anterior nares. The epidermis is composed of 
keratinocytes in different stages of differentiation. The epidermis is divided into strata including corneum, 
granulosum, spinosum and basale. The barrier function of the skin is provided by the stratum corneum. Cells at 
the stratum granulosum contain lamellar bodies, which releases its lipids content into the extracellular space to 
further strengthen the barrier. A layer of extracellular matrix called the basement membrane separates the 
dermis from the epidermis. Structures such as the hair follicles span the different layers of the skin. Immune 
cells such as the Langerhans cells are found in the epidermis while immune cells such as the mast cells, 
neutrophils, B cell, T cell and macrophage are found in the dermis. In addition, at the epidermis are the 
melanocytes, which are responsible for melanin production and ultraviolet protection. Based on139,140. 

 Intercellular Junctions of the Epidermis 2.4

Intercellular junctions including the adherens junctions and desmosomes facilitate cell-to-cell 

adhesion within the epidermis, thus enabling it to serve as an effective physical barrier. Other 

junctions include the tight and gap junctions (Figure 2). In addition, hemidesmosomes 

facilitate adherence of cells within the basal layer to the basement membrane. Adherens 

junction is associated with actin cytoskeleton while the desmosomes are associated with 

keratin intermediate filament cytoskeleton. The intercellular junctions link the cytoskeleton to 

the cell’s plasma membrane within a cell to that of the adjacent cell, creating a mesh network 

that gives structure and integrity to the epidermis134,141. 

Aside from the cells of the stratified epidermis, desmosomes are also found in tissues that 

experience intense mechanical stress such as myocardium, hepatocytes and gastrointestinal 

mucosa (reviewed in142–144). The corresponding effect of their mutations and other 
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autoimmune diseases that affect them on tissue integrity reflects desmosomes’ importance in 

cell-to-cell adhesion145–147. Desmosomes are composed of two desmosomal cadherin 

proteins: desmocollins (Dsc) and desmogleins (Dsg), which form the extracellular 

transmembrane region of desmosomes. In addition, desmosomes cytoplasmic constituents 

compose of armadillo proteins (plakoglobins and plakophilins) and plakins (desmoplakins) 

(reviewed in143,148) (Figure 2). 

 

 

 

Figure 2. Intercellular junctions of the epidermis. a. Cell to cell adhesion junctions of the skin’s epidermis 
are shown. Epidermal intercellular junctions include tight junctions, desmosomes, adherens junctions and gap 
junctions. Adhesion between keratinocytes at the stratum basale and the basement membrane is facilitated by 
the hemidesmosomes. Based on131,134. b. Proteins of the desmosome structure are shown. Desmogleins and 
desmocollins extend from the extracellular space across the plasma membrane into the intracellular space of the 
cell. Desmosomes’ intracellular components composed of the desmoplakins, plakophilins, and plakoglobins. 
Desmoplakins bind to the intermediate filament within the cell´s cytoplasm. Cell to cell adhesion is facilitated 
via interaction of Dsg or Dsc on neighbouring cells Adapted with permission from149. 
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In human, there are different isoforms of the desmosomal cadherin proteins: three Dsc (Dsc1-

3) and four desmogleins (Dsg1- 4)150,151. Dsc and Dsg share similar structural features 

(Figure 3). Their structure comprises of an extracellular cadherin domain (EC1- 4), 

extracellular anchor (EA) followed by a single pass transmembrane region and an 

intracellular anchor at the cytoplasmic side. However, Dsgs have additional motifs on their 

intracellular region. The cadherin repeats are interspaced with calcium binding motifs and it 

has been shown that calcium plays an important role in the structural integrity of 

desmosomes during adhesion152. To facilitate adhesion, the desmosomal cadherin proteins 

can engage in a homotypic or heterotypic interaction with each other148,153. 

Desmoglein isoforms have varied expression patterns within the stratified epidermis154. This 

differential expression is essential for epidermal maturation process and maintenance of 

tissue homeostasis. Alterations in the expression patterns of the different isoforms result in 

abnormal epidermal differentiation, reduction in barrier function and compromise in cell-to-

cell adhesion (reviewed in144,148). Within the epidermis, Dsg2 is expressed at the basal layer 

while Dsg3 is expressed at basal and spinosum layers. Dsg1 is concentrated in the suprabasal 

layers and Dsg4 expression is confined to the corneum and upper granular layers134 (Figure 

3). 
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Figure 3. Structure and expression of the desmosomal cadherin proteins. a. Schematic representation of the 
different regions of desmogleins (Dsg) and desmocollins are shown. The desmosomal cadherins proteins 
contain four extracellular (EC) domains, an extracellular anchor (EA), transmembrane (TM) region, intracellular 
anchor (IA) and intracellular cadherin segment (ICS). Desmogleins contain additional regions including the 
intracellular proline rich linker (IPL), repeat unit domain (RUD) and desmoglein-specific terminal domain 
(DTD). Desmocollins isoforms have two splice variants “a” and “b”. Based on155. b. Dsg protein isoforms 
expression patterns within the epidermis. SC-Stratum corneum, SG-Stratum granulosum, SS-Stratum spinosum, 
SB-Stratum basale, BM-Basement membrane) Based on134. 

   

3 S. AUREUS DETERMINANTS OF COLONIZATION AND/OR INFECTION 

S. aureus can exist as a commensal or a pathogenic microbe within its human host. This 

requires achieving a proper balance between efficient attachment at the colonized site and 

withstanding the mechanical forces that aim to dislodge it from those niches. Furthermore, as 

a pathogen, the bacteria should be able to survive and establish itself once the host defence 

mechanisms are breached49. In addition, it should be able to cause tissue damage and spread 

to other sites within the host body to establish infection. 
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S. aureus expresses a barrage of virulence factors that facilitate its ability to interact with host 

tissue and the extracellular matrix components. Broadly, S. aureus virulence factors can be 

classified into secreted factors and cell surface factors (Figure 4). Together, these factors 

function to (1) adhere to the host cell surface and components, (2) spread bacteria through the 

host, (3) evade host immune defence, and (4) produce toxins and other products, which can 

cause damage to the host’s cells. Coupled with these factors, S. aureus also possesses 

regulatory components and mechanisms, which ensures that the bacterium expresses these 

factors only when needed (reviewed in5,6,156,157).  

 

 

Figure 4. Schematic representation of localization of selected S. aureus virulence factors. S. aureus 
produces many factors which contribute to its colonization and/or infections. Examples of secreted factors: 
include Panton-Valentine leukocidin (PVL), phenol-soluble modulins (PSMs) toxic shock syndrome toxin 
(TSST) and Staphylokinase. Examples of cell surface factors include lipoteichoic acid (LTA), wall teichoic acid 
(WTA), polysaccharide intracellular adhesin (PIA), serine- aspartate repeat containing protein D (SdrD), surface 
protein G (SasG), clumping factor (Clf), fibronectin binding protein (FnBP), autolysin (Atl), extracellular 
matrix-binding protein homologue (Ebh), elastin binding proteins (Ebps), extracellular fibrinogen binding 
protein (Efb), extracellular matrix protein (Emp) and enolase. Based on 5,6,18,156,158,159. 

 

 S. aureus Secreted Factors 3.1

S. aureus produces many factors that are secreted into the extracellular milieu. These secreted 

factors include enzymes, superantigens and membrane damaging toxins159,160. Superantigen 

factors such as toxic shock syndrome toxin (TSST) activate the host’s T cells leading to their 

excessive proliferation and production of cytokines, overall causing the fatal Staphylococcal 

toxic shock syndrome159. Membrane damaging toxins bore into the cytoplasmic membrane of 
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the host cells leading to their lysis and escape of their intracellular contents159. Membrane 

damaging toxins include proteins such as Hemolysin-α (α- toxin), Panton-Valentine 

leukocidin (PVL), Phenol-soluble modulins (PSMs) and gamma-toxin (gamma-hemolysin, 

HlgA, HlgB, HlgC)159,161. These proteins have different mechanisms of action. For example, 

PVL binds to C5aR and C5L2 receptors on neutrophils162 while the effect on PSMs on host 

cells is thought to be receptor independent159. In addition, α- toxin binds with A disintegrin 

and metalloproteinase 10 (ADAM10)163. The interaction disrupts focal adhesion and degrades 

E-cadherins, subsequently leading to loss of epithelial integrity163,164. S. aureus also secretes 

enzymes such as Staphylokinase, Staphylocoagulase and Von Willebrand factor (vWF), 

which further influence the bacterial virulence (reviewed in159). In addition, S. aureus 

Exfoliative toxin (ET), has been indicated in the pathogenesis of staphylococcal scalded skin 

syndrome (SSSS)165. 

