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Abstract 
This study is conducted in Ranfjorden in northern Norway with the goal of gaining a 

better understanding of the interaction between natural and anthropologic sediments 

within the fjord. Ranfjorden is of interest due to the fact that it has experienced extensive 

anthropologic impacts over the last 100 years with the submarine tailings placement 

(STP) of mine tailings ongoing. The analysis of this study uses the combination of 6 

Niemistö sediment cores, 10 sediment grabs, swath bathymetry and high resolution 

seismic data to identify natural and anthropologic sediments and determine how their 

distribution has impacted the fjord.  

The sediment cores were analyzed to determine their physical properties including 

magnetic susceptibility, geochemical element measurements, grainsize analysis and 

lithological analysis. The resulting data showed mine tailings sediments to be 

characterized by a darker red color, higher magnetic susceptibility and Fe/Sum values 

with low fluctuations in Fe/Sum values. The more natural fjord sediments are 

characterized by gray colors, lower magnetic susceptibility and Fe/Sum values with 

higher fluctuations in Fe/Sum values. Using these identifying traits it was shown that the 

majority of the inner fjord has experience varied levels of impact from the mine tailings, 

with all the sediment cores showing traces of mine tailings. The mean grainsize of the 

sampled mine tailings was shown to vary from fine sand to very fine silt. 

The fjord slopes surrounding the mine tailings discharge points at the head of the fjord 

appeared in the swath bathymetry to have experienced extensive erosion in the form of 

mass movement and gravity flows. This is attributed to the accumulation of finer mine 

tailings along these slopes due to back flowing estuarine circulation currents. These 

currents accompanied by the river-induced halocline appear to capture rising sediment 

plumes in the water column and concentrate them in those areas. The eroded sediments 

from those slopes combined with coarser mine tailings are carried further out into the 

fjord by turbidity currents within a larger submarine channel seen on the swath 

bathymetry and TOPAS seismic profiles. Samples from the channel show sandy tailing 

deposits consistent with turbidity currents while areas outside the channels show 

massive layers of finer tailing sediments consistent with sediment plume fallout. Sandy 

mine tailing sediments transported by turbidity currents were found 17 km from the 

discharge point. Shallower samples in the same vicinity showed potential evidence of 

fine tailing sediments from suspension plume settling.  

The discharge of large amounts of tailings at shallower depths combined with the 

hydrological characteristics of the fjord has allowed for the submarine tailing placement 

(STP) sediments to have spread throughout the inner fjord basin by turbidity currents 

and suspension plumes. 
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1 Introduction 
This study investigates the impact and spreading of submarine deposited mine tailings 

on the seafloor of Ranfjorden, in Nordland County, Northern Norway. Ranfjorden is 

located between 66°08’-66°20’N and 12°5’-14°8’E (Figure 1) and is approximately 70km 

long and ranging from 2-4 km wide. It extends towards the Norwegian Sea in a WSW 

direction with a maximum depth of 530m. (Lyså, Seirup et al. 2004) The main study area 

is located at the inner Ranfjorden (Figure 1) near the city of Mo I Rana. The focus of this 

study extends from the mouth of the Ranaelva river out to the southwest (Figure 1).  

 

Figure 1. Ranfjorden Study Area 

1.1 Aim of Study 
This thesis is part of the NYKOS (New Knowledge on Sea Disposal) research project 

that is a joint competence-building project between the Research Council of Norway 

(RCN) (BIA-Program) and the mineral industry in Norway. The main research partners 

that make up the project are SINTEF (project lead), the Norwegian University of Science 

and Technology (NTNU), The Norwegian Institute for Water Research (NIVA), University 

of Tromsø (UiT) – The Arctic University of Norway and the Geological Survey of Norway 

(NGU). Participating companies are Nussir ASA, Sibelco Nordic, Rana Gruber, Omya 

Hustadmarmor, Nordic Mining and Titania. 
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The aim of this project is to gain a better understanding of the effects of submarine 

deposition of fine-grained mining tailings on Norwegian marine environments and to help 

develop more sustainable methods for the Norwegian mining industry.  

This thesis specifically aims to investigate the distribution, deposition and impact of 

tailing disposals on the seafloor in Ranfjorden in northern Norway by using: 

1. Niemistӧ cores 

2. Sediment grabs 

3. TOPAS Seismic data 

4. Swath bathymetry data 

The specific aims of this study are: 

1. Distinguish natural and anthropogenic deposits in the fjord 

2. Identify the spreading of submarine tailings placements 

3. Identify the impact of submarine tailings on the fjord seafloor 

4. Analyze the interaction of a large river on the placement and spreading of 

submarine tailings. 

The overall NYKOS project is divided into 6 closely related work packages with this 

thesis being part of Work Package 3 (WP3): 

 WP1: Project Management 

 WP2: Tailings Improvement and Characteristics. Exploiting the pre-depositioning 

potential 

 WP3: Study of three comparable fjords 

 WP4: Effects from mine tailings and associated chemicals on marine, benthic 

ecosystems 

 WP5: Modelling, Impact acceptance criteria and Risk aspects 

 WP6: Best Available Techniques (BAT) for STPs 

The aim of WP3 is to gain a better understanding of the impact of submarine tailings 

placements (STPs) on fjord seafloors and their natural sediments. 

1.2 Background 
As the world’s demand for mineral resources continues to grow (Figure 2), alongside it 

grows a need to find more environmental and economical ways to responsibly dispose of 

the waste that is created from these practices (Ramirez-Llodra, Trannum et al. 2015). 

Mine tailings are the most common waste produced and have traditionally been stored 

on land. Due to their toxicity and large volumes other alternatives have begun to be 

utilized, including submarine tailings placement (Vogt 2013, Ramirez-Llodra, Trannum et 

al. 2015). 
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Figure 2. World mining production 1984-2016 by continents (without construction 
minerals, in Million metric tons) 

 Mine tailings 
Mining is the process of extracting minerals and metals from the earth’s crust and mine 

tailings are one of the two main waste materials left over after the final separation of the 

desired ores is completed. The other waste product is the overburden rock and soil 

removed to gain access to the ore (Vogt 2013). Mine tailings will be the focus of this 

study due to their relevance to the study area. 

Mine tailings are most often a finer-grained slurry of the left over materials from the ore, 

and depending on the ores being extracted can contain chemical reagents used in the 

separation process (Vogt 2013). This separation process consists of multiple cycles of 

crushing, grinding and separation in order to concentrate the desired ore(s) (Figure 3). 

The percentage of the total ore mined that becomes tailings can often account for over 

99% with gold, up to 99% for copper and about 60% for iron (Vogt 2013, Ramirez-Llodra, 

Trannum et al. 2015). Since the separation process does not recover all of the minerals, 

the slurry often has a high potential to be toxic and with its large volumes is the main 

environmental concern of any mining activity (Vogt 2013). For them to be disposed of 

safely they must be made physically stable, chemically inert and completely isolated from 

the environment in all ways (Franks, Boger et al. 2011). 
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Figure 3. Mining Process (Spitz and Trudinger, 2009) 

At present, approximately 99% of the industrial sized mines operating worldwide dispose 

of their mine tailings on land. The tailings are placed either under water in 

impoundments/dams or backfilled into open-pits or underground mines. The total number 

of mine tailing dams/impoundments that exist today is at least 3,500 (Vogt 2013). This 

type of tailings storage requires large areas of land that can affect up to one half of the 

total area affected by the mining activity (Cornwall 2013, Ramirez-Llodra, Trannum et al. 

2015). These storage areas can have significant impact on the local surrounding 

environment and public safety. There is the threat of loss of habitat due to the land being 

used for tailings storage and the continuing specter of contamination to surface and 

ground water. The leaching of toxic chemicals and metals into surrounding waters along 

with the acidification of waters from sulfide mineral oxidation carry lasting consequences 

(Arnesen, Bjerkeng et al. 1997, Ramirez-Llodra, Trannum et al. 2015). The facilities 

designed and built to contain the mine tailings have a significant support industry that 

must continue to monitor and maintain the storage areas even long after the mines have 

closed. For many mines this monitoring must continue in perpetuity, increasing costs and 

extending the potential impact to the local area (Vogt 2013). But these facilities are quite 

often unreliable due to poor waste management (Ramirez-Llodra, Trannum et al. 2015) 

and can cause major environmental and societal damage when they fail. There have 

been 138 significant recorded mine tailing dam failures from when they were first used 

and up until 2013 (Vogt 2013). These failures have the potential to continue harming the 

local environment long after the event, with some failures causing irreparable damage 

(Ramirez-Llodra, Trannum et al. 2015). 
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The issues associated with the storage of mine tailings on land has driven a search for 

alternative storage/disposal options with “Submarine Tailings Placement” (STP) being a 

method occasionally used (Ramirez-Llodra, Trannum et al. 2015).  

 Submarine Tailings Placement 
Since humans first began mining, the practice of depositing mining waste into riverine 

and marine environments has been common (Davis, Welty et al. 2000). In the past, 

riverine discharge has been utilized extensively for tailings disposal worldwide but has 

fallen out of favor due to its high environmental and societal impact. Increased 

environmental awareness and legislation has reduced this practice to only a handful of 

industrial sized mines (Vogt 2013). The marine disposal of mine tailings is a more 

popular alternative but due to uncertainties about its environmental effects, the practice 

is not often used. Of 2,500 industrial sized mines worldwide only approximately 14 

(0.6%) use marine disposal (Vogt 2013, Ramirez-Llodra, Trannum et al. 2015) There are 

3 different classifications of marine disposal of mine tailings with STP/DSTP being the 

focus of this study (Figure 4): 

 

Figure 4. Schematic of three representative marine disposal processes (Ramirez-Llodra, 
Trannum et al. 2015) 
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 Coastal shallow water placement (CTP) (Figure 4A): where tailings are disposed 

of at the surface in shallow coastal waters in the euphotic mixing zone (Franks, 

Boger et al. 2011). This practice is also used under the label “land reclamation” in 

some coastal nations when using inert tailings. 

 Submarine tailing placement (STP) (Figure 4B): where tailings are disposed of 

underwater using an underwater pipeline at depths of less than 100m in the 

euphotic mixing zone (Vogt 2013, Skei 2014). The deposited tailings often create 

a gravity flow that transports the tailings into deeper waters below the euphotic 

zone.  

 Deep-sea tailing placement (DSTP) (Figure 4C): where tailings are deposited 

using an underwater pipeline in deeper waters of greater than 100m, below the 

euphotic mixing zone and near a drop-off (Franks, Boger et al. 2011, Skei 2014). 

 

Due to perceived environmental and reputational risk along with more stringent 

regulatory conditions, STP use has decreased greatly in most developed nations. The 

exception to this trend is Norway (Figure 5) (Cornwall 2013). The main reason for this is 

the combination of Norway’s rugged terrain and abundance of fjords. The terrain makes 

storage on land difficult and the close proximity of fjords provides an attractive alternative 

(Cornwall 2013, Vogt 2013, Ramirez-Llodra, Trannum et al. 2015).  

 

Figure 5. Recently active and proposed STP Norwegian STP operations (Cornwall 2013) 
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1.2.2.1 Tailings Deposition Techniques  

The argument for the marine disposal of tailings has always been that the material will be 

much more stable on the sea floor when compared to onshore storage methods. The 

thought being that there will be a lower chance of the tailings being disturbed and a 

greater chance of them residing in chemically inert conditions. This method is also much 

cheaper and easier to use than on land storage facilities with virtually no maintenance 

costs after deposition (Vogt 2013, Ramirez-Llodra, Trannum et al. 2015).  

Much of the concepts concerning STP are theoretical and dependent on location and 

condition. To ensure minimal spreading and impact of the tailings once they are 

deposited, containment to a specific area is needed (Franks, Boger et al. 2011). This 

containment is dependent greatly on the stratification of the water column and the depth 

at which the tailings are deposited. With STP and DSTP, the tailings are in theory 

deposited below the euphotic mixing zone and have a lower chance of mixing vertically 

and horizontally (Cornwall 2013). The density of both the water layers at the deposition 

site and the tailings themselves greatly influences this potential for spreading. STPs rely 

on turbidity flows carrying the tailings into deeper waters where conditions are thought to 

be more stable and where the thermocline of the upper water layers will act as a barrier 

preventing upward diffusion. The issue with this is that conditions can change that affect 

the depth of the mixing layer and the density of the tailings themselves influence their 

ability to travel. If their density is less than that of the surrounding water then an upwardly 

mobile plume can occur (Ramirez-Llodra, Trannum et al. 2015). 

To reduce the tailing’s ability to disperse once deposited, several measures prior to 

deposition such as thickening, de-aeration and particle flocculation are often used (Vogt 

2013). A tailing slurry mixture’s density can be increased by increasing the solid material 

quotient and/or by the addition of colder seawater. This will greatly assist in reducing the 

upward mobility of the tailing mixture especially when the seawater used mimics the 

conditions at the location where the tailings will be deposited. The removal of air from a 

slurry mixture can greatly reduce the buoyance of the tailings, especially when DSTP is 

involved (Skei 2014). The use of flocculation chemicals with seawater can also help 

increase the rate of settlement (Ramirez-Llodra, Trannum et al. 2015). 

How and where the tailings are deposited also plays a large factor in how the tailings 

behave once they are deposited. Since a turbidity current is desired, the discharge point 

should be at a location where the current can flow uninhibited. Research has shown that 

the release point of the pipeline should be on a slope of 12° and that the tailings should 

be released as a high-velocity jet (Vogt 2013). These two factors combine to reduce the 

chance of build-up of sediment at the discharge pipe.  

