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Abstract

In this thesis we use mathematical models to study the mechanisms by which diseases
spread. Transmission dynamics is modelled by the class of SIR models, where the
abbreviation stands for susceptible (5), infected (I) and recovered (R). These mod-
els are also called compartmental models, and they serve as the basic mathematical
framework for understanding the complex dynamics of infectious diseases. Theory
developed for the SIR framework can be applied the real-world dynamics, for instance
to the spread of the dengue virus. We look at how parameters such as the as basic
reproduction number, Ry, drive epidemics by allowing transitions from a disease-free
equilibrium (DFE) when Ry < 1 to an endemic equilibrium (EE) when Ry > 1. A
case study was carried out to investigate dengue transmission dynamics in a single-
serotype model by using a vector-to-human compartmental model. Here the approach
is to explore the underlying dynamical structures, as well as looking at the projected

impact of possible interventions such as vaccines and vector-control measures.
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Chapter 1

Introduction

Infectious diseases burden communities and societies throughout the world. As the
incidence of an infectious disease starts to increase in any population, people start to
look for methods that are most effective in combating the outbreak, or at least control
the number of infections. Scientists have made tremendous progress in fight against
diseases. Yet, infectious diseases remain a major cause of mortality. In epidemiology,
one aims to investigate the progress of well-being and diseases in a specific population
in order to control related-health problems, and in this thesis we use mathematics
to describe complex disease dynamics using simplifications and hypotheses about the

relevant mechanisms.

1.1 Background

Mathematical models have become an important tools for breaking down and ana-
lyzing the spread of infectious diseases. They help our understanding and facilitate
predictions. Models are also used to test the plausibility of epidemiological explana-
tions. Another application is foreseeing the possible effects of changes system dynam-
ics, and to predict structural changes through early warning signals. Thereby making

it possible to control an emerging disease outbreak.

Mathematical epidemiology has a long history. The first epidermal model was for-

mulated by Daniel Bernoulli [1] in the 18th century. Bernoulli was trained as physician

11



CHAPTER 1. INTRODUCTION 12

and was a member of a famous family of mathematicians. Based on a theoretical ap-
proach to the effects of a disease, his first published model demonstrated increased
life expectancy for individuals vaccinated against smallpox. About one hundred years
later, the Russian physician EnKo [2, 3] used a binomial probabilistic model for de-
scribing the epidemic of measles in discrete time. Since then, several simple models
have been used to describe disease propagation on a population level. Hamer [1] hy-
pothesized that the rate of transmission A = I depends on the numbers of susceptible
and infected. This is referred to as the mass-action transmission rate. Sir Ronald Ross
[, 6] formulated a continuous-time mathematical model for the transmission dynamics
of malaria. Additionally, he also explained how the effectiveness of various interven-
tion strategies for malaria. Up until that point, most work had been of an empirical
nature, but that changed with the works of Kermack and Mckendrick [7], two students
of Ross in 1927. They used a system of ordinary differential equations (ODEs) to for-
mulate the threshold theorem, which states that the initial number (critical fraction)
of susceptibles must be exceeded in order for an epidemic outbreak to occur. In 1969,
important generalizations were made Severo [3, 9]. Shortly after, further generaliza-
tions were made by Anderson and May [10]. Instead of a direct product between the
numbers of susceptible and infectious individuals, he considered that the probability
of a new infection might be modeled as the product between the number of susceptible
individuals raised to some power 1 — b, and the number of infected to the power .
The parameters [ and b are called the 7infection power” and the ”safety-in-numbers
power”, respectively. In 1987, Liu [11] presented stability conditions similar to those
found by Severo, but now generalized to the models of Anderson and May. Over the
last two decades several new models have been proposed. Most of these models have

a deterministic character, are highly simplified, and are omitting many filter details.

1.2 Epidemic Models

Mathematical models of epidemics are created under the assumption that the observed
population can be divided into multiple subsets, called compartments. The simplest
compartmental model was described by Kermack and McKendrick [7] in 1927. In
its modern formulation, the Kermack-McKendrick Model (hereafter called the KM
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Model) [12] is based on relatively simple assumptions on the rates of flow between
the different compartments. It models the spread of a communicable disease using
a latency period and a general mode of transmission. Non-linear transmission is de-
scribed by the SIR and SEIR models. These models include the effect of immunity
against re-infection. This implies that there is a flow of individuals from the suscepti-
ble class ”S” to the exposed ” E”, to the infected ”I”. After an infection individuals
enter the class ” R”, indicating that they are removed from the population of interest,
either through death or through immunity. There are many hypotheses underlying
this model. For instance, the population is assumed to be large and closed. Also,
natural births and deaths during the outbreaks are disregarded. Other simplifications
are the lack of a latency period (individuals become infectious as soon as they become

infected), lifetime immunity after recovery, and homogeneous mixing [13].

1.3 Stochastic versus Deterministic Models

Both stochastic and deterministic models are applicable and useful in the study infec-

tious diseases, and for identifying strategies for their prevention at the population scale.

Stochastic models have been successfully used in the framework of very complicated
systems in many fields of science [11]. They rely on chance variation in risk of exposure,
and this gives better insights into an individual-level modelling. Their individual roles
potentially incorporate a large amount of heterogeneity and complexity, which give
much more insightful monitoring. That being the case, they can be difficult set up,
the results could potentially be meaningless.

By contrast, deterministic models are natural first models when faced with a new
problem [15]. In epidemiology, deterministic models are generally better in explaining
what happens with respect to spatial dynamics when dealing large populations, since
the larger the population, the better the is assumptions of homogeneity (i.e each person
in a given class is equivalent to the others). The disadvantage is that their imposed
structure of generality removes the possibility of embedding more realistic infection

profiles.
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Most of the models that have been used to describe characteristic behaviour pat-
terns in infectious diseases are deterministic. They are hence less dependent on high-
quality data, easier to set up, and compatible computer software are widely available
and user friendly. The most fundamental model is the SIR model. And most other
deterministic models, including (SIRS and SEIR, etc) are regarded as extensions of
the SIR model. The major challenges are to understand the limitations of these mod-
els, and to understand the relationship between the deterministic models and their

corresponding stochastic approximations.



Chapter 2

Mathematical modelling of

outbreaks

2.1 Models and Notation

To understand the mechanism of disease transmission a well established technique
is need in order to do inference for epidermic models. The most basic assumptions
is to divide the population into three sub-groups. These sub-groups being defined by
health status, exposure to the pathogen, demographic or epidemiological features. The
second aim is predicting the past and future temporal course.

This simplest model consists of three different compartments, and the ratio of
Susceptible (S), Infected (I) and Recovered or Resistant (R) in a large population. In
deterministic models, all these variables are functions in discrete time t =0, 1, 2, ...or

differentiable functions in continuous time ¢ >. The key variable are:

e Susceptibles (ratio in population is denoted S): Individuals in the population
who have not been infected. They are healthy but at risk of becoming infected.

Once they have contracted the infection, they move into the infected sub-group.

e Infected (ratio in population is denoted I): Infected individuals who are conta-

gious or are carriers. They can infect susceptible individuals.

15



CHAPTER 2. MATHEMATICAL MODELLING OF OUTBREAKS 16

e Recovered or Removed (ratio in population is denoted R): Individuals who have
recovered or died from the disease. Unfortunately, the SIR model does not

describe a difference between immunity, non-immunity, or even innate immunity.

2.2 Basic Assumptions
The SIR models all share several core assumptions [10, 17]:

1. The total size of host population remains constant (S + [ + R = N).
2. The population must mix homogeneously.

3. It will not allow any host demographic turnover (either birth or death) in the
period of the epidemic, and all infections are assumed to end with recovery or

removal from compartments.

4. e A person can leave or discharge from the susceptible compartment only by

becoming infected.

e A person can leave or discharge from the infected compartment only by

recovering from the disease.

5. The probability of being infected does not depend on factors such as age, gender

or social status.
6. Infected are not subject to quarantine procedures.

7. During epidemics, susceptible isolate themselves from infected, or take other

protective measures.
8. The recovery rate is constant in time.

9. The dynamical equations are of first order:

s . .

T rate of new infections

dl . .

pri rate of new infections — rate of recovery
dR

— = rate of recovery

dt
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2.3 The SIR model

The model is based on a few simple assumptions [17]:

New infections occur through contact between infected and susceptible hosts, and
the rate of change is proportional to the number of interactions. This is the prod-
uct S(t), /(t) with a constant a-parameter. The number of susceptibles decrease as

individuals come into contact with the infected:

d S(H)1(t)

as(t) = —b—

(2.1)

When susceptibles become infected, members leave the susceptible compartment
and join the infected compartment with rate aS(¢)I(¢). Thus, the total population of
infected hosts increase. Vice versa, the hosts leave the infected compartment and join
the recovered group. Since [ is assumed constant, this implies that the rate of change

is dependent with time as the size of the infected group varies:

d S()I(t)

E](t) = p N

— (1) (2.2)

Since infected carriers can only leave their compartment by joining the new R-
compartment, it only changes through addition of those recovered from infection. The

recovery rate is given by the constant parameter [:

The diagram below illustrates the dynamics of the classic SIR model:

Susceptible aSl Infected pl Recovery/Remove
(s) {1 (R}

Figure 2.1: A flow diagram demonstrating the relationships between Susceptible (.5),
infected (1) and recovered (R)
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2.4 Modified Differential Equations

As mentioned above, a modified version of the system of SIR differential equations will
be more appropriate and realistic. A more general system is the SEIR model. As is
evident from its name, the SEIR model contains one more compartment compared to
the SIR model. The letter E represents the set of exposed individuals in the exposed
incubation phase, during which one is infected, but not yet infectious.

In the next several chapters of this thesis, we will discuss a particular vector-borne
infectious disease called dengue fever. With the SEIR model, we can narrow our focus
to model dengue fever by developing a model for the coupled dynamics of disease
prevalence in humans and in mosquitoes (vectors), and investigate certain measures

for controlling dengue fever.

Susceptible aSl Exposed vE Infected Bl

(s) % (E) % ) ; RECOVEr(\,-'FJ;;Remove

Figure 2.2: Flow diagram of the SEIR model illustrates the transitions among (),
Exposed (E), Infective (/) and Recovered (R).

In many situations, individuals can-not infect susceptibles immediately after they
get infected. It is only after sufficient colonization by the pathogen that transmission
can occur, i.e. there is a threshold on the pathogen abundance, which gives rise to a

new compartment F. The equations become [I5]:

susceptible infactious
exposed recovered
—_—

pathogen

time since

time of infection intection

Figure 2.3: The time-line of the infections showing the four analytical dynamics of the
pathogen and the infection classes: Susceptible (S), Exposed (FE), Infected (I) and
Recovered (R).
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@ s1) =~ 0

@ oy =p2 00 )
%](t) — RE(t) — ~I(t)
S0 =1(0)

2.5 The Basic Reproductive Number, R

An important parameter in disease modelling is the Basic Reproductive Ratio, denoted
Ry. This parameter tells us if a population is at risk of an epidemic. The reproductive
rate is the number of secondary infections produced by the primary infection into the
total susceptible population [19], and it can be used to predict who will not become
infected as t — oo0. Ry as a dimensionless number that determines the threshold
condition for the disease-free equilibrium DFE. It can be expressed as a product of

three quantities [20]:

Probability of Number of
Duration of
Ry o< | transmission | - contacts
infection
per contact per unit time

infection contact time
Ryo<c { ——— ) - . | - .
contact time infection

More specifically:
Ry = pcd

where
e p is the transmission probability
e c is the contact rate

e d is the duration of the infectious periods
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If Ry > 1 then the disease invades. It increases to reach its maximum and then
decreases to zero. The DFE is unstable. If Ry < 1 the disease dies out. It decreases

monotonically to zero. So the DFE is stable [21].

Ry =1 R, <1
N 0 N 0
— Susceptible
— Infective
— Recovered
0 [,

t t

Figure 2.4: The time evolution of all classes showing the epidemic curves in the SIR
model.

2.5.1 Epidemic SIR model

To determine if there is an epidemic, we look at the stability of the disease free equi-
librium. We only need to consider the variable I(¢). The condition for an epidemic to

occur is dI /dt > 0. We have:

ST
N B
BN I >

0
3S

—— > 1
v N

At the beginning of an epidemic, almost everyone is susceptible, i.e. implies S =~ 1.

For S = 1 we obtain the condition

E—Ry > 1 (2.4)

The phase plane (SI-plane)

The variable R(t) can be disregarded when studying the dynamics of the SIR model.
We can derive a useful analytic result by dividing the equations for I by S, and making

use of the Chain Rule [22]:
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dI _ (%)

s (%)
_ BSI/N —~y1
- —BSI/N

vI

=l BSI/N
_ N
=5 -

Multiplying both sides by dS gives

d]:(ﬂ . 1) s

33
/Otmz:/ot(% - 1) a5
1], = {% In(S) — SI
) — I = %ln(& - SL - [% In(S) — SL
It — [0:%1115(75) — S - %mso + S,

Hence,

and

i) - I - %m (%)) — S(t)+ So

B YN . [ S(1)
[(t)—[o + S() — S(t) + Fln (S—0>

—l + S = S() + 5o (%{?)

21

(2.5)

(2.6)

We can infer that /8 is the inverse of Ry. We denote p = /8. This is the

relative remowval rate [19]. Note that v has units of 1/time and gives the removal

rate from the infected group.
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2.6 The Threshold Phenomenon

To understand what factors will determine whether or not an epidemic will occur, or
if the infection will fail to invade, we consider the initial stage after the infection is
introduced into a population consisting of S(0) susceptibles. We start by rewriting
the equation for dI/dt on the form

dl
dt

It is easily to show that the disease always dies out if the initial ratio S(0) x 1(0) is
_ - dI
less than p = 7/, since then % < 0.
We can determine the maximum point on the curve in Sl-plane as follows. With

the normalization N = 1 we have

dl  pN ]
ds S
p
== -1 2.7
- 27)
and the condition for a critical point becomes:
dl
— =0
ds
which implies that
P
0== —1
S
T
p=>5 (2.8)
The second derivative gives
d*I
__Pr 0

as? — s?



CHAPTER 2. MATHEMATICAL MODELLING OF OUTBREAKS 23

Equating the value of the of the conserved quantity at ¢t = 0 and at asymptotically (t

= 00), we get [17]

Inaz = I(00)
B N S(00)
_Io—f-So S(OO) + Eoln( SO )
1 S(00)
=1 — — NIn | ——=
0 + So S(OO) + RO Il( SO )
No ~—
p
Soo
—
S(o0)
=Ny — S(o0) + pNln
S—— So
Soo
Soo
=Ny — S + pN1n <—> (2.9)
So

where the total population is actually constant, N(t) = S(t) + I(t) + R(t) and equal
to N() = S() + ]().

N

S+I=N

(So, lo)

. b s N

Figure 2.5: The SI phase plane trajectory system for SIR model; curves are (5),
Infective (I).

The result can be expressed as [17]

(2.10)
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As we can see from the parametric plots of I(t) verses S(t) in figure (2.5) on page
23, that the trajectories start with S > p and I(t) increases from [y, for any initial
values. However, if Sy < p then I decreases from [y and no epidemic occurs. Recall
that equation (2.7) shows that the solution —p/S—1 is positive for S < p, and negative
for S > p.

2.6.1 The limiting number of susceptible individuals

Let Sy be the number of individuals not infected throughout the epidemic as t — oo.
To evaluate the number of susceptibles at any time ¢, let us first divide equation (2.1)

by (equation 2.3):

S(t) (2.11)

We integrate equation (2.11) [23, 24]:
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dS 1
ﬁ:‘gs(t)
1 1
g ds=—_di
‘1 tq
<dS=— [ —dR
[lu- [
1
[IHS}EZ_E[R]B
1
lnS(R)—lnSO:_;(R(t)_R())
1 1
mS(R)—InS, = ~R. — ~R(t
nS(R) —In S p 0 ; )
mS(R)=InSy + ~Ro — ~R(#)
P p
S[R(t)] = o[nso + fazhO]
S(t) = elm] o ["510]
:Soe[RO_TR(t)]
2506_[@}

R(t) R 0
t
= Soe_[ b P ]
_R@®) _
=Spe” »  or Sye B

25

(2.12)

The number of susceptible individuals decreases as a function of the number of recov-

ered individuals. The fact that the rate R/p also increases, means that any epidemic

ends with there always being a portion of the population which will not be infected

throughout the epidemic outbreak.

