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Abstract. Let Λq(ω) , q > 0 , denote the Lorentz space equipped with the (quasi) norm

‖ f‖Λq(ω) :=
(∫ 1

0
( f ∗(t)ω(t))q

dt
t

) 1
q

for a function f on [0,1] and with ω positive and equipped with some additional growth
properties. A generalization of Boas theorem in the form of a two-sided inequality is obtained in
the case of both general regular system Φ = {ϕk}∞

k=1 and generalized Lorentz Λq(ω) spaces.

1. Introduction

The following Hardy-Littlewood theorem is well known (see [26] and also [10],
[4]):

THEOREM A. If f � 0 and f decreases, 1 < p < ∞, and an are the Fourier sine
or cosine coefficients of f , then

∞

∑
n=1

|an|p < ∞

if and only if
xp−2 f (x)p ∈ Lp.

This theorem can be extended as follows (see [4]):

THEOREM B. If f � 0 and f decreases, 1 < p < ∞, −1/p′ < γ < 1/p, then
∞

∑
n=1

n−γ p|an|p < ∞

converges if and only if
xp−2xpγ+p−2 f (x)p ∈ Lp.

Here and in the sequel p′ = p
(p−1) for p > 1.

A characterization for the function f to belong to the Lorentz space Lpq was
obtained by R. P. Boas in [4]. This result deals with trigonometric Fourier coefficients
for the class of monotone functions and reads:
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THEOREM C. If f � 0 and f decreases, 1 < p < ∞, 1 < q < ∞, then f ∈ Lpq if
and only if {an} ∈ lp′q.

Some other results which are related to the Hardy-Littlewood theorem for the class
of monotone functions were obtained in [25], [3], [1], [24], [5], [15], [8], [9], [12] and
[7].

Boas theorem was generalized and complemented in various ways also for
more general Lorentz spaces Λq(ω) in 1974 by L.-E. Persson for the case when
Φ = {e2π ikx}+∞

k=−∞ is trigonometric system (see. [20]–[23]). For example the following
theorem was proved:

THEOREM D. Let p > 0 and Φ = {e2π ikt}+∞
k=−∞ be a trigonometrical system. Let

ω be a nonnegative function on [0,∞). If there exists a positive number δ > 0 satisfying
that ω(t)t−δ is an increasing function of t and ω(t)t−1+δ is a decreasing function of
t and if f is a nonnegative and a decreasing function on [0, 1

2 ], then

(∫ 1

0
( f ∗(t)ω(t))p dt

t

) 1
p

< ∞,

if and only if (
∞

∑
k=1

(kω
(

1
k

)
a∗k)

p 1
n

) 1
p

< ∞,

where {a∗k}∞
k=1 is the nonincreasing rerrangement of the sequence {an}∞

k=1 of Fourier
coefficients of f with respect to the system Φ .

The main aim of this paper is to derive the Boas theorem for the space Λq(ω) with
respect to the regular system. Moreover, a new Boas type theorem for space Λq(ω) and
for generalized monotone functions is proved and discussed.

The main results are formulated in Section 3. Note that the results in Theorem
1 is obviously related to [11] but we have chosed to put also this result in this more
general frame in English. The proofs can be found in Section 4 and in Section 2 we
have presented some necessary preliminaries.

CONVENTIONS. The letter c(c1,c2,etc.) means a constant which does not depen-
dent on the involved functions and it can be different in different occurences. Moreover,
for C,D > 0 the notation C ∼ D means that there exist positive constants a1 and a2

such that a1D � C � a2D.