1.2.2.2 Environmental Effects 

One of the greatest threats to the benthic environment from marine deposited tailings is 

hyper-sedimentation (Ramirez-Llodra, Trannum et al. 2015). Most tailings deposits will 

encompass huge amounts of material that will be discharged at potentially high rates 

over an extended period. This material can quickly bury and smother any benthic 
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organisms that reside in the area. Even if the tailing are non-toxic, whole ecosystems 

can be smothered (Vogt 2013). The rate of deposition has shown to have a huge effect 

on the survival rate of organisms. Studies have shown that on the community level 

sedimentation rates of 4-5cm of tailings per year can result in changes in faunal 

composition, but at a rate of 1mm per year no changes are seen (Olsgard and Hasle 

1993). Other studies have shown that up to 50% of benthic species would die when 

exposed to 5.4cm of instantaneous burying while 5% would die if covered more gradually 

by 6.3mm of sediment (Smit, Halthaus et al. 2008). Each ecosystem will react differently 

to different types of sediment but it has been shown that it is expected to see the 

creation of a barren area close to the zone of discharge. The changes in the community 

composition and biomass will improve in a gradient with increased distance from the 

source back to the original environment (Ramirez-Llodra, Trannum et al. 2015).  

Metals and processing chemicals are factors that can greatly increase the toxicity of 

mine tailings. Not all metals are toxic to fauna and for them to be toxic they must be in a 

bioavailable form (Lyndersen, Stefan et al. 2002). The general changes seen in 

macrobenthos communities due to copper toxicity are extensive with a complete change 

in the species representation; reduced diversity, altered lifestyles, biomass, density and 

body size ((Neira, Mendoza et al. 2011) as cited by Ramirez-Llodra et al.2015). The 

processing chemicals used to help concentrate the ore during the early stages of 

processing can also effect benthic communities. At present, not enough investigative 

studies have been conducted on the toxic effects of these chemicals to fully know their 

long-term impact on the environment (Ramirez-Llodra, Trannum et al. 2015). 

The size and shape of the mine tailing particles will vary greatly with respect to the type 

of minerals being extracted. This factor plays an important role with respect to the 

benthic fauna if the grain size of the tailings is greatly different then the original sediment 

(Ramirez-Llodra, Trannum et al. 2015). Mine tailings are low in organic contents and are 

usually a ground rock with a fine sand-silt fraction, which can greatly reduce the amount 

of nutritional value available to benthic organisms. The change in porosity and 

permeability of the sea floor sediment will also have an effect on the benthic environment 

(Ramirez-Llodra, Trannum et al. 2015).  

The method in which the tailings are deposited into the ocean can maximize or minimize 

the area in which the sediments can affect the local environment. If the sediment plume 

does not settle but instead experiences upwelling through the water column then the 

area impacted by the tailings can be an order of magnitude larger. Slope failure is 

another process that can occur at the location of deposition and result in the 

resuspension of sediment into the water column. These events can greatly affect 

previously non-affected environments (Vogt 2013, Ramirez-Llodra, Trannum et al. 2015). 
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1.3 Previous Work 
Ranfjorden has been the subject of numerous assessments looking to investigate the 

environmental impact of the industrial activities that have been present there for over a 

century (Berg 1996). In addition to the mining activities in the area, a coking plant and an 

iron works have previously discharged into the fjord resulting in elevated levels of 

potentially toxic pollutants in the fjord sediments (Syvitski, Burrell et al. 1987). Monitoring 

has been occurring since the 1970’s, building a collection of data that has been used to 

better understand the dynamics at play in the fjord (Skei 2014). 

Impact assessments from the 1970’s began to look into the interaction and impact of 

industrial discharge on the fjord and found extensive spreading of polycyclic aromatic 

hydrocarbons (PAHs) and heavy metals. Other fine particle contaminants were also 

found to have broadly spread out through the fjord basin (Kirkerud 1977). 

Research during the 1980s showed continued high levels of PAHs and heavy metals that 

had large negative impacts over large portions of the fjord. Their presence proved to 

have resulted in a significant reduction in the inner fjord’s ecological diversity vs. the less 

affected outer areas. Much of this loss of diversity was attributed to hyper-sedimentation 

(Kirkerud, Haakstad et al. 1985). During the period of 1986-93 several larger polluting 

industries in the area shut down, including the coking plant, iron works and some mining 

industry (Johnsen, Golmen et al. 2004). The results of these closures began to show up 

in later studies during the 1990s, which showed a continued impact from industry 

discharge but with PAH levels lower than measured in the 1980s. Smothering from 

hyper-sedimentation was still a factor (Green, Pedersen et al. 1995). Further studies in 

the 1990s showed that though the biodiversity of the inner fjord continued to be affected 

negatively by high levels of sedimentation, these effects were greatly reduced with 

increasing distance from the point of mine tailings discharge (Helland, Rygg et al. 1994). 

Studies in the hydrodynamics of the fjord have also been performed showing mine 

tailings particles being present in the water column several kilometres from the point of 

discharge (Tesaker 1978, Johnsen, Golmen et al. 2004, Golmen and Norli 2013). 

Seismic geotechnical studies performed in the inner Ranfjorden in relation to slope 

stability have shown a dynamic depositional environment. A study in 1983 by GEOTEAM 

A/S, in relation to the potential development of a new deep-water dock, showed 

significant accumulation of finer sediments close to shore on the slopes of the southern 

portion of the inner-fjord. Areas with steeper slope showed considerably less 

accumulation (GEOTEAM 1983). A seismic report completed by NOTEBY A/S in 1994 

covered the innermost portion of the fjord surrounding the discharge points of Rana 

Gruber’s mine tailings. It showed significant mass movement events with large amounts 

of sediments having been transported downslope to deeper portions of the fjord (Røe 

1994). A study into the sedimentary environment of Ranfjorden since the last 

deglaciation shows clear evidence of anthropological sediments. When compared to 

outer fjord samples, samples taken from the inner fjord showed considerably higher 

sedimentation rates over the last 100 years (Lyså, Seirup et al. 2004).  
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2 Study Area 
Ranfjorden is located between approximately 66°08’-66°20’N and 12°5’-14°8’E in 

northern Norway and is oriented in a WSW-ENE direction. It is almost 70 km long, 2-4 

km wide and with depths of up to 530 m. The length of the fjord is divided into 4 main 

basins separated by glacial sills or bedrock (Lyså, Seirup et al. 2004), with the inner fjord 

basin being the deepest. The fjord gradually narrows and becomes shallower westward 

as it approaches the Norwegian Sea with an outer basin depth of approximately 300 m. 

The inner fjord is the primary basin of interest in this study and is the widest and the 

deepest with a length of approximately 26km. The study area stretches out 

approximately 18 km from the Mo i Rana harbor at the mouth of the Ranaelva to near 

Hemnesberget (Figure 6). 

 

Figure 6. Ranfjorden study area and features 

2.1 Physiographic setting 
Ranfjorden is in the catchment area of three glaciers, with Høgtuvbreen and Svartisen 

located in the drainage area of the Ranaelva (Figure 6). Ranaelva drains the majority of 

the area and enters at the head of Ranfjorden and is the primary natural sediment 

source to the fjord (Lyså, Seirup et al. 2004). The fjord is flanked by mountains of up to 

800 m in elevation and with other mountains in the surrounding catchment area reaching 

close to 1600 m. The inner fjord bathymetry has steep slopes rising up from the inner 
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basin towards each shoreline and the head of the fjord. Several submarine valleys and 

channels run from the fjord head down into the fjord basin and will be discussed in more 

detail later Section 5. The tide has a range of ~3 m in the fjord (Green, Pedersen et al. 

1995).  

2.2 Regional Geology 
The predominant geologic units underlying the Ranfjorden area are the Rødingsfjell 

Nappe Complex to the north and east and the Helgeland Nappe Complex to the south 

and west. Older Paleozoic gneisses, mica schists and marbles dominate each of the 

nappe complex’s lithology (Figure 7) (Gustavson and Gjelle 1991). Sjona and Høgtuva 

are the tectonic basement windows to the north of the fjord and consist of granitic 

gneisses. To the south is the Bindalen Batholith made up of young Caledonian granites. 

All the rocks in the area have experienced deformation and metamorphism during the 

Caledonian orogeny (Olesen, Gjelle et al. 1994). The metamorphosed rocks in the region 

contain large amounts of high Fe-grade iron ores in the form of hematite and magnetite 

(Ramberg, Bryhni et al. 2013).  

 

Figure 7. Regional Geology (Created using NGU datasets) 

The Ranfjorden area has experienced extensive glaciation and deglaciation periods 

through the Quaternary period up until the present. This area is also known as the most 

seismotectonically active region in Norway, which has been been attributed to rapid post-
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glacial crustal up-lift since the last deglaciation (Hicks, Bungum et al. 2000). As the ice-

sheets retreated, the present day surrounding glaciers formed approximately 9.5 ka BP 

with the area around Ranfjorden becoming ice free around 9.31 ka BP (Hicks, Bungum 

et al. 2000). The remaining glaciers all now feed primarily into Ranfjorden. 

2.3 Climate 
The Ranfjorden region is located in a subarctic climate zone with normally longer, colder 

winters and shorter, cool to mild summers. The yearly total precipitation for the area is 

1455 mm with precipitation occurring even during the driest months of April, May and 

June (Figure 8). The months with the most precipitation occur during the fall with October 

having the highest average amount of approximately 185mm.  

 

Figure 8. Average monthly precipitation for Mo i Rana (https://no.climate-data.org/) 

 

 

 

 

 

 

 

https://no.climate-data.org/
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Temperatures are relatively mild during the winters and summers with the highest 

temperatures occurring in July and August. The historical average water temperature of 

the inner fjord ranges from a low of 5°C (January – April) to a high of 12°C (August) 

(Table 1). 

Table 1.Mo i Rana average monthly temperatures (https://no.climate-data.org/) 

Monthly Temperature for Mo I Rana 

Month  
Maxs 
Temp 

Minimum 
Temp 

Water 
Temp 

Hours 
of 

Sunlight 

Days with 
Precipitation 

January 0.7 -4.8 5 0 24 

February 0.7 -4.8 5 1 22 

March 3 -3.1 5 3 21 

April 6.3 -0.2 5 5 18 

May 11.1 3.8 6 7 16 

June 15 7.8 9 8 17 

July 16.8 10.1 11 6 21 

August 16.4 10 12 5 21 

September 12.6 6.6 11 3 24 

October 8.2 3.2 9 2 25 

November 3.8 -0.9 8 1 23 

December 1.6 -3.8 6 0 25 

 

 

2.4 Ranaelva River 
Ranaelva is a 130km long river that had its origin on the Saltfjellet plateau in the interior 

of Nordland County. The drainage area for the fjord is approximately 4500 km2  and 

includes 3 glaciers with the Svartisen glacier (~369 km2) being the largest (Figure 6) 

(Lyså, Seirup et al. 2004). The river is fed from a combination of precipitation and 

snow/glacier melt year-round with the latter increasing greatly during spring and summer. 

This increase from glacial melt also brings an increase in the fine sediment load to the 

fjord (Golmen and Norli 2013). Ranaelva has an estimated annual input range of 

~27,000-35,000 tons of inorganic sediments that are derived from both natural erosional 

processes and from waste from mines located in the river’s catchment area (Syvitski, 

Burrell et al. 1987, Johnsen, Golmen et al. 2004). These mine waste derived sediments 

have a high Fe content and have been estimated to total ~1,800 tons/yr in 1994-95 

(Johnsen, Golmen et al. 2004).  
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2.5 Rana Gruber Mines 
Rana Gruber A/S and its earlier parent companies have been mining and processing iron 

ore near Ranfjorden for over 100 years (Berg 1996). Their ore processing plant has been 

in operation at its present location at Gullsmedvika in Mo i Rana harbour since 1965 

(Johnsen, Golmen et al. 2004) and has been discharging mine tailings into Ranfjorden 

since. As of 2014, ~3.7 million tons of iron ore were produced annually from the mines in 

the Dunderland Valley, 35 km inland from Mo i Rana. The final iron ore concentrate 

produced totalled close to ~1.5 million tons with the majority being hematite (over 1 

million tons) and the remainder being magnetite. A small portion was used for specialty 

products (Skei 2014). The remaining tailings waste produced was reported to be ~3 

million tons with 40 kg of flotation agent Lilaflot D817M. All of this waste is discharged 

into Ranfjorden (Skei 2014). The mine tailings themselves consist of 40-50% quartz, 15-

20% Fe-Al-Mg silicates, mica, garnet, amphibole and epidote (Skei 2014). Some 

additional calcite, dolomite and 6-14% hematite is also present. No elevated levels of 

trace metals have been found (Skei 2014). Elutriate testing of the tailings in seawater 

hasn’t resulted in any readings above detection limits, implying the contents of the 

tailings can be considered relatively inert (Skei 2014). 

 Submarine Tailing Placement 
From 1965 to 2014 the submarine tailings placement (STP) of the mine tailings was 

divided into a coarser and a finer fraction before being transported through pipelines into 

the fjord. The areas of discharge have been shown to be at the edges of steep slopes of 

bare rock (Røe 1994). The coarser-grained fraction consisted of particles of up to 800 

µm and the finer fraction consisted of particles where 20% were less than 45 µm 

(Johnsen, Golmen et al. 2004) and less than 2% were smaller than 10 µm (Skei 2014). 

Each tailings fraction was deaerated and mixed with freshwater before being discharged 

into the fjord at a rate of ~1100 m3/hr for the coarser fraction and 2200 m3/hr for the finer 

fraction (Golmen and Norli 2013). The final slurries contained ~10% solids and had a 

bulk density of 1.07 g/l (Skei 2014).  