 S. aureus Cell Surface Factors 3.2

The S. aureus cell surface is decorated with proteinaceous and non-proteinaceous 

molecules18,156. The proteinaceous cell surface molecules include: (1) Cell wall anchored 

proteins (CWA) which are covalently linked to the bacterial cell wall166, (2) Non covalently 

attached cell wall associated proteins including proteins with specific cell wall-binding 

domains e.g. autolysin (Atl), ‘secretable expanded repertoire adhesive molecules’ (SERAMs) 

and cytoplasmic wall binding proteins, and (3) Membrane spanning proteins such as 

extracellular matrix-binding protein homologue (Ebh) and elastin binding proteins 

(Ebps)18,156. The non-proteinaceous S. aureus cell surface molecules include the Wall teichoic 

acid (WTA), Lipoteichoic acid (LTA), Polysaccharide Intracellular adhesin (PIA) and other 

polysaccharides18,156. 

Although, there are ongoing investigations to further understand the contributions of these 

cell surface factors in S. aureus colonization and/or virulence, the functions of some of these 

cell surface factors has been described (reviewed in5,6,156,158). For example, WTA plays an 

important role in the early stages of S. aureus nasal colonization167 and interacts with human 

nasal epithelial cells via a type F scavenger receptor called SREC 1168. PIA and LTA are 

involved in S. aureus biofilm formation169. Ebps binds elastin, a major component of the 

extracellular matrix170. SERAMs proteins including extracellular adherence protein (Eap) and 

extracellular matrix binding protein (Emp) bind to extracellular matrix molecules including 

fibronectin, fibrinogen, collagen (reviewed in171). 
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3.2.1 S. aureus Cell Wall Anchored Proteins  

CWA proteins are the main group of S. aureus cell surface factors. They meditate adhesion of 

S. aureus to the host’s extracellular matrix and receptor(s) present on the host’s cell surface 

(reviewed in5,6,154,164). They are involved in colonization, immune evasion, biofilm function 

and other functions that contribute to S. aureus virulence (reviewed in5,6).  

CWA proteins contain a signal sequence peptide at their amino terminal and a sorting signal 

at their carboxyl terminal5. The signal sequence directs the translated product to sites within 

the bacterial peptidoglycan cell wall172. The LPXTG motif in sorting signal at the carboxyl 

terminal, facilitates the covalent anchorage of CWA proteins to the dividing peptidoglycan of 

S. aureus cell wall173. The anchorage is facilitated via the action of the transpeptidase enzyme 

called sortase A (SrtA)166. Interspacing the two terminals are different regions with diverse 

functionality. Based on their structure and function, CWA proteins have been classified into 

four groups (reviewed in5). These are (1) Microbial surface components recognizing adhesive 

matrix molecules (MSCRAMMs) which include clumping factor A (ClfA) and ClfB, serine-

aspartate repeat containing protein (Sdr) C, D and E, bone sialo binding protein (Bbp), 

collagen adhesion (CNA) and Fibronectin-binding protein A (FnBPA) and FnBPB, (2) Neat 

motif family e.g. Iron-regulated surface (Isd) proteins, (3) Three helical bundle family e.g. 

Protein A and (4) G5-E repeat family e.g. S. aureus surface protein G (SasG). Recently, a 

review suggested two additional groups based on functional motifs without structural details 

and the location of biological functions in a disordered region (reviewed in6). These are (1) 

The legume lectin domain e.g. serine-rich adhesin of platelets (SraP) and (2) fibronectin 

binding by tandem β-Zipper6. 

Studies have shown the molecular mechanism behind CWA proteins involvement in S. 

aureus virulence and their interaction with some host components5,6,156. CWA proteins are 

involved in nasal colonization. For example, in vitro studies have shown that ClfB promotes 

S. aureus binding to cytokeratin 10174 and loricrin101. The importance of ClfB-loricrin 

interaction nasal colonization was emphasized by the reduced adherence of S. aureus in 

loricrin deficient mouse101. Furthermore, ClfB promotes S. aureus nasal colonization and 

persistence in humans artificially inoculated with ClfB expressing S. aureus175. In addition, 

ClfB has been shown to bind to cytokeratin 8176. Other CWA proteins including as SasX, 

SdrC and IsdA also promote adherence of S. aureus to human nasal epithelial cells100,177. 

Deciphering CWA proteins functions are often complicated because S. aureus CWA proteins 
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are multifunctional and the proteins sometimes have redundant or complementary functions. 

For example, CWA protein including FnBPA, FnBPB, ClfA, ClfB and IsdA all bind to 

fibrinogen while IsdA, IsdB and IsdH bind to the haemoglobin component called haem5,6. 

3.2.1.1 Serine-Aspartate Repeat Containing Protein D (SdrD) 

S. aureus SdrD belongs to the MSCRAMMs group of CWA proteins. The sdrD open reading 

frame (ORF) is encoded at the sdr locus in tandem with the ORFs of sdrC and sdrE178. The 

prevalence of the sdrD gene within the genome of S. aureus strains varies179–181 and Trad et 

al., observed a correlation between the presence of sdrD gene and bone infections182. 

SdrD shares some structural similarities with S. aureus virulence factors ClfA and ClfB178 

(Figure 5). Its structure comprises of a signal sequence and a sorting signal at its amino (N) 

and carboxyl (C) terminus respectively. The N-terminal signal sequence is followed by the A 

region, the B repeat and R domain (reviewed in5). SdrD A region is subdivided into N1, N2 

and N3 domains and is responsible for ligand binding via a dock-lock- latch mechanism183. 

SdrD B repeats compose of B1- B5 subdomains are composed of 110-113 amino acid 

residues and functions as a spacer, extending the ligand binding A region further from the 

cell wall121. The B1- B5 subdomains contains EF motifs, which bind calcium in a sequential 

manner184,185. Furthermore, SdrD R domain is made up of serine aspartate repeats5,178. 

 

 

Figure 5. Schematic representation of S. aureus Serine Aspartate repeats containing protein D (SdrD). 
The location of the S: Signal sequence, N1, N2, N3 subdomains of the SdrD A region, B1-B5 subdomains of the 
SdrD B repeat, SD-Repeats: Serine-Aspartate repeats of the SdrD R domain, W: wall spanning domain, M: 
membrane spanning domain, C: cytoplasmic domain, LPXTG: cell wall sorting signal are indicated. Based 
on5,186. 

 

The function and molecular mechanism of SdrD in S. aureus virulence is still being 

investigated. The sdrD gene expression is upregulated during nasal colonization187,188 and 

SdrD S N1 N2 N3 SD-RepeatsB1 B2 B3 B5B4 W M C
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SdrD promote increased S. aureus adhesion to desquamated nasal epithelial cells100. 

However, SdrD may also have a role during S. aureus infection, because its expression is 

increased in human blood189 and it promotes S. aureus survival in human blood ex vivo190. In 

addition, there is an increased level of Immunoglobulin G (IgG) against SdrD in serum of S. 

aureus infected patients191. Moreover, SdrD is crucial in abscess formation following 

invasive S. aureus infection192. Furthermore, mice immunized with a vaccine preparation 

composed of SdrD, SdrE, IsdA and IsdB, showed an increased level of protection against S. 

aureus infection193. These findings suggest that the SdrD protein could be important in S. 

aureus colonization and infection of its host. 

3.2.1.2 S.aureus Surface Protein G (SasG) 

The SasG protein belongs to the G5E group of S. aureus CWA proteins. The protein has 

some structural organization and sequence similarity with the Plasmin sensitive proteins (Pls) 

and the Accumulation associated protein (Aap) of S. aureus and S. epidermidis 

respectively194. The SasG protein consists of an A region and B repeat made up of tandem 

repeats of G5 and E5,194 (Figure 6). 

 

 

Figure 5. Schematic representation of S. aureus Surface protein G (SasG). S: Signal sequence, ligand 
binding A region, G5-E repeats of the SasG B repeat, W: wall spanning domain, M: membrane spanning 
domain, C: cytoplasmic domain, LPXTG: cell wall sorting signal are indicated. Based on194,195 

 

The sasG gene is highly prevalent in clinical isolates compared to carriage isolates194. SasG is 

involved in intercellular aggregation of SasG expressing S. aureus196,197. SasG also promotes 

biofilm formation198 and Geoghegan et al. showed that the biofilm formation process is 

mediated by the intercellular dimerization B repeat of neighbouring SasG expressing cells199. 

In addition, it was shown that the intercellular dimerization of SasG B repeats occurs in a 

zinc dependent manner197,199. Furthermore, SasG promotes adhesion of S. aureus to 
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desquamated nasal cells195,198 and the adhesion is mediated by the SasG A region195. 