If we substitute Ry into equation (2.12) [L7]:

It follows that

(2.13)

(2.14)
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":\‘r

Figure 2.6: The RS phase plane trajectory system for the SIR model.

Alternatively, we can use this relation to compute the value of R, for the final propor-
tion of recovered hosts. We can rewrite the asymptotic behaviour of equation (2.14)

as follows [23]:

Roo
SOO = 5067T
SoeROORO =1 — Roo
1 — Ry — Speftefio =0 (2.15)

This transcendental equations relates the overall size of the epidemic to the basic re-
productive number. Figure (2.7) shows that no epidemic occurs if Ry < 1. However,
there is a positive solution if Ry > 1. This represents an outbreak of the infection.

This provided the size population is well-mixed.

2.7 Results and Discussion

We examine the dynamics for various choices of basic reproductive number: Ry =
0.82,1.005, and 1.4. We performed all simulations and made graphics with the software
R.



CHAPTER 2. MATHEMATICAL MODELLING OF OUTBREAKS 27

1.0F

0.8

[=]
o
T

Mo

Epidemic

Fraction Infection
[=]
I

0.2

0.0 |, . . . .
0 1 2 3 4 5
Basic Reproductive Ratio. Ro

Figure 2.7: The total fraction of the population as a function of disease Rj.
From equation (2.14) we simplify further [23]:

N—-S~

Soo = Spe~
)

= Soef(%fs%)

g (roomus.)

>z

= Soe_(

_ Gy Ro(1-5) (2.16)
and so Sy is the positive root of the transcendental equation:

Spe 0 (1-2) = z (2.17)

The basic reproductive ratio, from equation (2.8), can also be defined as

= — 2.1
5= (218)

It tells us when the epidemic will peak [I7]. Changes to the basic reproductive

number, Ry impact the transmission rate and the duration of epidemics.
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2.8 Model fit and parameter sensitivity

28

In order to study the effect of key parameters on Ry, we performed a sensitivity analysis

on Ry’s dependency to S and «. The fraction of susceptibles left in the population at

the end pandemic, S is gauged by the numerical model simulation.

2.8.1 Basic reproductive number, Ry < 1

SIR model with R0=0.82
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Figure 2.8: Trajectories of the SIR model. Parameters are Ry = 0.82 and v = 0.2.

For Ry =~ 0.82 < 1, we see in figure (2.8) that we have a stable disease-free equi-

librium in the infected compartment. The initial values are Sy = 9.50 and I, = 500,

where the infected hosts are 5% of the population. The infection will in this case die

out in the long run without being able to replace themselves by new infections.
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2.8.2 Basic reproductive number, Ry~ 1

SIR model with R0=1.009
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Figure 2.9: Trajectories of SIR model. Parameter values are Ry = 1.009 and v =
0.2093.

For the parameter values v = 0.2 Ry = 1.009 ~ 1 we see in figure (2.9) that
deterministic system (2.1-2.3) is near a critical value of the parameter Ry, close to
where the system undergoes a bifurcation from a stable disease-free equilibrium with
no endemic equilibrium to an unstable disease-free equilibrium with a stable endemic
equilibrium. As before, the initial values are Sy = 9.50 and I, = 500, and the where
the infected hosts are 5% of the population.
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2.8.3 Basic reproductive number, Ry > 1

SIR model with R0=1.48
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Figure 2.10: Trajectories of SIR model. Parameters are Ry = 1.48 and v = 0.3.

For § = 1.48 and Ry &~ 1.48 > 1 we have a stable endemic equilibrium. See figure
(2.10). The initial values are Sy = 0.999 and I, = 0.001, and the infected hosts are
0.1% of the population. We can see that incidence reaches a maximum and then

decreases. In fact, I(¢) increases as long as S > /0.



Chapter 3

Modified of SIR - Vital with

Demographic

In the last chapter we presented the basic framework for the SIR model given the
assumptions of a closed population without demographics (no births, deaths or migra-
tions). This scenario is rather naive and unrealistic. Clearly demographic processes
will be important. The easiest, and most common, way of introducing the influx of

susceptibles is through birth, and to assume that there is a natural host life-span, 1/p.

birth

UN

S

infection

_—

S

Figure 3.1: Flowchart showing transition rates between subsets in the SIR model with

demographics.

death

B SI

Our equations become [25]:

recovery

= R

ol

31

death

yi

1R

death
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S BSI

& PP L UN=— S
7 N + pu( )
dI  BSI
N |
a@w N PTH
dR

S T —uR

o =

This is a model where total fraction population size is bounded, S+ 1+ R = N. We
could then follow the approach proposed by [20] in which the total faction population
size conserved N = 1. This requires that birth and death rates are equal (v = p).

This gives the following model:

ds
©_ B — BSI — w8 (3.1)
birth  jnfection  death

dl

—= BSI — ~yI — vl (3.2)
dt infection recovery death

dR

- 2L~ (3.3)

recovery death

The parameters have the following meaning:

e B - birth rate.

e [3 - per capita infection rate

v - death rate.

e 7y - recovery rate.

N - total population size.

and are subject to initial conditions S(0) = Sy > 0,1(0) = Iy > 0 and R(0) = Ry > 0.

We wish to explore whether the demographic dynamics may allow a disease to die
out or persist in a population in the long term. For this specific reason, we look at
the stability of system at the disease free equilibrium (DFE) point. The condition is
that the point (S, 1, R) = (N,0,0) satisfies the following equations:
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as  _
a 0
al _
5 =0
drR  __

L dt =0

33

(3.4)

It is also of interest of look at the existence and stability of an Endemic Equilibrium

(EE), for which I > 0.

3.0.1 The Disease free equilibrium

With some algebraic manipulations, the Jacobian of system is given by [23]:

BI BS
V-5 N 0
_ S
J = % %—y—v 0
0 v 2

If we substitute (1,0,0) into the DFE we obtain:

J=10 B—-y—-v 0

We can find the eigenvalues of this matrix:

)\1:—1/
/\QZ—V
A3=B—-v—1

The stability analysis gives:

1. A1 <0 an Ay < 0 are always negative.

2. A3 is determined by

Az = (v +v)(Ro— 1)

where Ry =

(3.10)
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e if Ry < 1, then DFE is stable, so this is an epidemic deceases and implies

lim, ,o [(t) =0

e if Ry > 1, then DFE is unstable, i.e. an epidemic occurs.

3.0.2 The endemic equilibrium

For the endemic equilibrium we have [27]:

lim S(t) = R (3.11)
N

IRZICEEY

L

vl

-5(5-1)

- %(H0 —1) (3.12)
- Lt _vp
lim R(t) =1 7 B(Ro 1) (3.13)

Proof:

We are only going to consider small deviation the equilibrium point. We write the

system as a vector differential equation as follows:

d [S v—BSI—vS
dt \ 1 BSI —~I —vI
By the Taylor’s theorem:
S So
£(S, I) = £(Sy, 1y) + J(So, Ip) — +...
1 Iy

At the equilibrium point, £(Sy, Iy) = 0, therefore the dynamics close to (Sp, Iy) are to
first order determined by the derivative of vector function f(S,I), i.e by the Jacobian

matriz, J(So, Ip).
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The Jacobian matrix of £(Sy, Iy) is:

ofr N

£(S,1) = ;f ;ffZ

55 oI
—BI —v BS
61 BS —~v—v

1. The equilibrium at (S,7) = (1,0)

We substitute (S5, I)=(1,0) for disease-free equilibrium point [28, 29]:

o=V F
0 B—v—v
Hence, we have the eigenvalues
A= —V
Ae=p—y—v
where:
(a) Ay = —v < 0 is always negatives.
(b) Ay =0 —~ — v only if
o
B—v—v<0
i
o
B—~v—v>0
b > 1

vy+v

35

(3.14)

(3.15)

(3.16)
(3.17)

(3.18)

(3.19)
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This indicates the role of the basic reproductive number:

o}
y+v

Ry =

P o _ 7_—&-V V(ﬁ—’Y—V)
2. The equilibrium at (5,7) = < 5 B )

Again, to check the stability of the endemic equilibrium at [28, 29)]

J<7+V V(ﬂ—’V—V)> [ E

5 Bl +v) o) g
SRR%

After few algebraic steps, we have the eigenvalues:

S ar—

v +v v +v)

=—vR, i\\/lﬂR(% —4dv(f—vy— yz (3.20)
a b
=—a+b (3.21)
We observe that
(a)

B
= 1 3.22
Ry PO > ( )

if a>0,b<0and v*R3 > 4v(S — v — v), then the fixed point is stable.

(b)
B
Fo=—— <1 (3.23)

ifa>0,b>0and V2R < 4v(B8 — v — v) implies that the fixed point is

unstable.

To summerize, the system has the following equilibria of steady states:

Ey = (S,1,R) = (1,0,0) (3.24)
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By — (S.1.R) = (”HV v(B—y-v) v(ﬁ—v—ﬂ)

g7 Bly+v) T Bly+vw)

1 v 1 v
= (E,B(RO_DJ—E—B(RD—U) (3.25)

which has the threshold properties that are independent of initial values in the set
(5(0),1(0), R(0)) € {(S,I,R) € [0,N]?: S>0,I>0,R>0,S+]+R=N}

where that Ry = 7% One can show that

e

1. DFE:
Ry<1= tliinoo (5(0),1(0), R(0)) = (N,0,0)
2. EE:
Ro> L1(0) > 0= lim (0,100 A0) = (7 5(R0= 1.1 7 = 5(Ra=1)
3
| 4 N
vN

Endemic Equilibrium

y+v 1 \

Disease Free Equilibrium

§
!
]
|
i
|
i

N N )
Ry

Figure 3.2: Steady state for an endemic equilibrium



CHAPTER 3. MODIFIED OF SIR - VITAL WITH DEMOGRAPHIC 38

With heuristic arguments, one may show that Ry (see Figure 3.2) corresponds as
the average number of infectious caused by a single infectious host subject in an wholly
susceptible population. The above relationship means that if this number is Ry < 1,
then the disease get extinct. If Ry > 1, then the disease will remain permanently

endemic in the population.

3.1 The Epidemic Curve

We can also calculate the average rate of recovery from equation (2.3). By definition

S+ 1+ R =1, so we can re-arrange the equation (2.3) as

d

SR =(1- _S_~R)

v(1 = Spe RO — R(1)) (3.26)

where S is substituted from equation (2.12). This equation does not have any explicit

—RoR(t)

solution for R in terms of £. We can use Taylor expansion of e according to the

formula:

ef=1—a— %xQ + O(2?) (3.27)

and omit the last term as we assume that RyR is small. This gives

2
e TR — 1 _ R R(t) + RO}; ®) (3.28)
Then substituting into equation (3.26) gives [30],
B _ (1= Ry — 8|1 - RoRr) + W)
dt 0 0 2
2 P2 t
2
_ 7(1 S()— So[1 - RO}R( ) — @R%))
2
:7(1 S(t) + So RO— 1}3() @R%)) (3.29)
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We obtain the solution as:

1

R(t) = e

(SORO — 1+ atanh [%oryt - ¢]) (3.30)

Letting

2
and

¢ = tanh™" [é (SORO - 1)] (3.32)

To derive the epidemic curve as a function of time, we would differentiate equation

(3.30) with respect to time [30]:

d 2
reported cases ~ d—f = 22*?}%3 sech? (%t — ¢) (3.33)

This is a classical epidemic curve of the disease that shown in Figure (3.3). Epidemi-
ologist are highly interested in this curve because it is used to compare the forecasts
of models with the data. For instance, the curve indicates that there is a greater force

of infection at early stages.

dR
dt

I > t

20/ay

Figure 3.3: Epidemic curve
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In the limit t — oo, everyone in the population becomes infected. Hence we can

approximate

Ry ~ 725, (RoSo — 1+ ) (3.34)
or
R ~”—2<@—1+a) (3.35)
oo So \ p '

[30]:

OONSO P
2 2
_,
=p So—l—Soa
1
= P (sore—1) 4 280R2]
So So
2 2 2 i
p p” ( So p 25010)2
—p - 4 (20 ) 4+ £
P So SO(P ) So( p?
2 2 3
P P 2p\°
=p - -+ (F) 1
P So e So+ (So) \2-/
~0

_ zp(l _ S%) (3.36)
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3.1.1

SIR model with R0=0.98, R0=1.48 and R0=1.7
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Figure 3.4: SIR model with vital dynamics. Population N = 1000 and I, = 10, birth

and death rate are constants (y = v = 0.01, Ry = 0.98,1.48 and Ry = 1.70)

As expected, enabling vital dynamics can sustain an epidemic or allow new introduc-

tions to spread because new births provide more susceptible individuals. We can see

(Figure 3.4, B2 and C2) that there are strong peaks in the epidemic as the basic repro-

ductive rate is increased (if Ry > 1). The peaks are followed by decaying oscillations to

the final endemic stage. Any small perturbation will give rise to a damped oscillation,

with frequency and damping rate determined by the set of parameters. On the other

hand, the plots in A1l to A4, show that as Ry < 1 decreases, the infection dies out
rapidly (Ry = 0.98,7 =0.33,x = v = 0.01).
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3.2 Seasonal Forcing

Many infectious diseases fluctuate over time, and they frequently show seasonal
patterns in their incidence. The cause of seasonal fluctuations may be periodic contact
rates, periodic patterns in temperature climate, and periodic patterns in vaccination
programs. Hence, the transmission parameter § = [((t) can be though of as periodi-
cally varying. With time-varying parameters we generally have to rely on computer
simulations. Most often one uses sinusoidal paramters in the ODE system (2.1-2.3),

with a period of 1 year.

time (years)

Figure 3.5: Seasonal variations in transmission: discrete level representation, modeling

a climate effect between summer and winter. And a yearly vacation effect. [31]

As so, it can be modelled as having a seasonal behaviour of increased infection due
the fact that the transmission rate has annual periodicity as shown in figure (3.5).

One way of modeling seasonality could be [32]

0 1+ 1o (=) s

where [y is the baseline transmission rate, 3 is the relative seasonal forcing (is the
amplitude of the seasonal variation strength) and ¢ corresponds for the time (measured

in days) of the year when transmission rate is maximal.
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3.2.1

43

Seasonal transmission and seasonality in birth

Seasonal SIR model with R0=0.98, R0=1.20 and R0=1.70
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Figure 3.6: We model the effect of birth seasonality with a simple cosine function

so that mean duration of the birth and death rates, as well as infectious period are

constant, but Ry varies; (B =~ =v =0.01,5; = 0.3, Ry = 0.98,1.2 and 1.70)

We can also extend our analysis from the previous SIR model with an embedded

seasonal forcing from equation (3.37). Here we only focus on the effect of changes

in the transmission amplitude (/3y), which will have the greatest impact and induce

resonance and lead to complex dynamics. We use a total population of N = 1000, and

an initial value of Iy = 10. The transmission rate 5, can be obtained from equation

(2.4) on page 20. Equation (3.37) gives

fgo 0.8 }%0’Y

(3.38)

A4,

B4.

C4.
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Seasonality in either transmission rate, birth rate or death rate can yield complex
dynamics in the SIR model. See Figure (3.6). Figures (A1-A4) show dynamics for
Ry = 0.98. Compare these plots to (B1-B4), where we observe that increasing ba-
sic reproductive ratio increases the contact rate. The trend (blue) provides a strong

seasonal cycle in Ry by affecting host recovery or per-contact transmission probability.

