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Abstract

There is a rapid growth in the number of available biological datasets due
to the advent of high-throughput data collection instruments combined with
cheap compute infrastructure. Modern instruments enable the analysis of
biological data at different levels, from small DNA sequences through larger
cell structures, and up to the function of entire organs. These new datasets have
brought the need to develop new software packages to enable novel insights
into the underlying biological mechanisms in the development and progression
of diseases such as cancer.

The heterogeneity of biological datasets require researchers to tailor the explo-
ration and analyses with a wide range of different tools and systems. However,
despite the need for their integration, few of them provide standard inter-
faces for analyses implemented using different programming languages and
frameworks. In addition, because of the many tools, different input parame-
ters, and references to databases, it is necessary to record these correctly. The
lack of such details complicates reproducing the original results and the reuse
of the analyses on new datasets. This increases the analysis time and leaves
unrealized potential for scientific insights.

This dissertation argues that we can develop unified systems for reproducible
exploration and analysis of high-throughput biological datasets. We propose
an approach, Small Modular Entities (SMEs), for developing data analysis
pipelines and data exploration applications in cancer research. We realize SMEs
using software container technologies together with well-defined interfaces,
configuration, and orchestration. It simplifies developing such applications,
and provides detailed information needed to reproduce the analyses.

Through this approach we have developed different applications for analyzing
high-throughput DNA sequencing datasets, and for exploring gene expression
data integrated with questionnaires, registry, and online databases. The evalua-
tion shows how we effectively capture provenance in analysis pipelines and data
exploration applications. Our approach simplifies the sharing of methods, data,
tools, and applications, all fundamental to enable reproducible science.
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Introduction

There is a rapid growth in the number of available biological datasets due to
the decreasing costs of data collection. This brings opportunities for gaining
novel insights into the underlying biological mechanisms in the development
and progression of diseases such as cancer, possibly leading to the development
of new diagnostic tests or drugs for treatment. The wide range of different
biological datasets has led to the development of hundreds of software packages
and systems to explore and analyze these datasets. However, there are few
systems that are designed with the full analysis process in mind, from raw
data into interpretable and reproducible results. While existing systems are
used to provide novel insights in diseases, there is little emphasis on reporting
and sharing detailed information about the analyses. This leads to unnecessary
difficulties when reusing known methods, and reproducing the analyses, which
in turn leads to a longer analysis process and therefore unrealized potential for
scientific insights. For clinicians, inaccurate results from improperly developed
analyses can lead to negative consequences for patient care.[1]

We have identified four main challenges for application developers to under-
take when building systems for analyzing and exploring biological datasets in
research and the clinic. These challenges are common for large datasets such
as high-throughput sequencing data that require long-running, deep analysis
pipelines, as well as smaller datasets, such as microarray data, that require
complex, but short-running analysis pipelines. The first challenge is managing
datasets and analysis code in data exploration applications and data analysis
pipelines. This includes storing all information that is necessary to a data ana-



2 CHAPTER 1 / INTRODUCTION

lyst when he or she is interpreting the data, as well as any analysis code that was
used to analyze the data. The second challenge is to develop data exploration
applications that provide sufficient information to fully document every step
that went into the analyses up to an end result. This includes reporting input
parameters, tool versions, database versions, and dataset versions. The third
challenge is developing applications that require the integration of disparate
systems. These are often developed using different programming languages
and provide different functionality, e.g., the combination of a web-based visual-
ization with a graphical processing unit (GPU) accelerated statistical method,
or the integration of a remote biological database. The final challenge is to
develop applications and systems so that they can be easily shared and reused
across research institutions.

As a result, there is a wealth of specialized approaches and systems to man-
age and analyze modern biological data. Systems such as Galaxy[2] provide
simple Graphical User Interfaces (GUIs) for setting up and running analysis
pipelines. However, it is difficult to install and maintain, and less flexible for
explorative analyses where it is necessary to try out new tools and different tool
configurations.[3] With R and its popular package repository Bioconductor,[4]
researchers can select from a wide range of packages to tailor their analyses.
These provide specialized analysis environments, but makes it necessary for
the analyst to manually record information about data, tools, and tool ver-
sions. Systems such as Pachyderm[s] or the Common Workflow Language
(cwL)[6] and its different implementations, can help users with standardiz-
ing the description and sharing of analysis pipelines. However, many of these
require complex compute infrastructure and are too cumbersome to set up
for institutions without dedicated technical staff. Shiny[7] and OpenCPU[8]
provide frameworks for application developers to build systems to interactively
explore results from statistical analyses. These are useful for building explo-
ration applications that integrate with statistical analyses. With the addition of
new datasets and methods every year, it seems that analysis of biological data
requires a wide array of different tools and systems.

This dissertation argues that, instead, we can facilitate the development of
reproducible data analysis and exploration systems for high-throughput bio-
logical data, through the integration of disparate systems and data sources. In
particular, we show how software container technologies together with well-
defined interfaces, configurations, and orchestration provide the necessary
foundation for these systems. This allows for easy development and sharing of
specialized analysis systems.

The resulting approach, which we have called Small Modular Entities (SMEs),
argues that applications for analyzing and exploring biological datasets should
be modeled as a composition of individual systems and tools. We believe that the



Unix philosophy to "Do one thing and do it well"[9] appropriately summarizes
many existing tools in bioinformatics, and we should aim to build applications
as compositions of these tools. Our SME approach resembles the traditional
Unix-like pipelines, in combination with the service-oriented architecture[10]
or the microservice architectural style now popularized by web-scale distributed
systems.[11]

The approach has several key advantages when implementing systems to
analyze and explore biological data:

* It enables and simplifies the development of applications that integrate
disparate tools.

* It enables reproducible research by packaging applications and tools
within containerized environments.

* With well-defined interfaces it is a simple task to add new components
to a system, or modify existing ones.

» Through software container technology it becomes a simple task to deploy
and scale up such applications.

In collaboration with researchers in systems epidemiology and precision medicine
we developed a set of applications and systems necessary to organize, analyze,
and interpret their datasets. From these systems we extrapolated a set of gen-
eral design principles to form a unified approach. We evaluate this approach
through these systems using real datasets to show its viability.

From a longer-term perspective we discuss the general patterns for implement-
ing reproducible data analysis systems for use in biomedical research. As more
datasets are produced every year, research will depend on the simplicity of the
systems for analyzing these, and that they provide the necessary functionality
to reproduce and share the analysis pipelines.

Thesis statement: A unified development model based on software container
infrastructure can efficiently provide reproducible and easy to use environments
to develop applications for exploring and analyzing biological datasets.
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1.1 Problems with Data Analysis and Exploration
in Bioinformatics

High-throughput technologies for cheaper and faster data generation, as well
as simpler access to the datasets have revolutionized biology.[12, 13] While
these datasets can reveal the genetic basis of disease in patients, they require
the collaborative efforts of experts from different fields to design and perform
the analyses, and to to interpret the results.[14] Since interpretations are only
as good as the information they are based on, researchers have to constantly
ensure the quality of the underlying data and analyses.[15]

Today shell scripts are often used for building analysis pipelines in bioinfor-
matics. This comes from the familiarity of the shell environment and the
Command-line Interface (CLI) of the different tools. However, there is a move
towards using more sophisticated approaches for analyzing biological datasets
using workflow and pipeline mangers such as Snakemake[16], and the different
implementations of the CWL[6] such as Galaxy[2] and Toil[17]. These simplify
setting up and executing the analysis pipeline. However, these tools still have
their limitations, such as maintenance and tool updates. Other programming
environments and scripting languages such as Python or R both provide a wide
variety of software packages to read and process biological datasets. Especially
the package repository Bioconductor[4] provides a long list of well-maintained
software packages. Both these languages require the researchers to set up
their own analyses, but can be tailored to fit their data precisely. For visually
exploring biological data there are a range of tools, such as Cytoscape[18] and
Circos[19], that support importing an already-analyzed dataset to visualize
and browse the data. One problem with these are that they are decoupled from
the analysis, making it difficult to retrace the underlying analyses.

Although there are efforts to develop tools to help researchers explore and
analyze biological datasets, they current tools have several drawbacks:

1. Standardization: Because of the specialized nature of each data analysis
tool, a full workflow for exploring or analyze biological data will have
to combine multiple tools. The tools provide different interfaces and
processing data often require data wrangling between the tools.

2. Decoupling: Data exploration tools are often decoupled from the statis-
tical analyses. This often makes it a difficult to document and retrace the
analyses through the full workflow.

3. Complexity: Analyses that start as a simple script quickly become more
complex to maintain and develop as developers add new functionality



1.2 / SMALL MODULAR ENTITIES (SMES) 5

to the analyses.

4. Reusability: Data exploration tools are often developed as a single
specialized application, making it difficult to reuse parts of the application
for other analyses or datasets. This leads to duplicate development effort
and abandoned projects.

5. Reproducibility: While there are tools for analyzing most data types
today, these require the analyst to manually record versions, input pa-
rameters, and reference databases. This makes analysis results difficult
to reproduce because of the large number of variables that may impact
the results.

Because of these drawbacks, a approach for unifying reproducible data analysis
and exploration systems would reduce the time-to-interpretation of biological
datasets significantly.

1.2 Small Modular Entities (SMEs)

In collaboration with researchers in systems epidemiology and biology we have
developed an approach for designing applications for three specific use cases.
The first is to manage and standardize the analysis of datasets from a large
population-based cohort, NOWAC.[20]. The second is to enable interactive
exploration of these datasets. The final use case is to develop pipelines for
analyzing sequencing datasets for use in a precision medicine setting. Although
these use cases require widely different systems with different requirements, the
applications share common design patterns. Figure 1.1 shows the applications
we have developed and the underlying systems.

We discuss how the approach is suitable for different use cases before high-
lighting why it is suitable for all of them. Figure 1.2 shows the three different
use cases and one such SME. We can use it in data exploration applications,
analysis pipelines, and for building data management systems.

1.2.1 Data Management and Analysis

Modern epidemiological studies integrate traditional questionnaire data with
information from public registries and biological datasets. These often span
multiple biological levels, i.e., different data types and collection sites. While
traditional survey based datasets require few specialized analysis tools because
of the relatively simple nature of the data, biological datasets require specialized
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Figure 1.1: The applications and their underlying systems discussed in this thesis.
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Figure 1.2: An illustration of how we envision the SME approach in data manage-
ment systems, data exploration applications and analysis pipelines. In this
example we reuse an R package for all use cases.
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tools for reading, analyzing, and interpreting the data. Package repositories
such as Bioconductor[4] provide a wealth of packages for analyzing these
datasets. These packages typically provide analysis tools, example data, and
comprehensive documentation. While the analysis code can be shared within
projects, the datasets are often stored in in-house databases or shared file
systems with specialized permissions. Together the packages and datasets form
building blocks that researchers can develop their analyses on top of. They can
compose their analyses using packages that fit their specific needs. The analysis
code in the NOWAC study may constitute such a building block. Therefore, we
combined the datasets from the NOWAC cohort with documentation, analysis
scripts, and integration with registry datasets, into a single package. This
approach simplifies the researcher’s first steps in the analysis of the different
data in our study. On top of the NOWAC package we then implemented a
user-friendly preprocessing pipelining tool named Pippeline.

Inspired by the ecosystem of packages in the R programming language we
implemented our approach as the NOWAC R package. Users simply install the
package and get access to documentation, datasets, and utility functions for
analyzing datasets related to their area of research. We use version control
for both code and the data, making it possible to track changes over time as
the research study evolves. Pippeline is a web-based interface for running the
standardized preprocessing steps before analyzing gene expression datasets in
the NOWAC cohort.

1.2.2 Interactive Data Exploration Applications

The final results from an analysis pipeline require researchers to investigate
and evaluate the final output. In addition, it may be useful to explore the
analysis parameters and re-run parts of the analyses. As with analysis pipelines,
there are complete exploration tools as well as software libraries to develop
custom applications for exploration of analysis results. The tools often require
users to import already analyzed datasets but provide interactive visualizations
and point-and-click interfaces to explore the data. Users with programming
knowledge can use the wealth of software packages for visualization within
languages such as R or Python. Frameworks such as BioJS[21] now provide
developers with tools to develop web applications for exploring biological
datasets. It is apparent that these types of systems also consist of multiple
smaller components that together can be orchestrated into a single application.
These applications typically include of three major parts: (i) data visualization;
(ii) integration with statistical analyses and datasets; and (iii) integration
with online databases. While each of these are specialized for each type of
data exploration application, they share components that can be reused across
different types of applications.
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To facilitate the integration with statistical analyses and datasets, we wrote
an interface to the R programming language, that would allow us to interface
with the wealth of existing software packages, e.g., the NOWAC package, for bi-
ological data analyses from a point-and-click application. New data exploration
applications could access analyses directly through this interface, removing
the previous decoupling between the two. We followed the same approach to
integrate with online databases. We could standardize the interface from the
applications to the different databases, and implement an application on top
of these.

We implemented all components as a part of Kvik, a collection of packages to
develop new data exploration applications.[22] Kvik allows applications written
in any modern programming language to interface with the wealth of bioin-
formatics packages in the R programming language, as well as information
available through online databases. To provide reproducible execution environ-
ments we packaged these interfaces into software containers that can be easily
deployed and shared. We have used Kvik to develop the MIXT system[23] for
exploring and comparing transcriptional profiles from blood and tumor samples
in breast cancer patients, in addition to applications for exploring biological
pathways[22].

1.2.3 Deep Analysis Pipelines

Analysis of high-throughput sequencing datasets requires deep analysis pipelines
with many steps that transform raw data into interpretable results.[24] There
are many tools available that perform the different processing steps, written
in a wide range of programming languages. The tools and their dependencies,
can be difficult to install, and they require users to correctly manage a range
of input parameters that affects the output results. With software container
technology it is a simple task for developers to share container images with
analysis tools pre-installed. Then, by designing a text-based specification for
the analyses, we can orchestrate the execution of an entire analysis pipeline
and record the flow of data through the pipeline. As with the previous use case,
we develop an analysis pipeline by composing smaller entities, or tools, into a
complete pipeline.

We implemented the approach in walrus, a tool that lets users create and
run analysis pipelines. In addition, it tracks full provenance of the input,
intermediate, and output data, as well as tool parameters. With walrus we have
successfully built analysis pipelines to detect somatic mutations in breast cancer
patients, as well as an Ribonucleic acid (RNA)-seq pipeline for comparison with
gene expression datasets. walrus has also been successfully used to analyze
DNA methylation and microRNA datasets.
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1.2.4 Similarity

The above approaches for building data analysis and exploration applications
share the same design principles. In all areas we decompose the system, into
small modular entities, and package these into software containers which are
then orchestrated together. These containers are configured and communicate
using open protocols that make it possible to interface with them using any
programming language. We track the configuration of the containers and their
orchestration using software versioning systems, and provide the necessary
information to set up the system and reproduce their results. We believe that
the SME approach is applicable to every step in the long process from raw
data collection to interpretable results, and that it makes this process more
transparent.

