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Abstract

The goal of this thesis is to analyse the temporal and spatial trends of house

prices in Norway in a Bayesian setting. We will perform regression analy-

sis of the data which will be modelled using structured additive regression

models. This choice was made because structured additive regression models

can be put into a computational framework of latent Gaussian models that

can be analysed using integrated nested Laplace approximation (INLA). In

addition, in a Bayesian setting each of the model parameters have their own

posterior distributions from which we can get posterior means and credible

intervals.

The main findings were that after applying simple linear regression, new

houses have both higher prices and higher price growths than used houses

for all counties. Prices in Oslo grow much faster than in any other county.

Including a spatially structured effect in the model, large geographical differ-

ences between counties were revealed. We conclude that the price differences

between counties are reduced, taking the different population sizes into ac-

count.
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Chapter 1

Introduction

This thesis will introduce and apply Bayesian methodology to analyse hous-

ing prices in Norway. We will focus on using Bayesian inference in a spatio-

temporal setting. Spatio-temporal models require the use of hierarchical

models, see Ghosh et al. (2006) for an introduction. Structured additive

regression models (Fahrmeir and Tutz, 2001), which can be used for predic-

tion and analysing relationships between variables, will be introduced. These

models can be analysed as three-stage hierarchical models using the compu-

tational framework of latent Gaussian models (Rue et al., 2009).

Bayesian inference became popular in the 1990s due to possibilities of using

computers to write algorithms for complex models and performing inference

for large datasets. This could be done with the help of Gibbs sampling

and other Markov chain Monte Carlo (MCMC) methods, see Gilks et al.

(1995) for a comprehensive introduction to MCMC-methods. One of the

first freely available software for Bayesian computation was Bayesian infer-

ence Using Gibbs Sampling (BUGS), launched in 1999 (Lunn et al., 2000).
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2 CHAPTER 1. INTRODUCTION

This software attracted many fields of applications such as epidemiology,

astrology, social science, engineering and medicine to Bayesian modelling.

MCMC methods allowed for Bayesian analysis of complex hierarchical mod-

els. In particular, Bayesian inference is commonly used to analyse time series

models, spatial models and a combination of the two, see for example Blan-

giardo and Cameletti (2015). However, due to the sampling-based nature

of MCMC-methods, these can be very time-consuming. In 2009, an alter-

native to MCMC methods was introduced called integrated nested Laplace

approximations (INLA) (Rue et al., 2009). INLA was based on numerical

integration and approximation and it greatly improved the computational

efficiency in analysing latent Gaussian models.

The data sets used in this thesis are acquired from Statistisk sentralbyr̊a

and is openly available on-line at http://data.ssb.no/api/v0/dataset/

25138?lang=no. The data set shows average housing prices per square me-

ter in Norway for the years 1999-2017 for 19 counties. It includes a variable

that separates the average prices of new house versus second-hand houses.

Here the goal is to use both temporal and spatial models to see how the prices

develop over time as well as how they differ from location to location. An

expected result would be that the counties with the big cities such as Oslo,

Bergen in Hordaland and Trondheim in Sør Trøndelag should have some of

the highest average housing prices. The number of inhabitants in each county

for each year will be included in the analysis and can be used to see whether

population can be a factor that explains the variation in prices. We should

expect counties with big populations to have higher averages prices as well.

The structure of this thesis is as follows. It will start by introducing Bayesian

http://data.ssb.no/api/v0/dataset/25138?lang=no
http://data.ssb.no/api/v0/dataset/25138?lang=no
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inference in general in chapter 2. In chapter 3, we will discuss structured ad-

ditive regression models and subclasses of these models such as generalized

linear models and generalized additive models. We will also describe specific

model components used to reflect spatially structured effects and temporal

trends. These models are referred to as intrinsic conditional auto-regressive

(CAR) models. Chapter 4 will describe how structured additive regression

models can be analysed using the computational framework of latent Gaus-

sian models, including the INLA methodology. This chapter also introduces

penalized complexity (PC) priors (Simpson et al., 2017) that are used for

the precision parameters of the intrinsic CAR models. In chapter 5, we will

analyse the data by first using simple linear regression for each county. We

also investigate whether the price growth for new and used houses is the same

through a test of parallelism. Finally we analyse the data jointly including

a spatial effect for each county and also a random effect for the population

sizes. This is done for new and used houses separately.

In chapter 6 we give a brief discussion on the work we have done and possible

future work. We will also give some concluding remarks.The R-code used in

this thesis is given in the appendix.
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Chapter 2

Methodology

2.1 Background on Bayesian inference

The two main ways to perform statistical inference include using either a

frequentist or a Bayesian approach. Frequentist inference, which has been

a widely popular form of statistics from a historical point of view, bases

its deduction on the sample data using known experiments (Hoijtink et al.,

2008). These experiments are assumed to give the same result if repeated an

infinite number of times. The strength of evidence supporting a hypothesis

is measured by a p-value or by calculating confidence intervals. Hypothe-

sis testing result in finite conclusions, such as either reject or not rejected,

and parameters such as the mean and variance in a frequentist model are

fixed. The main difference between frequentist and Bayesian inference is

that parameters in a Bayesian setting are not fixed. They are considered

to be stochastic variables. Parameters are assigned probability distributions

before one knows about the data, and they get updated when more informa-

5



6 CHAPTER 2. METHODOLOGY

tion becomes available from the data.

The Bayesian modelling framework can be described in terms of three ba-

sic parts which are the likelihood function, the prior and the posterior. Let

θ = (θ1, . . . , θm) be unknown parameters and y = (y1, . . . , yn) is the data.

Given that θ and y are random variables and π(.) denotes the probability

distribution or the density function for a random variable, the likelihood

function which is a function of θ is the sample data’s density function,

L(θ|y) = π(y|θ) =
n∏
i=1

π(yi|θ). (2.1)

Here the observations y1, . . . , yn are assumed to be independent given the

unknown parameters θ and therefore the likelihood can be written as the

product in the equation. The prior probability distribution or just the prior

π(θ) gives a subjective belief on θ. It is the first assumption on how the

uncertainty of θ might be. The posterior distribution reflects the uncertainty

of the unknown parameter θ after observing the data y. The posterior is

defined by

π(θ|y) =
π(θ)π(y|θ)

π(y)
=

π(θ)π(y|θ)∫
π(θ)π(y|θ)dθ

(2.2)

where π(θ)π(y|θ) represents the joint density of θ and y. The denomina-

tor
∫
π(θ)π(y|θ)dθ is the marginal distribution for y. It is a normalizing

constant which ensures a proper posterior density. Often, the normalizing

constant does not have to be calculated and we can express the posterior as

just being proportional to the product of the prior and likelihood,

π(θ|y) ∝ π(θ)π(y|θ). (2.3)



2.1. BACKGROUND ON BAYESIAN INFERENCE 7

The posterior represents a compromise between our subjective belief on θ

and the given data from the likelihood function. It is typically used to find

summary statistics like the posterior mean, variance and quantiles. It can

also be used to find credible regions for θ. The posterior marginals can be

used to find credible intervals for the elements of θ. In the univariate case

the posterior mean is defined by

E(θ|y) =

∫ ∞
−∞

θπ(θ|y)dθ (2.4)

and the variance is

Var(θ|y) = E[(θ − E(θ|y))2|y] =

∫ ∞
−∞

(θ − E(θ|y))2π(θ|y)dθ (2.5)

Credible intervals specify the range in which a parameter lies between two

limits with a given probability. They are comparable to confidence intervals

in a frequentist setting. Confidence intervals are given as random variables

for fixed parameters and depend only on the data, where as credible intervals

are quantiles for the density of the parameter of interest which depend on

the data and the prior. We can define a 100(1− α)% credible interval by

∫ cu

cl

π(θ|y)dθ = 1− α, α ∈ (0, 1) (2.6)

where cu and cl are the relevant quantiles of the posterior giving the specified

probability. This implies that there exists an infinite number of different

credible intervals. The most commonly used credible intervals are the equi-

tailed and the highest posterior density (HPD) intervals. In the case of a



8 CHAPTER 2. METHODOLOGY

equi-tailed credible interval, we choose cl = α/2 and cu = 1 − α/2. The

HPD approach finds the sample space of θ that make up a 100(1 − α)%

interval beginning from the highest point or peak of the density function.

