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Active rock glaciers are ice and debris-cored landforms common in cold Received 1 May 2018

arid mountains. They have not been widely described in the Patagonian Accepted 16 September 2018
Andes of southern South America and here we provide the first rock

glacier inventory for the Jeinimeni region to the east of the R 7 .

X . . . ock glacier; inventory;
contemporary North Patagonian Icefield. Detailed analysis of available Patagonia; permafrost; solar
satellite imagery and fieldwork demonstrates the presence of 89 rock radiation
glaciers across the study region, covering a total of 14.18 km?. Elevation
is the primary control on rock glacier distribution with 89% existing
between 1600 and 1900 m.a.s.l. Aspect also plays a significant role on
rock glacier formation with 80% preferentially developed on southerly
slopes receiving lower solar insolation.

KEYWORDS

1. Introduction

Rock glaciers are cryospheric landforms formed by the accumulation of ice and debris (Brenning

AQ2 et al. 2012; Lui et al. 2013) that creep downslope by the deformation of internal ice (Barsch 1996;

Haeberli et al2006; Berthling 2011; French and Williams 2013, Benn and Evans 2014). Commonly,
rock glaciers have extremely slow flow rates, typically only a few centimetres a year (Stenni et al.
2007) and the viscous flow of the debris and ice matrix produces a distinctive surface of ridges, fur-
rows and a steep frontal slope (‘toe’ or ‘snout’) (Barsch 1996; Degenhardt and Giardino 2003; Paul
et al. 2003; Haeberli et al. 2006; Jansen and Hergarten 2006; Berthling 2011). They play a significant
role controlling sediment supply in mountainous regions, accounting for up to ~60% of all mass
transport in some mountainous areas (Degenhardt 2009). The high insulation capacity of the surface
rock cover has been demonstrated to slow the melt of ice within rock glaciers compared to glaciers

AQ3 (Stenni et al. 2007; Gruber et al. 2017); they therefore potentially represent important sources of

freshwater runoff in semi- and arid-mountains (e.g. Brenning 2005; Rangecroft et al. 2014).

There has been considerable debate over the origin of rock glaciers based on assessment of their
internal structure (Potter 1972; Barsch 1978; Whalley and Martin 1992; Humlum 1996; Haeberli
et al. 2006; Krainer and Ribis 2012). Two main schools of thought have emerged: the ‘permafrost
school’ versus the ‘continuum school’ (Berthling 2011). Additionally, a landslide model of develop-
ment has been proposed (Johnson 1974; Whalley and Martin 1992). Despite the considerable
amount of research undertaken to understand the origin of rock glaciers, little consensus has
been achieved. However, most workers accept that they reflect persistent permafrost conditions
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(e.g. Berthling 2011). In many regions rock glaciers are currently developing from glaciers and deb-
ris-covered glaciers (Shroder et al. 2000; Monnier and Kinnard 2015) and this evolution is likely to
continue given future climate warming (Jones et al. 2018).

The large-scale distribution of active rock glaciers is predominantly controlled by climate. They
are concentrated in periglacial areas characterized by low temperatures and low insolation on shaded
slopes with plentiful debris supply from talus slopes and rock headwalls (e.g. White 1979; Parson
1987; Brenning 2005; Berthling and Etzelmiller 2007; Summerfield 2014). Topographic factors,
such as cirque width, the degree of rock wall fracture and, the height of bounding rock headwalls
contribute to varying levels of debris supply (Chueca 1992) and it has been hypothesized that
rock headwalls play a crucial role in determining the environmental niches within which rock gla-
ciers may develop (Olyphant 1983; Burger et al. 1999; Haeberli et al. 1999, 2006; Humlum 2000). A
consensus has emerged which argues that rock glaciers require suitable niches in which to develop,
determined by a combination of three dominant characteristics: low solarinsolation, sufficient talus
supply to maintain them and climatic conditions conducive to the development of perennial ice. The
degree of influence of these environmental and geological conditions varies regionally, suggesting a
complex interplay of topoclimatic factors in driving rock glacier development (Kinworthy 2016).