However, SasG does not promote adhesion to buccal epithelial cells or keratinocytes195. The 

sasG gene is highly expressed in nasal samples from S.aureus nasal carriers188 and also high 

levels of IgG against SasG have been observed in sera of infected patients194. This suggests 

that SasG is relevant for S. aureus virulence. However, expression of SasG reduces 

adherence of S. aureus to fibronectin and fibrinogen195. This was hypothesized to be the 

effects of SasG masking other adhesins on S. aureus due to its B repeat extension from the 

cell surface198.  

 Expression variation in genes encoding S. aureus cell surface molecules 3.3

The expression patterns of S. aureus virulence genes could suggest how and when the 

expressed virulence factors are important during S. aureus colonization and/or infection. 

Some studies have tried to delineate which S. aureus virulence factors are expressed during 

nasal colonization200,201. For example, analysis of nasal samples from persistent S. aureus 

carriers revealed an early upregulation of the WTA biosynthesis genes, tagO and tarK, during 

the initial stages of nasal colonization200. Other CWA genes such as clfB, fnbA and isdA are 

upregulated much later during colonization200. This suggests that WTA is important for 

prompt S. aureus nasal colonization. 

In S. aureus, about 24 different CWA proteins can be expressed5. However, the CWA 

proteins expressed depends on strain202, the growth phase and conditions187,189,203. For 

example, CWA genes such as isdA are highly expressed in iron-limiting conditions204 , 

others such as clfB and spa are expressed predominantly during the exponential growth 

phase205,206 while clfA is expressed in the stationary growth phase207,208. In addition, 

expression of CWA genes sasD and sdrH were highly upregulated in persistent S. aureus 

nasal carriers compared to non-persistent carriers209. These differences are a result of the 

regulatory factors in S. aureus including the accessory gene regulator (agr) locus, the 

staphylococcal accessory regulator A (sarA), which direct expression of these factors in 

response to cues within its environment such as bacterial density, available nutrients 

etc.157,208,210. 
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 Genetic diversity in S. aureus Cell Surface Molecules 3.4

Studies have also revealed genetic diversity within the sequences and region of genes 

encoding virulence factors between S. aureus from diverse background202,211. Genetic 

variations range from sequence variations within an individual gene212 to the absence or 

presence of genes within the genome of different S. aureus strains202,213. For example, the A 

domain of S. aureus virulence factor FnBPA exists as different isotypes214,215. These 

variations were mainly concentrated in the N2-N3 subdomains of the A domain117. Though 

variations within FnBPA A domain isotypes did not affect their ligand binding activity, it 

affected their antigenicity214,215. This suggests that sequence variations within virulence genes 

could have important implications on the virulence functions. Indeed, single nucleotide 

polymorphism in fnbp genes have been shown to be associated with increased cardiovascular 

devices infection216,217. Furthermore, sequence variations have been reported within other 

S.aureus CWA genes such as fnbp218,219 and sdrD211 of S. aureus isolates from different host 

origins.  

A correlation between the presence of sdrD gene and bone infections have been 

observed179,182. McCarthy and Lindsay reported that CWA genes such as fnbpA, isdA and 

isdH were present in all the 58 S. aureus isolates studied while genes such as sdrC, sdrD and 

sasG were absent from some of these isolates202. They also observed that the collagen 

adhesion gene, cna was absent from the genome of the majority of these isolates202. Sabat et 

al. found that the prevalence of sdrD gene was significantly higher in MRSA strains while 

sdrC gene was limited to MSSA strains179. Furthermore, fnbpB gene was found to be more 

prevalent among invasive isolates compared to carriage isolates219,220.  

Overall, genetic and expression variation within virulence genes between S.aureus isolates 

further indicate the complexity of identifying specific factors that account for how S. aureus 

could be an effective colonizer or cause a wide range of diseases. What this implies is that the 

dynamics of S. aureus interaction with humans cannot just be explained based on a single 

bacterial virulence determinant.  
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4 S. AUREUS AND HOST INTERACTION: HOST IMMUNITY 

The host immune system can recognize, resist and eliminate S. aureus (reviewed in 221,222). It 

is divided into the innate immune system and adaptive immune system. The innate immune 

responses are the first line of defences that are initiated immediately upon contact with 

pathogens.. Innate immune responses are fast, non-specific but are able to discriminate 

invading pathogens from self and other beneficial commensal flora. The adaptive immunity is 

a delayed, specific response and is stimulated by components of the innate immune system. 

The adaptive immune system develops immunological memory, which enables rapid 

response to subsequent reinfection by the same pathogen. Adaptive immunity against S. 

aureus infection begins later during the time course of infection. Responses by the adaptive 

immunity lead to the activation of B and T cells, production of antibodies and also release of 

cytokines. This can further modulate and/or amplify the initial response mounted by the 

innate immunity222. Phagocytosis by the neutrophils is believed to be one of the main 

clearance mechanisms for S. aureus infection221,224. 

 Innate Immunity 4.1

Innate immune system can be broadly grouped into anatomical barriers, toll-like receptors, 

complement system and phagocytes223 (Figure 7) 
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Figure 7. Host Immune responses to S. aureus colonization and/or infection. S. aureus colonization of the 
anterior nares and skin surface is inhibited by the host immune defence mechanisms including antimicrobial 
peptides (AMPs) release, Toll-like receptor 2 (TLR2) recognition of conserved motifs on the bacterial surface, 
mucus production, the presence of resident microbes and low pH. Upon breaching the epidermis, components of 
the host immune defence including complement factors and Immunoglobulins (Ig) detect the bacteria. These 
components opsonize the bacteria surface leading to the activation of the complement cascade. This leads to 
production of complement factors C5a and C3a.These products initiate recruitment of circulating neutrophils 
from the blood. In addition, TLR activation induces chemokine production, which together with C5a and C3a 
form a chemotactic gradient that directs and guides the neutrophils to the infection site. Neutrophils recognize 
the opsonized bacteria via their Fc and complement receptors. Consequently, the bacteria are phagocytosed and 
killed by the neutrophils. Based on225,226. 

4.1.1 Anatomical barriers: Immune properties of the Skin 

The skin is the first barrier, which protects against onslaught of microbes present in the 

environment139. The skin’s immune protection is ensured by tightly packed keratinocytes and 

also the continuous desquamation of the epidermal cells132. In addition, filaggrin components 

breakdown at the stratum corneum leads to the production of acidic components such as 

urocanic acid (UCA) and pyrrolidone carboxylic acid (PCA)227. These components 

contribute to the skin surface’s low pH and also inhibit expression of S. aureus CWA 

proteins ClfB, FnbpA and protein A227. Commensal microbes of the skin also ensure 
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protection against S. aureus. For example, PSM and serine protease Esp produced by S. 

epidermidis on the skin inhibits colonization by S. aureus109,228. 

Furthermore, antimicrobial peptides such as β-defensins, RNase7, and cathelicidin expressed 

by epidermal keratinocytes show inhibitory activity against S. aureus, thus preventing 

successful colonization132,229. Human β-defensins are highly potent against S. aureus230. 

Cathelicidins disrupt the S. aureus cell membrane by forming pores in them231 and has been 

shown to be highly effective in killing extracellular and intracellular S. aureus232. In the skin, 

RNase7 was found at the stratum corneum and inhibited colonization of skin explants by S. 

aureus233,234. The production of these antimicrobial peptides can be induced by the presence 

of S. aureus or components such as LTA235,236. Aside from these, antimicrobial peptides can 

also induce cytokine release and recruitment of immune cells such as macrophages, dendritic 

cells to the infection site237,238. 

4.1.2 Toll-like Receptors 

Cells within the nasal cavity, skin and other S. aureus colonization sites possess receptors 

called pathogen recognition receptors (PRRs). These PRRs recognize conserved microbial 

components referred to as pathogen associated molecular patterns (PAMPs) in S. aureus and 

other pathogenic microbes239. S. aureus PAMPs include LTA, lipoproteins (LPP), teichoic 

acid and other surface associated components (reviewed in240). An important group of PRRs 

are the Toll-like receptors (TLRs). The TLRs are transmembrane proteins composed of an 

extracellular domain, a transmembrane region and cytosolic Toll/IL-1 receptor (TIR) 

domain240.  

The important TLR responsible for recognition of S. aureus and its microbial component is 

TLR2. Its importance in mitigating S. aureus infections has been demonstrated in mouse 

lacking TLR2241,242. Furthermore, diminished TLR2 stimulation in atopic dermatitis patients 

have been suggested to contribute in S. aureus skin infection243. To become functionally 

activated, TLR2 forms heterodimer complex with either TLR6 or TLR1, via which it 

interacts with LTAs and lipoproteins expressed on the surface of S. aureus240,244. Interaction 

of TLR2 with its ligands, resulting in activation of intracellular signalling cascade that leads 

to the activation of transcription factor nuclear factor- κB (NF-κB) which consequently leads 

to the production of pro-inflammatory products such as chemokines and cytokines245,246. NF-

κB also promotes the expression of adhesion molecules such as E-selectin, Intercellular 
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adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1)247. These 

adhesion molecules recruit circulating immune cells such as neutrophils from the blood. 

