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Abstract. In the present paper we study the rigidity of 2-step Carnot groups,
or equivalently, of graded 2-step nilpotent Lie algebras. We prove the alterna-
tive that depending on bi-dimensions of the algebra, the Lie algebra structure
makes it either always of infinite type or generically rigid, and we specify the
bi-dimensions for each of the choices. Explicit criteria for rigidity of pseudo H-
and J-type algebras are given. In particular, we establish the relation of the
so-called J2-condition to rigidity, and we explore these conditions in relation
to pseudo H-type algebras.

1. Introduction

The study of H(eisenberg)-type algebras started in the 80’s with A. Kaplan’s
seminal paper [24]. These graded 2-step nilpotent Lie algebras are intricately
related to representations of Clifford algebras of vector spaces endowed with a
positive definite inner product, and have been extensively studied for the past 35
years, see for example [14, 16, 17, 25, 26, 33, 40].

The extension of the work of Kaplan to Clifford algebras over non-degenerate
scalar product spaces is more delicate and has only been treated in detail re-
cently [6, 10, 12, 19, 21, 22]. In this paper, we will refer to such extensions as
pseudo H-type algebras.

Two important algebraic results concerning the classical H-type algebras with
a positive definite scalar product are a complete characterization of rigid H-type
algebras, that are those with a finite Tanaka prolongation, and those H-type
algebras satisfying a Clifford algebraic requirement known as the J2-condition,
see [14]. Both algebraic conditions have deep implications in other aspects of the
study of H-type groups. The rigidity of most H-type algebras is an obstruction
to the development of an analytic deformation theory, while the presence of the
J2-condition has profound geometric consequences on their groups, for example,
they are transitive isometry subgroups of hyperbolic spaces, they appear as the
nilpotent part of Iwasawa decompositions of real rank one groups G = KAN ,

2010 Mathematics Subject Classification. 17B30,17B70, 16W55, 22E60.
Key words and phrases. Clifford algebra, Clifford module, Tanaka prolongation, pseudo H-

type algebra, J-type algebra, J2-condition, rigidity.
The first author is partially supported by the grants Anillo ACT 1415 PIA CONICYT

and DI17-0147 from Universidad de La Frontera. The second author is grateful to the Mainz
Institute for Theoretical Physics (MITP) for its hospitality and partial support during the
conference GGSUSY-2017, where this work was reported and discussed. The third and fourth
authors are partially supported by the grants of the Norwegian Research Council #239033/F20
and EU FP7 IRSES program STREVCOMS, grant no. PIRSES-GA-2013-612669.

1



2 M. GODOY MOLINA, B. KRUGLIKOV, I. MARKINA, A. VASIL’EV

and moreover, the group AN is symmetric if and only if the Lie algebra of N
satisfies the J2-condition [14]. In this paper we discuss the analogs in the pseudo
H-type context, and relate this to the split versions of the division algebras.

The fact that the Lie algebras obtained by non-degenerate indefinite bilinear
forms has not been duly addressed is surprising, especially since Clifford alge-
bras defined by non-degenerate scalar product have played a fundamental role in
mathematics and physics, see [31, 32, 34]. An intimately related object to the
pseudo H-type algebras that appears naturally in mathematical physics is the
notion of extended (super-)Poincaré algebras, see [1, 2, 3, 4]. Some of our results
have analogues in this theory.

An important problem in sub-Riemannian geometry is to detect whether the
family of automorphisms of a given non-holonomic structure on a manifold is finite
dimensional [35, 40, 42]. The model situation is the rigidity of Carnot groups,
determined by the property whether the transformation group of a left-invariant
bracket generating distribution on a Lie group is a Lie group itself. Equivalently,
linearization reduces the problem of finite-dimensionality of the automorphism
group of a non-holonomic geometric structure to that for the Tanaka prolongation
of an associated graded nilpotent Lie algebra. This problem is non-trivial already
for 2-step nilpotent algebras, which is the main subject of our work. In the present
paper we give criteria of the finite dimensionality of the Tanaka prolongation for
the generalizations of H-type structures discussed above, and clarify the situation
with the general 2-step nilpotent Lie algebras n = n−2 ⊕ n−1 depending on their
bi-dimensions (dim n−2, dim n−1).

The paper is structured as follows. Section 2 is devoted to the main concepts
and notations that will be in use throughout the paper. In order to keep track
of our hypotheses, we have introduced the notion of M -type and pseudo J-type
algebras that generalize the known objects in the positive definite context. Sec-
tion 3 is dedicated to proving rigidity of a class of real graded 2-step nilpotent
Lie algebras with the center of dimension ≥ 3 via the so-called rank one criterion
that we recall and re-interpret. This class of algebras contains some important
examples previously considered in the literature, see for example [40]. This result
then applies to pseudo H-type algebras and other cases. Section 4 deals with the
J2-condition of pseudo J-type algebras and their relation to rigidity.

The next two sections are devoted to investigation of the generic rigidity of
graded 2-step nilpotent Lie algebras, depending on their bi-dimensions that com-
plements the known results of P.Pansu and P.Eberlein. We discuss the moduli
spaces of the graded 2-step nilpotent Lie algebras and describe the position of
the pseudo H-type algebras among the rigid ones.

We study the pseudo H-type algebras that satisfy the J2-condition in Section 7.
We prove that the classical Abelian, Heisenberg, quaternionic and octonionic
H-type algebras, and their split analogs that we introduce exhaust all possible
pseudo H-type algebras with the J2-condition. In Appendix A we relate these
algebras to division algebras and their split versions. In Appendix B we relate
them to the nilradicals of parabolics in simple Lie algebras.
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2. Pseudo J-type and pseudo H-type algebras

Let n = n−2⊕n−1 be a real or complex graded 2-step nilpotent Lie algebra, and
let 〈·, ·〉 be a non-degenerate real or complex symmetric bilinear form. We assume
that the restriction 〈·, ·〉n−2 of 〈·, ·〉 to the subspace n−2 is also non-degenerate and
the decomposition n = n−2 ⊕ n−1 is orthogonal (such a choice can be made on
any 2-step algebra n). We call the pair (n, 〈·, ·〉) an M-type Lie algebra, since
such objects have been referred to as “metric Lie algebras” in the real case with
a positive definite symmetric bilinear form, see, for example [17]. A complex
Lie algebra may have different real forms. Each real form carries a real non-
degenerate symmetric bilinear form, whose complexification coincides with the
original complex non-degenerate symmetric bilinear form.

Definition 1. Let (n, 〈·, ·〉) be an M-type Lie algebra. The linear representation
J : n−2 → End(n−1) defined by

(1) 〈Jzx, y〉n−1 = 〈z, [x, y]〉n−2 for all x, y ∈ n−1, z ∈ n−2.

is called the J-map of n.

Definition 2. A real M-type algebra (n, 〈·, ·〉) is of pseudo J-type if there is an
orthonormal basis {z1, . . . , zm} for n−2 such that the J-maps satisfy the condition

(2) J2
zi

= ± Idn−1 , i = 1, . . . ,m.

Note that this definition extends the notion of a J-type algebra in [40, Sec-
tion 6]. It is relevant to note that we consider the operators Jzi as complex
structures for some indices i = 1, . . . ,m, but we also allow involutions for the
rest of them. Moreover, the identities (2) are not necessarily related to the Clif-
ford condition J2

zi
= −〈zi, zi〉n−2Idn−1 defined on the chosen basis for n−2, as it

has been used in [40] in the presence of a positive definite scalar product. A
particular case of these pseudo J-type algebras are the pseudo H-type algebras.

Definition 3. A real M-type algebra (n, 〈·, ·〉) is said to be of pseudo H-type if
the J-maps satisfy the Clifford relations

(3) JziJzj + JzjJzi = −2〈zi, zj〉n−2Idn−1 , i, j = 1, . . . ,m,

for a basis {z1, . . . , zm} of n−2 (that can be chosen orthonormal).

Note that equation (3) implies that the J-map can be extended to a represen-
tation of the Clifford algebra Cl(n−2, 〈·, ·〉n−2) on the space n−1. Condition (3)
implies condition (2) for a special choice of signs, but not conversely. The classical
J-type and H-type algebras originated from the papers [24, 35] in which H-type
algebras were defined as generalizations of the Heisenberg algebra endowed with a
positive definite scalar product. Their pseudo-analogs were introduced in [10, 22].

