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Abstract 

 

Optical nanoscopy is an emerging field and enables super-resolution of biological cells. Among 

the existing nanoscopy techniques, structured illumination microscopy (SIM) is most 

promising candidate for live cell imaging due to its high-imaging speed, limited photo-toxicity 

and its suitability with most commonly used fluorophore. One of research focus of the optics 

group at the department is to develop photonic-chip based SIM.  

For SIM it is essential to perform phase stepping. This thesis involves developing a protocol 

for fabricating and investigation of on-chip polymer based phase modulator for SIM-on-chip.   

From our experimental result we can conclude that, fabrication of a polymer-based phase 

modulator is achievable using lift-off method. The entire fabrication process was optimized 

locally at UiT.  

The phase response of on-chip polymer based phase modulator is fast, has sufficient visibility 

and repeatable over time. I have also demonstrated three equidistant phase stepping as 

required for SIM imaging. 

This thermo-optics chip was designed with smaller interference angels (20° 𝑎𝑛𝑑 30°) to be 

able to capture the interference fringe patterns. We observed that a 60x, 1.2NA objective lens 

is needed to capture the interference fringes. The experimental results of fringe spacing show 

good agreement with the analytical results.  

Some limitation of using the polymer based thermos-optic phase modulation was also 

observed. One of them is the cross-heating.  Experiment shows that for chosen chip 

continuous phase modulation time should be limited to 15 seconds, after 15 seconds phase 

shift measurements might not be reliable. After 15 seconds, both the arms of the waveguides 

are heated and the phase difference reduces.  

From the experimental results, required power for a  𝜋  shift using 640 nm, TM mode is 

185mW and for 561nm, TM mode it is 230mW.  In TM mode phase starts to change with as 

little as 20mW power. The low power for TM mode also means that the chip will not be heated 

up so much, which is advantageous for live cell imaging. Whereas, For TE mode phase shift 

starts at a higher power (≈ 150mW) and total power required for one 𝜋 shift is considerably 

more than TM mode. At higher power cross-heating happens much faster.  

From phase change according to the length experiment, we observed that for 1cm length arm, 

phase shift starts at ≈ 300mW, but the total power it takes for one 𝜋 shift is approximately 

half of the power that is needed for 0.5 cm. 

Considering all these results, we can suggest that for an ideal SIM chip, one should use 640nm, 

TM mode in combination with shortest possible heat sensing length.  
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1 Motivation 
 

Before I started this master project, the optics group at the department have been working 

on waveguide chip-based structured illumination microscopy (SIM).  Chip-based SIM in 

principle can produce higher resolution, it is highly compact and most likely cheaper relative 

to commercially available SIM.  

SIM provide resolution enhancement of factor two. To achieve this the target is illuminated 

with an interference fringes instead of a uniform illumination. In SIM, the interference fringes 

in three different angles (orientations) and three (five) phase steps per angle is required for 

two (three) dimensional SIM. Thus in total 9 (15) images are acquired for 2D (3D). There are 

many ways of generating phase stepping for chip-based SIM. When I joined the project, most 

of the study for chip-based SIM was based on using on-chip phase modulation, where 9 input 

waveguides were used to provide phase shifting. The design was not only complicated but it 

also had no freedom to change the phase once the waveguide chip is fabricated. On-chip 

phase stepping using 9 waveguides had too many waveguide crossing, bends and long 

structures resulting on high propagation losses. Before, I joined the group, on-chip phase 

stepping was not working appropriately.  

In this thesis, I have investigated phase stepping using on-chip thermo-optical phase 

modulator, using PDMS. To perform on-chip thermo-optical phase shift, the fabrication 

process had to be optimized locally at the department. The waveguide chips were fabricated 

in Barcelona and had openings in the cladding for phase modulation. However, the entire 

fabrication process for on-chip thermo-optical phase modulator had to be optimized as no 

prior experience on such fabrication was carried out in the group. To do this, first I received 

cleanroom training at the department. Several fabrication challenges were encountered and 

solved systematically. Finally, I managed to fabricate waveguides with functional on-chip 

thermo-optic phase modulation. I have spent more than 70% of my time in this thesis in 

fabrication process leaving little time for the characterization of the waveguide chips. 

Nevertheless, I have obtained the preliminary experimental results for on-chip thermo-optical 

phase modulator that I will present in this work. These results will show that, phase response 

is fast, has sufficient visibility, phase shift is repeatable over time and phase stepping is 

achieved for SIM imaging. The on-chip phase modulation takes as little as 185𝑚𝑊 for a full 𝜋 

shift. 

The main advantage of phase-stepping using on-chip thermo-optical phase modulator is it 

reduces the number of input waveguides to 3 or less and the design is less complicated and 

most importantly gives complete flexibility to opt for the desirable phase shift.  
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2 Theory and background 

2.1 Conventional vs chip-based Structured Illumination Microscopy  
 

The Structured illumination microscopy is one of the most rapidly growing fluorescence 

microscopy technique which can go beyond the diffraction limit using conventional 

microscopes. The fundamental limit in light microscopy is limited by the wavelength of light 

and light gathering power of the objective lens. This is known as abbe diffraction limit:  

 

                     𝑑 =
𝜆

2𝑛 𝑠𝑖𝑛 𝜃
=

𝜆

2𝑁𝐴
                                    (2.1) 

 

Where n is the refractive index of the medium and N.A. is numerical aperture of the objective 

lens. A point spread function in spatial domain is represented by an optical transfer function 

in frequency domain. Fig 2.1 (a) shows an optical transfer function of an objective lens, red 

circle indicates the diffraction limit in frequency domain, which is known as cut-off frequency. 

The smaller the objects is, the more is the diffraction. In frequency domain this corresponds 

to higher frequency. The two red crosses in Fig 2.1 (a) highlight that these frequency is outside 

the cut-off frequency of the objective lens. In SIM microscopy this diffraction limited object is 

illuminated with a structured pattern, of known frequency (period). This leads to mixing of 

two spatial frequencies (illumination and sample) creating new patterns containing up-

conversion (high frequency) and down-conversion (low frequency) components.  Net effect of 

this can be seen as Fig 2.1 (b). The lower frequency components which are within the cut-off 

frequency of the objective lens can then be imaged. By imaging this new pattern and using 

the known high frequency illumination pattern it is possible to resolve the diffraction limited 

object.   

 

 

Figure 2.1 Working principle of structured illumination microscopy (a) Optical transfer 
function of the lens with cut-off frequency. (b) Formation of lower frequency fringes by 

interfering higher frequency signals. (c) For 3D SIM, images are acquired for 3 angles  and 
5 phases. (d-e) The enhancement in optical resolution is obtained by pushing higher 

frequencies inside OTF cut-off. (Image taken from Ahluwalia’s ERC project) 
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In SIM, illumination patterns in three different angles (orientations) and three (five) phase 

steps per angle is required for two (three) dimensional SIM, as shown in Fig 2.1 (c). These 

illumination patterns are created by an objective lens. The NA of this objective lens defines 

the spacing between these patterns. The resolution of SIM depends on how closely we can 

place the interference fringes. As the objective lens used to generate the illumination pattern 

is diffraction limited, it cannot generate fringes smaller than the diffraction limit itself. 

Therefore, SIM can achieve a resolution enhancement of a factor of 2 using this patterns. 

Which is approximately   

                                    𝑑𝑠𝑖𝑚 =
𝜆

4𝑁𝐴
                                          (2.2) 

     

In the Optics group, the research is focused towards the development of SIM on-chip. In SIM-

on-chip the illumination pattern is generated by the evanescent standing waves created by 

two opposing waveguide. Spacing of the fringe patterns created by SIM on-chip is a function 

of effective refractive index of the propagating mode (𝑛𝑒𝑓𝑓) and the angle of interference (𝛼). 

Resolution limit of SIM on-chip can be expressed as: 

                                  𝑑𝑜𝑛−𝑐ℎ𝑖𝑝 =
𝜆

4 𝑛𝑒𝑓𝑓 𝑠𝑖𝑛(𝛼/2)
                      (2.3) 

 

At 180-degree interference angle resolution only depends on the effective refractive index of 

the propagating mode (𝑛𝑒𝑓𝑓).  