This interval is defined by the region

R(c) = {θ : π(θ|y) ≥ c} (2.7)

where c is the largest constant such that

∫
θ∈R(c)

π(θ|y) = 1− α (2.8)

The HPD and the equi-tailed intervals are equal when the posterior density

function is symmetric. In general the HPD-interval is optimal in the sense

that it has the shortest length of all credible intervals. To introduce these

concepts we will take a look at a simple example.

Example 1: Let Y ∼ bin(n, θ) where n is the number of experiments, while

θ ∈ [0, 1] represents the success probability in Bernoulli trials. We assign a

Beta(α, β) prior to θ, where the shape parameters α and β are considered to

be fixed i.e.

π(θ|α, β) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1, α, β > 0. (2.9)

The likelihood is

π(y|θ) ∝ θy(1− θ)n−y. (2.10)



2.1. BACKGROUND ON BAYESIAN INFERENCE 9

To find the posterior we use equation (2.3).

π(θ|y, α, β) ∝ θy(1− θ)n−y Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

∝ θy+α−1(1− θ)β−1+n−y
(2.11)

We can see that the posterior becomes a Beta distribution with α∗ = α + y

and β∗ = β + n− y giving the posterior π(θ|y, α, β) = Beta(α∗, β∗). To find

the posterior mean we can just use the known mean for Beta distributions

which gives

E(θ|y, α, β) =

∫ 1

0

θπ(θ|y, α, β) =
α∗

α∗ + β∗
=

α + y

α + β + n
. (2.12)

The result can be written as

α + y

α + β + n
=

α + β

α + β + n
· α

α + β
+

n

α + β + n
· y
n

=
α + β

α + β + n
· θ̂apriori +

n

α + β + n
· θ̂MLE

(2.13)

where θ̂apriori is the prior estimate and θ̂MLE is the maximum likelihood

estimate of the success. This probability shows that the posterior is a weight

of the two. When n gets large the weight of the prior estimate gets smaller.

This tells us that the prior’s influence on the posterior is minimal when we

have a lot of data and the choice of prior is important when we have little

data. The variance can be found by

Var(θ|y, α, β) =
α∗β∗

(α∗ + β∗)2(α∗ + β∗ + 1)
=

(α + y)(β + n− y)

(α + β + n)2(α + β + n+ 1)
.

(2.14)
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To find the credible intervals we can find the quantiles of the posterior dis-

tribution. To do so we have to first give values for n, y α and β. Table 2.1

shows how the posterior mean and variance including the credible intervals

of θ would look like for different values of α and β at n = 15 y = 10 successes.

The different parameters change the density function a lot. In figure 2.1 we

have chosen n = 15, y = 10, α = 2, β = 3 to illustrate how the credible in-

tervals would look like for the HPD-interval (blue) and the equi-tailed (red).

Prior E(θ|y, α, β) V ar(θ|y, α, β) CIl CIu HPDl HPDu

α = 1, β = 2 0.611 0.013 0.383 0.816 0.392 0.823
α = 4, β = 1 0.700 0.010 0.488 0.874 0.503 0.886
α = 2, β = 6 0.522 0.010 0.322 0.718 0.323 0.719
α = 1, β = 8 0.458 0.010 0.268 0.655 0.266 0.653

Table 2.1: A list of differents values for the posterior mean and variance
using different prior parameters. The list also includes the 95% equi-tailed
credible intervals and the corresponding HPD-intervals.
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Figure 2.1: The figure shows plot of the beta(2,3) prior (red) and the resulting
posterior density and its credible intervals where blue is the HPD-interval and
red is the 95% equi-tailed intervals.
.
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This example is a very simple example where we have a conjugate prior.

This means that the posterior will have the same distribution as the prior,

just with different parameters.

2.2 Issues in performing Bayesian inference

In general calculation of the posterior can be very challenging as this cannot

be expressed in an analytical form. We therefore have to turn to approxi-

mation methods. A commonly applied class of methods is MCMC. These

methods provide algorithms to generate irreducible and aperiodic Markov

chains which can be regarded as a sample from a stationary target poste-

rior distribution. The longer the generated chain is, the closer the sampling

distribution gets to being an exact approximation of the target distribution.

Subclasses of MCMC methods include Gibbs sampling, rejection sampling,

the Metroplis-Hastings algorithm and others (Givens and Hoeting, 2012). An

alternative to MCMC methods is using INLA which uses numerical approx-

imations and integration to find the posterior marginals. In this thesis we

will use the INLA methodology and details will be given in Section 4.2.

Another issue in Bayesian inference is to choose prior distributions. The

choice of priors depends on if one wants the prior to be informative or non-

informative (Gelman et al., 2003). An informative prior influences a param-

eter by assuming some information of the parameter. An example of an

informative prior is assigning a normal prior with a small variance. This is

a conjugate prior for data the have a normal distribution. However, if the



2.2. ISSUES IN PERFORMING BAYESIAN INFERENCE 13

data is not normal the posterior might come out as leaning towards the prior

therefore giving a wrong reflection of the data. The idea of non-informative

priors is to let the data speak for itself such that the inference is not affected

much by the prior. Non-informative priors can be difficult to create. A pop-

ular class of non-informative priors is Jeffreys’ priors (Jeffreys, 1946). These

priors are invariant to transformations. This means that if π(θ) is a prior for

θ, then π(f(θ) is a prior for f(θ) (Jeffreys, 1946). In this thesis we will apply

a recently suggested class of priors called penalised complexity (PC) priors

(Simpson et al., 2017). These are weakly informative and will be described

in Section 4.3.
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Chapter 3

Structured additive regression

models

In this thesis, we will focus on performing Bayesian inference for specific

regression models. These models can be seen as subclasses of general struc-

tured additive regression models. This class of models is very flexible and

includes among others, the linear regression models, generalized linear model

and generalized additive model. Also this class of models can be used for

time series and spatial analysis.

15



16 CHAPTER 3. STRUCTURED ADDITIVE REGRESSION MODELS

3.1 Subclasses of structured additive regres-

sion models

3.1.1 Linear regression

Linear regression is a popular statistical tool in data analysis. It assumes a

linear relationship between the response and the predictor variables. Such a

model is described as

Yi = α +
M∑
m=1

βmzim + εi, i = 1, . . . , n, (3.1)

where ε1, . . . , εn are assumed to be independent and normal distributed with

E(εi) = 0 and Var(εi) = τ−1. We will use a precision parameter τ instead of

variance σ2 and they are related as τ = 1/σ2. For fixed covariates the mean

is described as

µi = E(Yi|α, β1, . . . , βm, zi1, . . . , ziM) = α +
M∑
m=1

βmzim, i = 1, . . . , n (3.2)

which implies that the response variable Yi ∼ N(µi, τ
−1), α is the intercept

and βm is a regression parameter giving the linear effect of the predictor

variable zm. When m = 1 we have a simple linear regression model which

has only one predictor variable. We will use this model in Section 5.1.
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3.1.2 Generalized linear models

In a generalized linear model (GLM), which was introduced in Nelder and

Wedderburn (1972), we extend the linear models so that the response can

be drawn from other distributions than the Gaussian. GLMs have a gen-

eral link between the response and predictor. This makes GLMs a broad

class which includes for example models for binary data, categorical data,

log-linear data or data from many well-known distributions. GLMs can be

specified in stages:

1. The linear predictor is defined as ηi =
∑J

j=1 βjzji where βj measures

the linear effect of the covariates zj.

2. The GLM uses a link function g(.) to relate the linear functions of the

predictors to the mean of the response variable,

E(Yi) = µi = g−1(ηi) (3.3)

where ηi is the linear predictor. Examples of different link functions

include: the logit link g(µ) = log( µ
1−µ), log link g(µ) = log(µ), and the

identity link g(µ) = µ.