The construction of pseudo H-type Lie algebras is delicate, so we postpone its
precise description to Section 7. Nevertheless, let us describe them briefly here.
We denote by Rr,s the vector space Rr+s equipped with the metric

〈v, w〉r,s =
r∑
i=1

viwi −
r+s∑
j=r+1

vjwj, v = (vi), w = (wi) ∈ Rr+s.
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The pseudo H-type Lie algebra nr,s(V ) is a real graded 2-step nilpotent Lie al-
gebra structure on the space Rr,s ⊕ V , where V is an admissible Cl(Rr,s)-module
(more details in Section 7). If the Clifford module V is irrelevant to the statement
we will denote by nr,s the class of all pseudo H-type algebras with the same center.
Equivalent definitions of pseudo H-type algebras can be found in [10, 22, 24].

The H-type algebras are a special case of a wider class of algebras satisfying
the hypothesis (H ), introduced in [35], which states that ωα(x, y) = α([x, y]) is
a non-degenerate 2-form on n−1 for any non-zero α ∈ n∗−2. In [16, 17, 33, 37] the
authors established the following equivalent definitions.

Proposition 1. The following statements are equivalent for a real graded 2-step
nilpotent Lie algebra n = n−2 ⊕ n−1:

(1) n satisfies Métivier’s hypothesis (H).
(2) adx : n−1 → n−2 is surjective for any non-zero x ∈ n−1.
(3) Jz : n−1 → n−1 is a non-degenerate map for any non-zero z ∈ n−2.

3. Rigidity of M-type algebras

Given a graded nilpotent Lie algebra n =
⊕s

i=1 n−i generated by n−1, there is
an algebraic procedure to compute symmetries of n−1, called the Tanaka prolon-
gation [47]. This is the maximal graded Lie algebra n̂ = n−s⊕· · ·⊕n−1⊕n0⊕ . . .
with n̂<0 = n. There is a vast literature on this topic, and we refer the reader
to [5, 8, 36, 40, 49] and the references therein for an overview.

A graded 2-step nilpotent Lie algebra n = n−2 ⊕ n−1 is called rigid or of finite
type if its Tanaka prolongation n̂ = n−2 ⊕ n−1 ⊕ n0 ⊕ · · · is finite dimensional.
Otherwise it is called of infinite type. These definitions are valid for either complex
or real Lie algebras. We will assume throughout the text that n is fundamental
or equivalently stratified, i.e. n−1 generates n, and in the 2-step case that n−1

contains no central elements, so the center z of n is exactly n−2, see [47].
A criterion to detect whether a given complex graded 2-step nilpotent Lie al-

gebra n = n−2 ⊕ n−1 is rigid is the corank one criterion (see [15, Theorem 1]
and [41, 29], which are based on [47, Corollary 2 of Theorem 11.1]). It states
that n is of infinite type if and only if there exist x ∈ n−1 and a hyperplane
Π ⊂ n−1, such that

[x, y] = 0 for all y ∈ Π.

A key observation is that the corank one criterion can be rewritten conveniently
in the case when the adjoint map of n induces endomorphisms of n−1 through
a non-degenerate symmetric bilinear form, as in Definition 1. We conclude that
the above is equivalent to the existence of a non-zero vector x ∈ n−1 with

Jn−2x ∈ Π⊥, or dimC Jn−2x = dim(Π⊥) = 1.

This means that Jn−2 is a one dimensional complex subspace of End(n−1) and
therefore there exists

L ⊂ n−2, codimC L = 1, such that JLx = 0.
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The last condition is equivalent to the property x ∈
⋂
z∈L ker(Jz), so we conclude:

n is of infinite type if and only if there exists a subspace

L ⊂ n−2, codimC L = 1, such that
⋂
z∈L

ker(Jz) 6= {0}.(4)

Notice that for real graded 2-step nilpotent Lie algebras n the criterion fails in
its sufficient part and the complexification is required, i.e. condition (4) will be
applied to the complexifications nC and JC.

Remark 1. Even though this rigidity criterion is formulated in terms of M -
type algebras, viz. the definition of the operators Jz involves a choice of a scalar
product on n, the output, namely the alternative whether the algebra n is of finite
or infinite type, does not depend on this choice.

Since the Tanaka prolongation is a linear algebra operation, the following
folklore-known statement relates the complexification and the prolongation of
real Lie algebras.

Proposition 2. Let n be a real graded nilpotent Lie algebra of any step, and let

nC be its complexification. Then n̂C = n̂C.

This statement has the following immediate implications.

Corollary 1. Let n and ñ be two graded nilpotent Lie algebras such that nC ∼= ñC.
Then they are either simultaneously rigid or of infinite type.

Corollary 2. Let n be a real graded nilpotent Lie algebra of any step with the
complexification nC. Then n and nC are either simultaneously rigid or of infinite
type in their respective categories.

Proof. The claims follow from the equality dimR n = dimC n
C. �

The idea of the following constructions is to employ the complexification and
criterion (4) in order to detect the rigidity of real 2-step nilpotent Lie algebras.
The following is a special case of Theorem 4 in [15], see also [40, Lemma 6].

Lemma 1. Let n = n−1 ⊕ n−2 be a real M-type algebra. If dim n−2 = 2, then n
is of infinite type.

Proof. Let us complexify n and use Corollary 2. Choose a basis z1, z2 of nC−2. For
some λ ∈ C the vector z = z1 + λz2 is null and so det Jz1+λz2 = 0. Then one can
take L = span{z} and the claim follows from ker(Jz) 6= 0. �

The aim of this section is to generalize [40, Theorem 1] to a much wider class
of real Lie algebras. In order to state the result, we introduce the following con-
dition (C): an M -type algebra n = n−2 ⊕ n−1 satisfies this condition if

(C)
There exist three linearly independent vectors z1, z2, z3 ∈ n−2 such
that the J-maps Jzi are non-degenerate, and JziJzj = σijJzjJzi, for
all i, j ∈ {1, 2, 3}, where σij ∈ {−1, 1} and σ12σ13σ23 = −1.
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Condition (C) is not too restrictive, and several important systems satisfy it.
For instance, it holds for the pseudo H-type algebras as well as in the case when
Jzi commutes with both Jzj and Jzk , but Jzj and Jzk anti-commute.

Theorem 1. Let n = n−2 ⊕ n−1 be a real M-type algebra with dim n−2 ≥ 3 that
satisfies condition (C). Then n is rigid.

Proof. Let z1, z2, z3 ∈ n−2 be the linearly independent vectors from condition (C)
and with a slight abuse of notation define K = spanC{z1, z2, z3} ⊂ nC−2.

Suppose, that nC is of infinite type and let L ⊂ nC−2 be the codimension one
subspace coming from the corank one criterion. By the dimension count, it is
easy to see that dimC(K ∩ L) ≥ 2.

Without loss of generality, we can assume that there are s1, s2 ∈ C such that
K ∩ L ⊃ spanC{z1 − s1z3, z2 − s2z3}. By the definition of L, there is a non-zero
x ∈ nC−1 such that

(Jz1 − s1Jz3)(x) = (Jz2 − s2Jz3)(x) = 0,

where we use the notation Jz for the complexification as well. By the non-
degeneracy of Jzk , k ∈ {1, 2, 3}, it holds that s1, s2 6= 0. By condition (C)

Jz1Jz2x = s2Jz1Jz3x = σ13s2Jz3Jz1x = σ13s1s2J
2
z3
x,

and analogously, Jz2Jz1x = σ23s1s2J
2
z3
x. Thus, it follows that σ23 = σ12σ13. This

contradicts σ12σ13σ23 = −1 in condition (C), and so nC is rigid. The rigidity of n
follows from Corollary 2. �

Observe that Theorem 1 is applicable in a broader context than just for M -
type algebras. In particular, it holds when the symmetric bilinear form 〈·, ·〉
degenerates on n−2, as long as the latter possesses a three dimensional subspace
satisfying condition (C). Such degenerate cases have been considered before in
the literature, see [6, 9, 12].