Furthermore, TLR2 activation promote epidermal tight junction formation thus enhancing 

skin’s barrier function248. In addition, activation of TLR2 by the skin’s commensal microbes 

also enhances the production of antimicrobial peptides, which can inhibit S. aureus 

colonization and infection249.  

4.1.3 The Complement System 

The complement system is made up of more than 30 protein found in blood and tissues. 

Complement proteins are inactive until they are cleaved. After activation, they react with 

each other, generating a sequence of events that helps to combat the pathogen. Complement 

system can be activated via three different pathways, which are the classical pathway (CP), 

the alternative pathway (AP) and the lectin pathway (LP). These pathways differ in the 

molecules that can activate them. The classical pathway is activated either by direct binding 

of C1q to the bacterial surface or C1q binding to antibody complexes (IgM or IgG) present 

on bacterial surface. In contrast, binding of the spontaneously generated C3b on bacteria 

activates alternative pathway. The lectin pathway is activated by mannose binding lectin or 

ficolin to the mannose containing carbohydrates on the bacterial surface. Complement 

activation irrespective of the pathways results in the production of C3 convertases (reviewed 

in240,250,251). 

Complement activation serves three purposes. First, the activated complement factors bind 

the pathogen surfaces, opsonizing them thus making phagocytosis of the pathogen highly 

efficient. Second, the effector proteins such as C5a and C3a generated during complement 

activation, serve as chemoattractants for the recruitment of immune cells (phagocytes) from 

circulation. Furthermore, activation of complement can also lead to the generation of 

membrane attack complex (MAC) that lyse the pathogen’s membrane especially for Gram-

negative bacteria (reviewed in240,250,251). The importance of complements in combating S. 

aureus has been demonstrated by the increased death observed in complement depleted 

mouse after S. aureus bacteraemia252. Furthermore, it has also been shown that activation of 

complements on S. aureus surfaces reduced their adherence to endothelial cell surfaces253. 
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4.1.4 Neutrophils 

Neutrophils are the first set of phagocytes to migrate to the site of S. aureus infection 

(reviewed in254). Their importance in combating S. aureus infection is demonstrated by the 

increased predisposition of individuals with defective neutrophil functions to S. aureus 

infections254,255. The primary role of neutrophils in combating infection is phagocytosis of the 

pathogens recognized by the PRRs. They are also play an important role in abscess formation 

upon S. aureus infection256.  

Recruitment of circulating neutrophils to the infection site is facilitated by a gradient of 

chemotactic signals including Interleukin-8 (IL-8), complement factors C3a and C5a254,257. 

The recruitment process can be divided into four stages, which are rolling adhesion, integrin 

activation, firm adhesion and transmigration258. Capturing of circulating neutrophils is 

initiated by their attachment to adhesion molecules such as E- selectin, P-selectin, 

Intracellular adhesion molecule (ICAM) etc. present on the endothelial cells259. Attachment 

to these adhesion molecules is facilitated by receptors such as P-selectin glycoprotein ligand 

1(PSGL-1) expressed by neutrophils260. Subsequently, they leave blood circulation and 

transmigrate across the endothelial walls towards the infected tissue site261.  

Efficient phagocytosis by neutrophils is enhanced by the presence of opsonins such as 

complement factors and immunoglobulins on the pathogen’s surface254. Present on 

neutrophils cell surface are receptors such as Fc and complement receptors, which interact 

with these opsonins (reviewed in250,258,262). However, neutrophils mediated phagocytosis of 

pathogens have also been observed to occur at a slower rate in absence of opsonization263. 

These interaction leads to the phagocytosis of the pathogen and subsequently formation of 

phagosomes. Phagosomes undergo series of maturation process, which eventually lead to 

bacterial killing (reviewed in264). Reactive oxygen species (ROS), proteinases and AMPs etc. 

produced by neutrophils ensure bacterial killing265. Furthermore, neutrophils can trap and kill 

S. aureus via its neutrophil extracellular traps (NETs) covered with antimicrobials266.  
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 S. aureus Immune Evasive Strategies  4.2

S. aureus has evolved evasion mechanisms or strategies that help it to counteract host 

immune responses against them (Figure 8). These strategies are facilitated by secreted or 

surface bound virulence, which help S. aureus to disrupt normal host defences functionality, 

thus creating an environment for the bacteria to thrive and survive better. S. aureus immune 

evasion strategies are exhibited in different ways. The most prominent of these evasion 

strategies is S. aureus ability to circumvent neutrophils’ phagocytic and intracellular killing 

function49,257. Aside from these, S. aureus possesses ability to reduce antimicrobial peptides 

effectiveness, inhibit TLR signalling and complement activation and opsonization (reviewed 

in49,50,267). 

 

Figure 8. S. aureus immune evasion strategies to host innate immune defence mechanisms. Host factors are 
written in red while the mechanisms behind the immune evasion are listed in blue boxes.  

4.2.1 Inhibition of Phagocytes  

S. aureus concerted strategies to inhibit phagocytosis are targeted at phagocytes recruitment 

and subsequent ingestion of the microbe. Recruitment of circulating neutrophils is inhibited 

by S. aureus chemotaxis inhibiting proteins (CHIPS), which binds to C5a and formyl peptide 

receptors on the neutrophils’ cell surface268,269. This prevents the neutrophils from following 

the chemotactic gradient necessary to get to the infection site. In addition, binding of S. 

aureus surface proteins such as Second binding protein of immunoglobulins (Sbi)270 and 
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Staphyloccocal protein A (SpA) to the Fc of IgG, reorients antibodies in the wrong direction 

preventing opsonization and phagocytosis49,258. Masking of bacterial surface receptors or 

epitope by S. aureus capsule polysaccharide also inhibits phagocytosis271. Complement 

mediated opsonization of the bacterial surface is affected by proteins such as extracellular 

adherence proteins (Eap), Staphyloccocal Complement Inhibitor (SCIN) and extracellular 

fibrinogen binding protein (Efb) 49,258. CWA proteins such as ClfA and IsdH also inhibit the 

phagocytosis272,273.  

4.2.2 S. aureus Resistance to Killing  

When S. aureus is ingested, it can still survive within the phagocytes by inhibiting the 

cytotoxic processes leading to bacterial degradation. S. aureus products such as 

staphyloxanthin and superoxide dismutases protect the bacteria from effects of the reactive 

oxygen species of neutrophils’ phagosomes49,274 .  

S. aureus have also developed strategies to combat the effects of AMPs. S. aureus secreted 

protein aureolysin degrades the LL37, a potent bactericidal agent275. It can also modify its 

surface via the action of dtl operon, thus preventing the binding of AMPs276. Staphylokinase 

also binds inhibits the activity of defensins on S. aureus by binding with them277. In addition, 

S aureus produces toxins such as phenol soluble modulins (PSMs) which form pores on the 

phagocytes and thus facilitating the escape of the ingested S. aureus278,279. CWA proteins 

such as ClfA mediate survival of bacteria by promoting abscess formation. Others such as 

SdrD, SdrE and SpA also contribute to S. aureus survival in blood 190,280,281. 

