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Assessing polarimetric SAR sea-ice classifications using
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ABSTRACT. This paper investigates automatic segmentation and classification of C-band, polarimetric
synthetic aperture radar (SAR) satellite images of Arctic sea ice under freezing conditions prior to melt.
The objective is to investigate the robustness of the results obtained under slightly varying
environmental conditions and different viewing geometries. Initially, three geographically overlapping
SAR images from consecutive days are incidence-angle corrected and segmented into unknown classes.
The segmentation is performed by an unsupervised mixture-of-Gaussian segmentation algorithm
utilizing six features extracted from the polarimetric data. After segmentation, the segments are
contextually smoothed. One segmented image is manually labelled based on in situ data and expert
knowledge. Using this scene as reference, we consider two strategies for class labelling of the other
scenes. The first manually labels the classes based on visual inspection of the reference; the second
utilizes various statistical distance measures to automatically assign each unknown class to the
statistically nearest reference class. These two scenes are also classified pixel-wise by a supervised
classification algorithm based on the reference data. Poor classification results are obtained when the
incidence angle is very different from the reference scene. Similar viewing geometries reveal good
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classification and labelling results, the latter regardless of the distance measure used.
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MOTIVATION

Precise and reliable sea-ice maps are valuable for shipping
activity, environmental monitoring and climate-change
surveys. Synthetic aperture radar (SAR) is currently con-
sidered one of the most important remote sensors for
acquiring high-resolution, weather- and daylight-independ-
ent sea-ice information, especially in Arctic areas where in
situ data are limited (Barber, 2005). At present, no ice service
has reported using automatic segmentation or classification
algorithms operationally throughout the year, as all algo-
rithms still require some form of human guidance. However,
the Canadian Ice Service is considering operational use of
the automated MAp Guided Ice Classification (MAGIC)
developed by Leigh and others (2014). Automatization of the
segmentation and/or classification process will make sea-ice
map production more efficient; the maps will be less
subjective and probably more detailed (Clausi and Deng,
2003; Moen and others, 2013). Consequently there is a need
for improved automatic segmentation and classification
approaches to ice charting and monitoring (Clausi and
Deng, 2003; Ochilov and Clausi, 2010; Kwon and others,
2013; Zakhvatkina and others, 2013). Ochilov and Clausi
(2012) and Karvonen (2012) present automated methods,
which are close to being operational. The key issue is
whether the algorithms are robust and reliable in terms of
producing consistent ice charts under changing environ-
mental conditions and varying viewing geometry. We have
yet to see studies producing ice maps from extensive archives
of SAR data throughout a whole annual cycle. However,
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MAGIC is automatically and accurately mapping ice and
water in dual-polarization SAR scenes. This paper presents a
preliminary investigation towards such extensive studies, but
in addition to ice/water discrimination (e.g. MAGIC) we also
seek to distinguish the ice types in the scenes.

A full-polarimetric radar transmits and receives both linear
horizontal (H) and vertical (V) polarized electromagnetic
waves. Amplitude and phase information of the back-
scattered signal are recorded for four transmit/receive
polarizations (HH, HV, VH and VV), commonly referred to
as quad-pol. Dual-pol scenes contain two polarimetric
channels (e.g. HH and HV). In operational ice-charting
services dual-pol scenes are preferred because of their wide
areal coverage (e.g. the RADARSAT-2 ScanSAR Wide mode
can have a swath width of ~500 km). Quad-pol scenes have
smaller swath width (~25km), but are more detailed than
dual-pol scenes. Thus, it is important to explore quad-pol
scenes in order to understand the polarimetric signatures of
sea ice and their relationship to physical sea-ice character-
istics. Discrimination of sea-ice types has conventionally
been accomplished using various combinations of linearly
polarized backscatter coefficients (Gupta and others, 2013).

Radar backscatter of sea ice depends on physical ice
properties (e.g. dielectric constant, temperature, snow cover
and surface roughness) and sensor parameters (e.g. fre-
quency, angle of incidence, polarization and noise)
(Hallikainen and Winebrenner, 1992; Tucker and others,
1992; Wackerman, 1992). Some physical properties may
not be distinguished by SAR, and sensor configurations can
change the backscattering. These can cause ambiguous
class signatures and need to be taken into account when
interpreting the image.
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Fig. 1. Locations of the RADARSAT-2 images.