As a consequence of Theorem 1 we have the following results, see also [43].

Corollary 3. Any pseudo H-type algebra with dim n−2 ≥ 3 is rigid.

Corollary 4. Let n be a pseudo J-type algebra, and let A be the subalgebra of
End(n−1) generated by the set {JzJw : z, w ∈ n−2}. If n is of infinite type, then
A has a common eigenvector over C.

Proof. Choose an orthonormal basis {z1, . . . , zm} of n−2. As in the proof of
Theorem 1, by complexifying, we know there exist non-zero complex numbers
s1, . . . , sm−1 ∈ C such that (perhaps after re-enumeration)

(5) Jzi − siJzm ∈ JL,
where L is the subspace given in the corank one condition. If x ∈ nC−1 is the non-
zero vector corresponding to L, then equation (5) implies that there are constants
cij ∈ C, i, j ∈ {1, . . . ,m}, such that JziJzjx = cijx. Consequently, since any I ∈ A
can be written as a polynomial in the variables JziJzj , say I = P (. . . , JziJzj , . . . ),
we conclude that Ix = P (. . . , JziJzj , . . . )x = P (. . . , cij, . . . )x. �

Remark 2. Let z1, z2, z3 ∈ n−2 be linearly independent. Corollary 4 implies that
if [Jzi , Jzj ], 1 ≤ i < j ≤ 3, have no common eigenvector over C, then n is rigid.



RIGIDITY OF 2-STEP CARNOT GROUPS 7

4. Rigidity and J2-condition

The main goal of this section is to characterize an analogue of the so-called
J2-condition for pseudo J- and H-type algebras, studied in [11, 14]. Although
in the classical situation this condition has deep geometric implications, we only
focus here on those algebras that admit this algebraic property.

Definition 4. A pseudo J-type algebra n = n−2⊕n−1 satisfies the J2-condition if
for every x ∈ n−1, 〈x, x〉n−1 6= 0, and for every orthogonal pair z, z′ ∈ n−2, there
exists z′′ ∈ n−2 satisfying

(6) JzJz′x = Jz′′x.

Equation (6) implies that for any given x ∈ n−1, 〈x, x〉n−1 6= 0, the space

(7) Ax = Rx⊕ Jn−2x = {αx+ Jz′x | α ∈ R, z′ ∈ n−2}

is Jz-invariant for every z ∈ n−2 (note that Rx ∩ Jn−2x = 0 if ‖x‖2
n−1
6= 0).

The converse statement is true for pseudo H-type algebras: if JzAx ⊂ Ax for
any non-null x ∈ n−1 and any z ∈ n−2, then the pseudo H-type algebra n satisfies
the J2-condition. This implication holds thanks to the identity

(8) 〈Jzx, Jz′x〉n−1 = 〈z, z′〉n−2〈x, x〉n−1

that will be used in the sequel.
If 〈x, x〉n−1 6= 0, then Ax is a non-degenerate subspace of (n−1, 〈·, ·〉n−1). In the

case when x is null, the restriction of 〈·, ·〉n−1 to Ax is degenerate. We define the
general J2-condition by omitting the requirement 〈x, x〉n−1 6= 0.

Definition 5. A pseudo J-type algebra n = n−2 ⊕ n−1 satisfies the general J2-
condition if for any x ∈ n−1, and for all orthogonal pairs z, z′ ∈ n−2 there exists
z′′ ∈ n−2 such that equation (6) holds.

Observe that for J-type algebras (more generally, when 〈·, ·〉 is positive definite
on n−1) the general J2 condition is equivalent to the usual J2 condition. Of course,
the general J2 condition implies the usual one. Note also that the (general) J2-
condition is trivially fulfilled for dim(n−2) = 0, 1.

Lemma 2. The J2-condition is never satisfied for dim n−2 = 2.

Proof. Assuming the opposite we get two linear operators Ji = Jzi ∈ GL(n−1)
with J2

i = εi = ±1, i = 1, 2, for an orthonormal basis z1, z2 ∈ n−2.
Note that if z = s1z1 + s2z2 6= 0, si ∈ R, then Jz 6= λz · 1 because λz = 0

contradicts non-degeneracy of 〈·, ·〉n−2 , while for λz 6= 0 the operator Jz is not
skew-symmetric with respect to 〈·, ·〉n−1 .

Now the J2-condition implies that for any non-null x ∈ n−1 for some scalar
functions αx, βx we have the equality: J1J2x = (αxJ1 + βxJ2)x. If αx ≡ 0 then
J1 ≡ β · 1, and if βx ≡ 0 then J1 ≡ α · 1. Consequently, αxβx 6≡ 0. Thus
application of the operator J1 to the above equality from the left yields

(9) J1x = (px1 + qxJ2)x
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for some (perhaps rational) scalar functions px, qx. Since for generic x ∈ n−1 the
vectors x and J2x are linearly independent, the linearity of the operators J1,1, J2

implies that px = p = const, qx = q = const in formula (9), i.e. J1 = p1 + qJ2.
Squaring this latter identity yields ε11 = (p2+ε2q

2)1+2pqJ2. Then pq = 0, but
since q 6= 0 we get p = 0, q = ±1, whence J2 = ±J1 and Jz = 0 for z = z1 ∓ z2,
which is a contradiction. �

Theorem 2. A pseudo J-type algebra n = n−2 ⊕ n−1, dim(n−2) ≥ 3, satisfying
the general J2-condition is rigid.

Proof. We will work over the field C. If necessary we use the complexification
and finish the proof by applying Corollary 2.

By contradiction, let us suppose that a pseudo J-type algebra n is of infinite
type. Corollary 4 implies that there exists a common eigenvector x ∈ n−1 for
the algebra A generated by the operators JziJzj , where {zi}mi=1 is an orthonormal
basis for n−2. Thus, we obtain JziJzjx = µzi,zjx for some non-vanishing µzi,zj ∈ C.

We claim that the same x is also an eigenvector for all Jz, z ∈ n−2. Indeed,
since the pseudo J-type algebra satisfies Definition 5, for any pair zi, zj of vectors
from the orthonormal basis for n−2, there is z′′ij ∈ n−2 such that JziJzjx = Jz′′ijx.

We get Jzjx = εiJziJz′′ijx = ±µzi,z′′ijx by J2
zi

= εi = ±Idn−1 . Since j is an arbitrary

index and {zj}mi=1 is a basis for n−2, the claim follows.
Let us fix the eigenvector x. Then Jzx = λzx for a non-zero linear function

λ : n−2 → C. The definition of pseudo J-type algebras leads to

(10) 〈z, [x, y]〉n−2 = 〈Jzx, y〉n−1 = λz〈x, y〉n−1 = −〈x, Jzy〉n−1

for all y ∈ n−1, z ∈ n−2. This implies that 〈x, x〉n−1 = 0, and thus [x,Π] = 0
for the co-dimension 1 subspace Π ⊂ n−1 orthogonal to x. We can choose y 6∈ Π
such that 〈x, y〉n−1 = 1. Thus, there exists a basis e1 = y, e2 = x, e3, . . . , en,
n = dim n−1, ei ∈ Π for i > 1, such that 〈e1, e2〉n−1 = 1, 〈e2, ei〉n−1 = 0 for i > 1.

From (10) with x = e2 and y = e1 we obtain λz = −〈e2, Jze1〉n−1 , whence
Jze1 = −λze1 mod Π. Similarly, substituting y = ei for i > 2 in (10) we obtain
〈e2, Jzei〉n−1 = 0, whence Jzei = 0 mod Π for i > 2. Finally, since e2 = x
is an eigenvector, we obtain Jze2 = λze2. Hence, the matrix of the operator
Jz ∈ End(n−1) in the chosen basis e1, e2, . . . , en has the form

(11) Jz =


−λz 0 0 . . . 0
∗ λz ∗ . . . ∗
∗ 0 ∗ . . . ∗

∗
...

. . .
... ∗

∗ 0 ∗ . . . ∗

 .
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Taking z′ orthogonal to z and multiplying (11) by Jz′ from the right, we arrive
at

JzJz′ =


λzλz′ 0 0 . . . 0
∗ λzλz′ ∗ . . . ∗
∗ 0 ∗ . . . ∗

∗
...

