
1/128

I N FINFINFINF ---- 3 939393996969696

Ma s t e r o f S c i en c eMas t e r o f S c i en c eMas t e r o f S c i en c eMas t e r o f S c i en c e Th e s i sTh e s i sTh e s i sTh e s i s i n i n i n i n

T e l emed i c i n e and eTe l emed i c i n e and eTe l emed i c i n e and eTe l emed i c i n e and e ---- H e a l t hHea l t hHea l t hHea l t h

A SENSOR DEVICE AND ITS APPLICATION IN E-HEALTH

Odd-Arne Olsen

June, 2007

FACULTY OF SCIENCE
Department of Computer Science

University of Tromsø

Number of pages (including this): 128

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

2/128

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

3/128

Preface

The assignment described in this thesis is a tiny part of a long running project at
the Norwegian Centre for Telemedicine (NST). The project is focused on self-help
and health motivational devices. This part concentrates on the debugging phase of a
ready made wireless step-counter prototype.

I had hoped to get more work done on the device. However events beyond my
control laid some obstacles in my way.

I would like to thank my supervisors, Weihai Yu and Eirik Årsand, for immense
amounts of patience, help, advice and inspiration. Further on I would also like thank
Willy Mortensen at Sensotek and Harry Jensen at Faculty of Medicine, University of
Tromsø.

Finally I have to thank my wife Chun-Lan and our three daughters for helping me
through this.

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

4/128

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

5/128

Contents

PREFACE ... 3

CONTENTS .. 5

SUMMARY... 7

1. INTRODUCTION... 9

2. BACKGROUND ... 11
2.1. E-HEALTH .. 11
2.2. SELF-MONITORING SYSTEM - THE NST PROJECT.. 11
2.3. WEARABLE HEALTH MONITORING SYSTEMS... 13
2.4. THE MICROCONTROLLER .. 13

2.4.1. Microcontrollers ... 13
2.4.2. The AVR Architecture ... 18
2.4.3. The ATmega164P microcontroller ... 18

2.5. PROGRAMMING ENVIRONMENTS .. 20
2.5.1. IAR Embedded Workbench ... 21
2.5.2. CodeVisionAVR .. 21
2.5.3. WinAVR (GNU GCC) ... 22
2.5.4. ImageCraft v7 C compiler and Crossworks for AVR.. 22

2.6. AVR ASSEMBLY PROGRAMMING ... 23
2.6.1. The registers ... 23

2.7. WIRELESS COMMUNICATION .. 24
2.8. SENSORS .. 25

3. METHODS .. 27

3.1. SENSORS MEASUREMENTS.. 27
3.2. PROGRAM DEVELOPMENT AND TESTING... 28

3.2.1. The STK-500 starter kit .. 28
The Atmel AVR JTAGICE mkII emulator.. 29

4. REQUIREMENT SPECIFICATION ... 31

4.1. ERGONOMICS, POWER CONSUMPTION AND USABILITY ... 31
4.2. PERSONAL ADAPTATION AND CONTEXT AWARENESS ... 31
4.3. RELIABILITY AND INFORMATION SECURITY.. 32

5. DESIGN AND IMPLEMENTATION... 33

5.1. THE STEP-COUNTER PROTOTYPES... 33
5.2. STEP-COUNTER FUNCTIONALITY .. 35
5.3. BLUETOOTH MODULE SETUP .. 35
5.4. BLUETOOTH – UART INTERFACING ... 36

5.4.1. Data format... 36
5.4.2. Hardware flow control ... 37
5.4.3. Choosing baud rate... 37
5.4.4. Connecting microcontroller with the Bluetooth module... 39
5.4.5. Some alternatives.. 39

5.5. POWER SUPPLY... 41
5.6. THE STEP COUNTER SOFTWARE.. 42

5.6.1. Program overview .. 42
5.6.2. Initialization “inite_reg.asm” .. 43
5.6.3. Main routine ”main.asm” .. 44
5.6.4. Interrupt service routine for step counting “isr_count.asm” ... 44
5.6.5. Interrupt service routine for user initiated data transmission “isr_mtransm.asm” 44
5.6.6. Interrupt service routine for real time clock update “isr_timer.asm”............................ 44
5.6.7. Control routine for transmitting step-counter data “transmit_bt.asm” 45

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

6/128

5.6.8. The low level UART servicing routines .. 45

6. RESULTS .. 47

6.1. MOVEMENT SENSORS ... 47
6.1.1. Sensor design and testing ... 47
6.1.2. The inclinometer test... 48
6.1.3. The sub miniature micro switch test ... 48
6.1.4. Tilt and vibration sensors ... 49
6.1.5. Accelerometers ... 50

6.2. POWER CONSUMPTION.. 52
6.3. DATA SECURITY ... 52
6.4. MICROCONTROLLER SOFTWARE... 53

6.4.1. The initialization file, “inite_reg.asm”... 53
6.4.2. The communication and time control routines ... 54
6.4.3. Retransmission of lost data... 59
6.4.4. DTR timeout.. 61
6.4.5. The final changes.. 62

7. DISCUSSION .. 63

7.1. SENSORS .. 63
7.2. WIRELESS COMMUNICATION .. 64
7.3. MICROCONTROLLER... 64
7.4. POWER SAVING .. 64
7.5. MICROCONTROLLER SOFTWARE... 65
7.6. THE STEP-COUNTER.. 65

8. FUTURE WORK .. 67

8.1. THE TIME SET FUNCTION .. 67
8.2. ALTERNATIVE POWER SUPPLY.. 67
8.3. REMOTE PROGRAMMING .. 68

9. CONCLUSION ... 71

REFERENCES ... 73

APPENDIX A: THE PROJECT GROUP’S BLOCK DIAGRAM .. 77

APPENDIX B: MY BLOCK DIAGRAM... 85

APPENDIX C: THE UNMODIFIED PROGRAM ... 91

APPENDIX D: THE MODIFIED PROGRAM ... 107

APPENDIX E: BLUETOOTH MODULE SETUP ... 123

APPENDIX F: THE SENSOR TESTS ... 125

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

7/128

Summary

The projects Self-help through a mobile ICT tool and The ICT Lifestyle and Health

Motivation Project at the Norwegian Centre for Telemedicine (NST) have designed
and built a prototype smart sensor system. Just days before the hand-in of this thesis,
the second version of the prototype was ready for testing.

Central for this thesis is the hardware and software debugging process of this first
prototype. The result of this process is a number of suggestions for changes in the
microcontroller’s software and the hardware generally. The suggestion for changes
does not introduce any new features, but rather tries to direct the functionality towards
the project group’s intention. The main suggestions involve how to avoid loss of data,
and also let the user take charge over when the step-counter should report to the
mobile base.

The thesis starts with an introduction to the main project and a revision of similar
projects. The direction then changes towards the theory and tools necessary to
perform the intended task are presented.

A somewhat large part is devoted to design of movement sensors. As a part of this
there were done some tests. The results of some of these plus suggestions for some
new are presented.

As wireless communication carrier the project group has chosen Bluetooth. The
thesis gives a revision of the module chosen plus some alternatives. In addition there
is also some suggestions regarding the setup of the module.

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

8/128

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

9/128

1. Introduction

The aim of this project is to test and further develop a prototyped smart sensor

system. This system is designed and built by the Norwegian Centre for Telemedicine
(NST) and SensoTek – as part of the projects Self-help through a mobile ICT tool and
The Lifestyle Project. The smart sensor system is at the moment implemented as a
step counter able to wirelessly report its accumulated measurement results to a mobile
base. The smart sensor’s main building blocks are the Atmel ATmega164P 8-bit RISC
microcontroller and the connectBlue OEMSPA311i-04 Bluetooth adapter. As mobile
base the research group has chosen two smart phones; the HTC “Trinity” P3600 and
the HTC “MTeoR”. Both are running the Windows Mobile 5.0 operating system.

At present the user has to initiate the wireless transmission by pressing a button
positioned on the smart sensor or wait for an automatic transfer every 24th hour. A
startup initiated at the mobile base is possible but concerns for the smart sensors’
power budget has caused this feature to be put on hold.

The difference between this and a “normal” informatics thesis is the real-world
aspect this project involves. As such this project embraces some basic measuring
technique essentials as well as short-range communication aspects for data transfer
and eHealth/Telemedicine considerations on the sensor system.

In order to perform construction or debugging at this level detailed component
knowledge is vital. This goes for both hardware and software in order to be able too
give a valid numeric interpretation of the involved sensors output. The fact that the
system is programmed in AVR assembler intensifies this statement.

A large part of this thesis is devoted to the description of the debugging process,
and since electronics is part of the project it will be mentioned but not described in
detail.

Here however a short definition list follows.
 Hexadecimal numbers are marked with the prefix “0x”
 Binary numbers are marked with the prefix “0b”
 Decimal numbers have no prefix
 Brown block diagram boxes illustrates parts of the original program
 Blue block diagram boxes illustrate a suggested change
 In this thesis the abbreviation ISP means in-system programming

The rest of the report has the following outline:

 Chapter 2 gives a brief introduction to eHealth and the use of smart-sensors
in eHealth, for then to slide into descriptions devices used for this project

 Chapter 3 describes the equipment and its usage
 Chapter 4 presents the project requirements and some of the immediate

technical implications they have
 Chapter 5 presents the step-counter and its software
 Chapter 6 describes changes and additions made in addition to making

suggestions for further development
 Chapter 7 discussion
 Chapter 8 presents some possibilities for future work
 Chapter 9 conclusion

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

10/128

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

11/128

2. Background

2.1. e-Health

Trying to find plain e-Health definition is difficult. It seems as though every

involved party has coined their own meaning satisfying their own needs. The
Norwegian Center for Telemedicine has adopted the definition quoted below:

eHealth means applying new low-cost technologies, such as "web-enabled"

transactions, advanced networks and new design approaches, to healthcare delivery.

In practice, it implies not only the application of new technologies, but also a

fundamental rethinking of healthcare processes based on using electronic

communication and computer-based support at all levels and for all functions, both

within the healthcare service itself and in its dealings with outside suppliers. eHealth

is a term which implies a way of working rather than a specific technology of

application [1, 2].

How can a step-counter be considered an eHealth device? The definition above is

so broad that it embraces a wide range of services bordering to both healthcare and
information technology. As such this involves both self-help systems for people
suffering from diseases as well as for instance activity monitoring of healthy persons
for the cause of disease prevention [3].

The step-counter is at present only capable of registering a persons walking
activity. But by combining this data with his/her weight and average step length, data
like walking distance and caloric consumption can be found. These parameters would
be a useful tool for persons in need of a balanced diet. Examples of such users’ could
be people with lifestyle related or chronic diseases.

Being made available for the person’s physician these data could also form the
basis for adjustments of medical dosage levels. With reference to the definition of
telemedicine adopted by NST, the step-counter could also be categorized as a
telemedical device.

Telemedicine is the investigation, monitoring and management of patients and the

education of patients and staff using systems which allow ready access to expert

advice and patient information no matter where the patient or relevant information is

located [4].

The collected and processed data are available at the person’s mobile phone and as

such the data could be made available to the physician, irrelevant to the involved
persons’ individual geographical position.

2.2. Self-monitoring system - The NST project

NST’s lifestyle research team is trying to develop a self-help system for patients

suffering from chronic or lifestyle related diseases. The motivation for doing this was

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

12/128

that diseases like diabetes require a sharp eye on the blood glucose levels. These
levels are then used as a measure to balance the patient’s diet and physical activity
and possibly medicine. However this approach does apply to other diagnoses also as
for instance high blood pressure. A tool like this would have an inestimable impact on
the everyday life for those suffering from these and other diseases relevant for this
system. In addition there are persons with no immediate diagnosis who could benefit
from such a system, for instance people who for one reason or another has to keep a
diet and maintain a certain level of physical activity.

Starting with the Easy Health Diary application made for smart phones, see Figure
1, they are working on an automatic system collecting biometric data by the help of a
smart sensor system which is the focus of this thesis. The smart sensor would consist
of a microcontroller with computing capacity enough to perform the signal
conditioning and the interface tasks relevant to the attached measuring units. It will
then perform the necessary data transformation before sending it on via a short range
wireless interface to the smart phone [5-8].
The mobile phone in question has to have computing and visualization powers
sufficient to collect data automatically and manually. Plus it has to be able to perform
report generation and presentation of the data. This is to be controlled from a simple
and intuitive user interface. By combining electronic gathered data, with the user’s
own notes the system can in addition to presenting statistics of activity, nutrition and
health parameters; also provide advices for future nutrition intakes and activity levels.

Figure 1: The Easy Health Diary graphical user interface [8].

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

13/128

Here the glucose measurements are used as example of biometric data but other

alternatives could be a pulse-counter, a blood pressure monitor etc.
The reports generated from such a system could be forwarded to other receivers

approved by the patient at hand. For instance to an electronic health record, or in the
case of infants; the parents [5-8].

2.3. Wearable health monitoring systems

The NST project is however one among many others in the field. Closest when it

comes to the technology chosen is the as Harvard University’s “Code Blue” [9] and
the “WHMS- Wearable Health Monitoring System” from The University of Alabama
[10]. They base their smart sensor system on the Telos sensor node platform. Telos is
module made at Berkley University for the purpose of research and experimentation.
It uses Zigbee as its communication carrier [11].

Common for these two projects is that they are emphasizing on wireless body area
networks, and the use smart sensors for professional medical purposes. The areas
involved are continuous monitoring as a part of a diagnostic procedure, observation
and counseling of patients with chronic conditions, supervised convalescence or
multiple patient observations at hospitals or in disaster areas [9, 12].

There are many other projects which are based on non-invasive measurements.
One of the smallest and handy ones seems to be the AMON. It is a wrist worn device
designed for continuous medical monitoring [13]. Its similarity with the NST project
is the harvesting of biometric data for the purpose of wireless transfer to a base station
for further handling. Current status of this project is unknown as the project is
terminated.

A problem with biometric measurements is the correct placement of sensors. This
is especially true if the patient is supposed to perform the task by him/herself. For
devices as the AMON and the step-counter this is not a problem.

But to register parameters such as ECG, EEG, heart sound, lung sound, etc –
sensors has to be placed on the torso. This could be a problem for a patient. A solution
to this might be smart clothing where sensors are woven into the textiles. An example
of this is the WHEALTHY project. Here the sensors and necessary wiring is woven or
knitted into the fabric. The sensors are controlled by a hip worn patient unit taking
care of signal conditioning, preprocessing and transmission of data [14]. A project
similar was the VTAM t-shirt [15]. They both use GSM/GPRS as information carrier.

2.4. The microcontroller

2.4.1. Microcontrollers

A microcontroller is, in contrast to a microprocessor, designed for standalone

operation. A short list of the microcontroller’s main features is low performance, low

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

14/128

cost and high strength I/O drivers. This makes the microcontroller the ideal choice for
any electronic or electrical device in need of some intelligence or decision power.

Three fundamental elements are however common for both the microprocessor and
the microcontroller: a register set, an arithmetic logic unit (ALU) and a control unit.
The register set is a combination of special-purpose and general-purpose registers.
Type and variety of these registers differs with architecture, type and brand. Special-
purpose registers maintains tasks specific to the central processing unit (CPU).
Examples here can be the program counter and the instruction register. In order for a
microcontroller or a microprocessor to perform arithmetic, logical and shift operations
the CPU needs an ALU. And finally the control unit’s purpose is to fetch, decode and
execute the program instructions [16].

Traditionally this would have been a complete description of a microprocessor –
modern units though have had a tendency to grow richer on features. Anyhow this
would only form the basis of a microcontroller. A significant property with the
microcontroller is that it is designed to interface with a great number of devices
requiring a minimal number of external components. The situation described in Figure
2 could be a good example for this.

Figure 2: A microcontroller interfacing with external devices with a minimum of extra

components [17].

With Figure 2 as basis one could conclude that a reasonably well equipped

microcontroller could in addition to the CPU contain:
 Program memory. Could be of type EEPROM, EPROM, Flash, Mask

ROM or PROM
 RAM (data memory)
 Clock oscillator
 Digital I/O
 Analog I/O
 Reset and brownout detector circuitry
 Serial port
 Timer
 Real Time Clock

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

15/128

 Watchdog timer
 etc.

2.4.1.1. Architectures

Modern microcontrollers’ architecture is mainly based on the von Neumann model

or its close relative, the Harvard model. Up to the point of memory organizing they
are quite similar.

In a von Neumann based architecture the data storage and processing units are
separated. Instructions and data fetches from the storage are performed sequentially.
This procedure has led to a problem called the von Neumann bottleneck as the data
transfer rate between CPU and memory is small compared the amount of memory.
The unfortunate result of this is a high number of clock cycles per instruction [18].

 In the Harvard the memory is split into an instruction part and a data part. This
enables the parallel management of instruction and data units. The immediate
outcome of this is the reduced rate of clock cycles per instruction [16]. The secondary
outcome as a direct consequence of the reduced number of clock cycles per
instructions is reduced power consumption [19]. The Atmel’s AVR
processor/controller family is based on the Harvard architecture [17]. Figure 3
illustrates the difference.

Figure 3: von Neumann vs. Harvard architectures [16].

2.4.1.2. I/O organization

Memory-mapped input/output (I/O) and I/O-mapped I/O are the two basic ways of

organizing I/O. If the unit at hand is I/O mapped the I/O-operations requires special
instructions to perform. This means that the I/O-registers are situated in an address-
space separate of the address space designated for the other functions in the
microcontroller. However if the I/O-registers have absolute addresses in the
microcontroller’s address space the I/O are memory-mapped.