Seasonal SIR model with B=0.011, R0=0.98, R0=1.20 and R0=1.70
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Figure 3.7: We model the effect of birth seasonality with a simple cosine function.

(y=v=0.01,B =0.011, 8, = 0.3, Ry = 0.98,1.2 and Ry = 1.70)

As demonstrated in Figure (3.7, B2), we can have multi-daily oscillations when
transmission rates vary seasonally. The intuition behind this is that the transmission
rate consists of both the contact rate and transmission probability. Increasing the
birth rate is likely to increase the contact rate, which also induce a resonance in am-

plitude.

At a higher basic reproductive ratio, Ry = 1.70, with birth rate constant, we obtain
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results similar to those shown in previous plots C2 and C4. As we see that increas-
ing birth amplitude exacerbates the tendency for chaotic dynamics and also shifts the
timing of the epidemic peaks more varied and shorter cyclic duration. The general
pattern remains similar, however the number of infected host can periodically hike
above 1 for more long term occur, even for this rather smaller system, N. Eventually
this causes an irregular increase chaotically therefore resulting an undamped oscilla-
tions, for instance, the amplitude corresponds the number of infected people increase
with time (f — oo) and since it is Ry > 1. To be specified, the response C2 showed

increasing frequency and increasing undamped ratio as the amplitude increased.
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Chapter 4

Extension to stochastic SIR

The objective in this chapter is to explore the dynamical long term behaviour of a
stochastic SIR model. We establish the a stochastic SIR model, which is conceptually
more complex than the deterministic one. However it is not much more difficult to
simulate numerically, but a large number of realizations is needed to determine the

expected behaviour.

IO Ly =630y L py—iey @)

d
ES(t) =-f

4.1 From Deterministic to Stochastic Models

There are few different stochastic modelling frameworks. For instance, the discrete
time Markov Chain (DTMC) model, the continuous time Markov Chain (CTMC)
model, and the class of stochastic differential equation (SDE) models. These stochas-
tic processes differ in their underlying assumptions in terms of the time and the state
variables. In a DTMC model, the time and state variables are discrete. In a CTMC
model, time is continuous whereas the state variable is discrete. Lastly, the SDE mod-
els are based on diffusion process where both the time at time scales, t € [0, 00) and

state variables; S(t),I(t), R(t) € (0,1,2,..., N), are continuous.

47
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4.2 Markov Chain methods

In this section, we review basic Markov Chain Monte Carlo (MCMC) methods [33].

4.2.1 Basic notions

One hundred years ago, the Russian mathematician, named Andreyevich Markov de-
veloped the theory of Markov chains [34]. Random samples are drawn sequentially,

with the distribution of the sampled draws depending on the last value drawn:
PI'(Xt = jt | Xt—l = 'L.t—la Xt_g = it—?v .. ) = Pr(Xt :j | Xt—l = Z) (42)

In more general terms, let p; ; be probability of a transition from state ¢ to state ;.

In n time steps

P = Pr(X,=n| Xo = i) (4.3)

Note that p; ; is the probability of single-step transition:
piJ = P/I"(Xt ’ Xt = /L't,i) (44)
The transition probability matriz can be define equation (4.3) as Pr = [p; ;] and

> by =1 for the all state space are discrete at index, i.

4.2.2 Transmission probabilities of state

For our SIR-type models we can define events. For example, an infection event de-

creases the number of susceptible by one, while increasing the number of infected by

one.
Event Transition Rate at which  Probability of transition
event occurs  in time interval [¢, t+dt]
Infection S—S—-1, I —>1+1 BSI/N (BSI/N) dt
Recovery I —-1—-1, R— R+1 ~vI ~I dt

Table 4.1: Possible events in a standard stochastic SIR model, rates and probabilities
of occurrence at a time interval
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In the time interval [¢,t 4 dt] shown in Table (5.1), the probability of an infection
with [ is the simultaneous transitions S =+ S —1tol — [ +11is ﬂ% dt + o(dt) where
susceptible individuals moving from class S to I. Change in the state transitions

I - 1—1to R— R+ 1 has probability vI dt + o(dt). We have:

. . S 1
Pr((5t+dt7]t+dta Rt+dt> = ]‘(StajtaRt> = Z) = (—17 170)) = 5% dt + O(dt) (4-5)

Pr<<St+dt7[t+dta Rt+dt> = j‘(stajtht) = Z) = (0, -1, 1)) = ’Y[t dt + O(dt) (4-6)

with the complementary probability:

. . S, I
Pr((Sitats Levar, Rivar) = 7|(Se, I, Ry) = i) = (0,0,0)) = 1— (5% + ”YL:) dt + o(dt)

4.3 Simulation of a Monte Carlo steps
A pseudo-code for simulating a Monte Carlo method of SIR model has following steps:

1. Setup the model parameters, and some initial condition at time, ¢ = 0 in all

compartments.

2. Determine all possible changes of +1 or -1 that can occur in the number of

individuals in the compartments.

3. Based on the current state of the system, determine the time step, dt needed for

just one individual to change compartments in the entire system, averagely

4. Determine the average number of times, based on the current state of the system,

that each of the possible transitions will take place in time dt.
5. Sample Poisson distributed random numbers based on these probabilities.

6. Repeat steps 2 to 5 for as many time steps as desired, or some conditions are

reached (for example, no transitions are possible due to the state of the system).

4.3.1 Time step implementing for dt

Notice that the flow out of the Susceptible (S) compartment at time () is 8S1/N
in SIR system (2.1). The flow out of the Infected (1) compartment (2.2) is v/, and
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there is no flow out of the Recovered(R) compartment (2.3). The units of 5S1/N and
~I are based on the chosen unit time. A good estimate of the optimal time step in

the model is

1

dt =
BSI/N + ~I

(4.7)
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4.4 Results

4.4.1 Single Chain with N=1000
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Figure 4.1: Trajectories of SIR model with random effects, curves are (5), (I), Re-

covery (R) verses time, corresponds to Ry = 1.48, v = 0.3 and [, = 10 with initial

population N = 1000 for 1 iteration.

From the plots shown above, the single simulation method indicate that random walk-

ing effects are not recommended at all, due to confidence valid. Using the MCMC

algorithms starting with a singles guess and generates a single chain of samples from

that guess which not given enough to burn-in and converge to the target distribution.

In this case just one realization is useless to infer anything from the stochastic model.
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4.4.2 Single Chain with N=10,000

The following plots illustrate (4.2).
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Figure 4.2: Trajectories of SIR model with random effects. Parameters are Ry = 1.48

and v = 0.3 and [, = 10 with initial population N = 10000 for 1 iteration.
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~v = 0.3 and initial population N = 1000 for 20 iterations.
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4.4.3 Multiple iterations, 20 with sample size N=10,000
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Figure 4.4: Trajectories of SIR model with random effects. Paramters are Ry = 1.48,

~v = 0.3 and initial population N = 10,000 for 20 iterations.

The plots (4.4) shows a big number of iterations. We note that 20 samples are required
to obtain convergence to a desired tolerance level. As expected, the effect of sample
size increased. The Markov Chain method has captured the essence of the true popu-
lation by using deterministic and stochastic process as a benchmark for performance
measurement [35]. The last plot shows that the final size of total number of infected

represents proportion of peak incidence occur in the population.
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4.4.4 Comparisons: Using MCMC for parameter estimation

In this section we use prevalence counts to compare our recursion method with the
Metropolis-Hastings algorithm implemented in the R function MCMCmet rop1R (MCMCpack
package) https://github.com /cran/MCMCpack, and birth-death method in the R func-

tion dbd_prob (MultiBD package) https://github.com/msuchard/MultiBD. This Metropolis-
Hastings helps to solve to a real problem where the application consider uncertainty in
measurements and uncertainty in model parameters to perform inverse problem from

the Bayesian inference approach.

The SIR epidemic model is a bi-variate process because there are two independent
random variables, S(t) and I(¢). To write down ordinary differential equations (ODE)

for the flow counting processes. These are [30],

dN, dN
o = OsS(t)and =R = (DI(Y) (48)
We see that {S(t),I(t)} [30] consider as a birth-death process without loss of

generality S(t) + I(t) + R(t) = N and propose an algorithm to trace all possible
transitions of S(t) and I(¢) during a small time (¢, ¢+ dt) occur with probabilities (4.5)
and (4.6). Denote [37]

P —Pr (tm+1) = Sms1 (tm) =5 (4.9)

I(tm—f—l) = Z.m—ﬁ—l I<tm) = ln

Bi-variate process with n observations { (s, im)}"_; at time {¢,,}" _,, the log of the

likelihood function [37] can be written as
n—1
log 1(8,7|($um, im)p—1) = D 10g Prn (4.10)
m=1

To satisty positive constraints, we opt to use log 8 and log v as our model parame-
ters, since 5 and -y are non-negative. We assume a priori that log 5 ~ (1 = 0,0 = 100)

and log v ~ (u = 0,0 = 100).
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In this model, let 8 is the unknown infection rate of the disease and v is the
unknown recovery rate of infective people. We propose B = g and 4 = v to the
unknown parameters and explore the posterior distribution of (log 3, log ) by using
a random-walk Metropolis algorithm implemented in the R function MCMCmet rop1R
from package MCMCpack [35]. To be desired realizations of the model parameters in a
stochastic SIR model, we have considered N = 100 and N = 1000 individuals from 0
to T (30 days). To initialize this process for evaluation of epidemic growth over time,
we choose initial values of transitions rates are B = 0.4 and 4 = 0.35 substitute into
((log(0.4),109(0.35)). We discard the first 200 iterations and summarize the posterior

distribution of (3, 4) using the remaining iterations.
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Figure 4.5: Trace plots summarize the posterior distribution for output (Al.) real-
izations model parameter which corresponds f3i, (A2.) as for vy, (A3.) as for By, and
(A4.) as for 5. The first and second figures explain a good mixing where as the third

and forth show bad mixing behavior.

Since convergence of the chain will occur regardless of the starting point, it is
recommended to pick any feasible starting point [39]. The time and chain will take
time to converge as vary depending on the starting point. To mitigate the effect of
the starting distribution, which in our case we would discard 200 number of the first
draws. For instance, let say ¢ then run the Markov chain from n steps discarding
away all the data without output [10]. After we specify the total number of itera-
tions, 1000 shown for the Figure 4.5. The output was recorded to constitute samples
from the density posterior distribution and the convergence can be visually assessed

through trace plots. Trace plots provide an useful method for detecting problems with
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Metropolis-Hastings convergence and mixing. We can notice that our chain gets lag
in some areas of the parameter space at Figure 4.5 (A3) and (A4), which indicate bad
mixing, indicates a high dependence between successive iterations, which implies a
slow mixing or convergence rate [11]. Whereas Figure 4.5 (A1) and (A2) express first

two plots are a good mixing of chain.
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Figure 4.6: Presented above are the first and second posterior density plots have good

mixing, whereas the third and fourth show bad mixing behaviour of the histogram.
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Figure 4.7: Posterior distributions (log scale) of the infection rate Bl /2 and the recovery

412 estimated over 1000 iterations for SIR model.
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Population: N = 100 Population: N = 1000
Parameter 1000 iterations 1000 iterations
By gl Bs V2
True value 0.444 0.299 0.444 0.299
Mean 0.427 0.321 0.470 0.312
Median 0.453 0.291 0.435 0.291
Standard deviation 0.039 0.011 0.031 0.017
Bayesian 95% C.I. ~ (0.285, 0.643) (0.216, 0.394) (0.365, 0.555) (0.264, 0.343)
M-H acceptance rate 0.566 0.9042

Table 4.2: Posterior parameter summaries from MCMC algorithm with initial param-
eter B = 0.4 and 4 = 0.35 with population of N = 100 and N = 1000 respectively in
fixed 1000 iterations.

Population: N = 100 Population: N = 100

Parameter 100 iterations 2000 iterations
b i B T
True value 0.444 0.299 0.444 0.299
Mean 0.423 0.314 0.458 0.286
Median 0.456 0.281 0.423 0.294
Standard deviation 0.046 0.032 0.037 0.029
Bayesian 95% C.I. ~ (0.312, 0.594) (0.243, 0.341) (0.371, 0.499) (0.272, 0.321)
M-H acceptance rate 0.513 0.551

Table 4.3: Posterior parameter summaries from MCMC algorithm with initial param-
eter B = 0.4 and 4 = 0.35 with iteration of 100 and 2000 respectively in fixed number

of population.

The results from Table 4.2 shows that, the initial parameters of § = 0.4 and
= 0.35 are used to carry out the stochastic model which are fall within Bayesian

credible interval for 3, = (0.285, 0.643), B, = (0.365, 0.555), 41 = (0.216, 0.394)
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and 4, = (0.264, 0.343) with mean estimates of (3, f2) = (0.427, 0.321) and (7y,
v2) = (0.470, 0.312) from Metropolis-Hasting simulation. However, B, and ~1 show
the random data-sets also lie with the confidence interval with only 50% acceptance
rate, it tells the proposal function is too wide compared to the target distribution we
sample from. For the number populations, N = 100 in Table 4.3, the Bayesian of
95% credible interval has slightly narrower between (5 = (0.371, 0.499) 45 = (0.272,
0.321) and coverage for 2000 iterations compared to previous 1000 iterations with 1000
population. Having said that the basic reproduction number Ry is also an important
quantity in the SIR model which directly influence the analysis of transmission disease
between compartments based on the formula, Ry = 5/ = 0.4/0.35 < 1. Hence, it is
not only parameter driving the dynamic of the epidemic.
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Figure 4.8: SIR epidemic plots for number of Susceptible, Infected and Recovery

individuals with 5th and 95th quantiles are shown.

We have simulated the population trajectories for the above model, by performing
numerous of Monte Carlo simulation, which gives us the stochastic SIR model with
mean trajectories for each compartment in the experimental population. Figure 4.8

shows the true epidemic paths and parameters values fell well between 5™ and 95

A2,

B2.
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Bayesian credible intervals in all simulations of the susceptible, infected and recovered
individuals in the population as the epidemic progresses. The acceptance rates for
subject-path proposals were roughly 50% for three simulated SIR models on Figure
Figure 4.8: (Al., B1., B2.) and 90% shown on Figure 4.8: (A2.). Our posterior
estimates of the model parameters Bl 1, BQ and 4, are also closely match estimates
since the true value of parameters (/3,v) = (0.444,0.3) were generated a sequence of
random samples from a probability distribution where obtained by using Monte Carlo

simulation from page 51.



Chapter 5

Case study: Dengue of
Vector(SI)-Host(SIR)

5.1 Background

Dengue is a mosquito-borne viral infection that is usually found in tropical and sub-
tropical regions around the world. Warmer weather and rain bring remarkably good
conditions for reproduction for vectors that are carriers and transmit the disease. If
a susceptible vector bites an infected human during the viremic period, it may be-
come infected and subsequently transmit the virus to other healthy humans. Humans

are the source of nutrients for mosquitoes, that grow and reproduce on stagnant water.

Today, dengue fever is the mosquito-borne infection which is regarded as the major
international public health concern, threatening about 2.5 billion people all over the
world, especially the tropical countries. Worldwide, there is an annual estimated 50-
230 millions new cases, 500,000 hospitalizations and 25,000 fatal cases, mostly among
children that are suffering from hemorrhagic fever. Dengue is particularly common in

Southeast Asia [12].

5.2 Application to Dengue Fever

Dengue is caused by four antigenically distinct virus serotypes, denoted as dengue

virus 1 (DENv1), dengue virus 2 (DENv2), dengue virus 3 (DENv3) and dengue virus

63
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4 (DENv4). The corresponding illnesses are dengue fever (DF) or classic dengue, and
the dengue haemorrhagic (DHF') which may evolve toward severe form so called dengue
shock syndrome (DSS). Disease symptoms are a mild form of sudden fever (DF) with-
out respiratory infection, accompanied by rash, flu-like and intense headaches (myalgia
and arthralgia). The latter gives the nicknames ” breakbone fever” or ” bonecrusher dis-
ease”. Tt last generally between 3-7 days, but it my also persist in a benign way [43].
Some individuals develop (DSS) syndrome where the severity of the disease is dramat-
ically increased with a significant mortality rate due to low blood pressure caused by
fluid leakage. It usually lasts between 2-3 days and can lead to death [43]. In some
cases, susceptible infected by one of the four serotypical virus will never be infected
again by the same serotype known (heterologous immunity), whereas one looses im-
munity to the three other serotypes (heterologous immunity) is around 12 weeks and

subsequently become less resistant dengue haemorrhagic fever again.