3. The response Yi is assumed to be drawn from the exponential family

and the density is defined as

π(y|θ, φ) = exp

{
yθ − b(θ)
a(φ)

+ c(Y, φ)

}
, (3.4)

where θ is the natural parameter which is related to the mean of the
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distribution and φ is the dispersion parameter. b(θ), a(θ) and c(y, φ)

are given functions. Many well-known distributions are included in the

exponential family such as the Poisson, the binomial, the Gaussian and

the gamma distribution.

3.1.3 Generalized additive models

Generalized additive models (GAM) are an extension of GLMs in which the

predictor is modelled using the linear dependence of smooth functions of the

predictor variables (Hastie and Tibshirani, 1990). The additive form of the

model is described as

ηi = β0 +
K∑
k=1

fk(cki), (3.5)

where fk are non-parametric functions called smooth functions. These can be

of many types, but the most common ones are splines such as cubic regression

splines, thin plate regression splines and p-splines. Inferences can be made

about these smooth functions. GAMs have the same properties as GLMs,

but are a broader model class since smooth functions are a more flexible

category.

3.2 Structured additive regression models in

general

Structured additive regression models make up a flexible class of regression

models introduced in Fahrmeir and Tutz (2001). This class provides a unified

and flexible framework for a wide range of models including the well estab-
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lished models mentioned in Section 3.1. The distribution of the response

variable is still assumed to belong to the exponential family and the mean of

the response variable is linked to a structured additive predictor ηi. Following

Rue et al. (2017) the structured additive predictor ηi is defined as

ηi = α +
J∑
j=1

βjzji +
K∑
k=1

fk(cki), i = 1, . . . , n. (3.6)

The predictor includes linear effects in the first sum like in a GLM. In addi-

tion, the predictor includes smooth effects of covariates like in GAMs. How-

ever, the function effects of covariates fk in structured additive regression

models are not restricted to smooth models. These can also include time

trends and seasonal effects making it possible to analyse time series. Also

the functions fk can denote spatially correlated random effects used for exam-

ple in geographically weighted regression. Simple linear regression is a special

case of structured additive models where g(.) is an identity link, K = 0 and

J = 1.

3.3 CAR-models

A Gaussian Markov random field (GMRF) is a random vector with a mul-

tivariate Gaussian distribution. What characterises GMRF is that it has

Markov properties which imply conditional independence between its vari-

ables. Formally, a GMRF is defined by a vector x = (x1, . . . , xn) with the

distribution

x ∼ Nn(µ,Q−1). (3.7)
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This vector can be defined on a graph with nodes and edges, where the

nodes represent the variables xi and the edges give the relationship between

neighbouring variables. We say that a graph is connected when all nodes

connect to at least one other node. Due to Markov properties the precision

matrix Q will typically be sparse. GMRFs are specified by the precision

matrix that can be expressed as Q = τR where τ is the random precision

parameter and R is a matrix that reflects the neighbourhood structure of the

graph. GMRFs can also be formulated as conditional auto-regression (CAR)

models described in Besag and Kooperberg (1995). They were introduced as

a way to account for spatial correlation between regions in spatial models,

and have been extended to a broader usage in statistics (Rue and Held,

2005). A version of GMRFs called intrinsic Gaussian Markov random field

(IGMRF) is specified as

π(x) = (2π)−(n−k)/2(|Q|∗)1/2exp{−1

2
x′Qx}, (3.8)

where Q is an n× n precision matrix with rank n− k. The vector x is then

an improper GMRF in which we use additional constraints to get a proper

model.

In this thesis we will use two examples of IGMRFs, also referred to as ICAR

models. To model a smooth function we will use a second order random

walk. This model is defined by having independent second-order increments:

∆2xi = xi − 2xi+1 + xi+2 ∼ N(0, τ−1) (3.9)
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such that the density becomes

π(x|τ) ∝ τ (n−2)/2exp(−τ
2

∑
(∆2xi)

2)

= τ (n−2)/2exp(−τ
2
x′Rx)

(3.10)

where R has the bandwidth 5. This model will capture local deviation from

a line.

The other IGMRF that we will use will account for a spatially structured

effect. The graph of the model represents the spatial neighbourhood of an

area. This model is defined as

xi|xj, τ ∼ N(
1

ni

∑
i∼j

xi,
1

niτ
), i 6= j (3.11)

where ni is the number of neighbours of node i. The neighbourhood of node

i is denoted by i ∼ j and τ is the precision parameter which determines

the smoothness of the estimated effects. The mean of xi accounts for the

overall neighbourly effect, where the precision is proportional to the number

of neighbours. The density is then defined as

π(x|τ) ∝ τ (n−1)/2exp(−τ
2

∑
i∼j

wij(xi − xj)2), (3.12)

where wij are the weights for all pairs of adjacent nodes. This model is

also referred to as the Besag model. When interpreting our model, we are

interested in how much the effects vary from the mean value which is chosen

equal to zero. The precision matrix needs to be scaled so that when the

marginal variance is 1 the precision parameter τ has a unified interpretation.
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(Sørbye and Rue, 2014).



Chapter 4

The computational framework

In this chapter we will describe the computational framework used to perform

Bayesian inference on the structured additive regression models that have

been described. We will describe the INLA methodology and the class of PC

priors that is used in this thesis.

4.1 Latent Gaussian models

Structured additive regression models can be analysed in a unified way using

the computational framework of latent Gaussian models. Latent Gaussian

models are a hierarchical model that have three layers. These models are

useful to model simple as well as complex models with multiple parameters.

Joint probability models are required and we need to infer the relationships

that may exist between these parameters. The first layer in the hierarchical

23
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model is the prior described as

θ ∼ π(θ) (4.1)

where θ are the hyper-parameters. These hyper-parameters can be for exam-

ple a variance, correlation parameter or an auto-regression coefficient. The

number of hyper-parameters is typically assumed to be small.

The second layer is the latent Gaussian field described as

x|θ ∼ N(0,Q(θ)−1) (4.2)

where the unobserved variables x describe the latent dependency structure

of the data. The latent field given the hyper-parameters are multivariate-

normal. Especially, the latent field x is assumed to be a GMRF and might

have a large dimension. It is important to note that all parameters in the

structured additive model in equation (3.6) can be placed into a latent field

x so that it becomes x = {α,β, {fi(.)},η}.

The third layer is the likelihood described as

y|x,θ ∼
∏
i

π(yi|xi,θ) (4.3)

where the observations y are assumed to be conditionally independent, given

θ and x.

Combining the layers together the joint posterior density of latent variables
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x and the hyper-parameters θ is obtained:

π(x,θ|y) ∝ π(θ)π(x|θ)
∏
i

π(yi|xi,θ) (4.4)

where we want to estimate marginal distributions from the joint distribution

by intergration. Both MCMC methods and INLA can be used to approximate

the marginals and in this thesis we will use the INLA-methodology which will

be described in the next section.

4.2 INLA

Integrated nested Laplace approximations (INLA) is a method used to anal-

yse latent Gaussian models as an alternative to inference with MCMC.

INLA’s main advantage is it’s computational speed compared to MCMC

methods. The idea is to estimate the marginals of the hyper-parameters and

the latent field of the LGMs through Laplace approximations, and take ad-

vantage of numerical algorithms for sparse matrices.