 

Some of the molecules expressed by S. aureus to circumvent host immune responses are 

listed in Table 1  
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Table 1: Examples of molecules used by S. aureus to evade or alter the host immune responses  

Immune 
Response Evasion factor Abbreviation Function Effect Reference 

Neutrophils 

Staphyloccocal superantigen protein 5 SSL5 Binds P-selectin glycoprotein ligand-
1 

Disrupts neutrophils chemotaxis 
282 

Staphylococcal superantigen protein 11 SSL11 283 
Chemotaxis inhibitory protein of S. aureus CHIPS 

Binds to C5a receptors and formyl 
peptide receptor like-1 

Disrupts neutrophils chemotaxis 

268,269 
Formly peptide receptor like-1 inhibitory 
protein FLIPr 284 

Extracellular adherence protein Eap Binds to ICAM1 Blocks neutrophils adhesion to 
endothelial lining 

285,286 

Staphylococcal binder of Immunoglobin Sbi 
Binds IgG 

Blocks antibody mediated 
opsonization and phagocytosis 

270,287 

S. aureus Protein A Spa 
Reviewed 
in33,49,50 

Staphyloxanthin  Carotenoid biosynthesis Protection against Reactive 
oxygen species (ROS) effects 

288 
Catalase and Superoxide dismutase  Eliminate/ Inactivate ROS  289 

Phenol Soluble modulin PSM  

Bore pores in membrane of cells 

 

Destroys neutrophils and other 
host immune cells 

Reviewed 
in278 

Panton- Valentine leukocidin PVL 
Reviewed 
in33,49,50 Leukocidin GH LukGH 

TLR 
Staphylococcal superantigen 3 SSL3 Binds TLR2 ligand binding site Blocks TLR2 immune recognition 290 

TIR containing protein TIRS Binds TLR2´s TIR domain 
Blocks TLR2 mediated NF-κB 
activation 

291 

Antimicrobial 
peptide 

dlt operon WTA Modification of cell wall components Reduced antimicrobial peptide 
activity 

276 
Staphylokinase Sak Binds alpha defensins  277 

 

Complement 

 

Staphylococcal Complement Inhibitor SCIN 
Binds complement factor C3 and C3 
convertases  

Disrupts complement mediated 
opsonization of S. aureus and 
phagocytosis 

292 

Staphylococcal binder of Immunoglobin Sbi 293 

Extracellular fibrinogen binding protein Efb 294,295 

Staphylokinase Sak Converts S. aureus surface bound 
plasminogen into plasmin  Removes opsonins on the 

microbial cell surface 

277,296 

Serine aspartate repeat containing protein E SdrE Binds Factor H 280 
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5 OBJECTIVES 

The main objective of this study was to investigate the molecular mechanisms underlying the 

determinants involved in S. aureus colonization and/or infection of its host. We aimed to 

provide increased knowledge regarding the role of the S. aureus CWA proteins SdrD and 

SasG in bacterial adhesion to host cells and/or evasion of the host immune defence 

mechanisms.  

Our specific research questions were:  

Paper I 

S. aureus SdrD has been shown to promote bacterial adhesion to desquamated nasal epithelial 

cells. 

Does S. aureus SdrD interact with specific host ligand(s) in the epithelium? What 

could be the role of such ligand interaction? 

Paper II 

Sequence diversity has been observed within S. aureus CWAs genes such as fnbp and clfA. 

How conserved is the sdrD gene within S. aureus isolates from healthy 

individuals? Could variation within the sdrD gene influence SdrD function? 

 

Paper III 

S. aureus SasG is a surface protein known to promote bacterial adhesion to desquamated 

nasal epithelial cells. 

Does S. aureus SasG contribute to host cells adhesion to human keratinocytes? 

Under what conditions is SasG expressed? Does S. aureus SasG have immune 

evasion properties? 
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6 METHODOLOGY 

A detailed description of the experimental procedures performed in this thesis is listed and 

explained in the articles and manuscript herein. An overview of some of the experimental 

procedures performed is explained below. 

 Host Protein-Pathogen Protein Interaction 6.1

Protein-protein interaction detection assays have been employed to determine the interaction 

between host proteins and S. aureus virulence factors. Elucidating these interactions is 

particularly helpful in deciphering some of the molecular mechanism engaged by S. aureus in 

colonizing humans. It has been suggested that this might form the basis for the development 

of some anti-colonization strategies in future297. In Paper I, a yeast two-hybrid (Y2H) 

assay298 was ordered from Hybrigenics to find the potential host partners for S. aureus SdrD 

protein. Basically, Y2H assays are performed in yeast strains containing two proteins. One of 

the proteins referred to as “bait” is fused with a DNA binding domain (DBD) while the other 

protein referred to as “prey” is fused with an Activation domain (AD). Physical interaction of 

the two proteins brings these two domains in close proximity and thus forming a functional 

transcription factor. The transcription factor then activates the reporter gene, which can be 

assayed by growing the yeast strain on a selective medium or observing for colorimetric 

changes. In Paper I, the SdrD A region fused with GAL4DBD was the bait protein and this 

was used to screen the human reconstituted skin libraries fused with GAL4AD (the “prey”). 

We selected Y2H assay because it allowed for screening of large proteins libraries for SdrD 

putative host partners. It is important to note that Y2H assay has some limitations, one of 

which is the high false positive rates of potential candidates299. However, in Paper I, we 

have employed complementary methods to validate the putative partners as indicated by the 

Y2H.  

 Solid Phase Ligand Binding Assay 6.2

Solid phase ligand binding assay allows for further characterization and validation of protein-

protein interactions in vitro. The principle underlying this method is based on the enzyme 

linked immunosorbent assay (ELISA). For this assay, the first protein (protein A) is 

immobilized onto a solid phase such as wells of microtiter plate. Subsequently, the free in 

solution second protein (protein B) is added to the wells containing immobilized protein A. 
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After washing, the binding of the two proteins is determined via colorimetric quantification. 

It is expected that the colour intensity should be directly proportional to the amount of the 

bound proteins. In Paper I, variants of this assay were adopted to confirm the interaction 

between S. aureus SdrD and Dsg1, the Y2H assay detected putative interaction partner. For 

example, purified recombinant SdrD A region protein were coated onto wells of microtiter 

plates. Subsequently, recombinant Dsg1 protein was added. If there were any interaction, it 

would be expected that the added Dsg1 would bind to the SdrD A region. This was assayed 

by adding antibodies against Dsg1, followed by the secondary antibodies, followed by 

quantification of binding. In addition, in Paper I, we also immobilized Dsg1 on wells of 

microtiter plates. Wells coated with IgG1 were used as a control. Thereafter, we added S. 

aureus NCTC 8325-4 or S. aureus NCTC 8325-4∆sdrD to the coated wells of microtiter 

plates. We hypothesized that if SdrD binds with Dsg1, expression of SdrD in S. aureus 

NCTC 8325-4 should increase binding to immobilized Dsg1. Subsequently, the plates were 

washed, fixed and stained with crystal violet. The stained well were subsequently dissolved 

with acetic acid. Semi quantitative measurement of the interaction was achieved by 

measuring absorbance of the wells. 

 Genetic manipulation of S. aureus 6.3

Studying the biological functions of S. aureus virulence factors often involves a deletion or 

heterologous expression of genes encoding these factors. Manipulations of S. aureus DNA 

have been performed in this thesis.  

In Paper I and III, isogenic mutants of S. aureus were generated using the allelic 

replacement method300,301. This method relies on the replacement of DNA with a mutant 

allele of the DNA via homologous recombination. To create a markless deletion of the target 

gene, DNA sequences flanking up and down of the target gene are cloned into a S. aureus 

shuttle plasmid such as pKOR1300 and pIMAY302. The replication origin for these plasmids is 

temperature sensitive i.e. they can only replicate autonomously at certain permissive 

temperature. Furthermore, the plasmid contains a selective marker that allows selection of 

successful transformants. Thus, electroporation of the cloned plasmid into S. aureus and 

growing the bacteria at the selective temperature allows for plasmid replication. 

Subsequently, temperature shift is used to facilitate integration and excision of plasmid in and 

out of the S. aureus genome. However, it is important that caution is taken during genetic 

manipulations to ensure and verify that no other undesired modifications are introduced in  
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S. aureus genome. Thus, it is important to verify that other biological functions (such as 

growth rate, hemolytic effect etc.) in the wild type and its isogenic mutant are comparable.  

Genetic modifications of certain S. aureus strains are difficult due to the S. aureus restriction-

modification (RM) systems, which attacks foreign DNA (reviewed in303). S. aureus RM 

systems methylate its DNA in specialized pattern, which are subsequently read and protected 

from degradation. However, foreign DNA without the recognizable methylation pattern is 

degraded when transformed into S. aureus. Type I and type IV RM systems are mainly 

responsible for this in S. aureus. To bypass this, in Paper I, the cloned plasmid was 

transformed into E. coli DC10B302,304. E.coli DC10B is deficient in Dcm methylase, which 

methylates cytosine residues. Thus, plasmids transformed in it are not methylated on their 

cytosine residues, thus bypassing the type IV RM system challenge. In Paper III, the cloned 

plasmid was transformed in E. coli IM01B or SA08B301. Aside from being dcm deficient, 

these E. coli strains have been engineered to methylate the adenine residues on the 

transformed plasmid based on the methylation pattern of particular S. aureus clonal 

complexes, this allows for bypass of Type I and type IV RM systems challenges in S. aureus. 

Falkow explained Koch´s postulates as it relates to microbial pathogenicity investigation305. 

He stipulated that it is important that expression of the gene in its isogenic mutant 

(complementation) or expression in another model strain (heterologous expression) should 

restore or confer virulence capacity in order to confirm that the gene is actually involved in 

its pathogenicity. Therefore in Paper I, heterologous expression of SdrD was achieved by 

cloning sdrD gene into pMG36e plasmid306 and which was then subsequently transformed 

into Lactobacillus lactis. In Paper II, S. aureus NCTC 8325-4∆sdrD was complemented 

with pMG36e plasmid containing variants of sdrD gene. This ensured that the sdrD variants 

were expressed in a common genetic background, therefore eliminating contributory effects 

of other factors not within the scope of the study. In Paper III, we made heterologous 

expression and complementation constructs for SasG by transforming 

pALC2072::SasGMSSA476 into S. aureus SH1000 and MSSA476∆sasG respectively. 