1.3 Applications Developed with SMEs

In this section we outline the different systems we have built using SMEs. We
detail how we implemented SME in the NOWAC package, walrus, and Kvik,
and show applications that use these.

1.3.1 Data Management and Analysis

To standardize the preprocessing of biological datasets in the NOWAC study.
With the NOWAC package we could implement a preprocessing pipeline on
top of it that used its datasets and utility functions to generate analysis-ready
datasets for the researchers. This preprocessing pipeline called Pippeline was
developed as a web application which allows the data managers in our study
to generate datasets for researchers. The pipeline performs all necessary steps
before researchers can perform their specialized analyses.

1.3.2 Interactive Data Exploration Applications

The first interactive data exploration application that we built was Kvik Path-
ways. It allows users to explore gene expression data from the NOWAC cohort
in the context of interactive pathway maps.[22] It is a web application that
integrates with the R programming language to provide an interface to the
statistical analyses. We used Kvik Pathways to repeat the analyses in a previous
published project that compared gene expression in blood from healthy women
with high and low plasma ratios of essential fatty acids.[25]
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From the first application it became apparent that we could reuse parts of the
application in the implementation of later systems. In particular, the interface
to run analyses as well as the integration with the online databases could be
implemented as services, packaged into containers, and reused in the next
application that we developed. Both of these were designed and implemented
in Kvik, which could then be used and shared later.

The second application that we built was the MIXT web application. A system
to explore and compare transcriptional profiles from blood and tumor samples
in breast cancer patients. The application is built to simplify the exploration of
results from the Matched Interactions Across Tissues (MIxT) study. Its goal was
to identify genes and pathways in the primary breast tumor that are tightly
linked to genes and pathways in the patient blood cells.[26] The web application
interfaces with the methods implemented as an R package and integrates the
results together with information from biological databases through a simple
user interface.

A third application that we developed was a simple re-deployment of the
MIXT web application with a new dataset. In this application that we simply
replaced the R package with a new package that interfaced with different
data. All the other components are reused. It demonstrates the flexibility of
the approach.

1.3.3 Deep Analysis Pipelines

The first system that we built on top of walrus was a pipeline to analyze
a patient’s primary tumor and adjacent normal tissue, including subsequent
metastatic lesions.[27] We packaged the necessary tools for the analyses into
software containers and wrote a pipeline description with all the necessary
data processing steps. Some steps required us to develop specialized scripts
to generate customized plots, but these were also wrapped in a container.
From the analyses we discovered, among other findings, inherited germline
mutations that are recognized to be among the top 50 mutations associated
with an increased risk of familial breast cancer. These were then shared with
the treating oncologists to aid the treatment plan.

The second analysis pipeline we implemented was to enable comparison of
a RNA-seq dataset to microarray gene expression values collected from the
same samples. The pipeline preprocesses the RNA dataset for all samples, and
generates transcript quantifications. Like the first pipeline, we used existing
tools together with specialized analysis scripts packaged into a container to
ensure that we could reproduce the execution environments.
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Combined these systems and applications demonstrate how small modular
entities are useful for both batch processing of datasets and interactive appli-
cations.

1.4 Summary of Results

We show the viability of our approach through real-world applications in
systems epidemiology and precision medicine. Through our nowac package
and Pippeline, we demonstrate its usefulness for enabling reproducible analyses
of biological datasets in a complex epidemiological study. We demonstrate its
usefulness for building interactive data exploration application, implemented
in Kvik. We show the applicability of small modular entities in deep analysis
pipelines, as implemented in walrus.

We have used walrus to analyze a whole-exome dataset to from a sample in the
McGill Genome Quebec [MGGQ] dataset (GSE58644)[28] to discover Single
Nucleotide Polymorphisms (SNPs), genomic variants and somatic mutations.
Using walrus to analyze a dataset added 10% to the runtime and doubled the
space requirements, but reduced days of compute time down to seconds when
restoring a previous pipeline configuration.

We have used the packages in Kvik to develop a web application, MIXT blood-
tumor, for exploring and comparing transcriptional profiles from blood and
tumor samples in breast cancer patients. In addition, we have used it to build
an application to explore gene expression data in the context of biological
pathways. We show that developing an application using a microservice ap-
proach allows us to reduce database query times down to 90%, and that we
can provide an interface to statistical analyses that is up to 10 times as fast as
alternative approaches.

Together the results show that our approach, small modular entities, can be

used to enable reproducible data analysis and exploration of high-throughput
biological datasets while still providing the required performance.

1.5 List of papers

This section contains the list of papers along with short descriptions and my
contributions to each paper.
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Paper 1
Title Kvik: three-tier data exploration tools for flexible anal-
ysis of genomic data in epidemiological studies
Authors Bjorn Fjukstad, Karina Standahl Olsen, Mie Jareid,
Eiliv Lund, and Lars Ailo Bongo
Description The initial description of Kvik, and how we used it to im-
plement Kvik Pathways, a web application for browsing
biologicap pathway maps integrated with gene expres-
sion data from the NOWAC cohort.
Contribution I designed, implemented, and deployed Kvik and

Kvik Pathways. Evaluated the system and wrote the

manuscript.
Publication date 15 March 2015
Publication venue | F1000

Citation

[22] B. Fjukstad, K. S. Olsen, M. Jareid, E. Lund, and
L. A. Bongo, “Kvik: three-tier data exploration tools
for flexible analysis of genomic data in epidemiological
studies,” FioooResearch, vol. 4, 2015

Paper 2

Title Building Applications For Interactive Data Exploration
In Systems Biology.

Authors Bjorn Fjukstad, Vanessa Dumeaux, Karina Standahl
Olsen, Michael Hallett, Eiliv Lund, and Lars Ailo Bongo.

Description Describes how we further developed the ideas from
Paper 1 into an approach that we used to build the
MIXT web application.

Contribution I designed, implemented, and deployed Kvik and the

MIXT web application. Evaluated the system and wrote
the manuscript.

Publication date

20 August 2017.

Publication venue

The 8th ACM Conference on Bioinformatics, Compu-
tational Biology, and Health Informatics (ACM BCB)
August 20-23, 2017.

Citation

[23] B. Fjukstad, V. Dumeaux, K. S. Olsen, E. Lund,
M. Hallett, and L. A. Bongo, “Building applications
for interactive data exploration in systems biology,” in
Proceedings of the 8th ACM International Conference
on Bioinformatics, Computational Biology, and Health
Informatics. ACM, 2017, pp. 556-561
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Paper 3

Title Interactions Between the Tumor and the Blood Sys-
temic Response of Breast Cancer Patients

Authors Vanessa Dumeaux, Bjgrn Fjukstad, Hans E Fjosne, Jan-
Ole Frantzen, Marit Muri Holmen, Enno Rodegerdts,
Ellen Schlichting, Anne-Lise Bgrresen-Dale, Lars Ailo
Bongo, Eiliv Lund, Michael Hallett.

Description Describes the MIXT system which enables identification
of genes and pathways in the primary tumor that are
tightly linked to genes and pathways in the patient
Systemic Response (SR).

Contribution I designed, implemented, and deployed the MIXT

web application. Contributed to the writing of the
manuscript.

Publication date

28 September 2017.

Publication venue

PLoS Computational Biology

Citation

[26] V. Dumeaux, B. Fjukstad, H. E. Fjosne, J.-O.
Frantzen, M. M. Holmen, E. Rodegerdts, E. Schlichting,
A.-L. Bgrresen-Dale, L. A. Bongo, E. Lund et al., “Inter-
actions between the tumor and the blood systemic re-
sponse of breast cancer patients,” PLoS Computational
Biology, vol. 13, no. 9, p. 1005680, 2017

Paper 4

Title A Review of Scalable Bioinformatics Pipelines

Authors Bjorn Fjukstad, Lars Ailo Bongo.

Description This review survey several scalable bioinformatics
pipelines and compare their design and their use of
underlying frameworks and infrastructures.

Contribution I performed the literature review and wrote the

manuscript.

Publication date

23 October 2017

Publication venue

Data Science and Engineering

Citation

[290] B. Fjukstad and L. A. Bongo, ‘A review of scalable
bioinformatics pipelines,” Data Science and Engineering,
vol. 2, no. 3, pp. 245-251, 2017
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Paper s

Title nsroot: Minimalist Process Isolation Tool Implemented
With Linux Namespaces.

Authors Inge Alexander Raknes, Bjorn Fjukstad, Lars Ailo
Bongo.

Description Describes a tool for process isolation built using Linux
namespaces.

Contribution I contributed to the writing of the manuscript, specifi-

cally to the literature review and related works.
Publication date 26 November 2017

Publication venue | Norsk Informatikkonferanse 2017.

Citation [30] I. A. Raknes, B. Fjukstad, and L. Bongo, “nsroot:
Minimalist process isolation tool implemented with
linux namespaces,” Norsk Informatikkonferanse, 2017

Paper 6
Title Reproducible Data Analysis Pipelines for Precision
Medicine
Authors Bjorn Fjukstad, Vanessa Dumeaux, Michael Hallett,

Lars Ailo Bongo

Description | This paper outlines how we used the SMEs approach
to build walrus.

Contribution | Idesigned,implemented, and performed the evaluation
of walrus. I also wrote the manuscript.

Publication | To appear in the proceedings of the 2019 27th Euromi-
cro International Conference On Parallel, Distributed
and Network-based Processing (PDP).

Citation [27] B. Fjukstad, V. Dumeaux, M. Hallett, and L. A.
Bongo, “Reproducible data analysis pipelines for pre-
cision medicine,” To appear in the proceedings of
2019 27th Euromicro International Conference On Par-
allel, Distributed and Network-based Processing (PDP).
IEEE, 2019

In addition to the above papers I have also contributed to the following papers
during the project:

* Y. Kiselev, S. Andersen, C. Johannessen, B. Fjukstad, K. S. Olsen, H. Sten-
vold, S. Al-Saad, T. Donnem, E. Richardsen, R. M. Bremnes et al., “Tran-
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scription factor pax6 as a novel prognostic factor and putative tumour
suppressor in non-small cell lung cancer,” Scientific reports, vol. 8, no. 1,

p- 5059, 2018

* B. Fjukstad, N. Angelvik, M. W. Hauglann, J. S. Knutsen, M. Grgnnesby;,
H. Gunhildrud, and L. A. Bongo, “Low-cost programmable air quality
sensor Kits in science education,” in Proceedings of the 49th ACM Technical
Symposium on Computer Science Education. ACM, 2018, pp. 227-232

These are not included in the thesis but they demonstrate other usage examples
of our approach.

1.6 Dissertation Plan

This thesis is organized as follows. Chapter 2 describes the characteristics of
state-of-the-art biological datasets in systems epidemiology and how we have
developed an approach to analyze these. In Chapter 3 we describe how we used
the same ideas and model to develop applications for interactively exploring
results from statistical analyses. Chapter 4 explores how we can develop analysis
pipelines for high-throughput sequencing datasets in precision medicine. It
describes in detail how we use a container centric development model to
build a tool, walrus, to develop and execute these pipelines. Finally, Chapter 5
concludes the work and discusses future directions.






Modern Biological Data
Management and Analysis

From the discovery of the DNA structure by Watson and Crick in 1953[33]
to the sequencing of the human genome in 2001,[34, 35] and the massively
parallel sequencing platforms in the later years[36], the scientific advances
have been tremendous. Today, single week-long sequencing runs can produce as
much data as did entire genome centers just years ago.[12] These technologies
allow researchers to produce data faster, cheaper and more efficiently, now
making it possible to sequence the entire genome of a patient in less than a
day. In addition to faster data generation, the new datasets are also of higher
quality.

Ensuring reproducibility through sharing of analysis code and datasets is
necessary to advance science.[37] From the many obstacles to replicate results
from the most influential papers in cancer research[38], it is apparent that it
is important to thoroughly document the entire workflow from data collection
to interpretable results. This requires implementing best practices for data
storage and processing. Such best practices are also necessary for large and
complex research studies where data collection, analysis, and interpretation
may span decades, and therefore be done in several iterations.

Ensuring reproducible science is important to individual researchers, research
groups, and to the greater society. It is not just about simplifying the replication

17
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of results, but is also related to advancing science from known results and
methods. Within science, it is important to individual researchers and research
groups not to waste time and effort to re-apply previous results to new datasets
because of poorly documented studies and results. Outside of science, it is
problematic to trust science when studies are difficult or impossible to replicate
or reproduce.

In this chapter we describe our efforts to establish an approach for reproducible
analysis of biological data in a complex epidemiological study. We first give a
short introduction to high-throughput datasets, before describing the needs of
the researchers in the NOWAC study. While we have used the NOWAC study as
a motivating example, we believe that these needs are found in other complex
research studies. We describe the previous practice for data management
and analysis, and propose a new approach to achieve reproducible analyses.
Continuing, we show that our approach to manage research data and code can
be used to develop a standardized data analysis pipeline. Further we provide
best practices for data analysis and management.

2.1 High-Throughput Datasets for Research and
Clinical Use

High-throughput technologies that are now widely used to study complex
diseases such as cancer. DNA sequencing is the process of determining the
order of nucleotides within a strand of DNA. High-throughput Sequencing
(HTS), or Next-generation Sequencing (NGS), is a term used to describe newer
technology that enables massively-parallel sequencing of DNA. HTS instruments
sequence millions of short base pairs, and we assemble these in the data analysis
process. Typical sequencing datasets are in the size of hundreds of Gigabytes
(GBs) per sample.

While HTS can study the sequence of bases, microarrays have been used to
study the transcriptome, or the genes actively expressed. While the genome
is mostly fixed for an organism, the transcriptome is continuously changing.
These instruments report the expression levels of many target genes, and by
profiling these we can study which genes are active in the biological sample.
Microarray datasets are in the size of megabytes per sample.

Another technique to study the transcriptome is to use RNA-seq technology
based on HTS. RNA-seq instruments also read millions of short base pairs in
parallel, and can be used in gene expression analysis. Because of its higher qual-
ity output, RNA-seq is the successor to microarray technology. These datasets
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are also in the size of hundreds of GBs.