                                                  𝑑𝑜𝑛−𝑐ℎ𝑖𝑝 =
𝜆

4 𝑛𝑒𝑓𝑓
                                (2.4) 

Objective with immersion media can have NA as large as 1.4. But for SIM on-chip used this 

thesis has and 𝑛_𝑒𝑓𝑓 of around 1.72 (for our waveguide material). Therefore, SIM on-chip can 

achieve better resolution than conventional SIM.  

There are three different ways the phase stepping can be performed for SIM-on-chip. 

On chip phase stepping: the phase difference between the 3 waveguide combinations is 

because of the path length difference between the waveguides for those combinations. One 

waveguide is active at a time and 3 waveguides are needed for achieving 3 phase steps, Fig 

2.2 (a) 

Off-chip phase stepping: the phase shift can be introduced by changing the phase shift 

between one of the waveguide arm before coupling light into the waveguide, one such 

example is changing the temperature of one of the input coupling fibres. In this case two 

waveguides have to be active simultaneously to generate the interference fringes, Fig 2.2 (b) 

On-chip thermo-optic phase stepping: One only waveguide is used and the light is split into 

two arms and are then interference in counter-propagating direction. Here the phase change 

is as a result of a refractive index change due to temperature variation in one of the waveguide 

arm Fig 2.2 (c) 
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2.2 Total internal reflection and evanescent field 
 

Refractive index of a media is defined as 𝑛 = 𝑐/𝑣. When a ray of light travels from a media 

with higher refractive index, 𝑛1 to a media with lower refractive index,𝑛2, some of the light 

gets reflected from the boundary between the two media and some of it gets refracted 

(transmitted). This refracted ray makes an angle 𝜃2 with the normal Fig 2.1 (a)[2]. Angle of 

refraction 𝜃2 is related to the angle of incidence 𝜃1 by Snell’s law: 

                                     𝑛1𝑠𝑖𝑛𝜃1 = 𝑛2𝑠𝑖𝑛𝜃2                                                (2.5) 

 

As the angle of incidence increases, refracted ray bends away from normal. When it reaches 

critical angle, 𝜃1 = 𝜃𝑐 , refracted ray becomes 90°, Fig 2.1(b). 

𝑛1𝑠𝑖𝑛𝜃𝑐 = 𝑛2 sin(90°) 

Figure 2.3 Relation between the angles of incidence and refraction (a) ray of light travels 
from a media with higher refractive index n1 to a lower refractive index media n2. (𝜃2 > 𝜃1) 
(b) refracted ray reaches 90° when the incident ray reaches critical angle (𝜃𝑐) (c) incident 

angle is larger than the critical angle (𝜃1 > 𝜃𝑐) and the ray is totally reflected 

a b c 

Figure 2.2 Chip based SIM (a) on-chip phase SIM structure (b) off-chip phase 
modulator SIM structure and (c) thermo-optic based phase modulator SIM structure. 

These designs are only for one orientation. The angle between the interfering 
waveguides is 180 degree. 
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                                               𝜃𝑐 = 𝑠𝑖𝑛−1 𝑛2

𝑛1
                                      (2.6) 

No refraction occur when the incident angle become larger than the critical angle ( 𝜃1 > 𝜃𝑐), 

and the incident ray gets totally reflected back to its original media. This phenomenon is called 

total internal reflection (TIR). Propagation of light in an optical waveguide follow this principle, 

Fig 2.3 [3].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Incident light gets internally reflected at each boundary propagates forward. But not all the 

light is reflected, some of the light leaks out from the from the waveguide core and penetrates 

into the cladding media. This penetrating light is called the evanescent field. The distance at 

which the intensity of the electromagnetic field drops to 1/e of its value at the interface is 

known as penetration depth 𝑑𝑒𝑣  . 

                          𝑑𝑒𝑣(𝑖) =
1

√𝑛𝑒𝑓𝑓
2 −𝑛𝑖

2 𝑘0

                                  (2.7) 

Where 𝑛𝑒𝑓𝑓 is the effective refractive index of the propagating mode, 𝑛𝑖  is the refractive index 

of the of the top or bottom cladding, 𝑘0 = 2𝜋/𝜆0 , is the wavenumber where 𝜆0  is the 

wavelength. 

 

 

 

Figure 2.4 Evanescent field generation inside a waveguide  
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2.3 Interference of two monochromatic waves 
 

Interference of two monochromatic waves with complex amplitudes produce another 

monochromatic wave. The resultant wave has the same frequency and a complex amplitude. 

Interference of two monochromatic waves U1(r) and U2 can be written as: 

𝑈(𝑟) = 𝑈1(𝑟) + 𝑈2(𝑟)                          [4] 

Optical intensity of a monochromatic wave is the absolute square of its complex amplitude. 

Intensity of the two waves are,𝐼1 = |𝑈1|2 𝑎𝑛𝑑 𝐼2 = |𝑈2|2, and the total intensity: 

 

𝐼 = |𝑈|2 = |𝑈1 + 𝑈2|2 = |𝑈1|2 + |𝑈2|2 + 𝑈1
∗𝑈2 + 𝑈1𝑈2

∗                                                (2.8) 

 

 

Substituting, 𝑈1 = √𝐼1 exp(𝑗𝜑1)  𝑎𝑛𝑑 𝑈2 = √𝐼2 exp(𝑗𝜑2) in Eq. 2.3 

𝐼 = 𝐼1 + 𝐼2 + 2√𝐼1𝐼2 cos(𝜑2 − 𝜑1) 

𝐼 = 𝐼1 + 𝐼2 + 2√𝐼1𝐼2 𝑐𝑜𝑠(𝜑)                                                 (2.9) 

𝜑 = 𝜑2 − 𝜑1, 𝑃ℎ𝑎𝑠𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

Equation (2.4) is called the interference equation. Value of the phase difference can either be 

positive or negative. When the value is positive it’s called a constructive interference and 

when negative its destructive interference. If both of the wave has same intensity,  𝐼1 = 𝐼2 =

𝐼0 Eq. 2.4 becomes 

𝐼 = 2𝐼0(1 + 𝑐𝑜𝑠𝜑) = 4𝐼0 𝑐𝑜𝑠2(𝜑/2)                                       (2.10) 

So for no phase difference between two waves, the total intensity becomes 4 times larger 

𝜑 = 0, 𝐼 = 4𝐼0 and when they are 180 degree out of phase the total intensity is,𝜑 = 𝜋, 𝐼 = 0.  
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3  Fabrication of the thermo-optical phase modulator 
 

3.1 Chip design 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This thermo-optics chip was designed by my co-supervisor Dr. Firehun Tsige Dullo and 

fabricated in Barcelona. I was involved in developing the lift-off protocol for fabricating the 

micro heaters on PDMS and taking the phase shift measurements. Working principle of this 

chip will be discussed in phase measurements chapter. 

 

 

 

 

 

Figure 3.1 Thermo-optics chip. (a) Design of the chip (b) shows how the 
cross section would look like after this fabrication process  

                   a 

b 
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3.2 Literature review 
In my thesis, I have focused on three research papers that have developed fabrication process 

of thermo-optical modulation using PDMS. The three papers presented below, discusses three 

different approach of fabricating micro heaters on PDMS. The key methods are respectively 

lift-off, wet etching and modifying PDMS as a heating element. 

3.2.1 Guo and DeWeerth - 2010 
This paper presents a method for patterning gold microstructures on a PDMS substrate. Guo 

and DeWeerth [5] were able to produce gold lines as small as 10 𝜇𝑚 wide using negative 

photoresist (SU-8) and lift-off technique. Cured SU-8 is very hard to remove. They overcome 

this problem by using a thin layer (400𝑛𝑚) of PAA (Poly (acrylic acid)) as a sacrificial layer 

between the photoresist and PDMS. PAA is a water-soluble polymer but insoluble in SU-8 

developer, so it was not affected during the developing process. Oxygen plasma is used for 

PDMS-PAA bonding.  They have also encountered the problem of photoresist cracking which 

was solved by ramping temperature up and down during the baking steps. 