Rock glaciers can be classified according to their activity /status (Wahrhaftig and Cox 1959) as
active, inactive and fossil (relict). Active rock glaciers move downslope through gravity-driven
creep as a consequence of the deformation of ice they contain (Barsch, 1992,1996). Commonly,
active landforms are characterized by flow-like features (i.e. spatially organized morphometric fea-
tures, e.g. distinctive surface micro-relief of furrow-and-ridge topography), steep (~30-35°) and
sharp-crested front- and lateral-slopes, a ‘swollen’ appearance of the rock glaciers body, individual
lobes, and an absence of vegetative cover (Martin and Whalley 1987; Haeberli et al. 2006; Harrison
et al. 2008). These distinctive morphometric features reflect the viscoplastic properties of the rock
glacier. Inactive rock glaciers also contain ice, but are immobile (e.g. Seligman 2009).

The presence of rock glaciers'in either their active or relict forms has been widely used as perma-
frost and climatic indicators. For instance, the altitude of rock glacier termini or fronts (minimum
altitudinal fronts or MAF) are assumed to mark the lower limit of discontinuous permafrost (Giar-
dino and Vitek 1988; Barsch 1996). Moreover, the active layer with insulating debris surface covers
the ice acting as buffer against high frequency (i.e. seasonal to diurnal) temperature fluctuations
(Angillieri 2009). The degradation of permafrost and therefore rock glaciers, associated with pro-
jected atmospheric warming, can therefore impact water supplies in the dry Andes and other arid
mountain regions (e.g. Trombotto et al. 1999; Brenning 2005; Rangecroft et al. 2015).

Many rock glacier inventories have been created to establish their regional significance and dis-
tribution to better understand the environmental variables controlling development and, recently,
their potential role as buffered hydrological stores (Schrott 1996; Brenning 2005; Rangecroft et al.
2013, 2014). Rock glacier inventories have been created from many of the world’s mountain regions
including the European Alps (e.g. Dramis et al. 2003; Kellerer-Pirklbauer et al. 2012; Marcer et al.,
2017), Newland Alps (Sattler et al., 2016), the Pyrenees (e.g. Chueca 1992), North American Sierra
Nevada (e.g. Millar and Westfall 2008) and the central parts of the South American Andes (e.g.
Trombotto et al. 1999; Brenning 2005; Rangecroft et al. 2014). However, relatively little attention
has been paid to the southern Andes until recently (e.g. Falaschi et al. 2015). Here we develop a
first rock glacier inventory for the mountains to the south of Lago General Carrera/Buenos Aires
between the borders of Chile and Argentina and investigate primary controls on their distribution.

2, Study region

Our study region lies in the Jeinimeni National Reserve in Chilean territory in the Central Patago-
nian Andes on the Chilean and Argentinean border at 46° 52" 0” S, 72° 4’ 0” W (Figure 1). It is situ-
ated directly east of the North Patagonian Icefield (NPI), one of three major ice masses which
currently exist in southern South America (Harrison and Glasser 2011). Previous fieldwork in the
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Figure 1. Location map illustrating the steep precipitation gradient west to east across Patagonia. Top left: location of rock glaciers.

AQ4 Image data: Aster GDEM product of NASA and METI (2009). Top right and bottom right: mean annual precipitation rates using
WorldClim (http://worldclim.org) 0.5° resolution data for 1970-2000. The Jeinimeni Region study area is identified located east
of the North Patagonian Icefield.

southern side of the area making up the National Reserve identified rock glaciers in the mountains
between Cerro Tamango (1712m) at the western end of the Chacabuco Valley and Cerro Opportus
(2021 m) 34km to the east. The regional climate is dominated by the Southern Hemisphere wester-
lies and proximity to the Pacific Ocean (Villarroel et al. 2013). The presence of the NPI to the west
produces an extremely steep west—east precipitation gradient (Figure 1) and the Jeinimeni region lies
in the rainshadow of the NPI with low annual precipitation (Figure 1). Glacier development here is
hence severely limited by regional precipitation availability. During the late Pleistocene, fast flowing
outlet lobes of an expanded Patagonian Ice Sheet (PIS) extended eastwards along the Chacabuco
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Valley to the south of Jeinimeni and to the north to the east of Lago Buenos Aires. Only the highest
mountains in the region remained uncovered by ice during the Last Glacial Maximum (LGM) at
around 24-22.5 ka BP (Hubbard et al. 2005; Boex et al. 2013).

