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A B S T R A C T 

Gear selectivity and discards are important issues related to fisheries management but 

separately modelled. The present work examine for first time the overall size-

selection pattern on the total amount of individuals of a species entering the trawl 

codend. An innovative approach was used based on modelling the escapement 

through the codend in the sea and the subsequently selection process by the fisher on 

the deck of the fishing vessel resulting into the discards and landings. Three different 

trawl codends and three species were used in the case study conducted. A dual 

sequential model accounting for both gear size-selectivity and the subsequent fisher-

size-selectivity was applied, under the hypothesis that a fish entering the codend can 

follow a multinomial distribution with three probabilities, the escape, the discard and 

the landing probability, respectively. The model described the escape probability 

through the gear and the landing probability by the fisher as S-shaped curves leading 

to a bell-shaped curve for the discard probability affected by both gear and fisher 

selection.  The model described well the experimental data in all cases. Sampling 

scheme of three compartments proved adequate. The model provides at the same time 

selectivity and discard parameters useful in fisheries management. 
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Introduction 

Knowledge on gear selectivity is important in fisheries management and stock 

sustainability (e.g. Pope. 1975, Armstrong et al., 1990; MacLennan, 1992; Wileman 

et al., 1996; Valdemarsen and Suuronen, 2001; Krag, 2009; Vasilakopoulos et al., 

2011; 2015; Madsen et al., 2015; Stepputtis et al., 2015). The ecosystem approach to 

fisheries management, by incorporating both stock and ecosystem sustainability, 

triggered many discussions and debates on the need for more sophisticated 

management schemes and alternative selectivity concepts (Hall et al., 2000; Zhou et 

al., 2010; Rochet et al., 2011; Garcia et al., 2012). The echo of all these was the 

recently proposed Common Fisheries Policy reform that set out the gradual 

elimination of discards by establishing a discard ban and the landing obligation of all 

catches by 2019 (Regulation (EU) 1380/2013). 

     Discarding is globally an important and complex issue related to fisheries 

management  (Hall et al., 2000; Kelleher, 2005). Annual global discarding has been 

estimated 7.3 million tonnes (Kelleher, 2005). A rough estimate of discards in the 

Mediterranean was around 230.000 t or 18.6% of the catch (Tsagarakis et al., 2014). 

Several studies, debates and regulations have been focused on discards aiming to their 

elimination and management. However, solving the discard problem is notoriously 

difficult since many intricate drivers contribute to this phenomenon including species, 

fishing gear, catch composition, fishing tactics, fishers themselves, market, fish 

damages, regulations, community and environmental conditions (Tsagarakis et al., 

2014 and references therein; Catchpole et al., 2014 and references therein; Rochet et 

al., 2014 and references therein).  



          Bottom trawling is a fishing practice producing high quantities of discards  (e.g. 

Hall et al., 2000; Tsagarakis et al., 2014; Bellido et al., 2014). Management measures 

for trawl fishery have been focused on improving the gear size-selectivity, although 

this has been proven difficult for multispecies fisheries (Valdemarsen and Suuronen, 

2001).Trawl selectivity is traditionally expressed by trawl codend selectivity, where a 

simple size-selection process occurs represented by an S-shape size selection curve 

(Wileman et al., 1996). Historically, trawl selectivity studies were always focused on 

modelling only the gear selectivity occurring in the sea. However, the size selection in 

the sea by the gear is followed by a fisher selection process on the vessel resulting in 

that only a proportion of the catch reaching the deck on the fishing vessel will be 

landed in the harbor. The fishers sort the catch on the deck of the fishing vessels into 

the amount of landings as well as the amount of discards. The total size selection 

process from when the fish enter the gear in the sea to the fish is landed in the harbor 

can therefore be considered as a dual sequential process. Despite the growing number 

of studies on discards and the improvement of our knowledge on this issue, few works 

have been done on modelling discard probability by length based on data collected by 

observers and assuming that this probability is described by a logistic function 

(Rochet et al., 2002;  Pálsson, 2003; Machias et al., 2004; Borges et al., 2006; 

Damalas and Vassilopoulou, 2013) or a nonlinear isotonic curve (Stratoudakis et al., 

1998). These works focused on the discard probability related to the codend catch 

only. No research is known to date confronting the overall size-selectivity process and 

modeling both the gear and the following fishers size-selection processes.  