 

3.2.2 Adrega and Lacour - 2010 
In this paper similar work is reported by Adrega and Lacour[6]. They have used an alternative 

method of fabrication, positive photoresist (AZ 1505 by MicroChem) and wet etching. The 

whole fabrication process was carried out in low-temperature process (below  75 °𝐶  ). Gold 

has poor adhesion to PDMS, 3𝑛𝑚 thick chromium layer is used as an adhesion layer between 

70  µ𝑚  PDMS and 40𝑛𝑚  gold conductors. After development, chromium/gold/chromium 

layer is wet etched.  The photoresist strip is performed by UV flood exposure, followed by 

immersion in photoresist developer. They have not seen any photoresist crack after 

developing. However, sub-micron cracks were observed on gold surface after film deposition. 

They hypothesized that it caused due to the large mismatch of thermal expansion coefficients 

of PDMS and gold.  

3.2.3 Chuang and Wereley - 2008 
Chuang and Wereley propose [7] a completely different approach of fabrication. Instead of 

fabricating heating element on PDMS film, PDMS prepolymer can be modified as a heating 

element simply by mixing it with a metallic powder. A piece of pre-moulded PDMS is used as 

the substrate material and a mixture of PDMS and copper as the conducting element. The 

mixture is poured into the PDMS mould and the excess mixture is gently removed using a razor 

blade. The mixture was cured on a hotplate for 1 hour at100° 𝐶. They were able to achieve 

92°𝐶 using power as low as 210mW. 

 

Summary:  My thesis work involves a combination of the first 2 papers, lift-off using positive 

photoresist. The third method from Chuang ad Wereley was considered as an alternative 

approach but this method would be ineffective, because conductive PDMS is not transparent. 
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3.3 Methods of fabricating micro heaters on Chip 
 

There are many methods of patterning microstructures on a substrate, namely lift-off[5], wet 

etching[8], shadow masking[9], printing/stamping[10]. Fabrication lab at UiT-The Arctic 

University of Norway facilitates apparatus for wet etching and lift-off processes.  

In wet etching, a target material for example a metal is deposited to a substrate in the form 

of a thin layer. Then using a photoresist mask and an appropriate etching agent desired 

pattern is etched away from the first deposited layer[8].  Whereas, in lift-off a substrate is first 

coated with a photoresist consequently developed to form patterns (openings), through 

which the target material can reach the substrate. Then the target material is deposited to the 

whole surface, which covers the substrate as well as the undeveloped photoresist. Next, using 

a photoresist remover this undeveloped photoresist is washed away and the material above 

it is lifted-off together with this layer[5]. Fig 3.2 demonstrates the fabrication process of both 

of this processes, lift-off and wet etching.  

 

 

 

 

 

Figure 3.2. Combination of masks and lithography processes. A positive photoresist 
exposed through a dark field mask and a negative photoresist exposed through an 

opposite light field mask produce identical structures after lift-off and etching 
respectively. 
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Using different combination of masks and the lithography 

techniques it is possible to pattern exactly the same 

structures on a substrate, as shown in Fig 3.2. A positive 

photoresist ma-P 1210 and a negative photoresist SU-8 

were available at UiT lab. SU-8 has better adhesion to 

PDMS compared to ma-P 1210 [11]. However, removing 

of SU-8 from PDMS surface is difficult once it is 

developed[5], which could lead to damaging the silver 

structures. Thus, positive photoresist along with the lift-

off technique was chosen for fabrication.  

This fabrication protocol was developed in three steps, 

each step involved parameter optimization: 

 First lift-off was done on glass slides using a 

sample mask to test if lift-off works. 

 Then lift-off was carried out on a glass slide 

coated with PDMS.  

 Finally, lift-off was performed on a PDMS coated 

thermo-optics chip. 

 

During the early phase of this thesis project thermo-optics 

mask and the chip were under fabrication in Barcelona. 

Silicon chips are both fragile and expensive compared to 

glass slides. In addition, there was no specific protocol 

available for the photoresist used in this thesis (positive 

photoresist ma-P1210).  Therefore, to save time and study 

the initial challenges, lift-off process optimization was 

carried out on glass slides.  

 
3.3.1 Materials and instruments 
 

LOR, ma-P 1210 positive photoresist, mr-D 526/S developer and mr-Rem 700 remover were 

bought from Micro Resist Technology GmbH, Berlin, Germany. PDMS (SYLGARD™ 184 Silicone 

Elastomer Kit) and Hellmanex III were purchased from Sigma-Aldrich, Oslo, Norway. 

Microscope slides were ordered from VWR International AS, Oslo, Norway. WS-650MZ-

23NPP/LITE spin coater, Laurell Technologies Corporation, North Wales, USA. MJB-4 Manual 

mask aligner, SÜSS MICROTEC SE, Garching, Germany. Plasma Cleaner, Harrick Plasma, Ithaca, 

NY, USA. P-6 Stylus Profiler, KLA-Tencor Corporation California, USA. Sputter coater 208HR, 

Cressington Scientific Instruments, Watford, UK. Hei-Tec magnetic stirrer, Heidolph 

Instruments GmbH, Schwabach, Germany. Vacuum drying chamber, BINDER GmbH, 

Tuttlingen, Germany. BX51 dark field microscope, Olympus Corporation, Japan. 

Figure 3.3. Examples of 
photolithography mask. (a) Dark 

field mask. Structures are 
transparent; the rest is opaque 

to light. (b) Light field mask. 
Opposite of dark field, light does 
not pass through the structures. 
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3.3.2 Lift-off method on glass slides 
 

 

 

 

 

 

 

 

 

 

 

 

Entire fabrication process was carried out in a clean room under yellow light condition to avoid 

any unwanted exposure to the UV-sensitive photoresist (ma-P1210). Spin coating technique 

was used in Fig 3.4 and throughout the whole project to coat a thin uniform layer of this 

photoresist. To optimise the lift-off parameters 20  pre-cleaned microscope slides were 

prepared, each one covered with a thermal release tape on one side and numbered. This 

protected area was later used as a reference surface for thickness measurement. Photoresist 

was left in a glass beaker for about 10 minutes at room temperature to dissipate any dissolved 

air bubbles. Spin-coating ma-P 1210 for 30 seconds at 3000 rpm produces a film thickness 

of 1 𝜇𝑚 [12]. Spin coater was pre-programmed to that configuration and a glass slide was 

secured to the spin chuck by turning on the vacuum. 400 𝜇𝑙 photoresist was then dispensed 

on each slide using static dispense spin coating technique [13]. 

Ten slides were spin-coated at 3000 rpm for 30 seconds and ten slides at 2000 rpm yielding a 

film thickness of 1 𝜇𝑚  and 1.5 𝜇𝑚 respectively. Immediately after spin-coating these slides 

were baked on a hot plate according to the time and temperature specified in Fig 3.5. 

 

Figure 3.4. Lift-off process on a glass slide. Positive photoresist ma-P 1210 
(micro resist technology GmbH) and its correspondent developer and remover 

is used for this process. Silver film is deposited by sputtering. 
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Glass slides were then removed from the hotplate and cooled in air for 1 minute. Exposure 

Dose for 1 𝜇𝑚 and 1.5 𝜇𝑚 thick film of ma-P 1210 is 35 and 45 mJ/cm2 (broadband exposure) 

respectively and a post exposure baking step is not necessary [12]. An UV-optometer supplied 

by the manufacturer of MJB-4 mask aligner was used to set the required exposure dose. Each 

glass slide was then exposed in soft contact exposure mode (a  resolution of 2𝜇𝑚 can be 

achieved in this mode[14]) using the dark field mask in Fig 3.3. After exposure, developed in 

mr-D 526 developer for about 30 seconds followed by gently rinsing with DI water and dried 

in N2.  Each slide was then examined using a microscope with 10x magnification for any 

defects. 

 

 

Figure 3.5. Optimization of lift-off process. Each of the 20 slides is numbered with a 
permanent ink. Ten slides are spin-coated at 3000 rpm for and ten slides at 2000 rpm 

30 seconds yielding film thickness of 1µm and 1.5µm respectively. Five slides from each 
group backed on a hot plate for 1 minute and five for 2 minutes at temperatures from 

70°C to 110° C followed by cooling in air for 1 minute.  

c a b 

Structure 

Photoresist 

Figure 3.6. Effects of photoresist baking temperature and time (a) Temperature below 
80°𝐶, unexposed areas are also removed (b) Curing either 80°𝐶 or 90°𝐶 for 2 minutes 

produces identical structures as the mask. (c) Temperature above 90°𝐶, and there is no 
pattern formation. 
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Curing at 8 0° 𝐶  and 90° 𝐶  for 2 minutes produced the finest patterns. For too low 

temperatures, adhesion to the glass substrate was so poor that unexposed photoresist was 

also removed, picture (a) in Fig 3.6. On the other hand, temperatures higher than 90° C were 

unable to produce any structures. 