Throughout this paper we use the word ‘segmentation’ to
describe the task of dividing an image into non-contiguous
segments/areas with similar statistical properties. The
segmentation is done pixel-wise, where each pixel is
assigned to an unknown class. Such a class usually contains
several individual segments. The result of this process is also
referred to as a ‘segmentation’. We further define ‘classifi-
cation’ as the task of assigning each pixel or unknown class
to a labelled class (actual ice type). In supervised classifi-
cation, described in a later section, the first process of
dividing the image into unknown classes is not needed, as
the pixels are directly labelled by classification rules based
on the reference.

The preliminary analyses presented here and by Moen
and others (2013) are important elements towards our main
goal, which is to develop an automatic algorithm for
operational ice charting. Moen and others (2013) investi-
gate how quad-pol scenes can be automatically segmented
using statistical and polarimetric properties of the back-
scattered radar signal. Although detailed quad-pol images
are too small to be considered for operational use, studying
them may help us understand the physics underlying SAR
imaging of sea ice. This is highly relevant as the amount
of in situ data is limited, particularly in the High Arctic.
We also believe that such investigations will contribute
to a better understanding of single- and dual-pol images,
which may help in selecting the optimal channel combina-
tions for a given application. Future satellites may possibly
capture wideswath quad-pol scenes. If so, quad-pol studies
like this will be highly relevant and may even motivate
such a design.

This paper builds on the results of Moen and others
(2013). Our main objective here is to investigate the
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transferability of information obtained from one scene to
two scenes obtained on consecutive days. The scenes are
acquired under slightly varying weather conditions and
different incidence angles. Such information is not directly
transferable, so we have included a pre-processing step, i.e.
incidence-angle correction, as described below. We exam-
ine both unsupervised segmentation (Doulgeris and Eltoft,
2010; Doulgeris, 2013; Moen and others, 2013) and
supervised classification results obtained by an automatic
algorithm. Moen and others (2013) describe the segmenta-
tion and classification of the middle of our three scenes. The
unknown classes of this scene have been manually labelled
using relevant in situ data and expert knowledge, hence it is
used as a reference to classify the two other scenes. The two
scenes are segmented into unknown classes. These classes
are labelled using two different strategies. The first approach
is to manually match the unknown classes with the classes of
the reference data. The second strategy uses distance
measures to automatically assign the unknown classes to
the statistically nearest reference class. We have also
performed a pixel-wise supervised classification, where each
pixel is assigned to the statistically nearest class in the
reference. The consistencies between all results are com-
pared, and the effects of changing incidence angles and
meteorological conditions are discussed.

This work is intended to support operational ice analysis,
but is not sufficiently mature to use the World Meteoro-
logical Organization (WMO) sea-ice codes. The WMO code
allows a finer separation between different ice types than
our classification does. In contrast, our classifications
additionally include deformation, which is not considered
in the WMO code.

STUDY AREA AND SATELLITE SCENES

This study is based on three fine quad-pol satellite images
acquired by the Canadian C-band SAR satellite, RADAR-
SAT-2. The scenes are located north of Svalbard (Fig. 1) and
were obtained on three consecutive days during April 2011.
The entire scenes, not just the intersection, are utilized in the
following analysis. Acquisition time, position, incidence
angle and resolutions for each scene are given in Table 1.
The study area comprises first-year drifting sea ice at various
stages of development and open and refrozen leads (Renner
and others, 2013). In situ observations were collected from
the bridge of the Norwegian coastguard vessel Svalbard and
an Iridium Surface Velocity Profiler (ISVP) buoy deployed on
an ice floe. Coincident observations, from 11-13 April
2011, are listed in Table 2. The distance between the centre
point of the respective scene and the vessel was 82, 11 and
19 kmon 11, 12 and 13 April, respectively. On 12 April the
ship was within the scene.

Table 1. Information about the satellite scenes. CIA is the centre incidence angle. IACF is the incidence-angle correction factor. The
resolutions are ground resolutions and the numbers in parentheses are the resolution after the averaging operation in Eqn (2)

Date Time Centre position CIA IACF Range resolution Azimuth resolution
uTC ° m m

11 April 2011 14:04:28 81.0911°N, 19.4561°E 24.358 0.800 11.5 (241.5) 5.0 (105.0)

12 April 2011 15:15:25 81.1228°N, 19.8664°E 40.048 1.000 7.4 (155.4) 4.9 (102.9)

13 April 2011 14:46:10 81.1578°N, 19.7469°E 33.262 0.923 8.6 (180.6) 4.7 (98.7)
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Fig. 2. Pauli images of the three scenes (11-13 April 2011, left to
right) and examples of visually identified matching structures. The
images are shown in slant range geometry and are ~28 km across
on the ground.