2. Preliminaries

Let f be a measurable function on [0,1] and μ is Lebesgue measure. The nonin-
creasing rerrangement f ∗ of a function f is defined as follows:

m(σ , f ) := μ{x ∈ [0,1] : | f (x)| > σ},

f ∗(t) := in f{σ : m(σ , f ) � t}.
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Let 0 < q � ∞ and ω be a nonnegative function on [0,1]. The generalized Lorentz
spaces Λq(ω) consists of the functions f on [0,1] such that ‖ f‖Λq(ω) < ∞, where

‖ f‖Λq(ω) :=

⎧⎪⎨
⎪⎩
(∫ 1

0 ( f ∗(t)ω(t))q dt
t

) 1
q

for 0 < q < ∞,

sup
0�t�1

f ∗(t)ω(t) for q = ∞.

These spaces Λq(ω) coincide to the classical spaces Lpq in the case ω(t) = t
1
p ,

1 < p < ∞ (see [16] and also e.g. [2]).
Let μ = {μ(k)}k∈N be a sequence of positive number and the space λq(μ) con-

sists of all sequences a = {ak}∞
k=1 such that ‖a‖λq(μ) < ∞, where

‖a‖λq(μ) :=

⎧⎪⎨
⎪⎩
(
∑∞

k=1

(
a∗kμ(k)

)q 1
k

) 1
q for 0 < q < ∞,

sup
k

a∗kμ(k) for q = ∞.

Here, as usual, {a∗k}∞
k=1 is the nonincreasing rearrangement of the sequence {|ak|}∞

k=1 .
Let the function f be periodic with period 1 and integrable on [0,1] and let Φ =

{ϕk}∞
k=1 be an orthonormal system on [0,1] . The numbers

ak = ak( f ) =
∫ 1

0
f (x)ϕk(x)dx, k ∈ N

are called the Fourier coefficients of the functions f with respect to the system Φ =
{ϕk}∞

k=1 .
We say that the orthonormal system Φ = {ϕk}∞

k=1 is regular if there exists a con-
stant B, such that

1) for every segment e from [0,1] and k ∈ N it yields that∣∣∣∣
∫

e
ϕk(x)dx

∣∣∣∣� Bmin(|e|,1/k),

2) for every segment w from N and t ∈ (0,1] we have that(
∑
k∈w

ϕk(·)
)∗

(t) � Bmin(|w|,1/t),

where (∑k∈w ϕk(·))∗ (t) as usual denotes the nonincreasing rerrangement of the func-
tion ∑k∈w ϕk(x) .

Examples of regular systems are all trigonometrical systems, the Walsh system
and Prise’s system. In [17], [19], [18] some results were obtained with respect to the
regular system using network space.

Let δ > 0 be a fixed parameter. Consider a nonnegative function ω(t) on [0,1].
We define the following classes:

Aδ := {ω(t) : ω(t)t−
1
2−δ is an increasing function and

ω(t)t−1+δ is a decreasing function},
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Bδ := {ω(t) : ω(t)t−δ is an increasing function and

ω(t)t−1+δ is a decreasing function}.
Then the classes A and B can be defined as follows:

A =
⋃

δ>0

Aδ .

and
B =

⋃
δ>0

Bδ .

For the proof of our main results we need the following Theorem:

THEOREM E. Let Φ = {ϕk}∞
k=1 be a regular system and f

a.e.=
∞
∑

k=1
akϕk.

Let 1 � q � ∞. If ω belongs to the class B, then

(∫ 1

0

(
f (t)ω(t)

)q dt
t

) 1
q

� c

(
∞

∑
k=1

(a∗kμ(k))q 1
k

) 1
q

,

where f (t) = sup
ξ�t

1
ξ

∣∣∣∣∣
ξ∫
0

f (s)ds

∣∣∣∣∣ , μ(k) = kω
(

1
k

)
and the constant c does not depend on

f .

This is just a slight generalization of Theorem 2 in [14] (see also [11]). For the
reader’s convenience we include a proof in Appendix 1.