Best patterented slides (optimized parameters) were selected for the metallisation step and 

a sputter coater was used to deposit silver on those slides. Three different silver thickness 

were investigated for the lift-off 25𝑛𝑚, 50𝑛𝑚 𝑎𝑛𝑑 100𝑛𝑚. The lift-off was done in mr-Rem 

700 remover, silver structures were clearly visible after soaking in for 30 minutes. Glass slides 

were then taken out of the solvent, rinsed with DI water followed by drying in N2. Fine 

structures were formed on slides that were sputtered with 25 𝑛𝑚 of silver, Fig 3.7 (a) shows 

one of them, (b) and (c) shows the accuracy of the process. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

a 

b 
c 

Figure 3.7. Pattern transfer on glass slides (a) Silver structures on glass after lift-
off, silver thickness 25nm (b) and (c) 10x magnified area of the mask and the 

corresponding area on the fabricated structures. 
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3.3.3 Lift-off method on PDMS  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PDMS (SYLGARD™ 184 Silicone Elastomer Kit) was prepared by mixing the base and the curing 

agent at a weight ratio of 10:1. The solvent was degassed in a vacuum drying chamber for 15 

minutes to dissipate air bubbles. Maximum bonding strength can be achieved between Glass-

PDMS surface by treating glass slides in an ICP-RIE plasma [15]. In this experiment, glass slides 

were plasma treated in an ICP plasma for 20 seconds at a constant chamber pressure of 1000 

mtorr. It is also recommended to use dynamic dispense spin coating technique for spin-speed 

above 1000 rpm[16].  However, with this technique it was not possible to produce a layer of 

uniform thickness due to the high viscosity (3500cP) of PDMS[17]. So, the dispense technique 

was slightly modified to get the best result. 500 𝜇𝑙 of PDMS was dispensed on a plasma treated 

glass sided while the spin-coater was stand still, then it spun for 10 seconds at 500 rpm 

followed by 5 minutes spin at a speed specified in the following graph:- 

Figure 3.8. Lift-off process on glass slide coated with PDMS. 
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After spin coating, PDMS was cured on a hotplate for 20 minutes at 125°𝐶, cooled down to 

room temperature by turning off the heater. Then the intention was to follow the same 

protocol on PDMS surface, which was developed for glass in section 4.2.2. However, it did 

not work due to the poor adhesion between PDMS and photoresist. Wettability of a material 

is characterised by its contact angle. Lower contact angle corresponds to hydrophilic 

materials and higher contact angle means the material is hydrophobic. The contact angle of 

PDMS is very high 109° compared to 20 ° of glass [15], meaning PDMS surface is highly 

hydrophobic.  Any attempt to coat photoresist on PDMS failed, as can be seen in Fig 4.7 (a). 

Then the following steps were performed to overcome this problem:-  

 PDMS surface was treated with UV-exposure of varying doses, none of them worked.  

 PDMS was treated in plasma for 20 seconds at 1000 mtorr. After plasma treatment, 

PDMS-photoresist bonding worked Fig 4.7 (b), but the lift-off did not work because the 

bonding strength was too strong, Fig 4.7 (c) shows the result. 

 A thin layer of LOR (1µ𝑚) was used as a sacrificial layer between PDMS and photoresist 

to eliminate the need of plasma treatment. PDMS-LOR-Photoresist bonding worked, 

but formed severe crack during soft-baking. 

 Consequently, plasma treatment time had to be optimised. Different plasma 

treatment time between 1 and 20 seconds were tested, 5 seconds at 1000 mtorr 

plasma treatment produced the expected result in Fig 4.7(d). 

 

 

 

Figure 3.9. PDMS thickness a function of spin speed for a rotation time of 5 min. PDMS 
(SYLGARD™ 184 Silicone Elastomer Kit) was prepared by mixing base and curing agent 

at a weight ratio of 10:1. Degassed for 15 minutes in a vacuum drying chamber to 
dissipate any air bubbles. 
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3.3.4 Lift-off on thermo-optics chip 
 

Exact same protocol was followed for the thermo-optic chip as the one developed in previous 

section for PDMS except for the chip preparation and mask alignment steps. 

Chip preparation  

Six chips were fabricated in one Si wafer and each one was diced after fabrication. Polishing 

with ultra-fine sand paper (10𝜇𝑚 𝑎𝑛𝑑 5𝜇𝑚)  was required in order to have better laser 

coupling. Polished chip was cleaned in acetone for 20 seconds, rinsed with an IPA stream then 

DI water followed by drying in N2. Then the chip was socked in 1% Hellmanex III solution and 

heated to 70° for 10 minutes. After that, it was rinsed in DI water for 30 seconds to wash away 

any remaining solvent and dried in N2.  Before spin coating PDMS, uncladded imaging area 

and the coupling ends were protected using a thermal release tape, as shown Fig 4.9. 

 

 

 

a 

b 

c 

d 

Figure 3.10. Effects of plasma treatment. (a) ma-P 1210 photoresist is optimized for 
application on rigid substrates only, thus adhesion is very poor when applied to PDMS 
surface (b) Adhesion between PDMS and photoresist gets better with seconds plasma 

treatment (c) Bonding between photoresist and PDMS is too strong for 20 seconds plasma, 
lift-off does not work. (d) Plasma treating PDMS surface for 5 seconds produces expected 

result. 
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Mask Alignment 

Cured photoresist film is brittle, slightest strain causes crack to form on the surface. Therefore, 

the soft contact exposure mode was chosen to avoid direct contact with the mask. In addition, 

alignment tolerance was quite high as the silver structures were 30 times wider than the 

waveguide.  

Exposure dose was measured using the test exposure mode and the UV-optometer. Contact 

gap between the mask and the chip was adjusted using the WEC settings knob. Each chip was 

designed with four diagonal alignment marks (Fig 4.10 (a)) one on each corner and the mask 

had the same counterpart markings. Alignment was done using the 𝑥 − 𝑎𝑥𝑖𝑠, 𝑦 −

𝑎𝑥𝑖𝑠 𝑎𝑛𝑑 𝜃 − 𝑎𝑥𝑖𝑠 knobs on the mask aligner. After alignment, the chip was exposed with the 

pre-programmed dose and the rest of the lift-off process was carried out on that chip. 

a b c 

Figure 3.11. Uncladded area on the chip. (a) Adiabatically tapered waveguide in the imaging area, 
covered with thermal release tape before spin-coating PDMS (b) the thermo-optic chip (c) 

Opening area on the interferometer’s waveguide arm. Each arm has an identical opening; PDMS 
gets in contact with both waveguides after spin coating. Silver micro heater is deposited on one of 

the arm. 
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 b 

c d 

e f 

Chip Mask 

a 

Figure 3.12. Process of mask alignment. (a) Thermo-optics mask with alignment 
markings on each corner (b) Same alignment mark on the chip, diagonal markings are 

used for the alignment (c) and (d) are the effects of misalignment (e) and (f) are 
properly aligned mask. 
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PDMS has a CTE (Coefficient of Thermal Expansion) of 340 𝑝𝑝𝑚/°𝐶 [17] and the photoresist 

is typically below 100 𝑝𝑝𝑚/°𝐶. Most of this photoresist are optimized for hard substrate like 

glass or silica which has a lower CTE. During photoresist baking process, PDMS and photoresist 

expands and shrinks at a different rate due to this CTE mismatch. As a result, severe 

microscopic crack forms on the photoresist surface (Fig 4.11 (a)) and also appears on the 

patterned silver lines (Fig 4.11 (b)). This problem was solved by reducing the thermal stress 

during softbake.  

