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Abstract 15 

DNA metabarcoding is an increasingly popular method to characterize and quantify biodiversity 16 

in environmental samples. Metabarcoding approaches simultaneously amplify a short, variable 17 

genomic region, or “barcode”, from a broad taxonomic group via the polymerase chain reaction 18 

(PCR), using universal primers that anneal to flanking conserved regions. Results of these 19 

experiments are reported as occurrence data, which provide a list of taxa amplified from the 20 

sample, or relative abundance data, which measure the relative contribution of each taxon to the 21 

overall composition of amplified product. The accuracy of both occurrence and relative 22 

abundance estimates can be affected by a variety of biological and technical biases. For 23 

example, taxa with larger biomass may be better represented in environmental samples than 24 

those with smaller biomass. Here, we explore how polymerase choice, a potential source of 25 

technical bias, might influence results in metabarcoding experiments. We compared potential 26 

biases of six commercially available polymerases using a combination of mixtures of amplifiable 27 

synthetic sequences and real sedimentary DNA extracts. We find that polymerase choice can 28 

affect both occurrence and relative abundance estimates, and that the main source of this bias 29 

appears to be polymerase preference for sequences with specific GC contents. We further 30 
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recommend an experimental approach for metabarcoding based on results of our synthetic 31 

experiments. 32 

 33 

Keywords 34 
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 36 

Introduction 37 

Metabarcoding, which is erroneously described as barcoding or metagenomics in some 38 

literature, is the technique in which a universal primer pair is used to amplify multiple templates 39 

from a mixture of many different taxa or haplotypes. Metabarcoding is often used in conjunction 40 

with environmental DNA (eDNA), or DNA that is collected from environmental sources such as 41 

water, sediment, air, and feces (Deiner et al. 2017). Metabarcoding is an increasingly popular 42 

tool in ecological and paleoecological research, mainly due to its simplicity and low cost. eDNA 43 

can be used, for example, to characterize biodiversity of a particular taxonomic group (Ushio et 44 

al. 2017) or to estimate the ranges of rare, extinct, or cryptic species (Haile et al. 2009; Jerde et 45 

al. 2011; Pedersen et al. 2016; Rees et al. 2017). Additionally, metabarcoding has been used to 46 

calculate differences in haplotype or allele frequency between populations of the same species 47 

(Sigsgaard et al. 2016), and to link changes in community composition over time to climatic 48 

shifts (Willerslev et al. 2003, 2007, 2014; Haile et al. 2007). These latter examples analyze both 49 

the occurrence and relative abundance of each unique sequence in the amplification product, 50 

where abundance is estimated as the proportion of the total number of sequences generated 51 

matching each taxon or haplotype. 52 

While metabarcoding is a promising approach to characterize biodiversity both quickly 53 

and inexpensively, few studies have validated the method experimentally by, for example, 54 

testing the extent to which the true community or population is reconstructed. It is generally 55 
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accepted that taxon occurrence can be inferred via metabarcoding, provided that a sufficient 56 

number of PCR replicates–amplifying DNA multiple times from the same soil extract using the 57 

same amplification conditions–are performed (Piñol et al. 2015; Shaw et al. 2016) and false 58 

positives have been accounted for (Lahoz-Monfort et al. 2016). The first eDNA metabarcoding 59 

studies used replication (Cooper & Poinar 2000), where DNA extraction and amplification were 60 

both replicated, to help confirm their results (Willerslev et al. 2003), but many subsequent 61 

studies did not replicate experiments (Valentini et al. 2009; Soininen et al. 2009; Sønstebø et al. 62 

2010). After a detailed exploration of the utility of replication in metabarcoding (Darling & Mahon 63 

2011), the use of replication increased, but the number of replicates performed per experiment 64 

varied widely. Most studies used between two and five PCR replicates per sample (Andersen et 65 

al. 2012; Jørgensen et al. 2012; Willerslev et al. 2014; De Barba et al. 2014) and some as many 66 

as eight (Giguet-Covex et al. 2014). Recently, the use of site occupancy models has been 67 

proposed as a tool to estimate how many replicates are needed; with most recommendations 68 

ranging from six to 12 replicates per sample (Schmidt et al. 2013; Ficetola et al. 2015; Lahoz-69 

Monfort et al. 2016), depending on the number and abundance of rare taxa. Another approach to 70 

estimate the amount of replication required is rarefaction, whereby the number of new taxa 71 

identified per replicate PCR is used to estimate the probability that most rare taxa have been 72 

recovered (Sanders 1968; Hsieh et al. 2016).  73 

Whether relative abundance can be estimated accurately from metabarcoding data is a 74 

more contentious issue. Some researchers routinely interpret the relative abundance of 75 

sequences post-PCR as indicative of real relative biomass estimates (Kowalczyk et al. 2011; 76 

Willerslev et al. 2014; Niemeyer et al. 2017). Others argue against this approach, citing 77 

challenges that include differential DNA degradation, different primer binding efficiencies, and 78 

sequencing errors as confounding factors that might influence the utility of relative abundance 79 
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data collected from metabarcoding loci (Deagle et al. 2007, 2013; Pawluczyk et al. 2015; Piñol et 80 

al. 2015; Marcelino & Verbruggen 2016). 81 

Biases that might influence the likelihood of a taxon being detected during 82 

metabarcoding can be both biological and technical in origin. Biological differences include 83 

organism size, seasonal presence and senescence, preservation, and dispersal strategy, 84 

amongst others. Larger taxa, taxa that are present year-round, or taxa whose DNA is readily 85 

transported across long distances by wind or water, may be more likely to be observed in 86 

environmental samples than smaller, seasonal, and sedentary taxa (Andersen et al. 2012; 87 