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

16/128

The separation of the memory address space and the I/O address space is the main
advantage with I/O-mapping. Because the whole memory address space can be used
for program and data purposes without any restrictions. Whereas as the requirement
for an extra instruction is its downside.

Not needing an extra instructions for read and write operations is the memory-
mapped I/O’s main advantage. However the occupation of memory locations is its
main disadvantage [18].

In order to carry out I/O-operations there are only three possibilities: polling,
interrupt driven I/O and DMA. During polling the status of the register in question is
checked at intervals in order to find out if it has received or produced data.

When in need of servicing the I/O unit in question raises a CPU flag. Given the
interrupts designated priority the microcontroller will initiate the assigned interrupt
service routine at once or when its current task is finished.

DMA is not relevant here as it is not available in the chosen microcontroller.
However it was traditionally used to increase performance but in low-power
embedded systems it helps servicing interrupts allowing the microcontroller core to
remain in sleep mode longer.

2.4.1.3. Pipelining

By observing that during execution of instructions a large part of the

microprocessor was not used, someone found out that the instruction cycle could be
broken down into a sequence of steps. Each of these steps would only use a small
portion of the time needed to complete the whole instruction. Having a pipeline with
multiple stages, each of these steps is assigned to an exclusive stage. The instructions
enter the pipeline at one end, and steps finished exit at the other end. When a subtask
result leaves a stage, this stage is ready to take on results from the previous stage.
New instructions are accepted although the prior one is not completely finished. The
main goal of this is to keep the pipeline fully utilized and this is true when the input
rate matches the output rate [20].

The stages of a pipeline work in parallel each executing an instruction step. But no
matter how many steps the pipeline has the instruction needs the same amount of time
to complete. However an n-step pipeline can process n instructions at the same time.
Given an ideal pipeline the completed instruction rate would be n times higher than
without a pipeline [20].

2.4.1.4. Serial communication

There are two main classes of serial communication – synchronous and

asynchronous. A synchronous bus transfers a separate clock signal in addition to the
data communication lines. As every bit is clocked over, there is no need for start and
stop bits to mark the borders of a data byte. However in an asynchronous bus these
bits are needed. Since no external clock signal is transferred this has to be extracted
from the transferred data. Here the start and stop bits plays an important role. The start
bit is of opposite polarity from the data-lines idle state whereas the stop bit has the

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

17/128

same polarity as the idle state [21]. There is a third class – the semi-synchronous bus,
which also is a clocked transfer but with one or more clock periods per transfer. It is
however not of interest for this project.

In addition to the data lines there might be several handshake lines in order to mark
the start and stop of data transfers. Examples of this can be the Request To Send
(RTS), Clear To Send (CTS), Data Terminal Ready (DTR) and Data Set Ready (DSR)
signals, found among other places in the asynchronous RS-232 data bus [21]. The use
of these lines is however not mandatory and they can as such be deactivated when the
service they provide are not needed.

The abbreviation UART will frequently be mentioned in the following. UART
expands to universal asynchronous receiver/transmitter. This is a unit found also in
microcontrollers’. Here its task is to convert the internal parallel communication into
serial start – stop bit framed data bytes. Atmel calls their device for USART
(Universal Synchronous/Asynchronous Receiver/Transmitter). The units bearing this
description can also perform the duties of a synchronous interface.

2.4.1.5. JTAG

The IEEE standard 1149.1-1990 JTAG (Joint Test Action Group) is a synchronous

serial interface that was originally standardized as a means for testing printed circuit
boards. The standard specifies four signals: Test Clock (TCK), Test Mode Select
(TMS), Test Data Input (TDI) and Test Data Output (TDO) [22]. In addition the Test
Reset (TRST) signal plus ground and a reference voltage is supplied. The TRST
signal ensures that a reset is synchronized on both sides of the bus. Among many
other uses it is nowadays also used as a debugging tool for embedded systems.

Although a standard there seem to exist many versions of the JTAG bus. The
version of interest here is the one that Atmel uses as communication between their
ATmega microcontrollers’ and the AVR JTAGICE mkII emulator.

Figure 4 shows signals involved in their implementation. The signals have the
following functions:

 TCK is the bus clock
 TDO is the signal from the target JTAG device to the JTAGICE mkII

emulator
 VTref is the target reference voltage
 TMS is the mode select signal from the JTAGICE mkII to the target JTAG

device
 nSRST is the same as TRST described above – synchronized system reset
 nTRST is not connected
 TDI is the data signal from the JTAGICE mkII to the target JTAG device
 GND is of course ground

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

18/128

Figure 4: Atmels 10 pin JTAG connector [23].

2.4.2. The AVR Architecture

The AVR architecture is the name of Atmel’s family of RISC processors based

upon the Harvard architecture. Two students at NTH (now NTNU) devised the basic
AVR architecture and further developed it as employees of Atmel Norway [24].

Some of the features common for the AVR family is:
1. Operating voltages 1.8 – 5.5V [25].
2. On-chip and in system programmable Flash memory used as program

memory. Its size is processor dependent. In addition to being the storage
for the program instructions it also stores the interrupt vectors. The program
memory data bus is 16 bits wide and only feeds the instruction register [17].

3. On-chip data memory EEPROM and RAM in most devices. The 8-bit data
memory data bus connects most of the peripherals to the register file. The
data memory consists of five different components [17]:

a. A register file with 32 general purpose 8 bit registers [17].
b. 64 I/O registers of 8 bits width [17].
c. Internal static RAM. Its size is processor dependent [17].
d. External SRAM for larger AVRs [17].
e. EEPROM in a separate memory space. [17].

4. 0-10 MHz clock speed operation [17].

Most AVR instructions are one word long and as such occupy one memory location.
Because of the AVRs two stage pipeline many of its instructions executes in a single
clock cycle. The next instructions is being fetched while the current one is being
executed [17].

The AVR family has more members than the 8-bit microcontrollers. Here however
the 8-bit ATmega164P will be the only center of attention.

2.4.3. The ATmega164P microcontroller

For this part of the project the project group has chosen the brand new Atmel

ATmega164P microcontroller. This was done in order to accommodate not only the
needed I/O features but also the presumed memory space demands needed for

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

19/128

program and data. The ATmega164P is memory wise the smallest member of an AVR
subfamily consisting of totally three otherwise nearly identical members. The three
members have respectively 16Kb, 32Kb and 64Kb of flash program memory [25]. In
addition there are some differences in the sizes of EEPROM and RAM memories.
However the pin outs of these three are identical. Judging by this a transition from
ATmega164P to one of its larger relatives should be a painless process with just
minor software changes needed. Such a transition would of course be caused by the
demands for more program memory. The reason why the research group started with
the smallest member was that it was the only one that was available at the time, in
addition to it having some however minor advantages in terms of power consumption.

The ATmega164P microcontroller is equipped with four bidirectional general
purpose 8-bit I/O ports named port A to port D. These ports are called general purpose
because also have alternate functions. Just to mention a few; port A pins doubles as
analog inputs for the A/D-converter and pins from port C as the JTAG interface. See
Figure 5, the red arrows. The functions of the ports and their direction, if serving as an
I/O port, are managed by software controllable registers.

In order to maintain communication between the microcontroller and the wireless
interface the research group had to find a microcontroller with an asynchronous serial
interface. As the two dark blue arrows in Figure 5 reveals, the ATmega164P has two
USART modules (Universal Synchronous and Asynchronous serial Receiver and
Transmitter) available. In addition the microcontroller has a three wire synchronous
serial interface (SPI) and a JTAG interface. These are marked with light blue arrows
in Figure 5. The SPI serves as a serial high speed possibility with external devices and
the JTAG is the interface for the on-chip debugger system.

Figure 5: Block diagram of the Atmel ATmega164P microcontroller [6].

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

20/128

2.5. Programming environments

In order to be able to develop system based on microcontrollers, special software

and hardware are needed. The level of professionalism is the deciding factor for what
is needed. Standard equipment for an embedded systems developer is a text editor, an
assembler or compiler and a debugger. These are often collected in a software
package called an Integrated Development Environment (IDE), see Figure 6 inside the
blue stippled border.

 However on order to test the program under development the IDE will have to be
supplemented with other programs and devices, such as a simulator or an emulator. A
simulator is a software tool for simulating the microcontroller and its program. The
emulator will make it possible for the designer to test his/her code in circuit. Other
tools one might stumble over are starter kits and flash/OTP programmers. The starter
kit gives a low-cost possibility of software testing in a hardware environment, while
the flash/OTP programmer is a good tool for programming large series of
microcontrollers. Figure 6 gives an illustration of where in the development process
each tool or program is used. The figure also hints of a development cycle somewhat
more intricate than for what one might, in lack of better words, call ordinary
programming.

Figure 6: Development cycle of a microcontroller based system.

Below is a listing of the programming environments involving an embedded C-

compiler that where relevant for this project. In addition to these programming
environments it has to be mentioned that Atmel supplies a free IDE system - the AVR
Studio. It includes tools for writing and debugging plus an assembler and a simulator.
All the IDE’s described below works as an addition to the AVR Studio.

The software and hardware tools used in this project will be described more closely
in chapter 3.

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

21/128

2.5.1. IAR Embedded Workbench

IAR Embedded Workbench is a complete IDE consisting of among other things a

text editor, a C compiler, AVR assembler and the C-SPY debugger.
As the system is developed and maintained in co-operation with Atmel Norway

they more or less guarantee having the most recent additions and changes. This is
undoubtedly the most streamlined and professional product available. The pricelist
below obtained on the 8th of February 2007 from Norsys AS, might be considered to
reveal one of its major downsides.

 Standard version kr. 22.500,-
 Light version kr. 17.000,-
 Embedded C++ kr. 29.500,-

All prices are for one license. The difference between the standard version and the

light version is that the light version does not include the C-SPY debugger. However
it can use the features available in the Atmel AVR Studio.

Embedded C++ is according to Norsys AS rarely used for 8-bit microcontrollers.
By paying 25% extra a floating license can be obtained. Here any computer

attached to the network can use the program. However if only one license is bought
only one computer can use it at a time. Another possibility is to buy an USB dongle
for 500kr. Only the computer with this dongle attached can run the program.

The prices gives one year of updates, additional update beyond the first year is
obtainable at a cost of 20% of the full license fee.

All prices are exclusive value added tax and freight charges.
More information to be found in reference [26].

2.5.2. CodeVisionAVR

CodeVisionAVR is an IDE and C-compiler. It does not contain a debugger but is

designed to work with Atmel’s AVR Studio Debugger. This is a cheap alternative
compared to the IAR Embedded Workbench. The downside is a lower rate of updates
and a system not as streamlined and well integrated as the IAR system.

However users seem to be very pleased with its features and level of usability. It is
undoubtedly a good alternative when price and available documentation is taken into
the consideration.

There are two versions available, however only the standard version is relevant for
this project. The reason for this is that the light version does not support the ATmega
line of microcontrollers.

The prize for the standard version is €150/$180 plus value added tax. This includes
a one year subscription of updates and e-mail tech support. The yearly updates costs at
the time of writing $90/€75.

The ordering procedure is somewhat complex. First the commercial version of the
compiler has to be downloaded. Then an order including the buyer’s address details
and name of product has to be sent via e-mail to the chosen vendor. The vendor

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

22/128

responds with a password for the downloaded zip-archive. This is however not the
end of it. After the installation the program supplies the user with a serial number
which he/she has to send to the program author. Following this HP InfoTech, which
is the program maker/author, will send a license file and installation instructions for it.

At the moment it is not clear what has to be done in order to move the program
from one computer to another. But a fairly good guess would be that it involves some
e-mail exchange with the program author.

In addition to a 200-page user manual there are also books available covering AVR
software development using the CodeVisionAVR software. An example being
recommended by many is “Embedded C Programming And The Atmel AVR” 2nd
edition, by Richard H. Barnett, Sarah Cox, Larry O'Cull (ISBN-10: 1418039594 /
ISBN-13: 978-1418039592). More information found via reference [27].

2.5.3. WinAVR (GNU GCC)

This is an open-source collection of development tools. The collection contains all

the tools needed as compiler (avr-gcc), programmer (avrdude), debugger (avr-gdb),
simulator (simulavr) and more. It is developed and maintained by volunteers and
independent groups. A result of this is that a somewhat higher entry level is to be
expected in addition to an even lower update rate than for instance CodeVisionAVR.
A quick search for literature reveals many possibilities though few in understandable
languages (Norwegian, English). Worth to mention is a tutorial [28] and a slightly
aged user manual [29]. In addition there is also a book available “C Programming for
Microcontrollers Featuring Atmel’s AVR Butterfly and the free WinAVR Compiler”
by John Pardue (ISBN-10: 0976682206 / ISBN-13: 978-0976682202). The AVR
Butterfly is a $20 evaluation card containing the ATmega169 processor plus display
and sensors.

2.5.4. ImageCraft v7 C compiler and Crossworks for AVR

These two software packages are also often mentioned along with the others. Why

these have not gotten more room here is mostly because of their license restrictions
and advertised device support.

According to their current web pages Crossworks does not yet support the
mega164 microcontroller [30]. This of course may only be caused by slow working
web masters. More serious is their license policy. There are three possibilities
commercial, educational and personal. However in order to achieve the commercial
freedom presumed desired by the research group only the commercial version to $950
would suffice.

This is not a problem with the ImageCraft system as its license levels only limits
the number of features supplied.

A common feature which seems to disqualify them both is that they presumably
only support their own line of emulators and programmers [30, 31].

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

23/128

2.6. AVR Assembly programming

2.6.1. The registers

When programming microcontrollers – registers is vital part. As already mentioned

the AVR architecture specifies 32 general purpose registers and 64 I/O-registers. The
ATmega164P has an additional 160 extended I/O-registers [25]. The I/O-registers are
more to recon as storage “shelves” whereas in the 32 general purpose registers
arithmetic, logical, etc. operations can be performed. Further on data can not be
moved directly into an I/O-register. First it has to be moved to a general purpose
register, then copied into an I/O-register [32].

Most of the instructions have access to all the registers in the general purpose
register file. However as Figure 7 shows, 6 of the registers separates from the others.
The registers R26 to R31 have some added functionality. They form three 16-bit
registers and are as such able to handle word values. As such they operate as 16-bit
address pointers for indirect addressing of the data space [25].

What further can be seen from Figure 7 is that the register file is broken into two
parts consisting of 16 registers each. In addition to all the common instructions, the
registers 16 to 31 have 6 extra instructions – the SBCI, SUBI, CPI, ANDI, ORI and
LDI instructions [17]. These are instructions operating on the contents of a register
involving a constant – the results are immediately stored in the register operated upon.
This is the reason why registers R16-R31 are most widely used and that R0-15 is
mostly used as backup storage.

Figure 7: The ATmega164P general purpose registers [25].

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

24/128

2.7. Wireless communication

Bluetooth is at present the only short-range communication protocol which is

commercially available and most important it is a standard feature in many mobile
phones. Compared to other wireless technologies of equal accessibility it scores high
because of usability, small size and low-cost. In addition it is a true world-wide
standard as any Bluetooth based system can communicate with any Bluetooth unit in
any country [33, 34]. Bluetooth uses the industrial, scientific and medical (ISM) radio
bands at 2.4GHz. Here it works among 79 channels. Jumps between channels occur
approximately 1600 times per second. Which channel it jumps too is decided by
whether it is vacant or not. This technique is called adaptive frequency hopping
(AFH) [35].

A competitor to Bluetooth is Zigbee - it is more power efficient and simpler, but
although commercially available it is at the time of writing not implemented in any
mobile phones. Another technology often mentioned is Wibree, however it is not been
put out on the market yet. Wibree might be the biggest competitor to Bluetooth in the
future for this project as Nokia has announced its implementation in mobile phones.

The research group has chosen the connectBlue OEMSPA311i-04 module as its
Bluetooth interface. This 16mm by 36mm module is a class 1 device with a
transmitting range of 10 to 150 meters depending on the attached antenna. There are
three Bluetooth power classes. Class 1 has a range of around 100 meters; class 2
around 10 meters and class 3 have a range of around 1 meter [33]. However there
seems to be no class 3 devices available commercially. If such a short range is
desired, many manufacturers have added a power limiting feature to their class 1 or
class 2 devices. This enables the user to set the output power on the module to a level
giving the range which satisfies his/her needs [36].

The range values mentioned here for the power classes should not be regarded as
absolute truths as these numbers varies according to which data sheet or book you
read. These ranges vary from producer to producer, and also between identical
modules with different antennas attached. I addition these data are given for devices
tested with an unobstructed line of sight connection, and with no structures in the
vicinity giving signal reflections which could jam the main transmission [36].

In addition to being locally available the chosen module is relatively small and
compact. It is equipped with an internal antenna and as such it is ideal for this
purpose. The setup is taken care by a set of AT-commands enabling the user to
configure the module optimally in relation to his/her needs. In order to accommodate
this, the module has two operational modes; transparent data mode and AT mode [37].

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

25/128

2.8. Sensors

The main purpose of a sensor is to give an environmental variable a numerical

representation. There are most likely a number of approaches available for every
measurable entity – some more successful than others.

An example of a sensor is the thermocouple sensor. Two different types of metal
wires are joined together in a small contact point. Over this junction point there will
be an electrical potential depending on the type of metals used and the junctions
temperature. There are many types available depending on area of usage, accuracy
and cost. The potential difference over a modern thermocouple could be between 1
µV/°C to approximately 70 µV/°C [38]. This is an example of an analog sensor which
would need an amplification of its output signal and an A/D converter in order to get a
readable representation of its data into the microcontroller. However this is also an
example of a sensor which would need software correction due to non linearity in
addition to value look up tables or a polynomial interpolation formula in order to
present the correct measured temperature.