3. Methods

We developed the rock glacier inventory using photomorphic mapping from Google Earth Imagery
(5-30 m resolution) (version 7.1.7.2606, Google Inc., California, USA) (e.g. Rangecroft et al. 2014;
Schmid et al. 2015). The multi-temporal data available through Google Earth reduces uncertainty
in landform identification due to clouds, shadows and snow cover by enabling a full inventory of
the area by mosaicking imagery with varying dates between 2007 and 2015. Google Earth Pro
data are exportable as KML file for further spatial analysis within GIS software (e.g. ArcMap)
(e.g. Schmid et al. 2015). Manual feature identification using geomorphic indicators-and subsequent

AQ5 digitization was carried out (Baroni et al. 2004; Falaschi et al. 2014;Rangecroft et al. 2014; Jones et al.

2018). To ensure comparability and accuracy polygons were reprojected to the WGS84 coordinate
system. Topographic data were extracted for the polygons and central flow lines from a ~30 m res-
olution digital elevation model (DEM), NASA version 3.0 Shuttle Radar Topography Mission
(SRTM) Global 1 arc-second dataset (USGS 2015) within ArcMap (Schmid et al. 2015; Jones
et al. 2018).

Rock glaciers were identified using two principal characteristics: 1) distinctive surface mor-
phology of ridges and furrows, formed as a result of compression and extension and produced by
differential ice and debris distribution and flow, and; 2) steep frontal slope indicative of the limit
of viscous flow of internal ice (e.g. Barsch 1996; Haeberli et al. 2006; Berthling 2011). Several rock
glaciers along the southern margin of the study area (to the east of Cerro Tamango) were verified
by field observation.

Rock glacier boundary digitization follows Scotti et al. (2013) and Jones et al. (2018) method-
ology. Polygons were digitized for each rock glacier identified, landforms were defined and
classified according to a well-established criteria (see Table 1). For each rock glacier, key charac-
teristics were identified and measured using the ruler tool and geometry calculations in Google
Earth Pro (Figure 2). Delineation of rock glaciers is challenging, digitizing the upper boundary
can be arbitrary without data movement and evident furrow-and-ridge formations in the rooting
zone (Roer and Nyenhuis 2007; Krainer and Ribis 2012; Jones et al. 2018). Rock glaciers were
distinguished from other periglacial landforms, such as protalus ramparts or lobes, by an appli-
cation of a length: width ratio of less than 1 (unity) (Harrison et al. 2008: Jones et al. 2018). Coa-
lesced rock glaciers were differentiated from their source headwalls or talus slopes (Jones et al.
2018).

The activity status of the rock glaciers was established based on assumed ice content using the
morphological classification system by Barsch (1996) (Table 1 and Figure 3). This uses geomorpho-
logical and morphological criteria, including steepness of frontal slope, and development of thermo-
karst pits indicating ice content. Rock glaciers were classified as “Relict” and “Active” which includes
both active and intact landforms (Jones et al. 2018).

Slope aspect is a key factor in the development of rock glaciers and this was determined using the
ArcMAP aspect spatial analyst tool, which divides aspect into 8 groups by proportioning-out bear-
ings of 0° to 360° (Burrough et al. 2015). Aspect density analysis was also undertaken according to

Table 1. Characteristics of rock glaciers in the Jeimimeni region.

Number Maximum Elevation Elevation Range MAF Ground Length Ground Width Area
(%) (m) (m) (m) (m) (m) (m?)
Intact 51 (57%) 1941 179 1766 583 270 156000

Relict 38 (43%) 1919 162 1758 595 332 164000
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Presence of Rock Fage:
Rock Face

Figure 2. Annotated example of characteristics extracted for each of the rock glacier measured. Other characteristics recorded
were: surface area, average elevation as well as the maximum, minimum and average slope angle along the central flow line
(46°58'30.86"S 72°00'13.94"W). Image data: Google Earth Imagery (version 7.1.7.2606, Google Inc., California, USA), CNES/Airbus
2018; imagery date: 16 March 2016.

the analysis of Falaschi et.al-(2015). The areas of each aspect for the study area were calculated, and a
density analysis carried out to establish the percentage of the study area facing each direction. The
proportion of rock glaciers located on each aspect was then plotted against the aspect density of the
study region.