. . .
... ∗

∗ 0 ∗ . . . ∗


that differs from any matrix Jz′′ unless λzλz′ = λz′′ = 0. Since for a generic or-
thogonal pair z, z′ ∈ n−2, it holds that λz 6= 0, λz′ 6= 0, we obtain a contradiction.
This proves the required rigidity of n. �

5. Generic rigidity of 2-step nilpotent algebras

Let us discuss the general rigidity problem for graded 2-step nilpotent algebras
n = n−2 ⊕ n−1. Notice that if 0 ≤ dim n−2 ≤ 2, then the algebra n is of infinite
type, see Section 3. So we study the algebras with dim n−2 > 2.

In this section we work with both real and complexified cases, so we omit
specification of the field and signature for the metric 〈·, ·〉n−1 and simply write
so(n) below (the conclusion does not depend on this signature).

Denote by N(m,n) the space of 2-step graded nilpotent Lie algebras with bi-
dimensions (m,n), where m = dim n−2, n = dim n−1, 0 ≤ m ≤

(
n
2

)
. This space

is an algebraic manifold of dimension md, d =
(
n
2

)
−m, with the isomorphism to

the Grassmanian Grd(Λ
2n−1) given by associating Z = ker(Λ2n−1 → n−2) to the

bracket on n. Reciprocally, n is restored by letting n−2 = Λ2n−1/Z. In particular,
the notion of a generic Lie algebra structure n ∈ N(m,n) is given by the notion
of a Zariski generic point Z ∈ Grd(Λ

2n−1).

Theorem 3. A generic algebra n ∈ N(m,n) is rigid for m ≥ 3, n ≥ 3.

In other words, for a generic Lie bracket on n with the bi-dimensions in the
range m,n ≥ 3 the automorphism group of the Carnot structure (exp n, n−1) is
a Lie group. Before we give a proof of this, let us notice that several authors
have studied automorphisms of generic 2-step Carnot structures. In particular,
let us mention the result by P. Pansu [42, Proposition 13.1], asserting that in
general, the automorphism group is generated by translations adx, x ∈ n−1, and
the standard homothety, namely the action by the grading element e ∈ n0 ⊂ n̂,
provided that n ∈ 2Z, n ≥ 10, 3 ≤ m < 2n−3. The restrictions on bi-dimensions
were relaxed by P. Eberlein [18, Proposition 3.4.3], where his assumption is that
d̄ = min{m,

(
n
2

)
−m} ≥ 3 excluding the cases n ≤ 6 for d̄ = 3. See also [26, 44, 46].

When the stability subgroup of the automorphism group is only scaling due
to the grading element, the positive part of the Tanaka prolongation vanishes.
Indeed, if n0 = 〈e〉, where e is the grading element and v ∈ n1 is a non-zero
element, then we can choose a codimension 1 subspace Π ⊂ n−1 and a vector
x ∈ n−1 \Π such that [x, v] = e, [Π, v] = 0. Then [[x, y], v] = −y, [[[x, y1], y2], v] =
−[y1, y2] = 0 and [[[x, y], x], v] = −3[x, y] = 0 for all y, y1, y2 ∈ Π, so that
n−2 = [n−1, n−1] = 0. This contradiction yields the claim of our theorem.
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However, in order to overcome the restrictions assumed by Pansu and Eberlein,
we will give the proof valid for all pairs (n,m) with the range specified. Outside
this range all the algebras n ∈ N(m,n) are of infinite type.

Notice that absence of rank 1 elements in the family {Jz : 0 6= z ∈ n−2} ⊂
End(n−1) is a Zariski open condition, so proving there exists one rigid Lie algebra
structure on n in bi-dimensions (m,n) implies the same for a generic one.

Proof. We will give two proofs of Theorem 3. First, let us remind that we work
in the complexification. Using criterion (4), we have to show that generically, for
a basis z1 . . . , zm of n−2, the vectors Jz1x, . . . , Jzmx span the space of dimension
greater than 1 for all non-zero vectors x ∈ n−1. In other words, choosing a basis
in n−1, the n ×m matrix M = [Jz1x| . . . |Jzmx] has rank less than or equal to 1
only if x = 0. In the case x = 0 the rank is indeed 0.

The first proof is constructive. The condition rank (M) ≤ 1 means that all 2×2
minors vanish. Take independent minors M1,j

1,i for 1 < i ≤ n, 1 < j ≤ m. The
entries (linear in x) are at our disposal since we are free to perturb the operators
Jzj , so we get (n−1)(m−1) > n quadratic conditions on x ∈ n−1 whose common
solution is generically only zero, thus proving our claim.

For example, in the case (m,n) = (3, 5) we can have the following explicit
matrices giving the structure of n:

Jz1 =


0 1 0 0 1
−1 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
−1 0 0 0 0

 , Jz2 =


0 0 0 0 0
0 0 1 0 1
0 −1 0 0 0
0 0 0 0 0
0 −1 0 0 0

 , Jz3 =


0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
−1 0 0 0 1
0 −1 0 −1 0


Then for 0 6= x = (x1, x2, x3, x4, x5)t ∈ n−1 the 5× 3 matrix

[Jz1x|Jz2x|Jz3x] =


x2 + x5 0 x4

−x1 x3 + x5 x5

x4 −x2 0
−x3 0 x5 − x1

−x1 −x2 −x2 − x4


has rank greater or equal than 2, whence this Lie algebra, as well as generic
nilpotent algebras n with (m,n) = (3, 5), are of finite type.

The second proof uses the fact that there exist three linearly independent op-
erators J1, J2, J3 ∈ so(n) such that any 2-dimensional subspace of their span
generates the whole Lie algebra so(n). Note that any 3 generic skew-symmetric
operators satisfy this property. Statements of this kind can be found in [7]. As-
sume that Jn−2 contains three operators Jz1 , Jz2 , Jz3 of the indicated type. Then
the intersection L† of the three-dimensional span{z1, z2, z3} ⊂ n−2 with the hy-
perplane L, used in criterion (4), has dimension 2 or 3. Since L† ⊂ L, there exists
a non-zero vector x ∈ n−1 satisfying Jzx = 0 for all z ∈ L†. However L† generates
the Lie algebra so(n) and thus we get Ax = 0 for all A ∈ so(n), hence x = 0.
This contradiction proves the result. �
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It is natural to investigate the moduli space of nilpotent Lie structures on
n = n−2⊕ n−1, i.e., the quotient of N(m,n) by the natural action of GL(n) on n,
induced by the action on n−1. This is no longer a manifold due to existence of
singular orbits. However since the action is algebraic, it allows a rational quotient
on a Zariski open stratum by Rosenlicht’s theorem [45]. Thus the quotient is a
rational space and it has positive dimension in the following cases:

• d̄ = min{m,
(
n
2

)
−m} ≥ 3, n ≥ 6, because dim sl(n) < dim Grm(so(n)).

The standard homothety acts trivially on the Grassmanian, so we consider
its quotient by the projective group PSL(n).
• d̄ = 2, n ∈ 2Z, n > 6, because of the following. The algebra structure

on n is given by two skew-symmetric operators Jz1 , Jz2 on n−1, which are
generically non-degenerate. They are however not invariants of the Lie
algebra structure, but only of the chosen M -algebra: under the change
of metrics on n−2 and n−1 given by symmetric matrices B and A of sizes
2 × 2 and n × n respectively, the operator Jz changes to AJBz. Passage
to I = J−1

z1
Jz2 eliminates dependence on A, and the action of the Möbius

group I 7→ a+bI
c+dI

eliminates dependence on B. Since the spectrum of I
generically consists only of double eigenvalues with totality | Sp(I)| = n/2,
we obtain a continuous invariant for n > 6.