Precision medicine uses patient-specific molecular information to diagnose and
categorize disease to tailor treatment to improve health outcome.[39] Impor-
tant research goal in precision medicine are to learn about the variability of the
molecular characteristics of individual tumors, their relationship to outcome,
and to improve diagnosis and therapy.[40] International cancer institutions are
therefore offering dedicated personalized medicine programs, but while the
data collection and analysis technology is emerging, there are still unsolved
problems to enable reproducible analyses in clinical settings. For cancer, HTS is
the main technology to facilitate personalized diagnosis and treatment, since it
enables collecting high quality genomic data from patients at a low cost.

2.2 Norwegian Women and Cancer (NOWAC)

In this thesis we have used data from the NOWAC study extensively. The NOWAGC
study is a prospective population-based cohort that tracks 34% (170.000) of
all Norwegian women born between 1943-57.[20] The data collection started
in NOWAC in 1991 with surveys to cover, among others, the use of oral con-
traceptives and hormonal replacement therapy, reproductive history, smoking,
physical activity, breast cancer, and breast cancer in the family. The datasets are
also integrated with data from The Norwegian Cancer Registry, and The Cause
of Death Registry in Statistics Norway. In addition to the questionnaire data,
the study includes blood samples from 50.000 women, as well as more than
300 biopsies. From the biological samples the first gene expression dataset
was generated in 2009, and the study now also features miRNA, methylation,
metabolomics, and RNA-seq datasets.

The data in the NOWAC cohort allows for a number of different study designs.
While it is a prospective cohort study, we can also draw a case-control study
from the cohort, or a cross-section study from the cohort. From the NOWAC
cohort there has been published a number of research papers that investigate
the questionnaire data together with the gene expression datasets.[25, 41]
We have also used the gene expression datasets to explore gene expression
signals in blood and interactions between the tumor and the blood systemic
response of breast cancer patients.[42, 26]. Some analyses have resulted in
patents[43] and commercialization efforts. While many interesting patterns
and results have been studied, there are still many unexplored areas in the
available datasets.

In the NOWAC study we are a traditional group of researchers, PhD and Post-Doc
students, and administrative and technical staff. Researchers have backgrounds
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from statistics, medicine, or epidemiology, and now also computer science. The
administrative and technical staff is responsible for managing the data, both
data collection and data delivery to researchers.

2.2.1 Data Management and Analysis

Surveys are the traditional data collection method in epidemiology. But to-
day, questionnaire responses are increasingly integrated with molecular data.
However, surveys are still important for designing a study that can answer
particular research questions. In this section we describe how such integrated
data analysis was done in NOWAC prior to this work. We believe many studies
have, or are still, analyzing epidemiological data using a similar practice.

In the NOWAC study we have stored the raw survey and registry data in
an in-house database backed up to an independent storage node. Previously,
researchers had to apply to get data exported from the database by an engineer.
This was typically done through SAS scripts that did some preprocessing,
e.g. selecting applicable variables or samples, before the data was sent to
researchers as SAS data files. The downstream analysis was typically done in
SAS. Researchers used e-mail to communicate and send data analysis scripts,
so there was not a central hub with all the scripts and data.

In addition to the questionnaire data, the NOWAC study also integrates with
registries which are updated regularly. The datasets from the different registries
are typically delivered as comma-separated values (CSV) files to our scientific
staff, which are then processed into a standardized format. Since the NOWAC
study is a prospective cohort, a percentage of the women are expected to get
a cancer and move from the list of controls into the list of cases.

In the NOWAC study we have processed our biological samples outside our
research institution. The received raw datasets were then stored on a local
server and made available to researchers on demand. Because of the complexity
of the biological datasets, many of these require extensive pre-processing before
they are ready for analysis.

2.3 Enabling Reproducible Research

To enable reproducible research in the NOWAC study we have developed a
system for managing and documenting the available datasets, a standardized
data preprocessing and preparation system, and a set of best practices for data
analysis and management. We designed our management and analysis system
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as a SME that we could later use in the Pippeline system for standardizing
thes extensive pre-processing steps. To determine the demands of the users,
we collaboratively identified issues with the previous practice and a set of
requirements for a system to solve these issues.

The issues with the previous practice were:

* It was difficult to keep track of the available datasets, and to determine
how these had been processed. We had no standard data storage platform
or structure, and there were limited reports for exported datasets used
in different research projects.

* There was no standard approach to preprocess and initiate data analysis.
This was because the different datasets were analyzed by different re-
searchers, and there was little practice for sharing reusable code between
projects.

* It became difficult to reproduce the results reported in our published
research manuscripts. This was because the lack of standardized prepro-
cessing, sharing of analysis tools, and full documentation of the analysis
process.

To solve these issues and enable reproducible research in the NOWAC study, we
had to develop a system for managing the data, code, and our proposed best
practices for analyzing the data. We started with identifying a set of require-
ments for a system to manage and document the different datasets:

* It should provide users with a single interface to access the datasets, their
respective documentation, and utility functions to access and analyze
the data.

* It should provide version history for the data and analysis code.

* The system should provide reproducible data analysis reports?! for any
dataset that has been modified in any way.

* It should be portable and reusable by other systems or applications.
To satisfy the above requirements we developed the nowac R package, a

software package in the R programming language that provides access to
all data, documentation, and utility functions. Since it is a requirement that

1. Such as an R Markdown file which, when executed, generates the output data and optional
documentation including plots, tables etc.
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it should be reusable we could then implement a data preparation system,
Pippeline, ontop of this R package. We identified a set of requirements for this
data preprocessing and preparation system as well:

* The data preprocessing and preparation system should provide users
with an interactive point-and-click interface to generate anlaysis-ready
datasets from the NOWAC study.

* It should use the nowac R package to retrieve datasets.

* It should provide users with a list of possible options for filtering, normal-
ization, and other options required to preprocess a microarray dataset.

* It should genererate a reproducible report along with any exported
dataset.

Finally, we developed a set of best practices for data analysis in our study. In
the rest of the section we detail how we built the nowac package, the Pippeline,
and the best practices for data analysis.

2.3.1 The nowac Package

The nowac R package is our solution for storing, documenting, and providing
analyis functions to process the datasets in the NOWAC study. We use git to
version control the analysis code and datasets, and store the repository on a self-
hosted git server. We bundle together all datasets in the nowac package. This
includes both questionnaire, registry, and gene expression datasets. Because
none of these are particularly large (no single dataset being more than tens
of GBs) we are able to distribute them with our R package. Some datasets
require pre-processing steps such as outlier removal before the analysts can
explore the datasets. For these datasets we store the raw datasets, processed
data, and the analysis-ready clean datasets. We store the raw datasets in their
original format, while clean and processed datasets are stored as R data files to
simplify importing them in R. In addition to the datasets themselves we store
the R code we used to generate the datasets. For clarity, we decorate the scripts
with specially formatted comments that can be used with knitr[44] to generate
reproducible data analysis reports. These highlight the transformation of the
data from raw to clean, with information such as removed samples or data
normalization methods.

We have documented every dataset in R package. The documentation includes
information such as data collection date, instrument types, the persons involved
with data collection and analysis, pre-processing methods etc. When users
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install the nowac package the documentation is used to generate interactive
help pages which they can browse in R, either through a command line or
through an integrated development environment (IDE) such as RStudio. We can
also export this documentation to a range of different formats, and researchers
can also view them in the R interface. Figure 2.1 shows the user interface of
RStudio where the user has opened the documentation page for one of the
gene expression dataset.

In the NOWAC package we also provide utility functions to get started with
the analysis of our datasets. Because of the specialized nature of the different
research project the NOWAC package only contains helper functions to start
analyzing NOWAC data, e.g. retrieving questionnaire data.

We use a single repository for the R package, but have opted to use git
submodules for datasets in the R package. This allows us to separate the
access to the datasets, and the documentation and analysis code. Everyone
with access to the repository can view the documentation and analysis code,
but only scientific staff have access to the data. There are however drawbacks
to creating one large repository for both data and code. Since git stores every
version of a file, these types of repositories may become large if the datasets are
changing a lot over time, and are stored in binary formats, e.g. gene expression
datasets. We have explored different techniques to minimize our repository
and have opted to store all datasets as git submodules[45]. Submodules allow
us to keep the main repository size down while still versioning the data. There
are extensions to git for versioning large datasets. git-raw[46], git-annex[47]
git-1fs[48] all provide extensions that essentially replace large files in a git
repository with pointers or other metadata, and store the actual files in an
external storage server. Since our datasets are relatively small and static, we did
not opt for any of these. Future versions may investigating these extensions, but
the key point is to version all datasets using a familiar tool, namely git.

2.4 Standardized Data Analysis

Analyzing the biological data in the NOWAC study consists of four major parts as
show on Figure 2.2. First, as explained above, the raw datasets are added to the
nowac R package and documented thoroughly by a data manager. Second, we
manually examine the biological datasets to detect outliers. We add information
about outliers to the nowac R package along with reports that describe why
an observation is marked as an outlier. Third, the data manager generates an
analysis-ready dataset for a research project using the interactive Pippeline tool.
This dataset is preprocessed, and integrated with questionnaire and registry
datasets. Fourth, researchers analyze the dataset with their tools of choice, but
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The bottom left panel shows the R command that brought up the help

page.



2.5 / BEST PRACTICES 25

following our best practices for data analysis.

2.4.1 Pippeline

We have developed our preprocessing pipeline for gene expression data as a
point-and-click web application called Pippeline. The web application is stand-
alone and does not require the users to use any command-line tools or have
any programming knowledge. Pippeline generates an analysis-ready dataset by
integrating biological datasets together with questionnaire and registry data, all
found in our nowac package. It uses pre-discovered outliers to exclude samples,
and presents the user with a list of possible processing options. It exports the
analysis-ready R data files together with a reproducible data analysis report,
an R script, that describes all processing steps. Figure 2.3 shows the filtering
step in Pippeline where users define at what level they wish to exclude gene
expression probes in the dataset.

The web application is implemented in R using the Shiny framework. It uses
the nowac R package to retrieve all datasets.

2.5 Best Practices

From our experiences we have developed a set of best practices for data analysis.
These apply both to researchers, developers, and the technical staff managing
the data in a research study:

Document every step in the analysis. Analysis of modern datasets is a com-
plex exercise with the possibility of introducing an error in every step. Analysts
often use different tools and systems that require a particular set of input
parameters to produce results. Thoroughly document every step from raw data
to the final tables that go into a manuscript.

In the NOWAC study we write help pages and reports for all datasets, and the
optional pre-processing steps.

Generate reports and papers using code. With tools such as R Markdown[49]
and kntir there are few reasons for decoupling analysis code with the presen-
tation of the results through reports or scientific papers. Doing so ensures the
correctness reported results from the analyses, and greatly simplifies reproduc-
ing the results in a scientific paper.

In the NOWAC study we produce reports from R code. These include pre-
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processing and data delivery of datasets to researchers. One example of a
report is the analyses done in [31] where we documented the association
between PAX6 gene expression and PAX6 target genes. Through a simple R
script we could share the results and underlying analyses.

Version control everything. Both code and data changes over the course of
a research project. Version control everything to make it possible to retrace
changes and the person responsible for them. It is often necessary to roll back
to previous versions or a dataset or analysis code, or to identify the researches
that worked on specific analyses.

In the NOWAC study we encourage the use of git to version control both source
code and data.

Collaborate and share code through source code management (SCM) sys-
tems. Traditional communication through e-mail makes it difficult to keep track
of existing analyses and their design choices both for existing project members
and new researchers. With SCM hosting systems such as Github developing
analysis code becomes more transparent to other collaborators, and encourages
collaboration. It also simplifies the process or archiving development decisions
such as choosing a normalization method.

In the NOWAC study we collaborate on data analysis through a self-hosted
Gitlab[50] installation. We also open-source code on Github.

2.6 Discussion

In this chapter we have proposed an approach to enable reproducible analyses in
a complex epidemiological study. While we applied our approach to a specific
epidemiological research study, we believe that it is generalizable to other
biomedical analyses and even other scientific disciplines.

Reproducible scientific experiments are fundamental to science. In many sci-
entific disciplines there is now a growing concern for the current level of
reproducibility.[51] In this chapter we outlined the main best practices from
our experiences in systems epidemiology research, and believe that these are
generalizable to other fields as well. The best practices we arrived at follow
the lines of other have described before us,[52] and we believe that these are
necessary for both our research group, but also to the scientific community, to
follow.

Bundling and sharing the analysis code together with the datasets behind a
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research paper is not a new idea. Sharing these collections, or compendia, of
data, text, and code have been described more than a decade ago.[53] It is now
becoming standard for researchers to submit the code and data along with
their research manuscripts. There are many examples of studies that put in
significant efforts to develop tools in R for transparent data science, to produce
better science in less time.[54, 55, 56] In common is the explicit documentation
of the final results using reproducible data analysis reports, and functions from
shared R packages to generate these. They also structure the datasets and
document these in a standardized manner to simplify the analysis.

While the majority of the researchers in NOWAC have previously used the
closed-source and heavily licensed SAS or STATA for their analyses of the
questionnaire data, all researchers working on molecular data are using R.
We developed an R package for researchers in our study to simplify their
analyses on both questionnaire and molecular datasets. With the R package
researchers could investigate the available datasets and analyze them in the
same environment. The great strength of R comes from its many up-to-date
and actively maintained packages for analyzing, plotting, and interpreting
data. Bioconductor[4] and the Comprehensive R Archive Network (CRAN)[57]
provide online hosing for many packages, and users can mix and match these
packages to fit their need. In addition, R is open-source and free to use on a
wide range of operating systems and environments. Providing a single software
package in NOWAC simplifies the startup time for researchers to start analyzing
datasets within the study. In addition, it standardizes the analyses and makes
the data analysis process more transparent. We believe that our solution can
be applied to other datasets and projects within different scientific disciplines,
enabling more researchers to take advantage of the many collected, but not
yet analysis-ready datasets.

While taking advantage of powerful computational tools is beneficial, they
often require trained users. A potential drawback of using an R package that is
version controlled in git to manage, document, and analyze research datasets
is the prerequisite programming skills for researchers. This may be an obstacle
for many researchers, but once they master the skills needed to analyze their
data programmatically, not just through a point-and-click interface, we believe
that it provides deeper knowledge into the analyses. While programming
skills may be absent in the training of many researchers, we believe that it is
just a matter of time before programming skills are common in the scientific
community.

There are many approaches to store and analyze biological datasets. One major
drawback with the implementation of our approach in the nowac R package is
its size. While microarray datasets are relatively small compared to sequencing
data, when these datasets grow in number the total size grows as well. This
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will impact the build time for the R package, and also its size when it is shared
with other researchers. Others have also reported that package size is an
issue, but are also investigating alternatives.[56] With larger datasets we might
experiment with extensions to git, e.g. git-1fs, as we have done in Chapter
4.