The scene acquired on 12 April 2011 coincides with
various in situ data, such as helicopter-borne thickness
measurements, positions from different GPS trackers, a
bridge-based sea-ice observation log of the sea-ice condi-
tions and optical photographs. Further details regarding this
scene are described by Moen and others (2013). No
precipitation was observed between the acquisition times
of the first and the last scene.

The polarimetric intensity channel combinations, |HH -
VV|, 2|HV| and |HH+VV]|, are assigned to the red, green
and blue channels, respectively (Fig. 2), to produce what is
commonly known as a Pauli image (Lee and Pottier, 2009).
The satellite scenes are provided in slant range, thus the
width of the Pauli images varies due to different incidence
angles. The images are ~28 km across on the ground. The
geographical overlap of the scenes is good (Fig. 1), but ice
drift causes problems when comparing multiple SAR scenes.
Some structures in the ice cover are recognizable in two or
more of the Pauli images. Examples of structures that may be
traced by visual inspection are indicated by the arrows in
Figure 2.

In compacted pack ice and freezing conditions, the most
deformed and thickest ice classes are expected to remain
stable on a daily or shorter timescale under stable atmos-
pheric conditions. Thus, their SAR signatures are expected
to remain largely unchanged. Given the low air temperature

287

(Table 2), the thin-ice and open-water classes are likely to
change the most due to new ice formation. Wind can
substantially alter the ice cover, due to increased dynamics
leading to deformation and opening of leads. The latter then
provides areas for new ice formation. The study area was
dominated by compacted pack ice with very little open
water, reducing the freedom of ice movement. However, the
substantial variation in wind speed and direction (Table 2)
suggests that both divergent and convergent ice motion took
place between acquisition of the first and last SAR scenes.
We also find evidence of such ice motion in the Pauli
images of 11 and 12 April 2011; the images indicate the
opening of a lead between the two image acquisitions. In
the following we refer to the scenes acquired on 11, 12 and
13 April 2011 as S11, S12 and S13, respectively.

METHODS

Radiometric correction

Radiometric correction of remotely sensed data involves
calibration of the digital images to improve the consistency of
the backscatter magnitudes across different incidence angles.
The sensor-specific backscatter generally decreases with
increasing incidence angle (Onstott, 1992; Gill and Yackel,
2012; Gupta and others, 2014). Thus, it is essential that such
incidence-angle effects are taken into account prior to
quantitative image analysis to ensure comparability between
multiple datasets. In this study, we performed a radiometric
correction on the complex scattering coefficients in all
channels. The coefficients used in this study are standard
sigma0 calibrated single-look complex (SLC) matrices, as
output from the PolSARpro v.4.2 software (Polarimetric SAR
data processing and educational toolbox; Pottier and others,
2009; Pottier and Ferro-Famil, 2012). The scattering co-
efficients are subscripted with the associated receive-and-
transmit polarization. The scattering vector, which in our
case is from linear full-polarimetric data, is given by

s = [ShH, \/LE (Shv +SVH),SVV]T, where we assume recipro-

city (Suy =~ Svn). The operator ()" defines the ordinary
transpose operation, and the factor 1/v/2 ensures that the
averaged cross-pol term preserves the power contained in the
individual original cross-pol terms. The radiometrically
corrected scattering vector, s, is obtained from the
uncorrected scattering vector, s, by multiplying the square
root of the sine ratio of the centre incidence angle of the
image to be corrected, 6, and a reference incidence angle, 6,

Table 2. Information about collected in situ data: barometric pressure; air temperature; relative humidity; wind speed and wind direction.

The wind direction is in degrees true north (degT)

Date (2011) Pressure* Temperature!  Rel. humidity® ~ Wind speed, direction' Time Position
hPa °C % kn (kmh™), degT uTC
11 April 984.5 —-8.2 91 3.4 (6.3), 260 14:00%, 18:15% (81.1318°N 19.5368° E)*,
(81.0063°N 14.7547°F)f
12 April 995.1 —19.6 82 22.2 (41.1), 264.4 15:00%, 15:15% (81.0420° N 20.0054° E)*,
(81.1035°N 20.5030° E)f
13 April 1001.1 -19.9 83 3.7 (6.8), 45 15:00*f (81.0034° N 20.2480° E)*,