The coarse-grained tailings were originally deposited at a depth of 30 m close to the 

mouth of the Ranaelva near the harbour breakwater. The finer tailings were deposited 

more to the south at a depth of 45 m (Figure 9) (Johnsen, Golmen et al. 2004). Both 

discharge points were near steep submarine slopes (Syvitski, Burrell et al. 1987). Figure 

9 includes an overlay of a map from the NOTEBY A/S study from 1994 (Røe 1994) 

showing the discharge locations and the surrounding channels/slopes. The only variation 

to these discharge points was for the coarse-grained tailings during the period between 

1988-1992 when half of its total content was used as coastal infill for a harbour/dock 

complex (Johnsen, Golmen et al. 2004). This variation and drop in discharge is seen in 

Figure 10.  A drop in total discharge from 1980 to the late 1990’s also reflects a drop in 

total production during that period. More recent production increases are reflected in the 

total discharge amounts varying from 2 to 3 million tons (Vogt 2013, Skei 2014). Since 

May of 2014 the mine tailings have been combined and discharged through a single 

pipeline at a depth of 125 m at an unspecified location. 
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Figure 9. Tailing discharge points in Mo i Rana Harbor (Røe, 1994) 
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Figure 10. Rana Gruber yearly discharge 1970-1998 (Johnsen, 2004) 

3 Fjord Hydrography and Sedimentary Processes 

3.1 Fjord Hydrography 
The fresh water input from Ranaelva has a profound effect on the hydrological structure 

of the inner Ranfjorden basin. As the freshwater runs into the fjord, it floats as a separate 

brackish surface layer above the more dense saline seawater creating a defined 

halocline. A thermocline is also present with this layer (Golmen and Norli 2013). The 

thickness and length of the brackish layer depends on the time of year and the amount of 

freshwater input from the Ranaelva, with periods of higher runoff creating a thicker, 

longer layer and the opposite for low runoff periods (Figure 11).  

 

Figure 11. Salinity levels in Ranfjorden over the course of a year at the fine fraction 
tailings discharge location (Golmen, 2013) 
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Figure 12. Ranaelva yearly average runoff 2011-2012 (Golmen, 2013) 

Measurements of current direction and speed within the water column near the mouth of 

Ranaelva have shown that the stratified layers create a circular current pattern indicative 

of estuarine circulation. As the upper, less dense brackish layer floats outward into the 

fjord, a counter compensation current occurs. This denser, more saline current flows 

back toward the river mouth along the surface until it meets and drops below the 

brackish outflow current (Golmen and Norli 2013). The measurements taken from the 

inner fjord at the river mouth show that at a depth of 26 m there was a strong variable 

direction current (tidal influence) with a net direction back towards the river mouth. At a 

depth of 47 m and below there was another strong current with a net direction away from 

the river mouth and down through the channel present there. Overall, the inner fjord 

showed to have a net outward current at the surface and below 40 m with an inbound 

current in the depths between (Figure 13) (Leikvin 2009). Measurements taken near the 

tailings fine fraction discharge point slightly farther from the river mouth showed a net 

inbound current (Johnsen, Golmen et al. 2004, Leikvin 2009). 
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Figure 13. Estuarine circulation effect on fine fraction of tailings discharge (Golmen, 
2013) 

Since the mine tailings are mixed with freshwater before discharge, a portion of the finer 

fractions will rise up into the water column as they mix with the seawater (Figure 13) 

(Johnsen, Golmen et al. 2004). The inbound current at the point of the fine fraction 

discharge has shown to transport some sediments back toward the river mouth with the 

brackish surface layer halocline acting as a barrier for upward mobility (Golmen and Norli 

2013). The minimum depths reached by the sediments in the water column depends on 

the thickness of the barrier layer. Heavy run-off during July 2013 showed sediment 

reaching up to only 28 m while during lower run-off in October 2012 showed sediments 

up to a depth of 8-10 m (Golmen and Norli 2013). It has also been shown that some fine 

fraction particles are stored at around 25 m in the water column farther out in the fjord 

(Helland, Rygg et al. 1994). For the coarser fraction of the tailings, the dispersal was 

shown to be more consistent, with spreading occurring up to 25 m depth and a maximum 

spreading around 30 m depth (Golmen and Norli 2013). 

3.2 Fjord Sedimentation 
Ranfjorden, like most fjords in northern Norway, receives its input of natural sediments 

primarily from riverine sources (Syvitski, Burrell et al. 1987) with Ranaelva being the 

major source to the inner basin (Johnsen, Golmen et al. 2004). The solid waste 

discharges from anthropogenic sources in the inner fjord are estimated to have been 

more than 100 times greater than the natural supply, dominating the sedimentation of the 

inner fjord over the last century (Syvitski, Burrell et al. 1987). Previous studies have 

shown that there have been periods of extremely high rates of sedimentation of up to 50 

cm/yr in portions of the inner fjord (Helland, Rygg et al. 1994).  The areas where the 

tailings are discharged and accumulate are near steep slopes where their build-up in 

large amounts can result in unstable conditions (Tesaker 1978). This is confirmed by the 

NOTEBY A/S study (Røe 1994) which described several parts of the inner fjord basin 

having experienced episodic mass movement events such as slides and slumping with 

large erosional features down to bare rock extending into the fjord basin. Figure 14 

shows the discharge area in more detail with the documented older slides to the north 

and south. 
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Figure 14. Tailings discharge points with surrounding bathymetry (Røe, 1994) 

 

A 50 m deep submarine canyon at the fjord head has been confirmed to have eroded 

into loose deposits down to bare rock with the estimated volume of material removed 

over 7 years being 107 m3 (Tesaker 1978). Below this canyon, in a channel at the bottom 

of the fjord, a suspension current has been measured with a velocity of 25 cm/s, 1 m 

above the bottom. Estimates made from this current indicate that up to 18% of the 

discharged tailings are transported by suspension currents into the fjord basin, with the 

remainder being moved as bed load (Tesaker 1978). An underwater plume has been 

measured below the halocline in the innermost 5 km of the fjord. 

A confirmed slide on the inside of the breakwater at the mouth of Ranaelva and up fjord 

from the tailings discharge points has been attributed to tailing sediments that have been 

transported and accumulated to counter currents (Figure 14) (Røe 1994). This indicated 

that the bare rock at the discharge points was possibly a result of erosion from the 

discharged tailings (Røe 1994). 
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4 Materials and Methods 

4.1 Sediment Collection 
For this portion of the NYKOS project, 6 Niemistӧ cores (Table 2) and 10 sediment grabs 

(Table 3) provided the basis of the study. These samples were collected by the 

Geological Survey of Norway (NGU) research vessel FF Seisma on a cruise from April 

19-22, 2015. Figure 15 shows the location of each sample within Ranfjorden. The 

Niemistӧ cores provided insight into the depositional record under sea floor while the 

sediment grabs showed a snapshot of the more recent depositional environment at each 

location. 

 Sediment Grab Documentation 
All the sediment grabs were photographed and documented for color and grainsize at 

the time of their retrieval on board the FF Seisma on April 22, 2015. Geologist Nicole 

Jeanne Baeten from NGU performed all photography and documentation.  

 

Table 2. Sediment core lengths, sampling depths and positions (*Degrees Minutes 
Seconds) 

Core ID 
Date of 

Sampling 
Sampling 

Equipment 

Water 
Depth 

(m) 

Core 
Length 

(cm) Longitude* Latitude* 

P1502-
001 20.4.15 Niemistö Corer 100 37 13°46'42.29" 66°16'7.13" 

P1502-
004 21.4.15 Niemistö Corer 65 24 14°5'55.03" 66°19'28.02" 

P1502-
009 21.4.15 Niemistö Corer 230 19 14°6'28.78" 66°18'49.59" 

P1502-
013 21.4.15 Niemistö Corer 282 39 14°5'2.367" 66°18'33.90" 

P1502-
015 21.4.15 Niemistö Corer 180 35 14°4'27.30" 66°18'52.88" 

P1502-
016 21.4.15 Niemistö Corer 520 9.5 13°47'58.99" 66°15'37.33" 
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Figure 15. Niemistӧ and Sediment Grab Locations 
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Table 3. Sediment grab depth and location (Degrees Minutes Seconds) 

ID 
Date of 

Sampling  
Sampling 

Equipment 

Water 
Depth 

(m) Latitude* Longitude* 

P1502-
021 22.4.15 Grab 38 66° 19' 58.63"N 

14° 7' 
40.03"E 

P1502-
022 22.4.15 Grab 180 66° 19' 29.29"N 14° 7' 9.79"E 

P1502-
023 22.4.15 Grab 232 66° 19' 8.28"N 

14° 6' 
27.71"E 

P1502-
024 22.4.15 Grab 307 66° 18' 19.15"N 

14° 5' 
41.60"E 

P1502-
025 22.4.15 Grab 348 66° 18' 3.96"N 

14° 4' 
29.66"E 

P1502-
026 22.4.15 Grab 330 66° 17' 50.31"N 

14° 4' 
25.83"E 

P1502-
027 22.4.15 Grab 330 66° 18' 17.86"N 

14° 3' 
47.00"E 

P1502-
028 22.4.15 Grab 440 66° 17' 38.62"N 

13° 59' 
29.49"E 

P1502-
029 22.4.15 Grab 500 66° 16' 4.95"N 

13° 56' 
20.67"E 

P1502-
030 22.4.15 Grab 520 66° 15' 37.30"N 

13° 47' 
59.23"E 

 

4.2 Swath Bathymetry 
For this study, two different sets of bathymetry data were used. Each data set was 

collected at different time intervals with the first dataset being collected in 2012 by the 

NGU research vessel FF Seisma using WASSP multibeam sonar. The second dataset 

was collected in 2016 from the FF Seisma using Kongsberg EM2040 multibeam echo 

sounder. This data was post-processed using Caris data systems. Later editing and 

visualization of the data was performed using Esri ArcGIS software. The WASSP 

multibeam bathymetry dataset from 2012 covered a smaller area of the fjord and was of 

a lower quality than the 2016 EM2040 multibeam data. Due to this reason the 2016 data 

was primarily used to display the bathymetry features of the fjord. The 2012 and 2016 

datasets were used in combination to create a layer displaying the changes between 

2012 and 2016 to the bathymetry of the fjord. The 2016 data was also used to display 

the slope angles of the fjord bathymetry. 

4.3 TOPAS Seismic 
TOPAS parametric sub-bottom profile data was collected in 2015 from the NGU research 

vessel FF Seisma.  
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4.4 Laboratory Analysis 

 Opening, Photography and X-Ray of Cores 
All the Niemistӧ cores used in this study were initially analyzed at the Geological Survey 

of Norway (NGU) lab in Trondheim between 2015-2016. There the analysis included a 

Multi Sensor Core Logger (MSCL) and X-ray imaging (XRI) before being opened and 

photographed. The MSCL scanned for X-ray fluorescence (XRF) and magnetic 

susceptibility. For this study only the photographs, X-ray imaging and magnetic 

susceptibility data were used.  

The opened Niemistӧ cores arrived at the Department of Geosciences laboratory (IG) at 

UiT The Arctic University of Norway in the summer of 2017. Each core had an archive 

half and a working half. The archive half was to remain largely undisturbed and to be 

used for visual core-logging and XRF testing. The working half was to be used to for all 

physical testing of the sediments including shear strength and grainsize analysis. Some 

samples were removed from the working cores at NGU for physical testing prior to 

arriving at the IG lab. There would be very little remaining of the testing half of the core 

when the work was completed. 

 XRF Analysis 
The archive half of the Niemistӧ cores were used for the XRF analysis at the IG lab 

during the summer and fall of 2017. The scanning was performed using an Avaatech 

XRF core scanner at 5 mm down core intervals with 30-second measuring times. The 

following settings were used on the XRF scanner (Figenschau 2018): 

 10 kV, 1000 µA, no filter, to measure light elements from Mg to Co 

 30 kV, 2000 µA, Pd-thick filter, to measure medium-heavy elements from Ni to 

“ca.” Mo 

 50 kV, 2000 µA, Cu-Filter, to measure heavy elements from “ca.” Mo to U. 

The data retrieved from the XRF scanner is qualitative and for this study only the Fe 

values were used. This is due to Fe being associated with the mine tailings and an 

important distinguishing factor from more natural sediments (Skei and Paus 1979).  

Karina Monsen performed the XRF scanning and data processing in the IG lab. For more 

information on the XRF scanning process, refer to the associated thesis of Nikolai 

Figenschau (Figenschau 2018). 

 Sedimentary Core Logging 
The visual description of the sediment cores was performed on the archive half of the 

cores. Prior to the visual logging, the core surfaces were cleaned and smoothed. 

Lithological logs were created for each of the six cores showing the physical changes 

through their lengths. Color (Munsell Sediment Color Chart (MSCC)), relative grainsize, 

structures, clasts, bioturbation and shell fragments were logged.  
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 Shear Strength Test 
Shear strength tests were performed at different points along all six cores. Areas of 

transition in color and or grainsize were used to determine testing points. Undrained 

shear strength (Su) and reworked shear strength (Sr) tests were performed at each 

testing point.  

A GEONOR fall cone apparatus was used to perform the shear strength tests. The 

principle behind the test is that a cone of a certain weight and apex angle is hung 

touching the sediment surface and then dropped onto the sediment sample and the 

depth of penetration of the cone corresponds to a shear strength value in tables 

accompanying the apparatus (GEONOR). The shear strength of a soil (s) is proportional 

to the weight of the cone (Q) and inversely proportional to the square of the penetration 

(h) of the cone into the sample: s=K(Q/h2). The proportional constant (K) depends 

primarily on the angle of the cone and sensitivity of the clay (Hansbo 1957). 

The tests for Su were performed by dropping the cone directly onto the undisturbed 

sediment while it was still in the core. This was performed three times for each sample. 