The main aim in analysing LGMs is to estimate the marginals for each hyper-

parameter θj and each component of the latent field xi. These marginals can

be written as

π(θj|y =

∫
π(θ|y)dθ−j j = 1, . . . , |θ| (4.5)

π(xi|y) =

∫
π(xi|θ, y)π(θ|y)dθ, i = 1, . . . , n (4.6)

The INLA methodology achieves this by several computational steps. The

first step is to find a numerical approximation of π(θ|y) in (4.5). To do this
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a Laplace approximation for π(θ|y) is used given by

π(θ|y) ≈ π(x, θ|y)

π(x|θ, y)

∣∣∣∣
x=x∗(θ)

= π̃(θ|y), (4.7)

where x∗(θ) is the mode. The denominator can be rewritten as a Gaussian

approximation

π(x|θ, y) ∝ exp(−1

2
x′Q(θ)x+

∑
logπ(yi|xi,θ))

= (2π)n/2|P (θ)|
1
2 exp(−1

2
(x− µ(θ))′P (θ)(x− µ(θ)))

(4.8)

where P (θ) = Q(θ)+diagc(θ) and µ(θ) is the location of the mode. c(θ) is

a vector with the negative second derivatives of the log-likelihood of xi at the

mode. This form is used for computer efficiency. The Laplace approximation

of π(θ|y) can now be numerically integrated at a low computational cost to

find the marginal posterior of the hyper-parameter of interest.

The next step is to find the approximation of the latent field π(xi|y). It

requires to find approximations for π(θ|y) and π(xi|θ, y) from the intergral in

(4.6). For the first approximation it has already been done in (4.7) and for the

latter the standard method is to use the simplified Laplace approximation.

To do this we fit a skew-normal density to a Taylor series expansion of the

Laplace approximation.

logπ̃(xi|θ, y) = bxi −
1

2
x2i +

1

6
dx3i+, . . . . (4.9)

Two other alternative methods to simplified Laplace approximation are Gaus-

sian approximations or Laplace approximations. Now to find the marginals
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for the components of the latent field, the approximations for π(θ|y) and

π(xi|θ, y) can be numerically integrated with respect to θ

π̃(xi|y) =
∑
k

π̃(xi|θk,y)π̃(θk|y)∆θk (4.10)

where ∆θk denotes area-weights that sum over values of θ

4.3 PC priors

In Simpson et al. (2017) a unified approach for constructing weakly infor-

mative priors for different hyper-parameters was introduced called penalized

complexity (PC) priors. They are invariant to reparameterisations. These

priors are computed based on four principles

1. Occam’s razor says that a model should be kept simple until there is

enough support for a complex model. A flexible model can be defined

as

f = π(x|ξ) (4.11)

where ξ is the flexibility parameter. f is a flexible version of a base

model

g = π(x|ξ = ξ0). (4.12)

An example is the Student T distribution, where its base model is

the normal distribution and its flexibility parameter is the degrees of

freedom.

2. The Kullback-Leibler divergence (KLD) can be used to measure the
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complexity of model and is defined as:

KLD(f ||g) =

∫
f(x)log(

f(x)

g(x)
)dx (4.13)

where g(x) is the base model of the prior f(x).

3. The 3rd principle assigns a prior to the measure of complexity which

penalizes deviation from the base model. This measure is given by

the unidirectional distance d(f ||g) =
√

KLD(f ||g) which measures the

complexity of the model f(x) when compared to the base model g(x).

The distance is a assigned an exponential prior

π(d(ξ)) = λexp(−λ(d(ξ))), λ > 0 (4.14)

The mode at d = 0 is the base model. The prior for the parameter of

interest can be found through the transformation.

π(ξ) = λexp(−λd(ξ))|δd(ξ)

δξ
| (4.15)

4. User-defined scaling: Determining λ is based on the user knowledge of

the model. λ can be selected by adjusting the broadness of the tail by

the probability statement

Prob(Q(ξ) > U) = α, (4.16)

where Q(ξ) is a transformation of the flexibility parameter and U spec-

ifies the upper limit of the standard deviation. α is a small probability.
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The user-defined scaling influences how informative a PC prior becomes

and the magnitude of random effects.

In this thesis we will use PC priors on the CAR models which have a precision

parameter τ . The prior for these models is defined using ξ = 1/τ . The base

of this model is given by ξ = 0. A criterion for IGMRFs is allowing the the

transformation of the prior to be Q(ξ) = 1√
τ

such that

P (
1√
τ
> U) = α. (4.17)

We will choose that U = 1 and α = 0.01
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Chapter 5

Application: Analysis of

housing prices in Norway

A main aim of this chapter is to apply Bayesian inference to real data. The

data represents the average price for houses in Norway per square metre for

every county. The data is measured annually from 1999 until 2017. There

are 19 counties in total. The data also distinguishes between new houses

and second hand houses. Methods chosen for inference include simple lin-

ear regression and spatial analysis using the CAR model and the random

walk model of the second order. All of the analysis will be done with the

programming software and language R.

5.1 Simple linear regression

In this section we fit a simple linear regression model to the house prices for

each county for the period 1999-2017. We present years as z = (z1, . . . , zn)

31
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and the housing prices as Y = (y1, . . . , yn) and we assume the prices to be

normal distributed as

Yi ∼ N(µi, τ
−1) (5.1)

The linear predictor is given as

E(Yi|α, β, zi) = α + βzi (5.2)

We want to estimate the parameters α and β. We assign normal priors such

that α ∼ N(0, 0.001), β ∼ N(0, 0.001), and a gamma prior for τ−1 such that

log(τ) ∼ logGamma(1, 5 · 10−5).

5.1.1 Results of the simple linear regression

To summarize the results we have listed the posterior means and standard

deviations of each county and type of house in table 5.1. In 1999 the average

prices where lowest in Sogn og Fjordane for both new houses and used houses,

and they were highest in Akershus and Oslo for both new and used houses.

Oslo’s slope parameter is twice as steep as almost all of the other counties

with square meter prices increasing at almost 3000kr every year for new

houses and 2200kr for used houses. The standard deviations for the regression

parameter are largest for Oslo. Figures 5.1, 5.2 and 5.3 show the estimated

mean plotted against the data. We can see that the points follow the line

quite well. In general the deviations between line and the observation points

are very smal implying that the increase in prices during the given time

period is well explained by a linear trend.
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α.new β.new α.sd.new β.sd.new α.used β.used α.sd.used β.sd.used
Østfold 7.215 1.304 0.394 0.035 6.259 0.799 0.350 0.031

Akershus 8.197 1.751 0.493 0.043 8.716 1.252 0.515 0.045
Aust-Agder 6.531 1.248 0.550 0.048 6.075 0.736 0.421 0.037

Buskerud 7.088 1.459 0.457 0.040 6.131 0.922 0.340 0.030
Finnmark 6.938 1.087 0.466 0.041 5.378 0.803 0.639 0.056
Hedmark 7.453 1.220 0.388 0.034 5.395 0.610 0.305 0.027

Hordaland 5.842 1.462 0.392 0.034 7.119 1.074 0.571 0.050
Møre og Romsdal 5.993 1.317 0.415 0.036 5.082 0.709 0.230 0.020

Nord-Trøndelag 6.171 1.226 0.596 0.052 3.922 0.654 0.180 0.016
Nordland 5.597 1.415 0.670 0.059 4.847 0.764 0.242 0.021
Oppland 6.210 1.245 0.453 0.040 5.327 0.637 0.228 0.020
Oslo 5.799 2.931 1.220 0.107 10.238 2.209 0.915 0.080

Rogaland 5.594 1.605 0.631 0.055 6.757 1.081 0.888 0.078
Sør-Trøndelag 6.905 1.356 0.553 0.048 6.304 1.007 0.378 0.033

Sogn og Fjordane 5.271 1.219 0.524 0.046 3.732 0.761 0.326 0.029
Telemark 6.277 1.242 0.507 0.044 5.463 0.656 0.299 0.026

Troms 5.822 1.527 0.777 0.068 6.679 0.954 0.567 0.050
Vest-Agder 6.668 1.311 0.718 0.063 6.630 0.808 0.648 0.057

Vestfold 7.691 1.498 0.371 0.033 7.386 0.862 0.311 0.027

Table 5.1: A table showing the posterior mean and standard deviation of the
parameters α and β for each county and each type of house. The values are
given in thousands of kr.
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Figure 5.1: Estimated annual square meter prices for used and new houses,
where red is the new and blue is the used
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Figure 5.2: Estimated annual square meter prices for used and new houses,
where red is the new and blue is the used