(81.0400°N 18.9193° F)f

*Measurements from ISVP buoy. "Measurements from coastguard vessel.
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Table 3. Features from the extended polarimetric feature space (EPFS) method. The transformations to make the features Gaussian-like are
listed in the right column. L is the number of pixels in the stepping window, d is the dimension of the scattering vectors. s and C are the
scattering vector and the polarimetric covariance matrix, respectively. Cj is the C-matrix entry of row i and column j

Feature name Equation Transformation
Relative kurtosis RK=— L (sHC’1s-)2 1
T Ld(d+1) & ' RK
Geometric brightness B = {/det(C) log(B)
C o . _ Gy
o-polarization ratio WV/HH = log(ywv/hh)
1
C - . Cs3
ross-polarization ratio Vv = 5 [og(qu/B)

Co-polarization correlation (real)

Co-polarization correlation (imaginary)

real(p) = rea](

)~ ) -

(Sun and others, 2002):

sin(6)
sin(Oref)”

We perform the correction directly on the scattering vectors,
not the intensities, hence we include the square root. This
type of correction only affects the brightness feature (Table 3),
as it is divided away in all the other features.

In this study all scenes are corrected to reference angle,
Ot = 40.0°, which is the centre incidence angle of the
reference.

The square-root factor (incidence-angle correction factor,
IACF) for each scene is shown in Table 1. By correcting all
range lines of each image by the same amount, using a fixed
6, we introduce an error, because strictly speaking 6 should
vary across each image. The scenes are ~28 km in ground
range, and the largest angular width is 1.9°. The error
introduced by this approximation is <2% across the range,
which we find acceptable given the class brightness
variability.

(M

Sc=S

Automatic segmentation

We calculate the polarimetric covariance matrix, C, by
averaging over L =21 x 21 = 441 pixels, each represented
by a radiometrically corrected scattering vector, s, defined
above. The averaging is done with a stepping window:

1 L
> sist. (2)
i=1

The operator ()" defines the Hermitian transpose operator.
From the polarimetric covariance matrix and the radio-
metrically corrected scattering vectors we calculate six
features using the extended polarimetric feature space (EPFS)
method (Doulgeris and Eltoft, 2010; Doulgeris, 2013). Five
of these features are basic polarimetric parameters that have
been used in many similar studies. The sixth, the relative
kurtosis, is a statistical measure of the shape of the intensity
distribution. The names and equations of the features are
shown in Table 3. (More information about the features and
their interpretation with respect to sea ice is given by Moen
and others (2013).) Using simple transformations on all
elements in the extracted feature vector set (Table 3) we can
make them more Gaussian-like, i.e. the probability density
functions (PDFs) are nearly symmetric and have Gaussian

C =

~

bell shapes. This enables the use of a simple yet efficient
algorithm, i.e. the mixture-of-Gaussians segmentation algo-
rithm, which makes it suited for operational use.

The segmentation algorithm divides and smooths the
satellite image into a predefined number of classes. We
constrain the algorithm to find seven classes; the reasoning
for this is explained in the following subsection. The
algorithm will always split the worst-fitted class first, hence
we minimize the total fitted error. Contextual smoothing is
an image-smoothing approach which considers the labels of
the neighbouring pixels in the labelling of a given pixel. The
smoothing process makes the segmentation less speckled
and thus easier to interpret. Feature extraction, the auto-
matic segmentation algorithm and contextual smoothing are
explained in more detail by Doulgeris and Eltoft (2010),
Doulgeris (2013) and Moen and others (2013). In the
following we assume that the same classes are present in all
three scenes.

Reference

The S12 scene is chosen as the reference because of its
accompanying in situ data. Moen and others (2013)
segmented the scene into five classes, but they revealed
one class to be bimodal (mixed) and therefore suggested
increasing the number of classes. In this study, we have
used the same algorithm and increased the number of
classes to seven. This was necessary to obtain classes with
smooth and unimodal histograms for all features. Each class
was labelled using suitable ancillary data and the expert
knowledge described by Moen and others (2013). The ice
experts were able to label only four ice classes, so labelling
seven classes was not trivial. Although the classes are not
visually distinguishable in photographs, Pauli images, etc.,
they are statistically distinguishable using the polarimetric
data. In this study the remaining three classes were labelled
using statistical analysis of polarimetric features, together
with a physical interpretation of these features. The class
labels and associated ice types are given in Table 4. The ice
types are based on WMO stage-of-development definitions
(CIS, 2005).