To further assess the influence of solar radiation on rock glacier development in the region the
Potential Incoming Solar Radiation (PISR) was calculated for the study using the ‘Area Solar Radi-
ation’ toolbox in ArcMap. A mean figure was calculated for each of the years of imagery available
from 2007 to 2015, a mean raster layer was produced and zonal statistics extracted to create the
mean PISR value for each rock glacier polygon. The Non-parametric data set was tested for signifi-
cance using Mann-Whitney U tests.

4, Results

In total, 89 rock glaciers were identified and mapped and these cover 14.18 km” of the study area
(1381.84 km?). The inventory comprises 51 active rock glaciers (covering 7.94 Km?) and 38 relict
rock glaciers (covering 6.24 Km?). A summary of rock glacier characteristics based on the classifi-
cation of active and relict features is shown in Table 2. Rock glaciers occurred between 1412 and
2049 m.a.s.l and 89% of total rock glaciers between 1600 and 2000 m.a.s.l. (Figure 4). 92% of the
rock glaciers identified can be classified as tongue shaped. The MAF for active (1766 +
128 m.a.s.l.) and relict rock (1758 +133 m.a.s.l.) glaciers shows a similar distribution (see Figure
6) and Chi Squared tests found there was no significant difference between the MAF of active
and relict rock glacier populations: (X? (1, N=89)=0.151, p =0.697).
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Figure 3. Annotated examples of rock glaciers: (a) Active rock glacier(46°58'30.86"S, 72°00"13.94”W). Image data: Google Earth
Imagery (version 7.1.7.2606, Google Inc., California, USA), CNES/Airbus.2018; imagery date: 16 March 2016; and (b) Relict rock gla-
cier (47°01'08.34”S, 72°00'47.17"W). Image data: Google Earth Imagery (version 7.1.7.2606, Google Inc., California, USA), CNES/Air-
bus 2018; imagery date: 29 February 2016.
275

The rock glacier spatial density is 3.2% of the study region. This compares with sites in drier areas

in the north in the Andes e.g. 2.2% at Valles Calchaquies region (Falaschi et al. 2014) and 4% in the

AQ8 Andes between Santiago and Mendoza (Azdcar and Brenning 2010). The spatial density is more than

twice that reported by Falaschi et.al. (2015) (1.4%) in the Monte San Lorenzo Massif 50km to the
south.

The proportion-of rock glaciers identified on each aspect was calculated and is summarized in
Figures 7 and 8. Some 80% of rock glaciers identified occurred on south, south east or south west
slopes (Figure 7),.although only 12% of slopes are oriented to the south west and 11% to the
south east (Figure 8). The activity level of these populations illustrate different dominant aspects
with 58% of relict rock glaciers developed on south easterly slopes and 41% of active rock glaciers
on south westerly aspects. This suggests that in this region southerly slopes have higher propensity
than other aspects for the formation and persistence of rock glaciers.

The mean PISR for the study area was 150,088 +79,215 WHm? compared to 109,130 +
33,836 WHm? and 153,810 + 38,930 WHm” for active and relict rock glaciers means respectively.
There is a significant difference between PISR median values for active rock glaciers (92017) com-
pared to relict rock glaciers (149715) (W =1915, P =0.002) with active rock glaciers occurring in
areas of lower PISR (Figure 9).

280

285

290

Table 2. Morphological characteristics of Active/Inactive and Relict rock glaciers.