We also need the following techniquel Lemma:

LEMMA 1. Let 1 � q � ∞ and 1 � h � ∞. If ω(t) belongs to the class B, then
for any nonincreasing function f it yields that⎛

⎝ ∞

∑
k=1

(∫ 2−k+1

2−k
( f (t)ω(t))h dt

t

) q
h
⎞
⎠

1
q

∼
(∫ 1

0
( f (t)ω(t))q dt

t

) 1
q

. (1)

Proof. First we prove the following equivalence:⎛
⎝ ∞

∑
k=1

(∫ 2−k+1

2−k
( f (t)ω(t))h dt

t

) q
h
⎞
⎠

1
q

∼
(

∞

∑
k=1

(
f (2−k)ω(2−k)

)q
) 1

q

. (2)

Let

Ih :=

⎛
⎝ ∞

∑
k=1

(∫ 2−k+1

2−k
( f (t)ω(t))h dt

t

) q
h
⎞
⎠

1
q

=

⎛
⎝ ∞

∑
k=1

(∫ 2−k+1

2−k

(
f (t)ω(t)t−1+δ t1−δ

)h dt
t

) q
h
⎞
⎠

1
q

.
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We use the fact that ω = ω(t) belong to the class B. This means that there exists δ ,
0 < δ < 1, such that ω(t)t−δ is an increasing function and ω(t)t−1+δ is a decreasing
function. Then we have:

Ih �

⎛
⎝ ∞

∑
k=1

⎛
⎝ f (2−k)ω(2−k)2−k(−1+δ )

(∫ 2−k+1

2−k
t(1−δ )h dt

t

) 1
h
⎞
⎠

q⎞
⎠

1
q

= c1

(
∞

∑
k=1

(
f (2−k)ω(2−k)2k−kδ 2kδ−k

)q
) 1

q

= c1

(
∞

∑
k=1

(
f (2−k)ω(2−k)

)q
) 1

q

.

Ih =

⎛
⎝ ∞

∑
k=1

(∫ 2−k+1

2−k

(
f (t)ω(t)t−δ tδ

)h dt
t

) q
h
⎞
⎠

1
q

�

⎛
⎝ ∞

∑
k=1

⎛
⎝ f (2−k+1)ω(2−k)2kδ

(∫ 2−k+1

2−k
tδh−1dt

) 1
h
⎞
⎠

q⎞
⎠

1
q

= c2

(
∞

∑
k=1

(
f (2−k+1)ω(2−k)

)q
) 1

q

� c3

(
∞

∑
k=1

(
f (2−k)ω(2−k)

)q
) 1

q

.

Thus, (2) is proved, which, in particular means that Ih1 ∼ Ih2 for all h1 and h2. More-
over, since f is nonincreasing and ω ∈ B, it follows that

(
∞

∑
k=1

(
f (2−k)ω(2−k)

)q
) 1

q

∼
(∫ 1

0
( f (t)ω(t))q dt

t

) 1
q

.

In particular, (1) follows and the proof is complete. �

3. Main results

The main results of this paper are the following generalizations of the Boas theo-
rem:

THEOREM 1. Let 1 � q � ∞ and ω ∈ B. Let Φ = {ϕk}∞
k=1 be a regular system

and let f
a.e.= ∑∞

k=1 akϕk. If f is a nonnegative and a nonincreasing function, then

(∫ 1

0
( f (t)ω (t))q dt

t

) 1
q

∼
(

∞

∑
k=1

(a∗kμ(k))q 1
k

) 1
q

,

where μ(k) = kω( 1
k ).
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We say that a function f on [0,1] is generalized monotone if there exists some
constant M > 0 such that

| f (x)| � M
1
x

∣∣∣∣
∫ x

0
f (t)dt

∣∣∣∣ , x > 0.

Our next main result reads:

THEOREM 2. Let 1 � q � ∞ and ω ∈ A. Let Φ = {ϕk}∞
k=1 be a regular system

and let f
a.e.= ∑∞

k=1 akϕk. If f is a nonnegative and a generalized monotone function,
then

‖ f‖Λq(ω,[0,1]) ∼
(

∞

∑
k=1

(a∗kμ(k))q 1
k

) 1
q

,

where μ(k) = kω( 1
k ).