In order to record a number of recurring events for instance the number of a special
movement a device which produces a pulse each time the situation occurs is needed.
Such a pulse can be fed directly to one of the microcontroller’s digital input without
any signal conditioning. Here there are many possibilities also, but in it simplest form
it can just be a switch.

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

26/128

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

27/128

3. Methods

3.1. Sensors measurements

For testing out possible movement sensors two circuits where used. This might

seem redundant, but the circuit shown in Figure 8 B was the one I used before the
project group supplied me with the initial hardware specifications.

The components in Figure 8 A were chosen with sharp eye power consumption.
This is however a delicate trade-off as a too high resistance circuit will give noise
problems while a too low resistance circuit might cause a premature drainage of the
power source.

Figure 8: Sensor test circuits. A) Implemented in the step-counter. B) Only used for test

purposes.

As power source an Oltronic B202 laboratory power supply were used. The

measurements were performed with a Picoscope 2105 virtual oscilloscope. It is a pen
shaped probe with an USB interface combined with computer software for viewing a
graphical interpretation of the signals measured upon. The probe is powered via the
computers USB interface and it can measure frequencies up to 25MHz. The system
can directly store or print out data if so desired [39].

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

28/128

3.2. Program development and testing

3.2.1. The STK-500 starter kit

In order to get acquainted with the ATmega164P microcontroller and the AVR

assembly language the AVR STK500 starter kit was used. Starter kits are easy and
low-cost systems designed for testing the software in a hardware environment. It
consists of a hardware board and an in-system programmer bundled with software
component needed. Often this software is just evaluation versions of a complete IDE
or its separate components. Atmel however delivers a complete IDE with assembler,
editor, and simulator – the AVR Studio. The starter kits are mostly or almost
exclusively only available for flash controllers. This is because the flash memory
allows the microcontroller at hand to – well – emulate itself as the in-system
programmer downloads the code into the flash and executes it. To be able to perform
debugging the starter kit downloads a short monitor code along with the developed
code. The monitor code allows the developer to examine the memory and insert break
points in the code. In order to be able to do this the monitor code has to use some of
the microcontroller resources as interrupts, stack-, code- and data-memory. These kits
are just for small scale and hobby use, and do of course not offer the debugging force
of simulators and high-end emulators. But their main advantage is the real time
operability and easy testing of I/O-functionality that they offer.

Figure 9 shows a picture of the STK500. As can be seen it provides a number of
switches and light emitting diodes (LED) for the purpose of testing programmed
input/output functions. The kit is also equipped with a number of IC sockets in order
to provide support for all the different AVR microcontrollers intended.

Figure 9: The Atmel AVR STK500 starter kit.

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

29/128

The Atmel AVR JTAGICE mkII emulator

An emulator is a hardware device designed to behave as identical as possible to

what the real microcontroller would have. The emulator is connected to the
developers PC via parallel, RS-232 or an USB connection.

The JTAGICE mkII performs its duty, as the name might imply – via the JTAG
interface. This requires that the circuit designer equips the circuit board the ten pin
JTAG header as this emulator requires. This emulator further requires that the
microcontroller is placed on the circuit board. Figure 10 reveals the rather dull
exterior of the emulator; however on the left side of the picture the 10-pin JTAG
header is clearly visible.

Figure 10: Atmel AVR JTAGICE mkII in-circuit emulator [23].

The emulator was used to test and edit the step-counter software on the prototype

printed circuit boards.

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

30/128

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

31/128

4. Requirement Specification

4.1. Ergonomics, power consumption and usability

There are many factors why a user might chose not to continue using an e-health

device acquired during a sudden urge for health and fitness. However the only factors
possible to concentrate on here are of course device related issues like size, weight
and usability.

As such this calls for a step-counter which is both light in weight and small in
physical size. The ideal situation is a system which when properly mounted is more or
less unnoticeable for the user during his/her daily activity.

Unfortunately these desires are at current in directly conflict with the wish for a
long life span of the device. A long life span is synonymous with large battery
capacity. A large battery capacity is in turn equal to increased size and weight.
Therefore keeping the current consumption at a minimum is vital.

Usability calls for a device with as few buttons and user controllable functions as
possible. Ideally the only thing the user should have to do is to attach the unit at a
suitable place on his/her body and think nothing more of it. The planned wireless
interface is a major leap towards this, in lack of better words, device-unawareness. It
removes the need for any display, and nearly all buttons. The ultimate goal should be
no buttons as there should be no need for any user initiated setups or features being
controlled at the step-counter device. Ideally everything should be controlled from the
mobile base.

4.2. Personal adaptation and context awareness

Although at current only equipped with a movement sensor, there should be

possibilities of getting more data than just the number of movements within the given
timeframe. For instance how many of these movements where caused by, walking,
jogging or running.

This device is supposed to serve any type of person – active as passive, tall as
short. What might be running for one person might for the next one hardly pass as
jogging. The device will as such have to be able to handle individual setups of how
the data is going to be interpreted.

Further on possibilities of context awareness should be investigated. For instance is
the person moving inside or outside? Is he/she climbing stairs or walking on a
horizontal surface. Such data would help the system into giving more accurate values
of for instance caloric consumption.

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

32/128

4.3. Reliability and information security

It is quite impossible to secure every corner considering the technical reliability of

such a device. This is however no excuse for not trying. The most obvious danger is
the loss of data due to power failure or communicational errors. As such pre-emptive
measures to reduce these risks should be taken.

Further on is the step-counter’s ability to produce reliable data. Here its noise
susceptibility is a vital keyword. This however can only be controlled to a certain
degree by careful circuit board and hardware design - plus shielding.

Information security might be an issue for the later versions of this device.
However considering the small amount of data being transmitted and the infrequent
transmissions, the danger seems not to be imminent. Another matter will be the
introduction of other sensors measuring biometric data with a higher degree of
sensitivity than the number of steps within the last 24 hours. As such data encryption
in addition to identification of the mobile base and appurtenant step-counter would
eventually have to be addressed. Not just for reasons of security but with scalability in
mind.

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

33/128

5. Design and implementation

5.1. The step-counter prototypes

As with the prototype the finished step-counter will most likely have a rather

modest exterior appearance. Its external design will probably be a box with rounded
corners. The only visible features would probably be the transmit button and a belt
clip. Internally however the situation is quite different.

A printed circuit board dominated by a Bluetooth module, a movement sensor and
a battery is found. These three units are also the major contributing factor to the step-
counter total physical size. At present the size of the total unit is roughly 5x3x1cm.
The project group is aiming at reducing the size to 3x2x1cm within the time the next
version is due. As a curiosity it can be mentioned that the first of the project group’s
prototypes, which can be seen in Figure 11 and Figure 12, was 10x4.5cm.

Figure 11: The first step-counter prototype – component side.

In Figure 12 the movement sensor which the project group took from a Silva

Pedometer Dist/Step is clearly visible. The reason for using this sensor was that there
at the time were no satisfying alternative.

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

34/128

Figure 12: The first step-counter prototype – solder side.

Figure 13 and Figure 14 shows pictures of the second step-counter prototype with

its main features marked.

Figure 13: The second step counter prototype, side 1.

Figure 14: The second step-counter prototype, side 2.

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

35/128

5.2. Step-counter functionality

The brain of the step-counter is, as already mentioned, the microcontroller. It spends
most of it time asleep in order to save power. A sensor event wakes the
microcontroller up for the purpose of registering and storing the event.
Either caused by a timed wake-up or by the transmit button being activated, the
microcontroller turns on the power to the Bluetooth module. After having established
contact with the mobile base, the step-counter transmits its data. It will then to turn off
the power to the Bluetooth module, and go back to sleep.
The Bluetooth module has a built in sleep mode. But with this mode activated it still
consumes more than 1mA. By using an external power control the problem is more or
less eliminated. The drawback of this is a longer startup time for the Bluetooth
module. A functional block diagram of the step-counter can be found in Figure 15.

Figure 15: Step-counter block diagram.

5.3. Bluetooth module setup

In appendix E, a table showing the setup of the connectBlue OEMSPA311 is

found. This should ensure that Bluetooth module would perform in the following
manner:

 When powered up it should attempt to connect to the mobile base
 Inform the microcontroller when contact is achieved
 Transmit the data received by its UART

The only problem with the listing found in appendix E is the “power mode” setting

under the category “optimization”. The default sleep mode is chosen here. This is not
correct because this device should be active and transmit at once when a valid
connection is achieved. The sleep setting would make no sense as the first mode.
However a good idea would be to put the device in sleep mode when the transmission
is finished. It will only last from end of transmission until the microcontroller turns
off the Bluetooth module.

A second setting that might seem strange is found under category “misc”. Here the
configuration over air is enabled. When seeing this together with tight power supply
scheme which the Bluetooth module is subjected to, the setting makes no sense. But

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

36/128

actually this will be the only way to change the setup module when mounted into the
step-counter. This will of course require external powering of the module.

For later to-way versions a more active use of the sleep mode, maybe in
combination with sniff mode should be tested out. When in sniff mode the module is
only up and listens for a short time at intervals, for instance 5mS for every 100mS.
This mode is available in the OEMSPA311 through link policies 6-8 [37]. Sniff
modes should only be used after thorough tests as connectBlue warns of possible
traffic dependent link/data loss [37].

5.4. Bluetooth – UART interfacing

5.4.1. Data format

The microcontroller’s and the Bluetooth module’s UART where setup to handle

the following data byte format: 2400 baud, 1 start bit, no parity, 8 data bits, 1 stop bit
and no hardware flow control [40]. The total data package can be seen in Figure 16. It
consists of 14 data bytes. The function of each byte is as follows:

 The two first bytes are synchronization characters. Here the character “~”,
ASCII value 0x7E, is used. These bytes are mainly used to ease the debugging
process. A transmission starting with two identical and rarely used characters
is easy identifiable.

 The ID byte identifies which device this actual transmission is coming from.
 The package number will help to identify the transmission in order to make it

possible for the receiver to organize incoming packages. At present its
contents is a value incrementing for each transmission.

 The 4 bytes of sensor data will contain the number of steps acquired since the
last timed transmission.

 The 4 bytes with optional contents gives possibilities for a future expansion of
system. For instance it could contain the report from additional sensor or step-
controller system info. At present all bytes are set to zero.

 The last 2 bytes are reserved for checksum data.

Figure 16: Data package format [7].

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

37/128

5.4.2. Hardware flow control

In order for the microcontroller to know whether the Bluetooth module was active

or not, there was some uncertainty whether the flow control was needed or not. I
suggested the use of the DTR (Data Terminal Ready) line available on the Bluetooth
module. For RS-232 communication a unit can check whether a receiving unit is
active and ready to operate by checking the status of the DTR line.

However it was not clear whether the active status of the Bluetooth module’s DTR
line was determined by flow control settings or not. After some searching I found that
the DTR and DSR (Data Set Ready) lines where controlled by a separate AT
command. As a direct consequence of this the hardware flow control could be
disabled.

The AT command “AT*AMDS=” gave two functional possibilities for the DTR
line. The DTR line could be activated when the module started or when there was an
active Bluetooth connection present [37]. The latter was chosen since it meant an easy
and foolproof method of checking not only the Bluetooth module’s status but also
whether there was an approved mobile base ready to receive the transmission.

An active flow control would have required two additional control lines - the CTS
and RTS, in addition to software routines handling them.

5.4.3. Choosing baud rate

Initially the baud rate was set to 9600 baud. But with the chosen clock source the

microcontroller could not deliver the needed level of accuracy in the generated baud
rate

The reason for this was that the step counter microcontroller is using its internal
oscillator which is running at 1MHz. The microcontroller’s baud rate generator
derives the baud rate directly from the oscillator frequency. The Atmega164P has two
possibilities of generating the baud rate clock signal in asynchronous mode, as it does
in synchronous mode. Here however only asynchronous mode is relevant and
therefore the only center of attention.

The baud rate generator is controlled by the oscillator frequency. The signal is fed
to a down counter which is loaded with the contents of the USART Baud Rate
Register (UBRR) every time it reaches zero. The output frequency is

)1(+
=

UBRRn
fosc and depending on modes chosen, the output baud rate at is a half,

an eighth or a sixteenth part of this frequency [25]. The same network also generates a
clock signal for the clock recovery logic. The clock recovery logic synchronizes this
clock signal with the incoming data bytes at the receive pin (Rx) [25].

As such, with the chosen oscillator frequency this network will produce a baud rate
which at its best will be 7% below the wanted 9600 baud. The receiving end of the
OEMSPA311 Bluetooth adapter’s UART tolerates an error of only 2% deviation from
the predestined baud rate [37]. While the microcontroller’s UART receiver has an
error margin of ±1.5% for a 9-bit data frame [25]. These are not absolute values as
higher error ratings can be acceptable. But the system will have less noise resistance,
and have increased sensitivity for the deviations in the internal RC oscillator’s
frequency.

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

38/128

In asynchronous mode the transfer rate can be doubled. This is done by setting the
U2Xn bit high. This should have no effect on the transmitting side. However for the
receiver this halves the number of samples taken in the data reading and clock
recovery procedures. Having an accurate baud rate setting and a stable system clock
this should not produce any problems [25].

During the first testing the microcontroller UART baud rate was set to 9600 baud
with the U2Xn bit high. According to the microcontroller documentation this should
only give an error rate of 0.2%. But measurements done showed an error of around
8% slower on the produced data frames. This could of course be caused by errors and
inaccuracies in the measurement process.

But no matter the cause of this error, it was obvious that a baud rate of 9600 baud
could not be maintained with an oscillator frequency of 1MHz with the internal RC
oscillator as its source.

The easiest solution was to clear the U2Xn bit and reduce the baud rate to 2400
baud. For the current system this should cause no problem as the data package to be
transferred consisted of only 14 9-bit frames. With the help of an oscilloscope I found
that the error was within ±1.2%, and therefore acceptable.

It should be noted though that an oscilloscope is not the best instrument to perform
such measurements with. The accuracy of such a measurement will largely depend on
the visual estimate of person reading the instrument.

5.4.3.1. Strategies for achieving a 9600 baud rate

For later versions of the system one might aim for 9600 baud. This can be caused

by demands from different Bluetooth modules or other modules external to the
microcontroller. One solution can be to use the Atmega164P’s low power external
oscillator and increasing the oscillator frequency to 1.8432MHz.

The project group was very reluctant to this idea because the use of this oscillator
in addition to the higher clock frequency would most likely cause a higher power
consumption. This should however be tested out in case such a change is forced
through due to external technical needs. Such a need could be the interfacing between
the step-counter and a glucose meter.

The low power crystal oscillator is only capable of driving the microcontroller
clock and it can be susceptible for noise. However it will create a more stable clock
than the internal RC oscillator. The major downside is the need for three extra
components – two capacitors and a clock crystal. The capacitors are negligible in size
but a 1.8432 MHz crystal is quite visible. A further increase in oscillator frequency to
the next frequency causing a minimal division error, 3.6864 MHz, gives higher power
consumption but the crystals are smaller in size. One possibility that should be looked
into is a dynamically run-time change of clock frequency or clock source.

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

39/128

5.4.4. Connecting microcontroller with the Bluetooth module

Having made sure that the microcontroller produced data frames of acceptable

quality, see Figure 17, it was attached to the Bluetooth module. The module was set
up and tested beforehand by the project group in the manner indicated above on a
starter kit. For initial testing all security and bonding features were disabled.

When hooking the Bluetooth module to 3.3V power, ground and signal from the
microcontroller no contact with the test base was achieved. The step-counter was
visible from other Bluetooth devices but it would not connect or be connected to.
Confirming with the manual that there should be no reason why this minimal
connection scheme shouldn’t work the imminent conclusion was that the Bluetooth
module’s setup had to be revised [41].

The project group‘s revision resulted in a successful connection between the step-
counter and a test base. However when toggling the power on the step-counter it did
not try to connect. The reason for this was that the connection was initiated by the
test base. When fully operative the step-counter should attempt to connect to the
paired base at every Bluetooth module power-up. If the connectBlue module is not
able to perform in this manner it has to be replace with one who does.

Figure 17: Oscilloscope picture of the output from the microcontroller's UART.

5.4.5. Some alternatives

One weakness of the OEMSPA311’s became apparent when the project group found
another module with a physical size over four times smaller. However this module,
the KCWirefree’s KC-22, needs an external antenna [42]

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

40/128

In addition to the already mentioned KC-22 module from KC Wirefree I found two
other promising alternatives. The first one is the KC-21 also from KC Wirefree and
the second one is the Parani-ESD200 from Sena. There are of course other modules
available, these are just the result of a short internet search. Figure 18 shows pictures
of the mentioned modules and gives an idea of their real size.

A)

B)

C)

D)

E)

F)

G)

H)

Figure 18: All reviewed Bluetooth modules. On the left side is a photo of each module, whereas

on the right side the illustrations show the modules footprint. A) connectBlue OEMSPA311 [43].

B) connectBlue OEMSPA311 real size, 16x36mm [43]. C) KC Wirefree KC-22 [42]. D) KC

Wirefree KC-22 real size, 10x13mm [42]. E) KC Wirefree KC-21 [44]. F) KC Wirefree KC-21

real size, 15x27mm [44]. G) Sena Parani-ESD200 [45]. H) Sena Parani-ESD200 real size, top and

side view, 18x20x11.7mm [45].