 

a b 

c d 

Figure 3.13. Dark field images of microscopic crack on the chip, (a) Cracks are formed on 
photoresist due to higher thermal expansion rate of PDMS (b) This crack makes the therm o-

optics unusable. (c) and (d) Cracks are minimised by ramping temperature up from room 
temperature to 80°𝐶 over one minute, held for 2 minutes followed by cooling down to room 

temperature by turning off the hotplate. 
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3.3.5 Summary of the lift-off protocol 
 

 Polish, clean and cover the chip with thermal release tape where PDMS is not needed 

 Treat in ICP plasma for 20 seconds at a constant chamber pressure of 1000 mtorr 

 Spin-coat PDMS for 10 seconds @ 500 rpm & 5 minutes @ 6000 rpm to produce 6 µ𝑚 

thick film 

 Bake on a hotplate for 20 minutes @ 150 ° 𝐶, turn off the hotplate, let it cool to room 

temperature 

 Plasma treatment for 5 seconds at 1000 mtorr constant chamber pressure 

 Immediately apply photoresist (ma-P 1210) and spin @ 2000 rpm for 30 seconds 

 Place on a hotplate and ramp the temperature up from room temperature to 80 ° 𝐶 

over one minute, bake for 2 minutes, cool down to room temperature by turning off 

the heater 

 Expose with the required does (45 mJ/cm2 for 1.5 µm film) using the dark field mask 

 Develop in mr-D 526/S developer for about 30 seconds, until the patterns are visible 

 Wash the surface with DI water for 30 seconds and dry in N2 

 Inspect the chip under a microscope for defects, apply silver film using a sputter coater 

 Soak in mr-Rem 700 remover for 30 minutes, followed by cleaning with DI water and 

drying in N2 

 

Following these steps will produce a complete thermo-optics chip as shown in Fig 4.11 (b). 

 

 

Figure 3.14. (a) Design of the thermo-optic chip. (b) Complete chip 
with the thermo-optics and connected to 80𝜇𝑚 insulated copper 

wires 

a 

b 
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4 Preliminary data on phase measurements 
 

In this chapter, preliminary results from the phase measurements are discussed. In section 

4.2, we presented analytical and experimental results of interference fringe spacing 

measurements using fluorescent dye and in section 4.3 phase shift measurements using 

fluorescent beads are presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Silver micro heaters  

Alignment mark Imaging area 

Interfering angle 

20° 

30° 1 cm 

0.5 cm 
30° 

Length of the uncladded area 

1 

2 

3 

Y branch Adiabatic tapering 

Figure 4.1. Design of the thermo-optic chip, designed in CleWin5. Laser is coupled into the Y branch, 
divided 50/50 in each waveguide arm and meets at the imaging area through adiabatic tapering. Each 
arm has an open (uncladded) area of equal length covered with PDMS and one of them has a heating 

element on top. 
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4.1 Experimental methods 

4.1.1 Materials and instruments 
CellMask Deep Red (CMDR), CellMask Orange (CMO) and TetraSpeck Microspheres (#T7279), 

0.1 µm, fluorescent (blue/green/orange/dark red) were ordered from Thermo Fisher 

Scientific, Waltham, USA. 22mm x 22mm Corning cover glasses were bought from Sigma-

Aldrich Norway AS, Oslo, Norway. Toptica iChrome MLE Laser with 4 

wavelengths(405𝑛𝑚, 488𝑛𝑚, 561𝑛𝑚, 640𝑛𝑚), TOPTICA Photonics AG, Munich, Germany. 

IDS UI-3060CP Camera, IDS Imaging Development Systems GmbH, Obersulm, Germany. 

Custom built Olympus microscope with 10x, 20x and 60x water immersion lenses. Agilent 

E3631A 80W Triple Output Power Supply, Keysight Technologies, California, USA. 

4.2 Interference fringe spacing measurements using fluorescent dye 

Interference patterns are not visible on scattered images, as can be seen from Fig 4.3 (b). 

Scatterers on chip emit light at same wavelength as the excitation beam. The scattering 

happens due to any hot-spots or impurities on top of waveguide surface. To be able to capture 

the interference patterns, a fluorophore dye is used which has an emission wavelength 

different from the excitation wavelength. Then, by using an appropriate filter it is possible to 

block the scattered light from the fluorescence signal. CellMask are a type of dye used in 

fluorescence imaging to stain cell plasma membranes. CellMask deep red is excited by 

640 𝑛𝑚 and has emission maxima at 666 𝑛𝑚. For CellMask orange its 561𝑛𝑚 and 567𝑛𝑚, 

respectively.  

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 4.2. Excitation and emission spectra of CellMask plasma 
stain[1]. 
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Chip preparation with fluorescent dye 

For both dyes (CMDR and CMO), a dilution of 1:1000 was prepared by mixing the stock 

solution with DI water. Imaging area of the chip was pre-cleaned using acetone and water and 

dried in N2. A 150 𝜇𝑚 thick PDMS chamber was cut out to border the imaging area, so that 

the solution stays in place during imaging. About 20 𝑡𝑜 30 𝜇𝑙 (depending on the size of the 

PDMS chamber) of this solution was added to the imaging area and kept under a dark shade 

for 10 minutes. After 10 minutes, the imaging area was washed with DI water twice. Then, a 

droplet of water was placed on the imaging area and a cover slip above it. Finally, by gently 

pressing the cover with a pair of plastic tweezers the whole area was sealed. 

 

Fig 4.3(c) shows the result of filtering out the scattered light. An appropriate filter is used 

according to the wavelength to filter out the excitation and the scattered light, letting only the 

light from the dye to be captured by the camera. It is evident form Fig. 4.3 (c) that the field is 

not very uniform and there are some light strips which is possibly due to shadowing effect or 

mode beating, although the waveguide was designed for single mode conditions.   

 

b Angle of interference= 20 degree 

Magnification = 60x 

TM-polarization, Without fluorescent   

 

c Angle of interference= 20 degree 

Magnification = 60x 

TM-polarization, With fluorescent 

dye  

a       Angle of interference= 20 degree 

          Wavelength = 561 nm 

 

Figure 4.3. (a) Effects of scattering (b) Interference patterns are not visible due to 
scatterers (c) Interference patterns made visible by using fluorescent dye (which emits 

light at a different wavelength than the illumination light) and an appropriate filter is used 
to filter out the illumination and scattered light. 



26 
 

 

Magnification of an objective lens is its ability to make smaller objects appear larger while, 

resolution   is the ability to distinguish two   objects from one another. Resolution of a 

microscope   is limited by the abbe diffraction limit, 𝑑 =
𝜆

2𝑁𝐴 
  [18]. For air the theoretical 

maximum NA   can be as large as 1. For other immersion medium like oil or water it can have 

a value more than 1. Table 4.1 shows the   maximum achievable resolution according to NA, 

which helps to decide what objective lens to choose. 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1. Resolution as a function of   objective lens NA and wavelength ( 𝑑 =
𝜆

2𝑁𝐴
). 

 

The thermo-optics chip was designed to study the interference pattern and phase shifting 

property at different interfering angles (20° 𝑎𝑛𝑑 30 °). Fig 4.4 (a) and (b) are the captured 

interference patterns of 20° 𝑎𝑛𝑑 30° angle, (c) and (d) are the close up view, respectively. 

20 ° Interference patterns are seen (c), visibly and also with FFT Fig 4.4 (e). According to the 

analytical result, for 640 𝑛𝑚, 𝑇𝑀 and 30° interfering angle, fringe spacing is 0.78𝜇𝑚 (Table 

5.3). These fringes should also be visible using a 20𝑥, 0.45𝑁𝐴 objective lens, which has a 

resolution of 0.71𝜇𝑚 at that wavelength. However, this was not observed, FFT of the image 

shows no peak Fig 4.4 (f). It should be emphasised that the Abbe’s diffraction limit gives 

theoretical limit of the resolution using the objective lens when operated in the ideal situation 

with an ideal microscope. However, in most practical microscope the resolution is slightly 

worse than the Abbe’s diffraction limit. This is due to under-filling of the aperture of the 

objective lens, and other miss-alignment of the optical system. So, to overcome this problem, 

from this point forward all the measurements are taken using 60x, 1.2NA.  