Barnes & Turner 2016; Buxton et al. 2017; Rees et al. 2017; Hemery et al. 2017; Dunn et al. 88 

2017). Even when the same number of cells are present in an environmental sample, the 89 

starting copy number of target loci may vary between taxa and tissue-type. Chloroplast DNA, for 90 

example, is a common target for metabarcoding, but can differ in copy number between taxa, 91 

individuals, and cell tissue-types within the same plant (Morley & Nielsen 2016). Taphonomic 92 

factors may also influence DNA preservation, for example by affecting the rate of degradation. 93 

Lignified structures in plants may slow the rate of DNA degradation (Yoccoz et al. 2012), as may 94 

anoxic environments (Corinaldesi et al. 2011). In some environments, soil leaching and post-95 

depositional mixing may move DNA up or down sediment columns or horizontally over space 96 

(Anderson-Carpenter et al. 2011; Andersen et al. 2012; Rawlence et al. 2014; Pedersen et al. 97 

2015).  98 

Technical biases can be introduced during DNA extraction and PCR amplification. DNA 99 

extraction protocols can be more or less optimized for soil chemistry, which can influence the 100 

extent to which DNA is recovered (Zielińska et al. 2017). Soils rich in clays or humic acids may 101 

bind DNA, for example, reducing DNA recovery (Direito et al. 2012). PCR is a highly stochastic 102 

process, that is further complicated by the presence of variable templates, with many 103 

opportunities for the introduction of bias (Suzuki & Giovannoni 1996; Polz & Cavanaugh 1998; 104 
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Aird et al. 2011; Pinto & Raskin 2012). Although the universal primers used in metabarcoding 105 

are designed to anneal to conserved genomic regions, slight variation in binding site sequences 106 

may affect primer binding efficiency, resulting in bias (Elbrecht & Leese 2015; Pinol et al. 2014). 107 

For example, Fahner et al (2016) used four plant-specific primers to infer community 108 

composition from the same soil samples, and found that each primer pair produced a different 109 

result. This result may also be related to amplicon length whereby shorter amplicons amplify 110 

more readily than longer amplicons. Template secondary structures can also bias PCR when 111 

molecules with secondary structures bind to themselves and inhibit their own amplification. In 112 

addition, templates with suboptimal GC contents can be disfavored during amplification, 113 

although some polymerases are known to have reduced GC-bias and additives such as dimethyl 114 

sulfoxide (DMSO) for GC-rich templates or betaine for AT-rich templates can reduce this bias 115 

(Baskaran et al. 1996; Kozarewa et al. 2009; van Dijk et al. 2014). Finally, the number of PCR 116 

cycles has also been shown to influence results: while a higher number of PCR cycles might 117 

increase the likelihood that rare molecules are observed, it could also skew abundance 118 

estimates by amplifying the biases described above (Casbon et al. 2011; Weyrich et al. 2017), 119 

but this can vary (Krehenwinkel et al. 2017; Vierna et al. 2017).  120 

Here, we explore the potential of polymerase choice to influence the results of 121 

metabarcoding analyses, with particular reference to polymerase GC-bias. We selected the trnL 122 

g/h primer set (Taberlet et al. 2007) as our universal barcoding primers for this evaluation, as the 123 

target trnL (P6 loop) locus of the chloroplast genome is commonly used for plant metabarcoding 124 

studies (Valentini et al. 2009; Sønstebø et al. 2010; Pornon et al. 2016). Additionally, amplicons 125 

derived from this primer set are within the range of 50 and 150 base-pairs (bp) which is suitable 126 

for degraded environmental DNA and also sequenceable using short-read sequencing 127 

technologies. We performed metabarcoding on DNA extracted from soil collected from St. Paul 128 

Island, Alaska, and on mixtures of synthetic oligonucleotides whose inserts varied by GC 129 
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content, using six polymerases, including those commonly used in metabarcoding. Using these 130 

experiments, we asked three questions: (1) Does polymerase GC preference affect relative 131 

abundance estimates in metabarcoding data? (2) Are some polymerases more appropriate for 132 

metabarcoding-derived estimates of relative abundance than others? And (3) Does GC bias 133 

affect occurrence estimates in metabarcoding experiments?  134 

 135 

Materials and Methods 136 

1. Experimental Design Overview 137 

We designed our experiment to ask three questions. First, Does polymerase GC preference 138 

affect relative abundance estimates in metabarcoding data? To answer this, we performed 139 

metabarcoding analyses of sedimentary DNA samples collected from St. Paul Island, Alaska. 140 

We performed two separate tests. First, we performed trnL (P6 loop) metabarcoding from nine 141 

samples, and compared DNA-derived biodiversity estimates and biodiversity estimates based on 142 

above-ground survey data from the same sites. Next, for four of these nine sedimentary DNA 143 

samples, we explored whether relative abundance changed during the course of PCR 144 

amplification, following the design depicted in Figure 1. In both of these tests, we found that 145 

polymerase GC preference did affect relative abundance estimated. Our second question was 146 

therefore Are some polymerases more appropriate for metabarcoding-derived estimates of 147 

relative abundance than others? To answer this question, we amplified pools of synthetic 148 

oligonucleotides with a range of GC contents using six different polymerases, and measured the 149 

precision with which each polymerase reconstructed the starting concentrations of each 150 

oligonucleotide pool.  Our third question was, Does GC bias also affect occurrence estimates in 151 

metabarcoding experiments? To answer this question, we again used the sedimentary DNA 152 

samples from St. Paul Island, Alaska, but this time performed metabarcoding using the 153 
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polymerase identified in Question 2 as the least biased. We estimated the reproducibility of 154 

occurrence data using rarefaction analysis of ten replicate PCRs per sample.   155 