4. Proofs of the main results

Proof of Theorem 1. The necessary part is similar to that in Theorem E. Indeed,
since f is a nonincreasing function, then f (t) � f (t), 0 < t < 1, so that

(∫ 1

0
( f (t)ω (t))q dt

t

) 1
q

�
(∫ 1

0

(
f (t)ω (t)

)q dt
t

) 1
q

� c

(
∞

∑
k=1

(a∗kμ(k))q 1
k

) 1
q

,

where f (t)= sup
ξ�t

1
ξ

ξ∫
0

f (s)ds. We prove the sufficient condition. The condition ω(t)∈B

implies that there exists δ > 0 such that ω(t)t−δ is an increasing and ω(t)t−1+δ is a
decreasing function, i.e. μ(k)k−δ is increasing and μ(k)k−1+δ is decreasing. Then the
following estimate holds:

1
k

k

∑
n=1

μq(n)
n

� c
μq(k)

k
, k ∈ N.

Indeed,
1
k

k

∑
n=1

μq(n)
n

� 1
k

μq(k)k−δ
k

∑
n=1

1

n1−δ ∼ μq(k)
k

.

Next, we use Theorem 2.4.12 (ii) from [6] to conclude that the following equality holds:

λq(μ) =
(
λq′(μ−1k)

)′
, for 1 < q < ∞,

where
(
λq′(μ−1k)

)′
is dual space for the space λq(μ). Hence, by appling the duality

representation of the norm of a sequence a in the space λq(μ) (see [6]), we obtain that

‖a‖λq(μ) = sup
‖b‖λq′ (μ−1k)=1

∞

∑
k=1

akbk.
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Now we use Parseval’s formula and find that

‖a‖λq(μ) = sup
‖b‖λq′ (μ−1k)=1

∫ 1

0
f (t)g(t)dt

= sup
‖b‖λq′ (μ−1k)=1

∞

∑
k=0

∫ 2−k

2−k−1
f (t)g(t)dt

� sup
‖b‖λq′ (μ−1k)=1

∞

∑
k=0

∣∣∣∣∣
∫ 2−k

2−k−1
f (t)g(t)dt

∣∣∣∣∣ . (3)

We apply the mean value theorem to the integral
∫ 2−k

2−k−1 f (t)g(t)dt to conclude that
there exists ξ from

(
2−k−1, 2−k

)
such that∣∣∣∣∣

∫ 2−k

2−k−1
f (t)g(t)dt

∣∣∣∣∣ =
∣∣∣∣ f (2−k−1)

∫ ξ

2−k−1
g(t)dt

∣∣∣∣
� f (2−k−1)

(∣∣∣∣
∫ ξ

0
g(t)dt

∣∣∣∣+
∣∣∣∣∣
∫ 2−k−1

0
g(t)dt

∣∣∣∣∣
)

� f (2−k−1)

(
2−k sup

s�2−k−2

1
s

∣∣∣∣
∫ s

0
g(t)dt

∣∣∣∣+2−k sup
s�2−k−2

1
s

∣∣∣∣
∫ s

0
g(t)dt

∣∣∣∣
)

= 2 ·2−k · f (2−k−1) ·g(2−k−2), (4)

where g(2−k−2) = sup
s�2−k−2

1
s |
∫ s
0 g(t)dt| .

Thus, by inserting (4) in (3), we conclude that

‖a‖λq(μ) � 8 sup
‖b‖λq′ (μ−1k)=1

∞

∑
k=0

2−k−2 f (2−k−1)g(2−k−2)

= 8 sup
‖b‖λq′ (μ−1k)=1

∞

∑
k=0

(
2−k−2

(
ω(2−k−2)

)−1
g(2−k−2)

)
· f (2−k−1)ω(2−k−2)

= 8 sup
‖b‖λq′ (μ−1k)=1

∞

∑
k=2

(
2−k
(

ω(2−k)
)−1

g(2−k)
)
· f (2−k+1)ω(2−k).