As already mentioned the KC-22 is delivered without an antenna, see Figure 18 C)

and D). This is the main reason for its small 10x13mm size. There are many ready
made possibilities, but what is gained in simplified design is lost in increased size. In
order to keep the miniature size advantage, an antenna system designed and adapted

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

41/128

for the step counter would be preferable. Another short search revealed a number of
possibilities where the Fractus® Compact Reach Xtend™ chip antenna [46] seemed the
most promising when size and efficiency were considered. In addition, when
compared to similar chip antennas the Fractus required a somewhat simpler circuit
board layout [47]. Here however the simplicity seems to end; in order for the system
to perform optimally the signal line between the antenna the module has to possess
certain characteristics. Going further with the printed circuit boards mentioned above
the easiest solution is a microstrip line. A microstrip line is a transmission line
geometry with a single conductor trace on one side of a dielectric substrate and a
single ground plane on the other [48, 49]. The properties of a microstrip line are
given by its physical measurements and the substrate’s electrical abilities. At 2.4GHz
this is vital in order to obtain an adapted and reflection free connection with correct
impedance. A well designed and well tuned antenna system will ensure that as much
as possible of the power produced by the Bluetooth module is transmitted.

If there however does not exist any special needs in terms of the positioning of the
antenna, for instance mechanical design or noise considerations, the other alternative
KC-21 is basically the same module but with an antenna.

Anyhow, reading through the data of each module – the reason for choosing any of
the other modules than the connectBlue OEMSPA311 has to be smaller sizes. In
terms on features and power consumption they offer roughly the same.

Both connectBlue and Parani has Norwegian representation but KC Wirefree has
dealerships in England and Germany. A foreign dealer is not necessarily a weakness
as both KC-Wirefree’s and connectBlue’s delivered their respective devices well
within a working week in contrast to what many Norwegian representatives are able
to do.

In the project group there has been a lot of talk about a manufacturer named
Cambridge Silicon Radio Limited (CSR). But as far as I could tell they only
manufacture Bluetooth chips, not modules [50]. Because of this they are not of
interest in the current stage of the project, however for later step-counter versions the
chips can be well worth looking into.

5.5. Power supply

As power source the project groups has chosen the CR2477, which is a Lithium

manganese dioxide primary battery (CR). A primary battery is not rechargeable. The
CR2477 is a button shaped battery of size 24x7.7mm and weighs 10 grams.

The CR lithium batteries has high cell voltage, high energy density, a stable
discharge voltage, good energy flow rates at low temperatures (down to -60°C) and
good capacity for storage [51]. It is easy accessible and it is the most common type
occupying around 80% of the lithium market. It is suitable for long life and low cost
applications in need of high pulse currents. But how long this battery will function in
the step-counter is not known as there has not been performed a power consumption
analysis of the system yet.

The lithium battery is undoubtedly the best commercially available battery.
However therein lays the flaw considering this project. Its flat discharge curve is a
great advantage as it simplifies the system design. This because supply voltage stays
fairly constant through the whole discharge cycle [52]. But it causes problems for

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

42/128

using voltage measurements to determine of the battery’s state of charge. The voltage
drops so late that it might not be power enough left to send a warning message.

5.6. The Step counter software

5.6.1. Program overview

After having reviewed the basic program code of the step counter’s

microcontroller, I started breaking it down into a block diagram. My diagram is found
in appendix B whereas the project team’s diagram (handed me later) are found in
appendix A. Furthermore in appendix C a listing of the complete program prior to my
proposed changes is found and consequently in appendix D the program listing
subjected to my modification suggestions are to be found.

The purpose of the examination was both to gain detailed knowledge about the
program and its functionality, and to propose improvements and new functionalities.
The first task however was to discover errors in writing, form or logic and to suggest
corrections.

Figure 19 gives a general overview of the different modules in the step-counter
software. The black arrows indicate a standard procedure call, whereas the red arrows
indicate an interrupt initiated procedure call. The software consists of seven modules.
These modules are tied together as include files in the main program “ped164.asm”,
see Table 1. Somewhat confusingly both the main program and a routine are
described as main. However the complete step-counter software is called the main
program, whereas the main routine, “main.asm”, mentioned below is just a small part
of the total program, see chapter 5.6.3.

Table 1: The "ped164.asm" main program.

;******* main program

.nolist
.include "m164pdef.inc"
.list

 .include "inite_reg.asm" ; initialize the registers for start/reset

 .include "isr_count.asm" ; interrupt service routine for step counting
 .include "isr_timer.asm" ; interrupt service routine for RTC
 .include "isr_mtransm.asm" ; interrupt service routine for user initiated

transmit
 .include "uart0.asm" ; low level routins for UART handling

 .include "transmit_bt.asm" ; data transmit routine

 .include "main.asm" ; main function

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

43/128

Figure 19: Overview of the complete step-counter software.

5.6.2. Initialization “inite_reg.asm”

In addition to taking care of the definitions of global constants, the initialization

module “inite_reg.asm” sets up the microcontroller features according to the desired
functionality. To be more specific:

 Giving often used registers and ports names matching their function in the
program.

 Specify the needed I/O-ports as inputs or outputs.
 Set up timer/counter 2 for real time counting
 Set up UART serial interface
 Define interrupt vectors
 Initialize stack pointer register
 Allocate memory for the data package

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

44/128

5.6.3. Main routine ”main.asm”

The function of the main routine is just to activate the global interrupts and then

perform an endless loop activating the sleep modus. An interrupt call will wake up the
microcontroller. The loop ensures that the microcontroller goes back to the power
save mode after having returned from the interrupt service routine.

5.6.4. Interrupt service routine for step counting
“isr_count.asm”

The interrupt service routine for step counting is called every time the external

interrupt pin int0 detects a falling edge, i.e. a transition from logic high to a logic low
level. This transition is caused by a movement activating the movement sensor. The
routine performs a loop as long as the level at int0 still is low. This is done in order to
filter out noise. After a logic high level is detected at int0, the routine updates the step
counter value and returns to the main routine.

5.6.5. Interrupt service routine for user initiated data
transmission “isr_mtransm.asm”

The interrupt service routine for user initiated data transmission

“isr_mtransm.asm” is activated by a transition from logical high to logical low level
an the external interrupt pin int1. This transition is caused by the user pressing the
send button on the step counter. The routine loops until the send button is released.
After the button is released, the routine calls the Bluetooth transmit routine. After
completion of the transmit routine, the microcontroller returns to the main routine.

5.6.6. Interrupt service routine for real time clock update
“isr_timer.asm”

The interrupt service routine for the real time clock is called every eight second.

This routine counts the amount of eight second sequences. When this amount equals
to 24 hours the Bluetooth transmit routine is called. One interesting thing with this
routine is that this real time clock value has to be stored in a different set of registers
than the registers used for the updating. The reason for this is that it is only possible to
perform additions on a 16 bit value in a limited number of the general purpose
registers. However this register also has alternate functions and as such a back up
storage is needed.

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

45/128

5.6.7. Control routine for transmitting step-counter data
“transmit_bt.asm”

The control routine for transmitting step-counter data “transmit_bt.asm”, or the

Bluetooth transmit routine as it also has been called, retrieves the step counter data
from its storage and inserts into the data package. After having turned on the power to
the Bluetooth module the routine checks the DTR input line whether it has made
contact with the mobile base and is ready to transmit. When this is the case the routine
sends the data package, frame by frame to the UART service routine in charge of
transferring the data to the Bluetooth module. Before returning to its caller the routine
turns off the Bluetooth power, resets the step-counter value and presets the 24 hour
real time counter value.

5.6.8. The low level UART servicing routines

The two low level UART servicing routines handle the transmission at frame level.

Making sure a new frame is not put in the buffer before the old one has been
transmitted. The other routine forwards the incoming data from the receive buffer to
the subsequent handling routines. These handling routines are however not
implemented here.

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

46/128

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

47/128

6. Results

6.1. Movement sensors

6.1.1. Sensor design and testing

Registering or counting movements is not as straight forward as one might think.

Finding a sensor that has the right degree of sensitivity and delivers a signal with as
little noise as possible is difficult. What complicates matters is that the movement to
be analyzed varies in both speed and force for different users and activity levels.

No movement sensor will be able to present an output as perfect as can be seen in
Figure 20 a) where one movement causes a clean and well defined pulse on the sensor
output. Figure 20 b) is somewhat closer to the truth. Here in this example one
movement might be read as seven. This is especially the case for mechanical sensors.

Figure 20: Illustrations of output from a movement sensor (Vl indicates the border between a

logical high and a logical low level). a) The ideal situation – one movement one pulse. b) A

situation closer to the truth – one movement and a lot of ripple.

The reason for using mechanical sensor is that there is no need for a quiescent

current or indeed no extra power at all. However the ripple needs some extra
attention. A low pass filter made out of passive components letting the movement
signals through and blocking the fast ripple could solve some of the problems. This
works to a certain extent. The mechanical sensor must of course be able to perform
well at the intended movement frequency range, if not; no filter can save the signal. In
Figure 24 an example of this can be seen.

Further signal conditioning can of course be done by adding extra external
components as for instance a monostable multivibrator or a Smith trigger. A possibly

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

48/128

smarter way would be to do a software implementation of the component function or
adapt and utilize features already available in the microcontroller.

6.1.2. The inclinometer test

The tests done by the research group using an inclinometer is a good example of

the above. An inclinometer is in its simplest form a tiny capsule with a mercury
droplet inside. A change in angle of the capsule causes the droplet to move and either
make or brake contact between the components terminal pins. The inclinometer’s
primary function is to measure the angle, inclination or slope with respect to the
earth’s gravity [53]. This is a good indication that it is designed for lower movement
frequency than the project device would be subjected to. As they suspected the tests
revealed a ripple situation much worse than Figure 20 b) illustrates and way beyond
the signal salvage possibilities of what a low pass filter would be able to offer.

6.1.3. The sub miniature micro switch test

Inspired by the research group’s attempts to find a good movement sensor, I

searched for possible candidates among sub miniature micro switches. A clear
advantage with micro switches is a well defined point of activation. By pushing down
the lever of the switch one might hear and feel a tiny click when switch is activated.

This activation point may also be one of their weaknesses – for this project at least.
In order to make the switch react to movements, a weight has to be mounted on the
switch’s lever. The weights had a tendency of growing too voluminous for this project
even if they were made of lead.

The three most promising and easy accessible switches can be seen in Figure 21. In
order for these to activate they had to be subjected to a maneuver force of respectively
0.78N, 0.35N and 0.35N. Mechanical testing revealed that the Camden CSSM switch
seen in Figure 21 b) was the most promising of these test. The lever of the Omron
D2F-L felt too wobbly and imprecise, while the Alps SPPB had no click-point of
activation and as such was imprecise and difficult to get to operate correctly.

All three were tested with lumps of lead with weight starting at 5 grams and ending
at 10 grams. However these switches will not be useful before better ways of
mounting the weight to the lever are found. Equally important though is finding an
optimal shape of the weight which ensures both minimal volume and optimal weight.

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

49/128

a)

b)

c)

Figure 21: Three attempts of making a movement sensor by using sub-miniature micro switches.

a) Omron D2F-L [54]. b) Camden CSSM [55]. c) Alps SPPB [56].

6.1.4. Tilt and vibration sensors

In addition to these I tested some tilt and movement sensors. The project group had

bought a number of sensors where the Sencera 709, and the Sencera 102 were the
most promising, see Figure 22 A and B. In addition I ordered the NMS24M from
SCM International Inc. on the basis of it being used as vibration sensing in a car
security system [57], see Figure 22 C. Its small size and its position insensitiveness
were the final key words that initiated the purchase.

A sensor which can register movement independent of its own position could be a
big plus for the system as the step-counter could be placed almost anywhere on the
users torso. It could as such open for measurements currently impossible because of
its positioning on a belt between layers of clothing.

A)

B)

C)

Figure 22: A) The Sencera 709 tilt sensor. B) The Sencera 102 Shock sensor. C) The NMS24M

vibration sensor.

Unfortunately both the Sencera 102 and the NMS24M could not be used in this

project. This was mostly due to their degree of sensitivity. In order to get a clean
signal both would have required a type of hardware filtering which would have put a
too high stress on the power source. Oscilloscope pictures of some of these sensor
tests can be found in appendix F.

The Sencera 709 tilt sensor looked very promising as Figure 23 reveals. Figure 24
shows the output from the NMS24M sensor under equal conditions. The sensors were
connected as showed in Figure 8 A.

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

50/128

It has to be noted that these tests was only performed on the laboratory table. The
sensor was being subjected to a pendulum movement with a presumed frequency of
around 3Hz.

Figure 23: Output from the Sencera 709 sensor.

Figure 24: Output from the NMS24M sensor.

6.1.5. Accelerometers

An accelerometer is an electromechanical device designed to measure acceleration

forces [58]. Modern devices are based on the MEMS technology (Micro–Electro-
Mechanical-Systems). By the help of micro fabrication technologies the mechanical
elements and the electronics are implemented on a common silicon substrate. The
electronics are created by the help of traditional integrated circuit process sequences,
while the mechanics are created by the help of micro machining processes which adds
or removes parts of the wafer in order to form the mechanical and electromechanical
devices needed [59].

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

51/128

Common for the ones that are relevant here is that they are part of an active
electronic device and therefore in need of a continuously working power supply. Well
rather so we believed, and this is one of the main the reasons why the research group
decided upon not using them.

To verify this I performed an internet search. The two alternatives found with the
lowest power consumption in combination with a voltage range matching the
microcontroller’s was the ADXL330 from Analog Devices and the SCA3000-E01
from VTI. Their power consumption was respectively 180µA at 1,8V[60] and 120µA
at 2,5V[61].

Both of these sense acceleration in 3 axes. This is an advantage for the user as the
final product could be worn almost any place on the body. This is because a resultant
of the three axes defines the vertical direction by help of earth’s gravity regardless of
the axes’ orientation [62]. Here however the similarity ends.

6.1.5.1. The VTI SCA3000-E01

The SCA3000-E01 from VTI Technologies incorporates a storage facility - a ring

buffer. In this buffer the movement data is stored. Within a certain timeframe,
depending on the sample rate, the accelerometer transmits the data via its SPI
interface. The SPI interface is a 3-wire serial synchronous data bus. For walking VTI
Technologies has calculated a sampling frequency of 12.5Hz which gives 15 seconds
storage time [62]. However the need for constant power supply is its downside. As
using any active device external to the microcontroller with no sleep or idle modes
available will render the power saving efforts already implemented in the controller
useless.

6.1.5.2. The Analog Devices ADXL330

The ADXL330 is a much simpler device as it only can measure and present it

results on its analog outputs. The user decides its bandwidth by the help of external
capacitors – one for each axis [60].

This is a device which can be turned on and off during measurements. By
controlling this from the microcontroller one can achieve the desired sampling
frequency. As the step-counter should be able to service walking, running and other
activities - it is vital to find the maximum movement frequency. From that the
sampling frequency can be found according to the Nyquist theorem. This roughly
states that the sampling frequency has to be at least twice the highest analog
frequency [63].

In order to incorporate the ADXL330 into the step-counter system it has to be
fitted with a controllable on/off switch. An example could be the 74HC4016 analog
switch. However another problem is that the output impedance of the ADXL330 and
the input impedance of the Atmel ATmega164 don’t match.

The ADXL330 output impedance might be too high as it sends it signals through
32KΩ resistors. The input circuitry of the ATmega164P’s AD converter is optimized
for sensors with output impedance of 10KΩ or lower. If this demand is met the
microcontroller’s sampling time will be negligible. If not the sampling time will

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

52/128

depend on how fast the microcontroller’s sample and hold capacitor is able to charge
[25].

6.2. Power consumption

At this stage of the project it is quite limited what can be done in order to reduce

the power consumption. Much has already been done in order to reduce the idle power
consumption, but more can be achieved by reducing the active power and active time
[64].

The easiest place to start is the reduction of the output power of the Bluetooth
modules. When exchanging data it is a high probability that the step-counter and
mobile base is close vicinity to each other. There should then be no need to run the
connectBlue OEMSPA311 full power – its maximum range is 150 meters [43].

The minimum range is 10 meters. The maximum output power is the default value
of the Bluetooth module. By the help of the “AT*AMMP=” command and an integer
value between 0 and 255 the output power can be set to a more suitable level [37]. My
guess is that a range of 10 meters is more than sufficient; however this has to be tested
out.

Another way of reducing power consumption is to vary the microcontroller’s clock
frequency at run time [64]. The system could be working with two clock sources. In
normal mode when just sleeping or reading sensor data the system could work with an
even lower clock frequency than now (1MHz) and still continue to use the internal RC
oscillator as source. When servicing the Bluetooth module the microcontroller could
switch over to the low power crystal oscillator. As such the project group would be
freer to choose a baud rate more suitable for their intentions concerning the system.

6.3. Data security

The Bluetooth module is already equipped security support. When in this mode the

authentication of communicating devices plus encryption of data is activated. If one of
the devices engaged in the data exchange has security enabled – security will be used
[37].

The communication between security enabled devices can only be performed if
they are bonded. The bonding procedure creates a link key only valid between these
two Bluetooth units [37].

Whether this is sufficient or not will be trade-off between the data’s level of
sensitivity, the amount of information transmitted and the cost involved in
implementing further security. As such the project group’s intentions for the future of
this system will also have to be taken into account. However here at this stage of the
project I assume that the security available is adequate.

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

53/128

6.4. Microcontroller software

6.4.1. The initialization file, “inite_reg.asm”

The initial hardware setup had to be changed due to a possible conflict with

features needed for future step-counter version. As can be seen in the program listing
found in appendix C, the Bluetooth control lines was initially designed to connect to
I/O port A. On my request this was changed due to the fact that port A also doubles as
interface for the A/D-converter. As such the interface lines were moved to port D.
Figure 25 shows the final layout of port D. Pin number 13-15 represents the changes.

Figure 25: Port D layout. Pin numbering refers to the TQFP/QFN and MLF packages.

These changes did however just represent changes in the declarations and port

setup. The changes and additions regarding this are listed in Table 2.