Since we developed the Pippeline to preprocess our gene expression datasets, it
has been expanded to work with RNA-seq, Methylation and microRNA datasets
as well. By using the Pippeline with new datasets researchers now have access
to the full preprocessing history behind each dataset available in the research
study.

As mentioned, we believe that our approach is applicable data management and
anlysis in other research groups as well. Other research groups can follow the
steps as described in this chapter to organize datasets and code in a software
package, e.g. an R package, and share this both within and outside the research
group. Sharing the analysis software through websites such as Github will help
other researchers apply the techniques on their own datasets. While we aim to
make all our code, documentation, and datasets public, we are unfortunately
not there yet. We are working on a public version of the nowac R package and
the Pippeline, but we must guarantee that the respective repositories do not
contain any sensitive information from the datasets. Even without the datasets,
the R package provides valuable information on how to structure analysis code
within a research study. This is ongoing work, and an important step toward
making the research more transparent.

2.7 Conclusion
In summary, we believe that there are four general rules toward reproducible
analyses. We believe that they apply to both our research study and other

similar epidemiological studies:

* Document and version control datasets and analysis code within the
study.

* Share datasets and analysis code through statistical software packages.
* Share and report findings through reproducible data analysis reports.

» Standardize and document common data preprocessing and wrangling
steps.
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In this chapter we have demonstrated one approach for reproducible manage-
ment and analysis of biological data. The needs of the users that we describe
in this chapter helped form the work in the next two chapters.






Interactive Data
Exploration Applications

Visualization is central in both the analysis and understanding of biological
functions in high-throughput biological datasets.[58] Because of the complexity
of the biological data and analyses, we need specialized software to analyze and
generate understandable visual representations of the complex datasets.[59]
While more tools are becoming available, application developers still face multi-
ple challenges when designing these tools.[59, 60] In addition to visualizing the
relevant data, tools often integrate with online databases to allow researchers
to study the data in the context of previous knowledge.[58, 59]

Data analysis tools in systems biology are greatly reliant on programming
languages specially tailored to these domains.[23] Languages such as Python
or R both provide a wealth of statistical packages and frameworks. However,
these specialized programming environments often do not provide interactive
interfaces for researchers that want to explore the results from the analyses
without using a programmatic interface. Frameworks such as Shiny[7] and
OpenCPU[8] allow application developers to build systems to interactively
explore results from statistical analyses in R. These systems can then provide
understandable graphical user interfaces on top of complex statistical software
that require programming skills to navigate. To interpret data, experts regu-
larly exploit prior knowledge via database queries and the primary scientific
literature. There are a wealth of online databases, some of which provide open

33



34 CHAPTER 3 / INTERACTIVE DATA EXPLORATION APPLICATIONS

Application Programming Interfaces (APIs) in addition to web user interfaces
that application developers can make use of. For visually exploring biological
data there are a range of tools, such as Cytoscape[18] and Circos[19], that
support importing an already-analyzed dataset to visualize and browse the
data. One problem with these are that they are decoupled from the analysis,
making it difficult to retrace the data processing prior to the end results.

One of the main issues for developing these types of data exploration applica-
tions is that they require the integration of disparate systems and tools. The
datasets require specialized analysis software, often with large computational
resources, and the end users require simple point-and-click interface available
on their device. In addition it is crucial for reproducibility to keep track of the
data processing steps that were used to generate end visualizations.

We have developed two data exploration applications, Kvik Pathways[22] and
MIXT[23, 26] for exploring transcriptional profiles in the NOWAC study through
interactive visualizations integrated with biological databases. We first de-
veloped Kvik Pathways to explore transcriptional profiles in the context of
biological pathway maps. It is a three-tiered web application consisting of three
central components, that we later refactored into three separate microservices
for use in other applications. These three microservices make up the SMEs
in our approach for building data exploration applications. With these mi-
croservices we implemented the MIXT web application, and generalized our
efforts into general design principles for data exploration applications. While
our applications provide specialized user interfaces, we show how the design
patterns and ideas can be used in a wide range of use cases. We also provide an
evaluation that shows that our approach is suitable for this type of interactive
applications.

This chapter is based on Papers 1 and 2, as well as the general descriptions of
the MIXT system in Paper 3. The rest of the chapter is organized as follows:
First we present the two motivating use cases for our applications. We then
detail the requirements for these types of interactive applications. Following
the requirements we detail the Kvik Pathways application, including its archi-
tecture and implementation. We then show how we use this first application to
generalize its design principle and show we can use them to build applications
that follow the SME approach. Following is a description of the implementation
of the SMEs approach in the microservices in Kvik. We present how we used
these to develop the MIXT web application. Finally we discuss our approach in
context of related work, and provide a conclusion.
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3.1 Motivating Use Cases

The need for interactive applications has come from two different previous
projects in the NOWAC study. Both of these rely on advanced statistical analyses
and produce comprehensive results that are interpreted by researchers in
the context of related information from online biological databases. The end
results from the statistical analyses are typically large tables that require
manual inspection and linking with known biology. Below we describe the two
applications before we detail the requirements, design and implementation of
the applications.

3.1.1 High and Low Plasma Ratios of Essential Fatty Acids

The aim of the first application was a to explore the results from a previous
published project that compared gene expression in blood from healthy women
with high and low plasma ratios of essential fatty acids.[25] Gene expression
differences where assessed and determined that there were 184 differentially
expressed genes. When exploring this list of 184 genes, functional information
was retrieved from GeneCards and other repositories, and the list was analyzed
for overlap with known pathways using MSigDB !. The researchers had to
manually maintain overview of single genes, gene networks or pathways, and
gather functional information gene by gene while assessing differences in gene
expression levels. With this approach, researchers were limited by their own
capacity to retrieve information manually from databases and keep it up to
date. An application could automate the retrieval and ensure that the data is
correct and up to date.

3.1.2 Tumor-Blood Interactions in Breast Cancer Patients

The aim of the Matched Interactions Across Tissues (MIXT) study was to
identify genes and pathways in the primary breast tumor that are tightly
linked to genes and pathways in the patient blood cells.[26] We generated
and analyzed expression profiles from blood and matched tumor cells in 173
breast cancer patients included in the NOWAC study. The MIXT analysis starts
by identifying sets of genes tightly co-expressed across all patients in each
tissue. Each group of genes or modules were annotated based on a priori
biological knowledge about gene functionality. Then the analyses investigate
the relationships between tissues by asking if specific biologies in one tissue are
linked with (possibly distinct) biologies in the second tissue, and this within
different subgroup of patients (i.e. subtypes of breast cancer).

1. Available online at broadinstitute.org/gsea/msigdb
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3.2 Requirements

From these two studies we identified a set of requirements that the data
exploration applications should satisfy. These are all based on the needs of the
researchers in the NOWAC study, and we believe that they are generalizable to
other studies.

Interactive The applications should provide interactive exploration of datasets
through visualizations and integration with relevant information.

Familiar The applications should use familiar visual representations to present
information to researchers. By using familiar or intuitive conventions we
can reduce the cognitive load needed to read a visualization and gain
insight from it.[59]

Simple to use Researchers should not need to install software to explore
their data through the applications. The applications should protect the
researcher from the burden of installing and keeping an application up
to date.

Lightweight Data presentation and computation should be separated to make
it possible for researchers to explore data without having to have the
computational power to run the analyses. With the growing rate data
is produced at, we cannot expect that researchers have the resources to
store and analyze data on their own computers.

With these requirements in mind we set out to develop two applications for
interactively explore the results from the studies along with information from
online databases.

3.3 Kvik Pathways

The first application we developed was Kvik Pathways. Kvik Pathways allows
users to interactively explore a molecular dataset, such as gene expression,
through a web application.[22] It provides pathway visualizations and detailed
information about genes and pathways from the KEGG database. Figure 3.1
shows a screenshot of the user interface of Kvik Pathways. Through pathway
visualizations and integration with the KEGG databases, users can perform
targeted exploration of pathways and genes to get an overview of the biological
functions that are involved with gene expression from the underlying dataset.
Kvik Pathways gathers information about related pathways and retrieves rele-
vant information about genes, making it unnecessary for researchers to spend
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valuable time looking up this information manually. Previously researchers had
to manually retrieve information from KEGG while browsing pathway maps,
interrupting the visual analysis process. Kvik Pathways retrieves information
about genes without the researcher having to leave the pathway visualization
to retrieve relevant information.

3.3.1 Analysis Tasks

To efficiently develop the application we designed 3 analysis tasks that the
application supports.

A1: Explore gene expression in the context of KEGG pathway maps. It provides
users with a list of pathway maps to choose from, and the application will
generate an interactive visualization including gene expression values.

A2: Investigate and retrieve relevant biological information. It provides users
with direct links to online databases with up to date information.

A3: Explore relationships between pathway maps. When users select a gene
from a pathway map they get a list of other pathway maps that this gene is
found in, in addition to their similarity. This allows users to investigate the
biological processes the genes are a part of.

3.3.2 Architecture

Kvik Pathways has a three-tiered architecture of independent layers (Figure
3.2). The browser layer consists of the web application for exploring gene
expression data and biological pathways. A front-end layer provides static
content such as HTML pages and stylesheets, as well as an interface to the
data sources with dynamic content such as gene expression data or pathway
maps to the web application. The backend layer contains information about
pathways and genes, as well as computational and storage resources to process
genomic data such as the NOWAC data repository. We have used the packages
in Kvik to develop the backend layer. These are discissed in detail in Section
3.4.

The Data Engine in the backend layer provides an interface to the NOWAC
data repository stored on a secure server on our local supercomputer. In Kvik
Pathways all gene expression data is stored on the computer that runs the Data
Engine. The Data Engine runs an R session accessible over remote procedure
calls (RPCs) from the front-end layer using RPy2[61] to interface with R. To
access data and run analyses the Data Interface exposes a HTTP API to the
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Figure 3.1: Screenshot of the renin-angiotensin pathway (KEGG pathway id hsao4614)
in Kvik Pathways. Researchers can visually explore the pathways and read
relevant information about genes in the right-hand panel.

Table 3.1: The REST interface to the Data Engine. For example, use /genes/ to
retrieve all available genes in our dataset.

URL Description

/fc/[genes...] Calculate and retrieve fold-change for the specified genes
/pvalues/[genes...] Calculate and retrieve p-values for the specified genes
/exprs/[genes...] Get the raw gene expression values from the dataset
/genes Get a list of all genes in the dataset

browser layer (Table 3.1 provides the interfaces).

3.3.3 Implementation

To create pathway visualizations the Kvik backend retrieves and parses the
KEGG Markup Language (KGML) representation and pathway image from
KEGG databases through its REST API.[62] This KGML representation of a
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Figure 3.2: The three-tiered architecture of Kvik Pathways.

pathway is an XML file that contains a list of nodes (genes, proteins or com-
pounds) and edges (reactions or relations). Kvik parses this file and generates
a JSON representation that Kvik Pathway uses to create pathway visualiza-
tions. Kvik Pathways uses Cytoscape.js[63] to create a pathway visualization
from the list of nodes and edges and overlay the nodes on the pathway image.
See Figure 3.3 for a graphical illustration of the process. To reduce latency
when using the KEGG Representational state transfer (REST) API, we cache
every response on our servers. We use the average fold change between the
groups (women with high or low plasma ratios of essential fatty acids) in the
dataset to color the genes within the pathway maps. To highlight p-values,
the pathway visualization shows an additional colored frame around genes.
We visualize fold change values for individual samples as a bar chart in a side
panel. This bar chart gives researchers a global view of the fold change in the
entire dataset.

Kvik provides a flexible statistics backend where researchers can specify the
analyses they want to run to generate data for later visualization. For example,
in Kvik Pathways we retrieve fold change for single genes every time a pathway
is viewed in the application. These analyses are run ad hoc on the backend
servers and generates output that is displayed in the pathways in the client’s
web browser. The data analyses are implemented in an R script and can make
use of all available libraries in R, such as Bioconductor.

Researchers modify this R script to, for example, select a normalization method,
or to tune the false discovery rate (FDR) used to adjust the p-values that Kvik
Pathways uses to highlight significantly differentially expressed genes. Since
Kvik Pathways is implemented as a web application and the analyses are run
ad hoc, when the analyses change, researchers get an updated application by
simply refreshing the Kvik Pathways webpage.
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Figure 3.3: Visualizing gene expression data on KEGG pathway maps.

3.3.4 Use Case: Analysis of Renin-Antiotensin Pathway

As an example of practical use of Kvik Pathways, we chose one of the sig-
nificant pathways from the overlap analysis, the renin-angiotensin pathway
(Supplementary table S5 in [25]). The pathway contains 17 genes, and in the
pathway map we could instantly identify the two genes that drive this result.
The color of the gene nodes in the pathway map indicates the fold change, and
the statistical significance level is indicated by the color of the node’s frame.
We use this image of a biological process to see how these two genes (and
their expression levels) are related to other genes in that pathway, giving a
biologically more meaningful context as compared to merely seeing the two
genes on a list.

3.4 Building Data Exploration Applications with
Kvik

Through the experiences developing the Kvik Pathways we identified a set of
components and features that are central to building data exploration applica-
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tions:

1. A low-latency language-independent approach for integrating, or em-
bedding, statistical software, such as R, directly in a data exploration
application.

2. Alow-latency language-independent interface to online reference databases
in biology that users can query to explore results in context of results in
context of known biology.

3. A simple method for deploying and sharing the components of an appli-
cation between projects.

We used these to design and implement Kvik which in turn formed the basis
of the SME approach that the MIXT web application builds upon.

Kvik is a collection of software packages in the Go programming language. It
is designed for developers that want to develop interactive data exploration
applications. It is the foundation in our two data exploration applications,
and has been iteratively developed through the last years.2 Kvik provides an
interface to the R statistical programming language, both as a stand-alone
service, a client library, and through an OpenCPU server. It provides an R-based
pipelining tool that allows useres to specify and run statistical analysis pipelines
in R. Kvik also contains a Javascript package for visualizing KEGG pathways
using d3.[64] In addition it provides an interface with online databases such
as MsigDB[65] and KEGG[66].

We used the experience building Kvik Pathways to completely re-design and re-
implement the R interface in Kvik. From having an R server that can run a set of
functions from an R script, it now has a clean interface to call any function from
any R package, not just retrieving data as a text string but in a wide range of
formats. We also re-built the database interface, which is now a separate service.
This makes it possible to leverage its caching capabilities to improve latency.
This transformed the application from being a single monolithic application into
a system that consists of a web application for visualizing biological pathways,
a database service to retrieve pathway images and other metadata, and a
compute service for interfacing with the gene expression data in the NOWAC
cohort. We could then re-use the database and the compute service in the MIXT
application.