Next, by using Hölder’s inequality, we get that

‖a‖λq(μ) � c1 sup
‖b‖λq′ (μ−1k)=1

(
∞

∑
k=2

(
2−k
(

ω(2−k)
)−1

g(2−k)
)q′
) 1

q′

×
(

∞

∑
k=2

(
f (2−k+1)ω(2−k)

)q
) 1

q
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� c1 sup
‖b‖λq′ (μ−1k)=1

(
∞

∑
k=1

(
2−k
(

ω(2−k)
)−1

g(2−k+1)
)q′
) 1

q′

×
(

∞

∑
k=1

(
f (2−k+1)ω(2−k)

)q
) 1

q

= c2 sup
‖b‖λq′ (μ−1k)=1

⎛
⎝ ∞

∑
k=1

(
2−k(1−δ )ω−1(2−k)

2−k(1−δ ) 2−kg(2−k+1)

)q′
⎞
⎠

1
q′

×
(

∞

∑
k=1

(
2kδ ω(2−k)

2kδ f (2−k+1)
∫ 2−k+1

2−k

dt
t

)q) 1
q

.

Since f (t) is a nonincreasing function for all 0 < t < 1 and ω(t) belongs to B, then
there exists 0 < δ < 1 such that ω(t)t−δ is an increasing and ω(t)t−1+δ is a decreasing
function, we get that

‖a‖λq(μ) � c3 sup
‖b‖λq′ (μ−1k)=1

⎛
⎝ ∞

∑
k=1

(
2k(1−δ )

∫ 2−k+1

2−k
t1−δ ω−1(t)g(t)dt

)q′
⎞
⎠

1
q′

×
(

∞

∑
k=1

(
2−kδ

∫ 2−k+1

2−k
f (t)ω(t)t−δ dt

t

)q) 1
q

� c4 sup
‖b‖λq′ (μ−1k)=1

⎛
⎝ ∞

∑
k=1

(∫ 2−k+1

2−k
tω−1(t)g(t)

dt
t

)q′
⎞
⎠

1
q′ ( ∞

∑
k=1

(∫ 2−k+1

2−k
f (t)ω(t)

dt
t

)q)1
q

.

By now applying Lemma 1, we obtain that

‖a‖λq(μ) � c5 sup
‖b‖λq′ (μ−1k)=1

(∫ 1

0

(
tω−1(t)g(t)

)q′ dt
t

) 1
q′ ·
(∫ 1

0
( f (t)ω(t))q dt

t

) 1
q

.

Furthermore, by using Theorem E, we obtain the following estimate

‖a‖λq(μ) � c6 sup
‖b‖λq′ (μ−1k)=1

(
∞

∑
k=1

(
b∗kkμ−1(k)

)q′ 1
k

) 1
q′
·
(∫ 1

0
( f (t)ω(t))q dt

t

) 1
q

= c6 sup
‖b‖λq′ (μ−1k)=1

‖b‖λq′(μ−1k) ·
(∫ 1

0
( f (t)ω(t))q dt

t

) 1
q

= c6

(∫ 1

0
( f (t)ω(t))q dt

t

) 1
q

.
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The proof is complete. �

Proof of Theorem 2. The condition ω(t) ∈ A implies that there exists δ > 0 such

that ω(t)t−
1
2−δ is an increasing function and ω(t)t−1+δ is a decreasing function. The

necessary condition follows in a similar way as in Theorem E. Indeed, let x > 0 and

f ∗∗(x) := sup
|e|=x

1
|e|
∫

e
| f (t)|dt.

It is obvious that f ∗(x) � f ∗∗(x). Since f is a generalized monotone function, it yields
that

f ∗∗(x) = sup
|e|=x

1
|e|
∫

e
| f (t)|dt � sup

|e|=x

1
|e|
∫

e
f (t)dt =

1
x

∫ x

0
f (t)dt,

where f (t) = sup
ξ�t

∫ ξ
0 f (s)ds.