In all other cases, there is an open orbit, and thus, no moduli for 2-step structures
n ∈ N(m,n). This is obvious if d̄ ≤ 1. In the remaining cases, the codimension
of the orbit of PSL(n) on Grm(so(n)) is

(12) dim Grm(so(n))− dim sl(n) + d(m,n) = m ·
(
n
2

)
−m2 − n2 + 1 + d(m,n),

where d(m,n) is the dimension of the stabilizer of a generic point Z in the Grass-
mannian, or equivalently, the minimum of dimensions of stabilizers of all points,
which was computed in [18, Section 4.3]:

d(2, 2k + 1) = 2k + 4, d(2, 4) = 7, d(2, 6) = 9, d(3, 4) = 6, d(3, 5) = 3.

It is straightforward to check that the value in (12) is zero for these bi-dimensions,
and that it is positive for (2, 2k) since d(2, 2k) = 3k for k > 3.

We conclude generic rigidity for the moduli on the strata of highest dimension
in the quotient of N(m,n) by PSL(n) in the case m > 2.

6. Digression: rigidity vs. pseudo H-type

Let us at first discuss the rigidity problem in lowest dimensions. The first
non-trivial case is thus dim n−2 = 3. The fundamental property implies that
dim n−1 ≥ 3 and in the case of equality dim n−2 = dim n−1 = 3 the bracket
identifies n−2 = Λ2n−1. It is well-known, see [8, 48], that the Tanaka prolongation
of n in this case is the simple Lie algebra of type B3 with the 2-grading induced
by the parabolic subalgebra p3. Namely, it is so(3, 4) in the real case or so(7,C)
in the complex case. Thus the algebra n with dim n−2 = dim n−1 = 3 is rigid.

The situation changes when dim n−2 = 3 and dim n−1 = 4. The classification
of such graded 2-step Lie algebras, which can be extracted from [30], is as follows.
Let e1, e2, e3, e4 be a basis of n−1, and let f1, f2, f3 be that of n−2. The non-trivial
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brackets of n in every of six non-isomorphic cases are given below. These cases are
numerated in loc.cit. as m7 2 2, m7 2 3, m7 2 4, m7 2 2r, m7 2 5 and m7 2 5r
respectively:

[e1, e4] = f1, [e2, e4] = f2, [e3, e4] = f3;(13)

[e1, e4] = f1, [e2, e4] = f2, [e3, e4] = f3, [e2, e3] = f1;(14)

[e1, e4] = f1, [e2, e3] = f2, [e3, e4] = f3;(15)

[e1, e3] = [e4, e2] = f1, [e1, e4] = [e2, e3] = f2, [e3, e4] = f3;(16)

[e1, e2] = [e3, e4] = f1, [e1, e4] = f2, [e2, e3] = f3;(17)

[e1, e2] = [e3, e4] = f1, [e1, e3] = [e4, e2] = f2, [e1, e4] = [e2, e3] = f3.(18)

Clearly in cases (13–15) rank(ade1) = 1, and for (16) we have to use the com-
plexification rank(ade1+ie2) = 1, so the corresponding algebras n are of infinite
type by the rank 1 criterion [15, 39]. On the contrary, in cases (17) and (18) the
algebras n are rigid. Indeed, in these cases they are isomorphic to the pseudo
H-type algebras n1,2 and n3,0 respectively. Thus, we conclude the following.

Proposition 3. The algebra n with (dim n−2, dim n−1) = (3, 4) is of finite type if
and only if it is of pseudo H-type.

The corresponding statement does not hold for n = dim n−1 > 4. Already for
(m,n) = (3, 5) we have rigid algebras n ∈ N(m,n) that are not of pseudo H-type.
A criterion for 2-step nilpotent Lie algebras to be of H-type was obtained in [33].
Indeed, there are no 5-dimensional representations without trivial modules for the
Clifford algebra generated by a 3-dimensional scalar product space, see Table 1
in Section 7. More generally, the following holds

Theorem 4. Generic (resp. generic rigid) algebras n ∈ N(m,n) in the range
m > 1 (resp. m > 2) except for (m,n) ∈ {(2, 4), (3, 4)} are not of pseudo H-type.

Proof. Any representation of the Clifford algebra Cl(n−2, 〈·, ·〉n−2) is decomposed
into a direct sum of irreducible modules. We have to exclude trivial submodules
which lead to infinite type. Thus, first of all, not every pair of bi-dimensions
(m,n) can be realized for a pseudo H-type algebra.

Second, if n−1 = ⊕ki=1Ui is the sum of k irreducible modules, then k scalings
contribute to the choice of module, and hence, to fixing the scalar product on n:
〈·, ·〉 = 〈·, ·〉n−2 + 〈·, ·〉n−1 .

Next, changing the scalar product we keep the same Lie structure of n but
a different J-representation as an M -type algebra. Namely, any other scalar
product, having decomposition n = n−2 ⊕ n−1 orthogonal, can be obtained via
two symmetric, not necessarily positive definite, operators A ∈ End(n−1) and
B ∈ End(n−2): 〈·, ·〉new = 〈A. , .〉n−1 + 〈B. , .〉n−2 . The J-representation of the Lie
algebra structure changes so Jz  A ◦ JBz. The change of the basis z 7→ Bz in
n−2 does not influence the dimension of the space of pseudo H-type algebras in
N(m,n), while the symmetric operator A ∈ End(n−1) does contribute to it.

Alternatively, we can think of GL(n) changing the basis in n−1, inducing the
change in n−2. But since the orthogonal group preserves 〈·, ·〉n−1 , we obtain only
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n+1

2

)
transformations, including the above k scalings, and this number bounds

from above the dimension of the space of H-type algebras.
For n > 4, 1 < m <

(
n
2

)
− 1, we have

(
n+1

2

)
< md = dim Grd(so(n)), whence a

generic n ∈ N(m,n) in this range of bi-dimensions is not of pseudo H-type.
For n > 2 it can be checked that in the cases m =

(
n
2

)
the only Lie structure

(that is the modelled on the simple algebra Bn with the grading corresponding
to pn) is not of pseudo H-type, as well as all finite number of structures n for
m =

(
n
2

)
− 1 are not such. This follows by dimensional reasons similarly to the

bi-dimension (3, 5) considered before the theorem. Thus, we only have to study
the cases (m,n) with 3 ≤ n ≤ 4, which do not satisfy the above inequalities.

They are precisely the cases (2, 4), (3, 4) and (4, 4). The last one may not have
any pseudo H-type as it follows from Table 1 in the next section. But the first
two both admit a pseudo H-type structure and they are two exceptions: in the
first case n is always of infinite type and in the second case it is generically of
finite type. This finishes the proof. �

An alternative approach to the proof of the above theorem for dim n−2 > 2 is
as follows. For pseudo H-type algebras, almost all operators Jzi are invertible
and one can consider the operators Tij = J−1

zi
Jzj for some generic choice of the

basis zi ∈ n−2. Similarly to how it was done in [33] for H-type algebras, one
can show that Tij generate a subalgebra of the even part Cl0(n−2, 〈. , .〉n−2) of the
Clifford algebra. In particular, this subalgebra has dimension at most p = 2m−1.
Since the minimal dimension of the Clifford module is 2

m−1
2 ≤ n, we conclude

that p ≤ n2 = dim End(n−1), where the inequality is strict unless n ≡ 7 mod 8.
Due to the results of [7] the operators Tij, obtained from generic operators Jk as
above, generate the whole endomorphism algebra End(n−1). Therefore, the claim
follows from the inequality p < n2 for n 6≡ 7 mod 8, and by comparison of the
structures of Cl0(n−2, 〈. , .〉n−2) with End(n−1) otherwise.

7. Pseudo H-type algebras with J2-condition

In this section we clasify pseudo H-type algebras satisfying the J2-condition.

Definition 6. Let J : Cl(U, 〈·, ·〉U) → End(V ) be a Clifford algebra representa-
tion. The module V is called admissible if there is a bilinear form 〈·, ·〉V such
that the endomorphisms Jz are skew-symmetric for any z ∈ U , that is

(19) 〈Jzx, y〉V = −〈x, Jzy〉V .

This scalar product 〈·, ·〉V is called admissible for the module V .