 156 

2. Data Generation 157 

Environmental DNA from St Paul Island, Alaska 158 

 We collected soil samples from St. Paul Island, Alaska. This small (~114 km2), isolated 159 

island is situated ~450 km west of the coast of Alaska in the Bering Sea (~50.2°N, 170.2°W). St. 160 

Paul is the largest and most northerly island of the Pribilof Islands (Mungoven 2005), and has a 161 

low diversity of plants and terrestrial mammals (Preble & McAtee 1923; Colinvaux 1981), and 162 

completely lacks trees. We selected nine sampling sites that were spatially separate from each 163 

other, geologically distinct, and appeared to be colonized by different vegetative communities. At 164 

each site, a 1×1 m quadrat was chosen. We removed a ~15×15×10 cm (L×W×D) volume of 165 

surface soil from the center of each quadrat using a knife and trowel that we cleaned with 166 

ethanol between uses. We transferred ~10-20 g of soil to a sterile 50 mL falcon tube for eDNA 167 

analyses.  168 

In addition to collecting sediment, we performed surveys of above-ground vegetation. We 169 

photographed the surface vegetation in each quadrat and performed a census of each taxon 170 

growing within the unit. We counted stems from each representative of each plant taxon and 171 

tallied the total for each unit (no counts exceeded 50). For very widespread and ubiquitous taxa, 172 

including spreading mat-forming types (e.g. mosses growing at the ground surface) and 173 

oversized plants with wide crowns, we estimated relative abundance based on percent coverage 174 

within the unit. We identified the majority of common taxa in the field by comparison with a local 175 

collection curated at the St. Paul Public School, and verified taxonomic assignments using 176 

Hultén’s floras (Hultén 1960, 1968). We collected representative samples of distinct or unknown 177 

taxa for later taxonomic verification, which we carried out using the relevant published floras 178 
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along with online keys and floristics data (Hultén 1960; Talbot & Talbot 1994; Mungoven 2005; 179 

Stotler & Crandall-Stotler 2005; Walker et al. 2005). We converted the count data and the 180 

proportion of ground covered as a rank order (1 = 1-20% cover or <10 count; 2 = 21-40% or 10-181 

24 count; 3 = 41-60% or 25-50 count; 4 = 61-80%; 5 = 81-100%) as a proxy for plant abundance 182 

at each sampling location.  183 

We extracted environmental DNA from all nine soil samples using the MoBio PowerSoil 184 

DNA Isolation kit (now called Qiagen DNeasy PowerSoil kit), following the manufacturer’s 185 

instructions. To avoid contamination, we performed all steps in a clean laboratory that is 186 

physically isolated from other molecular biology research, while wearing sterile suits, face-187 

masks, and gloves for DNA extractions and PCR set-up. To monitor cross-contamination, we 188 

extracted and processed the samples alongside two negative extraction controls, but did not use 189 

a positive control. 190 

 191 

Synthetic oligonucleotide pools 192 

 We designed and synthesized 12 oligonucleotides with inserts of 47 base-pairs (bp) 193 

flanked by the trnL g/h primer binding sites with no mismatches (total length: 83 bp; 194 

Supplementary Table 1). This set included two oligonucleotides with 13% average GC content, 195 

two with 26% average GC content, two with 51% average GC content, two with 63% average 196 

GC content, and four oligonucleotides with 38% average GC content. We then created six 197 

mixtures of these 12 oligonucleotides in which each oligonucleotide was included at different, but 198 

known, concentrations. We then diluted each mixture to 10 fM, which qPCR indicated was 199 

similar to the concentrations in our eDNA extracts. To verify pooling accuracy, we amplified each 200 

mixture using an approach that adds unique molecular identifiers (MIDs) to each starting 201 

molecule (Cole et al. 2016; Hoshino et al. 2017). Briefly, we first performed two cycles of PCR 202 

using modified versions of the trnL g/h primers that contained a 5’ molecular identifier (which 203 
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comprised five random nucleotides, followed by AT, followed by another three random 204 

nucleotides: NNNNNATNNN) and the Nextera adapter sequence (Supplementary Figure 1). This 205 

two-cycle PCR, which is performed using the permissive Phusion polymerase (New England 206 

Biosystems), adds to each starting molecule a uniquely identifying barcode that can be used to 207 

reconstruct bioinformatically the true starting relative abundance of molecules. After a clean-up 208 

step, we then amplified the product of this two-cycle PCR for an additional 30 cycles with 209 

standard Nextera indexing primers and the higher fidelity polymerase in Kapa HiFi ReadyMix 210 

(Kapa Biosystems). After sequencing, we counted the number of unique MIDs for each amplicon 211 

to verify the starting relative abundance of molecules in the pool. 212 

 213 

PCR amplification, library preparation, sequencing, and bioinformatics 214 

We performed PCR using the trnL g/h primers and six different polymerases (Table 1).  215 