 

 

 

 

 

Objective lens Resolution 

(nm) @ 

640 nm 

Resolution 

(nm) @ 

561 nm Magnification NA 

60X: oil 

immersion 

1.3 246 215 

60 X: water 

immersion 

1.2 266 233 

20X 0.45 711 623 
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Table 4.2. Pixel size conversion chart for IDS_uEye UI-3060CP Camera 

 

 

 

 

 

 

Specifications IDS_uEye 

Effective number of pixels (h x v) 1936 x 1216 

Optical area (mm2) 11.345 x 7.126 

Optical area with 60 x magnification (µm2) 189 x 119 

Pixel size (µm) 5.86 

Pixel size with 60 x magnification (nm) 98 

Pixel size with 20 x magnification (nm) 293 

20x_NA 0.45_20degree_561_TE 20x_NA 0.45_30degree_640_TM 

Figure 4.4. Abbe diffraction limit of a 20x, 0.45 NA objective lens. (a) and (b) are the interference 
patterns from 20-degre and 30-degree interference angles, respectively. (c) and (d) are the 

zoomed in views. (e) and (f) shows the FFT of those images. 30-degree interference patterns are 
limited by the abbe diffraction while 20-dregee is visible. 

a b 

e f 

c 

d 
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For a microscope camera, with increasing magnification, effective size of the camera pixel 

decreases. In table 4.2, each pixel size of IDS_uEye camera is converted to the effective pixel 

size according to the magnification of the objective lens. The camera can capture a total area 

of 189µ𝑚 ×  119 𝜇𝑚  using a 60x objective lens, which was sufficient for our experiment. 

These waveguides are designed to maintain single mode condition at 561𝑛𝑚 𝑎𝑛𝑑 640𝑛𝑚, so 

there is only one strong interference in the centre region where the two mode profiles meet. 

Inference fringe spacing is analysed using Fiji[19] image processing software. A line profile (Fig 

4.5) is plotted across the centre of the interference region and the total number of pixels are 

converted to length by multiplying with 98𝑛𝑚 (effective pixel size with 60x magnification). 

Each peak and trough in the line profile represents a constructive and a destructive 

interference, respectively. Note that the interference pattern is recorded using a florescent 

dye, the intensity also depends on how well the dye is distributed across the imaging area. 

Thus, our calculation is based on the average spacing between 5 to 6 consecutive peaks, which 

produces better accuracy in measurements.  

 

 

 

 

 

 

 

 

 

 

20-degree, 640 nm, TM 

Figure 4.5. Methods for calculating fringe spacing. Line profile across the interference 
region is converted to length in 𝜇𝑚 to calculate the spacing between two peaks 
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𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑓𝑟𝑖𝑛𝑔𝑒 𝑠𝑝𝑎𝑐𝑖𝑛𝑔, 𝑑𝑓 =
𝜆

2 ∗ 𝑁𝑒𝑓𝑓 ∗ sin (
𝛼
2)

… … … … … … … … … … . (1) 

𝑁𝑒𝑓𝑓 =  𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑟𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑣𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑖𝑛𝑔 𝑎𝑟𝑒𝑎 

𝛼 =  𝑎𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑖𝑛𝑔 𝑤𝑎𝑣𝑒𝑔𝑢𝑖𝑑𝑒𝑠  

60x Water immersion lens is used to capture 

the interference patterns. As the name 

suggests, NA of this lens is only corrected for 

water. SiO2 is the top and bottom cladding 

material for this chip except for the imaging 

area. In the imaging area bottom cladding is 

still SiO2 but there is no top cladding, so that 

any immersion medium can be used as a top 

cladding. Refractive index of water is 𝑛 =

1.33 and for SiO2 𝑛 =  1.45. If this imaging area had a top cladding of SiO2, the refractive 

index mismatch between the immersion medium and top cladding would result in imaging 

aberrations. 𝑁𝑒𝑓𝑓 For TE is 1.72 and for TM polarization its 1.59, considering water as the top 

cladding (the simulation was done by Dr. Firehun Tsige Dullo using Fimmwave). They are 

different for TE and TM mode due to the boundary condition of the waveguide (rib waveguide 

geometry). It is clearly evident from equation (1) that the interference fringe spacing is a 

function of the wavelength, polarization and the angle of interference. Analytical and the 

experimental results are shown in Table 4.3. 

 𝑁𝑒𝑓𝑓 for TM mode is smaller than TE mode, so for the same wavelength TE mode 

produces narrower interference fringes. 

 For the same polarization, shorter wavelength produces narrower fringes. 

  And for the same polarization and wavelength, larger interference angle produces 

narrower fringes. 

Table 4.3. Spacing of fringes as a function of angle, wavelength and polarization, numbers 
are rounded up to the nearest digit. 

Wavelength (nm) Angle between the 

interfering waveguides 

(degree) 

Spacing between fringes (µm) 

Analytical Experimental 

TE TM TE TM 

640 20 1.07 1.16 1.07 1.18 

30 0.72 0.78 0.72 0.78 

561 20 0.92 0.99 0.88 0.98 

30 0.62 0.66 0.59 0.68 

Figure 4.6. Electric field orientation in TM vs TE 
mode. 
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4.3 Thermo-optical phase shift measurements using fluorescent beads 
TetraSpeck beads used for this experiment are 100nm in diameter and can be excited by 4 

different wavelengths, excitation/emission wavelengths are 360/430 𝑛𝑚 (𝑏𝑙𝑢𝑒)  , 505/

515 𝑛𝑚 (𝑔𝑟𝑒𝑒𝑛) , 560/580 𝑛𝑚 (𝑜𝑟𝑎𝑛𝑔𝑒)  and 660/680 𝑛𝑚 (𝑑𝑎𝑟𝑘 𝑟𝑒𝑑) [20]. These 

fluorescent beads are better than using fluorescent dyes Using this florescent beads for phase 

measurement has some advantages over fluorescent dyes for the phase measurement as, 

beads are more stable, have better visibility, can be easily prepared as sparse samples and 

image processing with Fiji is much easier. 

Chip preparation using beads 

Stock solution of TetraSpeck Microspheres was placed in a centrifuge for about 20 seconds at 

4500 rpm. A PDMS chamber was used to make a border around the imaging area. Then, 1 𝜇𝑙 of 

the stock solution was added to the pre-cleaned imaging area and dried under a dark shade 

for 10 minutes. A droplet of water was then added to the imaging area and using a coverslip 

the whole area was sealed.  

Methods for capturing and analysing beads data 

This image capturing and processing technique is used for the next six experiments. In each 

case, a power supply is connected to one of the phase modulators and an IDS camera is 

attached to a 60𝑥, 1.2𝑁𝐴 objective lens. A python[21] programme (written by fellow PhD 

student Øystein Ivar Helle) controls the power supply and capture images at the same time. It 

also records supply voltage to the phase modulator, current and image capturing time. 

Camera requires around 100ms exposure time to capture sufficient florescence signal from 

fluorescent beads and the power supply takes almost 700ms to response to this Python 

command. So, our temporal resolution is limited to around 800 milliseconds. 

For each experiment a sequence of picture is captured. Then, an image stack is produced from 

this image sequence using Fiji [19]. An image stack is a combined file of all the images stacked 

from first image to the last. Then the intensity is adjusted using 𝐴𝑢𝑡𝑜  function under 

brightness and contrast settings. From this image stack (Fig 4.7 (a)) one small sparse bead is 

selected to plot its z-profile. The z-profile in (Fig 4.7(b)) represents beads behaviour in time. 

Figure 4.7. Method of processing beads image. (a) An image stack is formed from 75 
images (b) is a z-profile plot of a bead selected from the left picture, plot shows 

intensity variation in y axis and the total number of images in x, from 0 to 60 images 
intensity fluctuation is very slow compared to 60 to 75 

a                                                      b 
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4.3.1 Cross-heating between the interferometer arms 

This experiment shows the effect of heat transfer from one arm of the phase modulator to 

the other, which helps to determine the maximum duration for recording a phase change 

event. 

A computer-controlled power supply (as discussed in the previous section) was connected to 

the 0.5 cm length silver micro-heater and the input waveguide was coupled with a 640nm, TM 

polarized laser with 10 mW power.  

Fig 4.8 shows the experimental result that demonstrates cross-heating problem. 120 images 

were captured for one plot. Each graph in Fig 4.8 is a z-profile plot of a single bead selected 

from an image stack. Results are plotted against time. In Fig 4.8 (a) from 0 to 15 seconds there 

is no power supply, then the voltage is raised from 0 to 2 volts and kept constant for 95 

seconds. For (b) and (c) same procedure but instead 0 to 3 volts and 0 to 4 volts, respectively. 