We have used these packages to develop the SME approach through services
that provide open interfaces to the R programming language and the online

2. In [22] we refer to Kvik as Kvik Framework, but we have since shortened its name.
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databases. We outline these services in 3.4.1. In short the interfaces are ac-
cessible through an HTTP interface and can be used from any programming
language.

3.4.1 Design Priciples

We generalized our efforts from Kvik Pathways into the following design prin-
ciples for building applications in bioinformatics:

Principle 1: Build applications as collections of language-agnostic microser-
vices. This enables re-use of components and does not enforce any specific
programming language on the user interfaces or the underlying components
of the application.

Principle 2: Use software containers to package each service. This has a number
of benefits: it simplifies deployment, ensures that dependencies and libraries
are installed, and simplifies sharing of services between developers.

3.4.2 Compute Service

We have built a compute service that provides an open interface directly to the
R programming language, thus providing access to a wealth of algorithm and
statistical analysis packages that exists within the R ecosystem. Application
developers can use the compute service to execute specialized analyses and
retrieve results either as plain text or binary data such as plots. By interfacing
directly with R, developers can modify input parameters to statistical methods
directly from the user-facing application.

The compute service offers three main operations to interface with R: i) to call
a function with one or more input parameters from an R package, ii) to get the
results from a previous function call, and iii) a catch-all term that both calls a
function and returns the results. We use the same terminology as OpenCPU[8]
and have named the three operations Call, Get, and RPC respectively. These
three operations provide the necessary interface for applications to include
statistical analyses in the applications.

The compute service is implemented as an HTTP server that communicates with
a pre-set number of R processes to execute statistical analyses. At initiation of
the compute service, a user-defined number of R worker sessions are launched
for executing analyses (default is 5). The compute service uses a round-robin
scheduling scheme to distribute incoming requests to the workers. We provide
a simple FIFO queue for queuing of requests. The compute service also provides
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the opportunity for applications to cache analysis results to speed up subsequent
calls.

3.4.3 Database Service

We have built a database service to interface with online biological databases.
The service provides a low latency interface, it minimizes the number of
queries to remote databases, and stores additional metadata to capture query
parameters and database information. The database service provides an open
HTTP interface to biology databases for retrieving meta-data on genes and
processes. We currently have packages for interfacing with E-utilities[67],
MSigDB, HGNC[68], and KEGG.

3.5 Matched Interactions Across Tissues (MIXT)

The MIXT system is an online web application for exploring and comparing
transcriptional profiles from blood and tumor samples.[23, 26] It provides users
with an interface to explore high-throughput gene expression profiles of breast
cancer tumor data with matched profiles from the patients blood. We have used
the microservices in Kvik to interface with statistical analyses and information
from online biology databases.

3.5.1 Analysis Tasks

To efficiently develop the application we defined six analysis tasks (A1-A6) that
the application supports:

A1: Explore co-expression gene sets in tumor and blood tissue. Users can
explore gene expression patterns together with clinicopathological variables
(e.g. patient or tumor grade, stage, age) for each module. In addition we enable
users to study the underlying biological functions of each module by including
gene set analyses between the module genes and known gene sets.

A2: Explore co-expression relationships between genes. Users can explore
the co-expression relationship as a graph visualization. Here genes are repre-
sented in the network with nodes and edges represent statistically significant
correlation in expression between the two end-points.

Ag3: Explore relationships between modules from each tissue. We provide two
different metrics to compare modules, and the web application enables users to
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interactively browse these relationships. In addition to providing visualizations
the compare modules from each tissue, users can explore the relationships, but
for different breast cancer patient groups.

A4: Explore relationships between clinical variables and modules. In addition to
comparing the association between modules from both tissues, users also have
the possibility to explore the association with a module and a specific clinical
variable. It is also possible to explore the associations after first stratifying
the tumors by breast cancer subtype (an operation that is common in cancer
related studies to deal with molecular heterogeneity).

As: Explore association between user-submitted gene lists and computed mod-
ules. We want to enable users to explore their own gene lists to explore them
in context of the co-expression gene sets. The web application must handle
uploads of gene lists and compute association between the gene list and the
MIXT modules on demand.

A6: Search for genes or gene lists of interest. To facilitate faster lookup of genes
and biological processes, the web application provides a search functionality
that lets users locate genes or gene lists and show association to the co-
expression gene sets.

3.5.2 Architecture

We structured the MIXT application with a separate view for each analysis task.
To explore the co-expression gene sets (A1), we built a view that combines
both static visualizations from R together with interactive tables for gene
overlap analyses. Figure 3.4 shows the web page presented to users when they
access the co-expression gene set ’darkturquoise’ from blood. To explore the
co-expression relationship between genes (A2) we use an interactive graph
visualization build with Sigma.[69] We have built visualization for both tissues,
with graph sizes of 2705 nodes and 9o 348 edges for the blood network, and
2066 nodes and 50 563 edges for the biopsy network. To visualize relationships
between modules from different tissues (A3), or their relationship to clinical
variables (A4) we built a heatmap visualization. We built a simple upload
page where users can specify their gene sets (As). The file is uploaded to the
web application which redirects it to a backend service that runs the analyses.
Similarly we can take user input to search for genes and processes (A6).

For the original analyses we built an R package, mixtR,3 with the statistical
methods and static visualizations for identifying associations between mod-

3. Available online at github.com/vdumeaux/mixtR.
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Figure 3.4: MIxT module overview page. The top left panel contains the gene expres-
sion heatmap for the module genes. The top right panel contains a table of
the genes found in the module. The bottom panel contains the results of
gene overlap analyses from the module genes and known gene sets from
MSigDB.

ules across tissues. The mixtR package is based on the Weighted Gene Co-
expression Network Analysis (WGCNA) R package to compute the correlation
networks[70]. To make the results more easily accessible we built a web appli-
cation that interfaces with the R package, but also online databases to retrieve
relevant metadata. To make it possible to easily update or re-implement parts
of the system without effecting the entire application, and we developed it
using a microservice architecture. The software containers allowed the appli-
cation to be deployed on a wide range of hardware, from local installations to
cloud systems.

3.5.3 Implementation

From the six analysis tasks we designed and implemented MIXT as a web
application that integrates statistical analyses and information from biological
databases together with interactive visualizations. Figure 3.5 shows the system
architecture of MIXT which consists of three parts i) the web application
itself containing the user-interface and visualizations; ii) the compute service
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performing the MIXT analyses developed in an R package, delivering data to the
web application; and iii) the database service providing up-to-date information
from biological databases. Each of these components run in Docker containers
making the process of deploying the application simple.

MIXT User Interface l:’

1]

MIXT Web Server

Database Service Compute Service

o) [2]

WGCNA || dplyr
Online databases D D D
-------

Figure 3.5: The architecture of the MIXT system. It consists of a web application,
the hosting web server, a database service for retrieving metadata and
a compute service for performing statistical analysis. Note that only the
web application and the R package are specific to MIXT, the rest of the
components can be reused in other applications.

The web application is hosted by a custom web server. This web server is
responsible for dynamically generating the different views based on data from
the statistical analyses and biological databases, and serve these to users. It also
serves the different JavaScript visualization libraries and style sheets.

3.5.4 Evaluation

We evaluate the MIXT application by investigating response times for a set of
queries to each of its two supporting services.

To evaluate the database service we measure the query time for retrieving
information about a specific gene with and without caching.4 This illustrates
how we can improve performance in an application by using a database service
rather than accessing the database directly,. We use a AWS EC2 t2.micro®
instance to host and evaluate the database service. The results in Table 3.2
confirm a significant improvement in response time when the database service
caches the results from the database lookups. In addition by serving the results

4. More details online at github. com/f jukstad/kvik.
5. See aws.amazon.com/ec2/instance-types for more information about AWS EC2
instance types.
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out of cache we reduce the number of queries to the online database down to
one.

Table 3.2: Time to retrieve a gene summary for a single gene, comparing different
number of concurrent requests.

1 2 5 10 15
No cache | 956ms | 1123ms | 1499ms | 2147ms | 2958ms
Cache 64ms 64ms 130ms 137ms 1541ms

We evaluate the compute service by running a benchmark consisting of two
operations: first generate a set of 100 random numbers, then plot them and
return the resulting visualization.® We use two c4.large instances on AWS
EC2 running the Kvik compute service and OpenCPU base docker containers.
The servers have caching disabled. Table 3.3 shows the time to complete the
benchmark for different number of concurrent connections. We see that the
compute service in Kvik performs better than the OpenCPU?7 alternative. We
believe that speedup is because we keep a pool of R processes that handle
requests. In OpenCPU a new R process is forked upon every request that
results in any computation executed in R. Other requests such as retrieving
previous results do not fork new R processes.

In summary our results show that the interface to the R programming language
provides faster latencies, and that implementing a service for database lookups
have clear benefits with regards to latency.

Table 3.3: Time to complete the benchmark with different number of concurrent

connections.

1 2 5 10 15
Kvik 274ms | 278ms | 352ms | 374ms | 390ms
OpenCPU | sooms | 635ms | 984ms | 1876ms | 2700ms

3.5.5 Tumor Epithelium-Stroma Interactions in Breast
Cancer

The MIXT web application is usable with other datasets as well. As already
mentioned, the web application retrieves datasets from an R package in a Kvik
compute service. If developers replace the datasets the web application will in
turn generate visualizations based on this data. Since we have open-sourced
every part of the system, application developers can download the respective

6. More details at github. com/f jukstad/kvik.
7. Built using the opencpu-server Docker image.
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repositories where they will find instructions on how to deploy the system with
their own data.

In addition to the MIxT web application for exploring the link between breast
tumor and primary blood, we have also deployed a web application that in-
vestigates the link in another dataset.[71] We have deployed the application
online at mixt-tumor-stroma.bci.mcgill.ca. The web application is identical,
but the underlying dataset is different.

3.5.6 air:bit

We have also used the microservice architecture in an application where users
can upload and explore air pollution data from Northern Norway.[32] In the
project, air:bit, students from upper secondary schools in Norway collect air
quality data from sensor kits that they have built and programmed. The web
application lets the students upload data from their kits, and provides a graph-
ical interface for them to explore data from their own, and other participating
schools. The system consists of a web server frontend that retrieves air pollution
data from a backend storage system to build interactive visualizations. It also
integrates the data with other sources such as the Norwegian Institute for Air
Research and the The Norwegian Meteorological Institute.

3.6 Related Work

There are different technologies for developing data exploration applications.
We have surveyed comparable applications for exploring similar datasets to
the ones we describe in this chapter, and underlying technology for developing
these applications.

3.6.1 Data Exploration Applications

There are a wealth of resources for exploring biological pathway maps. KEGG
provides a large collection of static pathway maps that users can navigate
through and download.[66] They provide both static images of the pathways, as
well as a textual representation of the pathway in the KEGG Markup Language
(KGML). KEGG provides a REST API that developers can use to integrate both
pathway maps and other information in their application. In KEGG Pathways we
heavily rely on the data from KEGG. Reactome is an open-source peer-reviewed
online knowledgebase of biomolecular pathways.[72] Users can download
the entire graph database or explore it in their pathway visualization tool.
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They have not yet made an API open for developers, but are planning to do
so. Libraries such as KEGGViewer[73] allow developers to integrate pathway
visualization maps in web applications, but these are generated using the
KGML representations, that do not include additional visual cues found in the
static KEGG pathway maps. enRoute[74] is a desktop application for exploring
pathway maps from KEGG that combines the static pathway maps from KEGG
in an interactive application. Pathview is both an R package and an online
web application for exploring pathway maps.[75] The online web application is
built on top of the R package and provides the same functionality, but through
a GUI. Pathview generates static pathway visualizations based on pathway
maps from KEGG.

There are few related systems that provide visualizations of the correlation
networks from WGCNA results. The R package from the original paper pro-
vides a wide range of different utility functions for visualization, but it is only
accessible within the R environment. The WGCNA Shiny app? is an interactive
application for performing, and exploring results from, WGCNA. The online
version allows users to explore two demo datasets, and it is possible to down-
load the application and change out the datasets locally. In short it is a web
implementation of the WGCNA R package that allows users without any R
experience perform WGCNA. It is developed and maintained by the eTRIKS
platform.[76]

3.6.2 Enabling Approaches

Developers can pick and choose from various frameworks and libraries to build
interactive data exploration applications. OpenCPU is a system for embedded
scientific computing and reproducible research.[8] Similar to the compute
service in Kvik, it offers an HTTP API to the R programming language to
provide an interface with statistical methods. It allows users to make function
calls to any R package and retrieve the results in a wide variety of formats such
as JSON or PDF. OpenCPU provides a JavaScript library for interfacing with R,
as well as Docker containers for easy installation, and has been used to build
multiple applications.®. The compute service in Kvik follows many of the design
patterns in OpenCPU. Both systems interface with R packages using a hybrid
state pattern over HTTP. Both systems provide the same interface to execute
analyses and retrieve results. Because of the similarities in the interface to R in
Kvik we provide packages for interfacing with our own R server or OpenCPU
R servers.

8. Online a shiny.etriks.org/wgcna
9. opencpu.org/apps.html.
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Shiny is a web application framework for R1° It allows developers to build web
applications in R without having to have any knowledge about HTML, CSS, or
Javascript. While it provides an easy alternative to build web applications on
top of R, it cannot be used as a service in an application that implements the
user-interface outside of R.

Renjin is a JVM-based interpreter for the R programming language.[77] It
allows developers to write applications in Java that interact directly with R
code. This makes it possible to use Renjin to build a service for running statistical
analyses on top of R. One serious drawback is that existing R packages must
be re-built specifically for use in Renjin.

Cytoscape is an open source software platform for visualizing complex net-
works and integrating these with any type of attribute data.[78] Through
a Cytoscape App, cyREST, it allows external network creation and analysis
through a REST API[79], making it possible to use Cytoscape as a service. To
bring the visualization and analysis capabilities to the web applications the
creators of Cytoscape have developed Cytoscape.js!!, a JavaScript library to
create interactive graph visualizations. Another alternative for biological data
visualization in the web browser is BioJS It provides a community-driven on-
line repository with a wide range components for visualizing biological data
contributed by the bioinformatics community.[21] BioJS builds on node.js2
providing both server-side and client-side libraries. In MIXT we have opted to
build the visualizations from scratch using sigma.js and d3 to have full control
over the appearance and functionality of the visualizations.

3.7 Discussion

In this chapter we have given a description of how we successfully built two data
exploration applications for high-throughput biological datasets. We have iter-
atively developed these, and through our experiences we formed an approach
for developing such applications using disparate systems.