We performed gradient PCR as necessary to determine optimal annealing temperatures for 216 

each of the different polymerases. For Platinum HiFi Taq, AmpliTaq Gold and Phusion, we used 217 

reagent mixes that are described in previous publications (De Barba et al. 2014; Cole et al. 218 

2016; Graham et al. 2016). All final recipes and cycling conditions are provided in the 219 

supplement (Supplementary Table 2). We confirmed that amplification products were in the 220 

expected size range (50-150 bp) via gel electrophoresis, which also confirmed that all extraction 221 

and PCR negative controls lacked visible amplification products. We purified amplification 222 

products using a SPRI bead protocol (Rohland & Reich 2012). 223 

We transformed PCR amplicons into sequenceable libraries using two different 224 

approaches. Initially (for questions one and two), we used a lengthy protocol described by Meyer 225 

and Kircher (2010) (MK) that involves blunt-end repair, phosphorylation, adapter ligation and fill-226 

in, and indexing PCR. To answer question three, we compared the MK protocol to a shorter and 227 

less expensive approach that amplifies DNA using trnL g/h primers with 5’ overhangs containing 228 
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the Illumina TruSeq adapter sequences. This made it possible to proceed directly to indexing 229 

PCR following the initial metabarcoding PCR, allowing library preparation to be completed in two 230 

steps (two PCR set-ups). To assess whether the two-step protocol performed differently from the 231 

MK protocol, we performed a comparative experiment in which we amplified DNA and 232 

sequenced libraries generated from a common master mix of Qiagen Multiplex Master Mix, 233 

water and template (consisting of an equimolar mixture of synthetic oligonucleotides). After 234 

sequencing, we found there was no significant difference between the two methods (Standard 235 

Least Squares Test: Whole Model F Ratio = 0.55, P = 0.58, Supplementary Figure 2). While we 236 

find no difference between these two library preparation approaches, additional comparative 237 

analyses of prepared libraries that more finely sample, for example, different GC-content binning 238 

strategies, will be necessarily to explore fully whether one library preparation approach is 239 

superior by all metrics to another. 240 

For all experiments, we sequenced libraries on the Illumina MiSeq platform using 2×75 241 

v3 chemistry, targeting 150,000 reads per sample. We used rarefaction to confirm that 242 

sequencing depth was sufficient to recover all amplified molecules (Hsieh et al. 2016).  243 

After sequencing, we processed each data set using an in-house bioinformatics pipeline. 244 

Briefly, we removed adapters and merged overlapping reads using SeqPrep v2 245 

(https://github.com/jstjohn/SeqPrep), with the following flags: minimum length of reads (-L) 37 246 

(combined length of the primer sequences plus one), overlap required to merge read1 and read2 247 

(-o) 10, minimum length of adapter to consider trimming (-O) 8, and quality threshold (-q) 15. We 248 

filtered the merged reads and retained sequences containing either an exact match to the 249 

forward primer and the reverse complement of the reverse primer (correct orientation), or an 250 

exact match to the reverse primer and the reverse complement of the forward primer (incorrect 251 

orientation). We then reverse-complemented the data in the incorrect orientation using the 252 

FASTX toolkit v0.0.13 (http://hannonlab.cshl.edu/fastx_toolkit/) and concatenated these data 253 
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with those in the correct orientation. We trimmed any remaining adapter and PCR primer 254 

sequences from the ends of the filtered reads, and removed any reads that retained any primer 255 

sequences or that were shorter than six base pairs using PRINSEQ-lite v0.20.4 (Schmieder & 256 

Edwards 2011). We created a single file with all unmerged reads, so that read1 and read2 were 257 

on the same line, and processed this file as described above. We then split this file back into 258 

read1 and read2 files. We did not remove sequences that contained a mismatch to known 259 

synthetic oligonucleotide insert sequences (see below). For the sequence data derived from the 260 

St. Paul soil samples, all amplicons were short enough that the sequences could be merged.  261 

We used the obitools software defaults (Boyer et al. 2016) to group identical sequences 262 

(obiuniq), remove singletons and PCR artifacts (obiclean –H) and compare the sequences to the 263 

arctic, boreal, and embl reference libraries (Sønstebø et al. 2010; Willerslev et al. 2014) to 264 

identify the reads to their best-associated plant taxa. Because we used three reference libraries, 265 

three separate result files were created for each sample (one for each reference library). We 266 

parsed the three files using a script that compared the results in each file and extracted only the 267 

entries with the highest percent identity and lowest taxonomic rank. If two species of the same 268 

genus were seen, that sequence was classified to the genus level. We set a cut-off value of 98% 269 

identity and removed reads at proportions less than 0.001. The number of raw and merged 270 

reads and number of identified taxa per sample are listed in the Supplementary Materials 271 

(Supplementary Table 3). 272 

For the synthetic oligonucleotide pools, we used grep to pull out the known sequences 273 

and their reverse complements and count how many times they occurred within each fasta file. 274 

As the obitools and grep methods both provided count data, we converted these counts to 275 

relative abundances.  276 

 277 

3. Data Analysis 278 
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Question 1: Does polymerase GC preference affect relative abundance estimates in 279 

metabarcoding data?  280 

For the nine St. Paul samples, we performed ten replicate PCRs per sample using Platinum HiFi 281 