Table 2: Additions and changes to constant, pin and port definitions.

;******* global pin and constant definitions
.equ Bt_DTR = 4 ; data terminal ready, from Bluetooth
.equ Bt_RESET= 5 ; Bluetooth RESET
.equ Bt_power = 6 ; Bluetooth power on/off

;****** initialize Bluetooth control lines.

cbi DDRD,Bt_DTR ; set Bluetooth DTR line direction in

sbi DDRD,Bt_RESET ; set Bluetooth RESET line, direction out
sbi PORTD,Bt_RESET ; Set RESET line high (inactive)

sbi DDRD,Bt_power ; set Bluetooth power line direction out
cbi PORTD,Bt_power ; turn Bluetooth power off

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

54/128

In addition to this I also declared the global constants “deltaThigh” and
“deltaTlow” as references for the 24 hour timer preset values. This was done in order
to simplify the debug process as these values are referred to in at least two different
instances in the program. But the real reason for the focus on these values was that the
24 hour preset value was wrong.

 Initially it was set to 0xC350. A simple calculation reveals that the difference up
to 0xFFFF is 15535. Since the real time clock value is updated every eight second as
mentioned earlier, this result in 15536 eight-second instances giving a total of over 34
hours. By changing the real time clock preset value to 0xD5D0 the number of eight
second instances is reduced to 10800. This in turn should give the desired 24 hour
sequence.

The last change here concerns the initialization of the stack pointer. In the original
program the value 0x04ff was loaded into the SPL and SPH stack pointer registers.
That value represents the last RAM address in the microcontroller. Each time new
data is put into the stack this value is decremented – and consequently when data is
removed from the stack this value is incremented. Instead of using a numeric value
the highest RAM-address is available as the constant RAMEND in the
microcontroller definitions file [25, 32]. The reason for using it is to make the code as
universal as possible. Universal is here used in terms of AVR microcontrollers. As
such the four lines immediately below the label “start” now looks like shown in Table
3.

Table 3: Stack pointer initialization changes.

ldi temp0,HIGH(RAMEND) ; Set stack pointer to point at
out SPH,temp0 ; the last RAM address.
ldi temp0,LOW(RAMEND) ;
out SPL,temp0

6.4.2. The communication and time control routines

The project group’s intention was that the step-counter should report its harvested

data every 24th hour at for instance nine o’clock in the evening. The send button
should send the data gathered since the last timed report, and otherwise leave the data
unchanged.

Unfortunately this was not the case with the received program. The 24 hour send
did function as intended, but if the send button was activated in between, the real time
clock value was replaced by its preset value. In other words; no matter the cause of
the last transmission, it would take 24 hours from that point in time until the next
timed transmission.

The main reason for this was that the real time clock value was restarted every time
the Bluetooth service routine was running. This was fixed by moving relevant
commands from the Bluetooth routine over to the timed transmit routine as indicated
in Figure 26.

This however does not give the user or the project group for that matter any control
over when the timed transmit should perform. Keeping in mind that the step-counter
only has one user accessible button introduces a small challenge. It will have to
maintain both the function as a transmit button and as a time setting control. In the
current setup of the step-counter I see two closely related possibilities plus a third

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

55/128

solution which in turn requires a more extensive change in software. This solution
will be presented in the future work chapter.

The first two solutions just involve a modification of the interrupt service routine
for user initiated transmission. From the user side the first solution involves that
he/she presses the button on the step-counter a given number of times within a certain
time frame. While the second one just demands that the user holds the button down
for a certain time frame.

Figure 26: Block diagrams for the timed transmit and the Bluetooth service routines.

Intuitively, the solution including a long single button press seemed to be most

user-friendly of the two. The button in question is chosen because of its small size and
in addition it is planned to be mechanically fitted into the step-counter in such a way
that accidental activations are avoided. However this should not propose any
difficulties for intended activations. On the other hand, if the step-counter is placed
for instance in a pocket along with other items the likelihood for an accidental
activation is larger for the single button press algorithm than for a system requiring
three consecutive activations within a short time frame. Figure 27 shows block
diagrams suggesting how both of the solutions above could be designed. The block
diagram marked 3.1 is the multiple press routine while 3.2 is the long single press
routine. According to Figure 27 the solution which seems easiest to implement is
routine 3.2.

A major problem with both these routines is that they prolongs the active time of
the microcontroller. As a direct consequence of this the global interrupts has to be
enabled in order to keep the real time clock function running. The global interrupts are

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

56/128

automatically disabled during an interrupt call [25]. The global interrupt must
however be disabled again before the call of the Bluetooth control routine.

What is more serious is the increased current consumption these routines represent.
The running time of these routines will have to be a trade-off between keeping it short
for the sake of minimal current consumption and keeping it long enough to reduce the
number of errors.

Figure 27: Two alternatives for a dual function transmission and report-time set switch. 3.1) The

multiple button press routine. 3.2) The long single press routine.

But having to choose between these two the long single press routine seems to be

the best one. As already mentioned it seems more user-friendly and easier to
implement. In addition - since the global interrupts are enabled multiple button
activations might cause trouble. The routine might be restarted instead of continuing
in its task. This however is just a presumption and has to be tested if the 3.1 routine is
to be used.

But having this in mind, plus that the 3.2 routine seemed shorter and easier to
implement it became the chosen one. It is basically a routine that every 50th mS polls
the int1 input to check whether the button has been released. A counter keeps track of

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

57/128

every poll. When this has performed a hundred times or more, the button has been
pressed for over 5 seconds. If this is the case the 24 hour real time clock is initialized
with its preset values. However if not, the routine performs as originally and transmits
data. In Table 4 the new user-send routine is listed.

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

58/128

Table 4: The new user initiated send routine 3.2.

isr_mtransm:
 sei
 ldi count,0x00
;-----------------------------
; delaying 49995 cycles (nearly 50mS at 1MHz)
int1_loop:
 ldi temp0, 101
loop0: ldi temp1, 164
loop1: dec temp1
 brne loop1
 dec temp0
 brne loop0
; -----------------------------
; check if switch is released
 in temp0,PinD
 andi temp0,0x08
 cpi temp0,0x08
 breq time1
 jmp int1_loop
;------------------------------
; If button has been pressed down for 5 seconds or more
; reset the 24 hour counter values.
time1: cli ;Disable global interrupt
 cpi count,100
 brlt out1
 ldi rtcH,deltaThigh
 ldi rtcL,deltaTlow
 movw r3:r2,rtcH:rtcL
 reti
;-------------------------------
out1:
 rcall transmit_bt
 sei
 reti
; =============================

The only really new code here is the 50mS delay sequence. Given an oscillator

frequency of 1MHz, 50mS equals 50000 clock cycles. This is a standard piece of code
which pops up nearly everywhere. With reference to the listings above; at label loop1
the routine should waste a predestined number of clock cycles, hereafter named z.
This is to be performed the number of times decided by the value y loaded into the
temp1 register at label loop0. All this is to be performed x times decided by the value
loaded into temp0 at label int1_loop. In addition will each decrement and a true
branch command combination count for 3 clock cycles [65]. And as such this loop can
be represented by the following formula: ()()33__ ++= zyxcyclesclockDelay

As probably can be seen from the code in Table 4; z=0, y=164 and x =101 for this
instance. This loop is 5 clock cycles away from the desired 50000 goal. However the
andi, cpi, breq uses each one clock cycle to perform and the jmp instruction takes
three clock cycles. This still not totals to exactly 50000 clock cycles, but for the use
intended the accuracy is more than sufficient. The calculations of these loop constants
x, y, and z can be done by the help of a spreadsheet or a self made program.

A direct consequence of the global interrupt being activated is that the 4.1 isr_timer
routine has to be changed. The 3.2 routine might be interrupted at any time. Therefore

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

59/128

the temporary registers temp0 and temp1, plus the counter register has to be stored in
the start of 4.1 and retrieved at the end. This is the case because other routines uses
the same registers and will as such cause trouble for 3.2. The changes to 4.1 can be
viewed in on the left side in Figure 29. The routine is here numbered 4.2.

6.4.3. Retransmission of lost data

Because this version of the system only relies on one-way communication there is

no possibility for the step-counter to know whether the data sent was correctly
received by the mobile base. This would propose the biggest problem for the 24 hour
transmissions as all accumulated data for this period could be lost. For the user
initiated transmissions the problem is not as serious. The user would probably spot the
problem at once and can then activate another transmission.

To solve the timed transmission problem I see two possible solutions. If the
transmit button is activated within a certain time frame, lets say 60 minutes since the
last timed transmission – the old data is re-sent. The second possibility is that if the
number of steps registered since the last timed transmit is below a certain limit the old
data gets retransmitted. Here could 100 steps be a suitable border. It will provide
ample time for the user to check his/her data and reduce the possibility of loosing
data.

Neither of these solutions should have any effect on the data collected since the last
timed transmission. The data will however not be available for the user before the
time or step limits have been passed.

What might separate these two could be usability. For a misplaced or forgotten
device the activity controlled system seems to be the one to prefer. If the time
controlled unit is not found within the time frame the data is lost. Whereas for an
activity controlled system the data would have been safe. Both solutions seem initially
to be equally simple to implement and as such this would be the only thing dividing
them.

Concentrating on the activity controlled system – there has to be made changes to
three routines. First, the Bluetooth control routine has to be able to know which data
set to transmit, see in Figure 29 on the right side. The user-send routine has to have
the logic needed in order to decide which data set to send, see Figure 28. Finally the
timer-send routine has to disable this feature as it should only transmit the data
harvested within the last 24 hours, see in Figure 29 on the left side.

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

60/128

Figure 28: The final prototype version of the user-send routine.

Since the retransmit order is captured by the user-send routine, it has to use a

temporary register as a messenger. In the timer-send routine this temporary register
has to contain a message disabling this feature in the Bluetooth routine as it should
only be available from the user-send routine. For this I chose to use the register named
as temp0. For the system to retransmit old data temp0 has to contain the number
0xAA – or in binary format 0b10101010.

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

61/128

Figure 29: Final prototype versions of the timer-send and the Bluetooth controller routines.

6.4.4. DTR timeout

A more serious flaw in the given microcontroller software was the lack of timeout

when waiting for the DTR signal from the Bluetooth module. If the step-counter was
waiting to transmit its data and were for some reason not able to connect with the
mobile base – the system would continue in an endless loop waiting for an active
DTR signal.

This was a relatively easy thing to fix; the main problem was to choose the length
of the timeout. It had to be long enough for the system to be able to connect, but it has
to have an upper limit in order to avoid extra strains on the already limited power
budget.

But what happens if it is the 24 hour report that can’t be transmitted? After a 100
new steps the data would be lost according to chapter 6.4.3. However, the user has

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

62/128

chosen the report time himself/herself, and presumably will he/she check the mobile
base for incoming data. The user would as such be aware of a problem like this and
would be able to perform the necessary steps to correct the situation.

It is possible to make the step-counter transmit two messages in such situations.
First the 24 hour report, then the steps registered since the report time. However I
chose to have faith in the user and believe that the 100 step limit will suffice as
security limit. In addition it will be to the benefit of the power budget.

The software solution is based around the same delay loop as is used in Table 4
under the label “int1_loop”. In appendix D, file “transmit_bt.asm” under label “Bt-
ready” is my suggestion listed.

6.4.5. The final changes

What remained after this in order to get a fully working prototype program was to

remove all debug and test code. In addition the DTR line check and Bluetooth power
on/off function had to be activated.

During the hardware debug phase it was decided that the Bluetooth reset function
should be incorporated. This was suggested because the module would not connect to
the mobile base and the idea was that it might need a delayed start up after the power
had been turned on. However the connection problem had other reasons – it was not
correctly set up.

In this program version the Bluetooth reset line is kept at the inactive level all the
time. The main reason for this is to reduce the power-up time for the Bluetooth
module in order save battery power. In addition the module is equipped with power-
on-reset making this feature superfluous.

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

63/128

7. Discussion

7.1. Sensors

It might be considered a bit daring starting off building a step-counter without

having found the proper movement sensing element, and as such ending up with a
device relying a component from a factory made device. But my tests with the sensors
already acquired by the project group or me have produced one possible alternative –
the Sencera 709 tilt sensor. An immediate drawback with this sensor is its position
sensitivity. In other words it has to be mounted in a predestined position on order to
perform as intended. The consequence for the user is that the step-counter has to be
hip worn. The consequence for the project group is the limitations in measurement
possibilities this involves. This limitation also holds for the sensor taken from the
Silva Pedometer Dist/Step.

The strict demand on power consumption makes it difficult to introduce a more
active hardware filtration scheme. As such the mechanical movement sensing element
has to have the correct level of inertia. It should only change state when a motion is
detected and it should do so with the minimum amount of ripple.

The Silva Pedometer Dist/Step uses custom-built micro switch with a balanced
weight attached to its lever see Figure 12. The tests performed here with
commercially available sub-miniature micro switches were not successful. There are
many reasons for this, but first of all there should have been performed more accurate
calculations concerning the mechanics and physics involved. Secondly, although
using lead as weight material, the weight turned out quite voluminous compared to the
desired system size. Last but not least the assembly of such a unit requires a certain
skill in precision mechanics, and as Figure 21 reveals this is not one of my strong
sides.

But back to the filtering which is the last concern for the existing setup in this
section. As can be seen in Figure 8A it is a very high resistance filter circuitry which
has been implemented. In addition one might discuss how much filtering a 10nF
capacitor will provide. Figure 23 and Figure 24 reveals that because of this the high
level output from sensor barely crosses the border of a logical high level. In total this
leaves the system quite vulnerable for noise. But only real life testing will reveal the
seriousness of this. On the other hand – lowering the resistance and/or increasing the
capacitance will put extra strains on an already stressed power budget.

Measurement wise the project would have gotten better results if it would have
been possible to use an accelerometer as a movement sensor. The ADXL330 will,
with a bit extra electronics and some movement measurements/analysis, possibly be
able to fulfill the task.

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

64/128

7.2. Wireless communication

Although techniques using less power than Bluetooth exist, there is at current no

real available alternative. Zigbee is not available in mobile phones and Wibree has not
been made available on the market yet. Actually for Zigbee’s sake this is not the end
of the story as the abbreviation Z-SIM has often been mentioned lately. Z-SIM is a
complete Zigbee node integrated in a SIM card [66]. When it will be available is at
current uncertain, even more uncertain is when it will be available in Norway.

But having chosen Bluetooth there are many manufacturers producing modules
with quite similar electrical characteristics. The project group has chosen the
connectBlue OEMSPA311. The experience so far has proved it to be robust and
reliable. Its wealth of features might however cause problems for a developer
although nothing more than what can be solved by the help of the user manual or the
connectBlue support service.

The project group is however looking for ways to shrink the size of the step-
counter, and as such modules like the KC Wirefree KC-21 or the Sena Parani-
ESD200 could be worth taking a closer look at. However in order to move further
both in terms of lower power consumption and smaller physical size the solution
might be to move a step back and start to construct a Bluetooth system at chip level.
Here the solutions from Cambridge Silicon Radio Limited could be a good place to
start.

7.3. Microcontroller

The microcontroller chosen by the project group, Atmel ATmega164P, became

available on the market in the end of 2006. It is the smallest one in a series of three
quite similar microcontrollers. They differ only in terms of memory sizes. The
immediate advantage of this is if future software demands calls for a larger memory
size. This can be achieved with minimal effort and practically no change of hardware,
except for the microcontroller of course. The amount of available I/O-features should
make this a good start for the sensor platform which the project group hopes to make.

7.4. Power saving

A feature available in many Bluetooth modules is the possibility to reduce the

output power. Since the communication between the step-counter and the mobile base
most likely will be performed over short distances a good power saving effort would
be to reduce the step-counter’s transmit-range to 10m.

As long as only one way communication is implemented there are no other real
possibilities of reducing the power consumption for the Bluetooth module. Sleep or
sniff modes will have no effect as the module’s only duty is to transmit the data after
the connection is made. After this it is turned off.

For the microcontroller however there is one possibility that should be checked
out. That is the task dependent run-time change of clock frequency. By reducing the

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

65/128

clock frequency as low as possible for the handling of the sensors and their data, and
turning it up for Bluetooth interfacing there will be some profits in terms of reduced
power consumption. One certain gain of using two clock frequencies/sources would
be a more flexible system. For instance will the project group stand more freely in
choice of Bluetooth modules and the same microcontroller hardware setup could be
used for other purposes too. For instance the system could also serve as Bluetooth
interface for glucose meters - requiring only minimal hardware changes, if any.

Although the increased clock frequency causes higher power consumption, this
increase could be regained by the shorter transmission period. It this is holds for the
14-byte data package implemented here is another matter, but it will undoubtedly be
valid for larger data packages.

Anyhow in order to be able to know much to gain by these restrictive power
measures there should be made a power consumption analysis of the current situation.

7.5. Microcontroller software

Although the software following the first step-counter prototype wasn’t complete

and flawless it fulfilled its purpose. It made it possible to test the total system, and to
discover its strengths, weaknesses and possibilities.

But in order to obtain a well functioning system there were several things that had
to be changed or rewritten. The most serious problems were the report time settings,
the retransmission of lost data and the DTR timeout. My suggestions has not been
properly tested yet, but if working as intended they would take care of these problems.

Although trying to take every measure in order to avoid loss of data, one can never
say for sure that you are 100% covered. But combining the efforts suggested here
with for instance a warning, audible or visual, on the mobile base when a transmission
is missing would most like reduce the problem drastically. In addition combining this
with an active user this problem would probably be minimal.

7.6. The step-counter

Combining a functioning and well tested software with a lightweight and

physically small hardware covered by a smooth and user friendly exterior is the ideal.
This project is well on the way to achieve this.