5.3 Model Approaches

For the above stated reasons, it is worth studying the mechanisms that allow the inva-
sion of dengue. Models can provide insights into the transmission dynamics, invasion
and persistence of a certain serotype of dengue in a community. A detailed derivation
of a model can provide a qualitative assessment from a mathematical simulation with
parameter estimation, sensitivity and comparison of conjunctures to predicting dengue
outbreaks. In this case study, we are using systems of ordinary differential equations

(ODE) with deterministic model approaches.
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5.3.1 Deterministic Assumptions - Dengue scenarios

All the models considered in this work satisfy the following assumptions [14, 15]:

1. The model assumes a homogeneous mixing of the human and vector(mosquito)
populations, so that each mosquito bite has equal chance of transmitting the
virus to susceptible human in the population (or acquiring infection from an

infected human).

2. Any recovered susceptible has permanent immunity or least considered accord-

ingly within the time frame of the disease model.

3. The sexual ratio of human is 1:1, male and female are subject to almost the same

epidemiological factors [10].

4. The end of the viremic period coincides with the disappearance of symptoms in

symptomatically infected individuals [10].

5. The model does not accommodate for 4 strains of dengue serotypical virus, be-
cause its complexity of four co-circulating serotypes. We are just focus only

single-serotype system.
6. No vaccination is available or applied.

7. The population size is constant for the models.
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5.3.2 Model Description - Parameters
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Figure 5.1: Schematic: Human-vector transmission for single-serotype model.

According to the Figure (5.1), we denote a human population (respectively of mosquito

population) with size N, (resp. N,). As before we have susceptible Sy, infective I,

and recovered Ry, (resp. S, and I,). The basic parameters used in the model are given

table below. [43, 44, 47 48]

Interpretation Notation | Base value Range
Transmission probability of vector to human B 0.75 0.1-1
Transmission probability of human to vector Bon 0.75 0.1-1
Bites per susceptible mosquito per day bs 0.5 0.3-1
Bites per infectious mosquito per day b; 1.0 0.3-1
Effective contact rate, human to vector Che 0.375 0.1-1
Effective contact rate, vector to human Cun 0.75 0.1-1
Average human life span #lh 25000 days | 10950-30000 days

Average vector life span Mlv 4 days 3-14 days

Average recovery rate for human ’Yih 7 days 5-10 days

Average host infection duration #vi% 3 days 5-10 days

Table 5.1: Description of variables and parameters used in vector-host simulations
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5.3.3 Model formulation

Based on the assumptions, the single-serotype vector-host transmission model pre-
sented by Bailey 1975 [19] provides the basis for coupled SIR host and SI vector

models [50]:

Human population

% = pnNp — 5;\2?2 Shly = pnSh (5.1)

% = 5]\};; SuLy — (n + g ) I (5.2)

P A (53)
Vector population

%%:Mm—%%&h—m& (5.4)

T O = pl, (5:5)

The single-serotype system can be simplified to

dd_Sth — N, — %Shlv — 1 Sh (5.6)
% = ?\;}: Sily — (Yn + pn)In (5.7)
O = ol — o (538)
d;v a4 57\1;53 SuT — 1S, (5.9)
. (5.10)

where A represents the vector recruitment rate. The human and vector populations

remain constant, hence without loss of generality, we can work with the proportions

e [y (resp. fPry) the average transmission probability of an infectious wvector to

human (resp. human to vector).

e [, (resp. Ip,) the number of infectious vector (resp. human).
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This gives
e (Y} = Brubs is the contact rate of human to vectors.

e C\n = Bunb; is the contact rate of vectors to human.

with the following conditions [51]:

Sy,+ 1, + R, =N, — R;, = N, — S, — I,

Spy+1I,=N,=—= S, =N, — [,

Hence the model for the human and mosquito

dSh Con
— = up Ny, — —5,1, — S,
dt HriVp, N, h Hron
dl, Cy,
L Sy, — I
It N, h (vn + pen) I,
dIv Bhvbs

= —S5,1; — u,1,
at N, v H

=

is equivalent to the full system (5.6-5.10).

5.4 Equilibrium points
This system (5.13-5.15) is defined by on set € given
0= {(Sh,fh,[u) c0< I, <Ny 0< S 0 Ipy; S+ 11, < Nh}
We have the equilibrium points:
Ey, = (1,0,0) and — Ey = (S;,I;,I7)
where
o+ W . Ry —1

5(Ro — 1)
L A - S B B A i A
= SxwRy T srwmy M LT RoTw)

with
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(5.11)

(5.12)

(5.13)
(5.14)

(5.15)

(5.16)

(5.17)

(5.18)
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Onw W
o i

(5.19)

Using the next basic reproductive number to yield:

th Chv

0=l ) (5.20)

5.4.1 Stability

1. Ej is the disease-free equilibrium (DFE). If Ry < 1, then Ey(Ny,0,0) is globally
asymptotically stable [13].

2. FE; is the endemic equilibrium (EE). If Ry > 1, then E\ (S}, I}, I}) is locally

asymptotically unstable [13].

We can linearize the system of (5.13-5.15) and write in the Jacobian matriz form

as

- thv — Kh 0 OvhSh
J(Er) = Conly —(ptn 4 1) ConSh (5.21)
0 Chv - Cthv _Cthh — Moy

5.4.2 Disease-free equilibrium

Equate the equilibrium point at E; = (Nj,0,0) = (1,0,0) and write the Jacobian

matrix as

A= —pup (5.22)

1
Xojs = — (i + Y + o) £ 5\/(/% + 9+ f10)? — Ao (s +90) (L — Ro)  (5.23)

All eigenvalues have negative real part indicates F; is locally asymptotically stable for

Ry < 1.
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5.4.3 Endemic equilibrium

Similarly, we can linearize the system of (5.13-5.15) and write in the Jacobian matriz

form as [52]:

5
= () 0 —mn 5 (55
JE) = | w5 —mW (55 (5.24)
W0
0 G () —m B (55,
then the characteristic polynomial of J(FE>) is given by
pN) =X+ AN+ BN+ C (5.25)
which implies that:
A = —tr(E,) (5.26)

B_ J(E2)1n J(E2) N J(E2)1n J(E2)i3 N J(E2)2  J(E2)2 (5.27)
J(E2)ar J(E2)aa| [J(E2)ar J(Ea)ss| |J(E2)s2 J(Fa)ss

C = —det(J(E>)) (5.28)
We obtain
0+ W Ry o+ W
A= —_— W+ pyRy| ————— 5.29
h< 6+W>+,Uh +p 0((5—|—WR0) (5.29)
0+ WRy (Ro— 1)
B=1W|—-7 v oW 6 — )
Hp, ( 6+W)+MhMRo+MMh (5+WR0 (5.30)
C = 2, W(Ry — 1) (5.31)
Therefore, the coefficients A, B and C' are positive and
AB > jiWRy > C (5.32)

satisfies Routh-Hurwitz condition for the polynomial, p(\). This implies that £, (S}, I}, I}})

is locally asymptotically stable for Ry > 1.
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5.5 Results and Discussion

In order to show the dynamics of each epidemic and to study different strategies, a

simulation was generated using R.

SIR Model with Vector

Tothuman, N_h=10 and Totvector, N_v=5

o]

- Suceptible human
Infected human

= Recoverad human

Suceptible vector
Infected vector

8
I

Number of population
4 5
I I

o4 -
o -
T T T T T T T
0 & 10 15 20 25 30
time (in days)
Tot.human, N_h=500 and Tot.vector, N_v=100
Suceptible human
§ - === |nfected human
== Recovered human
=== Suceptible vector
s § - === |nfected vector
3
8-
s
28+
=
=
8 | /
o4

T T T
10

T T T T
15 20 25 30
time (in days)

=

06 08 1.0

0.4

Fraction of population

0.2

00

1.0

Fraction of population
0.4 06 08

0.2

00

Tothuman, N_h=10 and Totvector, N_v=5
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=

T T T T T
5 10 15 20
time (in days)

Tot.human, N_h=500 and Tot.vector, N_v=100

= -

T T T T T
5 10 16 20
time (in days)

Figure 5.2: Transmission of dengue with initial condition, the graphs (A1)

illustrate the number (resp. proportion in A2)) of susceptible human, infective human,

recovered human versus time. The parameters in the simulations are A.): N

10,1,(0) = 1,N, = 5,1,(0) = 1,B8h = 1.0,8un = 1.0,bp, = 1.0,b,, =

1'07/“1

0.1, 160 = 0.1,7, = 0.1 and B.): N, = 500, 1,(0) = 100, N, = 10, 1,(0) = 5, B
1.0, Bon = 1.0, by = 1.0, by = 1.0, st = 0.1, j1, = 0.1, 7, = 0.1.

B2.
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There are two fundamentally different approaches that can be used to to control the
disease: changing the initial number of mosquitoes, changing the number of of suscepti-
ble humans. According to Figure (5.2,A2), the outbreak will reach the maximum level
within the next 7 days, with the initial values (N, = 10, N, =5, I,,(0) = 1, 1,(0) = 1).
Compare with the graph Figure (5.2,B2) that the infectious period will take longer to
reach its maximum level. However, the number of contracted dengue cases has 20%

less than in A2, where initial values are (N, = 500, N,, = 100, 1,,(0) = 10, 1,(0) = 5).



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis we studied generalizations of the basic SIR model to simulate few different
epidemic scenarios. This provides knowledge about the how the evolution of biologi-
cal diseases work. We use mathematical models to predict the disease. For instance,
hypothetical zombie apocalypse is particularly interesting. By using a mathematical
ordinary differential equation (ODE) model, it is possible to do the risk assessment by

constructing and allocate few different compartments.

For the deterministic models, the theorem for ”basic reproductive ratio, Ry”, stated
on the page 2, tells us that Ry determines whether the disease is eliminated or persists.
In the case where Ry > 1, the occurrence of disease will become endemic (prevalent),
whereas if Ry < 1 the disease will die out. This work can be found on Chapter 3, page

17.

In chapter 4, on page 31, an extension of SIR model embedded with essential birth
and death dynamics is discussed. The purpose of this approach was to study the effect
of growth and change of human population. We believe that by including demography

with seasonal forcing, the models yield more realistic results.

On page 47, the stochastic epidemic Markov Chain model was used. Following

section on page 55, Metropolis-Hastings algorithm was implemented from R package

73
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which given a very desired of relatively precision for unknown parameter estimation.
Lastly, we modified and added extra compartments to formulate the SI-SIR model in
Chapter 6. On page 66 a case study was introduced to investigate the transmission

dynamics of dengue single-serotype models.

6.2 Future Work

As a future work, I would like to extend the SIR models using Bayesian Markov Chain
Monte Carlo estimation. This methods use the prior parameter distribution to esti-
mate the best guess of parameters. This can helpful in providing better accuracy
of parameters. Another approach is to use SDE to on considerably larger popula-
tion sizes. SDE simulations can run almost as quick as deterministic ODE models,
whereas the downside of Markov chains is that they can be very slow to converge for
large populations especially having multiple iterations. Another possible tool is the
Latin Hypercube, which has several advantages to when it comes to goodness-of-fit and

assessing optimal parameters.
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Appendix A

Chapter 3: R script

A.1 SIR function:

require (”deSolve”)

require (” sfsmisc”)

derivative_calc_func=function(t, x, vparameters){

S = x[1]
I = x[2]
R = x[3]

with (as.list (vparameters),{
npop = S+I4R
dS = —betaxS*I/npop
dl = +beta*xS*I/npop — gammaxl

dR = +gammasx I

vout = ¢(dS,dI,dR)
list (vout)

b
¥
derivative_calc_func_with_demographics=function(t,
S = x[1]
I = x[2]
R = x[3]

with(as.list (vparameters),{
npop = S+I4R
dS = —beta*SxI/npop — mu*S + npops*mu
dI = +beta*S*xI/npop — gammaxI — muxI
dR = 4gammaxI — muxR
out = ¢(dS,dI,dR)
list (out)

b

X,

81

vparameters){
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A.2 Basic reproductive number, Rj < 1

npop = 10000

I_.0 = 500

R_.0 =0

S-0 = npop—I_0-R-0

tbegin = 0
tend = 150
vt = seq(tbegin ,tend,1)

gamma = 0.2
RO = 0.82
beta = ROxgamma

vparameters = c(gamma—gamma, beta=beta)
inits = ¢(S=S_-0,I=I_0,R=R_0)

solved _model = as.data.frame(lsoda(inits , vt, derivative_calc_func, vparameters))

vS = solved _model$S
vl = solved _model$1I
vR = solved _model$R
vtime = solved _model$time

vnpop = vS+vI4+vR
mult . fig (mfrow=c(2,2),main="SIR_model_with_R0=0.82")

#1(
ymin = 0.9*min(vS/vnpop)

» 1 n

plot (vtime ,vS/vnpop, type= ,xlab="time” ,

ylab="fraction_susceptible” ,ylim=c(ymin,1l),lwd=3,main=" Susceptible”)

iind = which.min(abs(vS/vnpop—1/R0)) # find the index at which S/N is equal to 1/RO
lines (c(vtime[iind],vtime[iind]),ec(—1000,1000),col=3,lwd=3)

legend (” topright” ,

legend=c(” total_susceptibles” ,”time_at_which_S=1/R0”),bty="n" ,lwd=3,col=c(1,3),cex=1.0)

#)

#2(

plot (vtime ,vI/npop,type="1" ,xlab="time” ,

ylab="fraction_infected” ,ylim=c(0,0.2) ,lwd=3,col=4,main="Infective”)

n=length (vtime)

lines (vtime [2:n],—diff(vS)/(diff(vtime)*vnpop[l:(n—1)]),type="1" ,lwd=3,col=2)
lines(c(vtime[iind],vtime[iind]),c(—1000,1000),col=3,lwd=3)

legend (" topright”,

legend=c(” total_.infected .(prevalence)” ,"newly_infected /day-(incidence)”),bty="n" ,lwd=3,col=c(4,2))
#)

#3(

plot (vtime ,log(vI/vnpop),type="1" ,xlab="time” ,

ylab="log (fraction_infected)” ,lwd=3,col=4,main="1log (Infected)”)

text(25,—7,” Initial\n_exponential\n_.drop” ,cex=0.7)
lines(c(vtime[iind],vtime[iind]),c(—1000,1000),col=3,lwd=3)

legend (” topright” ,legend=c(” time_at_which_S=1/R0” ,” log (Infected)”),bty="n" ,lwd=3,col=c(3,4),cex=0.9)
#)

#4.(

plot (vtime ,vR/npop,type="1" ,xlab="time” ,

ylab="fraction_recovered” ,ylim=c(0,0.4),lwd=3,col=1,main="Recovery”)

lines (vtime [2:n] ,diff(vR)/(diff(vtime)*vnpop[l:(n—1)]),type="1" ,lwd=3,col=2)
lines(c(vtime[iind],vtime[iind]),c(—1000,1000),col=3,lwd=3)
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legend (10,0.41 ,legend=c(” total_recovery”,
"newly_recoverd/day._(incidence)” ,” time_at_which_S=1/R0”),bty="n" ,lwd=3,col=c(1,2,3),cex=0.7)
#)