Orange lines indicate voltage and the blue lines indicate beads intensity change over time. 

Ehen the input power is switched on, the silver micro-heater is heated up, and this heat 

changes the phase of one of the waveguide arm causing the change in the intensity of the 

beads. Phase change is described elaborately in later sections, for now we will try to 

understand the effects of cross-heating.    

In the vertical direction, from the silver micro-heater to the waveguide the distance is 8𝜇𝑚  

(thickness of PDMS). And in the lateral direction from silver micro-heater to the other 

interferometer arm 3.5mm. When the temperature difference between two arms is zero (0 to 

15 seconds), there is no phase change. As heat starts to change (rise in our case) in one arm 

as compared to the other arm, the phase follows this change (seen by the blue line following 

the orange line in the plot). PDMS also transfers heat in the lateral direction towards the other 

arm and at some point heat between the two arms equalize and the phase returns to the 

initial state (i.e. no phase change). For the first two plot, (2 volts and 3 volts) this effect is not 

so significant, since there is less heat to transfer. 

Nevertheless, at 4 volts heat transfer between the arms is so fast that after about 15 seconds 

phase decays to its initial state. This may not cause a problem for actual SIM imaging because 

SIM only needs 3 phase steps few hundred milliseconds apart, but for our phase experiments, 

the voltage steps should be adjusted in such a way that the total measurement is done in less 

than 15 seconds when working with 4 volts or more.  
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4.3.2 Phase Repeatability 
For SIM imaging, illumination pattern from a thermo-optic phase modulator chip has to 

meet some criteria: 

1. High visibility, i.e. the ratio between the minimum and the maximum phase intensity 

needs be large enough so that it is distinguishable  

2. Phase change should be repeatable over time 

3. Phase response time needs to be small 

4. The power it takes to change the phase should be reasonable  

From this experiment we will observe the phase behaviour in first three aspects, power will 

be discussed in later sections. 

Phase modulator with 0.5cm sensing length (Fig 4.1 (3)) was tested for phase repeatability. 

This experiment was done using 640nm, TM polarized laser at 10 mW. For the fringe spacing 

measurement with fluorescent dye, only 2-3 mW power was used. However, Fluorescent 

beads are more stable than fluorescent dye so it does not bleach out quickly even with more 

power. 

Fig 4.9 shows the intensity change of a single bead plotted against time. 350 images are 

recorded in real time, each event takes ≈ 800 𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠(𝑡𝑜𝑡𝑎𝑙  𝑡𝑖𝑚𝑒, 350 × 0.8 =

280 𝑆𝑒𝑐𝑜𝑛𝑑𝑠). For each of the first 50 images python program writes 0 (zero) volt to the 

power supply and captures one image after each command, tiny fluctuations in the graph 

shows the effect of background noise (i.e. environmental temperature change, noise from the 

power supply). Then the voltage is increased from 0 to 1, because it has been observed from 

previous experiments that the phase starts to change around 1 volt, and also to keep the total 

Figure 4.8. Cross-heating between the interferometer arms. As the voltage increases the 
increased temperature from one arm starts to heat the other interferometer arm. In the third 

graph, at 4 volt cross-heating between the two arms is so fast that after about 20 seconds 
temperature in both arm equalizes and phase (bead intensity) returns to the initial state.  

a 

b 

c 



33 
 

time of voltage stepping below 15 seconds (as discussed in the cross-heating section). Then 

from 1 to 5.5 volts, voltage is increased in steps of 0.3V(𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑓𝑟𝑜𝑚 0 𝑡𝑜 5.5 𝑉 ≈

 17𝑠𝑡𝑒𝑝𝑠 × 0.8 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 = 13.6 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 ), black markers in the plot indicates these voltage 

steps. After 5.5 volt the power supply returns to 0 volt again and the program keeps recording 

pictures for another 50 steps. The whole process repeats three times.  

Each waveguide arm is covered with PDMS, where evanescent field penetrates. With each 

successive voltage step, silver micro heater takes current and heats up the PDMS layer below 

it, while temperature of the other arm remain unchanged. This change in temperature causes 

refractive index of PDMS to change in one arm. Refractive index is a function of temperature 

as shown in Eq.2 and as temperature is changed the refractive index changes. It is the thermo-

optical coefficient of the material.  

This phase change is observed as an intensity change of a bead. This concept may be hard to 

grasp at first, but the bead can be thought of as a tennis ball floating on water wave. Beads 

intensity reaches its minimum value when it is between two waves and maximum when on 

top of a wave peak.  

From Fig 4.9 it is obvious that the phase starts to change as soon as the voltage jumps from 0 

to 1 volt (i.e. phase response is very fast possibly in the order of milliseconds). Ratio between 

the maximum and the minimum intensity is high and the phase change behaves in exactly 

same way for the repeated steps (a,b,c). However, in each case it takes quite some time for 

the phase to decay even after switching off the power supply. A possible explanation for this 

could be that, the chip and its surroundings also get heated to a certain temperature along 

with the PDMS, thus the heat dissipation takes longer. 

Figure 4.9. Repeatability of phase shift. Z-plot of a One image is captured at each 
voltage step (0.3V), an image stack is formed anda z-profile of one of the bead is 

plotted against time 

a                                           b                                        c 
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4.3.3 Phase shift according to wavelength, polarization and sensing arm length 
 

Next three experiments will provide information about how much powers is needed for phase 

change in each polarization mode, how it relates to the length of the micro-heater and the 

wavelength of light. 

 

Polarization and wavelength experiment were investigated using 0.5cm sensing length 

interferometer. Phase change dependency on sensing length experiment was performed 

using both 0.5cm and 1cm sensing length. Both of these interferometers have the same 

interference angle (𝑠𝑖𝑛𝛼 = 30°). However, phase change does not depend on interference 

angle. 

 

Temperature change in PDMS is proportional to the power a micro-heater takes. This 

temperature change causes phase change in a thermo-optical phase modulator. Phase change 

depends on the thermo-optic coefficient of the material, wavelength, polarization of light and 

the length of the heat sensing arm, which can be written as equation 4.1. [22]. 

𝜕𝜑

𝜕𝑇
= 2𝜋𝐿 ∗

𝜕𝑛𝑒𝑓𝑓

𝜕𝑛
∗

𝜕𝑛

𝜕𝑇
                                                  (4. 1)  

 

 
∂neff

∂n
   Value depends on wavelength and 

polarization mode, Table 4.4 shows the result form 

the simulation done by Dr. Firehun Tsige Dullo. L Is 

the Length of the heat sensing arm. And  
∂n

∂T
 =

−4.2 × 10−4 RIU/K  [23], thermo-optic coefficient 

of the refractive index for PDMS, negative value 

indicates that the refractive index decreases with 

increased temperature. 

 

 

Using 
∂neff

∂n
  values from Table 4.4 and table (2) phase change can be estimated:   

 561𝑛𝑚 , 𝑇𝑀 mode should take around 20% more power for the same amount of 

phase shift than 640𝑛𝑚, 𝑇𝑀.  

 For the same wavelength TE mode needs about 40% more power than TM 

 When the wavelength and polarization are same shorter heat sensing length would 

require twice the power, as the phase change scales linearly with the sensing length 

(Eq.2). 

 

 

 

Table 4.4 Simulated  
𝜕𝑛𝑒𝑓𝑓

𝜕𝑛
  value for TE 

and TM mode 



35 
 

Phase shift according to the wavelength 

In Fig 4.10 normalize bead intensity of two beads are plotted against power, one bead from 

640nm and the other from 561nm, both are with TM mod. Each curve is normalised by its 

maximum value. Bead intensity change corresponds to the phase change. Blue curve shows 

phase change for 561nm, (≈  2𝜋) and the black dashed (- - -) curve represents phase change 

for 640nm, (≈  2𝜋). Smoothing curves are fitted to original curves using ‘Smoothing Spline’ 

function in Matlab.  For both wavelengths, voltage steps are same, from 0 to 1 then 1 to 5.5V 

in steps of 0.3V. Power at each step is calculated by multiplying supply voltage with the current 

that micro heater takes, which are indicated by the circular and triangular markers. 