Figure 5.4 shows the posterior marginals for the intercept α and the

slope β parameters for both new and used houses in Oslo. The 95% credible

intervals for the for the new houses are (2072kr, 3140kr) and for used houses

are (2050kr, 2370kr). Take note that Oslo has the largest variance, so that

means the estimates for the other counties give much more narrow credible

intervals.
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Figure 5.3: Estimated annual square meter prices for used and new houses,
where red is the new and blue is the used
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Figure 5.4: The posterior marginals for the parameters α and β for new
houses(red) and used houses(blue) in Oslo
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5.1.2 Test of parallelism

We are interested in whether the slopes of new houses and for used houses

are parallel. Parallel slopes means that the parameter β is the same for new

and used. One way to check if this is true is to create a model with categor-

ical variables. A categorical variable di is a variable that helps distinguish

between two categories. In our case our category variable distinguishes be-

tween new and used houses by assigning 0 as an indicator for new houses

and 1 as the indicator for used houses. This model can be defined as

Yi = α + β1zi + β2di + β3zidi + εi (5.3)

To implement his model we stall all the prices for new and used houses in one

vector. We also make corresponding vectors for the years and the categorical

variable. Each vector has the length of 38. When d = 1 we should get

E(Yi|α, β0, β1, β2, β3) = (α + β2) + (β1 + β3)zi (5.4)

and when d = 0 we get

E(Yi|α, β0, β1, β2, β3) = α + β1zi. (5.5)

We assign normal priors of N(0, 1000) to α, β0, β1, β2 and β3. We assign a

gamma prior for τ , log(τ) ∼ logGamma(1, 5·10−5). We can then apply INLA

to find the posterior for our parameters. The parameter of interest is β3. We

can see that if β3 = 0, the slope will be the same for both categories. To



38CHAPTER 5. APPLICATION: ANALYSIS OF HOUSING PRICES IN NORWAY

perform the tests, we use the 95% credible intervals for β3 and check whether

the contain 0. The tests concludes that none of the slopes are parallel. This

means that prices for new houses do not have the same growth rate as the

used houses in any of the counties.

5.2 Introducing a spatial effect in the model

Simple linear regression is a good way to detect linear trends in the prices

for each individual county. In this section we introduce a spatial model

component in the linear regression model. This allows us to analyse all

counties simultaneously. To infer spatial modelling we created a connected

graph of all the counties. This is achieved by numbering all the counties, and

then for each county specify all neighbouring counties. We will define two

models. In the first model the linear predictor is defined by

ηi = α + βzi + f(ci) (5.6)

where we have assumed an identity link. This means that E(Yi) = ηi. β

represents the linear effect of the years zi. The function f(·) is an intrin-

sic CAR model of the first order which represents the spatially structured

random effects of the connected graph of the counties described in equation

(3.12). The estimated spatial random effect for each county can be positive,

0 or negative. The effects from all the counties sum up to 0. This implies

that counties with a positive effect have a larger overall increase in prices

than what can be explained by a linear trend for all counties.
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5.2.1 Results
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Figure 5.5: Parameters for the linear trend for all counties for new (red)and

used (blue) houses

The linear trend of all the counties is given by the new estimates for α and

β. The posterior marginals for these parameters are seen in figure 5.5. The

parameters β for new and used houses have small variance compared to the

α alpha parameters. The posterior mean of of βnew is 1443kr with a 95%

credible intervals (1397kr, 1490kr).The posterior mean of of βused = 910kr

with credible intervals (869kr, 952kr). The parameter αnew has the credible

intervals (5995kr, 7019kr) with mean 6487kr. αused has a mean of 6181kr

with a credible interval (5707kr, 6655kr).

To show the estimated effects of the spatial model, we have plotted this using

a map of Norway with the different counties. Figure 5.6 shows the posterior

mean of the random spatial effects of each county from the intrinsic CAR

model component in equation (5.6). Red is the largest value and dark blue

is the lowest value. It is important to note that the two maps do not have
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the same scale, so similar colors do not mean the same value. The values for

random effects cannot be quantified in a meaningful way except for the fact

that the sum of all random effects is 0. Most of Norway is different shades

of blue because Oslo drastically stands out with its high prices and raises

the mean value. In the northern part of Norway the lightest shade of blue

is Troms which has the one of the large cities in Norway, Tromsø. We also

notice that other counties with large cities are coloured with a light shade

of blue which implies that the prices are high in these counties. Figure 5.7

shows the same values as the maps but just as a bar-plot for better visual

understanding. It is easier to see which counties have negative or positive

effects. Sør Trøndelag, and Hordaland have negative effects for new houses

and positive effects for used houses.

Table 5.2 displays the 95% credible intervals for the estimated spatially struc-

tured effects. Credible intervals that do not include 0 represent counties that

have prices that are significantly different from the linear trend based on

all counties. Aust-Agder, Finnmark, Hedmark, Møre og Romsdal, Nord-

Trøndelag, Nordland, Oppland, Sogn og Fjordane and Telemark have sig-

nificantly lower prices for both types of houses. Akerhus and Oslo have

significantly higher prices for both types of houses, whereas Hordaland and

Rogaland have significantly higher prices only for used houses and Vestfold

for just new houses.

In figure 5.8 we see the posterior marginals for the precision parameter

of theintrinsic CAR model component acquired from (4.5). The posterior

marginals show a slimmer density and smaller precision for used houses than

for new houses.
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CI.newl CI.newu CI.usedl CI.usedu
Østfold -1.632 0.515 -1.934 -0.011

Akershus 3.498 5.566 4.803 6.695
Aust-Agder -2.898 -0.798 -2.762 -0.858

Buskerud -0.122 1.897 -0.729 1.140
Finnmark -4.115 -1.969 -2.808 -0.885
Hedmark -2.201 -0.100 -4.604 -2.697

Hordaland -1.540 0.538 1.481 3.378
Møre og Romsdal -2.817 -0.718 -4.041 -2.138

Nord-Trøndelag -3.483 -1.360 -5.706 -3.792
Nordland -2.238 -0.116 -3.736 -1.823
Oppland -3.053 -1.007 -4.361 -2.480

Oslo 12.632 14.799 15.802 17.730
Rogaland -0.483 1.600 1.217 3.114

Sør-Trøndelag -1.607 0.473 -0.041 1.859
Sogn og Fjordane -4.297 -2.211 -4.778 -2.882

Telemark -3.029 -0.963 -4.021 -2.130
Troms -0.984 1.140 -0.083 1.831

Vest-Agder -2.181 -0.059 -1.522 0.391
Vestfold 0.589 2.712 -0.275 1.639

Table 5.2: 95% Credible intervals for the posterior mean of the intrinsic CAR
model component for both types of houses
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Figure 5.6: Spatial effect for prices in Norway for new houses in the left and

used on the right.
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Figure 5.7: Barplot that shows how different the same counties are for new
and houses.
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Figure 5.8: The posterior marginals for the precison of the besag model for
new houses(red) and used houses(blue).
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5.3 Introducing population sizes in the model

In the second model we also take into account potential non-linear effects of

the population in each county. The second model’s linear predictor also has

an identity link and is defined as

ηi = α + βzi + f1(c1i) + f2(log(c2i)) (5.7)

which is the same as as in equation (5.6) with an addition of a population

function f2(·) that follows a random walk model of the second order described

in (3.10). We choose the log of the population to reduce the large variation

of the population.

The model in equation (5.7) which includes population should reduce the

estimated spatial effects. We know that population is an important explana-

tory variable in terms of giving higher prices for higher populated counties.