A.3 Basic reproductive number, Ry~ 1

npop = 10000

I_0 = 500

R_.0 =0

S-0 = npop—I_0-R_0

tbegin = 0
tend = 150
vt = seq(tbegin ,tend, 1)

gamma = 0.2093
RO 1.009

beta = RO*gamma

vparameters = c(gamma—gamma, beta=beta)
inits = ¢(S=S_-0,I=I_0,R=R_0)

solved _model = as.data.frame(lsoda(inits, vt, derivative_calc_func, vparameters))

vS = solved _model$S
vl = solved _model$I
vR = solved _model$R
vtime = solved _model$time

vnpop = vS+vI4+vR

mult. fig (4, main="SIR_model_with_R0=1.009")

#1(
ymin = 0.9%min(vS/vnpop)
plot (vtime ,vS/vnpop,type="1” ,xlab="time” ,

ylab="fraction_susceptible” ,ylim=c(ymin,1),lwd=3,main=" Susceptible”)

iind = which.min(abs(vS/vnpop—1/R0)) # find the index at which S/N is equal to 1/RO
lines(c(vtime[iind],vtime[iind]),c(—1000,1000),col=3,lwd=3)

legend (” topright” ,

legend=c(” total_susceptibles” ,”time_at_which_S=1/R0”),bty="n” ,lwd=3,col=c(1,3),cex=1.0)
#)

#2(
plot (vtime , vl /npop,type="1" ,xlab="time” ,

ylab="fraction_infected” ,ylim=c(0,0.2) ,lwd=3,col=4,main="Infective”)

n=length (vtime)

lines (vtime [2:n],—diff(vS)/(diff(vtime)*vnpop[l:(n—1)]),type="1" ,lwd=3,col=2)
lines(c(vtime[iind],vtime[iind]),c(—1000,1000),col=3,lwd=3)

legend (" topright”,

legend=c(” total_infected .(prevalence)” ,"newly_infected /day_(incidence)”),bty="n" ,lwd=3,col=c(4,2))
#)

#3(

plot (vtime ,log(vI/vnpop),type="1" ,xlab="time” ,

ylab="1log (fraction_infected)” ,lwd=3,col=4,main="1log (Infected)”)

text(25,—7,” Initial\n_exponential\n_.drop” ,cex=0.7)

lines (c(vtime[iind],vtime[iind]),ec(—1000,1000),col=3,lwd=3)

legend (” topright” ,

legend=c (” time_at_which_S=1/R0” ,” log (Infected)”),bty="n” ,lwd=3,col=c(3,4) ,cex=0.9)
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#)

#4(

plot (vtime ,vR/npop,type="1" ,xlab="time” ,

ylab="fraction_recovered” ,ylim=c (0,0.4),lwd=3,col=1,main="Recovery”)

lines (vtime [2:n],diff(vR)/(diff(vtime)*vnpop[l:(n—1)]),type="1" ,lwd=3,col=2)
lines(c(vtime[iind],vtime[iind]),c(—1000,1000),col=3,lwd=3)

legend (10,0.41,legend=c(” total_recovery” ,

?newly_recoverd/day—_(incidence)” ,”time_at_which_.S=1/R0”),bty="n" ,lwd=3,col=c(1,2,3),cex=0.7)

#)

A.4 Basic reproductive number, Ry > 1

npop = 10000

I.0 = 10

R_O 0

S_0 = npop—I_0-R_0

tbegin = 0
tend = 150
vt = seq(tbegin ,tend, 1)

gamma = 0.3
RO = 1.48
beta = RO*gamma

vparameters = c(gamma—gamma, beta=beta)
inits = ¢(S=S-0,I=I_0,R=R_0)

solved _model = as.data.frame(lsoda(inits, vt, derivative_calc_func, vparameters))

vS = solved _model$S
vl = solved _model$1I
vR = solved _model$R
vtime = solved_model$time

vnpop = vS+vI4vR

mult. fig (4, main="SIR_model_with_R0=1.5")

#1(

ymin = 0.9*min(vS/vnpop)

plot (vtime ,vS/vnpop,type="1” ,xlab="time” ,

ylab="fraction_susceptible” ,ylim=c(ymin,1) ,lwd=3,main=" Susceptible”)

iind = which.min(abs(vS/vnpop—1/R0)) # find the indezx at which S/N is equal to 1/RO
lines (c(vtime[iind],vtime[iind]),c(—1000,1000),col=3,lwd=3)

legend (" topright”,

legend=c(” total_susceptibles” ,”time_at_which_S=1/R0”),bty="n” ,lwd=3,col=c(1,3) ,cex=1.0)
#)

#2(

plot (vtime , vI/npop,type="1" ,xlab="time” ,

ylab="fraction_infected” ,ylim=c (0,0.2) ,lwd=3,col=4,main="Infective”)

n=length (vtime)

lines (vtime [2:n],—diff(vS)/(diff(vtime)*vnpop[l:(n—1)]),type="1" ,lwd=3,col=2)
lines(c(vtime[iind],vtime[iind]),c(—1000,1000),col=3,lwd=3)

legend (11.5,0.21,

84

legend=c(” total_infected_.(prevalence)” ,”newly_infected/day_(incidence)”),bty="n" ,lwd=3,col=c(4,2))

#)

#3(
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plot (vtime ,log(vI/vnpop) ,type="1" ,xlab="time” ,

ylab="1log (fraction_infected)” ,lwd=3,col=4,main="1log (Infected)”)

text(20,—7,” Initial\n_exponential\n_increase” ,cex=0.7)

lines (c(vtime[iind],vtime[iind]),ec(—1000,1000),col=3,lwd=3)

legend (” topright” ,

legend=c (” time_at _which_S=1/R0” ,” log (Infected)”),bty="n” ,lwd=3,col=c(3,4) ,cex=0.85)
#)

#4.(

plot (vtime ,vR/npop,type="1" ,xlab="time” ,

ylab="fraction._recovered” ,ylim=c(0,0.6),lwd=3,col=1,main="Recovery”)

lines (vtime [2:n] ,diff(vR)/(diff(vtime)*vnpop[l:(n—1)]),type="1" ,lwd=3,col=2)
lines (c(vtime[iind],vtime[iind]),ec(—1000,1000),col=3,lwd=3)

legend (44 ,0.20,legend=c(” total._.recovery”,

?newly_recoverd/day_(incidence)” ,”time_at_which_.S=1/R0”),bty="n" ,lwd=3,col=c(1,2,3),cex=0.75)

#)
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Appendix B

Chapter 4: R script

B.1 SIR function

derivative_calc_func_with_demographics=function(t, x, vparameters){

S = x[1]
I = x[2]
R = x[3]

with (as.list (vparameters),{

npop = S+I4R
#beta = betaOx(1+epsilonxcos (2xpix(t—phi)/365.25))
#dS = —betaxSxI/npop + npop*B — nuxS

dS = —betaxS*I/npop + npop*mu — nu*S

dI +betaxS*I/npop — gammaxI — nuxI

dR = +4gammaxI — nuxR

out = ¢(dS,dI,dR)

list (out)

)

B.2 SIR Model (with Birth and Death Rates)

#npop = 10000
npop = 1000

1.0 = 10
#I_0 = 500
RO =0

S_-0 = npop—I_0—-R_0

tbegin = 0
tend = 500
vt = seq(tbegin ,tend,1)

gamma = 1/3#0.3
RO 0.98#1.48

beta = ROxgamma
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mu = 0.01
nu = 0.01
vparameters = c(gamma—gamma, beta=beta ,mu=mu)

inits = ¢(S=S-0,I=I_0,R=R_0)

solved _model = as.data.frame(lsoda(inits, vt, derivative_calc_func_with_demographics, vparameters))

vS = solved _model$S
vl = solved_model$I
vR = solved _model$R
vtime = solved_model$time

vnpop = vS+vI+vR

mult. fig (mfrow=c (3 ,4) ,main="SIR_model —with.R0=0.98,_R0=1.48 _and_-R0=1.7” ,cex . main=2)

#1(

ymin = 0.9%min(vS/vnpop)

plot (vtime ,vS/vnpop,type="1” ,xlab="time” ,
ylab="fraction_susceptible” ,ylim=c(0.9,1) ,lwd=3,main=substitute (paste(” Susceptible ,_.R0=",R0),list (RO=R0)))
iind = which.min(abs(vS/vnpop—1/R0)) # find the index at which S/N is equal to 1/RO

legend (” bottomright” ,legend=c(” total _susceptibles”),bty="n” ,lwd=3,col=c (1) ,cex=1.0)

#)

#2(

plot (vtime , vI/npop,type="1" ,xlab="time” ,

ylab="fraction_infected” ,ylim=c(0,0.01),lwd=3,col=4,main=substitute (paste(” Infective ,_R0=",R0),list (RO=R0)))
n=length (vtime)

lines (vtime [2:n],—diff(vS)/(diff(vtime)*vnpop[l:(n—1)]),type="1" ,lwd=3,col=2)

legend (" topright”,

legend=c(” total_.infected .(prevalence)” ,"newly_infected /day—-(incidence)”),bty="n" ,lwd=3,col=c(4,2))

#)

#3(

plot (vtime ,log(vI/vnpop),type="1" ,xlab="time” ,

ylab="1log._(fraction._infected)” ,lwd=3,col=4,main=substitute (paste(”Log_(Infected),_R0=",R0),1list (RO=R0)))
text(100,—10,” Initial\n_exponential\n_increase” ,cex=0.7)

legend (” bottomleft” ,legend=c(”log_(Infected)”),bty="n" ,lwd=3,col=c(4),cex=1)

#)

#4(

plot (vtime ,vR/npop,type="1" ,xlab="time” ,

ylab="fraction._recovered” ,ylim=c(0,0.1),lwd=3,col=1,main=substitute (paste(” Recovery ,_R0=" ,R0),list (RO=R0)))
lines (vtime [2:n] ,diff(vR)/(diff(vtime)*vnpop[l:(n—1)]),type="1" ,lwd=3,col=2)

#lines (c(vtime [iind ], vtime [iind]),c(—1000,1000),col=3,lwd=3)

legend (” topright” ,

legend=c(” total_recovery” ,”newly_recoverd/day_(incidence)”),bty="n" ,lwd=3,col=c(1,2),cex=0.9)

#)

#npop = 10000
npop = 1000

1.0 = 10
#I_0 = 500
RO =0

S_0 = npop—I_0-R_0

tbegin 0
tend = 500
vt = seq(tbegin ,tend, 1)

gamma = 1/3#0.3
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RO = 1.48#1.48
beta = RO*gamma
mu = 0.01
nu = 0.01

vparameters = c(gamma—gamma, beta=beta ,mu=mu)

inits = ¢(S=S_.0,I=I_0,R=R_0)
solved _model = as.data.frame(lsoda(inits , vt, derivative_calc_func_with_demographics, vparameters))

vS = solved _model$S
vl = solved_model$I
vR = solved _model$R
vtime = solved _model$time

vnpop = vS+vI4+vR

#1(

ymin = 0.9%min(vS/vnpop)

plot (vtime ,vS/vnpop,type="1” ,xlab="time” ,

ylab="fraction_susceptible”,

ylim=c (ymin,1) ,lwd=3,main=substitute (paste(” Susceptible ,_R0=" ,R0),list (RO=R0)))

iind = which.min(abs(vS/vnpop—1/R0)) # find the index at which S/N is equal to 1/RO
legend (” bottomright” ,legend=c(” total_susceptibles”),bty="n” ,lwd=3,col=c(1),cex=1.0)
#)

#2(
plot (vtime, vl /npop,type=

717, xlab="time” ,

ylab="fraction._infected” ,

ylim=c (0,0.1) ,lwd=3,col=4,main=substitute (paste(” Infective ,_R0=" ,R0),1list (RO=R0)))

n=length (vtime)

lines (vtime [2:n],—diff(vS)/(diff(vtime)*vnpop[l:(n—1)]),type="1" ,lwd=3,col=2)

legend (" topright”,

legend=c(” total_infected_(prevalence)” ,"newly_infected /day_(incidence)”),bty="n” ,lwd=3,col=c(4,2))

#)

#3(

plot (vtime ,log(vI/vnpop),type="1" ,xlab="time” ,

ylab="1log_(fraction_infected)” ,lwd=3,col=4,main=substitute (paste(”Log_(Infected),_.R0=",R0),1list (RO=R0)))
text(140,—10,” Initial\n_exponential\n_increase” ,cex=0.7)

legend (” bottomright” ,legend=c(”log_(Infected)”),bty="n" ,lwd=3,col=c(4) ,cex=1)

#)

#4(
plot (vtime ,vR/npop , type=

7?17 ,xlab="time” ,

ylab="fraction._recovered” ,

ylim=c (0,0.6) ,lwd=3,col=1,main=substitute (paste(” Recovery , .R0=" ,R0), list (R0=R0)))
lines (vtime [2:n] ,diff(vR)/(diff(vtime)*vnpop[l:(n—1)]),type="1" ,lwd=3,col=2)
legend (” topright” ,

>

legend=c(” total_recovery’

#)44,0.20

,”newly_recoverd/day._(incidence)”),bty="n” ,lwd=3,col=c(1,2),cex=0.9)

#npop = 10000
npop = 1000

I_.0 =10
#I_0 = 500
RO =0

S-0 = npop—I_0-R_0

tbegin = 0
tend = 1000
vt = seq(tbegin ,tend, 1)
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gamma = 1/3#0.3
RO = 1.7T#1.48
beta = RO*gamma
mu = 0.01
nu = 0.01

vparameters = c(gamma—gamma, beta=beta ,mu=mu)
inits = ¢(S=S_0,I=I_0,R=R_0)

solved _model = as.data.frame(lsoda(inits , vt, derivative_calc_func_with_demographics, vparameters))

vS = solved _model$S
vl = solved _model$1
vR = solved _model$R
vtime = solved_model$time

vnpop = vS+vI4+vR

#1(

ymin = 0.9*min(vS/vnpop)

plot (vtime ,vS/vnpop,type="1" ,xlab="time” ,

ylab="fraction_susceptible” ,

ylim=c (ymin,1) ,lwd=3,main=substitute (paste(” Susceptible ,_R0=",R0),list (RO=R0)))

iind = which.min(abs(vS/vnpop—1/R0)) # find the indexz at which S/N is equal to 1/R0O
legend (” bottomright” ,legend=c(” total_susceptibles”),bty="n” ,lwd=3,col=c(1),cex=1.0)
#)

#2(
plot (vtime , vl /npop, type=

7?17 ,xlab="time” ,

ylab="fraction_infected” ,

ylim=c (0,0.1) ,lwd=3,col=4,main=substitute (paste(” Infective ,_R0O=" ,R0),list (RO=R0)))

n=length (vtime)

lines (vtime [2:n],—diff(vS)/(diff(vtime)*vnpop[l:(n—1)]),type="1" ,lwd=3,col=2)

legend (” topright” ,

legend=c(” total_infected_.(prevalence)” ,”newly_infected/day_(incidence)”),bty="n" ,lwd=3,col=c(4,2))
#)

#3(

plot (vtime ,log(vI/vnpop),type="1” ,xlab="time” ,

ylab="1log_(fraction_infected)” ,lwd=3,col=4,main=substitute (paste(”Log_.(Infected),_.R0=",R0),1list (RO=R0)))
text(140,—10,” Initial\n_exponential\n_increase” ,cex=0.7)

legend (” bottomright” ,

legend=c (" log_.(Infected)”),bty="n” ,lwd=3,col=c(4),cex=1)

#)

#4.(

plot (vtime ,vR/npop,type="1" ,xlab="time” ,

ylab="fraction._recovered” ,

ylim=c (0,0.6) ,lwd=3,col=1,main=substitute (paste(” Recovery , _R0=" ,R0), list (R0O=R0)))

lines (vtime [2:n] ,diff(vR)/(diff(vtime)*vnpop[l:(n—1)]),type="1" ,lwd=3,col=2)
legend (" topright”,

legend=c(” total_recovery” ,”newly_recoverd/day_(incidence)”),bty="n” ,lwd=3,col=c(1,2),cex=0.9)

#)

B.3 Seasonal Transmission in the Absence of Birth

Seasonality
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derivative_calc_func_with_demographics=function(t, x, vparameters){