For the Sr tests, sediment samples ~1cm in length were extracted from the core and 

placed into a small cup. The sample was thoroughly mixed and pressed into the cup to 

ensure no air pockets or original structures remained. The cone was then dropped onto 

the sediment in the cup. The test was repeated three times for each sample with the 

sample being reworked after each test. This reading provided a new shear strength 

reading with the same water content. Each Sr sample extracted from the core was 

bagged, sealed and frozen for later grainsize analysis. 

Sensitivity of the sediments was calculated by taking the ratio of Su/Sr , showing the 

sensitivity of the sediment to disturbance (Skempton and Northey 1952). Sediments with 

a higher sensitivity ratio when disturbed will have a greater chance of behaving as a 

viscous fluid and undergo flow (Reeves, Sims et al. 2006). 

 Grainsize Analysis 
Grainsize analysis was performed on all six of the working cores but at different sampling 

intervals: 

 P1502-001: Sampled every 1.0 cm (37 samples total) 

 P1502-004: Sampled every 0.5 cm (46 samples total) 

 P1502-009: Sampled every 1.0 cm (19 samples total) 

 P1502-013: Sampled every 1.0 cm (39 samples total) 

 P1502-015: Sampled every 1.0 cm (34 samples total) 

 P1502-016: Sampled every 0.5 cm (19 samples total) 

4.4.5.1 Acid Treatment (HCL) and Oxidation with Hydrogen Peroxide (H2O2) 

All sediment samples underwent acid and oxidation treatment to remove calcium 

carbonate (CaCO3) and organic matter before being analysed by a Particle Size 

Analyser (PSA). The following steps were made following procedural guidelines 
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developed by the Department of Geosciences (IG) lab at UiT The Arctic University of 

Norway (UiT-IG). 

Approximately 2g of sediment was taken at each sampling interval and placed into a 

plastic test tube. Just enough 20% HCL was added to the test tubes to entirely cover the 

sediments. They were then left under a fume hood for 24hrs. After 24 hrs, each sample 

was centrifuged down for 4 minutes at 4000 rpm. Excess water was decanted and 

distilled water was added and the test tube was then placed on a test tube shaker before 

being re-centrifuged. This process was repeated 6 times. Enough 20% H2O2 was then 

added to each test tube to entirely cover the sample. A cap of aluminium foil with a small 

hole was then placed over each test tube and they were placed in a heated water bath of 

85°C for 2 hrs. The water bath was performed under a fume hood due to the normally 

volatile reaction of samples to H2O2. The same centrifuge, decanting and rinsing process 

as described before was then repeated. A small amount of distilled water was then 

added to the test tubes before placing them on a shaker table and transferring them to 

plastic cups. The samples were then placed in a drying rack at 32°C until dry. 

Approximately 0.5 g of each dried sample was then placed in individual cups with lids 

and mixed with 20ml of distilled water. The remainder of each dried sample was 

individually bagged and sealed. These cups with the samples were then placed on a 

shaking table for 24hrs before being analysed by the PSA. 

4.4.5.2 Laser Particle Size Analyser 

The laser particle size analyser (PSA) machine in the IG lab at UiT is Beckman Coulter 

LS 13 320. This machine uses a technique based on the deflection of a laser beam when 

it hits a particle to determine its size. The angle of the deflection depends on the size of 

the particle. This can be used to determine the particle distribution in fine-grained 

sediments within a range of 0.04-2000 microns (IG-LPSA). A sieve allowing particles up 

to 2000 microns was used for this study. 

Before each sample was placed in the PSA, two drops of Calgon to prevent clumping 

was added to the sample and it was then inserted into an ultrasonic bath for 5 minutes to 

help mixing. Each sample was analysed 3 times and the results were exported as Excel 

data spreadsheets. An average for each reading was then placed in a GRADISTATv8 

Excel program (Blott and Pye 2010), which then processed the data into the desired 

grainsize parameters seen later in the study. 
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5 Swath Bathymetry 

5.1 2012 WASSP and 2016 EM2040 Multibeam Bathymetry 
The bathymetry data displayed in Figures 16, 17 and 18 shows the innermost ~10.5 km 

of the fjord bottom rising at a relatively low angle of between 0-5 degrees from the south-

west towards the north-east. The deepest depths in the area covered by the bathymetry 

data are between ~531 m (2012 data) and ~490 m (2016 data) deep in the western 

basin and the shallowest depths are ~4 m along the shorelines.  The bottom of the 

center of the fjord is relatively flat in the outer portion of the inner basin with a width of 

~1.8 km and narrowing quickly towards the head of the fjord. Steep slopes with angles 

up to 87° rise up sharply from the fjord bottom on both sides of the fjord (Figures 16, 17 

and 18). The northern edge of the fjord has abrupt steep slopes that continue until the 

innermost 5 km of the fjord where the slopes become longer and more gradual. The 

southern edge of the fjord has sharp steep slopes up until the inner most 2 km of the 

fjord where the slopes become slightly less steep and dominated by sharp gullies. 

These defined gullies extend from close to the shoreline down into the fjord. They are 

located along the innermost 2 km of the southern fjord slope, beginning at the mouth of 

Ranaelva. The largest gullies are located in the innermost part of the fjord near the river 

mouth and the tailing discharge points. Most of the gullies join at a channel formation 

that extends along the bottom of the fjord. This channel is sinuous in shape with defined 

edges extending over 5 km out into the fjord. It has a width of ~250 m for over 5 km 

before widening and becoming less defined in the deeper waters to the west. The 

channel follows more along the southern part of the fjord closer to the steeply sloped 

southern fjord edge. At one point, the channel flows up against the steep southern fjord 

edge and almost appears to have eroded slightly into the slope (Figure 18). 

To the north of the channel, slight ridges resembling smaller, potentially abandoned 

channels can be seen running parallel to the deeper, larger channel. These smaller 

channels are at shallower depths with less defined edges. Within both the larger and 

smaller channels are stepped crescent shaped ridges that run roughly perpendicular to 

the channel edges and point up-fjord (Figure 18).   
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Figure 16. 2012 WASSP Multibeam Bathymetry 
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Figure 17. 2016 EM2040 Multibeam Bathymetry 
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Figure 18. 2016 EM2040 Bathymetry Slopes 
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 Interpretation: 
The bathymetry data displayed here shows a fjord system that has a dominant channel 

system at its bottom. The gullies at the head of the fjord that lead down to the channel 

clearly indicate that these are pathways for sediments to flow down the slopes and into 

the channel (Figure 17). The sharp edges of the gullies indicate erosion has been 

recently occurring, eating into the slopes (Syvitski, Burrell et al. 1987). Since these 

gullies are located below the Ranaelva and mine tailings discharge points, it can be 

assumed that they are the sources for the sediments which cause of the erosion 

(Meiburg and Kneller 2010). This also indicates that these are most likely the sediment 

sources for the creation of the channel, which in turn is the main transport pathway for 

the sediments into the deeper fjord basin (Syvitski, Burrell et al. 1987). The smaller, 

shallower and less defined channels to the north of the main channel are possibly older 

abandoned channels and/or secondary channels that still occasionally continue to 

transport sediment (Figure 17 and 18). Several of the minor channels have somewhat 

defined edges indicating they could have transported sediment recently. Large outflow 

from Ranaelva or a sediment slide could have overflowed the main channel and fed into 

the smaller channels (Meiburg and Kneller 2010) . The crescent shaped features within 

the channels are most likely cyclic step formations created from surge/pulse turbidity 

currents flowing down the fjord (Figure 18) (Clarke 2016). 

5.2 2014-2016 Changes in Bathymetry 
The data displayed in Figure 19 shows the changes in bathymetry between 2012 and 

2016. The greatest changes are seen in the form of erosion in the main channel along 

the fjord bottom. This erosion extends along ~5 km of the channel’s north-northwestern 

edges with the largest amounts concentrated in the innermost ~2 km of the fjord. The 

same 2 km of the channel also sees large amounts of accretion occurring more to the 

center of the channels, directly to the south-southeast of the areas with high erosion. 

The innermost parts of the fjord near the mouth of Ranaelva and the tailings discharge 

points shows narrow gullies of erosion extending down into the fjord channel. Several of 

these gullies seem to be the result of more recent mass movement events since they did 

not appear in the 2012 bathymetry dataset (Figure 20). 

The northern slopes of the fjord at the western edge of the bathymetry data show high 

levels of change but due to the smaller coverage area of the 2012 data, a full display of 

the area is not available. As a result, an analysis of the area is not possible. 
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Figure 19. Change in bathymetry between 2012-2016 
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Figure 20. Close up of changes in Bathymetry 
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 Interpretation 
The high amount of erosion along the fjord’s main channel and slopes in the inner fjord 

indicates that large amounts of sediment have been transported from these areas down 

into the fjord by sediment gravity flows (Syvitski, Burrell et al. 1987). The gullies 

occurring near the mouth of the Ranaelva and the tailings discharge points could 

possibly be from a combination of slides/slumps. This is shown by the areas directly 

above these gullies having accretion from possible nearby mass movements (Figure 20). 

These mass movements would have resulted in debris flow/turbidity currents due to the 

steep slopes and would have carried with them the majority of the sediment eroded 

(Tesaker 1978, Meiburg and Kneller 2010).  These gullies would have then funneled the 

gravity flow down into the channel and the high amounts of erosion directly below them 

confirms this (Meiburg and Kneller 2010). The accretion also seen in these areas 

indicates that portions of the sediment load is being deposited as well. The erosion 

occurring farther out in the channel indicates that the gravity flows continue to flow out 

into the fjord basin most likely as a turbidity current (Pratson, Imran et al. 2000, Meiburg 

and Kneller 2010, Clarke 2016). The erosion occurring in the channel appears to be 

concentrated on its western sides which could be due to the Coriolis effect forcing the 

outflowing current to the right (Syvitski, Burrell et al. 1987). This would cause the erosion 

seen and could help account for the accretion towards the middle of the channel. The 

areas outside the main channel see relatively little change perhaps due to the channel 

being the main sediment transport pathway in the fjord.  
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6 Sediment Cores and Grabs 

6.1 Sediment Cores 
The 6 sediment cores used in this study were analysed in conjunction with Nikolai 

Figenschau and 4 of the same cores were used in his thesis (P1502-001, P1502-004, 

P1502-013, P1502-015) (Figenschau 2018). Much of the same data was used for both of 

these studies but the interpretation for each of the 6 cores provided here was made 

independently from his thesis.  

 

 

Figure 21. Niemistö core locations 

 Core P1502-001 
Niemistö core P1502-001 was retrieved from the central part of Ranfjorden close to the 

northern shoreline approximately 17.3 km from the mine tailings point of deposition 

(Figure 21). Water depth at the core location was 100m and the core is 37 cm long. The 

core is divided into 3 units: P1502-001A, P1502-001B and P1502-001C (Figure 22). 

6.1.1.1 Unit P1502-001A (37-25 cm) 

Unit A consists of a uniformly gray color (5Y 4/1 MSCC) from 37-29 cm that becomes 

slightly more brown from 29-25cm. Very little internal structure is observed within the 
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unit. There are sporadic lenses of black sediment observed throughout the unit. The unit 

consists primarily of fine silt with a mean grainsize of approximately 10 µm for the 

entirety of the unit with very little fluctuation. The upper boundary is a gradual transition 

to unit B. 

The one shear strength test performed in this unit shows an undrained shear strength 

(Su) value of ~12 kPa and a remolded (Sr) value of ~2 kPa resulting in a sensitivity (Su/Sr) 

of ~6. Magnetic susceptibility for the unit is relatively stable at ~25 10-5SI with very few 

small changes. The XRF element ratio data shows that Fe and Si have an almost directly 

inverse relationship with several peaks and dips throughout the unit. 

6.1.1.2 Unit P1502-001B (25-5 cm) 

Unit B is a predominantly massive unit with a brown-gray color (5Y 4/2 MSCC) that 

shows some slight chaotic internal structure between 14-11 cm. Shell fragments are also 

observed. The unit consists primarily of fine to medium silt with a mean grainsize of ~10 

µm at the base of the unit increasing gradually to ~17 µm towards the top. A gradual 

increase in the total percentage of sand is seen upward through the unit. Both the lower 

and upper boundaries are gradual.  

The shear strength tests performed in this unit show a decrease in Su and in sensitivity 

upward through the unit with a sensitivity of ~8 at 24 cm and ~4 from 19-8 cm. Very little 

change in Sr is seen.  

Between 25-14 cm magnetic susceptibility decreases slightly from ~25 to ~10 10-5 SI. 

However a distinct spike occurs at 21 cm. From 12-5 cm the magnetic susceptibility 

increases gradually towards unit C with a spike at 8 cm and then increasing rapidly from 

~15 10-5SI to ~60 10-5 SI just below the boundary with unit C. 

The XRF element ratio data for this unit is very similar to that in unit A with Fe and Si 

ratios having an almost direct inverse relationship. There are several spikes and dips for 

both Fe and Si throughout the unit with the largest interval for Fe and dip for Si occurring 

between ~15-11cm. Over the whole of the unit Fe and Si show a relatively stable trend 

with both having a similar value at the base of the unit as at the top.  

6.1.1.3 Unit P1502-001C (5-0 cm) 

Unit C is comprised of 3 different color zones with the bottom portion from 5-3 cm being 

a brown-gray color (5Y 4/2 MSCC) similar to unit B. From 3-2 cm the color abruptly 

changes to a gray color (5Y 4/1 MSCC) similar to that seen in unit A. The final 2 cm are a 

reddish brown color (2.5Y 3/2). Some lenses are seen in the lower layers along with 

some bioturbation in the upper portion of the unit. From 5-3 cm the unit is made up of 

mainly medium silt with mean grainsize staying relatively level at ~17 µm. From 3-1 cm 

the unit is composed of a more coarse silt with a mean grainsize of 30 µm.  From 1-0 cm 

the unit is composed of more a more coarse silt/very fine sand mixture with the mean 

grainsize increasing to closer to 50 µm. The gradual increase in mean grainsize upward 

in the unit can be partially attributed to a gradual increase in the percentage of sand.  
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No shear strength tests were performed in this unit. Magnetic susceptibility is around ~50 

10-5 SI from 5-3 cm before dipping to ~40 10-5 SI from 3-2cm. From 2-0cm the magnetic 

susceptibility increases steeply to closer to 90 10-5 SI.  The XRF element sum-ratio data 

for Fe and Si again shows the same inverse relationship seen in the other units of the 

core. The ratios for both elements remain relatively stable for the unit with a peak for Si 

and a dip for Fe between 3-2 cm and again between 0.5-0 cm. 