The reverse applies as well. To illustrate this, we have calculated the average

prices and population for each county within the given time period. Figure

5.9 shows how the log population is spread across the counties as well as

how the prices changed as a function of the log of the population for both

types of houses. Akershus, Hordaland, Rogaland and Oslo have the highest

populations. Finnmark has the lowest population. In the scatter plot we no-

tice a non-linear trend in how prices increase with population. We have two

observations that stand as being different from other observations. These

observations are of Oslo. Notice that in fitting model (5.7) we do not use the

average population sizes, but the registered population sizes for each year.

http://data.ssb.no/api/v0/dataset/49623?lang=no

http://data.ssb.no/api/v0/dataset/49623?lang=no
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Figure 5.9: Average population for each county represented on a map of
Norway and a graph that shows the log of the population plotted against the
average price
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5.3.1 Results

In figure 5.10 we plot the posterior means of the spatial effects for the in-

trinsic CAR model component on a map. These effects are now typically

decreased as we have accounted for population in the model. We can see

that even though Oslo has the highest posterior mean, it has dropped a lot

compared to using the previous model in (5.6). We also have a lot of changes

in the other counties also. For example, in Tromsø and Vestfold we have high

positive estimated spatial effects. Hordaland and Møre og Romsdal have the

lowest negative estimated spatial effects. Hordaland had positive effects for

used houses, but now has negative estimated effects for both new and used

houses. This means that the high prices in Hordaland can be partly explained

by the high population. We can conclude the same about Akershus as well.

We also notice that the low prices in Finnmark can be explained by the low

population size.
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Figure 5.10: Spatial effect after accounting for population for new houses
and used housed
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Figure 5.11: barplot that shows how different the same counties are for new
and houses accounting for population
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Table 5.3 shows the new credible intervals for the random effects of the

intrinsic CAR model component. Østfold, Hordaland and Møre og Romsdal

are counties that have significantly lower prices for new houses. For used

houses, Akershus, Hordaland, Møre og Romsdal, Nordland, Oppland and

Telemark have significantly negative effect. Only Oslo, Troms and Vestfold

have a significant positive effect for both types of houses. Vest-Agder has

significantly higher prices only for used houses. We can see that many of

the counties prices are now explained by the linear trend for all counties

when we take into account the population as expected. The posterior mean

of the second order random walk model is visualized in figure 5.12. The

population is in logarithmic scale and we can see that the population has a

slowly increasing effect on the prices until the population gets large. When

the population is very large the prices get higher. This steep curve comes

from the high prices of Akerhus and Oslo. The effects are quite similar for

new and used houses.

In figure 5.13 we can see the posterior marginals of the precision parameter

for the second order random walk component. The posterior marginals are

quite similar for the different types of houses.
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CI.newl CI.newu CI.usedl CI.usedu
Østfold -2.202 -0.142 -1.683 0.710

Akershus -2.208 0.241 -3.757 -0.861
Aust-Agder -0.915 1.824 -0.944 2.265

Buskerud -0.293 1.462 -0.036 2.131
Finnmark -3.153 4.633 -3.353 6.116
Hedmark -0.673 1.404 -2.032 0.142

Hordaland -3.686 -1.281 -3.702 -0.904
Møre og Romsdal -2.703 -0.805 -2.990 -0.774

Nord-Trøndelag -1.244 1.884 -2.579 0.796
Nordland -1.500 0.486 -2.306 -0.064
Oppland -1.697 0.190 -2.171 -0.122

Oslo 1.063 3.850 1.745 4.864
Rogaland -0.797 1.648 -1.634 1.201

Sør-Trøndelag -2.160 -0.028 -0.356 2.153
Sogn og Fjordane -2.452 0.295 -3.156 0.112

Telemark -1.912 0.074 -2.887 -0.621
Troms 1.006 3.241 2.098 4.443

Vest-Agder -0.599 1.317 0.262 2.363
Vestfold 1.785 3.906 1.564 3.838

Table 5.3: 95% Credible intervals for the posterior mean of the intrinsic CAR
model component after accounting for population
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Figure 5.12: Population plotted against the mean of the second order random
walk effects for both types of houses
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Figure 5.13: The posterior marginals for the second order random walk model
for new houses(red) and used houses(blue)
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Chapter 6

Discussion and concluding

remarks

In section 5.1 the application of simple linear regression analysis led to find-

ing that new houses have higher prices than used houses for all counties. We

also found out that for all counties the gap between the prices seem to be

increasing. In 1991 the prices for old and new houses were almost the same.

One could argue that 19 years of annual observations is a small number and if

there were more observations the difference between the price growths would

be less. The linear models for the prices are only true for the given time

period.

The model in section 5.2 showed that most prices are significantly lower than

what can be explained by the linear trend for all counties. This is because

the geographical differences between different counties are quite large. The

visual interpretation of the spatial effects illustrated in figure 5.6 are obscured

by the high prices in Oslo. Visually, the differences between the other countis

51
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then seem quite small. An interesting find was that Rogaland and Hordaland

have significantly higher prices for used houses, but not for new houses.

When we accounted for population in the model in section 5.3, this reduced

the geographical differences between the counties. The intrinsic CAR model

component shows that the mean of the random effects of the the high popu-

lated counties, such as Oslo, Hordaland and Akershus dropped. Even though

the random effects dropped, the estimated spatial effect in Oslo was signifi-

cantly higher. However the estimated effects became signifincantly lower in

Hordaland and Akerhus.

There are limitations in this thesis we wish to highlight such as the com-

plexity of the data. It would have been interesting to analyse spatial effects

for the municipalities. For the municipalities we would have a larger graph

of 428 municipalities instead of the 19 counties we have. We have time and

population as explanatory variables for the prices. Inflation and the housing

market could be other explanatory variables. The annual time intervals could

have been monthly for possible detection of seasonal trends. Unfortunately

such data was not openly available.

House prices interest people who wish to sell or buy houses such as real estate

agents, and families . Future work on this thesis is to apply the analysis on

houses prices in order to estimate the optimal time or location to buy or sell

houses. This means combining the knowledge of statistics and the housing

market in general.

This thesis helps to give a light understanding of the progression of house

prices in Norway since 1999. We have seen a linear positive price growth

for all counties, which is partly explained by population for most counties.
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The structured additive regression model and INLA have made it possible to

easily analysis the geographical and temporal differences in prices and pro-

viding posterior densities for many of the interesting parameters. Since the

data was small, the computations were instant.
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Appendix

For the plots and tables in section 2.1

[fontsize=\small]

x=rbeta(10,23,3)

a<-curve( dbeta(x,2,3), xlim=c(0,1), ylim=c(0,4) ,main="Beta distribution",

ylab="Density")

lines( qbeta(p=c(0.025, 0.975), shape1=1, shape2=4), add=T, col=’red’ )

g=qbeta(p=c(0.025, 0.975), shape1=alfah+k, shape2=betah+n-k)

f = function(x) qbeta(x, shape1=alfah+k, shape2=betah+n-k)

aa<-hdi(f,credMass=0.95

g[1]

abline(v=g[1],col=’red’)

abline(v=g[2],col=’red’)

abline(v=aa[1],col=’blue’)

abline(v=aa[2] ,col=’blue’)

betahv=c(2,1,6,8)

alfahv=c(1,4,2,1)

betadata<-matrix(0, 4, 6)

for (i in 1:4){
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betadata[i,1] <-(alfahv[i]+k)/(alfahv[i]+betahv[i]+n)

betadata[i,2] <-(alfahv[i]+k)*(betahv[i]+n-k)/((alfahv[i]

+betahv[i]+n)^2 *(alfahv[i]+betahv[i]+1+n))

g=qbeta(p=c(0.025, 0.975), shape1=alfahv[i]+k,

shape2=betahv[i]+n-k)

betadata[i,3] <-g[1]

betadata[i,4] <-g[2]

f = function(x) qbeta(x, shape1=alfahv[i]+k, shape2=betahv[i]+n-k)

aa<-hdi(f,credMass=0.95)

betadata[i,5]<-aa[1]

betadata[i,6]<-aa[2]

}

ckdata<-betadata

row.names(ckdata)<- c("\alpha=1,\beta=2","\alpha=4,\beta=1",

"\alpha=2,\beta=6","\alpha=1,\beta=8")

colnames(ckdata)<-c("E(\theta|y,\alpha,\beta)",

"Var(\theta|y,\alpha,\beta).",

"CI_l","CI_u","HPD_l","HPD_u")

xtable(ckdata,digits = 3)

For drawing the map in sections 5.2 and 5.3

[fontsize=\small]