 Bioinformatic analysis 6.4

Bioinformatic tools and analyses have taken a front seat in providing more understanding 

about S. aureus based on the sequences of their genes or genomes. In addition, relatedness of 

S. aureus strains can also be inferred by comparing the sequences to each other and also with 
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other reference isolates which are present in the database. This has helped in prompt 

resolution and typing of S. aureus responsible for infections. 

In Paper II, genetic variation in sdrD gene between S. aureus isolates from healthy carriers 

was investigated. Multiple sequence alignment (MSA) was performed in order to facilitate 

comparison of the sdrD A region sequences from different S. aureus isolates. This will show 

the sequence diversity of sdrD gene within S. aureus strains from different human hosts. 

MSA can either be carried out either as global or local alignments. The major difference 

between them is that global alignment tries to align the whole sequence while local alignment 

aligns the sequence based on the region of highest similarity between the sequences. Multiple 

Alignment Fast Fourier Transform (MAFFT)307 was used for the alignment. MAFFT has 

been suggested to provide accurate MSA data compared to some other alignment tool such 

CLUSTALW308. In addition, phylogenetic analyses were performed using Randomized 

Axelerated Maximum Likelihood (RaxML)309 and Multilocus sequence typing (MLST)51. 

 Host Model Systems to study functions of S. aureus Virulence Factors 6.5

There is need to develop or use an appropriate in vitro or ex vivo model to investigate the 

virulence effect of S. aureus proteins. Depending on the physiological conditions that are 

being monitored, different technical methods can be used. The model system of choice 

should mimic the conditions that the bacteria would normally be exposed to during 

colonization or infection. However, the limitation of a host model system is that it is not 

possible to include all human components and conditions that would normally be present 

during S. aureus colonization or infection. 

In Paper I, II and III, cell adhesion assays were performed to evaluate the contribution of the 

studied virulence factor to S. aureus adhesion. As keratinocytes are the most abundant cells 

types found in the skin and the anterior nares of the nose132,134, the model cell type chosen for 

our in vitro studies was the immortalized human keratinocytes cell line (HaCaT)310 (Paper I, 

II and III). However, in Paper I, we also used human embryonic kidney cells 293 

(HEK293)311. Basically, in cell adhesion assay, the cells are seeded into tissue culture treated 

wells and incubated to facilitate attachment to the well surface. Upon addition of S. aureus to 

the seeded cells, S. aureus surface protein should interact with host surface expressed 

proteins. As a control, a bacterium lacking the gene encoding the protein is used. The degree 
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of adherence can therefore be compared, in order to see if the protein contributes significantly 

to S. aureus adhesion to the host cells. 

As discussed previously, S. aureus virulence factors also contribute to its ability to evade and 

survive host defence mechanisms. Human blood composes of components that aid to combat 

bacterial infections. The whole blood assay has been used to study the expression and 

immune evasion effect of S. aureus virulence genes189,190,287,312. Blood used for this assay is 

usually freshly drawn blood from healthy participants. The blood is taken in tubes containing 

hirudin, which serve as anticoagulant and also preserve the complement activity of the 

blood313. Therefore, this assay provides a more accurate reflection of S. aureus response to 

immune system components. In Paper III, the expression and contribution of S. aureus 

MSSA476 sasG gene to survival was assayed in whole human blood assay. 

 Recombinant protein expression 6.6

Advances in the molecular biology techniques have made it possible to express protein 

products of exogenous DNA within a heterologous expression system. Recombinant protein 

production has helped to overcome the challenges of getting high amounts of the desired 

protein. The recombinant protein process involves cloning the DNA sequences of the desired 

protein into an expression vector such as pGEX-4T-1 and pRSETB. The cloned vector is 

transformed into a heterologous expression vehicle such as bacteria, yeast or mammalian 

cells. Thereafter, expression of the protein is induced and subsequently the recombinant 

protein is isolated and purified.  

In this study, we have expressed SdrD and SasG proteins and its subdomains using the E. coli 

expression system. We used this system because E. coli is easy to culture, easy to handle and 

has a fast growth rate. In addition, compared to other heterologous expression vehicles, E. 

coli genetics is better understood and this system produces a high yield of the recombinant 

protein. However, there are drawbacks associated with using E. coli as an expression vehicle 

including likelihood of protein not being expressed in its natural form, production of 

insoluble protein, and lack of post-translational modifications such as glycosylation. 

Strategies including use of fusion tag and optimization of expression conditions such as 

lowering of temperature and addition of glucose etc. have been suggested to overcome these 

challenges (discussed in314,315). 
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7 SUMMARY OF RESULTS 

Paper I: The interaction between Staphylococcus aureus SdrD and desmoglein 1 is 

important for adhesion to host cells 

• The expression of SdrD in S. aureus NCTC8325-4 promoted increased binding of the 

bacteria to HaCaT cells compared to its isogenic sdrD mutant S. aureus NCTC8325-

4∆sdrD. Furthermore, the heterologous expression of SdrD in L. lactis transformed with 

pMG36e::SdrDNCTC8325-4 increased bacterial adhesion to HaCaT cells  compared to L. 

lactis transformed with empty pMG36e. 

 

• The Y2H assay identified Dsg1 as putative host interaction partner for S. aureus SdrD. 

 

• S. aureus SdrD facilitated the binding of S. aureus to Dsg1. This was observed by the 

increased adherence of S. aureus NCTC8325-4 to immobilized recombinant Dsg1 

compared to its isogenic sdrD mutant S. aureus NCTC8325-4∆sdrD. The increased 

adherence of S. aureus NCTC8325-4 occurred in a dose dependent manner. 

 

•  Preincubation of S. aureus NCTC8325-4 with recombinant Dsg1 reduced the adherence 

of the bacteria to immobilized recombinant Dsg1. In addition, recombinant human Dsg1 

binds to immobilized recombinant SdrD A region in a dose dependent manner. 

 

• The interaction between S. aureus SdrD and Dsg1 is specific. Recombinant SdrD 

interacted with HaCaT cells expressing Dsg1 but not with neutrophils, which does not 

express Dsg1. Furthermore, transfection of HEK293 cells with plasmid expressing Dsg1 

facilitated increased adhesion of S. aureus NCTC8325-4 compared to its isogenic sdrD 

mutant S. aureus NCTC8325-4∆sdrD. 
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Paper II: Genetic variability in the sdrD gene in Staphylococcus aureus from 

healthy nasal carriers 

• The study revealed that the prevalence of sdrC, sdrD and sdrE genes varied 

within S. aureus strains isolates from the anterior nares of healthy adult 

participants. The sdrC gene was almost always present in the isolates, while the 

sdrD gene was present in 29% of the isolates. None of the S. aureus isolates 

carried the sdrD gene as a single gene. 

 

• Sequence alignment of the sdrD A region from 48 S. aureus isolates from healthy 

individuals together with those of 6 reference strains, showed diversity within 

this region across the isolates. The diversity within the sdrD A region of S. 

aureus strains analysed was classified into seven sdrD variants. 

 

• The entire sdrD gene for the seven S. aureus isolates representing the seven sdrD 

variants also showed sequence variation. The size of the SdrD polypeptides also 

varied. The amino acid variations in SdrD were concentrated in the N2-N3 

domains of the A region, B1 subdomain and R chain. 

 

• Structural modelling revealed that the amino acid variations in the N2-N3-B1 

domains were majorly concentrated in the N3 domain. Most of the amino acid 

variations were surface associated. In addition, there were amino acid variations 

within the groove formed between the N2-N3 domains. 

 

• The cell adhesion assay revealed that the adhesion of the S. aureus expressing the 

sdrD variants to HaCaT cells were comparable. Only two of the sdrD variants 

differed significantly when compared to each other. 

 

• Overall, our findings showed genetic variability in the sdrD gene from S. aureus 

strains isolated from healthy adult individuals. 

 

 



 37 

Paper III: Expression and Virulence properties of Staphylococcus aureus 

MSSA476 Surface protein G (SasG) 

• The presence of SasGMSSA476 promoted bacterial adhesion to HaCaT cells in a 

heterologous SasGMSSA476 expression system compared to its empty vector 

control. 

 

• Pairwise comparison of amino acid sequences of SasGMSSA476 and SasGNCTC8325 

revealed variations within the A region and B repeats of the two proteins. 