Thus, we obtain the following inequalities

‖ f‖Λq(ω) � ‖ f ∗∗‖Λq(ω) � M‖1
x

∫ x

0
f (t)dt‖Λq(ω). (5)

We prove the following inequality

(∫ 1

0

(
ω(x)

1
x

∫ x

0
f (t)dt

)q dx
x

) 1
q

� c

(∫ 1

0

(
f (t)ω(t)

)q dt
t

) 1
q

. (6)

Choose ε so that − 1
q +1− δ < ε < − 1

q +1. We consider for any x > 0

∫ x

0
f (t)dt =

∫ x

0
f (t)tε t−εdt.

Next we use Hölder’s inequality and the fact that ε < − 1
q +1 to find that

∫ x

0
f (t)dt � c1

(∫ x

0

(
f (t)tε)q dt

) 1
q
(∫ x

0

(
t−ε)q′ dt

) 1
q′

∼
(∫ x

0

(
f (t)tε)q dt

) 1
q

x
−ε+ 1

q′ .

Moreover,

I := c2

(∫ 1

0

(
ω(x)x−ε+ 1

q′ −1
)q(∫ x

0

(
f (t)tε)q dt

)
dx
x

) 1
q

= c2

(∫ 1

0

(
f (t)tε)q(∫ 1

t
x−εq−1ωq(x)

dx
x

)
dt

) 1
q

.
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By now using the fact that ω(t)t−
1
2−δ is an increasing function, we find that

I � c2

(∫ 1

0

(
f (t)tε)q(ω(t)t−

1
2−δ
)q
(∫ 1

1
t

xεq+1− 1
2 q−δq dx

x

)
dt

) 1
q

.

Taking into account that ε � − 1
q + 1

2 + δ , we obtain that

I � c3

(∫ 1

0

(
f (t)ω(t)

)q dt
t

) 1
q

.

Thus, we have proved the inequality (6). From (5) and (6) it follows that

‖ f‖Λq(ω) � c3‖ f‖Λq(ω).

By now applying Theorem E, we obtain that

‖ f‖Λq(ω) � c4‖a‖λq(μ).

Since each regular system is bounded orthonormal system, then the sufficient con-
dition follows from Theorem 2 in [13].

The proof is complete. �

5. Appendix 1

Proof of Theorem E. Assume that ω(t) belongs to the class B. This means that
there exists δ > 0 such that ω(t)t−δ is an increasing function and ω(t)t−1+δ is a
decreasing function. Suppose that

(
∞

∑
k=1

(a∗kμ(k))q 1
k

) 1
q

< ∞

and f
a.e.= ∑∞

k=1 akϕk. It yields that

∣∣∣∣
∫ ξ

0
f (s)ds

∣∣∣∣ =

∣∣∣∣∣
∫ ξ

0
∑
k∈N

akϕk(s)ds

∣∣∣∣∣
� ∑

k∈N

|ak|
∣∣∣∣
∫ ξ

0
ϕk(s)ds

∣∣∣∣ , for all ξ ∈ [0,1].

According to the regularity assumption we have that∣∣∣∣
∫ ξ

0
ϕk(s)ds

∣∣∣∣� Bmin

(
ξ ,

1
k

)
, k ∈ N.
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Hence,

∞

∑
k=1

|ak|
∣∣∣∣
∫ ξ

0
ϕk(s)ds

∣∣∣∣ � c1

∞

∑
k=1

|ak|min

(
ξ ,

1
k

)

� c1

∞

∑
k=1

a∗k min

(
ξ ,

1
k

)

� c1

⎛
⎜⎝
[

1
ξ

]
∑
k=1

a∗kξ +
∞

∑
k=
[

1
ξ

]a∗k
1
k

⎞
⎟⎠ .