The most clear distinction between our systems and the alternatives, is our
focus on integrating the user-facing visualizations with the underlying data
sources. We have put emphasis on this integration to allow users to thoroughly
investigate the underlying data behind the discoveries they make. While some
systems, such as Shiny, allow developers to build web applications that maintain

10. shiny.rstudio.com.
11. js.cytoscapejs.org.
12. nodejs.org.
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this integration, it is not possible to interface with the analyses from outside
their system. With our approach in Kvik, we could have first implemented the
MIXT web application, before later developing an native desktop application
that re-used the same data interfaces. The main idea here is to create a
platform independent interface between the different parts that make up a
data exploration application, to facilitate reuse and transparency. With Kvik
we provide a language-independent interface between a data exploration
application and the underlying statistical analyses and online databases.

Aswe have seen in 3.6 there are many applications that provide the functionality
to view and browse pathway maps, where most of which use KEGG as its main
data source. The applications then either reuse the pathway maps, and augment
them with gene expression data, or use the underlying KGML description and
generate their own graphical representation with gene expression data. Using
the first method will provide the additional visual ques found in the static
pathway images, but the visualizations are less flexible with regards to node
and edge placement. Using the second method provides more flexible graphs
with regards to layout, but this could make the visualizations less familiar to
the users interpreting them. As mentioned in [59], familiar representations
provide easier to understand visualizations to the users.

With both of these techniques the underlying gene expression datasets are
retrieved using different techniques. Most systems allow users to specify gene
expression values in some table format and render the values in top of the
pathway map. These values are typically the end result of a long analysis process
which users have to track manually. By integrating the visualization with the
analysis software, typically R, it is possible to access data from anywhere in the
analysis process, and also provide detailed information to the user regarding
the underlying data analysis process. What separates our approach in Kvik
Pathways to the other related systems, is this integration between the end
visualization and the gene expression datasets. By using Kvik it is possible
to develop applications that automatically lets users access the underlying
data analysis, and thereby connecting the interpretable end results with the
analyses.

Of the related technologies, OpenCPU provides the most similar interface
to analyze datasets as the R interface in Kvik. While we started to explore
OpenCPU for use in our applications, we found through our benchmarking
that it did not provide satisfactory performance for our applications. It does
however provide a richer set of functionality, such as exporting data in many
more formats and running user-submitted scripts. We did not find it necessary
for these additions and implemented our own R interface that could provide the
necessary interface for us to implement data exploration applications.
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The WGCNA Shiny app provides similar visualizations as our MIxT web appli-
cation, but the application is limited to that of a web application. Shiny lets its
users develop applications written purely in R, including the backend server
and the user interfaces. In MIXT we developed an R package with a set of
resources, or endpoints, for application developers to access through a Kvik R
service. This allows application developers to develop the user-facing logic us-
ing any type of technology or framework. The resources are available through
the HTTP API in Kvik making it possible for anyone to develop an application
on top of the dataset and analyses. We acknowledge the strength of R for data
analysis, but not for developing complex user-facing web applications.

There are several advantages with reusing and sharing microservices over
libraries in bioinformatics applications, that would justify the cost of hosting an
maintaining a set of distributed microservices. The most apparent disadvantage
with microservices is having to potentially orchestrate tens, or even hundreds, of
services running in different distributed environments. Container orchestration
systems such as Kubernetes can help simplify this task, but technical staff are
still required to keep these systems operational. By implementing a system
using different microservices it will however become possible for different
research groups to share computational resources. In the case of the MIXT web
application, the compute service runs on a powerful compute node, while the
web application can run on a lightweight compute node. Other applications
that interface with R could have used our compute service, and would not
require the local resources to run and host it themselves. This could prove
valuable for institutions that do not have the required resources available.
Another argument for using a microservice approach is the possibility for using
different programming languages for each part of an application. This allows
for developers to use the best tools for each problem, e.g. R for biomedical data
analysis, and HTML and Javascript for interactive visualizations.

3.8 Future Work

We hope to continue development on applications for interactively exploring
biological datasets. Through our approach, and especially the interface to R,
we are now able to develop applications that can use any function or retrieve
datasets from any R package. This includes the nowac package in Chapter 2.
We believe that there is a large potential in the available datasets, and that
researchers would benefit from being able to interactively explore these.
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3.8.1 MIXT

We intend to address few points in future work, both in the MIXT web appli-
cation as well as the supporting microservices. The first issue is to improve
the user experience in the MIxT web application. Since it is executing many of
the analyses on demand, the user interface may seem unresponsive. We are
working on mechanisms that gives the user feedback when the computations
are taking a long time, but also reducing analysis time by improving the per-
formance the underlying R package. The database service provides a sufficient
interface for the MIXT web application. While we have developed the software
packages for interfacing with more databases, these haven’t been included
in the database service yet. In future versions we aim to make the database
service an interface for all our applications. We also aim to improve how we
capture data provenance. We aim to provide database versions and meta-data
about when a specific item was retrieved from the database.

One large concern that we haven’t addressed in this chapter is security. In
particular one security concern that we aim to address in Kvik is the restrictions
on the execution of code in the compute service. We aim to address this in
the next version of the compute service, using methods such as AppArmor[80]
that can restrict a program’s resource access. In addition to code security we
will address data access, specifically put constraints on who can access data
from the compute service. We also aim to explore different alternatives for
scaling up the compute service. Since we already interface with R we can use
the Sparklyr[81] or SparkR[82] packages to run analyses on top of Spark.[83]
Using Spark as an execution engine for data analyses will enable applications
to explore even larger datasets.

3.9 Conclusion

We have designed an approach for building data exploration applications in
cancer research. We first implemented Kvik Pathways, a web application for
exploring a gene expression dataset in the context of pathway maps. We used
our experiences to generalize our efforts into a set of central components
that these types of applications require. Further we realized these in our
SME approach implemented as a set of microservices. Using these services
we have built a web application, MIxT, that integrates statistical analyses,
interactive visualizations, and data from biological databases. While we have
used our approach to build an application in cancer research, we believe
that the microservice architecture is suitable for data exploration systems in
other disciplines as well. This is because they can compose applications from
specialized tools and services required to visualize and analyze the different
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possible datasets. From our experiences, the primary takeaway is to compose
and develop a data exploration system from independent parts. We chose to
implement our systems using three separate services. A compute service to
provide statistical analyses, a database service to provide access to biological
databases, and the user interface. This makes it possible to quickly re-implement
parts of the system, but also allow others to interface with its underlying
components, not just the user interface.



Deep Analysis Pipelines

In this chapter we discuss our approach to analyzing high-throughput genomic
datasets through deep analysis pipelines, and its implementation in walrus.[27]
We also evaluate the performance of walrus and show its usefulness in a
precision medicine setting. While walrus was developed in this context we also
show its usefulness in other areas, specifically for RNA-seq analyses.

4.1 Use Case and Motivation

Precision medicine uses patient-specific molecular information to diagnose
and categorize disease to tailor treatment to improve health outcome.[39]
Important goals in precision medicine are to learn about the variability of the
molecular characteristics of individual tumors, their relationship to outcome,
and to improve diagnosis and therapy.[40] Cancer institutions are therefore
now offering dedicated personalized medicine programs.

For cancer, high throughput sequencing is an emerging technology to facilitate
personalized diagnosis and treatment since it enables collecting high quality
genomic data from patients at a low cost. Data collection is becoming cheaper,
but the downstream computational analysis is still time-consuming and thereby
a costly part of the experiment. This is because of the manual efforts to
set up, analyze, and maintain the analysis pipelines. These pipelines consist
of many steps that transform raw data into interpretable results.[24] These
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pipelines often consists of in-house or third party tools and scripts that each
transform input files and produce some output. Although different tools exist,
it is necessary to carefully explore different tools and parameters to choose
the most efficient to apply for a dedicated question.[84] The complexity of the
tools vary from toolkits such as the Genome Analysis Toolkit (GATK) to small
custom bash or R scripts. In addition, some tools interface with databases
whose versions and content will impact the overall result.[85]

Improperly developed analysis pipelines for precision medicine may generate
inaccurate results, which may have negative consequences for patient care.[1]
Users and clinicians therefore need systems that can track pipeline tool versions,
their input parameters, and data. Both to thoroughly document what produced
the final clinical reports, and to iteratively improve the quality of the pipeline
during development. Because of the iterative process of developing the analysis
pipeline, it is necessary to use analysis tools that facilitate modifying pipeline
steps and adding new ones with little developer effort.

Developing a system that enables researchers to write and share reproducible
analysis pipelines will enable the scientific community to analyze high-throughput
genomic datasets faster and more unified. By combining versioning of datasets
and pipeline configurations, a pipeline management system will provide in-
terpretable and reproducible results long after the initial data analysis will
have completed. These features will together promote reproducible science
and improve the overall quality of the analyses.

4.1.1 Initial Data Analysis Pipeline

As part of a patient’s treatment, we have analyzed DNA sequence data from the
patient’s primary tumor and adjacent normal cells to identify the molecular
signature of the patient’s tumor and germline. When the patient later relapsed
we analyzed sequence data from the patient’s metastasis to provide an extensive
comparison against the primary and to identify the molecular drivers of the
patient’s tumor.

We used whole-genome sequencing (WGS) to sequence the primary tumor and
adjacent normal cells at an average depth of 20, and whole-exome sequencing
(WES) at an average depth of 300. The biological samples were sequenced at
the Genome Quebec Innovation Centre, and we stored the raw datasets on our
in-house server. From the analysis pipelines we generated reports with end
results, such as detected somatic mutations, that was distributed to both the
patient and the treating oncologists. These could be used to guide diagnosis and
treatment, and give more detailed insight into both the primary and metastasis.
When the patient relapsed we analyzed WES data using our own pipeline
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manager, walrus, to investigate the metastasis and compare it to the primary
tumor.

For the initial WGS analysis we developed a pipeline to investigate somatic and
germline mutations based on Broad Institute’s best practices. We developed the
analysis pipeline on our in-house compute server using a bash script under ver-
sion control with git to track changes as we developed the analysis pipeline. The
pipeline consisted of tools including picard[86], fastqc[87], trimmomatic[88],
and the GATK.[89] While the analysis tools themselves provide the necessary
functionality to give insights in the disease, ensuring that the analyses could
be fully reproduced later left areas in need of improvement.

We chose a command-line script over more complex pipelining tools or work-
benches such as Galaxy[g9o] because of its fast setup time on our available
compute infrastructure, and familiar interface. More complex systems could be
beneficial in larger research groups with more resources to compute infrastruc-
ture maintenance, whereas command-line scripting languages require little
infrastructure maintenance over normal use. In addition, while there are off-
site solutions for executing scientific workflows, analyzing sensitive data often
put hard restrictions on where the data can be stored and analyzed.

After we completed the first round of analyses we summarized our efforts and
noted features that pipeline management systems should satisfy:

* Datasets and databases should be under version control and stored along
with the pipeline description. In the analysis script we referenced to
datasets and databases by their physical location on a storage system,
but these were later moved without updating the pipeline description
causing extra work. A solution would be to add the data to the same
version control repository hosting the pipeline description.

* The specific pipeline tools should also be kept available for later use.
Often in bioinformatics, just installing a tool is a time-consuming process
because of their many dependencies.

* It should be easy to add new tools to an existing pipeline and execution
environment. This includes installing the specific tool and adding to
an existing pipeline. Bundling tools within software containers, such
as Docker, and hosting them on an online registry simplifies the tool
installation process since the only requirement is the container runtime.

* While bash scripts have their limitations, using a well-known format
that closely resembles the normal command-line use clearly have its
advantages. It is easy to understand what tools were used, their input
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parameters, and the data flow. However, from our experience when these
analysis scripts grow too large they become too complex to modify and
maintain.

* While there are new and promising state-of-the art pipeline managers,
many of these also require state-of-the-art computing infrastructure to
run. This may not be the case at cancer research and clinical institutions.

The above problem areas are not just applicable to our research group, but
common to other research and precision medicine projects as well. Especially
when hospitals and research groups aim to apply personalized medicine efforts
to guide therapeutic strategies and diagnosis, the analyses will have to be
able to be easily reproducible later. We used the lessons learned to design
and implement walrus, a command line tool for developing and running
data analysis pipelines. It automatically orchestrates the execution of different
tools, and tracks tool versions and parameters, as well as datasets through the
analysis pipeline. It provides users a simple interface to inspect differences
in pipeline runs, and retrieve previous analysis results and configurations. In
the remainder of the chapter we describe the design and implementation of
walrus, its clinical use, its performance, and how it relates to other pipeline
managers.

4.2 walrus

walrus is a tool for developing and executing data analysis pipelines. It stores
information about tool versions, tool parameters, input data, intermediate
data, output data, as well as execution environments to simplify the process of
reproducing data analyses. Users write descriptions of their analysis pipelines
using a familiar syntax and walrus uses this description to orchestrate the
execution of the pipeline. In walrus we package all tools in software containers
to capture the details of the different execution environments. While we have
used walrus to analyze high-throughput datasets in precision medicine, it is a
general tool that can analyze any type of data, e.g. image datasets for machine
learning. It has few dependencies and runs on any platform that supports
Docker containers. While other popular pipeline managers require the use of
cluster computers or cloud environment, we focus on single compute node
systems often found in smaller clinical research environments.

walrus is implemented as a command-line tool in the Go programming lan-
guage. We use the popular software container implementation Docker[91] to
provide reproducible execution environments, and interface with git together
with git-1fs[48] to version control datasets and pipeline descriptions. By
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choosing Docker and git we have built a tool that easily integrates with current
bioinformatic tools and workflows. It runs both natively or within its own
Docker container to simplify its installation process.

With walrus we target pipeline developers that are familiar with command-
line tools and scripting languages to build and run analysis pipelines. Users
can use existing Docker containers from sources such as BioContainers[92]
or build containers with their own tools. We have created an open repository
that currently contains 18 different Docker images with different tools for high-
throughput data analysis.! We integrate with the current workflow using git
to version control analysis scripts, and use git-1fs for versioning of datasets
as well. The pipeline description format in walrus resembles standard com-
mand line syntax. In addition, walrus automatically track and version input,
intermediate, and output files without users having to explicitly declare these
in the description.

4.2.1 Pipeline Configuration

Users configure analysis pipelines by writing pipeline description files in a hu-
man readable format such as JavaScript Object Notation (JSON) or YAML Ain’t
Markup Language (YAML). A pipeline description contains a list of stages, each
with inputs and outputs, along with optional information such as comments or
configuration parameters such as caching rules for intermediate results. Listing
4.1 shows an example pipeline stage that uses MuTect[93] to detect somatic
point mutations. Users can also specify the tool versions by selecting a specific
Docker image, for example using MuTect version 1.1.7 as in Listing 4.1, line
3.