6.1.1.4 Interpretation 

Core P1502-001 shows generally gradual changes in both its physical and geochemical 

properties upward throughout the core. These factors indicate that the sediments were 

likely deposited in in a more open marine environment with alternating natural sediment 

sources (Syvitski, Burrell et al. 1987). No sharp boundaries are seen between facies and 

very little structure is seen throughout the core. The chaotic structure seen in unit B from 

14-11 cm could possibly be from a small mass-movement event that brought in more Si 

dominated sediment as shown by the XRF data. Shear strength values initially show an 

increase in Su from unit A to B, coinciding as expected with a slight increase in sand 

content (Cabalar and Mustafa 2015). From ~24-17 cm the Su value drops even as sand 

content increases, potentially due to having been reworked by the aforementioned 

episodic event (Perret, Locat et al. 1995). Grainsize increases subtly upward through the 

core with the color changing accordingly. The shift from a grayer to a more brown color 

correlates with the increasing percentage of sand at 25 cm. Magnetic susceptibility for 

the majority of the core is extremely low decreasing slightly as the percentage of sand 

increases towards the upper portion of the core. The upper 5 cm sees a shift to an even 

more sand dominated source potentially comprised of magnetite due to the higher 

magnetic susceptibility readings.  

The low magnetic susceptibility and lower Fe/Sum values along with the stable Fe/Si 

relationship seen throughout the core, supports that the sediment sources were primarily 

natural, from similar sources and did not originate from mine tailings. Even though for the 

core as a whole, the Fe and Si/Sum values do not alter greatly, they do fluctuate rapidly 

and continuously through its entire length. This would indicate slight shifts between 

similar sources. Shell fragments and evidence of bioturbation at the top of the core 

further supports that the core is comprised of natural sediments though the final 5 cm 

with its higher magnetic susceptibility readings could indicate the presence of some mine 

tailings. 

 

 

 

 

 



 

Page 39 of 81 

 

Figure 22. Core P1502-001 Analysis Results. . 
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 Core P1502-016 
Niemistö core P1502-016 was retrieved from the central portion of Ranfjorden 

approximately 16.9 km from the mine tailings point of deposition (Figure 21). Water depth 

at the core location was 520m and the core is 9.5cm long. The core is divided into 4 

units: P1502-016A, P1502-016B, P1502-016C and P1502-016D (Figure 23). 

6.1.2.1 Unit P1502-016A (9.5-9cm) 

Unit A is a darker red color (10YR 3/2 MSCC). The lithological log shows that the unit 

consists mainly of sandy silt coarsening slightly upward with no observed structure until it 

is truncated at the upper portion by a coarser sandy unit. This boundary is sharp and 

curved in shape. No grainsize analysis or shear strength tests were obtained for this unit. 

Magnetic susceptibility is low for this unit but gradually increases upward. The XRF 

element sum ratios for Fe and Si are relatively low with both increase upward through the 

unit. 

6.1.2.2 Unit P1502-16B (9.5-6cm) 

Unit B is gray color (2.5YR 3/2 MSCC).  It has a curved shape with some darker layering 

within. The majority of the layer consists of very fine sand and coarse silt with the mean 

grainsize increasing steeply from 40 µm to 70 µm toward the middle before decreasing 

toward the upper portion of the unit. The upper boundary of the unit is an abrupt 

transition to a silt layer. This boundary is similar to the lower boundary with having a 

deformed curved shape. 

Shear strength tests were performed in this layer but due to a high sand content, the 

results were determined to be unreliable (compared with (Hansbo 1957)) and therefore 

not used in the later discussions. Magnetic susceptibility mirrors the steep increase in 

grainsize toward the middle of the unit and also drops towards the upper portion from a 

peak of near ~2000 10-5SI. The XRF element ratios for Fe and Si in this unit fluctuate 

only slightly and there is a slight inverse relationship between the two. The Si ratio 

increases slightly as the mean grainsize and magnetic susceptibility increase. The Fe 

ratio drops slightly with these increases and rises as they decrease. The trend for both 

Fe and Si are very smooth without large changes or fluctuations through the unit. 

6.1.2.3 Unit P1502-16C (6-2.5cm) 

Unit C has a darker reddish color (10YR 3/2 MSCC) that is dominant throughout the unit 

and is very similar to Unit A. The lower boundary is an abrupt shift from a sandier lower 

layer to a more massive sandy silt layer. From 6 cm to 5.5 cm, the mean grainsize 

decreases quickly from 50 µm to approximately 30 µm and remains there throughout the 

rest of the unit. 

Shear strength tests were performed here but due to the sand content the results were 

found to be unreliable and not taken into consideration (compare with (Hansbo 1957)). 

Magnetic susceptibility follows the same decreasing trend as the mean grainsize from 6 

cm to 5.5 cm and stays relatively stable at around 500 10-5SI for the rest of the unit. The 

element ratio for Fe follows a very slight inverse trend compared to mean grainsize and 
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magnetic susceptibility. Both Fe and Si show generally very little change throughout the 

unit. 

6.1.2.4 Unit P1502-16D (2.5-0cm) 

Unit D is very similar to unit B with a gray color (2.5YR 3/2 MSCC) but with no internal 

structure. The layer primarily consists of very fine sand and silt with the mean grainsize 

increasing steeply from approximately 25 µm at 2.0 cm to nearly 70 µm at 0.5 cm. The 

lower boundary is an abrupt shift from the lower red silt layer. This boundary is irregular 

with tendrils of the upper sandy layer extending downward into the lower silt layer and 

vice versa. The upper portion of the unit from 0.5 to 0 cm sees a shift to a darker reddish 

color (10YR 3/2 MSCC) and a higher silt content. 

Shear strength tests were again performed here but due to the high sand content in the 

unit were not considered reliable (compare with (Hansbo 1957)). Magnetic susceptibility 

increases steeply upward through the unit with a peak close to approximately 2000 10-

5SI at 1 cm, before it decreases toward the end of the unit and top of the core. This 

mirrors the trend seen with the mean grainsize. The XRF element ratio data shows a 

slight inverse relationship between Fe and Si but with very little change throughout the 

unit.  

6.1.2.5 Interpretation 

The physical properties of core P1502-016 show two types of deposits that are distinctly 

different from each other. Two very different depositional environments are shown by the 

one type consisting of gray sand and the other consisting of reddish silt. A probable 

explanation is that the sediments have been transported and deposited by two 

successive mass-transport events with units B and D being at their bases (Syvitski, 

Burrell et al. 1987). This is supported by units B and D both consisting mostly of fine 

sand while units A and B mostly of silt. In addition, the boundaries between all the units 

are sharp with the boundary between C and D showing distinct load casts. A distinct 

color change is also seen between the units, shifting from a dark red in units A and C to 

a gray in B and D. Since the deposits in units B and D are reasonably well-sorted, 

consist of fine sand and above them there is a general fining upward, they are most likely 

distal turbidites (Pickering, Stow et al. 1986, Pratson, Imran et al. 2000, Collinson, 

Mountney et al. 2006).  

The sharp deformed boundaries above and below units B and D indicate that these units 

were deposited rapidly and their coarser grainsize correlate with a higher energy 

depositional environment seen in mass-transport events. The deformed boundary 

between units C and D with tendrils of sandier unit D sediment extending down into the 

more silty unit C are consistent with load casts (Collinson, Mountney et al. 2006). This 

also supports them having been rapidly deposited by conditions seen in turbidity currents 

(Collinson, Mountney et al. 2006). 

Units A and C both consist of red, fine to medium silt and could have been deposited by 

a combination of the turbidity currents finer fraction dropping out of suspension and other 
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finer sediments settling after being transported by other currents in the fjord. Almost no 

clay is seen in the core which also supports a higher energy depositional environment. 

The origin of the large majority of the sediment in the core is most likely from the mine 

tailings due to the successive red colors observed and the very high magnetic 

susceptibility values seen throughout the core. A minimum of ~400 10-5SI is seen at 2.5 

cm while the more natural sediments seen in core P1502-001 never go above ~90 10-

5SI. The peaks in magnetic susceptibility and the gray color seen in units B and D are 

most likely due to a concentration of magnetite. Fe values do not alter greatly with the 

increase in magnetic susceptibility, which can support that magnetite is being 

concentrated in units B and D. This is due to only a slight increase in highly magnetic 

magnetite would have a large increase in magnetic susceptibility readings. The 

magnetite sediments also seem to be a coarser grainsize relative to other tailings 

sediments since their location in the core corresponds to where the sediments were 

deposited from higher energy transport mechanisms. 

The relative lack of any large shifts or changes in the XRF data throughout the core 

indicates that the sediments very likely all came from a similar source. The high Fe 

readings along with the high magnetic susceptibility values support the source being 

mine tailings. 
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Figure 23. Core P1502-016 Analysis Results 
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 Core P1502-013 
Niemistö core P1502-013 was retrieved from the center of the inner portion of 

Ranfjorden approximately 3.4 km from the mine tailings point of deposition (Figure 21). 

Water depth at the core location was 282 m and the core is 39 cm long. The core is 

divided into 4 units: P1502-013A, P1502-013B, P1502-013C and P1502-013D (Figure 

24). 

6.1.3.1 Unit P1502-013A (39-29 cm)  

Unit A is a brownish black (7.5YR 3/2 MSCC) colored massive medium silt layer with a 

gradual upper border. Mean grainsize fluctuates slightly up through the unit with 

variations in sand input. The mean grainsize increases slightly upward through the unit 

with undrained shear strength (Su) decreasing upcore. 

Magnetic susceptibility is relatively low and gradually increases up through the unit with a 

slight dip at 30 cm.  The Fe/Sum values closely following the same trend. The Si/Sum 

values follow a nearly inverse relationship to magnetic susceptibility and Fe/Sum and 

shows a slight decrease through the unit. Fe and Si values show fluctuating values up 

through the core.  

6.1.3.2 Unit P1502-013B (29-19 cm)  

Unit B is made up of alternating layers of dark (10YR 3/2 MSCC) and darker brownish 

black (10YR 3/1 MSCC) medium silt with some thin, darker lamination structures. Mean 

grainsize fluctuates greatly from 29-22 cm with each darker lamination, corresponding to 

an increase in the percentage sand. An increase in Si/Sum values occurs at each 

lamination and with the Fe/Sum values following an inverse trend. Magnetic susceptibility 

follows a slightly similar trend to the mean grainsize, fluctuating between ~400 10-5SI at 

the lower mean grainsize and ~600 10-5SI at the points of higher mean grainsize. Fe and 

Si/Sum values fluctuate continuously up through the core. 

From 22-19 cm the mean grainsize decreases slightly. A darker laminate layer at 20 cm 

corresponds to a steep spike in magnetic susceptibility and a decrease in mean 

grainsize. A slight increase in Fe/Sum values is seen at the same time. The upper 

boundary is sharp with the conclusion of the darker laminate layer. Undrained shear 

strength (Su) for the unit is much lower than in unit A overall but shows a gradual 

increase upward through the unit. 

6.1.3.3 Unit P1502-13C (19-12.5 cm) 

Unit C is composed of dark brown (10YR 3/2 MSCC) massive medium to fine sandy silt 

with almost no internal structure. The mean grainsize overall decreases up through the 

unit with some fluctuations. Each increase in percentage sand correlates to an increase 

in the Si/Sum values and a decrease in the Fe/Sum values. Magnetic susceptibility and 

Fe/Sum values increase upward through the unit as mean grainsize decreases. Shear 

strength values vary little from the lower unit and continue to stay low. 
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6.1.3.4 Unit P1502-013D (12.5-0 cm) 

Unit C consists of dark brown (10YR 3/2 MSCC) massive fine silt with little internal 

structure. The color is a slightly darker brown from 12.5 to 5 cm. The mean grainsize 

gradually decreases upward through the unit with a slight percent increase in silt and a 

decrease in sand. From 12.5-5 cm magnetic susceptibility increases and stays relatively 

high, Fe/Sum values also hold relatively high while Si/Sum values are low over this 

length. From 4-0 cm magnetic susceptibility and Fe/Sum values decrease rapidly while 

Si/Sum values increase.  

Undrained shear strength (Su) generally decreases over the length of the unit with the 

remolded shear strength (Sr) staying very low for the whole unit. 

6.1.3.5 Interpretation 

The whole length of core P1502-013 displays a continuously shifting depositional 

environment with altering sediment sources. The dominant red coloration throughout the 

core and the relatively high magnetic susceptibility and Fe/Sum values indicate that the 

predominant sediment type throughout the core is likely mine tailing derived. The mean 

grainsize generally decreasing and the Fe/Sum values increasing up through the core 

show a continuous trend towards more mine tailings dominated sources. Units A, C and 

D due to their massive structure were most likely deposited by low energy suspension 

fallout from a more continuous source. 