Manual matching and automatic labelling
After segmentation, S11 and S13 were manually labelled by
matching them visually to the classification of the S12 scene
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Table 4. Class labels and associated ice types. The colours refer to
those in the segmentations (Fig. 3)

Colour label Ice type, properties, stage of development

Blue Medium/thick first-year ice, most deformed

Brown Medium/thick first-year ice, second most deformed

Red Young ice, thin first-year ice (sometimes deformed with
snow cover)

Yellow New ice, nilas

Cyan First-year ice (slightly more deformed than the dark
cyan class)

Orange Open water, new ice

Dark cyan First-year ice (smooth ice)

and by comparing the segmentations and Pauli images.
Using the same segmented scenes as for the manual
matching, we used statistical Gaussian distance measures
to automatically label classes. This test was performed to
check whether a particular distance measure was preferable
when labelling the unknown classes. The transformation of
the features (Table 3) justifies the use of Gaussian distance
measures. Three different distance measures based on mean
values and/or covariance matrices from multivariate Gauss-
ian distributions (Eqns (3-5)) were tested on the assumed
multivariate Gaussian feature vector. They are all straight-
forward calculations and hence suited for operational use.
In addition we tested the Kullback-Leibler distance (Eqn (6))
derived under the complex Wishart model (Goodman,
1963). It has a simple mathematical form and uses the
complete information contained in the polarimetric co-
variance matrices (Eqn (6)), which is why we also test it. \V;
and N; are two normal distributions with means 1; and g
and covariance matrices ¥; and X, respectively. ¥ is the
mean of ¥; and ¥;. ky is the dimension of ¥ and is equal to
6. C; and G are the polarimetric covariance matrices for
class i and j, respectively. k¢ is the dimension of C and is
equal to 3. The operator tr defines the trace of a matrix, ()~

is the inverse and ()" is the transpose operation.

Mahalanobis distance (Theodoridis and Koutroumbas,
2009)

NN = (5= ) sy )

Multivariate Gaussian Bhattasharyya distance (Theodoridis
and Koutroumbas, 2009)

1
Ao, (N3 N7 = g (i = 1) 'S = 1)
4
IR *)
2\ s)

Multivariate Gaussian Kullback-Leibler distance (Hershey
and Olsen, 2007)
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Fig. 3. Automatically segmented, manually matched results for
11-13 April 2011, left to right. See Table 4 for labels. The manually
matched images of 11 and 13 April 2011 were used to evaluate the
automatic labelling. The images are shown in slant range and
represent ~28 km across on the ground.

Symmetric multivariate Gaussian Kullback-Leibler distance
~ 1
dki, (N3, Nj) = 5 [dke (N7, N) + dia (N, N7)]. (5)

Complex-Wishart Kullback-Leibler distance (Frery and
others, 2014)

diw,y (Wi, W) = [tr(W,f‘W,—) +tr<Wj1W,-)} —kw. (6)

N —

The manually matched images of S11 and S13 (Fig. 3a and
c) were used to evaluate the automatic labelling because,
ideally, the results based on the same scene should match.
The same automatic labelling procedure was applied for
each distance measure. A 7 x 7 distance matrix, with each
column representing the unknown test class and each row
corresponding to a class in the reference data, was used to
identify the nearest classes. We used a sequential approach,
taking the best match first, i.e. the test class corresponding to
the minimum distance was assigned to the corresponding
reference class. The corresponding row and column were
removed and the row and column of the new minimum
distance were located. This step was repeated until all
classes were labelled.

Supervised classification

We performed a supervised classification on the S11 and
S13 scenes based on the statistics from the classes in the S12
scene; the scenes were not pre-segmented. The classifi-
cation was done in a traditional way, assuming Gaussian
distributed, equiprobable classes and using maximum likeli-
hood classification (Theodoridis and Koutroumbas, 2009),
i.e. each pixel was assigned to the most probable class in the
reference.

RESULTS
Manual matching and automatic labelling

The manually matched labels are shown in Figure 3. The
colours of the segmented image are chosen arbitrarily to be
visually distinct and do not represent WMO colour coding.
In the following, it is important to note that (1) the S11 and
S13 scenes only partly overlap with the reference scene and
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Fig. 4. Supervised classifications of the 11 and 13 April 2011 scenes,
using the S12 scene (Fig. 3b) for reference. The colours correspond
to those in Figure 3. The labels are given in Table 4. The images are
shown in slant range and are ~28 km across on the ground.