It is well-known [23, 31] that if U is endowed with a positive definite bilinear
form 〈·, ·〉U , then the module V is admissible with respect to some positive defi-
nite bilinear form 〈·, ·〉V . In particular, any irreducible module is admissible. In
the case when the bilinear form 〈·, ·〉U is indefinite, the module V is not always
admissible and sometimes only the direct sum V ⊕ V is admissible. As a conse-
quence, in this case not all irreducible modules are admissible. Notice also that
if (U, 〈·, ·〉U) is an indefinite scalar product space, then any admissible module



14 M. GODOY MOLINA, B. KRUGLIKOV, I. MARKINA, A. VASIL’EV

will necessarily be a neutral space [10]. We call an admissible module of minimal
possible dimension the minimal admissible module.

In Table 1 we give the dimensions of the minimal admissible modules V r,s,
r, s ≤ 8. Dimensions of other minimal admissible modules can be obtained by
Bott’s periodicity, see [32]. The bold integers are used for the minimal admissible
modules which are direct sums of two irreducible Clifford modules. Others denote
the dimensions of minimal admissible modules, that are also irreducible Clifford
modules. The notation ×2 means that there are two minimal admissible modules,
related to non-isomorphic irreducible modules.

Table 1. Dimensions of minimal admissible modules

8 16 32 64 64×2 128 128 128 128×2 256

7 16 32 64 64 128 128 128 128 256

6 16 16×2 32 32 64 64×2 128 128 256

5 16 16 16 16 32 64 128 128 256

4 8 8 8 8×2 16 32 64 64×2 128

3 8 8 8 8 16 32 64 64 128

2 4 4×2 8 8 16 16×2 32 32 64

1 2 4 8 8 16 16 16 16 32

0 1 2 4 4×2 8 8 8 8×2 16

s/r 0 1 2 3 4 5 6 7 8

As it was mentioned before, pseudo H-type Lie algebras are closely related
to Clifford algebras. Namely, for a pseudo H-type Lie algebra n = (n−2 ⊕
n−1, 〈·, ·〉n−1+〈·, ·〉n−2) one has the representation J : Cl(n−2, 〈·, ·〉n−2)→ End(n−1).
Conversely, for an admissible Cl(U, 〈·, ·〉U)-module (V, 〈·, ·〉V ), the representation
induces a graded 2-step nilpotent Lie algebra structure on n−2 ⊕ n−1 = U ⊕ V
defining the Lie bracket by equation (1).

Let us assume that n satisfies the J2-condition. If x ∈ n−1 and z, z′ ∈ n−2 is
any orthogonal pair satisfying

(20) 〈Jz̃x, JzJz′x〉n−1 = 0, ∀ z̃ ∈ n−2,

then 〈x, x〉n−1 = 0. Indeed using (8) we get

0 = 〈Jz̃x, JzJz′x〉n−1 = 〈Jz̃x, Jz′′x〉n−1 = 〈z̃, z′′〉n−2〈x, x〉n−1 .

Thus, to show that a pseudo H-type Lie algebra n does not satisfy the J2-
condition it is enough to find a vector x ∈ n−1, 〈x, x〉n−1 6= 0 and an orthogonal
pair z, z′ ∈ n−2 such that (20) holds.

For a minimal admissible module V let us call the modules V ⊕k isotypic.

Theorem 5. Only the following pseudo H-type algebras satisfy the J2-condition:

(1) dim n−2 = 0: Rn – any module (vector space) over R.
(2) dim n−2 = 1: n1,0 and n0,1 for any admissible module.
(3) dim n−2 = 3: n3,0 and n1,2 for any isotypic module.
(4) dim n−2 = 7: n7,0 and n3,4 for the minimal admissible modules.
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In Appendix A we will explain these dimensions via a relation to the division
algebras. Explicit descriptions of the admissible modules are given in the proof.
They are also realized via simple Lie algebras as described in Appendix B.

Proof. We start by presenting a dimensional argument related to Table 1, which
shows that all pseudo H-type algebras nr,s with r + s 6= 0, 1, 3, 7, do not satisfy
the J2-condition. Let us start by pointing out that if nr,s(V ), with a minimal
admissible module V , does not satisfy the J2 condition, then no nr,s satisfies it.
Indeed, for any pseudo H-type algebra nr,s(V ), with a minimal admissible module
V , there exists an element x ∈ n−1 = V , 〈x, x〉n−1 = 1, such that the set

{x, Jzix, JziJzjx, JziJzjJzkx, · · · }

contains an orthonormal basis of n−1, see [19].
Since Rx⊕ Jn−2x is an admissible module, it cannot have dimension less than

the dimension of the minimal admissible module listed in Table 1. From this we
see that the Clifford algebra Cl(n−2, 〈·, ·〉n−2) can possess an admissible module of
the form Rx⊕ Jn−2x of dimension r+ s+ 1 only when r+ s = 0, 1, 3, 7. In other
words, if r+s 6= 0, 1, 3, 7, no pseudo H-type algebra nr,s admits the J2-condition.

Henceforth we focus on pseudo H-type algebras nr,s with m = r+s = 0, 1, 3, 7.
Fix an orthonormal basis {z1, . . . , zr+s} of the center n−2 of Lie algebra nr,s with
〈zi, zi〉n−2 = 1, 1 ≤ i ≤ r and 〈zi, zi〉n−2 = −1, r < i ≤ r + s.

The J2-condition is trivially satisfied when m = dim n−2 = 0, 1. Notice that
for n1,0 or n0,1 the admissible modules are isotypic V ⊕k, where V is the minimal
admissible module C or R⊕ R respectively.

Let dim n−2 = 3. A similar dimensional argument as before, using Table 1,
shows that the cases (r, s) ∈ {(2, 1), (0, 3)} do not satisfy the J2-condition. For
(r, s) ∈ {(3, 0), (1, 2)}, we obtain (Jz1Jz2Jz3)

2 = Idn−1 . In these cases there are
two non-isomorphic irreducible 2-dimensional Clifford modules V+ and V− of n−1,
where the endomorphism Ωr,s = Jz1Jz2Jz3 acts as the identity or minus the iden-
tity, respectively. In other words, the spaces V± are the eigenspaces of Ωr,s with
the eigenvalues ±1. In both cases (r, s) ∈ {(3, 0), (1, 2)} the dimension of the
minimal admissible module is 4.

Case (r, s) = (1, 2). The minimal admissible module is either V+ ⊕ V+ or
V−⊕ V−, see [19, 20]. It is necessary to point out that each module V+ and V− is
a null space and by this reason we need to double them to guarantee admissibility.
It follows that neither of these direct sums is orthogonal. For an orthonormal
basis {z1, z2, z3} of n−2, it holds

(21)

 Jz1x = −Jz2Jz3x,
Jz2x = −Jz1Jz3x,
Jz3x = Jz1Jz2x,

for all x ∈ V+. The signs in (21) change to the opposite ones for x ∈ V−. Consider
n1,2(V+⊕V+) = n−2⊕n−1. Note that we could have chosen n1,2(V−⊕V−) instead,
but we would have obtained an isomorphic algebra. Choose any z =

∑3
i=1 aizi
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and z′ =
∑3

i=1 bizi such that 〈z, z′〉n−2 = 0. Then

(22) JzJz′x =
∑
i,j

aibjJziJzjx = 〈z, z′〉n−2 Idn−1 x+
∑
i 6=j

aibjJziJzjx = Jz′′x,

where z′′ is a linear combination of the orthonormal basis with coefficients ±aibj,
i 6= j with the signs obtained by using (21). We conclude that the pseudo H-type
algebra n1,2(V+ ⊕ V+) satisfies the J2-condition.

In the next step we allow the admissible module n−1 to be non-minimal. There
are (potentially several) non-isomorphic pseudo H-type algebras n1,2(V p,q) where
n−1 = V p,q = (V+ ⊕ V+)⊕p ⊕ (V− ⊕ V−)⊕q is an orthogonal sum of minimal
admissible modules. It is not hard to see that the Lie algebras n1,2(V p,0) and
n1,2(V 0,q) satisfy the J2-condition. We refer to these cases as isotypic.

At last we claim that for p, q > 0 the pseudo H-type Lie algebra n1,2(V p,q)
does not satisfy the J2-condition. Since this property for (p, q) implies the one
for (p′, q′) with p′ ≥ p, q′ ≥ q, it is enough to check this for p = q = 1.