#map function#
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library(rgdal)

library(rgeos) # For geometric operations

library(plyr) # For simple data manipulation

library(spatstat)

library(spdep) # For setting up polygon-neighbours

library(maptools)

library(RColorBrewer)

library(lattice)

mapping<-function(e,p){

# the map files for the counties

fylke=readOGR(dsn="C:/Users/george/Documents/house/NOR_adm_shp",

layer="NOR_adm2")

fylkedata <- fylke@data

str(fylkedata); head(fylkedata)

#list of names of the counties

d <- c("Østfold" ,"Akershus" , "Aust-Agder", "Buskerud", "Finnmark",

"Hedmark", "Hordaland", "Møre og Romsdal" , "Nord-Trøndelag" ,

"Nordland" , "Oppland", "Oslo", "Rogaland",

"Sør-Trøndelag","Sogn og Fjordane", "Telemark",

"Troms", "Vest-Agder" , "Vestfold" )

name3 <- c("NAME_1", "Input.variable");

dt2 <- as.data.frame(cbind(d, e),

stringsAsFactors=FALSE)
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dt2$e <- as.numeric(dt2$e); colnames(dt2) <- name3;

Input.variable <- dt2

# We plot the Norwegian regions using the unionSpatialPolygons

# function from the ’maptools’ package

IDs <- fylkedata$ID_1

# We merge Polygons

norway3_new <- unionSpatialPolygons(fylke, IDs)

# We build the new SpatialPolygonsDataFrame with the Input.variable

norway4_new <- SpatialPolygonsDataFrame(norway3_new, Input.variable)

pal2 <- colorRampPalette(c("blue4", "cyan","white", "yellow", "red4"))

# Plot the regions with Lattice

spplot(norway4_new, "Input.variable", main=p,

lwd=.2, col="black", col.regions=pal2(19),

colorkey = list(space = "right"),

bty="n")

}

For preprocessing the house data

#fixing dataset#

########

library(tidyr)

#####

bolig<-read.csv("data25138.txt",sep=";",stringsAsFactors=FALSE)

head(bolig)

index<-seq(1,2166,3)
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dim(bolig)

kvdmpris=bolig[index,]

nyebolig<-kvdmpris[kvdmpris$type.enebolig %in% "01 Nye eneboliger",]

bruktbolig<-kvdmpris[kvdmpris$type.enebolig %in% "02 Brukte eneboliger",]

oslony<-nyebolig[nyebolig$region %in% "03 Oslo",]

oslony<-oslony[-c(10),]

sr<-summary(lm(oslony$Gjennomsnittlig.kvadratmeterpris..etter.region.

.type.enebolig.

.år.og.statistikkvariabel~oslony$år,data=oslony))

value2008<-sr$coefficients[1]+sr$coefficients[2]*2008

#which(is.nan(nyebolig$Gjennomsnittlig.kvadratmeterpris..etter.region.

.type.enebolig..år.og.statistikkvariabel))

nyebolig$Gjennomsnittlig.kvadratmeterpris..etter.region.

.type.enebolig..år.og.statistikkvariabel[48]<-value2008

finny<-nyebolig[nyebolig$region %in% "20 Finnmark - Finnmárku",]

finny<-finny[-c(8),]

fr<-summary(lm(finny$Gjennomsnittlig.kvadratmeterpris..etter.region.

.type.enebolig..år.og.statistikkvariabel~finny$år,data=finny))

value2006<-fr$coefficients[1]+fr$coefficients[2]*2006

region.id<-c(rep(1,38),rep(2,38),rep(12,38),rep(6,38),rep(11,38),

rep(4,38),rep(19,38),rep(16,38),rep(3,38),rep(18,38),rep(13,38),

rep(7,38),rep(15,38),rep(8,38),rep(14,38),

rep(9,38),rep(10,38),rep(17,38),rep(5,38))

cac<-c(rep(1,19),rep(2,19))

cac1<-c(rep(1,19),rep(0,19))
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boligtype.id1<-c(rep(cac1,19))

# boligtype<-cbind(boligtype.id,boligtype.id1)

# region<-gsub("[[:digit:]]", "", kvdmpris$region)

year<-kvdmpris$år

ave.price<-kvdmpris$Gjennomsnittlig.kvadratmeterpris..etter.region.

.type.enebolig..år.og.statistikkvariabel

value2008<-round(value2008)

value2006<-round(value2006)

ave.price[692]<-value2006

ave.price[86]<-value2008

ave.pricey<-as.numeric(ave.price)

ave.pricey<-ave.pricey/1000

house.data<-data.frame(region.id,year,boligtype.id1,ave.pricey)

year2=seq(1,19,1)

year2=rep(year2,38)

length(boligtype.id1)

house.data<-data.frame(region.id,year2,boligtype.id1,ave.pricey)

For the tables in 5.1

lmdata<-matrix(0, 19, 6)

for (i in 1:19){

y1=house.data$ave.pricey[house.data$region.id==i &

house.data$boligtype.id1==1]

x1= house.data$year2[house.data$region.id==i &
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house.data$boligtype.id1==1]

y2=house.data$ave.pricey[house.data$region.id==i &

house.data$boligtype.id1==0]

x2=house.data$year2[house.data$region.id==i &

house.data$boligtype.id1==0]

rgnew<-lm(y1~x1)

rgused<-lm(y2~x2)

simple1<-y1~x1

simple.result1<-inla(simple1,data=list(y=y1,x=x1))

#simple.result1<-inla(simple1,data=house.data[(1+19*2*(i-1))

:(19+19*2*(i-1)),])

simple2<-y2~x2

#simple.result2<-inla(simple2,data=house.data[(19*2*i-18):(19*2*i),])

simple.result2<-inla(simple2,data=list(y=y2,x=x2))

lmdata[i,1] <-simple.result1$summary.fixed$mean[2]

lmdata[i,2] <-simple.result1$summary.fixed$‘0.025quant‘[2]

lmdata[i,3] <-simple.result1$summary.fixed$‘0.975quant‘[2]

lmdata[i,4] <-simple.result2$summary.fixed$mean[2]

lmdata[i,5] <-simple.result2$summary.fixed$‘0.025quant‘[2]

lmdata[i,6] <-simple.result2$summary.fixed$‘0.975quant‘[2]

}

For figures in section 5.1
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dog <- c("Østfold" ,"Akershus" , "Aust-Agder", "Buskerud", "Finnmark",

"Hedmark" , "Hordaland", "Møre og Romsdal" , "Nord-Trøndelag" ,

"Nordland" , "Oppland", "Oslo", "Rogaland","Sør-Trøndelag",

"Sogn og Fjordane", "Telemark", "Troms", "Vest-Agder" ,

"Vestfold" )

for (i in 1:19){

png(filename = paste(dog[i],sep="",".png"))

y1=house.data$ave.pricey[house.data$region.id==i &

house.data$boligtype.id1==1]

x1= house.data$year2[house.data$region.id==i &

house.data$boligtype.id1==1]

y2=house.data$ave.pricey[house.data$region.id==i &

house.data$boligtype.id1==0]

x2=house.data$year2[house.data$region.id==i &

house.data$boligtype.id1==0]

simple1<-y1~x1

simple.result1<-inla(simple1,data=list(y=y1,x=x1))

simple2<-y2~x2

simple.result2<-inla(simple2,data=list(y=y2,x=x2))

plot(house.data$year[house.data$region.id==i & house.data$boligtype.id1==1],

house.data$ave.pricey[house.data$region.id==i & house.data$boligtype.id1==1],pch=19,col="red",main=paste(dog[i],sep=""),xlab="year",

ylab="Average Price per Sq.m x 1000kr",ylim=c(0,60))

points(house.data$year[house.data$region.id==i & house.data$boligtype.id1==0]

,house.data$ave.pricey[house.data$region.id==i & house.data$boligtype.id1==0],

pch=19,col="blue")
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abline(a=simple.result1$summary.fixed$mean[1],

b=simple.result1$summary.fixed$mean[2],col="red")

abline(a=simple.result2$summary.fixed$mean[1],

b=simple.result2$summary.fixed$mean[2],col="blue")

dev.off()