S = x[1]
I = x[2]
R = x[3]

with (as.list (vparameters),{

npop = S+I4R
beta = betaO*(l+epsilon*cos(2*pi*x(t—phi)/365.25))
dS = —betaxSxI/npop + npop*B — nux*S

#dS = —betaxSxI/npop + mnpopxmu — nuxS

dl = +beta*SxI/npop — gammaxI — nuxI

dR = +4gammaxI — nuxR

out = ¢(dS,dI,dR)

list (out)

9]

npop = 1000

I_.0 = 10

R_.0 =0

S-0 = npop—I_0-R_0

tbegin = 0
tend = 1250

vt = seq(tbegin ,tend, 1)

gamma = 1/3#0.3

RO = 0.98#1.48
betal0 = RO*xgamma
B = 0.01
mu = 0.01
nu = 0.01
phi =0

epsilonl = 0.3

vparameters = c(gamma—gamma, betaO=beta0 , phi=phi, epsilon=epsilonl ,mu=mu, nu=nu,B=B)
inits = ¢(S=S_-0,I=I_0,R=R_0)

solved _model = as.data.frame(lsoda(inits , vt, derivative_calc_func_with_demographics, vparameters))

vS = solved _model$S
vl = solved _model$I
vR = solved _model$R
vtime = solved_model$time

vnpop = vS+vI4vR

mult . fig (mfrow=c (3 ,4) ,main="Seasonal _SIR_model_with_R0=0.98,_R0=1.20_and_-R0=1.70" ,cex . main=2)

#1(

ymin = 0.9*min(vS/vnpop)

plot (vtime ,vS/vnpop,type="1” ,xlab="time” ,

ylab="fraction_susceptible” ,ylim=c(ymin,1),lwd=3,main=substitute (paste(” Susceptible ,_R0=" ,R0),list (RO=R0)))
iind = which.min(abs(vS/vnpop—1/R0)) # find the index at which S/N is equal to 1/RO

legend (" bottomright” ,legend=c(” total_susceptibles” ) ,bty="n” ,lwd=3,col=c(1),cex=1.0)

#)

#2(

plot (vtime ,vI/npop,type="1" ,xlab="time” ,

ylab="fraction_infected” ,ylim=c(0,0.01) ,lwd=3,col=4,main=substitute (paste(” Infective ,_R0=",R0),list (RO=R0)))
n=length (vtime)

lines (vtime [2:n],—diff(vS)/(diff(vtime)*vnpop[l:(n—1)]),type="1" ,lwd=3,col=2)

legend (11.5,0.21,
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legend=c(” total_infected .(prevalence)” ,"newly_infected /day_(incidence)”),bty="n" ,lwd=3,col=c(4,2))
#)

#3(
plot (vtime ,log(vI/vnpop) ,type=
ylab="1log (fraction_infected)” ,lwd=3,col=4,main=substitute(paste(”Log_(Infected),_R0=",R0),list (RO=R0)))

717  xlab="time” ,
legend (” topright” ,legend=c(”log (Infected)”),bty="n" ,lwd=3,col=c(4),cex=1)
#)

#4(
plot (vtime ,vR/npop , type=

? 17 ,xlab="time” ,

ylab="fraction._recovered” ,ylim=c(0,0.8) ,lwd=3,col=1,main=substitute (paste(” Recovery ,_.R0=" ,R0),list (RO=R0)))
lines (vtime [2:n] ,diff(vR)/(diff(vtime)*vnpop[l:(n—1)]),type="1" ,lwd=3,col=2)

legend (" topright”,

legend=c(” total_recovery” ,”newly_recoverd/day_(incidence)”),bty="n” ,lwd=3,col=c(1,2),cex=1)

#)

npop = 1000

I_.0 =10
R_0 =0
S_-0 = npop—I_0-R_0

tbegin = 0
tend = 1250
vt = seq(tbegin ,tend,1)

gamma = 1/3#0.3

RO = 1.2#1.48
beta0 = ROxgamma
B = 0.01

mu = 0.01

nu = 0.01

phi =0
epsilonl = 0.3

vparameters = c(gamma—gamma, betaO=beta0 , phi=phi, epsilon=epsilonl ,mu=mu,B=B)
inits = ¢(S=S_0,I=I_0,R=R_0)

solved _model = as.data.frame(lsoda(inits, vt, derivative_calc_func_with_demographics, vparameters))

vS = solved _model$S
vl = solved _model$I
vR = solved _model$R
vtime = solved _model$time

vnpop = vS+vI4+vR

#1(

ymin = 0.9*min(vS/vnpop)

plot (vtime ,vS/vnpop,type="1” ,xlab="time” ,

ylab="fraction_susceptible” ,ylim=c(ymin,1),lwd=3,main=substitute (paste(” Susceptible ,_.R0=",R0),list (RO=R0)))
iind = which.min(abs(vS/vnpop—1/R0)) # find the indexz at which S/N is equal to 1/R0O

legend (” bottomright” ,legend=c(” total _susceptibles”),bty="n” ,lwd=3,col=c(1),cex=1.0)

#)

#2(

plot (vtime , vl /npop,type="1" ,xlab="time” ,

ylab="fraction_infected” ,ylim=c(0,0.2) ,lwd=3,col=4,main=substitute (paste(” Infective ,_.R0=" ,R0),list (RO=R0)))
n=length (vtime)

lines (vtime [2:n],—diff(vS)/(diff(vtime)*vnpop[l:(n—1)]),type="1" ,lwd=3,col=2)

legend (11.5,0.21,

legend=c(” total_infected-(prevalence)” ,"newly_infected /day_-(incidence)”),bty="n" ,lwd=3,col=c(4,2))
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#)

#3(

plot (vtime ,log(vI/vnpop),type="1" ,xlab="time” ,

ylab="1log (fraction_infected)” ,lwd=3,col=4,main=substitute (paste(”Log_(Infected),_-R0=",R0),list (RO=R0)))
legend (650, —19.5,legend=c(” log (Infected)”),bty="n” ,lwd=3,col=c(4) ,cex=1)

#)

#4.(

plot (vtime ,vR/npop,type="1" ,xlab="time” ,

ylab="fraction_recovered” ,ylim=c(0,0.8) ,lwd=3,col=1,main=substitute (paste(” Recovery ,_.R0=" ,R0),list (RO=R0)))
lines (vtime [2:n],diff(vR)/(diff(vtime)*vnpop[l:(n—1)]),type="1" ,lwd=3,col=2)

legend (” topright” ,legend=c(” total_recovery” ,”newly._recoverd/day_(incidence)”),bty="n" ,lwd=3,col=c(1,2),cex=1)
#)

npop = 1000

I_.0 = 10

R_.0 =0

S-0 = npop—I_0-R_0

tbegin = 0
tend = 1250

vt = seq(tbegin ,tend, 1)

gamma = 1/3#0.3

RO = 1.7T#1.48
betal0 = RO*xgamma
B = 0.01
mu = 0.01
nu = 0.01
phi =0

epsilonl = 0.3

vparameters = c(gamma—gamma, betaO=beta0 , phi=phi, epsilon=epsilonl ,mu=mu)
inits = ¢(S=S_-0,I=I_0,R=R_0)

solved _model = as.data.frame(lsoda(inits , vt, derivative_calc_func_with_demographics, vparameters))

vS = solved _model$S
vl = solved _model$I
vR = solved _model$R
vtime = solved_model$time

vnpop = vS+vI4vR

#1(

ymin = 0.9*min(vS/vnpop)

plot (vtime ,vS/vnpop,type="1" ,xlab="time” ,

ylab="fraction_susceptible” ,ylim=c(ymin,1l),lwd=3,main=substitute (paste(” Susceptible ,_.R0=",R0),list (RO=R0)))
iind = which.min(abs(vS/vnpop—1/R0)) # find the index at which S/N is equal to 1/RO

legend (" bottomright” ,legend=c(” total_susceptibles” ) ,bty="n” ,lwd=3,col=c(1),cex=1.0)

#)

#2(

plot (vtime , vI/npop,type="1" ,xlab="time” ,

ylab="fraction._infected” ,ylim=c(0,0.2) ,lwd=3,col=4,main=substitute (paste(” Infective ,.R0=" ,R0),list (RO=R0)))
n=length (vtime)

lines (vtime [2:n],—diff(vS)/(diff(vtime)*vnpop[l:(n—1)]),type="1" ,lwd=3,col=2)

legend (11.5,0.21,

legend=c(” total_infected_.(prevalence)” ,”newly_infected/day_(incidence)”),bty="n" ,lwd=3,col=c(4,2))

#)
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#3(

plot (vtime ,log(vI/vnpop),type="1",xlab="time” ,

ylab="1log (fraction_infected)” ,lwd=3,col=4,main=substitute(paste(”Log~(Infected),-R0=",R0),list (RO=R0)))
legend (” bottomright” ,legend=c(”log (Infected)”),bty="n" ,lwd=3,col=c(4),cex=1)

#)

#4(

plot (vtime ,vR/npop,type="1" ,xlab="time” ,

ylab="fraction._recovered” ,ylim=c(0,0.8) ,lwd=3,col=1,main=substitute (paste(” Recovery ,_R0=" ,R0),list (RO=R0)))
lines (vtime [2:n] ,diff(vR)/(diff(vtime)*vnpop[l:(n—1)]),type="1" ,lwd=3,col=2)

legend (” topright” ,legend=c(” total_recovery” ,”newly_recoverd/day._(incidence)”),bty="n" ,lwd=3,col=c(1,2),cex=1)
#)

B.4 Seasonal Transmission in the Presence of Birth

Seasonality

npop = 1000

I_.0 =10

RO =0

S-0 = npop—I_0—-R-0

tbegin = 0

tend = 1250
vt = seq(tbegin ,tend,1)

gamma = 1/3#0.3

RO = 0.98#1.48

beta0 = ROxgamma

B = 0.011

mu = 0.01

nu = 0.01

phi =0

epsilonl = 0.3

vparameters = c(gamma—gamma, betaO=beta0 , phi=phi, epsilon=epsilonl ,mu=mu, nu=nu,B=B)

inits = ¢(S=S_-0,I=I_0,R=R_0)
solved _model = as.data.frame(lsoda(inits , vt, derivative_calc_func_with_demographics, vparameters))

vS = solved _model$S
vl = solved _model$1I
vR = solved _model$R
vtime = solved _model$time

vnpop = vS+vI4+vR
mult. fig (mfrow=c (3 ,4) ,main=" Seasonal _.SIR_model_with_.B=0.011,_R0=0.98,_R0=1.20_and_R0=1.70” ,cex . main=2)

#1(
ymin = 0.9*min(vS/vnpop)

» 1 n

plot (vtime ,vS/vnpop,type= ,xlab="time” ,

ylab="fraction_susceptible” ,ylim=c(ymin,1l),lwd=3,main=substitute (paste(” Susceptible ,_.R0=",R0),list (RO=R0)))
iind = which.min(abs(vS/vnpop—1/R0)) # find the index at which S/N is equal to 1/RO

legend (" bottomright” ,legend=c(” total_susceptibles” ) ,bty="n” ,lwd=3,col=c(1),cex=1.0)

#)

#2(
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plot (vtime , vI/npop,type="1" ,xlab="time” ,

ylab="fraction_infected” ,ylim=c(0,0.03) ,lwd=3,col=4,main=substitute (paste(” Infective ,_R0=",R0),list (RO=R0)))
n=length (vtime)

lines (vtime [2:n],—diff(vS)/(diff(vtime)*vnpop[l:(n—1)]),type="1" ,lwd=3,col=2)

legend (11.5,0.21 ,legend=c(” total_.infected-(prevalence)” ,”newly_infected/day-(incidence)”),bty="n" ,lwd=3,col=c(4,2))
#)

#3(

plot (vtime ,log(vI/vnpop) ,type=
ylab="1log (fraction_infected)” ,lwd=3,col=4,main=substitute (paste(”Log_(Infected),_-R0=",R0),list (RO=R0)))
legend (” topright” ,legend=c(”log (Infected)”),bty="n" ,lwd=3,col=c(4),cex=1)

#)

71”7 ,xlab="time” ,

#4(

plot (vtime ,vR/npop,type="1" ,xlab="time” ,

ylab="fraction_recovered” ,ylim=c(0,2),lwd=3,col=1,main=substitute (paste(” Recovery , _R0=" ,R0),list (RO=R0)))
lines (vtime [2:n] ,diff(vR)/(diff(vtime)*vnpop[l:(n—1)]),type="1" ,lwd=3,col=2)

legend (” topright” ,legend=c(” total_recovery” ,”newly._recoverd/day_(incidence)”),bty="n" ,lwd=3,col=c(1,2),cex=1)

#)

#npop = 10000
npop = 1000

1.0 = 10
#I_0 = 500
R.O =0

S_-0 = npop—I_0-R_0
tbegin = 0
tend = 1250

vt = seq(tbegin ,tend,1)

gamma = 1/3#0.3

RO = 1.2#1.48
beta0 = RO*xgamma
B = 0.011

mu = 0.01

nu = 0.01

phi =0
epsilonl = 0.3

vparameters = c(gamma—=gamma, betaO=beta0 ,phi=phi, epsilon=epsilonl ,mu=mu,B=B)
inits = ¢(S=S_0,I=I_0,R=R_0)

solved _model = as.data.frame(lsoda(inits, vt, derivative_calc_func_with_demographics, vparameters))

vS = solved _model$S
vl = solved_model$I
vR = solved _model$R
vtime = solved _model$time

vnpop = vS+vI+vR

#1(
ymin = 0.9*min(vS/vnpop)

plot (vtime ,vS/vnpop,type="1” ,xlab="time” ,

ylab="fraction_susceptible” ,ylim=c(ymin,1l),lwd=3,main=substitute (paste(” Susceptible ,_.R0=",R0),list (RO=R0)))
iind = which.min(abs(vS/vnpop—1/R0)) # find the indezx at which S/N is equal to 1/RO

legend (" bottomright” ,legend=c(” total_susceptibles” ) ,bty="n” ,lwd=3,col=c(1),cex=1.0)

#)

#2(
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plot (vtime , vI/npop,type="1" ,xlab="time” ,

ylab="fraction_infected” ,ylim=c(0,0.25) ,lwd=3,col=4,main=substitute (paste(” Infective ,_R0=",R0),list (RO=R0)))
n=length (vtime)

lines (vtime [2:n],—diff(vS)/(diff(vtime)*vnpop[l:(n—1)]),type="1" ,lwd=3,col=2)

legend (” topright” ,legend=c(” total_infected -(prevalence)” ,”newly_infected /day—(incidence)”),bty="n” ,lwd=3,col=c(4,2))
#)

#3(

plot (vtime ,log(vI/vnpop) ,type=
ylab="1log (fraction_infected)” ,lwd=3,col=4,main=substitute (paste(”Log_(Infected),_-R0=",R0),list (RO=R0)))
legend (650, —18.8 ,legend=c(” log (Infected)”),bty="n” ,lwd=3,col=c(4) ,cex=1)

#)