Consequently,

∣∣∣∣
∫ ξ

0
f (s)ds

∣∣∣∣ � c1

⎛
⎜⎝
[

1
ξ

]
∑
k=1

a∗kξ +
∞

∑
k=
[

1
ξ

]a∗k
1
k

⎞
⎟⎠

and we have that(∫ 1

0

(
f (t)ω (t)

)q dt
t

) 1
q

� c1

⎛
⎜⎝∫ 1

0

⎛
⎜⎝ω(t)sup

ξ�t

1
ξ

⎛
⎜⎝
[

1
ξ

]
∑
k=1

a∗kξ +
∞

∑
k=
[

1
ξ

]a∗k
1
k

⎞
⎟⎠
⎞
⎟⎠

q

dt
t

⎞
⎟⎠

1
q

� c1

⎛
⎜⎝∫ 1

0

⎛
⎜⎝ω(t)sup

ξ�t

1
ξ

⎛
⎜⎝
[

1
ξ

]
∑
k=1

a∗kξ +
[ 1

t ]
∑

k=
[

1
ξ

]a∗k ·
1
k

+
∞

∑
k=[ 1

t ]
a∗k

1
k

⎞
⎟⎠
⎞
⎟⎠

q

dt
t

⎞
⎟⎠

1
q

� c1

⎛
⎜⎝∫ 1

0

⎛
⎜⎝ω(t)sup

ξ�t

1
ξ

⎛
⎜⎝
[

1
ξ

]
∑
k=1

a∗kξ +
[ 1

t ]
∑

k=
[

1
ξ

]a∗k ·ξ +
∞

∑
k=[ 1

t ]
a∗k

1
k

⎞
⎟⎠
⎞
⎟⎠

q

dt
t

⎞
⎟⎠

1
q

= c1

⎛
⎝∫ 1

0

⎛
⎝ω(t)sup

ξ�t

1
ξ

⎛
⎝ [ 1

t ]
∑
k=1

a∗kξ +
∞

∑
k=[ 1

t ]
a∗k

1
k

⎞
⎠
⎞
⎠

q

dt
t

⎞
⎠

1
q

= c1

⎛
⎝∫ 1

0

⎛
⎝ω(t)

⎛
⎝ [ 1

t ]
∑
k=1

a∗k + sup
ξ�t

1
ξ
·

∞

∑
k=[ 1

t ]
a∗k

1
k

⎞
⎠
⎞
⎠

q

dt
t

⎞
⎠

1
q

� c1

⎛
⎝∫ 1

0

⎛
⎝ω(t)

⎛
⎝ [ 1

t ]
∑
k=1

a∗k +
1
t
·

∞

∑
k=[ 1

t ]
a∗k

1
k

⎞
⎠
⎞
⎠

q

dt
t

⎞
⎠

1
q
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� c1

⎛
⎝∫ 1

0

⎛
⎝ω(t)

[ 1
t ]

∑
k=1

a∗k

⎞
⎠

q

dt
t

⎞
⎠

1
q

+ c1

⎛
⎝∫ 1

0

⎛
⎝ω(t)

1
t

∞

∑
k=[ 1

t ]
a∗k

1
k

⎞
⎠

q

dt
t

⎞
⎠

1
q

:= c1 (I1 + I2) .

We consider first I1. Choose a small number ε such that 1
q −1−δ < ε < 1

q −1. Since

ω (t)t−δ is an increasing function of t, it yields that

I1 =

⎛
⎝∫ 1

0

⎛
⎝ω(t)

[ 1
t ]

∑
k=1

a∗k

⎞
⎠

q

dt
t

⎞
⎠

1
q

=

⎛
⎝∫ 1

0

⎛
⎝ω (t)t−δ

t−δ

[ 1
t ]

∑
k=1

a∗k

⎞
⎠

q

dt
t

⎞
⎠

1
q

�

⎛
⎝∫ 1

0

⎛
⎝tδ

[ 1
t ]

∑
k=1

ω
(

1
k

)(
1
k

)−δ
a∗k

⎞
⎠

q

dt
t

⎞
⎠

1
q

=

(∫ ∞

1

(
t−δ

t

∑
k=1

ω
(

1
k

)(
1
k

)−δ
a∗k

)q
dt
t

) 1
q

∼
(

∞

∑
n=1

(
n−δ

n

∑
k=1

ω
(

1
k

)(
1
k

)−δ
a∗k

)q
1
n

) 1
q

.