}

For plots and tables in 5.2

hus1<-house.data[!(house.data$boligtype.id1==0 %in% house.data),]

hus2<-house.data[(house.data$boligtype.id1==1 %in% house.data),]

library(INLA)

g = inla.read.graph("norwa.graph")

u=1 # For eksempel

alpha=0.01

formula2 = hus1$ave.pricey ~ f(hus1$region.id,model="besag",

graph=g,scale.model=T, hyper=list(prec=list(prior="pc.prec"

,param=c(u,alpha))))+hus1$year

result =inla(formula2,data=hus1)

echonew<-result$summary.random$‘hus1|S|region.id‘$mean

plot(result$marginals.hyperpar[[1]], type = "l",ylab="Density",

xlab = "Precision")

charlie<-result$summary.random$‘hus1|S|region.id‘$sd

formula3 = hus2$ave.pricey ~ f(hus2$region.id,model="besag",

graph=g,scale.model=T, hyper=list(prec=list(prior="pc.prec",
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param=c(u,alpha))))+hus2$year

result3 =inla(formula3,data=hus2)

plot(result3$marginals.fixed[1],type = "l",ylab="Density",xlab = "Alpha",

xlim=c(0,8),ylim=c(0,20),lwd=2)

plot(result$marginals.fixed[[2]],type ="l", col=2,ylab="Density",xlab = "Beta",

xlim=c(0.7,1.7),ylim=c(0,20),lwd=2)

lines(result3$marginals.fixed[[2]],col=4,lwd=2)

echoold<-result3$summary.random$‘hus2|S|region.id‘$mean

mapping(echonew,p=NULL)

mapping(echoold,p=NULL)

mapping(charlie,p=NULL)

test2 <- rbind(echonew[1:9],echoold[1:9])

names(test2)<-dog[1:9]

par(mar=c(8, 4.1, 4.1, 2.1))

barplot(test2,beside=T,ylim = c(-5,16),names.arg = dog[1:9],las=2)

text( -3.7, srt = 60, adj= 1, xpd = TRUE, labels = names(dog[1:9]) ,

cex=1.2)

cidata<-matrix(0, 19, 4)

for (i in 1:19){

cidata[i,1]<-resultp$summary.random$‘hus1|S|region.id‘$‘0.025quant‘[i]

cidata[i,2]<-resultp$summary.random$‘hus1|S|region.id‘$‘0.975quant‘[i]

cidata[i,3]<-result3p$summary.random$‘hus2|S|region.id‘$‘0.025quant‘[i]

cidata[i,4]<-result3p$summary.random$‘hus2|S|region.id‘$‘0.975quant‘[i]

}

ckdata<-cidata
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row.names(ckdata)<- c("Østfold" ,"Akershus" , "Aust-Agder", "Buskerud",

"Finnmark", "Hedmark" , "Hordaland", "Møre og Romsdal" ,

"Nord-Trøndelag" ,

"Nordland" , "Oppland", "Oslo", "Rogaland", "Sør-Trøndelag",

"Sogn og Fjordane",

"Telemark", "Troms", "Vest-Agder" ,

"Vestfold" )

colnames(ckdata)<-c("CIlnew","CIunew","CIlusd","CIuused")

xtable(ckdata,digits = 3)

test23 <- rbind(echonew[10:19],echoold[10:19])

names(test23)<-dog[10:19]

barplot(test23,beside=T,ylim = c(-5,16),names.arg = dog[10:19],las=2)

For plots and tables in 5.3f

folk<-read.csv("folkemengde.csv",sep=";")

folk$region <- NULL

colnames(folk)<-c()

folkli<-as.vector(t(folk))

af<-c(rep(1,19),rep(2,19),rep(3,19),rep(4,19),rep(5,19),rep(6,19),rep(7,19),

rep(8,19),rep(9,19),rep(10,19),rep(11,19),rep(12,19),rep(13,19),rep(14,19),

rep(15,19),rep(16,19),rep(17,19),rep(18,19),rep(19,19))

afk<-cbind(af,folkli)

afk<- as.data.frame(afk)

kk<-NULL
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for (i in 1:19) {

jj<-append(kk,afk$folkli[af==i])

kk<-append(jj,afk$folkli[af==i])

}

kk<-log(kk)

hd1<-cbind(house.data,kk)

huse1<-hd1[!(hd1$boligtype.id1==0 %in% hd1),]

huse2<-hd1[(hd1$boligtype.id1==1 %in% hd1),]

library(INLA)

g = inla.read.graph("norwa.graph")

# standard BYM model (without covariates)

formula2p= huse1$ave.pricey ~ f(huse1$region.id,model="besag",

graph=g,scale.model=T, hyper=list(prec=list(prior="pc.prec",

param=c(u,alpha))))

+huse1$year+f(inla.group(huse1$kk,100,),model="rw2",scale.model = T,

hyper=list(prec=list(prior="pc.prec",param=c(u,alpha))))

resultp =inla(formula2p,data=huse1)

echonewp<-resultp$summary.random$‘huse1|S|region.id‘$mean

formula3p = huse2$ave.pricey ~ f(huse2$region.id,model="besag",

graph=g,scale.model=T, hyper=list(prec=list(prior="pc.prec",

param=c(u,alpha))))+huse2$year

+f(inla.group(huse2$kk,100,),model="rw2",scale.model = T,

hyper=list(prec=list(prior="pc.prec",param=c(u,alpha))))

result3p =inla(formula3p,data=huse2)
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echooldp<-result3p$summary.random$‘huse2|S|region.id‘$mean

mapping(echonewp,p=NULL)

mapping(echooldp,p=NULL)

test2p <- rbind(echonewp[1:9],echooldp[1:9])

names(test2p)<-dog[1:9]

par(mar=c(8, 4.1, 4.1, 2.1))

barplot(test2p,beside=T,ylim = c(-4,4),names.arg = dog[1:9],las=2)

text( -3.7, srt = 60, adj= 1, xpd = TRUE, labels = names(dog[1:9]),

cex=1.2)

cidata<-matrix(0, 19, 4)

for (i in 1:19){

cidata[i,1]<-resultp$summary.random$‘huse1|S|region.id‘$‘0.025quant‘[i]

cidata[i,2]<-resultp$summary.random$‘huse1|S|region.id‘$‘0.975quant‘[i]

cidata[i,3]<-result3p$summary.random$‘huse2|S|region.id‘$‘0.025quant‘[i]

cidata[i,4]<-result3p$summary.random$‘huse2|S|region.id‘$‘0.975quant‘[i]

}

ckdata<-cidata

row.names(ckdata)<- c("Østfold" ,"Akershus" , "Aust-Agder", "Buskerud",

"Finnmark", "Hedmark" , "Hordaland", "Møre og Romsdal" ,

"Nord-Trøndelag" , "Nordland" , "Oppland", "Oslo", "Rogaland",

"Sør-Trøndelag","Sogn og Fjordane", "Telemark", "Troms",

"Vest-Agder" , "Vestfold" )

colnames(ckdata)<-c("CIlnew","CIunew","CIlusd","CIuused")

xtable(ckdata,digits = 3)
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test23p <- rbind(echonewp[10:19],echooldp[10:19])

names(test23)<-dog[10:19]

par(mar=c(8, 4.1, 4.1, 2.1))

barplot(test23p,beside=T,ylim = c(-4,4),names.arg = dog[10:19],las=2)

plot(resultp$summary.random$‘inla.group(huse1|S|kk, 100, )‘$ID,

resultp$summary.random$‘inla.group(huse1|S|kk, 100, )‘$mean,type="l",

xlab="log(population)", ylab="",xlim=c(11,13.5),ylim=c(-10,25),lwd=2,col=2)

lines(result3p$summary.random$‘inla.group(huse2|S|kk, 100, )‘$ID,

result3p$summary.random$‘inla.group(huse2|S|kk, 100, )‘$mean,type="l",

lwd=2,col=4,ylab=NULL)
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