Taq polymerase (Invitrogen) following the protocol found in Graham et al. (2016). After 282 

sequencing and read processing as detailed above, we used standard least squares to test the 283 

effects of above-ground vegetation abundance and amplicon average GC content on DNA 284 

relative abundance, both separately and interactively.  285 

 To test the effect of PCR cycle number on the relative abundances of different plant taxa, 286 

we chose four St. Paul soil eDNA extracts and two PCR controls, scaled up the PCR to 100 µL, 287 

and collected 1 µL aliquots at five-cycle intervals from cycles 10 to 60 (Figure 1). We used a 288 

large reaction volume to minimize the impact of aliquot removal and cooled the reaction to 20 C 289 

during each collection step to avoid evaporation. Large numbers of cycles are often used in 290 

metabarcoding experiments because the target loci are at very low abundances relative to the 291 

total amount of extracted DNA and eDNA extracts often have PCR inhibitors (Kennedy et al. 292 

2013). We used 60 cycles to be sure that all PCRs had reached the plateau phase. Each aliquot 293 

was made into an Illumina sequencing library individually using a library preparation protocol 294 

based on Meyer & Kircher (2010) (as detailed above). We called this our amplicon competition 295 

experiment (Figure 1). 296 

 297 

Question 2: Are some polymerases more appropriate for metabarcoding-derived estimates of 298 

relative abundance than others?  299 

We assessed whether six polymerases (Table 1) could individually maintain the starting ratio of 300 

oligonucleotides (relative abundance) in mixtures after 35 cycles of PCR. For each polymerase, 301 

we performed six experiments in which synthetic oligonucleotides were combined at different 302 

ratios based on sequence GC content. The oligonucleotides were combined (1) in equimolar 303 
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ratios (two experiments), (2) by increasing proportion with GC content, (3) by decreasing 304 

proportion with GC content, (4) with extreme GC contents being most abundant, and (5) with 305 

extreme GC contents being least abundant. For each experiment, we performed metabarcoding 306 

PCRs in triplicate using the trnL g/h primers. After obtaining relative abundance estimates for 307 

each oligonucleotide in each pool, we plotted expected abundances (relative abundance prior to 308 

amplification) versus observed abundances (relative abundance after amplification) for each 309 

polymerase. We then calculated the Pearson correlation coefficient between observed and 310 

expected abundance values for each enzyme. 311 

 312 

Question 3: Does GC bias affect occurrence estimates in metabarcoding experiments? 313 

We again performed metabarcoding on the nine St. Paul soil eDNA extracts as described for 314 

Question 1, but used the Qiagen Multiplex Master Mix (Qiagen), which our results indicated is 315 

the least biased of the six polymerases tested (see below). As with the experiment described in 316 

Question 1 using Platinum HiFi Taq (Invitrogen), we performed ten replicate PCRs for each 317 

sample. We assigned amplicons to taxa as described above. We then performed rarefaction for 318 

each replicate set from both polymerases using iNEXT (Hsieh et al. 2016) in R v3.4.2 319 

(http://www.R-project.org/). 320 

 321 

Results 322 

 323 

Question 1: Does polymerase preference for certain GC contents affect relative abundance 324 

estimates in metabarcoding data? 325 

 326 

For this question we used the above-ground vegetation abundance data, that was collected prior 327 

to the DNA work, and the Platinum HiFi Taq-amplified metabarcoding data. Both data sets were 328 
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generated from the same nine localities on St. Paul. Using both of these, we plotted all plant 329 

taxa that were identified using both above-ground and eDNA at all locations on the same plot but 330 

split into GC content bins (Figure 2). The x-values are above-ground ranked abundances and 331 

the y-values are mean eDNA abundance across replicates. When we compared relative 332 

abundance estimates from the metabarcoding experiments to the relative abundance inferred 333 

from above-ground biomass, we found that whether or not these two estimates agreed 334 

depended on average GC content of the plant’s trnL (P6 loop) locus (Standard Least Squares, 335 

whole model: F = 34.25, P<0.0001; effect tests: Average GC, t = 1.54, P = 0.124, above-ground 336 

abundance, t = 12.27, P<0.0001, Average GC*above-ground abundance, t = 4.39, P<0.0001). 337 

Figure 2 shows above-ground and eDNA-based estimates of abundance are correlated most 338 

strongly in middle GC content bins, but this relationship decreases or disappears completely at 339 

the more extreme GC contents. This pattern is consistent with the previously reported optimal 340 

GC content of 34-38% for Platinum HiFi Taq polymerase (Dabney & Meyer 2012). 341 

 342 

While this pattern observed in Figure 2 supports the hypothesis that sequences with 343 

certain GC contents are preferentially amplified via PCR, it does not exclude the possibility that 344 

biological factors, such as differences in above- versus below-ground biomass, are influencing 345 

the results. We therefore performed an additional experiment in which we measured changes in 346 

DNA-based relative abundance estimates directly during the course of PCR for four St. Paul 347 

eDNA extracts (Figure 1). Figure 3A shows the changes in relative abundance of the twelve 348 

most abundant taxa in each of the four samples during cycles 20 through 60 of the PCR. 349 

Libraries from cycles 10 and 15 had no sequenceable molecules. Exponential amplification 350 

appears to start at cycle 30 for all samples and this is confirmed in the qPCR plots 351 

(Supplementary Figure 3). We calculated the fold change from cycle 30 to 60, and used this to 352 

quantify the increase or decrease in the relative abundance of each amplicon. We then recorded 353 
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the number of primer mismatches and barcode length for each amplicon. We found that neither 354 

primer mismatches nor amplicon length explained the increase or decrease in relative 355 

abundance (primer mismatches, R2: 0.011; sequence length, R2: 0.095). However, we found a 356 

positive correlation with average GC content and fold change from cycle 30 to 60 (R2: 0.474, 357 