71”7 ,xlab="time” ,

#4(

plot (vtime ,vR/npop,type="1" ,xlab="time” ,

ylab="fraction_recovered” ,ylim=c(0,2),lwd=3,col=1,main=substitute (paste(” Recovery , _R0=" ,R0),list (RO=R0)))
lines (vtime [2:n] ,diff(vR)/(diff(vtime)*vnpop[l:(n—1)]),type="1" ,lwd=3,col=2)

legend (” topright” ,legend=c(” total_recovery” ,”newly._recoverd/day_(incidence)”),bty="n" ,lwd=3,col=c(1,2),cex=1)
#)

npop = 1000

I_.0 =10

#I_0 = 500

R_0 0

S-0 npop—I_0—-R_0

tbegin = 0
tend = 1250
vt = seq(tbegin ,tend,1)

gamma = 1/3#0.3

RO = 1.7#1.48
beta0 = RO*xgamma
B = 0.011

mu = 0.01

nu = 0.01

phi =0
epsilonl = 0.3

vparameters = c(gamma—gamma, beta0=beta0 , phi=phi, epsilon=epsilonl ,mu=mu)
inits = ¢(S=S_.0,I=I_0,R=R_0)

solved _model = as.data.frame(lsoda(inits, vt, derivative_calc_func_with_demographics, vparameters))

vS solved _model8$S

vl = solved _model$1I
vR = solved _model$R
vtime = solved_model$time

vnpop = vS+vI4vR

#1(

ymin = 0.9*min(vS/vnpop)
plot (vtime ,vS/vnpop,type="1” ,xlab="time” ,

ylab="fraction_susceptible” ,ylim=c(ymin,1l),lwd=3,main=substitute (paste(” Susceptible ,_.R0=",R0),list (RO=R0)))
iind = which.min(abs(vS/vnpop—1/R0)) # find the indezx at which S/N is equal to 1/RO

legend (" bottomright” ,legend=c(” total_susceptibles” ) ,bty="n” ,lwd=3,col=c(1),cex=1.0)

#)

#2(
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plot (vtime , vI/npop,type="1" ,xlab="time” ,

ylab="fraction_infected” ,ylim=c(0,0.22) ,lwd=3,col=4,main=substitute (paste(” Infective ,_R0=",R0),list (RO=R0)))
n=length (vtime)

lines (vtime [2:n],—diff(vS)/(diff(vtime)*vnpop[l:(n—1)]),type="1" ,lwd=3,col=2)

legend (” topright” ,

legend=c(” total_infected .(prevalence)” ,"newly_infected /day_(incidence)”),bty="n" ,lwd=3,col=c(4,2))

#)

#3(
plot (vtime ,log(vI/vnpop) ,type=
ylab="1log (fraction_infected)” ,lwd=3,col=4,main=substitute(paste(”Log_(Infected),_R0=",R0),list (RO=R0)))

717  xlab="time” ,
legend (” bottomright” ,legend=c(”log (Infected)”),bty="n" ,lwd=3,col=c(4),cex=1)
#)

#4(

plot (vtime ,vR/npop , type=
ylab="fraction._recovered” ,ylim=c(0,2),lwd=3,col=1,main=substitute (paste(” Recovery , _R0=" ,R0),list (RO=R0)))
lines (vtime [2:n] ,diff(vR)/(diff(vtime)*vnpop[l:(n—1)]),type="1" ,lwd=3,col=2)

717 xlab="time” ,

legend (" topright”,
legend=c(” total._.recovery” ,”newly_recoverd/day—(incidence)”),bty="n” ,lwd=3,col=c(1,2),cex=1)

#)

B.5 Comparisons: Using MCMUC for parameter es-

timation

SIRfunc=function(t, x, vparameters){
S = x[1] # the walue of S at time t
I x[2] # the wvalue of I at time t
R x[3] # the wvalue of R at time t

if (I<0) I=0 # this is a cross check to ensure that we always have sensical wvalues of I

with(as.list (vparameters),{

npop = SH+I4R # the population size is always S+I+R because there are mo births or deaths in the model

dS = —betaxS*I/npop # the derivative of S wrt time

dI = +beta*S*xI/npop — gammaxI # the derivative of I wrt time

dR = +gammasxI # the derivative of R wrt time

out = ¢(dS,dI,dR)

list (out)

1)

¥
# Let’s set up the model parameters, and some initial conditions at time t=0
gamma = 0.3 # recovery period in days {—1}
RO = 1.48 # RO of R of the disease

beta = gammaxR0

N = 100 # population size

I_.0 =10 # number intially infected people in the population
S_0 = N-I_0
R_.0 =0

vt = seq(0,30,1)
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vparameters=c (gamma—gamma, beta=beta)
inits=c(S=S_0,I=I_0,R=R_0)
SIRfunc,

solved _modell = as.data.frame(lsoda (inits , vt,

library (MultiBD)

loglik _sir <— function (param, data) {

alpha <— exp(param|[1]) # Rates must be non—negative
beta <— exp(param[2])

# Set—up SIR model

dratesl <— function(a, b) { 0 }

brates2 <— function(a, b) { 0 }

drates2 <— function(a, b) { alpha * b }

transl2 <— function(a, b) { beta x a * b }

sum(sapply (1:(nrow(data) — 1), # Sum across all time steps k
function (k) {

log (

dbd _prob ( # Compute the transition probability matriz
t = data$time[k + 1] — dataS$time[k], # Time increment
a0 = data$S[k], b0 = dataS$I[k], # From: S(t_k), I(t-k)
dratesl , brates2, drates2, transl2,

a = data$S[k + 1], B = data$S[k]| + data$I[k] — data$S[k + 1],
computeMode = 4, nblocks = 80 # Compute using 4 threads
)[1, data$I[k + 1] + 1] # To: S(t_(k+1)), I(t_-(k+1))

)

)

¥

logprior <— function (param) {

log_alpha <— param|[1]

log _beta <— param [2]

dnorm(log_alpha, mean = 0, sd = 100, log = TRUE) +
dnorm(log_beta, mean = 0, sd = 100, log = TRUE)

}

source (”http://bioconductor
biocLite (”graph”)

biocLite (" Rgraphviz”)
#install.packages (” MCMCpack” ,
library (MCMCpack)

.org/biocLite .R”)

repos =

(alpha0 <— 0.4)
(betald <— 0.35)

inter1=1000

post _sample <— MCMCmetroplR(fun =
theta.init = log(c(alpha0, beta0)),
200)

function (param) {

mcmec = interl , burnin =

#The
#000000000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaA

Metropolis acceptance rate was 0.zzzz

mult. fig (mfrow=c(2,1))
e

xlab =
xlab =

plot (as.vector (post_sample[,1]), type =

plot (as.vector (post_sample[,2]), type = 1",

?Iteration”

s

”"Iteration”,

vparameters))

"http://cran.us.r—project.org’)

loglik _sir (param,

ylab
ylab

solved _modell) + logprior (param) },

98

expression (log (hat(beta)[1])))
expression (log (hat(gamma)[1])))

3.89
0.0212

#alphal <—
#betal <—
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#post_sample <— MCMCmetropIR(fun = function (param) {

#theta.init = log(c(alphaO, betal)),
#meme = 1000, burnin = 0)

#alpha0 <— beta
#beta0 <— gamma

loglik _sir (param,

99

Eyam) + logprior (param) 1},

#post_sample <— MCMCmetroplR (fun = function (param) { loglik_sir (param, solved_model2) + logprior (param) },
#theta.init = log(c(alphaO, betal)),

#meme = 1000, burnin = 200)

#mult . fig (mfrow=c (8,4))

#plot (as.vector (post_sample[,1]), type = "17, zlab = = ezpression (log (hat(beta)[2])))
#plot (as.vector (post_sample[,2]), type = 717, zlab = = ezpression (log (hat(gamma)[2])))
#npop = 10000

npop = 1000

npop2 = npop

I_0 10

#I_0 = 500

RO =0

S-0 = npop—I_0-R_0

tbegin = 0

tend = 20

vt = seq(tbegin ,tend, 1)

gamma = 0.3#1/3

RO = 1.48#0.98

beta = RO*gamma

mu = 0.01

nu = 0.01

vparameters = c(gamma—gamma, beta=beta ,mu=mu)

inits = ¢(S=S_-0,I=I_0,R=R_0)

solved _model = as.data.frame(lsoda(inits , vt, derivative_calc_func_with_demographics, vparameters))
Time = solved _model$time

##DS = ceiling (solved_model$S)

##DI = ceiling (solved_model$1)

##DR = ceiling (solved _model8R)

DS = floor (solved _model$S)

DI = floor (solved _model8I)

DR = floor (solved _model$R)

solved _model2 = data.frame (time=Time, S=DS, I=DI ,R=DR)

solved _model2

vS =

vI

vR

solved —model28S
solved _model281
solved _model2$R

vtime = solved_model28time

vnpop

= vS+vI4vR

library (MultiBD)

loglik _sir <— function (param, data) {
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alpha <— exp(param[1]) # Rates must be non—negative

beta <— exp(param[2])

# Set—up SIR model

dratesl <— function(a, b) { 0 }

brates2 <— function(a, b) { 0 }

drates2 <— function(a, b) { alpha x b }

transl2 <— function(a, b) { beta * a * b }

sum(sapply (1:(nrow(data) — 1), # Sum across all time steps k
function (k) {

log (

dbd_prob ( # Compute the transition probability matriz

t = data$time [k + 1] — dataS$timel[k], # Time increment

a0 = data$S[k], b0 = dataS$I[k], # From: S(t_k), I(t_-k)
dratesl , brates2, drates2, transl2,

a = data$S[k + 1], B = data$S[k]| + data$I[k] — data$S[k + 1],
computeMode = 4, nblocks = 80 # Compute using 4 threads

)[1, data8I[k + 1] + 1] # To: S(t_(k+1)), I(t_-(k+1))

)

1))

¥

logprior <— function (param) {

log_alpha <— param|[1]

log _beta <— param [2]

dnorm(log_alpha, mean = 0, sd = 100, log = TRUE) +
dnorm(log_beta, mean = 0, sd = 100, log = TRUE)

}

(alpha0 <— 0.4)
(betald <— 0.35)

inter2=1000
post_samplel <— MCMCmetroplR(fun = function(param) { loglik _sir (param, solved_model2) + logprior (param) 1},
theta.init = log(c(alphaO, beta0l)),

mcme = inter2 , burnin = 200)

freceuueeeeeeeeeeeEaeaeeeeeeeeaeeeeeeeeeeaeeeeeeeeeeeeeeeeee)

#The Metropolis acceptance rate was 0.zzzz

mult. fig (mfrow=c(2,1))
plot (as.vector (post_samplel[,1]), type = 71”, xlab = "Iteration”, ylab = expression(log(hat(beta)[2])))
plot (as.vector (post_samplel[,2]), type = 717, xlab = "Iteration”, ylab = expression(log(hat(gamma)[2])))

mult. fig (mfrow=c (4,1))

plot (as.vector (post_sample[,1]), type = "1”, col = "red”, xlab = ”"Iteration”,

ylab = expression(log(hat(beta)[1])), main = paste(” Population_=" ,npopl, ”,” ,interl ,”interations”))#alpha
plot(as.vector(post_sample[,2]), type = ”1”, col = ”"blue”, xlab = ”Iteration”,

ylab = expression(log(hat(gamma)[1])) ,main = paste(” Population_=" ,npopl, ”,” ,interl ,”interations”))

plot (as.vector (post_samplel[,1]), type = 71”7, col = ”"red”, lty = 6, lwd = 1.9, xlab = ”Iteration”,

ylab = expression(log(hat(beta)[2])), main = paste(” Population_=" ,npop2, ”,” ,inter2 ,”interations”))

plot (as.vector (post_samplel[,2]), type = 71”7, col = ”"blue”, Ity = 6, xlab = ”"Iteration”,

» »

,npop2, ,7 ,inter2 ,

»

ylab = expression(log(hat(gamma)[2])), main = paste(” Population.= interations”))

library (ggplot2)
x = as.vector (post_sample[,1])
y = as.vector(post_sample[,2])

df <— data.frame(x, y)

plotA = ggplot (df,aes(x = x)) + geom_density () + labs(x = expression(”log.” (hat(beta)[1])),

>

y = "Probability_density”, title = paste(” Population_.=" ,npopl, ”7,” ,interl ,

”interations”))

plotB = ggplot (df,aes(x = y)) + geom_density () + labs(x = expression(”log.” (hat(gamma)|[1])) ,

»

y = ”?Probability_density”, title = paste(”Population.=" ,npopl, ”,” ,interl ,

”interations”))
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plotAB = ggplot(df,aes(x = x,y = y)) +

stat _density2d (aes(fill = ..level..), geom = ”"polygon”, h = 0.3) +
scale_fill _gradient (low = ”grey85”, high = ”grey35”, guide = FALSE) +
xlab (expression(log (hat(beta)[1]))) +

» » o»

ylab (expression(log (hat(gamma)[1]))) + ggtitle (paste(” Population._=" ,npopl, ,7 ,interl ,”interations”))

library (ggplot2)
x = as.vector (post_samplel[,1])
y = as.vector(post_samplel[,2])

df2 <— data.frame(x, y)

plotC = ggplot (df2,aes(x)) + geom_density () + labs(x = expression(”log_-" (hat(beta)[2])),

y = 7"Probability_density”, title = paste(” Population._=" ,npop2, 7 ,” ,inter2 ,”interations”))

plotD = ggplot (df2,aes(y)) + geom_density () + labs(x = expression(”log._” (hat(gamma)[2])) ,

y = ”?Probability_density”, title = paste(”Population_=" ,npop2, 7 ,” ,inter2 ,”interations”))

plotCD = ggplot (df2,aes(x = x,y = y)) +

stat _density2d (aes(fill = ..level..), geom = ”polygon”, h = 0.009) +

scale_fill _gradient (low = ”grey85”, high = ”grey35”, guide = FALSE) +

xlab (expression(log (hat(beta)[2]))) +

ylab (expression(log (hat(gamma)[2]))) + ggtitle (paste(” Population_=" ,npop2, ”,” ,inter2 ,”interations”))
#install.packages (” ggpubr”)

library (ggpubr)

ggarrange (plotA, plotB, plotC, plotD, ncol = 1, nrow = 4)

ggarrange (plotAB, plotCD, ncol = 1, nrow = 2)

Quantilel = quantile(exp(post_sample[,1]), probs = ¢(0.025,0.5,0.975))
#c(Mean = mean(exp (post_sample[,1])), Median = median (exp (post_sample[,1])),SD = sd(exp(post_sample[,1])))

summary (exp ( post _sample[,1]))

Quantile2 = quantile(exp(post_sample[,2]), probs = ¢(0.025,0.5,0.975))
#c (Mean = mean(ezp (post_sample[,2])), Median = median (exp (post_sample[,2])),SD = sd(exp(post_sample[,2])))

summary (exp ( post _sample[,2]))

Quantile3 = quantile(exp(post_samplel[,1]), probs = ¢(0.025,0.5,0.975))
#c (Mean = mean(exp (post_samplel [,1])), Median = median (exp (post_samplel [,1])) ,SD = sd(exp(post_samplel [,1])))

summary (exp ( post _samplel [ ,1]))

Quantile4 = quantile(exp(post_samplel[,2]), probs = ¢(0.025,0.5,0.975))
#c(Mean = mean(ezxzp (post_samplel [,2])), Median = median (exp (post_samplel [,2])),SD = sd(exp(post_samplel[,2])))

summary (exp ( post _samplel [ ,2]))

## Define as a function
epi203 <— function(pars){

## Show parameters
print (pars)

## Additional parameters
times <— seq(from = 0, to = 60, by = 1) # we want to run the model for 3000 time steps

yinit <— ¢(Susc = npopl — I_0, Infected = I_0, Recovered = 0) # this parameter sets the initial conditions

## below is the code for the actual model including the equations that you should recognize

SIR _model <— function (times, yinit, pars){

with (as.list (c(yinit ,pars)), {
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dSusc <— birth — betaxInfected*Susc/(Susct+Infected+Recovered)

dInfected <—
dRecovered <—

return(list (c¢(dSusc, dInfected,

## run the ode solver for the funct

## return the value of each compartment

results <— ode(func = SIR_model, times

results <— as.data.frame(results)

## Return result

return(results)

## Define as a function

epi204 <— function(pars){

## Show parameters
print (pars)

## Additional parameters
times <— seq(from = 0, to = 60, by

## below is the code for the actual

ion

= 1)
yinit <— c¢(Susc = npop2 — I_0, Infected =1

model including the equations

specified (function
(Susc, Infected, Recovered) for

-0

recovery*Infected —

dRecovered)))})

# we want to run the

, Recovered = 0) # this

death*Recovered

defined abowve

= times, y = yinit, parms = pars)

parameter

is used)

each time

SIR _model <— function (times, yinit, pars){
with (as.list (c(yinit ,pars)), {
dSusc <— birth — betaxInfected*Susc/(Susct+Infected+Recovered)

dInfected <—
dRecovered <—

return(list (c(dSusc, dInfected,

## run the ode solver for the function

recovery*Infected —

dRecovered)))})

betaxInfected*Susc/(Susct+Infected+Recovered) —

model for

sets

step .

that you should recognize

death*xRecovered

specified (function defined above

is used)

## return the wvalue of each compartment (Susc, Infected, Recovered) for each time

results <— ode(func = SIR_model, times = times, y = yinit, parms = pars)
results <— as.data.frame(results)
## Return result
return(results)
¥
test.parsl <— c(beta = 1.48%0.3, recovery = 0.3, death = 0, birth = 0)
resultsl <— epi203(test.parsl)
test.pars2 <— c(beta = Quantilel [[1]], recovery = Quantilel [[3]], death = 0, birth =
results2 <— epi203(test.pars2)
test.pars3 <— c(beta = Quantile2 [[1]], recovery = Quantile2 [[3]], death = 0, birth =
results3 <— epi203(test.pars3)
test.parsl.l <— c(beta = 1.48%0.3, recovery = 0.3, death = 0, birth = 0)
resultsl.1 <— epi204 (test.parsl.l)
test.parsd <— c(beta = Quantile3 [[1]], recovery = Quantile4 [[1]], death = 0, birth =
results4 <— epi204(test.pars4d)
test.parsb <— c(beta = Quantile3 [[3]], recovery = Quantile4 [[3]], death = 0, birth =

resultsb <— epi204 (test.parsh)

step .