Choose x± ∈ V± ⊕ V± such that 〈x+, x+〉n−1 = 〈x−, x−〉n−1 6= 0. Then x =
x+ + x− ∈ n−1 is such that 〈x, x〉n−1 = 2〈x+, x+〉n−1 6= 0 and we get

〈Jz1Jz2x, Jzx〉n−1 = a3〈Jz1Jz2x, Jz3x〉n−1

= a3〈Jz3x+, Jz3x+〉n−1 − a3〈Jz3x−, Jz3x−〉n−1 = 0.

The case (r, s) = (3, 0) is well known, see [10, 14], but still can be treated in a
similar manner as before, changing (21) to the following ordered product

±Jzix = (−1)i
∏
j 6=i

Jzjx for all x ∈ V±.

Let dim n−2 = 7. A similar dimensionality argument as before, using Table 1,
shows that the cases (r, s) /∈ {(7, 0), (3, 4)} do not satisfy the J2-condition.

Case (r, s) = (3, 4). There are two irreducible Clifford modules V+ and V− of
dimension 8 that, in this case, are also admissible. They are isometric to R4,4

and generate isomorphic pseudo H-type algebras, see [19, 20]. The following
operators are mutually commuting symmetric involutions:

P1 = Jz1Jz2Jz4Jz5 , P2 = Jz1Jz2Jz6Jz7 , P3 = Jz1Jz3Jz5Jz7 .

Table 2 shows the commutation relations of the operators Pj and Jzk , where 1
appears if they commute and −1 if they anti-commute.

Table 2. Commutation relations of operators

Jz1 Jz2 Jz3 Jz4 Jz5 Jz6 Jz7
P1 −1 −1 1 −1 −1 1 1
P2 −1 −1 1 1 1 −1 −1
P3 −1 1 −1 1 −1 1 −1

We observe that V+ decomposes into the orthogonal sum of the common
eigenspaces for the involutions P1, P2, P3. Denote E1,1,1 = {w ∈ n−1 |P1w =
P2w = P3w = w}. Then all JziE

1,1,1 are different mutually orthogonal eigenspaces
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for P1, P2, P3. Therefore, for any pair JziJzj , i 6= j, there is k 6= i, j such that
JziJzj(w) = ±Jzk(w). Table 3 shows these eight different eigenspaces.

Table 3. Eigenspace decomposition: Cl3,4 case

Involutions Eigenvalues

P1 +1 −1

P2 +1 −1 +1 −1

P3 +1 −1 +1 −1 +1 −1 +1 −1

Eigenvectors w Jz3w Jz6w Jz7w Jz4w Jz5w Jz2w Jz1w
Jz1Jz2w Jz1Jz5w Jz1Jz4w Jz1Jz7w Jz1Jz6w Jz1Jz3w Jz2Jz3w

Jz4Jz5w Jz2Jz4w Jz2Jz5w Jz2Jz6w Jz2Jz7w Jz4Jz6w Jz4Jz7w
Jz6Jz7w Jz3Jz7w Jz3Jz6w Jz3Jz5w Jz3Jz4w Jz5Jz7w Jz5Jz6w

Choosing the basis

x1 = w, x2 = Jz3w, x3 = Jz6w, x4 = Jz7w,
x5 = Jz4w, x6 = Jz5w, x7 = Jz2w, x8 = Jz1w,

for any xp and any indices i 6= j, there is an index k such that JziJzj(xp) =

±Jzk(xp). Therefore, for any x =
∑8

p=1 λpxp, we again obtain JziJzj(x) = Jz̃(x)
for some z̃ ∈ n−2. Now for any x ∈ n−1 and for any pair of orthogonal vectors
z, z′ ∈ n−2, we argue as in (22) and conclude that n3,4 with the minimal admissible
module satisfies the J2-condition.

Let us show that n3,4(W ) with a non-minimal admissible module W does not
satisfy the J2-condition. It is clear that if the J2-condition holds for n3,4(W ) it
also holds for n3,4(W ′), where W ′ ⊂ W is a submodule. Thus it suffices to verify
the case of two summands W = V1 ⊕ V2, where Vi = V+, V−. All three cases are
similar and we consider only the first of them: V1 = V2 = V+.

Let x ∈ n−1 be of the following form x = w1 +Jzkw2, where w1 ∈ E1,1,1∩V1 and
w2 ∈ E1,1,1 ∩ V2 and k = 1 or 2. We assume that the admissible metric is such
that 〈wα, wα〉V+ > 0, α = 1, 2, and normalizing we assume that w1, w2 are unit
vectors. This implies that 〈x, x〉n−1 6= 0. As a pair of orthogonal vectors from

n−2 we take the basis vectors z3 and z4. For an arbitrary vector z =
∑7

i=1 aizi
the following holds

〈Jz3Jz4x, Jzx〉n−1 =
〈
Jz3Jz4(w1 + Jzkw2),

7∑
i=1

aiJzi(w1 + Jzkw2)
〉
n−1

= a5〈Jz3Jz4w1, Jz5w1〉n−1 +
〈
JzkJz3Jz4w2,−

∑
i 6=k

aiJzkJziw2

〉
n−1

= a5〈Jz3Jz4w1, Jz5w1〉n−1 − a5〈zk, zk〉n−2〈Jz3Jz4w2, Jz5w2〉n−1 = 0

If the admissible metric 〈. , .〉n−1 is such that 〈w1, w1〉n−1 = −〈w2, w2〉n−1 , then we
modify the previous argument by changing the vector x ∈ n−1 to x = w1 +Jzkw2,
k = 5, 6 or 7. Thus only the algebra n3,4(V+) ' n3,4(V−) satisfies the J2-condition.

Case (r, s) = (7, 0). Though this case is known in the literature [14], it can be
treated similarly to the case (3, 4) starting from the involutions

P1 = Jz1Jz2Jz3Jz4 , P2 = Jz1Jz2Jz5Jz6 , P3 = Jz1Jz3Jz5Jz7
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acting on the minimal admissible module n−1 = V± isometric to R8. The conclu-
sion is very similar: only n7,0(V+) ' n7,0(V−) satisfies the J2-condition. �

Appendix A. Split versions of the division algebras

Recall that real rank of a Lie group G is the dimension of the Abelian factor
A in the Iwasawa decomposition G = KAN . Real rank 1 simple Lie algebras are
|1|- or |2|-graded (i.e. g = g−ν⊕· · ·⊕g0⊕· · ·⊕gν , ν = 1∨2), and the Lie algebra
n = Lie(N) = g−2 ⊕ g−1 = z⊕ V is of H-type satisfying the J2 condition [28].

It was noticed by B. Kostant [27] that in this case R⊕z is necessarily a division
algebra (so one of R, C H, or O). The multiplication structure is as follows.

For any nonzero x ∈ V the space Ax of (7) is the direct sum Rx⊕Jn−2x = R⊕z.
Using this identification, supply the space Ax with the product

(a, z) · (a′, z′) = (a′′, z′′), where (a+ Jz)(a
′ + Jz′)x = (a′′ + Jz′′)x.

This formula also makes sense for pseudo H-type algebras with the J2 condition,
provided that x is non-null (in which case we identify Ax = R⊕ z).

The above product · is bilinear, but not necessary associative in general. If
〈z, z〉z 6= −a2, then the inverse element to (a, z) is equal to

(a, z)−1 =
( a

a2 + 〈z, z〉z
,

−z
a2 + 〈z, z〉z

)
.

This shows, that for positive-definite metric 〈·, ·〉z, Ax = R⊕z is a division algebra,
while in the sign-indefinite og negative definite cases it is not.

This agrees with Theorem 5, where dim z ∈ {0, 1, 3, 7}. The case z = 0 is
trivial, then Ax = R. In the other cases, when 〈·, ·〉z is not positive-definite, we
obtain the split versions of the division algebras.

Proposition 4. The algebra Ax = R⊕z in the cases of pseudo H-type Lie algebras
n0,1(V ), n1,2(V ), and n3,4(V ) from Theorem 5 is isomorphic to the algebra of split-
complex Cs, split-quaternion Hs or split-octonion numbers Os, respectively.