295 Identified Characteristic
Features Relict Intact / Active Justification

Surface Texture Poorly defined ridges and Well defined ridges and furrows, indicating signs ~ Kaab and Weber
furrows of deformation and movement. (2004) AQ7
Body of Rock Glacier Flattened body suggesting ~ Swollen body suggesting ice. Baroni et al.
melting of ice. (2004)
300 Frontal Ramp Gently sloping <30° Steep >30° Baroni et al.
(2004)
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Figure 4. Distribution of rock glaciers by elevation. Variations-of density through elevation bands.

5. Discussion

Previous work in Patagonia (Falaschi et al. 2015) confirms the presence of rock glaciers in the moun-
tains east of the current NPI in valleys draining Monte San Lorenzo and in this study we extend this
work to demonstrate the conditions under which they are found in the Jeinimeni region, some 50 km
to the north. On Cerro San Lorenzo the rock glaciers identified by Falaschi et al. (2015) were smaller
in size than those in Jeinimeni\(active rock glaciers average 92,000 m” in San Lorenzo compared with
156,000 m* in Jeinimeni) ‘with- similar trends in relict features (36,000 m> compared with
164,000 m?). The reasons for this are currently unclear, but may include differences in local climate
or geology driving variations in debris supply.

In Jeinimeni 89% of rock glaciers occur between 1600 and 1900 m.a.s.], the remainder above this.
It has been suggested that elevation is a function of the number of available topographic and climatic
niches in which rock glaciers can develop (Brenning and Trombotto 2006; Kinworthy 2016), and the
MAF is commonly considered a good approximation of the limit of discontinuous permafrost (Scotti
et al. 2013). However, as there was no significant difference between the MAF elevation of active and
relict rock glacier in the study region it suggests additional factors control the activity level of rock
glaciers in the region.

A climatic control is suggested by the preferential development of rock glaciers (80%) on south-
erly aspects with low solar insolation (Krainer and Ribis 2012), despite there being a relatively even
distribution between northern and southern aspects within the study area and thereby likely avail-
able topographical niches (Figures 7 and 8) and this is supported by our analysis of PISR (Figure 9(a
and b)). Moreover, aspect (unlike elevation) appears to control whether the rock glaciers are relict or
active. The majority of the relict rock glaciers are located on slopes with a southeast facing aspect
whereas those identified as being currently active are more broadly distributed across all southward
facing slopes but particularly on those with a southwest aspect. Falaschi et al. (2015) also report a
strong west-south-westerly orientation of active rock glaciers to the south of Jeinimeni. Without
further research it is hard to draw a concrete conclusion from this observation though it does some-
what tantalisingly suggest that the change in aspect with relict to active rock glaciers may correspond
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Figure 6. Box plot showing similarity in elevation of MAF between active and relict rock glaciers. 51 active rock glaciers and 38
relict rock glaciers are shown along with 2 outliers.

to a prior shift in prevailing winds, and hence snow-drift, from the west to more northerly flow in
recent times.

In essence, we have shown that the active and relict rock glaciers share similar elevations and if the
distinction between them is climatic then this pattern.is difficult to explain. Falaschi et al. (2015)
suggested that some intact rock glaciers might exist above the 0°C MAAT conditions illustrating per-
mafrost persisting in positive air temperatures (Gruber and Haeberli 2007). In this case their pres-
ervation could be a consequence of the protective active layer and an indication that they are in
disequilibrium with present thermal conditions (Gruber and Haeberli 2007). However, rock glaciers
could also achieve thermal equilibrium- due to-topographical factors (Haeberli 1983; Falaschi et al.
2015). For example, circulation of cold air from glaciers or topographic shading (Brenning 2005)
can influence rock glacier preservation. The evident differences observed in aspect and therefore
the amount of incoming solar radiation would support the latter conclusion for this region.

However, we spectlate that-another possibility exists. It may be that our inventory has captured a
number of features that are currently undergoing the transition from formerly debris-covered gla-
ciers to rock glaciers. We speculate that these were formerly active glaciers, most probably during
the regional Little Ice Age (or perhaps earlier), but have since undergone many years of negative
mass balance and are now at various stages of transition from debris-covered glaciers to rock glaciers
(Huss and Fischer 2016; Jones et al. 2018). We therefore find both active and fossil rock glaciers at
broadly similar elevations as they undergo this transition at slightly different rates — other factors
such as debris supply and availability determine where each landform currently is on this transition.
More work is required to test this assertion.