The several brief abrupt increases in mean grainsize that correspond to the darker 

laminations between 29-22 cm indicate brief shifts in the depositional environment and 

sediment source. These color changes also correspond with increases in magnetic 

susceptibility. Since these laminations are relatively thin, predominantly fine grained and 

not continuous indicates that they were likely deposited during short pulse events due 

possibly to brief, strong seasonal discharges or other episodic event (Syvitski, Burrell et 

al. 1987, Collinson, Mountney et al. 2006). A heavy seasonal fluvial runoff or the 

overflow of the channel from a nearby mass-movement event could all be causes 

(Pickering, Stow et al. 1986, Syvitski, Burrell et al. 1987). The high magnetic 

susceptibility and dark color with no spike in Fe/Sum values could indicate these 

laminations contain higher levels of magnetite. The darker brown sediment seen from 

12.5 to 5 cm corresponding to higher magnetic susceptibility and Fe/Sum values could 

also be related to higher magnetite levels within that section. 

The upper portion of the core from 4-0 cm sees a sharp increase in the Si/Sum values 

and a slight increase in the silt percentage as there is a sharp decrease in magnetic 

susceptibility and Fe/Sum values. This would indicate an alternate source consisting of 

more Si rich silt gradually beginning to become more dominant.  
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Figure 24. Core P1502-013 Analysis Results 
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 Core P1502-015 
Niemistö core P1502-015 was retrieved from inner Ranfjorden close to the northern 

shoreline approximately 3.2 km from the mine tailings point of deposition (Figure 21). 

Water depth at the core location was 180 m and the core is 35 cm long. The core is 

divided into 3 units: P1502-015A, P1502-015B and P1502-015C (Figure 25). 

6.1.4.1 Unit P1502-015A (35-17.5 cm) 

Unit A is a reddish gray color (2.5YR 4/1 MSCC) and consists of massive medium to fine 

silt with no internal structure and a gradual upper border. Some red fine-grained clasts 

are seen from 33-29 cm. The mean grainsize remains relatively steady at ~18 µm from 

~34-20 cm before fluctuating to a high of ~22 µm and ending at ~14 µm at 17.5 cm. The 

magnetic susceptibility values are very low between 35-20 cm before rapidly increasing 

from 20-17.5 cm. The XRF element ratio data shows a direct inverse relationship 

between Fe and Si with Fe/Sum values increasing from 34-32cm and Si/Sum values 

dropping. For the rest of the unit Fe and Si/Sum values fluctuate continuously but hold a 

mostly stable trend with Fe slightly increasing and Si decreasing. 

6.1.4.2 Unit P1502-015B (17.5-9.5 cm)  

Unit B consists of dark brown(10YR 3/2 MSCC) massive medium to fine silt and gradual 

upper and lower boundaries. Some slight streaks of fine black sediment are seen along 

with a larger lighter colored lense of finer sediment at ~12cm. The mean grainsize has an 

initial spike at ~16 cm before gradually decreasing up through the rest of the unit as the 

percentage silt increases slightly and the sand percentage decreases. The undrained 

shear strength (Su) of ~11 kPa at ~17.5cm increases to ~16 kPa at ~15 cm following the 

spike in mean grainsize. The Su then gradually decreases upward through the unit. 

Magnetic susceptibility progressively increases upwards throughout the unit. Fe/Sum 

and Si/Sum values again have an largely inverse relationship with Fe/Sum values 

increasing slightly up through the unit and Si/Sum slightly decreasing. Slight fluctuations 

in values are seen in both elements up throughout the unit. 

6.1.4.3 Unit P1502-015C (9.5-0 cm) 

Unit C is comprised of a brownish black (7.5YR 3/2 MSCC) massive fine silt with no 

internal structure and a gradual lower boundary. Mean grainsize is relatively stable for 

the length of the unit with only a few slight variations related to changes in the 

percentage sand.  The undrained shear strength (Su) for the lower portion from the 

bottom portion of the unit shows a value lower than that measured in unit B. 

Magnetic susceptibility increases steadily up through the unit until ~4 cm where it 

reaches a core high of ~800 10-5SI. From 4-0 cm it drops to ~350 10-5SI. Fe/Sum and 

Si/Sum values again have an inverse relationship with Fe gradually decreasing through 

the unit and Si increasing. 
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6.1.4.4 Interpretation 

Core P1502-015 shows a clear shift in the sediment sources up through its core while 

the transport method that deposited them seems constant. The dramatic color change 

from the lighter-gray medium silt to the darker-brown fine silt is a clear indication of a 

change in origin for the sediments. Other changes in physical and geochemical 

characteristics indicate the dominant sediment source shifted from a more natural to a 

more mine tailings dominated origin. From 35-19 cm the core resembles the more 

natural sediments seen in core P1502-001 with low magnetic susceptibility, lower 

Fe/Sum values and more dominated by medium-grained silt. From 19-9.5 cm there is a 

gradual transition with mixing between the sources as indicated by the steadily 

increasing magnetic susceptibility and Fe/Sum values and the decreasing mean 

grainsize. From 9.5-4.5 cm the high magnetic susceptibility and Fe/Sum values indicate 

the sediments are dominated by mine tailing. The last 4 cm of the core show a large 

decrease in magnetic susceptibility, which could be attributed to testing error since the 

Fe/Sum values remain stable and the color does not change.    

Each boundary transition is gradual and the sediment is fine grained with almost no 

internal structure indicating that the depositional environment throughout the core was 

low energy without any large changes, as seen with slow suspension fallout (Syvitski, 

Burrell et al. 1987, Collinson, Mountney et al. 2006).  
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Figure 25. Core P1502-015 Analysis Results 
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 Core P1502-009 
Niemistö core P1502-009 was retrieved from the inner portion of Ranfjorden close to the 

southern shoreline approximately 2.4 km from the mine tailings point of deposition 

(Figure 21). Water depth at the core location was 230m and the core is 19 cm long. The 

core is divided into 3 units: P1502-009A, P1502-009B and P1502-009C (Figure 26). 

6.1.5.1 Unit P1502-009A (19-17 cm) 

Unit A consists of brownish black (7.5YR 3/2 MSCC) massive sandy silt with no internal 

structure and a sharp upper boundary. Grainsize does not change much through the unit 

and no shear strength tests were completed.  

Magnetic susceptibility shows an increase to ~400 10-5SI that holds for the majority of the 

unit. The XRF element sum-ratio data for Fe shows a slight decrease to ~0.54 for the 

unit. Si/Sum data has several fluctuations with the majority of the unit showing values of 

~0.1 to ~0.09 near the upper boundary. Both Fe and Se have a generally inverse 

relationship.   

6.1.5.2 Unit P1502-009B (17-12 cm) 

Unit B consists of predominantly gray (2.5YR 3/2 MSCC) partly sorted silty sand with 

little internal structure. The upper and lower boundaries are relatively abrupt with slightly 

irregular transitions between the darker silt layers above and below. Some dark clasts 

and shell fragments are seen within the unit. From 17 cm the mean grainsize increases 

due to the  sand percentage increasing abruptly to over 65 µm at ~14 cm and then 

decreasing rapidly to ~30 µm at 12 cm. Due to the higher sand content shear strength 

readings were not found to be reliable (Hansbo 1957) and not used later in the 

discussions. 

Magnetic susceptibility values drop between 17 and 15 cm before rapidly peaking 

alongside mean grainsize and percentage sand at ~14 cm. From 14-12 cm the magnetic 

susceptibility drops from a high of ~1400 10-5SI to ~750 10-5SI before increasing 

gradually to the end of the unit. The XRF element sum-ratio data for Fe shows it 

following a similar trend to magnetic susceptibility from 17-14 cm but instead of spiking 

between 14-12 cm it gradually continues increases up to 12 cm. Si/Sum values follow an 

almost exact inverse trend to Fe/Sum for the entirety of the unit. Both elements show 

very little fluctuations up through the unit. 

6.1.5.3 Unit P1502-009C (12-0 cm)  

Unit C consists of predominantly massive silt that shifts from a darker brown (7.5YR 3/2 

MSCC) to a more reddish brown (5YR 3/2 MSCC) color as the sand content decreases 

up through the unit. There is no structure in the unit and the lower boundary is somewhat 

irregular but generally showing a sharp transition from a gray to a brown color. 

Undrained shear strength (Su) values show a decreasing trend upward through the unit 

that mirrors the decrease in the mean grainsize.   

Magnetic susceptibility gradually decreases throughout the whole unit and closely 

mirrors the trend shown by the mean grainsize. The XRF element sum ratio data shows 
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Fe and Si having the same inverse relationship seen in the lower units. Fe values initially 

increase but decrease from ~10 cm to ~1cm before gradually increasing the last cm of 

the core. 

6.1.5.4 Interpretation 

The sediments displayed in core P1502-009 clearly show an abrupt change between two 

very different depositional environments. While units A and C show many similarities in 

color, mean grainsize and Fe/Sum values, unit B differs in all these characteristics 

indicating that it was very likely deposited by a more abrupt episodic deposition event 

from an alternate source. The higher, stable Fe/Sum values in units A and C indicate that 

they are dominated by mine tailings sediments as described in P1502-015C and their 

massive structure show they were deposited in a more calm and constant environment 

(Collinson, Mountney et al. 2006). Unit B has a sharper upper and lower border with a 

large increase in the percentage sand indicating it was very likely deposited by an 

episodic gravity flow event. Since the unit is predominantly sand and has no real internal 

structure and fines slightly upward, it has most likely been deposited by a turbidity 

current/surge (Pratson, Imran et al. 2000, Collinson, Mountney et al. 2006). Initially in 

unit B from 17-15 cm, the magnetic susceptibility and Fe/Sum values drop and Si/Sum 

values rise indicating a shift from mine tailings sediments to more natural sediments. 

Shell fragments seen here also support this. Due to the close proximity to the mouth of 

the Ranaelva River (and the submarine channel), a surge of sediment from the river 

could be a potential source. From 15-14 cm there is sharp increase in magnetic 

susceptibility coinciding with the few clasts seen, indicating a potentially greater 

composition of magnetite. This could show a mixing of more mine tailings sediments into 

the turbidity current. Fe/Sum values from 15-12 cm gradually increase indicating a mixing 

upward of natural and mine tailing sediments. The final 12 cm of the core show a gradual 

transition back to mine tailings dominated sediments as the sand content and mean 

grainsize drops.   



 

Page 52 of 81 

 

Figure 26. Core P1502-009 Analysis Results 
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 Core P1502-004  
Niemistö core P1502-004 was retrieved from the inner portion of Ranfjorden close to the 

northern shoreline approximately 1.7 km from the mine tailings point of deposition 

(Figure 21). Water depth at the core location was 65m and the core is 24 cm long. The 

core is divided into 3 units: P1502-004A, P1502-004B and P1502-004C (Figure 27). 

6.1.6.1 Unit P1502-004A (24-15 cm) 

The lower part of unit A from 24 to 21 cm is made up of gray (5Y4/1 MSCC) medium 

sandy silt transitioning upward to darker reddish-gray (2.5YR 3/2 MSCC) massive sandy 

medium silt from 21 to 15 cm. This lower portion from 24-21 cm resembles the color and 

other physical and geochemical characteristics seen in the more natural sediments of 

core P1502-001. Sporadic lenses of red and black sediment become more prominent 

from 19-15 cm. Grainsize fluctuates slightly from 24-17 cm between ~20-28 µm before 

dropping to between ~18-22 µm from 17-15 cm. Shear strength values for Su also 

decrease from 24-15 cm following the drop in grainsize.  

Magnetic susceptibility has one slight fluctuation from 23.5-17 cm before increasing from 

17-15 cm. This upward trend inversely follows the trend seen for grainsize. The XRF 

element ratio data shows an inverse relationship between the Fe and Si sum ratios with 

several fluctuations up through the unit. From 24-21 cm Si sees a general decrease from 

~0.15 to ~0.04 while Fe increases from ~0.45 to ~0.65. For the rest of the unit the two 

element ratios remain relatively stable and close to these values. Any following increase 

or decrease in an element results in a decrease or increase in the other.  

6.1.6.2 Unit P1502-004B (15-6 cm) 

Unit B is made up of dark brown (7.5YR 3/2 MSCC) massive medium to fine silt. Some 

black lenses of sediment are seen from 15-12 cm shifting to darker and lighter 

interspersed red layers from 12-6 cm. No internal structure is seen with gradual borders 

between the upper and lower units. Mean grainsize shows a slight decrease upward 

through the unit from ~20 µm at 15 cm to ~15 µm at 6 cm with a dip at 10 cm and a peak 

at 7 cm. Shear strength values for Su follow the same decreasing trend upward through 

the unit as seen with grainsize. 

Magnetic susceptibility increases abruptly from ~300 10-5SI to ~700 10-5SI between 15-

14cm.  From 14-6 cm it gradually increases to ~750 10-5SI with a small peak at 7 cm. 

The XRF element ratio data for Fe sum shows that it follows the same increasing trend 

as magnetic susceptibility. The sum ratio for Si is relatively stable with a slight 

decreasing trend. Both elements show fluctuating values up through the unit. 

6.1.6.3 Unit P1502-004C (6-0 cm) 

Unit C consists of dark reddish-brown (5YR 3/2 MSCC) massive fine silt with the final 2 

cm of the unit becoming a slightly lighter red color. No structure is seen in the unit and it 

has a gradual lower boundary. Mean grainsize stays stable at close to ~15 µm for the 
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majority of the unit with a drop to ~13 µm at 2-0 cm. Shear strength values for Su follow 

the same decreasing trend as seen in unit B.  

Magnetic susceptibility increases steeply from 6-3 cm to a high of ~1500 10-5SI before 

dropping slightly from 3-0 cm. The XRF element sum ratio data for Fe shows a slightly 

decreasing trend and an increasing trend for Si throughout the unit, with very few small 

fluctuations for both elements throughout the unit. 