(2) the images have different ground resolutions. The S12
and S13 scenes look consistent, the main structures are
recognizable and have the same labels in both images. The
S11 scene appears substantially different, so its labels do not
easily match those of the S12 scene. Only a few structures
are recognizable and have the same label in the S11 and
S$12 images (e.g. areas indicated by white arrows in the Pauli
images (Fig. 2)).

Table 5 shows the results of automatic labelling of
the automatic segmentation of the S11 scene, together with
the manually matched labels. The automatic labelling of the
S11 scene performed by the Mahalanobis distance, d,
agrees best with the manual matching: all classes match
except the yellow and brown ones. The labelling result
calculated from the Bhattasharyya distance, dg,,, has no
classes equal to the manual matching.

The automatic labelling of the S13 image is identical to
the manual matching (Fig. 3) for all distance measures, but
the distance priority in which the classes are assigned is
different for each distance measure (Table 6). The manually
matched blue class of the S13 image and the blue class in
the reference data are the nearest classes in all distance

Table 5. The manually matched labels and the corresponding
automatic labelling of the automatic segmentation of 11 April
2011. dy is the Mahalanobis distance, dg, is the multivariate
Gaussian Bhattasharyya distance, d., is the multivariate Gaussian
Kullback-Leibler distance and dy, is the complex Wishart
Kullback-Leibler distance
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measures, except for the complex Wishart Kullback-Leibler
distance (Eqn (6); Table 6). This is not surprising given the
totally different data domain of that measure.

Supervised classification

The results of the supervised classification are shown in
Figure 4. Few similar structures (e.g. those indicated in
Fig. 2) are recognizable from the two supervised classified
scenes. The structures in the supervised classification of the
S11 scene do not resemble those in the Pauli image nor
those in the automatic segmentation. The new ice/nilas
(yellow) dominates, followed by the most deformed first-
year ice (blue, Table 4).

Contrarily, the supervised classification of the S13 scene
contains similar structures to those in the Pauli image and the
automatic segmentation and appears to be reasonable, but
not exactly the same. The most notable difference compared
with the automatic labelling is that the open water/new ice
(orange) is absorbed into the new ice/nilas (yellow) and the
number of pixels in the second most deformed first-year ice
(brown) increases at the expense of several other classes.

DISCUSSION

Prior to all segmentations and classifications, we made as-
sumptions regarding the ice conditions: the same classes are
present in all three scenes, no new classes evolved and no
classes disappeared. However, the predefined seven classes
may develop into other existing classes (e.g. open water can
freeze and become new ice, smooth ice can be exposed to
rafting and become more deformed, the ice pack can break
up and create open leads). Considering the prevailing
weather conditions, we find this a reasonable assumption
because our selection of classes should cover the listed
potential changes. However, in general, this assumption
does not hold and must be considered when implementing
an operational algorithm. Wet snow, slush and flooding of
the ice are changes that will weaken our assumption, as these
changes are known to affect the backscattering and are not
covered in any of our ice classes. Multi-year ice is also
known to have a different scattering signature to other ice
types. We have not included the aforementioned classes as
they were not present in any of our scenes.

Our study here is limited in time and space, using only
three scenes acquired within 3 days. Looking over a

Table 6. The automatic labelling of the automatic segmentation of
13 April 2011. Each column represents the order in which the
classes were assigned by the distance measures. dy is the
Mahalanobis distance, dg, is the multivariate Gaussian Bhatta-
sharyya distance, d, is the multivariate Gaussian Kullback-
Leibler distance and dx,,, is the complex Wishart Kullback-Leibler
distance

Manual labels dM dBN dKLN dKLW dM dB,\; dKLN dKLW
Blue Blue Orange Orange Blue Blue Blue Blue Red
Brown Yellow Blue Blue Brown Brown Brown Brown Brown
Red Red Cyan Cyan Orange Yellow Cyan Cyan Yellow
Yellow Brown Brown Yellow Dark cyan Red Yellow Red Cyan
Cyan Cyan Dark cyan  Dark cyan Cyan Cyan Red Yellow Blue
Orange Orange Red Red Yellow Dark cyan Dark cyan Dark cyan Dark cyan
Dark cyan Dark cyan Yellow Brown Red Orange Orange Orange Orange
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Fig. 5. Examples of probability distributions for the relative kurtosis (a, b) and the imag(p) (c, d) features. The left column (a, ¢) represents the
cyan class, and the right column (b, d) is the red class. The solid curves represent 11 April, the dashed curves 12 April and the solid curves

with squares 13 April, all from 2011.

different timescale and/or into a different region will involve
adjusting the number and composition of the selected
classes; this is a challenge for the future.