Next we use Hölder’s inequality and the fact that ε > 1
q −1− δ to find that

I1 � c2

⎛
⎝ ∞

∑
n=1

⎛
⎝n−δ

(
n

∑
k=1

(
ω
(

1
k

)
k−εa∗k

)q
) 1

q
(

n

∑
k=1

k(δ+ε)q′
) 1

q′
⎞
⎠

q

1
n

⎞
⎠

1
q

∼
(

∞

∑
n=1

n(−δ )qn
(δ+ε)q+ q

q′ 1
n

n

∑
k=1

(
ω
(

1
k

)
k−εa∗k

)q
) 1

q

.

Here we interchange the order of summation and find that

I1 � c2

(
∞

∑
k=1

(
ω
(

1
k

)
k−εa∗k

)q ∞

∑
n=k

nεq+q−2

) 1
q

.

Furthemore, by also using that ε < 1
q −1, we have that

I1 � c3

(
∞

∑
k=1

(
ω
(

1
k

)
ka∗k

)q 1
k

) 1
q

= c3

(
∞

∑
k=1

(μ(k)a∗k)
q 1

k

) 1
q

. (7)
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Next, we estimate I2 in a similar way. Choose ε such that −1+ 1
q < ε < −1+

1
q + δ . By now using the growth properties of ω(t) we find that

I2 =

⎛
⎝∫ 1

0

⎛
⎝ω (t)

1
t

∞

∑
k=[ 1

t ]
a∗k

1
k

⎞
⎠

q

dt
t

⎞
⎠

1
q

=

⎛
⎝∫ 1

0

⎛
⎝ω (t)t−1+δ

t−1+δ
1
t

∞

∑
k=[ 1

t ]

a∗k
k

⎞
⎠

q

dt
t

⎞
⎠

1
q

�

⎛
⎝∫ 1

0

⎛
⎝t−δ

∞

∑
k=[ 1

t ]
ω
(

1
k

)
k1−δ a∗k

k

⎞
⎠

q

dt
t

⎞
⎠

1
q

=

(∫ ∞

1

(
tδ

∞

∑
k=t

ω
(

1
k

)
k1−δ a∗k

k

)q
dt
t

) 1
q

∼
(

∞

∑
n=1

(
nδ

∞

∑
k=n

ω
(

1
k

)
k1−δ a∗k

k

)q
1
n

) 1
q

.

Next we use Hölder’s inequality and the fact that ε < −1+ 1
q + δ to find that

I2 � c4

⎛
⎝ ∞

∑
n=1

⎛
⎝nδ

(
∞

∑
k=n

(
a∗kω

(
1
k

)
k−ε
)q
) 1

q
(

∞

∑
k=n

k(−δ+ε)q′
) 1

q′
⎞
⎠

q

1
n

⎞
⎠

1
q

∼
(

∞

∑
n=1

nεq+q−2
∞

∑
k=n

(
a∗kω

(
1
k

)
k−ε
)q
) 1

q

=

(
∞

∑
k=1

(
a∗kω

(
1
k

)
k−ε
)q k

∑
n=1

nεq+q−2

) 1
q

.

By interchanging the order of summation and using the fact that ε > −1+ 1
q , we

obtain that

I2 � c5

(
∞

∑
k=1

(a∗kμ(k))q 1
k

) 1
q

. (8)

To complete the proof we just combine (7) with (8). �
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