For 640nm (black dashed curve), both 𝜋  phase change takes ≈ 0.185 W, first one from 0.04W 

to 0.225W and the second one from 0.225W to 0.41W. Phase change shows linear behaviour.  

For 561nm (blue continuous curve), it takes ≈0.23W for one  𝜋  shift, which is around 24% 

more than 640nm, TM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10. Phase shift according to the wavelength. Bead intensity change is 
plotted against power, which corresponds to the phase change. Same 

polarization mode is used for both experiment but the wavelengths are 
different. Blue solid curve is 561nm, TM mode and black dashed curve 

represents 640nm, TM 
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Phase shift according to the polarization 

Fig 4.11 shows the phase shifting property according to the polarization. In this experiment 

wavelengths are same (640nm) but the polarization is different. Both results are normalised 

and plotted against the power. Blue curve represents phase shift for TE polarization and the 

black dashed curve shows the result for TM mode.  Markers indicate power at each point.  

From analytical solution a total 𝜋 change for TE mode takes around 42% more power than TM 

mode. However, this graph does not agree with the analytical results, it shows almost 4 times 

more power is needed for TE mode. 

This has happened possibly due of under-sampling. For TM mode voltage was applied by 

stepping from 0 to 1 volt, then 1 to 5.5 volts in steps of 0.3V. However, for TE mode no phase 

shift was observed at that voltage range. So, new voltage range was set for TE mode, from 0 

to 1 volt, then 1 to 8.5 volts. This was done to keep the total time of the number of steps 

below 15 seconds (as discussed in cross-heating section). In the process, steps size got bigger 

and the effect of under sampling was not obvious until the post image processing.  

Another point should be noted, the cross-heating experiment was conducted up to 4 volts. It 

is highly likely that the heat transfer happens much faster at voltage above 4V. 

Due to the time limitation, no further experiments were done for this measurement. In future, 

these experiments should be repeated to confirm these experimental results.  

 

 

 

 

 

Figure 4.11. Phase shift according to the polarization. Blue solid curve and the black 
dashed curve represents TE and TM mode respectively. Phase change for TE mode  takes 

more power than TM  
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Phase shift according to the length of the heat sensing arm 

Fig 4.12 shows the phase shifting property according to the length of the heat sensing arm. 

Both normalised curves are plotted against power. For both plot same wavelength and 

polarization is used (640nm, TE), but the heat sensing lengths are different 0.5cm and 1cm. 

Markers indicate the power at each point. Blue curve shows phase shift for 0.5cm length and 

the black dashed curve for 1cm length. 0.5cm data was obtained from the previous 

experiment, and one new measurement was taken for the 1 cm length. 

For 0.5 cm voltage steps were 0to1 volt, then 1 to8.5 volts in steps of 0.5 volt. With the same 

voltage range a total 𝜋 phase shift was observed. Because 1 cm length needs more current to 

heat up. Then few random voltage ranges were selected and from 5 to 11 volts showed 

significant phase change and the data was recorded, which is shown in black dashed curve. 

For the 0.5cm length, voltage steps size were 0.5 volts. With the new voltage range (5to 11V), 

voltage step size for 1 cm length become 0.4 volt which is close to the value used in the first 

experiment (phase according to the wavelength). 

If we assume that the new result for the 1cm length is correct (sufficient sampling) and for 

0.5cm was under sampled then we can conclude that the required power for a full 𝜋 change 

in 1cm length is less than that of 0.5cm. 

 

 

 
 

 

Figure 4.12. Phase shift according to the heat sensing length. For both cure 
wavelength and polarization more are same, but the heat sensing length is different. 

Blue curve represents phase change for 0.5cm and the black dashed curve for 1cm 
sensing length. Phase change takes half the power when heat sensing length doubles  
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4.3.4 Phase stepping for SIM imaging 
 

This experiment was performed to show that phase stepping can be done with this chip. Fig 

shows phase stepping for SIM using fluorescent dye (CMDR). For an ideal case SIM uses 

0𝜋,
2

3
𝜋 𝑎𝑛𝑑

4

3
𝜋 phase steps. This stepping (Fig 4.13) was performed at 0𝜋,

1

3
𝜋 𝑎𝑛𝑑

2

3
𝜋 using 

1cm length thermo-optics. Power supply was turned on 3 times at, 0 volt, 4.3 volt and 9.6 volt 

and 3 images were captured. Black blue and red curves represent phase steps at each of these 

voltage points. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 Phase stepping for SIM, Each peak in the curve represents each fringe line in 
the actual fluorescent image. Three images were captured, one at each voltage step. Phase 

and intensity units are arbitary, black blue and red curves represents phase steps at 

0𝜋,
1

3
𝜋 𝑎𝑛𝑑

2

3
𝜋. For ideal case SIM uses 0𝜋,

2

3
𝜋 𝑎𝑛𝑑

4

3
𝜋 phase steps. This figure confirms that 

phase stepping can be done using this chip 
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5 Conclusion and future work  
 

The main objective of this thesis was to fabricate an on-chip polymer based phase modulator 

and investigate whether this phase modulator is able to produce required phase shift for SIM 

imaging. From our experimental result we can conclude that, fabrication of a polymer based 

phase modulator is achievable using lift-off method. Phase response is fast, has sufficient 

visibility, repeatable over time and phase stepping is achieved for SIM imaging. 

First problem we encountered was the developing time and temperature of the photoresist 

ma-P 1210. Parameters were optimized and prebaking time of 2 minutes at 80° C worked best 

for our chip. Then there was the problem of surface adhesion between the polymer and the 

photoresist, PDMS is highly hydrophobic, spin coating photoresist on PDMS failed. So PDMS 

surface was treated in plasma and good adhesion was achieved. However, adhesion between 

the two layers was so strong that the lift-off process did not work. Then we tried different 

plasma treatment time and found that 5 seconds plasma treatment was optimum for our chip. 

For our lift-off process thickness of silver layer relative to the photoresist was crucial, thickness 

of 25𝑛𝑚, 50𝑛𝑚 𝑎𝑛𝑑 100𝑛𝑚  were tested and 25𝑛𝑚  produced finest structures. We found 

out that photoresist crack during fabrication was due to the mismatch between thermal 

expansion rate of the PDMS and the photoresist. The way around this problem was to increase 

the baking temperature gradually over 1 minute and cooling slowly over half an hour. 

This thermo-optics chip was designed with smaller interference angels (20° 𝑎𝑛𝑑 30°) to be 

able to capture the interference fringe patterns. We observed that a 60x, 1.2NA objective lens 

is needed to capture this patterns. Our experimental results of fringe spacing for 640nm 

wavelength (Table 4.3) show good agreement with the analytical results. However, 561nm 

results are slightly off due to the aberrations in captured images. 

Cross-heating experiment shows that for this particular chip continuous phase modulation 

time should be limited to 15 seconds, after 15 seconds phase shift measurements might not 

be reliable.  

From our experimental results, required power for a  𝜋  shift using 640 nm, TM mode is 

185mW and for 561nm, TM mode it is 230mW.  In TM mode phase starts to change with as 

little as 20mW power. Which means that the chip is not heated up so much. This is also an 

advantage when using this chip for live cell imaging.  

Whereas, For TE mode phase shift starts at a higher power (≈ 150mW) and total power 

required for one 𝜋 shift is considerably more than TM mode. At higher power cross-heating 

happens much faster. So, when choosing TE mode for future experiments, one should find out 

the cross-heating time at ≈ 150mW using similar process described in (section 4.4.1) and set 

the voltage steps accordingly.  

From phase change according to the length experiment, we observed that for 1cm length arm, 

phase shift starts at ≈ 300mW, but the total power it takes for one 𝜋 shift is approximately 

half of the power that is needed for 0.5cm. 
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Considering all these results, we can suggest that for an ideal SIM chip, one should use 640nm, 

TM mode in combination with shortest possible heat sensing length.  

 

Photoresist crack happened due to CTE mismatch. A possible solution for this problem would 

be, using a different polymer other than PDMS which matches the thermal coefficient of the 

photoresist or to find a photoresist which has a similar CTE as PDMS. 

We used spin coating technique to coat a uniform layer of PDMS on chip. Which means PDMS 

fills up the gap between the two arms. Problem of cross heating can be solved in future if we 

use a micro plotter or a device of same kind which is able to make separate PDMS lines on top 

of the waveguide. 
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