Proof. The minimal admissible module Ax = Rx⊕ Jn−2x (with x non-null) from
the pseudo H-type Lie algebra n0,1 has the structure of split-complex numbers Cs

due to the presence of a linear transformation Jz, 〈z, z〉n−2 = −1, with J2
z = Id.

The minimal admissible module Ax of n1,2 has the structure of split-quaternion
numbers Hs, since the Clifford representations Jz1 , Jz2 , Jz3 , where z1, z2, z3 are
orthonormal basis for n−2, satisfy relations (21).

The split-octonion structure Os on the minimal admissible module Ax of n3,4 is
formed by the Clifford representations Jzj , j = 1, . . . , 7 for an orthonormal basis
for z = n−2. The split-octonionic relations among Jzj can be verified by using the
involutions P1, P2, P3 and P4 = Jz5Jz6Jz7 from the proof of Theorem 5. �

Appendix B. Realization of J2 condition via simple Lie algebras

Gradings of simple Lie algebras are enumerated by a choice of parabolic sub-
algebra, or in combinatorial terms by a choice of crossed nodes on the Dynkin
(in the complex case) or the Satake (in the real case) diagrams. Note that in the
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real case crosses can be put only on white nodes, and those connected by arrows
shall be crossed simultaneously, see [38, 8].

Real rank one simple Lie algebras have a unique grading (up to an internal
automorphism), but the other non-compact simple Lie algebras with the same
complexification have higher ranks and more choices of grading. There is however
a unique choice in each case giving a pseudoH-type algebra with the J2-condition.

Theorem 6. Every pseudo H-type algebra satisfying the J2-condition, is the
negative graded part (the nilradical of the opposite parabolic) of one of the graded
simple Lie algebras g from the following list, numerated as in Theorem 5.

(1) BD`/P1

so(k, 2`+ 1− k)
1 ≤ k ≤ ` · · · · · ·

Λ1 Λk Λ`

so(k, 2`− k)
1 ≤ k ≤ ` · · · · · ·

Λ1 Λk

Λ`

Λ`−1

(2) A`/P1,`

su(k, `+ 1− k)
1 ≤ k ≤ `+1

2
· · · · · ·

Λ1 Λk Λ`+1−k Λ`

sl(`+ 1,R) · · · · · ·
Λ1 Λ2 Λ`

(3) C`/P2

sp(k, `− k)
1 ≤ k ≤ `

2
· · · · · ·

Λ1 Λ2k Λ`

sp(2`,R) · · · · · ·
Λ1 Λ2 Λ`

(4) F4/P4

FII FI

Note that the Satake diagrams for C` andD` cases shall be accordingly modified
when k = `

2
and k = ` − 1, ` respecively. The real rank of the Lie algebras is

k when this is applicable, and in the other cases it is `, `, 1 and 4, respectively.
The cases of real rank one conicide with the H-type Lie algebras studied in [14].

Proof. In case (1), n = g−1 is simply a vector space with an inner product, and
the M -type algebra is given by the signature of this inner product 〈·, ·〉n−1 , which
is encoded by k and dim n (or ` and the choice of diagram B or D).

In case (2), n = g−2⊕ g−1 is the Heisenberg algebra. When 〈·, ·〉n−2 is positive,
the algebra n1,0(V ) is given by C-module V , which is the sum of ` = 1

2
dim n−1

irreducible modules C, and then 〈·, ·〉n−1 is uniquely specified by the signature
that is encoded by k in su(k, `+ 1− k). The algebra n0,1(V ) is unique, since V is
obtained by doubling and the signature is split. This corresponds to sl(`+ 1,R).

In case (3), the series sp(k, ` − k) is similar to the rank k = 1 algebra: all
cases have type n3,0(V ) and differ by the signature of the metric on V , which
is encoded by k. The algebra sp(2`,R) corresponds to n1,2(V ), with the unique
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module V that is obtained by doubling and has a split signature metric. Let us
give details of this latter identification.

Recall that sp(2`,R) =

{(
D B
C −Dt

)
: B,C,D ∈ gl`(R), Bt = B,Ct = C

}
. The

grading corresponding to the parabolic p2 has the following negative part:

A =


0 0 0 0
Y 0 0 0
Z X t 0 −Y t

X 0 0 0


g−1 = R4(`−2)(X, Y )

X, Y are (`− 2)× 2 matrices
g−2 = R3(Z)

Zt = Z is a 2× 2 matrix

If we write Z =

[
z11 z12

z12 z22

]
, X =

[
X1

X2

]
, Y =

[
Y1

Y2

]
, where X1, X2, Y1, Y2 ∈ R`−2

are row-vectors, then the brackets of n = g− = g−2⊕g−1 are given by [A′, A′′] = A,
where zij = 〈X ′i, Y ′′j 〉+〈X ′j, Y ′′i 〉−〈X ′′i , Y ′j 〉−〈X ′′j , Y ′i 〉 with respect to the standard

scalar Euclidean product 〈·, ·〉 on R`−2 (we use the same notations for coordinates
of A′, A′′, A marking them with prime, double prime or nothing).

This means that n−1 = ⊕`−2
i=1Si is the sum of standard (doubled) 4D modules

over the Clifford algebra of z = n−2 and the brackets are [Si,Sj] = 0 for i 6= j, as
well as the same nontrivial map Λ2Si → z for all i.

Let us describe these latter brackets for one module S. Denote by e1, e2, f1, f2 ∈
S, h11, h12, h22 ∈ z the bases corresponding to the above coordinates. The only
non-trivial brackets are [e1, f1] = 2h11, [e1, f2] = [e2, f1] = h12, [e2, f2] = 2h22.

The metrics of n−1 and n−2 are given by 〈e2, f1〉n−1 = −〈e1, f2〉n−1 = 1 and
〈h11, h22〉n−2 = −1

2
, 〈h12, h12〉n−2 = 1 (these are the only non-trivial scalar prod-

ucts), whence the representaiton J : z→ End(S):

Jh11 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , Jh12 =


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 , Jh22 =


0 0 0 0
−1 0 0 0
0 0 0 0
0 0 −1 0

 .
It is straightforward now to check the pseudo H-type and the J2-conditions.

We can explain this more representation-theoretically. Let V be the standard
sl2 module. The module z = ad = S2V has a unique up to constant factor
invariant metric 〈·, ·〉n−2 of signature (1, 2), which is indeed the Killing form of
sl2. The module S = V ⊕ V ∗ ' V ⊕ V has also unique up to constant factor
invariant metric coming from the pairing between V and V ∗, and it is 〈·, ·〉n−1

(this doubling of V is in agreement with Table 1).
With these choices the universal envelopping algebra U(sl2) action on S agrees

with the Clifford relations, and it is easy to see that this M -type algebra is isomor-
phic to the one coming from the Lie algebra sp(6,R) above, which corresponds
to the partial case ` = 3 of the split form of C` with one irreducible module S.

Finally, in case (4) we have only two algebras. The algebra n7,0(V ) corresponds
to the real rank one case FII considered in [14], and completely analogously the
algebra n3,4(V ) corresponds to FI. �
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Note that in both cases (1) and (2) the Lie algebra n is of infinite type: it is
the algebra of all formal vector fields on n− in the |1|-graded case and the algebra
of formal contact vector fields in the case of contact grading.

On the contrary, cases (3) and (4) are rigid: the Tanaka prolongation of n = g−
coincides with g. This follows from Yamaguchi’s theorem [48] and agrees with
the classification [4]. Thus these cases are of finite type.

Remark 3. The Lie algebras of all cases in (1) have the same Abelian structure
for all k, it is the metric structure that varies. Similarly, all cases in (2) correspond
to the same Heisenberg algebra (the theorem makes a distinction of M -type).

On the other hand, all cases in (3) and (4) are pairwise different as Lie algebras.
Indeed, by the observation before this remark the Tanaka prolongations of these
2-step nilpotent Lie algebras coincide with simple Lie algebras g specified in
Theorem 6. Since these latter are different, so are the nilpotent Lie algebras n.

This finishes realization and classification of all pseudo H-type algebras satis-
fying the J2 condition via nilradicals of parabolics in simple Lie algebras.
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