Linear fit P=0.002); Figure 3B).  358 

 359 

 360 

Question 2: Are some polymerases more appropriate for metabarcoding-derived estimates of 361 

relative abundance than others?  362 

Results from Question 1 suggest that Platinum HiFi Taq polymerase preferentially amplifies 363 

sequences with 34-38% GC. To identify polymerases that might be more appropriate for 364 

metabarcoding than Platinum HiFi Taq, we performed metabarcoding on mixtures of synthetic 365 

oligonucleotides with different GC contents using six commonly used polymerases (Table 1). We 366 

found that the correlation between observed and expected oligonucleotide proportions differed 367 

between enzymes (Figure 4). Among the polymerases tested, the Qiagen Multiplex Master Mix 368 

polymerase most accurately reconstructed the known starting relative abundances (Figure 4A), 369 

and varied the least in accuracy by GC content (Figure 4B). However, the Qiagen Multiplex 370 

Master Mix polymerase also had the highest proportion of sequences with at least one error 371 

(Figure 4C). Figure 5 shows the differences between observed and expected relative abundance 372 

using the most quantitatively accurate (Qiagen Multiplex Master Mix polymerase) and least 373 

quantitatively accurate (Phusion polymerase) enzymes. Detailed plots for the other four 374 

enzymes are provided in the Supplementary Materials (Supplementary Figures 4-7). 375 

 376 

Question 3: Does GC bias affect occurrence data? 377 
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The results above show that polymerase biases can influence eDNA-based estimates of 378 

relative abundance. To test whether polymerase bias may also influence the accuracy of 379 

occurrence estimates, we performed an additional experiment in which we PCR-amplified the 380 

trnL (P6 loop) locus from the same nine St. Paul eDNA extracts that were amplified for Question 381 

1, however this time using the best-performing enzyme as identified by the synthetic 382 

oligonucleotide experiment above, Qiagen Multiplex Master Mix. As with Platinum HiFi Taq 383 

polymerase, we performed 10 replicate PCRs for each of the nine eDNA samples, and used 384 

rarefaction to confirm that sequencing depth of each PCR library was sufficient to recover all 385 

amplified molecules (Hsieh et al. 2016). We then performed additional rarefaction analyses, this 386 

time asking whether additional PCR replicates were contributing significantly toward biodiversity 387 

estimates, i.e. were sampling taxa that had not yet been sampled. We found that after 10 388 

replicates, mean sample coverage (the probability that all rare taxa have been recovered) was 389 

not significantly different when using the Qiagen Multiplex Master Mix compared to Platinum HiFi 390 

Taq (t = -0.66, df=15.76, p=0.52; Figure 6). In addition, despite the fact that St. Paul has low 391 

plant diversity (Preble & McAtee 1923; Colinvaux 1981), only one site appears to have reached 392 

a rarefaction plateau, which would suggest that the majority of species present have been 393 

sequenced, after 10 replicates. However, when we compared this to the data generated using 394 

Platinum HiFi Taq, this sample had not yet reached a rarefaction plateau. Given the small 395 

sample size, it is not possible to know whether this difference is due to polymerase choice or to 396 

chance. 397 

 398 

Discussion 399 

 400 

Our results show polymerase GC bias can dramatically alter the relative abundance of 401 

molecules during PCR. It is important, therefore, to use an experimental approach in 402 
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metabarcoding that limits the influence of polymerase GC bias. Molecular Identifier (MID), also 403 

called Unique Molecular Identifier (UMI), methods (Cole et al. 2016) offer a possible solution, as 404 

they allow each starting molecule to be disambiguated bioinformatically after PCR. In this way, 405 

GC bias that manifests during PCR can be effectively ignored. However, these methods are not 406 

yet optimized for the mixed, low concentration samples that are most often available for 407 

metabarcoding. While we successfully tested a UMI approach for the analysis of synthetic 408 

mixtures of oligonucleotides, the approach often failed to produce sequencing libraries when 409 

analyzing actual eDNA samples. This may be due to inhibitors and/or very low concentrations of 410 

target DNA compared to all extracted DNA. Because polymerases vary in the degree to which 411 

they are biased toward GC content, another approach is to simply choose the least biased 412 

polymerase. Of the six polymerases evaluated here, our data show that the Qiagen Multiplex 413 

Master Mix is the least biased and effectively retains abundance ratios throughout the PCR (R2: 414 

0.95). Qiagen Multiplex Master Mix (but not the enzyme, HotStarTaq, itself) was originally 415 

engineered for experiments that targeted multiple templates simultaneously, which may explain 416 

why it performs well here (Qiagen 2013). 417 

If a biased polymerase is used in metabarcoding, the DNA results may not reflect the 418 

true relative abundance of target taxa. For the plant trnL (P6 loop) locus, for example, GC 419 

content varies considerably among major plant growth forms (Figure 7). The GC content of 420 

forbs, or low-lying herbaceous flowering plants, falls mainly within the range preferred by most 421 

polymerases (Dabney & Meyer 2012). Our DNA-based relative abundance estimates of plants 422 

from St. Paul (Figure 8) and those previously published from Siberia and Alaska (Supplementary 423 