 

• Expression of sasG gene in MSSA476 is upregulated upon exposed to human 

blood. In addition, the presence of serum components induced early expression of 

SasG protein in MSSA476 grown in bacteriological medium.  

 

• The presence of SasG did not contribute to bacterial survival in human blood ex 

vivo 

 

• SasG mediated bacterial aggregation in the presence of FBS. 
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8 GENERAL DISCUSSION 

Adequate understanding of the mechanisms of S. aureus colonization is vital in 

developing alternatives strategies to combat its ability to cause infections and 

diseases. Host colonization by S. aureus involves a complex interaction of diverse 

factors, which are the pathogen, host and the environment23,316. In this thesis, 

mechanisms of some of the bacterial determinants involved in S. aureus colonization 

and infection were investigated. Particularly, we focused on the role of the S. aureus 

CWA proteins SdrD and SasG in adhesion and immune evasion processes. 

 S. aureus CWAs proteins: Interaction with Epithelial Cells  8.1

Nasal colonization is an important risk for the subsequent development of S. aureus 

infection4,72. This is facilitated by several adhesins such as CWA proteins expressed 

by S. aureus strains5,6,101. In this study, we revealed the role of two S. aureus CWA 

proteins, SdrD (Paper I and II) and SasG (Paper III) in promoting S. aureus 

adherence to human keratinocytes. The importance of these proteins to S. aureus 

adherence was shown by the significant impairment in adherence of their isogenic 

mutant compared to the wildtype. Adhesion of the mutants to keratinocytes could not 

be totally abolished due to the functional redundancy that exists within S. aureus 

CWA proteins (reviewed in5,156). However, using complemented mutants and/or 

heterologous expression construct, we confirmed SdrD and SasG importance in 

promoting adherence to human keratinocytes (Paper I, II and III). Our findings 

further reinforce the previous understanding regarding the multiple mechanism used 

by S. aureus in its interaction with host cells and tissue5,6,156,171. 

Previous in vitro studies have shown that S. aureus CWA proteins SdrD, SasG, SdrC, 

SasX and ClfB promoted bacterial adherence to desquamated nasal epithelial 

cells100,195,317. Furthermore, in vivo studies have shown ClfB and IsdA involvement in 

nasal colonization175,318. The desquamated nasal epithelial cells are limited to the 

stratum corneum layer of the skin epidermis133. On the other hand, keratinocytes are 

abundant and present throughout the different layers of the skin epidermis and are the 

most abundant cells present in the skin epidermis139. Therefore, it may not be 

surprising that S. aureus expresses surface proteins that interact with the keratinocytes 

(Paper I, II and III). The ability of S. aureus to interact with cells beyond the 
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superficial layers could provide an advantage in colonization and immune evasion. 

Although, in murine model, SdrD did not facilitate nasal colonization319 but 

expression of S. aureus sdrD and sasG genes are increased during nasal colonization 

in human187,188. However, the involvement of SdrD and SasG proteins in establishing 

successful nasal colonization is still unknown and requires further studies.  

Our result showing S. aureus SasG protein mediated bacterial adherence to 

keratinocytes (paper III) contradicted results of Roche et al195. However, this may be 

due to differences in strains or experimental procedures. For example, in Paper III 

the heterologous expression construct, S. aureus SH1000 transformed with 

pALC2073::SasGMSSA476 was used while the previous study used L. lactis transformed 

with pKS80::sasG195. Furthermore, the SasG mediated adherence to keratinocytes 

could be influenced by or require the concerted and/or contributory effect of other S. 

aureus surface proteins. Interestingly, SasG mediated bacterial adhesion was only 

observed in FBS-deficient cell culture medium, the presence of FBS attenuated the 

bacterial adhesion to keratinocytes (Paper III). Differences in adherence based on 

media have been observed previously. The ability of ClfB expressing S. aureus to 

adhere to cytokeratin 10 differed depending on whether the bacteria were grown in 

either nutrient deficient or nutrient rich medium175. This further shows the complexity 

and multifactorial nature underlying the molecular mechanism of CWA proteins 

interaction with host cells5. SasG protein interaction with the host cells requires more 

studies to further delineate its mechanism of interaction. 

The interaction of S. aureus CWA proteins with host molecules mediates adherence 

of S. aureus cells to host cells and it is also essential for nasal colonization101. Host 

molecules such as loricrin and cytokeratin 10 are important host ligands for S. aureus 

ClfB and IsdA101,320. In Paper I, we revealed that S. aureus SdrD interacts directly 

with cell adhesion molecule Dsg1. SdrD A-domain has previously been shown to be 

essential for the protein ligand binding function5,183. Here, we demonstrated that Dsg1 

binds SdrD A-domain in dose dependent manner (Paper I). Furthermore, we showed 

that the interaction between S. aureus SdrD and Dsg1 promoted bacterial adhesion to 

human keratinocytes (Paper I). However, some interaction between the isogenic 

sdrD mutant and Dsg1 was seen, suggesting other surface proteins might interact with 

Dsg1. This is not surprising, taken into consideration the functional redundancy that 
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exist among S. aureus CWA proteins. For example CWA protein FnBPA, FnBPB and 

IsdA could all bind to fibronectin while ClfA, ClfB FnBPA and FnBPB bind to 

fibrinogen5. Therefore, further studies are required to investigate if there is other S. 

aureus surface proteins that interact with Dsg1. 

8.1.1 Implication of SdrD-Dsg1 interaction in S. aureus colonization and/or 

infection  

Dsg1 is a transmembrane desmosomal cadherins protein involved cell- cell adhesion 

and maintenance of integrity of the epidermis134,148. Dsg1 has an extracellular region 

which interacts with either Dsc1 or Dsg1 of its neighbouring cells, thus ensuring cell 

cohesion143,148. It is concentrated in all the layers of the epidermis except the stratum 

basale134,148. Our findings in Paper I, demonstrated S. aureus ability to use proteins 

involved in host’s cell to cell adhesion as its receptor. One can speculate that SdrD-

Dsg1 interaction could be a means for S. aureus to breach the epithelial barrier and 

disseminate further into the tissue. Initially thought to limited to the epidermal stratum 

corneum, S. aureus cells have been found in the deeper layers of the epidermis in 

samples from healthy S. aureus nasal carriers118. Bacteria such as Clostridium 

botulinum hemagglutin bind to E-cadherin and causes disruption of the epithelial 

barrier even without proteolytic cleavage of E-cadherin321. In addition, some 

adenovirus serotypes bind with Dsg2, causing a transient opening of the epithelial 

junction due to Dsg2 shedding322,323. Whether or not the SdrD-Dsg1 interaction 

results in Dsg1 cleavage is still elusive and our assay data from preliminary 

investigations were inconclusive (unpublished results).  

Desquamation of the epithelium surface ensures the constant removal of bacteria from 

the nose. Dsg1 mediate keratinocytes differentiation via several signalling pathway 

such as suppression of mitogen-activated protein kinase (MAPK) pathway324 

(reviewed in149). Furthermore, Dsg1 is part of the corneodesmosomes and its 

proteolysis is required for efficient corneocytes desquamation325,326. Therefore, it is 

possible that SdrD-Dsg1 interaction aid in the extracellular persistence of S. aureus on 

the epithelial surface by interfering with the terminal differentiation of keratinocyte 

and desquamation of nasal epithelial surface. Since, sdrD expression is upregulated 

during nasal colonization187, SdrD- Dsg1 interaction might be important for sustained 

nasal colonization. However, additional studies are required to confirm this. 
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Furthermore, bacteria can also target cell-cell junctions to facilitate the clinical 

manifestations of their infections327,328. Staphylococcal Exfoliative toxin (ET) cleaves 

Dsg1 resulting into loss of cell to cell adhesion between keratinocytes165,329. This is 

responsible for the clinical manifestations observed in staphylococcal scalded skin 

syndrome (SSSS)165,329. Whether the interaction between SdrD and Dsg1 contributes 

to S. aureus infections or diseases is unknown. However, in human blood S. aureus 

sdrD expression is upregulated189 and also promotes survival of the bacteria in 

blood190. It is tempting to suggest that SdrD-Dsg1 binding and subsequent loss of cell-

cell adhesion caused by S. aureus ET could facilitate movement of S. aureus into 

systemic circulation, where SdrD subsequently aids in the bacterial survival. Further 

studies are required to understanding the subsequent events following SdrD-Dsg1 

interaction.  

 S. aureus CWA genes: genetic diversity and expression  8.2

Previous studies have evaluated the prevalence of sdrC, sdrD and sdrE genes among 

S. aureus isolates179,180. The sdrC, sdrD and sdrE genes are located in tandem 

arrangement within the sdr locus186. In Paper II, we confirmed the presence of sdrC, 

sdrD and sdrE genes in S. aureus isolated from the anterior nares of healthy adults. 