Users specify the flow of data in the pipeline within the pipeline description, as
well as the dependencies between the steps. Since pipeline configurations can
become complex, users can view their pipelines using an interactive web-based
tool, or export their pipeline as a DOT file for visualization in tools such as
Graphviz.[94]

Listing 4.1: Example pipeline stage for a tool that detects somatic point mutations.
It reads a reference sequence file together with both tumor and normal
sequences, and produces an output file with the detected mutations.

{

"Name": "mutect",

"Image": "fjukstad/mutect:1.1.7",

"Cmd": [
"--analysis_type","MuTect",
"--reference_sequence","/walrus/input/reference.fasta",

1. Available at github. com/f jukstad/seq.
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"--input_file:normal","/walrus/input/normal.bam",
"--input_file:tumor","/walrus/input/tumor.bam",
"-L","/walrus/input/targets.bed",
"--out","/walrus/mutect/mutect-stats-txt",
"--ycf","/walrus/mutect/mutect.vcf"

1,

"Inputs":[

n input n
1
}

Users add data to an analysis pipeline by specifying the location of the input
data in the pipeline description, and walrus automatically mounts it to the
container running the analysis. The location of the input files can either be
local or remote locations such as an FTP server. When the pipeline is completed,
walrus will store all the input, intermediate and output data to a user-specified
location which is under version control.

4.2.2 Pipeline Execution

When users have written a pipeline description for their analyses, they can use
the command-line interface of walrus to run the analysis pipeline. walrus
builds an execution plan from the pipeline description and runs it for the
user. It uses the input and output fields of each pipeline stage to construct a
directed acyclic graph (DAG) where each node is a pipeline stage and the links
are input/output data to the stages. From this graph walrus can determine
parallel stages and coordinate the execution of the pipeline.

In walrus, each pipeline stage is run in a separate container, and users can
specify container versions in the pipeline description to specify the correct
version of a tool. We treat a container as a single executable and users specify
tool input arguments in the pipeline description file using standard command
line syntax. walrus will automatically build or download the container images
with the analysis tools, and start these with the user-defined input parameters
and mount the appropriate input datasets. While the pipeline is running,
walrus monitors running stages and schedules the execution of subsequent
pipeline stages when their respective input data become available. We have
designed walrus to execute an analysis pipeline on a single large server, but
since the tools are run within containers, these can easily be orchestrated
across a range of servers in future versions.

Users can select from containers pre-installed with bioinformatics tools, or
build their own using a standard Dockerfile. Through software containers
walrus can provide a reproducible execution environment for the pipeline,
and containers provide simple execution on a wide range of software and
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hardware platforms. With initiatives such as BioContainers, researchers can
make use of already existing containers without having to re-write their own.
Data in each pipeline step is automatically mounted and made available within
each Docker container. By simply relying on Docker walrus requires little
software setup to run different bioinformatics tools.

While walrus executes a single pipeline on one physical server, it supports
both data and tool parallelism, as well as any parallelization strategies within
each tool, e.g. multi-threading. To enable data and tool parallelism, e.g. run
the same analyses to analyse a set of samples, users list the samples in the
pipeline description and walrus will automatically run each sample through
the pipeline in parallel. While we can parallelize the independent pipeline steps,
the performance of an analysis pipeline relies on each of the independent tools
and available compute power. Techniques such as multithreading can improve
the performance of a tool, and walrus users can make use of these techniques
if their are available through the command line interfaces of the tools.

Upon successful completion of a pipeline run, walrus will write a verbose
pipeline description file to the output directory. This file contains information
on the runtime of each step, which steps were parallelized, and provenance
related information to the output data from each step. Users can investigate
this file to get a more detailed look on the completed pipeline. In addition to
this output file walrus will return a unique version ID for the pipeline run,
which later can be used to investigate a previous pipeline run.

4.2.3 Data Management

In walrus we provide an interface for users to track their analysis data through a
version control system. This allows users to inspect data from previous pipeline
runs without having to recompute all the data. walrus stores all intermediate
and output data in an output directory specified by the user, which is under
version control automatically by walrus when new data is produced by the
pipeline. We track changes at file granularity.

In walrus we interface with git to track any output file from the analysis
pipeline. When users execute a pipeline, walrus will automatically add and
commit output data to a git repository using git-1£fs. Users typically use a
single repository per pipeline, but can share the same repository to version
multiple pipelines as well. With git-1fs, instead of writing large blobs to a
repository it writes small pointer files that contains the hash of the original file,
the size of the file, and the version ofgit-1fs used. The files themselves are
stored separately which makes the size of the repository small and manageable
with git. Once walrus has started to track output datasets, users can use
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regular git commands to inspect its version history. The main reason why we
chose git and git-1£s for version control is that git is the de facto standard for
versioning source code, and we want to include versioning of datasets without
altering the typical development workflow.

Since we are working with potentially sensitive datasets walrus is targeted
at users that use a local compute and storage servers. It is up to users to
configure a remote tracker for their repositories, but we provide command-line
functionality in walrus to run a git-1fs server that can store users’ contents.
They can use their default remotes, such as Github, for hosting source code,
but they must themselves provide the remote server to host their data.

4.2.4 Pipeline Reconfiguration and Re-execution

Reconfiguring a pipeline is common practice in precision medicine, e.g. to
ensure that genomic variants are called with a desired sensitivity and specificity.
To reconfigure an existing pipeline users make the applicable changes to the
pipeline description and re-run it with walrus. walrus will then recompute the
necessary steps and return a version ID for the newly run pipeline. This ID can
be used to compare pipeline runs, the changes made, and optionally restore
the data and configuration from a previous run. Reconfiguring the pipeline to
use updated tools or reference genomes will alter the pipeline configuration
and force walrus to recompute the applicable pipeline stages.

The command-line interface of walrus provides functionality to restore results
from a previous run, as well as printing information about a completed pipeline.
To restore a previous pipeline run, users use the restore command line flag
in walrus together with the version ID of the respective pipeline run. walrus
will interface with git to restore the files to their state at the necessary point
in time.

4.3 Results

To evaluate the usefulness of walrus we demonstrate its use in a clinical
research setting, and the low computational time and storage overhead to
support reproducible analyses.
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Figure 4.1: Screenshot of the web-based visualization in walrus. The user has zoomed
in to inspect the pipeline step which marks duplicate reads in the tumor
sequence data.

4.3.1 Clinical Application

We have used walrus to analyze a whole-exome data from a sample in the
McGill Genome Quebec [MGGQ] dataset (GSE58644)[28] to discover SNPs,
genomic variants and somatic mutations. We interactively developed a pipeline
description that follows the best-practices of The Broad Institute2 and generated
reports that summarized the findings to share the results. Figure 4.1 shows a
screenshot from the web-based visualization in walrus of the pipeline.

From the analyses we discovered inherited germline mutations that are rec-
ognized to be among the top 50 mutations associated with an increased risk
of familial breast cancer. We also discovered a germline deletion which has
been associated with an increased risk of breast cancer. We also discovered
mutations in a specific gene that might explain why specific drug had not been
effective in the treatment of the primary tumor. From the profile of the primary
tumor we discovered many somatic events (around 30 000) across the whole
genome with about 1000 in coding regions, and 500 of these were coding
for non-synonymous mutations. We did not see amplification or constituent
activation of growth factors like HER2, EGFR or other players in breast cancer.
Because of the germline mutation, early recurrence, and lack of DNA events,
we suspect that the patient’s primary tumor was highly immunogenic. We
have also identified several mutations and copy number changes in key driver
genes. This includes a mutation in a gene that creates a premature stop codon,
truncating one copy of the gene.

While we cannot share the results in details or the sensitive dataset, we have
made the pipeline description available at github.com/uit-bdps/walrus along

2. Online at software.broadinstitute.org/gatk/best-practices.
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with other example pipelines.

4.3.2 Example Dataset

To demonstrate the performance of walrus and the ability to track and detect
changes in an analysis pipeline, we have implemented one of the variant calling
pipelines from [95] using tools from Picard and the GATK. We show the storage
and computational overhead of our approach, and the benefit of capturing the
pipeline specification using a pipeline manager. The pipeline description and
code is available along with walrus at github.com/uit-bdps/walrus. Figure
4.2 shows a simple graphical representation of the pipeline.

4.3.3 Performance and Resource Usage

We first run the variant calling pipeline without any additional provenance
tracking or storing of output or intermediate datasets. This is to get a baseline
performance measurement for how long we expect the pipeline to run. We then
run a second experiment to measure the overhead of versioning output and
intermediate data. Then we introduce a parameter change in one of the pipeline
steps which results in new intermediate and output datasets. Specifically we
change the -maxReadsForRealignment parameter in the indel realigner step
back to its default (See the online pipeline description for more details). This
forces walrus to recompute the indel realigner step and any subsequent steps.
To illustrate how walrus can restore old pipeline configurations and results,
we restore the pipeline to the initial configuration and results. We show the
computational overhead and storage usage of restoring a previous pipeline
configuration.

Reproducing results from a scientific publication can be a difficult task. For
example, because the rendering of the online version of the pipeline in [95]
converts two consecutive hyphens (-) into single em dashes (—), the pipeline
will not run using the specified input parameters. However, PDF versions of
the paper lists the parameters correctly. In addition, the input filenames in the
variant calling step do not correspond to any output files in previous steps, but
because of their similarity to previous output files we assume that this is just a
typo. These issues in addition to missing commands for e.g. the filtering step
highlights the clear benefit of writing and reporting the analysis pipeline using
a tool such as walrus.

Table 4.1 shows the runtime and storage use of the different experiments.
In the second experiment we can see the added overhead of adding version
control to the dataset. In total, an hour is added to the runtime and the data
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Figure 4.2: In addition to the web-based inteactive pipeline visualization, walrus
can also generate DOT representations of pipelines. The figure shows the
example variant calling pipeline we used in the performance evaluation.
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size is doubled. The doubling comes from git-lfs hard copying the data into a
subdirectory of the . git folder in the repository. With git-Ifs users can move all
datasets to a remote server reducing the local storage requirements. In the third
experiment we can see that only the downstream analyses from configuring
the indel realignment parameter is executed. It generates 30GB of additional
data, but the execution time is limited to the applicable stages. Restoring the
pipeline to a previous configuration is almost instantaneous since the data is
already available locally and git only has to modify the pointers to the correct
files in the .git subdirectory.

Table 4.1: Runtime and storage use of the example variant-calling pipeline developed
with walrus.

Experiment | Task Runtime Storage Use

1 Run pipeline with de- | 21 hours 50 | 235 GB
fault configuration minutes

2 Run the default pipeline | 23 hours 9 | 470 GB
with version control of | minutes
data

3 Re-run the pipeline with | 13 hours 500 GB
modified indel realign-
ment parameter

4 Restoring pipeline back | < 1second | 500GB
to the default configura-
tion

4.4 Related Work

There are a wealth of pipeline specification formats and workflow managers
available. Some are targeted at users with programming experience while
others provide simple GUIs.

We have previously conducted a survey of different specialized bioinformat-
ics pipelines.[29] The pipelines were selected to show how analysis pipelines
for different applications use different technologies for configuring, executing
and storing intermediate and output data. In the review, we targeted spe-
cialized analysis pipelines that support scaling out the pipelines to run on
high-performance computing (HPC) or cloud computing platforms.

Here we describe general systems for developing data analysis pipelines, not
just specialized bioinformatics pipelines. While most provide viable options for
genomic analyses, we have found many of these pipeline systems require com-
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plex compute infrastructure beyond the smaller clinical research institutions.
We discuss tools that use the common CWL pipeline specification and systems
that provide versioning of data.

CWL is a specification for describing analysis workflows and tools.[6] A pipeline
is written as a JSON or YAML file, or a mix of the two, and describes each step
in detail, e.g. what tool to run, its input parameters, input data and output data.
The pipeline descriptions are text files that can be under version control and
shared between projects. There are multiple implementations of CWL work-
flow platforms, e.g. the reference implementation cwl runner[6], Arvados[96],
Rabix[97], Toil[17], Galaxy[90], and AWE.[98] It is no requirement to run tools
within containers, but implementations can support it. There are few of these
tools that support versioning of the data. Galaxy is an open web-based platform
for reproducible analysis of large high-throughput datasets.[90] It is possible to
run Galaxy on local compute clusters, in the cloud, or using the online Galaxy
site.3 In Galaxy users set up an analysis pipeline using a web-based graphical
interface, and it is also possible to export or import an existing workflow to an
Extensible Markup Language (XML) file.# We chose not to use Galaxy because
of missing command-line and scripting support, along with little support for
running workflows with different configurations.[3] Rabix provides checksums
of output data to verify it against the actual output from the pipeline. This is
similar to the checksums found in the git-Ifs pointer files, but they do not store
the original files for later. An interesting project that uses CWL in production is
The Cancer Genomics Cloud[99]. They currently support CWL version 1.0 and
are planning on integrating Rabix as its CWL executor. Arvados stores the data
in a distributed storage system, Keep, that provides both storage and versioning
of data. We chose not to use CWL and its implementations because of its relaxed
restrictions on having to use containers, its verbose pipeline descriptions, and
the complex compute architecture required for some implementations. We are
however experimenting with an extension to walrus that translates pipeline
descriptions written in walrus to CWL pipeline descriptions.

Pachyderm is a system for running big data analysis pipelines. It provides
complete version control for data and leverages the container ecosystem to
provide reproducible data processing.[5] Pachyderm consists of a file system
(Pachyderm File System (PFs)) and a processing system (Pachyderm Process-
ing System (PPS)). PFS is a file system with git-like semantics for storing
data used in data analysis pipelines. Pachyderm ensures complete analysis
reproducibility by providing version control for datasets in addition to the
containerized execution environments. Both PFS and PPS is implemented on

3. Available at usegalaxy.org.
4. An alpha version of Galaxy with CWL support is available at github.com/common-—
workflow-language/galaxy.
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top of Kubernetes.[100] There are now recent efforts to develop bioinformatics
workflows with Pachyderm that show great promise. In [101], the authors show
the potential performance improvements of single workflow steps, not the full
pipeline, when executing a pipeline in Pachyderm. They unfortunately do not
show the time to import data into PFS, run the full pipeline, and optionally
investigate different versions of the intermediate, or output datasets.

We believe that the approach in Pachyderm with version controlling datasets
and containerizing each pipeline step is, along with walrus, the correct ap-
proach to truly reproducible data analysis pipelines. The reason we did not use
Kubernetes and Pachyderm was because our compute infrastructure did not
support it. In addition, we did not want to use a separate tool, PFS, for data
versioning, we wanted to integrate it with our current practice of using git for
versioning.