In contrast to the manual matching of the S13 scene, the
manual matching of the S11 scene was difficult, possibly
due to the few visually identifiable structures in both the
image and the reference scene (Fig. 2). However, some
manually matched classes, such as the smooth first-year ice
(dark cyan), new ice/nilas (yellow) and open water/new ice
(orange), should be fairly well matched (corresponding areas
marked by the white arrows in Fig. 2 are labelled the same
colour in Fig. 3).

Our results show that automatic segmentation and
labelling works quite well for S13, but poorly for S11. All
distance measures agree on the (automatic) labelling of $13;
none agree for S11. Even though the automatic labelling and
the manual matching agree to some extent, it is not
necessarily the correct labelling. One disadvantage of the
automatic labelling procedure is that there will always be a
nearest class, which does not necessarily correspond to the
manual matching. This will be the case if, for instance, the
class properties have evolved and/or the desired classes of
the actual image are not represented in the reference image.
The polarimetric features are not expected to be stable
through the seasonal cycle. How each class property
changes with feature, incidence angle, season and area will
be highly relevant in future studies.

The automatic segmentation is based on numerical
values from each scene individually, while the supervised
classification works pixel-wise, based on values transferred
from the reference scene. If the statistics between the three

days were unchanged, the automatic labelling and the
supervised classification of the same days would be
identical. They are evidently not, because the statistics
have changed.

The S11 scene is obviously problematic. This is supported
by the PDFs of each class and each feature. Figure 5 shows
two classes from S12 and S13 that are quite well aligned,
whereas the classes from S11 are shifted. The same is also
true for other classes from the S11 scene. We see that
statistical class properties (mean value and variance) change
differently with different features and incidence angles
(Figs 5 and 6). This could be one reason for the disagreement
of the automatic labelling of S11.

Incidence-angle correction (radiometric correction) ad-
justed the misalignment to some extent for some classes.
Recall that this type of correction only affects the brightness
feature. Figure 6 illustrates three different effects of the
radiometric correction. For three of the seven classes the
correction made the alignment between S12 and S13 worse
(e.g. the young ice class (red); Fig. 6b and e). However, the
shift is not significant with respect to the class variation. Our
results show that the performance of the automatic labelling
and the supervised classification of S13 using corrected data
are very good (Fig. 3c; Table 6). The correction did not make
any substantial difference for the second smoothest first-year
ice (cyan) of S13 (e.g. Fig. 6a and d), i.e. the PDF is shifted a
small amount to the right, but the overlap with the S12 PDF
stays approximately the same. For two classes, most
deformed (blue) and smooth first-year ice (dark cyan) the
correction of S13 was very good (Fig. 6¢ and d). As seen in
Figure 6, the S11 most deformed ice (blue) is also very well
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Fig. 6. Examples of probability distributions for the log brightness feature. The top row (a—c) shows the brightness not radiometrically
corrected. The bottom row (d-f) shows the radiometrically corrected brightness feature. The left column (a, d) represents the cyan class, the
middle column (b, e) is the red class and the right column (c, f) is the blue class. The solid curves represent 11 April, the dashed curves

12 April and the solid curves with squares 13 April, all from 2011.

aligned with the reference data. This is the only class in the
S11 image that is well aligned with the reference class after
correction. In the S11 image the radiometric correction
improves the alignment of five of the seven classes (e.g.
Fig. 6b and e, 6a and d). However, the improvement is not
sufficient to make the automatic labelling and the super-
vised classification work. The second most deformed first-
year ice (brown) in the S11 image shows no difference in
overlap before and after correction, similar to the results of
the S13 cyan class shown in Figure 6a and d.

Our results show that the performed radiometric correc-
tion is not sufficient when the incidence-angle difference
between scenes is large, and examples show that even with
similar incidence angles, the correction can worsen the
alignment of some PDFs. However, we conclude that
the advantages of performing the correction are greater than
the disadvantages.

A good incidence-angle correction is essential for consist-
ent results using data covering the same area, but with
different incidence angles. To improve the correction may
require correcting differently for each channel and/or (more
problematic) each class. This is an important future research
topic. However, total compensation for the incidence angle
will be impossible, as it varies with ice type (Makynen and
others, 2002) and possibly also with polarization.