However, the prevalence of the genes within these S. aureus isolates differs. In 

agreement with another study179, we found that sdrC gene is almost always present in 

within the strains. However, in Paper II, sdrD gene prevalence was lower than that 

observed by Sabat et al.179. Josefsson et al. reported at least two sdr genes were 

always present in all studied S. aureus isolates186. However, we found that sdrC and 

sdrE can occur singly in S. aureus isolates (Paper II). This might be due to the 

variations in the techniques adopted in our study and theirs. We have used a PCR 

approach as used in Sabat et al.179 while Josefsson et al, have used a Southern blotting 

approach186. Primers used in PCRs are highly specific, therefore, the absence of some 

of these genes might be due to sequence variation in the genes.  

Genetic variation in fnb, hla, spa etc. genes have previously been found214,330,331. 

Using S. aureus NCTC8325-4 as our model strain, we found that SdrD is involved in 

adherence to keratinocytes (Paper I). In Paper II, we revealed genetic variability 

within sdrD gene in S. aureus strains. These variations were predominantly in the 

SdrD A domain and R domain. The high sequence diversity observed within SdrD A 
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domain, is in agreement with previous studies202,211. In addition, we observed that 

variations within sdrD were lower within lineages compared between lineages (Paper 

II). This is in agreement with a study by McCarthy and Lindsay202. Variations within 

the sequence of CWA proteins could have functional implications on S. aureus 

colonization and/or infection. For example, a single nucleotide polymorphism (SNP) 

in FnBPA has been found to be associated with cardiovascular devices infection 

because of their increased binding to fibronectin216,332. In our study, there were 

significant differences in adhesion of two S. aureus expressing the different sdrD 

variants to human keratinocytes (Paper II). However, the functional effects of the 

sdrD gene variation are not fully understood yet and thus require additional studies. 

Expression of S. aureus virulence genes can be altered by the environmental or 

growth conditions201,203. Analyses of virulence genes expression in conditions that 

represent the host milieu could suggest the importance of the virulence factor in S. 

aureus colonization and/or infection. For example, ClfB is expressed in nose and is 

major determinant during in nasal colonization of humans101,175,201. In Paper III, sasG 

expression is upregulated in human blood and SasG expression was induced by serum 

components. In addition, the protein expression occurred in the stationary phase of the 

bacterial growth. A previous study has shown that sasG is more prevalent in invasive 

isolates compared to carriage isolates195. In our study, SasG did not promote bacterial 

survival in human blood ex vivo (Paper III). This suggests that SasG might have 

some other roles in S. aureus invasiveness and/or infection. Further studies are 

required to delineate the molecular mechanism of SasG’s contribution to S. aureus 

virulence.  

A study showed that SasG expressing cells had fibrils structures on their surface198. 

These structures have been suggested to mask other S. aureus surface adhesins, 

causing reduced adherence of such cells to extracellular matrix components such as 

fibronectin and fibrinogen198. This could be the reason why SasG expression is 

delayed until stationary phase (Paper III). Perhaps ensuring that the other S. aureus 

surface proteins could carry out their virulence functions before SasG is finally 

expressed. However, this expression pattern might also be an indication of a yet to be 

characterized role of SasG in S. aureus virulence. Further studies are needed to 

properly understand this. 
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Understanding genetic and expression variation in S. aureus virulence genes is 

complex and challenging. Allelic variation in bacterial virulence genes could be some 

form of adaptation geared towards different host species specificity. This mechanism 

has been observed in FimH, the type 1 fimbrial adhesin in Salmonella typhimurium 

where certain SNPs drive specificity of the adhesin for either humans or animals 

host333. Though, McCarthy and Lindsay202 reported no difference in sequences of S. 

aureus surface proteins of animal or human lineages. It is likely that the genetic 

variations within S. aureus virulence genes or lineages represent adaptation to 

selective pressure such as host immune responses or antibiotic encountered at the 

within different individuals. Successful S. aureus colonization of different hosts has 

been suggested to be a result of a series of co-evolutionary processes involving the 

host, pathogen and the environment57. Therefore, genetic and expression variations in 

S. aureus CWA proteins as observed in Paper II and III, might be a means of 

achieving this.  

 S. aureus CWA proteins: evasion of host immune response 8.3

S. aureus can evade the host immune response in several ways49. In Paper I, we 

showed that S. aureus SdrD interacts with the host cell adhesion molecule Dsg1. 

Internalization and cytoskeleton rearrangement have been indicated in Pemphigus, an 

autoimmune skin disorder caused by antibodies directed against Dsg1 and Dsg3 

ectodomains334,335. Moreover, interaction between the bacterial surface protein and 

host adhesion molecules can facilitate their internalization by the host cells (reviewed 

in328). Bacteria such as Listeria monocytogenes binds to E-cadherins via its surface 

protein InIA and the interaction mediate its internalization by the epithelial cell336. 

Intracellular localization protects the bacteria from the host immune sentinels and also 

reduces the effect of antibiotics on them337. This can further aid in persistence of S. 

aureus colonization or recurrent infection116,119. Thus, one can speculate that 

interaction between SdrD and Dsg1 could lead to the endocytosis of the bacteria. S. 

aureus internalization by keratinocytes via FnBP dependent or independent pathway 

have been reported338. Our preliminary data indicated that compared to the isogenic 

sdrD mutant, the presence of SdrD contributed to the internalization by HaCaT cells 

(unpublished results). Further studies are required to if this is a result of SdrD-Dsg1 

interaction.  
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We found that SasG promotes bacterial aggregation when grown in presence of serum 

(Paper III). S. aureus ClfA mediated bacterial aggregation and protected the S. 

aureus from clearance by phagocytes such as neutrophils and macrophages272,339. 

Previous studies indicated that SasG does not contribute to sepsis340 or abscess 

formation192. However, in mice, SasG contributed to bacterial deposition at the kidney 

following intravenous inoculation with S. aureus192. SasG expression caused 

formation of fibrils and reduced adherence to extracellular matrix198. Bacterial 

aggregation could be a way of moving from the site of infection to other organs in the 

host and also evading immune evasion mechanisms. Additional studies are ongoing to 

properly understand this.  

In Paper II, we reported variations within the sdrD gene from different S. aureus 

isolates. In addition, we showed that variations within the SdrD A domain are surface 

associated (Paper II). Microbes can also alter their surface protein via antigenic 

variation to evade the host immune system341,342. For example, variations within S. 

aureus FnBPA and FnBPB A domains have been observed to reduce host immuno-

cross reactivity within the different FnBP isotypes214,215. In addition, glycosylation of 

serine aspartate (SD) repeats of CWA proteins protect the protein from neutrophil and 

macrophages mediated proteolysis343. It contributed to ClfA virulence in a 

bloodstream infection model344. It has been suggested that glycosylation increased 

with the number of SD repeats present343,344. We found that variations were also high 

with SdrD SD repeats (Paper II). Although the virulence capabilities of the different 

sdrD variants is not fully understood, it is tempting to speculate that certain variations 

within the SdrD functional domains of S. aureus isolates might contributes to evasion 

of the host immune defence mechanisms. However, this requires further studies. 
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9 CONCLUSION 

Though our understanding of S. aureus interaction with humans has improved greatly since 

the discovery of the bacteria, there are still a lot of questions regarding the molecular 

determinants involved. Despite this, S. aureus remains an efficient colonizer and an important 

human pathogen. Host colonization and/or infection by S. aureus is both complex and 

multifactorial. This study has characterized the role of S. aureus cell wall anchored proteins 

in ensuring its adhesion and/or immune evasion.  

We showed that CWA proteins SdrD and SasG mediate bacterial adhesion to host cells 

(Paper I, II and III). Furthermore, we identified Dsg1 as the host ligand of SdrD and show 

that this interaction promotes bacterial adhesion to host cells (Paper I). In addition, we found 

that genetic variations within the sdrD gene is concentrated within its SdrD A domain and R 

domain (Paper II). Furthermore, we revealed that expression of S. aureus SasG is 

upregulated in human blood and in the presence of serum components (Paper III). However, 

we found that SasG does not promote bacterial survival in human blood ex vivo (Paper III). 

Our findings are consistent with the multifactorial nature of S. aureus-host interaction. We 

have provided increased knowledge about the molecular mechanism S. aureus uses in its 

interaction with the host. Additional studies into the subsequent events following this 

interaction is needed in order to further clarify the mechanism used by S. aureus to colonize 

and invade host cells.  

In the future, our findings (Paper I, II and III) should help in providing molecular 

mechanistic knowledge required in developing alternative therapeutics to combat S. aureus 

colonization and/or infection. 
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