There are still possibilities to explore on order to reduce size and weight. Smaller
Bluetooth modules, different powering schemes and more suitable sensors are some
examples of this. At current the components limits the possibilities for the step-
counter. As such the movement sensor is the biggest sinner. Its position sensitivity
forces the step-counter to be nothing more that a hip worn device. The result of this is
the major restrictions introduced for other types of measurements.

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

66/128

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

67/128

8. Future work

8.1. The time set function

As already mentioned for the routines suggested and implemented, they have

serious weaknesses when thinking of the current consumption. The routine chosen
keeps the step-counter awake for at least 5 seconds just to set the watch. In addition it
introduces a secondary function for the transmit switch. This might complicate
matters for a user, and it may introduce an extra error source.

The third alternative has the immediate consequence that the user-send routine can
more or less be changed back to its original state. In other words, from 3.3 back to 3,
see appendixes A, B and C. In addition the timer-send routine can return to version
4.1, see Figure 26.

However for the third alternative to work, two-way communication between the
mobile phone and the step-counter has to be introduced. As a part of a receipt
message the mobile phone can transmit the number of eight second sequences
between now and the 24 hour report time.

On the mobile phone the user can set up which time he/she wants the timed
transmit to perform. The user can check and/or change the time anytime he/she
chooses to.

When receiving a step-counter report the software in the mobile phone has to
translate current time into this eight second scheme and transmit it along with the
receipt. All the step-counter has to do is to store this value. It may have to take in
account latency time; however this will most likely be well within 8 seconds.

When to-way communication is implemented the changes and additions on the
step-counter side would be relatively small. The receiving routine has to extract the
time data and store it. On the mobile phone side this solution will probably put a little
bit harder challenge on the programmer.

In addition to usability the most important thing gained with this solution is the
reduced active time of the step-counter. But let’s not forget the removal of an error
source. An erroneous activation of the transmit/time set button might cause loss of
data.

8.2. Alternative power supply

In order to make the step-counter more flexible and to extend its duty cycle the

possibility of using a rechargeable battery system should be looked into.
This change would require many new components, but the need for battery

capacity would be reduced. The direct consequence of this would be a smaller and
lighter battery. A wired recharging system is of course a possibility. But the wires and
headers involved would most likely be looked upon as a step backwards in terms of
usability.

There is however the possibility of wireless charging or inductive charging as it is
called. It is a relatively low cost space economic solution [67]. As the smart card

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

68/128

applications constructed at Fraunhofer IIS is a good example of [68], se also Figure
30.

Figure 30: Smart-card with a wireless battery charge system [69].

The main difference between a wired and a wireless charger is that in the wireless

system the transformer is split in two. The two halves functions respectively as a
transmitter and a receiver antenna. In addition in wired systems most of the charging
electronic is placed inside the stationary power module. Whereas in the wireless
system this is situated in the wearable unit, see Figure 31.

Whether this is a possible solution for the step-counter will only tests reveal. The
main challenge would be the co-existence of a Bluetooth module and the wireless
charge antenna in the same enclosure.

Figure 31: Block diagram of a wireless charge system [69].

8.3. Remote programming

In order to make a fully flexible system the possibilities of remote programming

the step-counter from the smart phone should be investigated. This feature might not
be open for the user, but more as a means for system setups or updates. Maybe it even
could be an opportunity for the system operator without physical access to the system
to perform remote service. The only condition would be that the smart phone is in an
area of mobile network coverage with the step-counter in its vicinity. The system
suggested below might seem a bit extravagant. However, if in need of a total
reprogramming this might be worth looking into. But if only smaller parts of the
program need updating, the ATmega164P is capable of handling this on its own [25].
But in order for any of these to function the system has to be supplemented with for
instance a CRC checksum routine in order to intercept transmission errors.

The solution described here requires an extra microcontroller, not necessarily of
the same type as the first one. The requirement for the second one has to be that its
SRAM or data EEPROM is large enough to store the whole contents of the first ones

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

69/128

program memory. In Figure 32 an idea for a possible solution on how to solve this can
be found. For this to work the following assumptions has to be made:

 MCU2 must have SRAM big enough to store the whole program memory of
MCU1. Where MCU1 is the controller interfacing the sensors, wireless
communication etc. If this is not possible then an arrangement similar to that
involving IC1, IC2 and Rel1, has to be made for MCU2 also. The MCU1 has to
program MCU2 first via the serial SPI bus. IC1 and IC2 here indicated as
NOR-gates.

 It must be possible to wake up MCU2 via a standard input port.
 The relay Rel1 (here indicated as a MOSFET relay) must not introduce a to

high voltage drop on the power supply feed line to MCU1.
 Outputs of IC1 and Rel1 must not affect the power supply feed during normal

startup and run for MCU1.
 Output of IC2 must not affect normal use of the reset function.
 Both microcontrollers’ has to come from the same manufacturer; they need not

be of the same type though.

Figure 32: An idea for a solution for making it possible to reprogram the step-counter from the

mobile base. The names “Pin out d” to “Pin out g” and “Pin in k” are chosen at random they just

indicates standard I/O-ports.

If this is a plausible solution then the following will happen:

1. MCU1 receives an order from the smart phone to reprogram.
2. MCU1 wakes up MCU2 by the help of the Wake-up signal.
3. MCU1 starts receiving the new program and forwards it to MCU2 via the

data bus.
4. After verification of received data, MCU2 starts the programming sequence

for MCU1. To do this the MCU2 has to turn off the power to MCU1 and

turn it on again while keeping its RESET and SCK inputs set to “0”. Then
the microcontroller’s serial programming algorithm commences.

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

70/128

5. After programming the RESET is set high for normal operation of MCU1
and MCU2 goes back to sleep.

The most obvious danger, in addition to communication problems, with this

solution is if there occurs some sort of power failure during this operation. The
solution indicated earlier where MCU1 first programs MCU2’s data EEPROM could
solve this but with the downside of introducing more components. Although should
the suggestion in Figure 32 be very close to the truth – the EEPROM solution would
at best only need another MOSFET relay as the NOR-gates comes in a package of
four.

When it comes to downsides - all these extra components imposes extra strain on
the power budget. It has to be emphasized that this is just a rough idea, and one would
not know if this works before a proper design has been made and it has been tested.

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

71/128

9. Conclusion

This is a multifaceted project involving sensors and signal conditioning, serial

communication, Bluetooth, battery-power economization and not to forget the Atmel
ATmega164P microcontroller and AVR assembly programming.

As programming goes an assembly program might not look that impressive. But in
clear distinction to programming in a computer environment, no matter type of
programming language, embedded system programming is often a result of trial and
error due influence from uncontrollable external factors. Examples of this could be
non-linear components, inaccurate component values or minor flaws in external
components. In addition a wearable device has to be able too function as intended
despite temperature changes and electrically noisy environments.

Many of the problems which has with a varying degree of success been dealt here,
has its basis in the attempts of using components initially specified for other purposes
to the benefit this project. A good example is the movement sensor tests. Anyhow
these tests revealed one good possibility, namely the Sencera 709 tilt sensor. But
these tests were only performed in the laboratory. To find out if it really is usable,
field tests has to be done.

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

72/128

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

73/128

References

[1] NST. More Definitions of Telemedicine. [cited April 2007]; Available from:

http://www.telemed.no/index.php?id=44355.
[2] Silicon_Bridge_Research_Limited, Understanding the market for eHealth.

2001, Silicon Bridge Research Limited: Basingstoke, UK.
[3] Lymberis A and De Rossi DE, Wearable ehealth systems for personalised

health management elektronisk ressurs : state of the art and future challenges.
Studies in health technology and informatics ; v. 108. 2004, Amsterdam
Washington, DC: IOS Press. xii, 354 s.

[4] NST. What do we mean by “telemedicine”? [cited April 2007]; Available
from: http://www.telemed.no/index.php?cat=4636.

[5] Årsand E, Andersson N, and Hartvigsen G, No-touch wireless transfer of

blood glucose data from patient operated blood glucose monitors. 2006, NST.
[6] Årsand E and Hartvigsen G. A wearable eHealth system for people with Type

2 diabetes. in Scandinavian Conference on Health Informatics 2005. 2005.
Aalborg, Denmark: Aalborg University.

[7] Årsand E and Hartvigsen G, Reprogrammable Hardware used in future

Patient-Centric eHealth Tools, in TTeC 06. 2006, NST: Tromsø.
[8] Årsand E, Wangberg SC, and Hartvigsen G. Capturing and presenting patient-

data through a smartphone; designing a self-help tool. . in Tromsø

Telemedicine and eHealth Conference. 2006. Tromsø, Norway: NST
Norwegian Centre for Telemedicine. (Poster).

[9] Welsh M. CodeBlue: Wireless Sensor Networks for Medical Care. 2006
[cited January 2007; Available from:
http://www.eecs.harvard.edu/~mdw/proj/codeblue/.

[10] Jovanov E and Milenković A. WHMS - Wearable Health Monitoring Systems.
Huntsville 2006 [cited January 2007; Available from:
http://www.ece.uah.edu/~jovanov/whrms/.

[11] Polastre J, Szewczyk R, and Culler D. Telos: enabling ultra-low power

wireless research. 2005.
[12] Jovanov E, et al., A wireless body area network of intelligent motion sensors

for computer assisted physical rehabilitation. Journal of NeuroEngineering
and Rehabilitation, 2005. 2(1): p. 6.

[13] Fabrice A, et al., Flexible technologies and smart clothing for citizen

medicine, home healthcare, and disease prevention. Information Technology
in Biomedicine, IEEE Transactions on, 2005. 9(3): p. 325-336.

[14] Paradiso R, Loriga G, and Taccini N, Wearable System for Vital Signs

Monitoring, in Wearable eHealth Systems for Personalised Health

Management - State of the Art and Future Challenges, Lymberis A and Rossi
Dd, Editors. 2004, IOS Press: Amsterdam, Netherland. p. 253-259.

[15] Weber J-L, et al., Telemonitoring of Vital Parameters with Newly Designed

Biomedical Clothing, in Wearable eHealth Systems for Personalised Health

Management - State of the Art and Future Challenges, Lymberis A and Rossi
Dd, Editors. 2004, IOS Press: Amsterdam, Netherland. p. 260-265.

[16] Noergaard T, Embedded systems architecture : a comprehensive guide for

engineers and programmers. Embedded technology series. 2005, Amsterdam:
Elsevier. XIV, 640 s.

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

74/128

[17] Gadre DV, Programming and customizing the AVR microcontroller

elektronisk ressurs. 2001, New York London: McGraw-Hill. xxi, 339s.
[18] Abd-El-Barr M and El-Rewini H, Fundamentals of computer organization and

architecture. Wiley series on parallel and distributed computing. 2005,
Hoboken, N.J.: Wiley. xiv, 273 s.

[19] Piguet C, History of Low-Power Electronics, in Low-power electronics design,
Piguet C, Editor. 2005, CRC Press: Boca Raton. p. 1-1 - 1-15.

[20] Alexandridis NA, Design of microprocessor-based systems. 1993, Englewood
Cliffs, N.J.: Prentice Hall. XVI, 541 s.

[21] Stone HS, Microcomputer interfacing. 1982, Reading, Mass.: Addison-
Wesley. XV,383 s.

[22] Davis L. JTAG Bus Description. Integrated Circuit Buses 2007 [cited;
Available from:
http://www.interfacebus.com/Design_Connector_JTAG_Bus.html.

[23] Atmel. JTAGICE mkII Quick Start Guide. 2006 [cited February 2007];
Available from: http://www.atmel.com/.

[24] Atmel AVR. 2007 [cited January 2007]; Available from:
http://en.wikipedia.org/wiki/Atmel_AVR.

[25] Atmel. ATmega164P/V, ATmega324P/V, ATmega644P/V Preliminary. 8 bit
AVR Microcontroller with 16/32/64KBytes In-System Programmable Flash
2006 February 2007 [cited February 2007]; Available from:
http://www.atmel.com/dyn/products/product_card.asp?part_id=3887.

[26] IAR_Systems. C/C++ compiler and debugger tools for Atmel AVR - IAR

Embedded Workbench V4.21 for Atmel AVR. [cited February 2007];
Available from: http://www.iar.com/ewavr.

[27] Haiduc P. CodeVisionAVR - Standard & Light. [cited February 2007];
Available from: http://www.hpinfotech.ro/html/cvavr.htm.

[28] WinAVR. WinAVR tutorial. [cited February 2007]; Available from:
http://winavr.scienceprog.com/avr-gcc-tutorial/.

[29] Weddington EB. WinAVR User Manual - 20050214. [cited Sourceforge.net
February 2007]; Available from: http://winavr.sourceforge.net/WinAVR-user-
manual.html.

[30] Rowley_Associates. Crossworks for AVR - Professional Tools for AVR

Developers. [cited February 2007]; Available from:
http://www.rowley.co.uk/avr/index.htm.

[31] Atmel. AVR development tools - Version 7 C Compiler Tools with Windows

IDE for Atmel AVR Microcontrollers. [cited February 2007]; Available from:
http://www.imagecraft.com/.

[32] Morton J, AVR : an introductory course. 2002, Oxford: Newnes. 6 bl., 241 s.
[33] Bluetooth_SIG. Bluetooth Basics. Learn 2007 [cited; Available from:

http://www.bluetooth.com/Bluetooth/Learn/Basics/.
[34] Bluetooth_SIG. Bluetooth Technology Benefits. Learn 2007 [cited; Available

from: http://www.bluetooth.com/Bluetooth/Learn/Basics/.
[35] Bluetooth_SIG. How Bluetooth Technology Works. Learn 2007 [cited;

Available from: http://www.bluetooth.com/Bluetooth/Learn/Basics/.
[36] Blankenbeckler D. An Introduction to Bluetooth. The Bluetooth Channel 2000

[cited March 2007]; Available from:
http://www.wirelessdevnet.com/channels/bluetooth/features/bluetooth.html.

[37] connectBlue. Serial Port Adapter™ Version 2 and 3 AT Commands.
INDUSTRIAL BLUETOOTH™ 2006 October [cited February 2007];

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

75/128

3.10:[Available from: http://www.connectblue.se/produkts/bluetooth-
products/oem-modules/oemspa311331/downloads/.

[38] Guide to Thermocouple and Resistance Thermometry. http://www.tc.co.uk/:
TC Ltd.

[39] Pico. Picoscope 2104 & 2105 PC Oscilloscopes - User Guide. 2006 [cited
February 2007]; PS2100044-1.0:[Available from:
http://www.picotech.com/document/pdf/ps2100044.pdf.

[40] Varmedal R and Eriksen HØ, Mobile to Sensor Interface Requirement

Document (IRD). 2007, Tromsø Telemedicine Laboratory.
[41] connectBlue. OEM Serial Port Adapter™ cB-0901 Electical and Mechanical

Datasheet. INDUSTRIAL BLUETOOTH™ 2006 September [cited February
2007]; 1.7.3:[Available from: http://www.connectblue.se/produkts/bluetooth-
products/oem-modules/oemspa311331/downloads/.

[42] KCWirefree. KC-22 Datasheet Bluetooth OEM Micro Module. 2007 [cited
March 2007]; KC-22.4:[Available from:
http://www.kcwirefree.com/documents.html.

[43] connectBlue. Product Brief OEMSPA311/331. INDUSTRIAL
BLUETOOTH™ 2006 October [cited February 2007]; 1.3:[Available from:
http://www.connectblue.se/produkts/bluetooth-products/oem-
modules/oemspa311331/downloads/.

[44] KCWirefree. KC-21 Datasheet Bluetooth OEM Module. 2007 [cited March
2007]; KC-21.3:[Available from: http://www.kcwirefree.com/documents.html.

[45] Sena. OEM Bluetooth Serial Module, Parani-ESD100/110/200/210. 2006
[cited March 2007]; Available from: http://www.sena.com.

[46] Fractus. Small SMD chip antenna for headset, compact flash, secure digital

and small PCB devices - Fractus® Compact Reach Xtend™ Chip Antenna

P/N: FR05-S1-N-0-102. Data sheet - short range wireless 2006 [cited;
Available from: http://www.fractus.com/sales_documents/FR05-S1-N-0-
102/DS_FR05-S1-N-0-102.pdf.

[47] Fractus. User Manual - Fractus® Compact Reach Xtend™ Bluetooth ,

802.11b/g WLAN Chip Antenna 2006 [cited March 2007].
[48] Maloratsky LG, Reviewing the basics of microstrip lines. Microwaves & RF,

2000. 39(3): p. 79-88.
[49] Pozar DM, Microwave engineering. 1990, Reading, Mass.: Addison-Wesley.

XVII, 726 s.
[50] CSR. Bluetooth ICs (Bluecore). 2007 [cited May 2007]; Available from:

http://www.csr.com/home.php.
[51] Holdø L, Batteriet - Den moderne Strømkilde. Batteriskolen. 1995, Oslo,

Norway: Teknisk Presse AS.
[52] mpower. Performance Characteristics. How To Specify Batteries 2005 [cited

April 2007]; Available from: http://www.mpoweruk.com/soc.htm.
[53] Wikipedia. Inclinometer. [cited February 2007]; Available from:

http://en.wikipedia.org/wiki/Clinometer.
[54] Omron. Ultra Subminiature Basic Switch - D2F. [cited February 2007];

Available from:
http://www.omroncomponents.eu/home/products/Switches/Microswitches/Uns
ealed/default.asp.

[55] Camden. Ultra Miniature Microswitch. Miniature switches - CSSM [cited
February 2007]; Available from:
http://www.camdenelec.com/electronics/product-

INF-3996 A Sensor Device And Its Application in eHealth Odd-Arne Olsen

76/128

subcategory.asp?Category=MINIATURE%20SWITCHES&Sub=V4%20Type
.