6.1.6.4 Interpretation 

Core P1502-004 shares many of the same characteristics seen in core P1502-015. It 

shows a clear gradual transitional change in color from gray to red upward through its 

length indicating a shift between two different sediment sources. The overall lack of 

structure and gradual boundaries indicate that the sediments were deposited by a more 

gradual, lower energy sedimentation process (Collinson, Mountney et al. 2006). The 

lower portion of the core below 21 cm appears to be a more natural sediment as 

described in core unit P1502-001A due to the lower Fe and higher Si sum values and the 

low magnetic susceptibility. The upper 6 cm of the core most likely originated 

predominantly from mine tailings as seen in core unit P1502-015C due to the increased 

Fe/Sum values, large increase in magnetic susceptibility and decrease in mean 

grainsize. This shift begins as early as 22cm and is evident by the sudden increase in 

the Fe/Sum and decrease in the Si/Sum ratios. The zone between 22-15 cm appears to 

be an early transition zone with considerable mixing between the natural and tailings 

sediments since the mean grainsize fluctuates but overall holds constant, as does the 

magnetic susceptibility. At 15 cm there is a sharp increase in magnetic susceptibility 

indicating a transition to more tailings dominated sediments that continues to 6 cm. From 

6-0 cm the sediments are tailings dominated as mentioned earlier. 

Undrained shear strength (Su) decreases upward through the core as the sediment 

becomes more tailings dominated and the mean grainsize decreases. This would 

indicate that the tailing sediments are more prone to mass-movements when compared 

to the natural sediments in the fjord.  
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Figure 27. Core P1502-004 Analysis Results 
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6.2 Sediment Grabs 
 

 

Figure 28. Sediment Core Locations and Grainsize 
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 Sediment Grab P1502-030 
 

 

Figure 29: Sediment grab P1502-030 

6.2.1.1 Description 

Red, very fine sand with some mud at the top. Gray fine sand with large amounts of mica 

flakes below upper layer. 

 Sediment Grab P1502-029 
 

 

Figure 30. Sediment grab P1502-029 

6.2.2.1 Description 

Red, very fine sand with some mud at the top. Layer below consisting of gray fine sand 

with large amounts of mica flakes. Bottom layer consisting of gray medium to course 

sand with large amounts of mica flakes. 
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 Sediment Grab P1502-028 
 

 

Figure 31. Sediment grab P1502-028 

6.2.3.1 Description 

Red, very fine sand with some mud at the top. Layer below consisting of gray fine sand 

with large amounts of mica flakes. 

 Sediment Grab P1502-027 
 

 

Figure 32. Sediment grab P1502-027 

6.2.4.1 Description 

Red mud at the top layer. Gray mud/silt with mica flakes in the layer below. No sand in 

sample but large amounts of silt. 
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 Sediment Grab P1502-026 
 

 

Figure 33. Sediment grab P1502-026 

6.2.5.1 Description 

Red mud at the top with dark gray mud with mica flakes right below. No sand with a large 

amount of silt. 

 

 Sediment Grab P1502-025 
 

 

Figure 34. Sediment grab P1502-026 

6.2.6.1 Description 

Reddish brown medium/coarse sand at the top and gray medium/coarse sand below. 

Very small recovery on sample. 
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 Sediment Grab P1502-024 
 

 

6.2.7.1 Description  

Red, very fine sand with some mud at the top. Gray medium to coarse sand with large 

amounts of mica flakes in the layer below. 

 

 Sediment Grab P1502-023 
 

 

Figure 35: Sediment grab P1502-023 

6.2.8.1 Description 

Fine red gravely sand at the top, with potentially a slight amount of mud. Gray medium 

gravely sand farther down with large amounts of mica flakes. Gravel of all sizes 

throughout. 
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 Sediment Grab P1502-022 
 

 

Figure 36: Sediment grab P1502-022 

6.2.9.1 Description 

Coarse gray sand with a large amount of mica flakes. 

 Sediment Grab P1502-021 
 

 

Figure 37: Sediment grab P1502-021 

6.2.10.1 Description 

Red sand at the top with darker, black-red muddy sand farther down. Lots of roots and 

plants. 



 

Page 62 of 81 

 Interpretation 
All the sediment grabs taken show a fine layer of red sediments varying from sands to 

muds potentially indicating mine tailings deposits. Sediment grabs P1502027, P1502026 

and P1502021 are the only samples collected outside of the main channel in the fjord 

and contain muddy sediments. The rest of the samples are all collected from the fjord 

channel or along the centerline of the fjord, and all consist of sandy sediments. This 

indicates that the channel is potentially experiencing sediment transport from turbidity 

currents (Syvitski, Burrell et al. 1987, Pratson, Imran et al. 2000). The other areas of the 

fjord are experiencing sedimentation potentially from suspension fallout. Grab P1502021 

is located up fjord from the mine tailings discharge point and the mine tailing sediments 

found in the sample could have potentially been transported there by estuarine 

circulation currents (Leikvin 2009, Golmen and Norli 2013). 
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7 TOPAS Seismic 
Two TOPAS seismic profiles displaying different locations in the fjord are analyzed for 

this study (Figure 38). These profiles cover the approximate center length of the inner 

fjord (Profile 1502006) (Figure 39) and the deeper inner fjord basin (Profile 1502006) 

(Figure 40). Each profile is broken into 2 distinct units (A and B) with the acoustic 

basement being categorized as either bedrock or moraine deposits. This is due to the 

difficulty of distinguishing between bedrock and morainal deposits in TOPAS profiles 

(Hjelstuen, Kjennbakken et al. 2013) 

 

Figure 38. TOPAS Profile Locations 
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7.1 Profile 1502006 
 

 

Figure 39. TOPAS Profile 1502006 
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Profile 1502006 (Figure 39) extends over 9km from the west to the east following close 

to the center of the fjord and crosses the sampling point of sediment core P1502-013 

(Figure 38). Unit A begins at the west edge of the profile and extends approximately 4.5 

km towards the east. As described by Lyså (2004), it is distinguished by internal patterns 

of weakly inclined reflections with low amplitude. It extends down to the basement and is 

over 150 m at it’s thickest point and thins greatly towards the east. The upper boundary 

is sharp.  Unit B extends along the majority of the profile, varies in thickness between 10 

to 20 m in the east, and thins to less than 1 m to the west. It is characterized by 

repeating parallel reflections of moderate to high amplitude (Lyså, Seirup et al. 2004). In 

the inset in Figure 39, features closer to the inner fjord are seen in more detail. Moving 

from the western edge towards the east, unit B appears to gain thickness and shows 

truncated, blocky features. Directly to the east of this, the unit is truncated and an over 

20 m deep depression is formed down to the bedrock/moraine basement layer. Further 

to the east are apparent refraction parabolas. 

7.2 Profile 1502027 
 

 

Figure 40. TOPAS Profile 1502027 

Profile 1502027 (Figure 40) extends over 7 km across the inner fjord basin from the 

north-northwest to the south-southeast and crosses the sampling location of sediment 

core P1502-016 (Figure 38). Unit A extends across the whole profile and has parallel 

reflections with low amplitude (Lyså, Seirup et al. 2004) and a few faint discontinuous 

reflections of low acoustic quality at its center. The upper boundary is sharp and defined. 

Unit B extends across the whole profile and is ~15 m thick for the entire length. The unit 

shows parallel medium to high amplitude reflectors with a more transparent center layer. 

All the units hold approximately the same thickness across the profile with all layers 

parallel. At each edge, the units begin to angle slightly upward, giving the profile a very 

subtle U-shape. 
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7.3 Interpretation 
Unit A appears to be submarine ice-contact fan deposits as described in (Lyså, Seirup et 

al. 2004). The thin, low-resolution layer seen in profile 1502027 could possibly be from 

an influx of coarser sediment. The acoustic lamination pattern apparent in Unit B 

indicates that it was likely deposited in an alternating depositional environment often 

seen in basin fill (Lyså, Seirup et al. 2004) The layers alternate between clay/silt from 

hemipelagic sedimentation and coarser sand layers most likely from turbidity currents 

(Lyså, Seirup et al. 2004). The more acoustically transparent layer in the unit seen in 

profile 1502027 could possibly be from higher density turbidity currents (Lyså, Seirup et 

al. 2004).  

The depression feature seen in profile 1502006 (Figure 39 inset) is most likely the main 

channel with possible truncated features on its western bank. The thickening of unit B 

along the western side of the channel could indicate a partial levee (Meiburg and Kneller 

2010). The truncated features of unit B along the western bank could indicate that this 

side of the channel is experiencing erosion.  
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8 Discussion 
The main goal of this study is to distinguish and identify the natural and anthropogenic 

deposits within Ranfjorden and to gain a better understanding of the spreading and 

impact of the submarine tailings placement on the fjord’s seafloor. Combining swath 

bathymetry, TOPAS seismic profiles and the lithological analysis of the fjord sediments, 

the following chapter will describe the depositional environment within the fjord and how 

it is affected by the submarine tailings disposal. 

8.1 Depositional Environment 
The majority of the data collected and described in sections 5, 6 and 7 covers the most 

recent history of the depositional environment of the fjord. This is mainly due to the short 

lengths of the sediment cores combined with the high rate of sedimentation in the fjord 

(Syvitski, Burrell et al. 1987, Helland, Rygg et al. 1994). The TOPAS seismic profiles in 

section 7 provide a deeper look into the history of the fjord but will only be used to help 

describe the youngest, uppermost unit of the fjord’s sediments. The portions of the 

sediment cores that contain mine tailings are estimated to be no older than 100 years 

since no considerable anthropologic influences existed in the fjord before that time (Berg 

1996, Lyså, Seirup et al. 2004). The longest core, P1502-013 (Figure 24) is 39 cm long 

and mine tailings dominate its entire length. Cores P1502-004 (Figure 27) and P1502-

015 (Figure 25) show a transitional boundary from more natural sediments to mine 

tailings but are no longer than 35 cm and with no more than half being natural 

sediments. Core P1502-001 (Figure 22) was collected in a more distant portion of the 

fjord very close to shore as a reference core for natural sediments and is 36 cm long. Its 

uppermost 2 cm potentially contain some mine tailings. Even though sedimentation rates 

have been shown to be higher in the inner fjord (Helland, Rygg et al. 1994), high 

sedimentation rates throughout the fjord (Syvitski, Burrell et al. 1987, Lyså, Seirup et al. 

2004) indicate that core P1502-001 can potentially represent a similar though somewhat 

longer time-period compared to the other more mine tailings dominated cores. 

 Sediment Distribution 
All the sediment cores analyzed in the study show some evidence of mine tailings 

(Section 6) indicating spreading of the tailings throughout the inner fjord. The mine 

tailings are predominantly characterized by a reddish color, higher Fe/Sum values and 

have much higher magnetic susceptibility when compared to the more natural 

sediments. Fe/Sum values can also help distinguish mine tailings from more natural 

sediments by showing a high or low presence of fluctuations in values. Core P1502-001 

shows a largely level overall trend for Fe/Sum but its values continuously fluctuate 

sharply up through the core (Figure 22 and 41). This is indicative of a continuous uniform 

source such as the Ranaelva, seasonally fluctuating its sediment input into the fjord 

(Syvitski, Burrell et al. 1987, Helland, Rygg et al. 1994, Johnsen, Golmen et al. 2004, 

Golmen and Norli 2013). The cores more dominated by mine tailings show much 

smoother Fe/Sum trends, as seen in core P1502-009 unit A and C (Figure 26 and 41) 

and P1502-016 (Figure 23), due to the uniform source of sediment from the tailings. 

Cores P1502-004 (Figure 27), P1502-013 (Figure 24) and P1502-015 (Figure 25 and 41) 
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shows trends that are smoother than those seen in P1502-001 but still contain 

fluctuations, indicating possible mixing between natural and mine tailings sediments.  

 

Figure 41. Representative core comparison of the 3 different Fe/Sum characteristics in 
sediment cores 

Figure 42 shows each sediment core location, magnetic susceptibility and Fe/Sum 

values. Core P1502-001 clearly shows the low magnetic susceptibility of the natural 

sediments. Cores P1502-004 and P1502-015 located along the northern slopes of the 

fjord also show low magnetic susceptibility values towards the bottoms of their lengths 

coinciding with the lighter sediment color (Figures 27 and 25). Up core they both show a 

shift through color, magnetic susceptibility and Fe/Sum value changes towards more 

mining dominated sediments. Cores P1502-009 and P1502-013 (Figures 26 and 24), 

located more towards the inner fjord centerline, all have red coloration and higher 

magnetic susceptibility values throughout their lengths potentially indicating higher 

sedimentation from mine tailings occurred in these areas. Unit B in core P1502-009  

(Figure 26) shows a sharp drop in magnetic susceptibility and Fe/Sum values and is 

attributed to turbidity current transported sediments originating from a surge from 

Ranaelva. This current then mixes with more mine tailing dominated sediments up core 

as shown by the rise in magnetic susceptibility. Core P1502-009 is located close to the 

center channel in the fjord and only 2.4 km from the tailings discharge point. When it is 

compared to cores P1502-004, P1502-013 and P1502-015 that are located more to the 

north and on the opposite side of the channel, it becomes clear that it has much fewer 

fluctuations in its Fe/Sum values. This would indicate that more mixing with natural 

sediments is occurring on the northern side of the channel while areas closer to the 

southern side of the fjord are seeing a more dominant input of mine tailings.  
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Figure 42. Magnetic susceptibility and Fe/Sum values for each sediment core location. 
(The same scale is used for each data type to better show relative differences. Core 

lengths are not to scale.) 
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Core P1502-016 (Figure 23) is primarily a red color, has very little fluctuation in Fe/Sum 

values, the highest magnetic susceptibility of all the cores and is almost 17 km from the 

tailings discharge points. This indicates that the mine tailings are being transported long 

distances and becoming somewhat concentrated in the process. 