Figure 8) (Willerslev et al. 2014) were both generated using Platinum HiFi Taq polymerase 424 

targeting the trnL P6-loop locus, and showed that graminoids (grasses and sedges) were less 425 

abundant than forbs. Because this pattern falls within the biases of Platinum HiFi Taq 426 

polymerase, these results may simply reflect polymerase bias rather than true biological signal.  427 
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Although our results indicate that GC bias can confound metabarcoding-based relative 428 

abundance estimates, other potential sources of bias may also influence amplicon competition 429 

during PCR. For example, differences in the number of mismatches between the sequence and 430 

the primer at the primer binding site and differences in template length will also affect the 431 

efficiency with which an amplicon is copied (Stadhouders et al. 2010). While we did not find that 432 

the number of primer mismatches affected the efficiency of replication, few taxa have 433 

mismatches to the trnL g/h primers (Taberlet et al. 2007). Primer mismatches have been shown, 434 

however, to influence relative abundance for other metabarcoding loci (Piñol et al. 2015). 435 

Additionally, shorter molecules tend to amplify more readily than longer molecules during PCR 436 

(Shagin et al. 1999), and, while most sequences amplified by the trnL g/h primers in this study 437 

tended to be around the same length, other metabarcoding loci vary considerably in barcode 438 

length between amplified taxa. Another source of bias during PCR is homopolymer repeats 439 

(Kieleczawa 2006). In our amplicon competition experiment using Platinum HiFi Taq, the plant 440 

taxa Anthemideae and Pedicularis decreased in abundance in all four samples despite having 441 

optimal (Anthemideae has a GC content of 36%) and close to optimal (Pedicularis is 31%) GC 442 

contents, which may be because these barcodes contain 8 and 9 bp-long homopolymer runs 443 

respectively. In comparison to Platinum HiFi Taq, we noted that Anthemideae and Pedicularis 444 

had increased abundances when using Qiagen Multiplex MasterMix (Supplementary Figures 9-445 

12), suggesting that Qiagen Multiplex MasterMix was not deterred by the homopolymer repeats. 446 

Finally, polymerase error rates are a potential source of error in metabarcoding experiments, 447 

and our results showed that HotStarTaq in the Qiagen Multiplex Master Mix had the highest 448 

error rate of the six polymerases used (Figure 4C). Polymerase error has the potential to 449 

produce false positive results when barcoding loci differ by one or a few base-pairs, although 450 

this may be ameliorated by bioinformatic pipelines capable of identifying potential sequencing 451 

errors. 452 
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Our results suggest that occurrence data, which has been believed to be largely reliable 453 

from metabarcoding experiments, can also be challenging to interpret. While it is understood that 454 

rare taxa may be more difficult to identify than common taxa, recommendations within the field 455 

have been to perform replicate PCRs, with little guidance as to how many PCRs are necessary. 456 

Our experiments from St. Paul suggest, however, that more than 10 replicate PCRs would be 457 

necessary to sample the breadth of taxa within our extracts, regardless of polymerase GC bias. 458 

In many instances, it may be more practical to combine DNA-based surveys with other data 459 

types, such as pollen and identification of macroscopic remains (Birks & Birks 2015). While site 460 

occupancy models offer a potential solution to estimate the number of replicates required to 461 

identify rare taxa (Schmidt et al. 2013; Dorazio & Erickson 2017), these are constructed for 462 

single species, and would not be practical for experiments that aim to describe an entire 463 

community. We note, however, that the most abundant taxa were recovered in all PCR 464 

replicates for all sites and both polymerases, suggesting that DNA metabarcoding is a 465 

reasonable approach to identify at least the most abundant taxa in an environment, even if only 466 

a single replicate PCR is performed (Leray & Knowlton 2017).  467 

While our current work has identified an experimental approach to reduce the influence 468 

of GC content on relative abundance estimates in metabarcoding, it is important also to consider 469 

other sources of potential biases and error when interpreting results. For example, errors such 470 

as template switching, where sample-specific barcodes are associated to the incorrect sample 471 

during either library preparation (Schnell et al. 2015) or sequencing (Kircher et al. 2012), may 472 

influence both occurrence and relative abundance data. Fortunately the latter problem can be 473 

mitigated by adding indices to both ends of the molecule (Kircher et al. 2012). The choice of 474 

bioinformatic pipeline can also influence results. For example, in a recent analysis of the 475 

metagenome of fresh basil, three out of four pipelines identified Salmonella but, because 476 

Salmonella was not identified via qPCR, the authors concluded that the bioinformatic results 477 
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were erroneous (Ceuppens et al. 2017). While public databases containing metabarcoding loci 478 

continue to expand in taxonomic depth (Bell et al. 2017), some lineages are more poorly 479 

represented. Finally, biological differences between species, including variation per cell or tissue 480 

type in the number of amplifiable loci (Morley & Nielsen 2016), differences in organism size, 481 

seasonal senescence, and behavior, may all influence the probability that an organism will be 482 

represented in a particular environmental sample. Although work remains to be done to better 483 

understand the consequences of these various types of bias and error, metabarcoding remains 484 

a powerful approach to quickly and inexpensively characterize communities.   485 

 486 

Conclusion 487 

Despite the rapid growth of metabarcoding as a technique for characterizing communities from 488 

eDNA samples, relatively little attention has been given to validating the methodology and 489 

understanding its limitations. Polymerase GC bias is a known challenge for applications that rely 490 

on PCR (Kozarewa et al. 2009; Aird et al. 2011; Dabney & Meyer 2012). With the advent of next-491 

generation sequencing approaches, PCR-free methods have been developed to convert 492 

extracted DNA into sequenceable molecules (Kozarewa et al. 2009). PCR remains the most 493 

useful approach to catalogue diversity in environmental samples, however, as the number of 494 

target molecules is small relative to the total extracted DNA. For this reason, it is important to 495 

understand the influence of GC bias in metabarcoding approaches and, if possible, mitigate 496 

these biases. Here, we showed that many commonly used PCR protocols are not appropriate for 497 

generating reliable estimates of relative abundance. In these cases, our results show that the 498 

relative abundance of amplified sequences changes during PCR cycling, and that these changes 499 

are related to the GC content of the target. Of the six polymerases and mixtures tested, Qiagen 500 