0)

0)

0)

0)

3000 time
the

102

initial

recovery*Infected —

death*Susc

betaxInfected*Susc/(Susct+Infected+Recovered) — recoveryxInfected — deathxInfected

steps

conditions

death*Susc
deathxInfected
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mult . fig (mfrow=c(2,1))

##First parameter estimation

plot(resultsl [, 1], resultsl[, 2], type="0", col="blue”, pch="", lty=1, ylim=c(0,npopl+10),
xlab = ”Time” , ylab = ”Individuals”,
main = paste(”SIR_epidemics:_Population_=" ,npopl, 7 ,” ,interl ,”interations”))

legend (” topright”, col=1:3, legend=c(”S”, "1”, "R”), lwd=1)

lines(resultsl[, 1], resultsl[, 3], col="red”, pch=1)

lines(resultsl [, 1], resultsl[, 4], col="green”, pch=1)

#Stochastic

lines (results2[, 1], results2[, 2], col="blue”, lty=3)

lines(results2[, 1], results2[, 3], col="red”, lty=3)

lines(results2[, 1], results2[, 4], col="green”, lty=3)

lines(results3 [, 1], results3[, 2], col="blue”, 1ty =3)

lines(results3 [, 1], results3[, 3], col="red”, lty=3)

lines(results3 [, 1], results3[, 4], col="green”, Ity =3)

##Second parameter estimation

plot(resultsl.1[, 1], resultsl.1[, 2], type="0”, col="blue”, pch="", lty=1, ylim=c(0,npop2+10),
xlab = ”Time” , ylab = ”Individuals”,
main = paste(”SIR_epidemics:_Population_=" ,npop2, ”,” ,inter2 ,”interations”))

legend (” topright”, col=1:3, legend=c(”S”, ”1”, "R”), lwd=1)

lines(resultsl.1[, 1], resultsl.1[, 3], col="red”, pch=1)

lines(resultsl.1[, 1], resultsl.1[, 4], col="green”, pch=1)

#Stochastic

lines(results4 [, 1], results4[, 2], col="blue”, lty=4)

lines(results4 [, 1], results4[, 3], col="red”, lty=4)

lines(results4 [, 1], results4[, 4], col="green”, lty=4)

lines (results5[, 1], results5[, 2], col="blue”, lty=4)

lines(results5[, 1], results5[, 3], col="red”, lty=4)
lines(results5[, 1], results5[, 4], col="green”, lty=4)
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Appendix C

Chapter 5: R script

C.1 SIR function (MCMOQ)

rm(list = 1s(all = TRUE)) # resets R to fresh

require (” sfsmisc”)

require (” deSolve”)

niter = 20

SIRfunc=function(t, x, vparameters){

S = x[1]
I = x[2]
R = x[3]

if (I1<0) I=0

with (as.list (vparameters),{
npop = S+I4R
dS = —betaxS*I/npop
dI = +beta*xS*I/npop — gammaxI
dR = +gammasx I
out = c(dS,dI,dR)
list (out)

H

RO = 1.48
beta = gammaxR0O
N = 10000

I_.0 =10

S_0 = N-I_0

RO =0

vt = seq(0,1000,1)
vparameters=c (gamma—gamma, beta=beta)
inits=c(S=S_0,I=I_0,R=R_0)

sirmodel = as.data.frame(lsoda(inits, vt, SIRfunc, vparameters))
zstate = list ()
i =1
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for (iter in 1l:niter){
time = 0

vstate = ¢(S-0,I_0,R_0)

K = length(vstate)

J =2

lambda = matrix (0,nrow=J,ncol=length(vstate))
lambda[1l,] = ¢(—1,1,0)

lambda[2,] = c¢(0,—1,1)

while(vstate[2] >0&vstate[1] >0){
zstate [[1]] = c(vstate ,time,iter)
S = vstate [1]
I = vstate [2]
R = vstate [3]

vec_p = c(betaxSxI/N
,gammax I )

delta_t = 1/sum(vec_p)

vec_1 = rpois(length(vec_p),vec_p*xdelta_t)
vstate = vstate + vec_1%*%%lambda
vstate [vstate <0] = 0
i= i1
time = time + delta_t
}
cat (”Doing_realisation:” ,iter ,niter ,”_.” ,time, vstate ,”\n”)

par (mfrow=c (2,2))

vS = sapply(zstate, 7 [[”, 1)
vl = sapply(zstate, " [[7, 2)
vR = sapply(zstate, ” [[”, 3)
vtime = sapply (zstate, 7 [[”, 4)
viter = sapply(zstate, " [[”, 5)

mult . fig (4)

for (iter in 1l:mniter){
1 = which(viter==iter)
if (iter==1){
plot (vtime[1l],vS[1]/N,type="1" ,xlab="Time” ,col=4,cex.lab=1.2,
ylab="Fraction_susceptible” ,main="Susceptible” ,ylim=c(0,1),xlim=c (0 ,max(vtime)))
}else{
lines (vtime[1] ,vS[1]/N,type="1" ,col=4)

}
lines (sirmodel$time, sirmodel$S/N, col=2,lwd=2)
legend (” topright” ,legend=c(” Deterministic” ,”"MCMC’ ) ,col=c(2,4) ,lwd=4,bty="0" ,cex=1)

for (iter in l:mniter){
1 = which(viter==iter)
if (iter==1){
plot (vtime[1l],vI[1]/N,xlab="Time” ,col=4,cex.lab=1.2,ylab="Fraction_infective” ,main="Infective”
}else{
lines (vtime[1],vI[1l]/N,type="1",col=4)

}

lines (sirmodel$time,sirmodel$I/N, col=2,lwd=2)
legend (” topright” ,legend=c(” Deterministic” ,”"MCMC” ) ,col=c(2,4) ,lwd=4,bty="0" ,cex=1)

vfinal = numeric(0)

,ylim=c (0,1.1*xmax|
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for (iter in 1l:niter){
1 = which(viter==iter)
vfinal = append(vfinal ;max(vR[1]/N))
if (iter==1){
plot (vtime[1l],vR[1] /N, xlab="Time” ,col=4,cex.lab=1.2,
ylab="Fraction_recovered” ,main="Recovery” ,ylim=c(0,1.0) ,type="1" ,xlim=c (0 ,max(vtime)))
}else{
lines (vtime[1l],vR[1]/N,type="1" ,col=4)

}
lines (sirmodel$time, sirmodel$R/N, col=2,lwd=2)
legend (” topright” ,legend=c(” Deterministic” ,”"MCMC” ) ,col=c(2,4) ,lwd=4,bty="0" ,cex=1)

hist (vfinal ,breaks=seq(0,1,0.05),xlab="Total_number_infected” ,main=paste(” Final_size_and_N=" ,N))
Rmax = max(sirmodel$R) /N

lines (c(Rmax,Rmax),c(0,1e6),col=2,lty=3,lwd=3)

cat (”"The_expected_probability —of _outbreak_is_=.”,1—(1/R0)"I1_.0,”\n")
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Appendix D

Chapter 6: R script

D.1 SIR function (Case study:

npop-h = 10

I_h0 =1

S_h0 = npop-h — I_hO
R_h0 = 0

npop-v = 5

I_v0O = 2

S_v0 = npop_-v — I_vO0

beta_hv = 1.0
beta_vh = 0.9

b_-hv = 1.0

b_vh = 1.0

C_hv = beta_hvxb_hv
C_vh = beta_vhxb_vh
mu_-h = 0.1 #1/25000
mu-v = 0.1 #1/4
gamma_h = 0.1 #1/3
p=20

R1-0=S_h0x*(C_hv*I_v0)/(gamma_h+npop_-h)

tbegin = 0
tend = 30
vt = seq(tbegin ,tend,1)

vparameters = c(beta_hv=beta_hv,
beta_vh=beta_vh,
b_hv=b_hv,
b_vh=b_vh,
C_hv=C_hv,
C_vh=C_vh,
mu-h=mu_h,
mu_v=mu._v,
gamma_h=gamma_h,
p=p)

inits = ¢(S-h=S_ho0,
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I_h=I_hO,
R_h=R_ho0,
S_v=S_v0,
I_v=I_vO0)

solved _model = as.data.frame(lsoda(inits , vt, derivative_calc_func_with_dengue, vparameters))
vS_h = solved _model$S_h

vI_h = solved _-model$I_h
vR_h = solved _model$R_h

vS_v = solved _model$S_v
vI_v = solved _model$I_v
vtime = solved_model$time

vonpop-h = vS_h + vI_h 4+ vR_h

vnpop-v = vS_v + vI_v

mult. fig (mfrow=c(2,2),main="SIR_Model_with_Vector” ,cex.main=2)

#1(

#yminl = 0.9xmin(vS_h/vnpop_h)
plot (vtime ,vS_h,type="1" ,col="yellow” ,panel. first = grid(col="darkgray”)
,xlab="time_(in~.days)” ,ylab="Number_of_population” ,ylim=c(0,12),lwd=3,
main=substitute (paste(” Tot.human, _N_h=" ,npop_h,” _and

Tot.vector ,_.N_v=" ,npop_v), list (npop_h=npop_h,npop_v=npop-_-v)))
lines (vtime ,vI_h,type="1" ,col="blue” ,lwd=3)

lines (vtime ,vR_h,type="1" ,col="red” ,lwd=3)

lines (vtime ,vS_v,type="1" ,col="green” ,1lwd=3)

lines (vtime ,vI_v,type="1" ,col="purple” ,lwd=3)

legend (” topright” ,legend=c(” Suceptible _human” ,

?Infected _human” ,” Recovered _human” ,” Suceptible_vector” ,” Infected_vector”),bty="n",
lwd=3,col=c(” yellow” ,” blue” ,”red” ,” green” ,” purple” ), cex=1)
#2(

#yminl = 0.9xmin(vS_h/vnpop_h)
plot (vtime ,vS_h/vnpop_-h,type="1" ,col="yellow” ,panel.

first = grid(col="darkgray”),xlab="time_(in_days)” ,ylab="Fraction_of_population” ,ylim=c(0,1),lwd=3,
main=substitute (paste (” Tot.human, _N_h=" ,npop_h,” _and

Tot.vector ,_.N_v=" ,npop-v), list (npop_-h=npop_-h,npop_v=npop-v)))
lines (vtime ,vI_h/vnpop_-h,type="1" ,col="blue” ,lwd=3)

lines (vtime ,vR_h/vnpop_h, type="1" ,col="red” ,lwd=3)

lines (vtime ,vS_v/vnpop_-v,type="1" ,col="green” ,lwd=3)

» 1

lines (vtime,vI_v/vnpop_v,type= ,col="purple” ,lwd=3)

npop-h = 500

I_hO = 10
S-h0 = npop-h — I_hO
R_hO =0

npop-v = 100
I_v0O =5
S_v0 = npop-v — I_v0

beta_hv = 1.0
beta_vh = 0.9

b_hv = 1.0

b_vh = 1.0

C_hv = beta_hvxb_hv
C_vh = beta_vhxb_vh
mu_h = 0.1 #1/25000
mu_v = 0.1 #1/4
gamma_h = 0.1 #1/3
p=20
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#(R0O = ((C-hv)/npop_h)*S_h0)/gamma_h
#(R-0 = R_0%1_h0)

#(R-0=(C_hvxC_vh )/ (mu_v* (mu_h+gamma-h)))
R2_0=S_h0x*(C_hv*I_v0)/(gamma_h+npop_-h)

tbegin = 0
tend = 30
vt = seq(tbegin ,tend, 1)

vparameters = c(beta_hv=beta_hv,
beta_vh=beta_vh,
b_hv=b_hv,
b_vh=b_vh,
C_hv=C_hv,
C_vh=C_vh,
mu_h=mu_h
mu_v=mu-v,
gamma_h=gamma_h ,
p=p)
inits = ¢(S_-h=S_ho,
I_h=I_ho,
R_h=R_ho,
S_v=S_v0,
I_v=I_vO0)

solved _model = as.data.frame(lsoda(inits , vt, derivative_calc_func_with_dengue,

vS_h = solved _model$S_h
vI_h = solved _model$I_h
vR_h = solved _model$R_h

vS_v = solved _model$S_v
vI_v = solved _model$I_v
vtime = solved _model$time

vnpop-h = vS_h + vI_h 4+ vR_h
vS_v + vI_v

vnpop -v

#1(
ymaxl = 1.1s%max(vnpop-h)

plot (vtime ,vS_h,type="1" ,col="yellow” ,panel. first =
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vparameters))

grid (col="darkgray”),xlab="time_(in_days)”,

ylab="Number_of_population” ,ylim=c(0,ymax1l),lwd=3,main=substitute (paste(” Tot.human, _N_h=" ,npop_-h,”

and_Tot.vector , _.N_v=" ,npop_v),list (npop_-h=npop_h,npop_v=npop_v)))

lines (vtime ,vI_h,type="1" ,col="blue” ,lwd=3)
lines (vtime ,vR_h,type="1" ,col="red” ,lwd=3)
lines (vtime ,vS_v,type="1" ,col="green” ,lwd=3)
»n

lines (vtime ,vI_v,type= ,col="purple” ,lwd=3)

legend (” topright” ,legend=c(” Suceptible _human” ,” Infected _human”

?Infected ~vector”),bty="n” ,lwd=3,col=c(” yellow” ,” blue” ,”red” ,” green”

#2(
#yminl = 0.9%xmin(vS_h/vnpop_h)

plot (vtime ,vS_h/vnpop_-h,type="1" ,col="yellow” ,panel. first
xlab="time_(in_days)” ,ylab="Fraction_of_population” ,ylim=c(0,1),lwd=3,

main=substitute (paste(” Tot.human, _N_h=" ,npop_-h,” _and_Tot.vector , .N_v="

list (npop-h=npop_h,npop_v=npop_v)))

lines (vtime,vI_h/vnpop_h,type="1" ,col="blue” ,lwd=3)
lines (vtime ,vR_h/vnpop_h, type="1" ,col="red” ,lwd=3)
»1»

lines (vtime ,vS_v/vnpop_v,type= ,col="green” ,lwd=3)

lines (vtime,vI_v/vnpop_v,type="1"

c(R1-0,R2_0)

,col="purple” ,lwd=3)

,”Recovered _human”

grid (col="darkgray” ),

,npop_v),

,”Suceptible_vector”

,”purple”) ,cex=1)