The mine tailings themselves are reported to vary in size from below 10 µm to above 800 

µm (Johnsen, Golmen et al. 2004, Skei 2014)) and how they are distributed within the 

cores and sediment grabs varies greatly depending on the sample’s location in the fjord 

(Figure 43). Reference sediment core P1502-001 (Figure 22) shows natural sediments 

outside of the deeper, center portions of the fjord have a mean grainsize below ~20 µm. 

As described in Section 5, the fjord bathymetry shows a distinctive main channel running 

down the center length of the inner fjord with smaller, potentially abandoned parallel 

channels to its north. The southern slope of the inner portion of the fjord also shows 

deep gullies cutting into the slopes and merging with the deeper larger channel. As seen 

in Figure 43, all the sediment cores (P1502-013, 015, 009 and 004) and sediment grabs 

(Grabs P1502026 and P1502027) from the inner fjord collected outside of the center 

fjord channel consist predominantly of silt and finer sediments. Sediment cores P1502-

015 and P1502-004 are both located on the northern slope of the fjord and show a 

gradual fining upward as they become more dominated by mine tailings (Figure 43). 

Sediment core P1502-013 is located along the centerline of the fjord to the north of the 

main channel and it generally fines upward but shows several small spikes in grainsize 

indicating slightly higher energy depositional environments. Sediment core P1502009 is 

the closest core to the inner channel and the only sediment core on its southern side 

(Figure 43). It contains a sandy unit B (Figure 26), indicating an earlier higher energy 

depositional environment. The remaining sediment core P15020-016 and sediment 

grabs (P15020030, P1502029, P1502028, P1502025, P1502024, P1502023, P1502022 

and P1502021) all consist mainly of sand and are collected from either within the inner 

fjord channel or along the centerline of the fjord (Figure 43). The sand unit seen in core 

P1502-009 is very similar in color and grainsize as the sand layers seen in core P1502-

016 (Figure 23) indicating a similar source and transport mechanism.  
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Figure 43. Magnetic susceptibility and Mean Grainsize for each sediment core location. 
(The same scale is used for each data type to better show relative differences. Core 

lengths are not to scale.)   
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 Sedimentary Processes 
The sedimentary processes of Ranfjorden are greatly influenced by the influx of fresh 

river water and natural sediments from Ranaelva and the resulting estuarine circulation 

that occurs within the water column of the fjord (Syvitski, Burrell et al. 1987, Leikvin 

2009, Golmen and Norli 2013). The more recent discharge of mine tailings at the head of 

the fjord has begun to play a more dominating role in these processes since it began 

over 100 years ago (Tesaker 1978). The estuarine circulation that occurs in the inner 

fjord has been shown to play a large role in the transport and spreading of  all the these 

discharged sediments (Helland, Rygg et al. 1994, Leikvin 2009, Golmen and Norli 2013). 

The distinct layering within the water column causes a net outward current along the 

surface and below 47 m away from the mouth of the river. At around 26 m a current with 

a net flow back towards the river mouth has been measured. The area around the 

tailings discharge point has also recorded a net inward flowing current, greatly impacting 

how these sediments are dispersed. 

As recorded by Tesaker (1978), because of the submarine tailings placement discharge 

into the fjord, gravity flows and their effects have become the fjord’s dominating 

sedimentary processes. The sediment samples collected throughout the fjord potentially 

confirm this by all showing traces of tailings at varying levels of both concentration and 

grainsize. Swath bathymetry data shows that the area around the tailings discharge 

points at the head of the fjord have experienced extensive mass movement and gravity 

flows (Figure 17 and 20). These gravity flows are strengthened by the deeper outflowing 

current from Ranaelva (Tesaker 1978, Lyså, Seirup et al. 2004). All the samples 

collected down fjord from this point and near the channel show evidence of an influx of 

sandy sediments from a potential turbidity current (Figure 43) (Pratson, Imran et al. 

2000). The unit B in core P1502-009 (Figure 26) is potentially deposited by turbidity 

currents since it contains finer sands that fine slightly upward (Pratson, Imran et al. 

2000). The finer sediment layers above and below unit B indicates the core location only 

experiences periodic turbidity current events. The crescent shaped bedforms seen in the 

large and smaller channels support surge/pulse turbidity currents traveling down the 

channels of the fjord (Figure 17 and 18) (Meiburg and Kneller 2010, Clarke 2016). Core 

sample P1502-016 (Figure 23), with its closely spaced sandy units B and D, combined 

with the parallel reflector layers seen in the TOPAS data (Figure 40) (Lyså, Seirup et al. 

2004) from the same location (Figure 38), potentially show successive turbidity currents 

transporting mine tailings deep out into the fjord. These sandy units within cores P1502-

009 and P1502-016 show a large increase in magnetic susceptibility with little increase in 

Fe/Sum values (Figure 42 and 43). This is potentially due to magnetite in the mine 

tailings being coarser and becoming concentrated in the fjord channel by turbidity 

currents. Since magnetic susceptibility is very sensitive to magnetite, a minor amount 

would influence readings. The units directly above the sandy units (Figure 23, 26 and 43) 

fine upward, a characteristic of turbidites (Syvitski, Burrell et al. 1987, Pratson, Imran et 

al. 2000, Meiburg and Kneller 2010), and show a gradual upward decrease in magnetic 

susceptibility. This indicates a decrease in the energy of the depositional environment 

and as a result, a potential decrease in the amount of coarser magnetite being 



 

Page 73 of 81 

deposited. Cores P1502-013, P15602-015 and P1502-004 all show a fining upward and 

an upward increase in magnetic susceptibility and Fe/Sum values (Figure 42 and 43). 

This is potentially due to the hematite fraction of the mine tailings being finer and as a 

result is transported by sediment plumes to areas outside of the main channel. 

Unit B in core P1502-013 (Figure 24), taken from the center of the fjord (Figure 43), 

shows alternating grainsizes that could indicate sedimentation from overflow from the 

channel bringing coarser sediments (Meiburg and Kneller 2010). The TOPAS data from 

the center of the fjord near the location of core P1502-013 (Figures 38 and 39) shows a 

potential levee (Amundsen, Laberg et al. 2014) and laminated layers west of the channel 

indicating potential overflows having occurred.  The potential truncation of these 

laminated layers on the western side of the channel indicate possible erosion occurring 

in this area, as is also seen in the change in bathymetry Figure 19. The reason for the 

higher erosion and the levee being on the western side could be due to the influence of 

the Coriolis Effect forcing the outflowing turbidity currents to the right and into the 

western edge of the channel (Syvitski, Burrell et al. 1987).  

Cores P1502-015 (Figure 25) and P1502-004 (Figure 27) show an overall finer sediment 

content that gradually shifts up core from more natural to mine tailings dominated. They 

are located farther up the northern slopes of the fjord (Figure 43) and their massive 

layers indicate gradual sedimentation from fallout (Syvitski, Burrell et al. 1987). The 

suspension plumes at the discharge points caused by rising lower density tailings and 

debris flow movement would have raised a large percentage of the finer fraction into the 

water column (Helland, Rygg et al. 1994). Due to the estuarine currents and halocline in 

the fjord (Leikvin 2009, Golmen and Norli 2013), a portion of these finer sediments would 

have been carried up and back into the inner fjord before settling out, increasing both the 

area and rate at which the inner fjord is affect by tailings sedimentation. The relative 

shallow discharge depths of both the coarse (30 m depth) and especially the fine fraction 

(45 m depth) mine tailings potentially increased the spreading potential of the 

suspension plume. Their close proximity to the halocline would have allowed the rising 

sediments to be more easily captured and entrained in currents below the halocline 

(Golmen and Norli 2013). The fining upward within cores P1502-015 and P1502-004 

shows this shift from the coarser natural sediments to the finer mine tailings as the finer 

mine tailings fell out of suspension. A portion of this sediment plume can even be seen in 

the uppermost layer of core P1502-001 (Figure 22), possibly indicating resuspension of 

sediments from turbidity currents. Sediment grab P1502021 (Figure 37) shows potential 

traces of mine tailings having been carried up fjord by back flowing currents and 

deposited at the mouth of Ranaelva, but with no detailed analysis this cannot be 

confirmed. 
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8.2 Impact of Tailings on the seafloor of the fjord 
As has been shown in the previous sections, the majority of the inner Ranfjorden is 

impacted by the mine tailings through either erosion, sedimentation or a combination of 

both. Mine tailings appear even at the western edges of the study area, farthest from the 

tailings discharge points.  

 

Figure 44. Areas of potential mass movement/gravity flows. 

The areas that have seen the most impact from erosion and sedimentation are the 

innermost portions of the fjord and channel (Figure 19 and 20), particularly the areas 

immediately around the mine tailings discharge points and the slopes to their south 

(Figure 44). The mine tailings discharge and the resulting erosion shown in Figure 44 

has led to potentially greater erosion and sedimentation throughout the fjord in the form 

of turbidity currents and suspensions plumes (Tesaker 1978).  

The accumulation of mine tailings sediments along the steeper southern slopes has also 

apparently led to numerous mass movement events as seen in Figure 44. These events 

are possibly resulting from suspended fine fraction tailings being carried within the water 

column back into the fjord and deposited in this area in larger quantities than other parts 

of the fjord. When comparing the undrained shear strength (Su) properties of the 

sediment cores closest to the tailings discharge point, cores P1502-009 and P1502-004, 

they both show a decrease in Su and sensitivity (Su / Sr) up through the core as the mean 
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grainsize decreases (Figure 45). Core P1502-004 also shows a large drop in Su as the 

sediments transition from natural to mine tailings. Both of these cores show mine tailing 

sediments fining upward in their upper cores, typical of suspension fallout (Syvitski, 

Burrell et al. 1987). This could indicate that the steep slopes along the shoreline become 

more prone to sliding as the finer fraction tailings accumulate and the Su decreases 

(Syvitski, Burrell et al. 1987). This potentially explains the reason for the excessive 

erosion occurring in that area. The lower Su values of the mine tailings versus the more 

natural sediments could also show that more erosion is occurring along the fjord slopes 

now than in the past due to the fine fraction tailings accumulation. 

 

Figure 45. Shear Strength Comparison of Cores P1502-004 and P1502-009 
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9 Conclusion 
The goal of this study was to gain a better understanding of both the natural and 

anthropologic sediments within Ranfjorden in northern Norway and how their interaction 

and distribution has been influenced by, and in turn affected the dynamics of the fjord. 

Using a combination of 6 Niemestӧ cores, 10 sediment grabs, swath bathymetry and 

TOPAS seismic data, a deeper understanding of the hydrological and sedimentary 

processes of the fjord’s relationship with the submarine tailings placement was gained. 

The following conclusions can be drawn: 

 The mine tailings sediments are characterized by a darker red color, higher 

magnetic susceptibility and Fe/Sum readings with low fluctuations in Fe/Sum 

values. The more natural fjord sediments are characterized by gray colors, low 

magnetic susceptibility and Fe/Sum values with higher fluctuations in Fe/Sum 

values. The sediment samples collected from Ranfjorden indicate that mine 

tailings sediments have spread throughout the majority of the inner 18 km of the 

Ranfjorden study area, with all the sediment cores showing evidence of mine 

tailings. 

 

 The bathymetry from the inner Ranfjorden shows a low angle outer basin with a 

seafloor rising gradually at an angle of between 0-5° towards the head of the fjord 

to the northeast. The inner fjord basin narrows from ~1.8km at the outer basin 

down to ~500m in the inner fjord. Both sides of the fjord show steep slopes rising 

up at angles of up to 87° from the fjord bottom. The innermost 2 km of the fjord 

shows steep, sharp gullies cutting into the slopes below the mouth of the 

Ranaelva and the slopes near the mine tailings discharge. The centerline of the 

fjord shows a large, sinuous channel starting at the slopes below the mouth of the 

Ranaelva and running out into the deeper basin. Smaller secondary/abandoned 

channels are also seen to the north of the larger channel in the inner 5 km of the 

fjord. Horizontal step features are seen within all the channels and are interpreted 

to be cyclic step features from turbidity currents. Bathymetry data collected 

between 2012 and 2016 show large amounts of erosion and accretion having 

occurred in this channel and along the innermost 2 km of the fjord’s southern 

slopes and fjord head.  

 

 The TOPAS profiles show the uppermost unit of the fjord to consist of acoustically 

laminated parallel layers of medium to high reflectors. This indicates repeated 

changes in the depositional environment consistent with turbidity currents. The 

truncation of the upper unit’s lamination features and a thickening of the unit 

surrounding the main channel indicate a potential levee and overflow deposits. 

 

 The mine tailings are reported to range in grainsize from 800 µm to 10 µm 

(Johnsen, Golmen et al. 2004, Skei 2014). How they are dispersed within the fjord 

displays the sedimentary processes of turbidity currents and suspension plume 

fallouts that dominate the fjord’s depositional environment. Samples collected 

from the fjord channel all contained high amounts of sandy mine tailings 

transported by turbidity currents. Samples were recorded showing turbidity 

current transported sediments 17 km out into the fjord. Samples taken from the 

centerline of the fjord but outside the main channel show evidence of coarser 
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channel overflow sediments. These coarser layers are preceded and followed by 

thicker units of finer suspension fallout sediments indicating surge/pulse turbidity 

current events. Samples taken in shallower waters farther up the fjord slopes 

show continuous sedimentation of finer mine tailings sediments from suspension 

fallout. Evidence of the mixing of natural sediments was found in these areas. 

 

 The southern slopes and gullies within 2 km of the mouth of the Ranaelva and the 

mine tailings discharge points experience greater fine tailings sediments 

accumulation than other slopes in the fjord.  This accumulation is due to recently 

discharged and also re-suspended fine fraction tailings rising in the water column 

and becoming contained and transported by the net inflowing estuarine circulation 

current in the area. These steep fjord slopes then experience higher levels of 

erosion due to mass movements and gravity flows as a result from this 

accumulation of the potentially less stable finer fraction mine tailings. 
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