[56] Alps. Alps - Compact Type Detector Switch - SPPB Series. [cited February
2007]; Available from: http://www3.alps.co.jp/cgi-
bin/WebObjects/catalog.woa/wa/varietyList?language=english&country=com
&top_mode=2003&productId=3&varietyId=8.

[57] Jeng JI, Electronic circuit system named mobile safety communication (MSC)

device embedded in the rearview/side mirror of a vehicle. 2004: United States.
[58] Dimension_Engineering. A beginner’s guide to accelerometers. [cited

February 2007]; Available from:
http://www.dimensionengineering.com/accelerometers.htm.

[59] Weinberg H. MEMS (Micro Electro-Mechanical Systems) Technology. How
they work [cited March 2007]; Available from: http://www.sensorland.com.

[60] Analog_Devices. ADXL330. Small, Low Power, 3-Axis ±3 g iMEMS®
Accelerometer [cited February 2007]; Available from:
http://www.analog.com/en/prod/0,2877,ADXL330,00.html.

[61] VTI. SCA3000-E01 3-AXIS ULTRA LOW POWER ACCELEROMETER WITH

DIGITAL SPI INTERFACE. [cited February 2007]; Available from:
http://www.vti.fi/en/products-solutions/products/accelerometers/sca3000-
accelerometers/.

[62] VTI. SCA3000 Accelerometer in Speed, Distance and Energy Measurement.
[cited February 2007]; Application Note 50:[Available from:
http://www.vti.fi/en/products-solutions/products/accelerometers/sca3000-
accelerometers/.

[63] Weinberg H. Minimizing Power Consumption of iMEMS® Accelerometers.
Application Note 2002 [cited March 2007]; AN-601:[Available from:
http://www.analog.com/en/cList/0,2880,764%255F800%255F43,00.html.

[64] Bertozzi D and Benini L, Battery Lifetime Optimization for Energy-Aware

Circuits, in Low-power electronics design, Piguet C, Editor. 2005, CRC Press:
Boca Raton. p. 43-1 - 43-21.

[65] Covington MA. An Atmel AVR Notebook. August 2006 [cited April 2007];
Available from: http://www.ai.uga.edu/mc.

[66] Turolla M and Alessio E. ZSIM enabling innovative services to improve

quality of life. 2006 [cited May 2007]; Available from:
http://www.zigbee.org/en/events/documents/Mar2006_Open_House_Presentat
ions/OpenHouseFinale7.pdf.

[67] Spies P. Energy Systems. Power and Battery Management 2006 [cited April
2007]; Available from:
http://www.iis.fraunhofer.de/fhg/Images/energy_systems_info_tcm97-
73296.pdf.

[68] Arbinger F-X, Spies P, and Rohmer G. Wireless Battery Charger Chip for

Smart-Card Applications. [cited February 2007]; Available from:
http://www.iis.fraunhofer.de/.

[69] Spies P. Inductive Charge Regulator. Power and Battery Management 2006
[cited April 2007]; Available from:
http://www.iis.fraunhofer.de/fhg/Images/inductive_charging_info_tcm278-
73295.pdf.

INF-3996 Appendix A: The Project group’s block
diagram

Odd-Arne Olsen

77/128

Appendix A: The Project group’s block diagram

INF-3996 Appendix A: The Project group’s block
diagram

Odd-Arne Olsen

78/128

INF-3996 Appendix A: The Project group’s block
diagram

Odd-Arne Olsen

79/128

INF-3996 Appendix A: The Project group’s block
diagram

Odd-Arne Olsen

80/128

INF-3996 Appendix A: The Project group’s block
diagram

Odd-Arne Olsen

81/128

INF-3996 Appendix A: The Project group’s block
diagram

Odd-Arne Olsen

82/128

INF-3996 Appendix A: The Project group’s block
diagram

Odd-Arne Olsen

83/128

INF-3996 Appendix A: The Project group’s block
diagram

Odd-Arne Olsen

84/128

INF-3996 Appendix B: My block diagram Odd-Arne Olsen

85/128

Appendix B: My block diagram

INF-3996 Appendix B: My block diagram Odd-Arne Olsen

86/128

INF-3996 Appendix B: My block diagram Odd-Arne Olsen

87/128

INF-3996 Appendix B: My block diagram Odd-Arne Olsen

88/128

INF-3996 Appendix B: My block diagram Odd-Arne Olsen

89/128

INF-3996 Appendix B: My block diagram Odd-Arne Olsen

90/128

INF-3996 Appendix C: The unmodified program Odd-Arne Olsen

91/128

Appendix C: The unmodified program

;
;***
;*
;* Title: Pedometer for Telemedesin
;*
;* Filnamn: ped164.asm
;*
;* Versjon: 1.0(BETA)
;*
;* Last uppdated: 07.03.22
;*
;* Target: ATmega164p
;*
;* Description: Main of included files
;*
;***

;******* main program

; .LIST

.include "m164pdef.inc"

 .include "inite_reg.asm" ; initier the registers for start/reset

 .include "isr_count.asm" ; interupt service routine for step counting
 .include "isr_timer.asm" ; interupt service routine for RTC
 .include "isr_mtransm.asm" ; interupt service routine for manuell data
 .include "uart0.asm" ; low level routins for

 .include "transmit_bt.asm" ; transmiterings routin

 .include "main.asm" ; main function

INF-3996 Appendix C: The unmodified program Odd-Arne Olsen

92/128

;***
;*
;* Title: Pedometer for Telemedesin
;*
;* Filnamn: inite_reg.asm
;*
;* Versjon: 1.0(BETA)
;*
;* Last uppdated: 07.03.22
;*
;* Target: ATmega164p
;*
;* Description: Initietings fil
;*
;***

;******** global register definition

.def temp0 = r16 ; register for handling of temporary data
.def temp1 = r17
.def statreg = r18 ; register for handling of global status flag
.def transf = r19 ; register for handling of global
 ; transmiting status flag
.def count = r20 ; loop counter, general

.def rtcH = r27 ; rtc temporary timeing register
.def rtcL = r26
.def stcH = r25 ; step count register
.def stcL = r24
.def packnub = r4 ; pack number to be transmitted

;******* global constants

.equ stacklen = 0x0e ; length of data stack

;******* global pin definitions

.equ rxD = 0 ; UART receive pin is PD0
.equ txD = 1 ; UART transmit pin is PD1
.equ intd0 = 2 ; interupt0, down on PD2
.equ intd1 = 3 ; interupt1, down on PD3
.equ Bt_power = 0 ; Bt power on/off
.equ Bt_DTR = 1 ; data ready, from Bt

INF-3996 Appendix C: The unmodified program Odd-Arne Olsen

93/128

;******** global defenition

 .CSEG

 .org 0x00000

;****** def. interupt vektors, init.

 jmp start ; reset handler

 .org INT0addr ; step interupt, service routine
 jmp isr_count

 .org INT1addr ; manualt transmitt of data, service routine
 jmp isr_mtransm

 .org OVF2addr ; rtc overflov, service routine, timer2
 jmp isr_timer

;****** MCU register init.

start: ; start register initiering

 ldi temp0,0x04 ; load SPH
 out SPH,temp0
 ldi temp0,0xff ; load SPL
 out SPL,temp0

; ldi temp0,0xc3 ; preset rtc for counting up NB *****
 ldi temp0,0xff
 mov r3,temp0
; ldi temp0,0x50
 ldi temp0,0xfb
 mov r2,temp0

 ldi temp0,0x0A ; load EICRA, ext.interupt controll register A
 sts EICRA,temp0 ; "falling edge" sense on INT0 and INT1

 ldi temp0, 0x03 ; load ext. interupt mask register
 out EIMSK, temp0

 cbi DDRD,intd0 ; initier port direction INT0

INF-3996 Appendix C: The unmodified program Odd-Arne Olsen

94/128

 cbi DDRD,intd1 ; initier port direction INT1

 ldi temp0,0x00 ; load MCUCR, controllregister
 out MCUCR,temp0

 ldi temp0,0x07 ; load sleep mode and power-save
 out SMCR,temp0

;****** initier rtc registers

 ldi temp0,0x01 ; load T/C2 overflow interupt mask register
 sts TIMSK2,temp0

 ldi temp0,0x07 ; load T/C2 controll register, set prescaler
 sts TCCR2B,temp0 ; divided by 1024

 ldi temp0,0x01 ; reset T/C2 interupt flagg register
 out TIFR2,temp0

 ldi temp0,0x20 ; set assyncron clock from crystall,T/C2
 sts ASSR,temp0 ; counting.

;****** initier Bt power

 sbi DDRA,Bt_power ; set Bt. power bus direction out
 cbi PORTA,Bt_power ; disarm Bt. power off

 cbi DDRA,Bt_DTR ; set Bt. DTR bus direction in

;******initier uart

 sbi PORTD, txD ; initier USART port transmit
 sbi DDRD, txD

 cbi PORTD, rxD ; initier USART port receieve
 cbi DDRD, rxD

 ldi temp0, 0x00 ; set double the USART transm. speed
 sts UCSR0A, temp0

 ldi temp0, 0x18 ; enable receive and transmit
 sts UCSR0B, temp0

 ldi temp0, 0x06 ; setframe format: asyacronous, 8data bits, 1stop bits,

INF-3996 Appendix C: The unmodified program Odd-Arne Olsen

95/128

 sts UCSR0C, temp0 ; no parity bit.

 ldi temp0, 0x00 ; set baud rate, 1MHz/2400 bps
 sts UBRR0H, temp0
 ldi temp0, 0x19
 sts UBRR0L, temp0

;****** initiering protokoll stack

 ldi ZL,0x00 ; set data stack pointer
 ldi ZH,0x02
 ldi count,stacklen ; initier start loop countet

cldstack:
 ldi temp0,0x00 ; clear data stack
 st Z+,temp0
 dec count
 brne cldstack ; branch if not last byte

 ldi ZL,0x00 ; set data stack pointer
 ldi ZH,0x02

 ldi temp0,0x7f ; set frame sync, tilde.
 std Z+0x00,temp0
 std Z+0x01,temp0

 ldi temp0,0x55 ; set protocol ID = 0x55
 std Z+0x02,temp0 ; stor ID value

 ldi temp0,0xe6
 std Z+0x0c,temp0 ; set crc bytes
 std Z+0x0d,temp0

end_init:
 rjmp main

INF-3996 Appendix C: The unmodified program Odd-Arne Olsen

96/128

;***
;*
;* Title: Pedometer for Telemedesin
;*
;* Filnamn: isr_count.asm
;*
;* Versjon: 1.0(BETA)
;*
;* Last uppdated: 07.03.22
;*
;* Target: ATmega164p
;*
;* Description: Interupt service routin for INT0, update of step counter.
;*
;***

isr_count:
int0_loop:
 in temp0,PinD ; test for step puls off, simple filter routine
 andi temp0,0x04
 cpi temp0,0x04
 breq out0

 jmp int0_loop ; loop until end of step puls

out0:
 adiw stcH:stcL,1 ; increment step counter

 reti

INF-3996 Appendix C: The unmodified program Odd-Arne Olsen

97/128

;***
;*
;* Title: Pedometer for Telemedesin
;*
;* Filnamn: isr_timer.asm
;*
;* Versjon: 1.0(BETA)
;*
;* Last uppdated: 07.03.22
;*
;* Target: ATmega164p
;*
;* Description: Interupt service routine for TIMER2_OVF, and
;* test of 24 houer limit. day end flagg.
;*
;***

isr_timer:
 movw rtcH:rtcL,r3:r2 ; load rtc value
 adiw rtcH:rtcL,0x01 ; increment rtc counter
 movw r3:r2,rtcH:rtcL ; save rtc value

 brcs carry_set ; do transmitt if 24 hours

 reti

carry_set:

 rcall transmit_bt ; do transmitt 24 hours
 reti

INF-3996 Appendix C: The unmodified program Odd-Arne Olsen

98/128

;***
;*
;* Title: Pedometer for Telemedesin
;*
;* Filnamn: isr_mtransm.asm
;*
;* Versjon: 1.0(BETA)
;*
;* Last uppdated: 07.03.22
;*
;* Target: ATmega164p
;*
;* Description: Interupt service routine for INT1, do manuell
;* data transmission.
;*
;***

isr_mtransm:
int1_loop:
 in temp0,PinD ; test for manual interupt puls off
 andi temp0,0x08
 cpi temp0,0x08
 breq out1
 jmp int1_loop ; loop until end of transm. puls

out1:
 rcall transmit_bt ; do the transmiting manual

 reti

INF-3996 Appendix C: The unmodified program Odd-Arne Olsen

99/128

;**
;*
;* Title : Read/Write through USART
;*
;* Filname : uartcom.asm
;*
;* Versjon : 1.0(BETA)
;*
;* Last updated: 07.03.22
;*
;* Target : ATmega164p
;
;* Description:
;*
;**

;**
;*
;* Function: putchar
;*
;* Description: Puts out one character
;*
;* Usage:
;*
;* Return: None
;*
;* Note: Parameter to be transmitted in temp1
;*
;**

putchar:
USART_transmit:
 lds temp0,UCSR0A ; wait for emty transmit buffer
 sbrs temp0,UDRE0
 rjmp USART_transmit
 sts UDR0,temp1 ; put data in to buffer
 ret

INF-3996 Appendix C: The unmodified program Odd-Arne Olsen

100/128

;**
;*
;* Function: getchat
;*
;* Description: Get one character
;*
;* Usage:
;*
;* Return: Yes
;*
;* Note: Return to be transmitted in temp1
;*
;**

getchar:
USART_receive:
 lds temp0,UCSR0A ; wait for data to be received
 sbrs temp0,RXC0
 rjmp USART_receive
 lds temp1,UDR0 ; get and return recieved data from buffer
 ret

INF-3996 Appendix C: The unmodified program Odd-Arne Olsen

101/128

;***
;*
;* Title: Pedometer for Telemedesin
;*
;* Filnamn: transmit_bt.asm
;*
;* Versjon: 1.0(BETA)
;*
;* Last uppdated: 07.03.24
;*
;* Target: ATmega164p
;*
;* Description: Service routine for transmitting step counter data.
;*
;***

transmit_bt:
 ldi ZL,0x00 ; set data stack pointer to start
 ldi ZH,0x02
 ldi count,stacklen ; initier loop counter

 mov temp0,packnub ; update pack number
 inc temp0
 mov packnub,temp0

 std Z+0x03,packnub ; stor packed number
 std Z+0x06,stcH ; step counter higher byte to data stack
 std Z+0x07,stcL ; step counter lower byte to data stack

 sbi PORTA,Bt_power ; arm Bt power,and wait for DTR high level

Bt_ready:
 in temp0,PINA ; test Bt ready
; sbrs temp0,Bt_DTR
 ; NB **********
; rjmp Bt_ready ; loop until BT ready

transm:
 ld temp1,Z+ ; Load data from data stack
 rcall putchar
 dec count
 brne transm ; branch if not last byte

INF-3996 Appendix C: The unmodified program Odd-Arne Olsen

102/128

untilempty:
 lds temp0,UCSR0A ; wait for last byte in UART to be transmitted
 sbrs temp0,UDRE0
 rjmp untilempty

 cbi PORTA,BT_power ; disarm Bt power

 ldi stcH,0x00 ;reset step counter, stc
 ldi stcL,0x00

; ldi rtcH,0xc3 ; preset teal time counter, rtc NB ***********
; ldi rtcL,0x50

 ldi rtcH,0xff ; preset teal time counter, rtc
 ldi rtcL,0xfb

 movw r3:r2,rtcH:rtcL ; save preset value

endtransm:

 ret

INF-3996 Appendix C: The unmodified program Odd-Arne Olsen

103/128

;***
;*
;* Title: Pedometer for Telemedesin
;*
;* Filnamn: main.asm
;*
;* Versjon: 1.0(BETA)
;*
;* Last uppdated: 07.03.22
;*
;* Target: ATmega164p
;*
;* Description: Main function
;*
;***

main:
 sei ; set global interupt

main_loop:

; sleep ; set sleep mode, Power-save

; rcall start_sync ;**********************************

; rcall transmit_bt

 nop
 nop
 rjmp main_loop

;--
;TEST OF RUN

start_test:
 ldi temp0,0x01
 out PORTA,temp0
 out DDRA,temp0
 ldi temp1,0x01

test_loop1:
 add temp0,temp1
 brcs go1

INF-3996 Appendix C: The unmodified program Odd-Arne Olsen

104/128

 jmp test_loop1

go1:
 ldi temp0,0x00
 out PORTA,temp0
 ldi temp1,0x01

test_loop2:
 add temp0,temp1
 brcs go2
 jmp test_loop2

go2:
; rjmp venteloop ; loop until next inerupt

;---

; synkpuls for UART test

start_sync:

 sbi PORTA,0x00
 sbi DDRA,0x00

 ldi r21,0x7f
 ldi r22,0x01

loop_sync:
 add r21,r22
 brcs loop_out
 jmp loop_sync

loop_out:
 cbi PORTA,0x00
 ret
;---

start_syncx:
 ldi temp0,0x01
 out PORTA,temp0
 out DDRA,temp0

 ldi r21,0x00
 ldi r22,0x01

INF-3996 Appendix C: The unmodified program Odd-Arne Olsen

105/128

loop_syncx:
; rcall indre
 add r21,r22
 brcs loop_out
 jmp loop_syncx

loop_outx:
 cbi PORTA,0x00
 ret

;---
indre:
 ldi r23,0x00
 ldi r24,0x08

loop_syn:
 add r23,r24
 brcs loop_out
 jmp loop_syn
 ret

INF-3996 Appendix C: The unmodified program Odd-Arne Olsen

106/128

INF-3996 Appendix D: The modified program Odd-Arne Olsen

107/128

Appendix D: The modified program

;
;***
;*
;* Title: Pedometer for Telemedisin
;*
;* Filename: ped164.asm
;*
;* Versjon: 1.1 OA(BETA)
;*
;* Last updated: 2007.04.18
;*
;* Target: ATmega164p
;*
;* Description: Main include file
;*
;* Designed by: Willy Mortensen
;*
;* Modified by: Odd-Arne Olsen
;*
;***