Multiplex Master Mix provided the most accurate estimates of relative abundance, but also 501 
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generated the highest error rate. However, we found no evidence that occurrence data was 502 

influenced by polymerase bias.503 
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Minimizing polymerase biases in metabarcoding – Nichols et al. 
Tables and Figures 

Table 1. The six polymerases used in this study. *Platinum HiFi is a blend of two polymerases 

(one proofreading, one not). 

 

Polymerase/mix Manufacturer Proofreading Hot Start 

AmpliTaq Gold, Buffer 

II 

Applied Biosystems N Y 

Kapa HiFi ReadyMix Kapa Biosystems Y Y 

Phusion New England Biosciences Y N 

Platinum HiFi Invitrogen Y* Y 

Q5 2x MasterMix New England Biosciences Y Y 

Qiagen Multiplex 

MasterMix 

Qiagen N Y 
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Figure 1. Schematic of the amplicon competition experiment. We chose four eDNA extracts and 

ran each in a PCR with trnL g/h and Platinum Taq using the recipe in Graham et al. 2016. 

Starting at cycle 10 and every five cycles up to cycle 60, we cooled the reaction to 20 C and 

removed 1 µL. We converted each 1 µL of PCR product into a sequenceable library individually. 

After sequencing and processing the reads, we plotted each amplicon as a function of PCR 

cycle and relative abundance.  

 

 

 

 

 

 
Figure 2. DNA abundance and above-ground abundance across average GC content bins. After 

collecting the DNA data we took all plant taxa that were identified at all locations, put them in the 

same plot and split them into GC content bins. Each point is a plant taxa where x is its ranked 

above-ground abundance and y is its mean DNA abundance across replicates. Some taxa are 

missing from the DNA data and some are missing from the above-ground data. For above-

ground abundance, 5 is the highest rank, meaning the most abundant whereas 0 indicates 

absence. Lines are linear best fits with P-values > 0.3 for all bins except the middle bin where 

the P = 0.03. 
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Figure 3. Changes in relative abundance over the duration of a 60-cycle PCR for four St. Paul 

Island sediment samples. A) Plots showing relative abundance measured at 5-cycle intervals 

between cycles 20 and 60. Colored lines show relative abundance estimates for the 10 most 

abundant plant taxa in these samples. B) Plot describing the fold change for each taxon in each 

experiment between cycle 30 and cycle 60, with a linear line of best-fit (P = 0.002), showing that 

change in relative abundance correlates with GC content. The y-axis is plotted on a log scale, 

therefore values above 1 indicate that the amplicon is increasing in abundance from cycle 30 to 

60 and values below 1 indicate that the amplicon is decreasing in abundance. 
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Figure 4. Testing polymerases using pools of synthetic oligonucleotides. A, B, and C combine 

data from six pools of synthetic oligonucleotides amplified using six polymerases. A) Observed 

proportions plotted against expected proportions for six polymerases. Each panel contains data 

for all six pools of oligos; B) Difference from expected proportions plotted against average GC 

content. Here we only used data from the equimolar pools; C) Proportion of reads with at least 

one error for each enzyme/mix.  

 

 

 

 

 

 

Figure 5. Expected (black lines) and observed abundances of the six synthetic oligonucleotide 
mixtures using Phusion (green open circles) and Qiagen Multiplex Master Mix (purple open 
circles) plotted as proportional data. Each oligonucleotide was pooled at 10 µM and then each 
pool was diluted to 10 fM. Each 10 fM pool underwent PCR using the six different polymerases. 
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Figure 6. Rarefaction curves resulting from metabarcoding experiments for nine sites on St Paul 

Island, Alaska, using Platinum HiFi Taq as described in Graham et al. 2016 and the Qiagen 

Multiplex MasterMix following manufacturer’s instructions. For each extract and polymerase, we 

performed 10 replicate PCRs. Rarefaction plots describe the number of unique taxa added per 

replicate. Solid lines are results from the 10 experiments, and dashed lines are predicted values 

calculated using iNEXT (Hsieh et al. 2016) in R version 3.4.2. 

 

 

 

 

Figure 7. Average GC content across different plant growth forms. The data comes from the 

current study and Willerslev et al. 2014. Both studies used Platinum HiFi Taq polymerase. Ferns 

include horsetails. 
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Figure 8. St Paul data generated using eDNA and separated into plant growth forms. Ferns 

include horsetails. All plant taxa from all samples are plotted both using Platinum HiFi Taq and 

Qiagen Multiplex MasterMix. Each data point is the relative abundance of a plant taxon from a 

particular location grouped into its growth form and shaded based on its average trnL p6-loop 

GC content. The darker the point is, the lower the average GC content.  
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