Snakemake is a long-running project for analyzing bioinformatic datasets.[16]
It uses a Python-based language to describe pipelines, similar to the familiar
Makefile syntax, and can execute these pipelines on local machines, compute
clusters or in the cloud. To ensure reproducible workflows, Snakemake inte-
grates with Bioconda to provide the correct versions of the different tools used
in the workflows. It integrates with Docker and Singularity containers[102] to
provide isolated execution, and in later versions Snakemake allows pipeline ex-
ecution on a Kubernetes cluster. Because Snakemake did not provide necessary
integration with software containers at the time we developing our analysis
pipeline, we did not find it to be a viable alternative. For example, support
for pipelines consisting of Docker containers pre-installed with bioinformatics
tools came a year later than walrus.

Another alternative to develop analysis pipelines is Nextflow.[103] Nextflow
uses its own language to describe analysis pipelines and supports execution
within Docker and Singularity containers. Nextflow uses a dataflow program-
ming model that streams data through a pipeline as apposed to fist constructing
a DAG and executing it.

While the previous related systems all package each tool into a single con-
tainer, Bio-Docklet and elasticHPC are systems that bundle entire pipelines into
single Docker containers. Bio-Docklets are standardized workflows contained
in a single Docker image, and have been used used to build NGS analysis
pipelines.[104] elasticHPC is an initiative to make it easier to deploy con-
tainerized analysis pipeline on private or commercial cloud solutions such as
Amazon.[105]

As discussed in [30, 29], recent projects propose to use containers for life science
research. The BioContainers and Bioboxes[106] projects address the challenge
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of installing bioinformatics data analysis tools by maintaining a repository of
Docker containers for commonly used data analysis tools. Docker containers
are shown to have better than, or equal performance as Virtual Machines (VMs),
and introduce negligible overhead opposed to executing on bare metal.[107]
While Docker containers require a bootstrapping phase before executing any
code, this phase is negligible in the compute-intensive precision medicine
pipelines that run for several hours. Containers have also been proposed as
a solution to improve experiment reproducibility, by ensuring that the data
analysis tools are installed with the same responsibilities.[108]

4.5 Discussion

walrus is a general tool for analyzing any type of dataset from different
scientific disciplines, not just genomic datasets in bioinformatics. Users specify
a workflow using either a YAML or JSON format, and each step in the workflow
is run within a Docker container. walrus tracks input, intermediate, and
output datasets with git to ensure transparency and reproducibility of the
analyses. Through these features, walrus helps to ensure repeatability of the
computation analyses of a research project.

Precision medicine requires flexible analysis pipelines that allow researchers
to explore different tools and parameters to analyze their data. While there
are best practices to develop analysis pipelines for genomic datasets, e.g. to
discover genomic variants, there is still no de-facto standard for sharing the de-
tailed descriptions to simplify re-using and reproducing existing work. walrus
provides a solution to iteratively develop and execute analysis pipelines based
on a simple textual description which can be shared across systems. Further,
walrus allows researchers to track input, intermediate, and resulting datasets
to help ensure reproducible results.

Pipelines typically need to be tailored to fit each project and patient, and
different patients will typically elicit different molecular patterns that require
individual investigation. In our WES analysis pipeline we followed the best
practices, and explored different combinations of tools and parameters before
we arrived at the final analysis pipeline. For example, we ran several rounds of
preprocessing (trimming reads and quality control) before we were sure that
the data was ready for analysis. walrus allowed us to keep track of different
intermediate datasets, along with the pipeline specification, simplifies the task
of comparing the results from pipeline tools and input parameters.

walrus is a very simple tool to set up and start using. Since we only target
users with single large compute nodes, walrus can run within a Docker con-
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tainer making Docker its only dependency. Systems such as Nextflow, Galaxy
or Pachyderm all require users to set up and manage complex compute infras-
tructures. As previously mentioned, since we leverage existing Docker images
without any modification in walrus, users can reuse existing container images
from BioContainers or Bioboxes in their workflows. The simplicity of walrus
enables repeatable computational analyses without any of these obstacles, and
is one of the strengths of our tool.

Unlike other proposed solutions for executing data analysis pipelines, walrus is
the only system we have discovered that explicitly uses git, and git-Ifs, to store
output datasets. Other systems either use a specialized storage system, or ignore
data versioning at all. We believe that using a system that bioinformaticians
already use for source control management is the simplest way to allow users
version their data along-side their analysis code. The alternative of using
a new data storage platform that provides data versioning requires extra
time and effort for researchers both to learn and integrate in their current
workflow.

We have seen that there are other systems to develop, share, and run analysis
pipelines in both bioinformatics and other disciplines. Like walrus, many of
these use textual representations in JSON or other languages to describe the
analysis pipeline, and Docker to provide reproducible and isolated execution
environments. In warlus we provide pipeline descriptions that allows users to
reuse the familiar command-line syntax. The only new additional information
they have to add is the dependencies between tasks. Systems such as CWL
requires that users also describe the input and output data verbosely. We
believe that the tool, walrus, can detect these, and will handle this for the user.
This will in turn make the pipeline descriptions of walrus shorter in terms of
lines of code.

While systems such as Galaxy provide GUIs, walrus requires that its users
know how to navigate the command line and have experience with systems
such as git and Docker, to analyze a dataset. Using a command line interface
to run analysis pipelines has the potential of speeding up the analysis process,
since its users do not have to click through a user interface before running a
pipeline. We have therefore designed walrus for users that have experience
with the command line, and are the ones who set up and maintain pipelines
for others.

We have tried to minimize the number of available commands in walrus, and
compared to other tools it shows its benefit when comparing a pipeline run to
previous results. E.g. in Pachyderm users have to explicitly import data into
the system using a set of commands. walrus does not require explicit import
of data, and allows users to investigate, or roll back, data to a previous run in
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a single command.

While we provide one approach to version control datasets, there are still some
drawbacks. git-1fs supports large files, but in our results it added 5% in
runtime. This makes the entire analysis pipeline slower, but we argue that
having the files under version control outweigh the runtime. In addition, there
are only a few public gif-1fs hosting platforms for datasets larger than a few
gigabytes, making it necessary to host these in-house. In-house hosting may
also be a requirement at different medical institutions.

An additional benefit with walrus that we have not discussed yet, is its porta-
bility. By only relying on Docker, users can develop their pipeline on a local
system, before moving the pipeline to a larger compute node, or the cloud. This
may be helpful for developers implementing a pipeline for a large research
study. The user can develop the pipeline locally for a single sample, before
moving the pipeline execution to a powerful compute node and running it for
all samples in the study.

4.6 Future Work

We aim to investigate the performance of running analysis pipelines with
walrus, and the potential benefit of its built-in data parallelism. While our
WES analysis pipeline successfully run steps in parallel for the tumor and
adjacent normal tissue, we have not demonstrated the benefit of doing so.
This includes benchmarking and analyzing the system requirements for doing
precision medicine analyses. We are also planning on exploring parallelism
strategies where we can split an input dataset into chromosomes and run some
steps in parallel for each chromosome, before merging the data again.

We believe that future data analysis systems for precision medicine will follow
the lines of our proposed approach. Software container solutions provide
valuable information in the reporting of the analyses, and they impose little
performance overhead. Further, the development of container orchestration
systems such as Kubernetes is getting wide adoption nowadays, especially in
web-scale internet companies. This will provide simpler orchestration of the
individual pipeline steps in analysis pipelines based on software containers,
such as the ones we develop in walrus. However, the adoption of such systems
in a clinical setting depend on support from more tools, and also the addition
of new compute infrastructure.
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4.7 Conclusions

We have designed and implemented walrus, a tool for developing reproducible
data analysis pipelines for use in precision medicine. Precision medicine re-
quires that analyses are run on hospital compute infrastructures and results
are fully reproducible. By packaging analysis tools in software containers, and
tracking both intermediate and output data, walrus provides the foundation
for reproducible data analyses in the clinical setting. We have used walrus to
analyze a patient’s metastatic lesions and adjacent normal tissue to provide
insights and recommendations for cancer treatment.

From our experiences, we can extract general design principles for pipeline
tools used in both precision medicine and other sciences. These tools should

be designed such that they:

* Provide version control mechanisms for input, intermediate, and output
data, as well as tool versions and their configuration.

* Provide simple access to tools and their different versions, using for
example software container technology.

* Provide simple addition of new tools to existing pipeline configurations.

* Use well-known formats to describe the setup of the analysis pipeline.



Conclusion

How should we design systems for analyzing and exploring high-throughput
datasets that facilitate sharing, reuse, and reproducibility? This dissertation
shows that in many cases the solution is to decompose the applications into
small entities that communicate using open protocols. This enables the devel-
opment of unified systems for reproducible exploration and analysis.

While biological datasets and computing systems will undoubtedly evolve, we
believe that the SME approach proposed here can offer a new perspective on
developing applications for exploring and analyzing biological data. We hope
that our approach can steer the development of bioinformatics applications
away from large monolithic applications to applications composed of diverse
systems. This approach facilitates reusing existing tools and systems, which
will help the community develop new systems for exploring both current and
new biological datasets.

In Chapter 1 we identified four main challenges for application developers
to undertake when building systems for analyzing and exploring biological
datasets. In our data exploration applications, we solved the first challenge by
organizing the analysis code and datasets in the NOWAC study into a single
versioned software package. For long-running analysis pipelines, we solved
this in walrus by describing the pipeline using a textual representation, and
versioning together with input, intermediate, and output datasets. We solved
the second challenge by integrating the user-facing visualizations with the
underlying statistical analyses from different R packages. By implementing our

73



74 CHAPTER 5 / CONCLUSION

data exploration applications as compositions of systems that communicated
through open protocols, using a microservice architecture, we solved the third
challenge. Our data exploration applications solved the fourth challenge by
packaging each component in open-sourced Docker containers. We solved the
fourth challenge for data analysis pipelines by using an open format to describe
the pipelines, along with sharing the Docker images used for all steps in the
different pipelines.

In Chapter 2 we show an approach to store the microarray data and analysis
code from a complex epidemiological study in a shareable software package.
We show how we explicitly track versions of code and data, and how we can
generate reproducible data analysis reports for the processed datasets. We
believe that future studies can benefit from applying our approach, and that
future advances in cancer research is dependent on sharing of both datasets
and analysis code.

In Chapter 3 we show how we can build interactive data exploration applications
that interface with these software packages through a microservice architecture.
We have implemented this approach through the microservices in Kvik. We
show that this architecture style is suitable for building such applications, and
have used it to develop the Kvik Pathways and MIxT web applications. These
have been successfully used to explore transcriptional profiles in the NOWAC
study, especially to investigate the interactions between genes and pathways
in the patient tumor and blood cells. We believe that the cancer research
community in general will benefit greatly if more projects start to develop
their applications using our approach. It simplifies sharing of computational
resources, and we believe that the future of cancer research will depend on
collaborative efforts.

In Chapter 4 use the same approach, to compose systems of disparate tools,
for developing biological data analysis pipelines, implemented in walrus. To
ensure reproducible results, we supplement the processing with data versioning
to track provenance of the data through the pipeline and across pipeline
versions. We have used walrus in the clinical setting to develop a WES pipeline
for discovering SNPs, genomic variants, and somatic mutations, in a breast
cancer patient’s metastatic lesion.

Combined, these systems demonstrate the applicability of our approach across
a range of different use cases. The systems have already showed their usability,
and through their expansions they show the potential broader impact. As
already mentioned, after this work was concluded the R package in Chapter
2 has been used to analyze and manage new datasets. The MIxT application
from Chapter 3 has been expanded to new datasets. walrus from Chapter
4 have also been used to develop new pipelines for other datasets than we
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originally used it for. In addition, the ideas and approaches are generalizable
to other disciplines and datasets.

In the rest of this chapter we summarize end-to-end lessons learned during
this work, and propose areas for future work.

5.1 Lessons Learned

Through the design of the SME approach for analyzing and exploring biological
datasets, as well as the different implementations of the approach, we have
solved challenges and we have learned some key lessons.

There is no single solution programming language or system. In the field of
bioinformatics there have been tremendous efforts to develop analysis tools for
improving the analysis of new biological datasets. This has led to systems being
written in a plethora of different languages, and deployed on top of different
systems. This is the main motivation behind our SME approach together with
software containers.

Take advantage of existing tools. The ability to develop applications for
analyzing biological datasets comes from the availability of existing tools. By
developing easy-to-use interfaces for the existing tools, it is possible to develop
new applications without reimplementing key features.

Simplicity is key. When proposing a new approach for either managing
datasets, writing data exploration applications, or developing analysis pipelines,
it is not possible to overstate the importance of the simplicity of the solu-
tion.

Researchers are not software engineers. When designing a new approach
to store and analyze high-throughout biological datasets, it is important to
remember that its users have limited software engineering backgrounds. Es-
pecially when the implementation is based on complex systems such as git,
the learning curve for the system is steep and require training of its users.
In our project we have organized workshops in both R and git to get the re-
searchers in the NOWAC study comfortable with these systems to follow our
best practices.
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5.2 Future Work

As we have discussed in previous chapters, there are some limitations to our
approach and its implementations. To summarize these, the main areas for
improvement are:

* Versioning of datasets: git was not designed to version large binary
files, such as biological datasets, and it does not provide the required
performance or scalability to version the large biological data.

* Additional evaluation: while we have shown that the SME approach
can be used to develop systems for managing research data, developing
interactive applications and data analysis pipelines, we would like to
better understand its performance and scalability.

* Refactoring and test coverage: while we provide fully implemented
solutions for data storage, interactive applications, and data analysis
pipelines, they all have areas of improvement with regards to performance,
scalability, and robustness.

* Distributed execution: while walrus orchestrates execution of Docker
containers, we do not support the execution of these on multiple compute
nodes. Distributing the computation on multiple machines will reduce the
execution time if we can share the data across the machines efficiently. We
would also like to evaluate the possibility of using an existing container
orchestration system, such as Kubernetes, to orchestrate the execution
of an analysis pipeline. Many of these already provide functionality for
distributed execution of software containers.

* Wide adoption of a pipeline description format: we are not the first
to propose a new computing standard.! We found that the current stan-
dards were either too verbose, e.g., CWL, or did not enforce the use of
software containers. This led us to our own description format, but we
recognize the need for a single open standard, and hope to contribute
to its development.

We aim to refine and continue development on our SMEs approach to address
these challenges, and that we can inspire a more unified development com-
munity in bioinformatics. We believe that the future of cancer research relies
on the successful integration of diverse data analysis and data management
systems from different research institutions. This will definitely continue to be
an interesting area of research.

1. xked.com/927
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