;******* main program

.nolist
.include "m164pdef.inc"
.list

.include "inite_reg.asm" ; initialize the registers for start/reset

.include "isr_count.asm" ; interrupt service routine for step counting
.include "isr_timer.asm" ; interrupt service routine for RTC
.include "isr_mtransm.asm" ; interrupt service routine for user initiated transmit
.include "uart0.asm" ; low level routins for UART handling

.include "transmit_bt.asm" ; data transmit routine

.include "main.asm" ; main function

INF-3996 Appendix D: The modified program Odd-Arne Olsen

108/128

;***
;*
;* Title: Pedometer for Telemedisin
;*
;* Filename: inite_reg.asm
;*
;* Block diagram 1
;*
;* Versjon: 1.1 OA(BETA)
;*
;* Last updated: 2007.04.19
;*
;* Target: ATmega164p
;*
;* Description: Initialization file
;*
;* Designed by: Willy Mortensen
;*
;* Modified by: Odd-Arne Olsen
;*
;***

;******** global register definition

.def temp0 = r16 ; register for temporary data handling
.def temp1 = r17 ; register for temporary data handling
.def statreg = r18 ; register for global status flag handling
.def transf = r19 ; register for global transmit status flag
.def count = r20 ; loop counter, general

.def rtcH = r27 ; RTC temporary timing register high 8 bits
.def rtcL = r26 ; RTC temporary timing register low 8 bits
.def stcH = r25 ; step count register high 8 bits
.def stcL = r24 ; step count register low 8 bits
.def packnub = r4 ; package number to be transmitted

;******* global constants

.equ stacklen = 0x0e ; length of data package stack

;******* global pin and constant definitions

.equ rxD = 0 ; UART receive pin is PD0

INF-3996 Appendix D: The modified program Odd-Arne Olsen

109/128

.equ txD = 1 ; UART transmit pin is PD1

.equ intd0 = 2 ; interupt0, down on PD2

.equ intd1 = 3 ; interupt1, down on PD3

.equ Bt_DTR= 4 ; data terminal ready, from Bluetooth

.equ Bt_RESET= 5 ; Bluetooth RESET

.equ Bt_power = 6 ; Bluetooth power on/off

.equ deltaThigh = 0xff ; Time interval between clocked transmissions
.equ deltaTlow = 0xfb ; 0xfffb = 40 seconds(debug), 0xd5d0 = 24 hours.

;******** global definition

 .CSEG ; Assembler directive - defines start of a code segment

 .org 0x00000 ; Set program counter.

;****** Interrupt vectors.

 jmp start ; reset handler

 .org INT0addr ; step interrupt, service routine
 jmp isr_count

 .org INT1addr ; manually transmit of data, service routine
 jmp isr_mtransm

 .org OVF2addr ; rtc overflow, service routine, timer2
 jmp isr_timer

;****** MCU register init.

start: ; start register initializing

ldi temp0,HIGH(RAMEND) ; Set stack pointer to point at
 out SPH,temp0 ; the last RAM address.
 ldi temp0,LOW(RAMEND) ;
 out SPL,temp0

 ldi temp0,deltaThigh ; preset rtc for counting time until next transmission
 mov r3,temp0
 ldi temp0,deltaTlow
 mov r2,temp0

 ldi temp0,0x0A ; load EICRA, external interrupt controll register A

INF-3996 Appendix D: The modified program Odd-Arne Olsen

110/128

 sts EICRA,temp0 ; "falling edge" detection on INT0 and INT1

 ldi temp0, 0x03 ; load external interrupt mask register
 out EIMSK, temp0

 cbi DDRD,intd0 ; initialize port direction INT0
 cbi DDRD,intd1 ; initialize port direction INT1

 ldi temp0,0x00 ; disable internal I/O-port pull-ups
 out MCUCR,temp0

 ldi temp0,0x07 ; load sleep mode and power-save
 out SMCR,temp0

;****** initialize rtc registers

 ldi temp0,0x01 ; enable overflow interrupt
 sts TIMSK2,temp0

 ldi temp0,0x07 ; Timer2 output = watch crystal frequency
 sts TCCR2B,temp0 ; divided by 1024, giving 8 second overflow periods

 ldi temp0,0x01 ; clear T/C2 interrupt flag by hardware when interrupt
 out TIFR2,temp0 ; handling vector is executed

 ldi temp0,0x20 ; Timer/counter 2 clock source is external
 sts ASSR,temp0 ; watch crystal

;****** initialize Bluetooth control lines.

 cbi DDRD,Bt_DTR ; set Bluetooth DTR line direction in

 sbi DDRD,Bt_RESET ; set Bluetooth RESET line, direction out
 sbi PORTD,Bt_RESET ; Set RESET line high (inactive)

 sbi DDRD,Bt_power ; set Bluetooth power line direction out
 cbi PORTD,Bt_power ; turn Bluetooth power off

;******initialize uart (Bluetooth communication lines)

 sbi PORTD, txD ; initialize USART port transmit
 sbi DDRD, txD

INF-3996 Appendix D: The modified program Odd-Arne Olsen

111/128

 cbi PORTD, rxD ; initialize USART port recieve
 cbi DDRD, rxD

 ldi temp0, 0x00 ; set single USART transm. speed
 sts UCSR0A, temp0

 ldi temp0, 0x18 ; enable receive and transmit
 sts UCSR0B, temp0

 ldi temp0, 0x06 ; set frame format: asynchronous, 8 data bits, 1 stop
bits,
 sts UCSR0C, temp0 ; no parity bit.

 ldi temp0, 0x00 ; set baud rate, 1MHz/2400 bps
 sts UBRR0H, temp0
 ldi temp0, 0x19
 sts UBRR0L, temp0

;****** initialization of data package protocol stack

 ldi ZL,0x00 ; set data stack pointer
 ldi ZH,0x02
 ldi count,stacklen ; initialize start loop counter

clrdstack:
 ldi temp0,0x00 ; clear data stack
 st Z+,temp0
 dec count
 brne clrdstack ; branch if not last byte

 ldi ZL,0x00 ; set data stack pointer
 ldi ZH,0x02

 ldi temp0,0x7e ; set frame sync, tilde.
 std Z+0x00,temp0
 std Z+0x01,temp0

 ldi temp0,0x55 ; set protocol ID = 0x55
 std Z+0x02,temp0 ; stor ID value

 ldi temp0,0xe6
 std Z+0x0c,temp0 ; set crc bytes
 std Z+0x0d,temp0

end_init:
 rjmp main

INF-3996 Appendix D: The modified program Odd-Arne Olsen

112/128

;***
;*
;* Title: Pedometer for Telemedisin
;*
;* Filename: isr_count.asm
;*
;* Block diagram 2
;*
;* Versjon: 1.1 OA(BETA)
;*
;* Last updated: 2007.04.19
;*
;* Target: ATmega164p
;*
;* Description: Interrupt service routine for INT0, step count update.
;*
;* Designed by: Willy Mortensen
;*
;* Modified by: Odd-Arne Olsen
;*
;***

isr_count:
int0_loop:
 in temp0,PinD ; test for step puls off, simple filter routine
 andi temp0,0x04
 cpi temp0,0x04
 breq out0

 jmp int0_loop ; loop until end of step puls

out0:
 adiw stcH:stcL,1 ; increment step counter

 reti

INF-3996 Appendix D: The modified program Odd-Arne Olsen

113/128

;***
;*
;* Title: Pedometer for Telemedisin
;*
;* Filename: isr_timer.asm
;*
;* Block diagram 4.2
;*
;* Versjon: 1.2 OA(BETA)
;*
;* Last updated: 2007.04.28
;*
;* Target: ATmega164p
;*
;* Description: Interrupt service routine for TIMER2_OVF, and
;* test of the 24 hour limit. day end flagg.
;*
;* Designed by: Willy Mortensen
;*
;* Modified by: Odd-Arne Olsen
;*
;***

isr_timer:
 mov r4, temp0
 mov r5, temp1

 movw rtcH:rtcL,r3:r2 ; load rtc value
 adiw rtcH:rtcL,0x01 ; increment the rtc counter
 movw r3:r2,rtcH:rtcL ; save rtc value

 brcs carry_set ; 24 hours since last transmit?

 jmp oldvalue

carry_set:
 ldi temp0, 0x00

 rcall transmit_bt ; transmit data

 ldi stcH,0x00 ; reset step counter, stc
 ldi stcL,0x00

INF-3996 Appendix D: The modified program Odd-Arne Olsen

114/128

 ldi rtcH,deltaThigh ; preset real time counter, rtc
 ldi rtcL,deltaTlow

 movw r3:r2,rtcH:rtcL ; save preset value

oldvalue:
 mov temp0, r4
 mov temp1, r5

 reti

INF-3996 Appendix D: The modified program Odd-Arne Olsen

115/128

;***
;*
;* Title: Pedometer for Telemedisin
;*
;* Filename: isr_mtransm.asm
;*
;* Block diagram 3.3
;*
;* Versjon: 1.2 OA(BETA)
;*
;* Last updated: 2007.05.02
;*
;* Target: ATmega164p
;*
;* Description: Interrupt service routine for INT1, manually
;* initiated data transmission.
;*
;* Designed by: Willy Mortensen
;*
;* Modified by: Odd-Arne Olsen
;*
;***

isr_mtransm:
 sei
 ldi count,0x00
;-----------------------------
; delaying 49995 cycles (nearly 50mS at 1MHz)
int1_loop:
 ldi temp0, 101
loop0: ldi temp1, 164
loop1: dec temp1
 brne loop1
 dec temp0
 brne loop0
; -----------------------------
; check if switch is released
 in temp0,PinD
 andi temp0,0x08
 cpi temp0,0x08
 breq time1
 jmp int1_loop
;------------------------------
; If button has been pressed down for 5 seconds or more
; reset the 24 hour counter values.

INF-3996 Appendix D: The modified program Odd-Arne Olsen

116/128

time1:
 cpi count,100
 brlt hundredstep
 ldi rtcH,deltaThigh
 ldi rtcL,deltaTlow
 movw r3:r2,rtcH:rtcL
 reti
;-------------------------------

hundredstep:
 cpi stcH, 0x00
 brne newdata
 cpi stcL, 101
 brlt olddata
newdata:
 ldi temp0, 0x00
 jmp out1
olddata:
 ldi temp0, 0xAA
out1:
 cli
 rcall transmit_bt
 reti
; =============================

INF-3996 Appendix D: The modified program Odd-Arne Olsen

117/128

;**
;*
;* Title : Read/Write through USART
;*
;* Filename : uartcom.asm
;*
;* Versjon : 1.1 OA(BETA)
;*
;* Last updated: 2007.04.19
;*
;* Target : ATmega164p
;*
;**
;**
;*
;* Function: putchar
;*
;* Description: Puts out one character
;*
;* Usage:
;*
;* Return: None
;*
;* Note: Parameter to be transmitted in temp1
;*
;* Designed by: Willy Mortensen
;*
;* Modified by: Odd-Arne Olsen
;*
;**

putchar:
USART_transmit:
 lds temp0,UCSR0A ; wait for empty transmit buffer
 sbrs temp0,UDRE0
 rjmp USART_transmit
 sts UDR0,temp1 ; put data in to buffer
 ret

INF-3996 Appendix D: The modified program Odd-Arne Olsen

118/128

;**
;*
;* Function: getchat
;*
;* Description: Get one character
;*
;* Usage:
;*
;* Return: Yes
;*
;* Note: Return to be transmitted in temp1
;*
;**

getchar:
USART_receive:
 lds temp0,UCSR0A ; wait for data to be received
 sbrs temp0,RXC0
 rjmp USART_receive
 lds temp1,UDR0 ; get and return recieved data from buffer
 ret

INF-3996 Appendix D: The modified program Odd-Arne Olsen

119/128

;***
;*
;* Title: Pedometer for Telemedisin
;*
;* Filename: transmit_bt.asm
;*
;* Block diagram 5.2 + DTR time out additions.
;*
;* Versjon: 1.3 OA(BETA)
;*
;* Last updated: 2007.05.19
;*
;* Target: ATmega164p
;*
;* Description: Service routine for transmitting step counter data.
;*
;* Designed by: Willy Mortensen
;*
;* Modified by: Odd-Arne Olsen
;*
;***

transmit_bt:
 cpi temp 0, 0xAA
 breq power_on

 ldi ZL,0x00 ; set data stack pointer to start
 ldi ZH,0x02
 ldi count,stacklen ; initialize loop counter

 mov temp0,packnub ; update pack number
 inc temp0
 mov packnub,temp0

 std Z+0x03,packnub ; store packed number
 std Z+0x06,stcH ; put step counter higher byte to data stack
 std Z+0x07,stcL ; put step counter lower byte to data stack

power_on:
 sbi PORTD,Bt_power ; arm Bluetooth power, and wait for active DTR signal
 ldi r22, 0x00
Bt_ready:
 rjmp delay100ms

INF-3996 Appendix D: The modified program Odd-Arne Olsen

120/128

 inc r22 ;check for time-out, here approximately 20 sec.
 cpi r22, 0xC8
 brsh endtransm

 in temp0,PIND ; Wait until Bluetooth is ready, ie wait for an active

 sbrs temp0,Bt_DTR ; DTR signal
 rjmp Bt_ready ; loop until BT ready

transm:
 ld temp1,Z+ ; fetch data from data package stack
 rcall putchar ; send data (put in UART buffer)
 dec count
 brne transm ; branch if not the last byte

untilempty:
 lds temp0,UCSR0A ; wait for last byte in UART to be transmitted
 sbrs temp0,UDRE0
 rjmp untilempty

 rjmp delay100ms ; give Bluetooth time to finish
 cbi PORTD,BT_power ; disarm Bluetooth power

endtransm:
 ret

delay100ms:
 ldi temp1, 0xA5 ; wait 100ms
dtrloop0:

ldi r21, 0xC9
dtrloop1:

dec r21
 brne dtrloop1
 dec temp1
 brne dtrloop0

ret

INF-3996 Appendix D: The modified program Odd-Arne Olsen

121/128

;***
;*
;* Title: Pedometer for Telemedisin
;*
;* Filename: main.asm
;*
;* Block diagram 7
;*
;* Versjon: 1.1 OA(BETA)
;*
;* Last updated: 2007.05.02
;*
;* Target: ATmega164p
;*
;* Description: Main function
;*
;* Designed by: Willy Mortensen
;*
;* Modified by: Odd-Arne Olsen
;*
;***

main:
 sei ; set global interrupt

main_loop:

 sleep ; set sleep mode, Power-save

 rjmp main_loop

INF-3996 Appendix D: The modified program Odd-Arne Olsen

122/128

INF-3996 Appendix E: Bluetooth module setup Odd-Arne Olsen

123/128

Appendix E: Bluetooth module setup

Category: Setting: Value: AT command:

Local name TTL Lifestyle Step Counter AT*AGLN
Class of device 0 AT*AGLC
Connectable Connectable AT*AGCM
Discoverable General discoverability AT*AGDM

B
as

ic

Se
tti

ng
s

Pairable Pairable AT*AGPM
Security mode Link Level AT*AGSM Security
Pin code 1234 AT*AGFP
Server profile SPP AT*ADDSP
Master/slave switch policy Don’t care AT*AGMSP

Se
rv

er

Wireless multidrop [no value] AT*ADWM
Client [nothing selectable] [nothing selectable]

Serial setting 2400, 8, none, 1, none AT*AMRS
Serial interface type RS232 AT*AMSIT

Se
ri

al

Escape timing 1000, 1000 AT*AMET
Link policy 0 – Default, 0 - Ignore AT*AMLP
Max output power 255 AT*AMMP
Power mode Sleep (default) AT*AMPM

O
pt

im
iz

at
io

n

Feature mask 1, [no value] AT*AMFRM /
AT*AMWFM

Allow configuration over air Enable AT*ACCB
DTR/DSR mode On connection, Ignored AT*AMDS

M
is

c

Watchdog 0, 0, 0 AT*AMWS

INF-3996 Appendix E: Bluetooth module setup Odd-Arne Olsen

124/128

INF-3996 Appendix A: The Project group’s block
diagram

Odd-Arne Olsen

125/128

Appendix F: The sensor tests

Figure I: Test cicuit used.

Figure II: Output from Cambden CSSM sub-miniature micro switch. Test circuit seen in Figure

I B.

INF-3996 Appendix E: Bluetooth module setup Odd-Arne Olsen

126/128

Figure III: Output from Sencera 102 shock sensor. Test circuit seen in Figure I B.

Figure IV: Output from Sencera 709 tilt sensor. Test circuit seen in Figure I B.

INF-3996 Appendix E: Bluetooth module setup Odd-Arne Olsen

127/128

Figure V: Output from Sencera 709 tilt sensor. Test circuit seen in Figure I A.

Figure VI: Output from NMS24M vibration sensor. Test circuit seen in Figure I B.

INF-3996 Appendix E: Bluetooth module setup Odd-Arne Olsen

128/128

Figure VII: Output from NMS24M vibration sensor. Test circuit seen in Figure I A.