The three scenes have different incidence angles, and
thus different ground resolutions. In our study we have
averaged the scenes by the same amount. The consequence
is that the smoothing level on the ground is different in each
scene; ice structures clearly visible in one scene may not
appear in another scene. Preliminary results indicate that
adjusting the amount of averaging such that the ground
resolution is similar in all scenes improves the alignment of
the PDFs for each class (e.g. Figs 5 and 6).

It is possible that the incidence angle of the S11 scene is
too different to be corrected according to the centre
incidence angle and compared with the reference scene.
Applying the correction per range line was thought to give
only slight improvements, but this needs to be confirmed in
future studies.

The wind speed on 12 April 2011 was very high,
compared with the other days (Table 2). This will most likely
affect two main processes: the ridging of sea ice, leading to
increased deformation, and the opening of leads. The latter,
combined with the low air temperature, may cause forma-
tion of new smooth ice (e.g. nilas, grey ice). We have seen
that the open-water/new-ice (orange) class almost disappears
in the supervised classification of the S13 scene (Fig. 4). The
explanation could be that the open water/new ice (orange)
from S12 has evolved and become frozen, i.e. new ice/nilas
(yellow). In situ measurements from 12 April 2011 indicate
that leads may freeze quite fast. In Figure 3 the proportion of
deformed ice/ridges (blue) is larger in the S11 than the S12
image, but the amount of new ice/nilas (yellow) is approxi-
mately the same. The supervised classification (Fig. 4)
indicates a lot more both new ice/nilas (yellow) and
deformed ice/ridges (blue) in the S11 than the S12 image.
According to the weather conditions we would expect more
deformed ice and opening of leads in the S12 image than the
S13 image. We do not believe that the problems regarding
the S11 scene are related to evolution of ice classes; they are
more likely to be due to incidence-angle effects.

CONCLUSION

At present, no automatic methods for classification of radar
images of sea ice are robust enough to be used throughout
the year. We have investigated two methods for classification
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of polarimetric radar images of sea ice. The algorithms were
assessed in terms of their ability to produce consistent results
under varying environmental conditions and viewing geom-
etry. The presented work is limited both in time and space,
hence definite conclusions are not possible.

We have shown that automatic segmentation looks
reasonable for all three scenes individually. The main
structures are recognizable in both the Pauli (Fig. 2) and
the segmented image (Fig. 3). However, when we attempt to
use the S12 image as reference data to label the unknown
classes of the test scenes, S11 and S13, the results differ. The
manually matched labels and the automatic labelling are
identical for all distance measures tested for the S13 image.
For the S11 scene none of the distance measures used for
automatic labelling harmonize completely with the manu-
ally matched labels. The Mahalanobis distance is the best-
performing distance measure. It matches the labels of the S13
image perfectly, and five of seven labels of the S11 image.

The supervised classification is reasonable for S13, but
very poor for S11. We suggest the problem with the S11
scene is mainly related to incidence-angle effects (e.g.
brightness and resolution).

The two test scenes were radiometrically corrected to the
centre incidence angle of the reference data, but the
correction of the S11 scene does not fully account for the
differences. The radiometric corrections are just a first-order
approximation, but we conclude that the advantages of
performing the correction are greater than the disadvantages.
A good incidence-angle correction is essential for comparing
scenes acquired at different angles, but as our dataset is not
suitable for such an investigation we leave this for future
studies. However, we suggest that an improved incidence-
angle correction could be accomplished by correcting each
channel, or even each class, independently. The latter is
supported by our study. The performed incidence-angle
correction affects the classes differently (Fig. 6). Yet,
correcting each class individually is obviously impossible
without a priori information on the corresponding ice types.

In this study we had to assume that the classes did not
change between the scenes. The number of classes in each
scene is an important issue. Future research should try to
automatically determine the number of classes. Other
relevant topics in future studies are how sea-ice class
properties change with feature, area, etc.

Under similar incidence-angle conditions the proposed
automatic labelling method gives reasonable results and has
the potential to be developed into an operational algorithm.
However, the presented results are only valid for winter
conditions. Preliminary analysis, i.e. supervised classifi-
cation, of three other overlapping scenes from the same
period and area gives results similar to the S13 supervised
classification. Structures clearly recognizable in the Pauli
images are also visible in the supervised classifications. The
centre incidence angles are in the range 30-45° and the
weather conditions appear reasonably stable (<5°C).
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