In the absence of a large-scale dating programme the age of the rock glaciers is difficult to estab-
lish. It might be that they started to develop immediately after deglaciation of the region following
the regional LGM as the expanded PIS withdrew to the west from the Chacabuco and Jeinimeni
regions (Boex et al. 2013; Wolff et al. 2013). Alternatively, as suggested above, they might have devel-
oped much later during the Holocene, perhaps in response to climatic amelioration following Neo-
glacial times or the regional Little Ice Age at the end of the nineteenth century.

If we accept the former hypothesis then the timing of ice sheet recession following the LGM is
important. Hubbard et al. (2005) reconstructed the dynamics and evolution of late Quaternary ice
sheets across the NPI using a first-order coupled climate/ice sheet model described fully in Hubbard
(2006), and which extends a combined empirical/modelling approach first adopted for investigating
the fluctuations of the Lago Rupanco and Puyehue outlet lobes in northern Patagonia (Hubbard,
1997). Using dated end moraines to broadly constrain the model, Hubbard et al. (2005) demonstrate
that the Jeinimeni region broadly deglaciated between 14.5 to 13.0 ka BP. Complete retreat of the
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Figure 10. Model snapshot of the retreat of the Patagonian ice sheet (PIS) at ¢.13:5 ka'BP (from Hubbard et al. 2005). The Jeinimeni
study area (red box) is bounded by two major outlet glaciers, the Lago General Carerra/Buenos Aires lobe to the north and the Lago
Cochrane lobe to the south, both of which had fully retreated westward of the study area by 12.5 ka BP. Climatic and permafrost
conditions conducive to local rock glacier formation would have proceeded with the onset of regional deglaciation.

Lago General Carrera/Buenos Aires outlet glacier fromthe area was finally accomplished by ~12.5 ka
BP (Figure 10). Despite considerable recession-of the PIS, cool/dry glacial conditions conducive to
the formation local cirque glaciers and larger valley glaciers, persisted in the area for at least another
~1.5 ka, until ~11.0 ka BP when regional climate ameliorated to conditions similar to today. During
this post-glacial episode, the local equilibrium line altitude (ELA) fluctuated between 400 m lower
than present, to around 100 m higher than present (for a brief 200 year period around 11.4-
11.3 ka BP) and which is in general agreement with the modelling further north (Hubbard, 1997).
Given the predominantly arid climate-across the region, these ELA fluctuations equate to a mean
temperature range of —3.6/t0+0.9°C relative to present (Hubbard et al. 2005). Such conditions
would have been conducive to the development of thick permafrost and formation of rock glaciers
in the mountainous Jeinimeni region, likely persisted for the subsequent 11,000 years through to
recent times. Finally, between 13 and 8 ka BP large lakes existed to the east of the current NPI cover-
ing an area of ~7400 km?, around four times the current area of Lago General Carrera/Buenos Aires
(Glasser et al. 2016). In the Chacabuco valley delta features as high as 700 m.a.s.l. indicate the exist-
ence of former lakes at this time and as these drained during the early Holocene increasing aridity
would likely have favoured the development of rock glaciers in the mountains to the north, and at the
recently deglaciated sites. Given this we could also speculate that the rock glaciers developed follow-
ing deglaciation and persisted on southerly slopes due to lower solar insolation. Clearly, more
research is required to test these hypotheses.

6. Conclusions

We have produced a preliminary rock glacier inventory for the mountains in the Jeinimeni region of
central Patagonia and have demonstrated that active and relict rock glaciers are widely developed in
the mountains between 1412 and 2049 m.a.sl to the east of the present-day North Patagonian
Icefield. In total 89 rock glaciers were identified and mapped and they cover 14.18 km” of the
study area. The inventory comprises 51 active rock glaciers (covering 7.94 km?) and 38 relict rock
glaciers (covering 6.24 km?). We show that they are preferentially developed on slopes with a
south-facing orientation and active rock glaciers are preserved in areas of lower PISR indicating
strong solar radiation control.
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