    Mediterranean bottom trawl fishery is a multispecies fishery characterized by many 

commercial and non commercial species as well as undersized individuals of the 

target species; the last two constituting part of the discards. Establishment of a 



minimum landing size (MLS) for many commercial species in the Mediterranean and 

several technical measures related to the mesh size of the trawl body, twine thickness, 

codend circumference and codend mesh size are tools included in the European 

Common Fisheries Policy for the sustainability of the stocks, the protection of 

juveniles and discards mitigation (EC Regulation 1967/2006). Mediterranean bottom 

trawl fishery in the past used small diamond meshes in the codend retaining almost all 

specimens (Petrakis and Stergiou, 1997; Mytilineou et al., 1998; Stewart, 2002), 

which resulted in high quantities of discards  (Tsagarakis et al., 2014). EC Regulation 

1967/2006 imposed the use of 40 mm square mesh size in the trawl codend or 50 mm 

diamond in particular cases. The use of 40 mm square mesh showed reduction of 

discards and improvement of the selectivity in most research studies in the 

Mediterranean Sea (e.g. Petrakis & Stergiou, 1997;  Stergiou et al., 1997; Tokaç et 

al., 1998; 2010; Bahamοn et al., 2006; Guijarro & Massuti, 2006; Luccheti, 2008; 

Ordines et al., 2006; Tosunoğlu et al., 2009; Aydin & Tosunoğlu, 2010; Sala et al., 

2015). However, important quantities of discards still exist in the Mediterranean 

bottom trawl fishery particularly for horse mackerel (Trachurus trachurus), anglefish 

(Lophius spp.), pandoras (Pagellus erythrinus) and hake (Merluccius merluccius) (e.g. 

Damalas & Vassilopoulou, 2013; Bellido et al., 2014) and selectivity parameters still 

remain low for some species (e.g. Sala et al., 2008 and references therein; 2015; 

Deval et al., 2016). 

     The objectives of the present work are two fold: i) to determine a model expressing 

the complete selection process on the total amount of individuals of a species entering 

the trawl codend and ii) to assess the probability of escapees, discards and landings by 

size and identify helpful tools for fisheries management  A case study has been 

conducted for the above purposes using three different codends (made by 40 mm 



diamond, 40 mm square or 50 mm diamond meshes), and for three species (European 

hake-Merluccius merluccius, Atlantic horse mackerel-Trachurus trachurus and four 

spot megrim-Lepidorhombus boscii). 

 

Material and Methods 

Experimental design 

Experimental fishing survey was carried out on important commercial fishing grounds 

for the Greek trawl fishery in the area of south Aegean Sea (E. Mediterranean) 

(Figure 1). The survey was conducted between 27th May and 18th June of 2015. A 

total number of 84 hauls in 28 locations (one haul with each studied codend per 

location: 28x3=84) was performed targeting several commercial species; few hauls 

were not considered valid because of damaged net or bad net performance. Gear good 

performance was followed during the fishing operation in all hauls using a 

SCANMAR system. The average measured horizontal and vertical opening of the 

trawl was 17.9±1.8 m and 2.1± 0.3 m, respectively. Each haul lasted always 1 hour 

during daytime and the vessel towing speed was around 2.8 knots. The substarte type 

was sand or mud and the fishing depth ranged from 50 to 310 m, the common depth 

range of Mediterranean trawl fishery targeting hake (M. merluccius), red mullets 

(Mullus barbatus, Mullus surmuletus), rose shrimp (Parapenaeus longirostris) and 

other commercial species of the continental shelf. In order to achieve as much as 

possible the real conditions of the commercial trawl fishery, a hired professional 

trawler (357 KW, 29 m LOA, 160.81 GT) was used equipped with two typical type 

otterboards ("portuguese type": 330 kg each) and a typical commercial trawl used in 

the Greek trawl fishery and made according to the EC Regulation 1967/2006; the 



design of the gear shown in Figure 2. Trawl main body and codend were made by 

nylon (polyamid-PA).  

   Three different codends were used to study the overall selection process: i) a codend 

made by 40 mm nominal size diamond meshes (40D) used in the past but not allowed 

now, ii) a codend made by 40 mm nominal size square meshes (40S), actually in use 

according to the EC Regulation 1967/2006 and iii) a codend of 50 mm nominal size 

diamond meshes (50D), that according to the same regulation can be used if proved 

more selective than that of 40S. Although the questions addressed in our study refer 

mainly to the last two meshes, 40D was also included in this study for comparison 

purposes and because it has not been studied for the Greek trawl fishery in the past, 

before the application of the EC Regulation 1967/2006 and fishers always were 

wondering about the advantages of the change from 40D to 40S. The codend mesh 

sizes (100 meshes for each codend type) were measured using an ICES mesh gauge 

(ICES, 1962) with 4 kg tension while the nettings were wet. The actual mesh sizes of 

the three tested codends were: 43.2±0.6 mm for the 40 mm diamond- and square-

mesh codend (40D and 40S), and 51.1±0.7 mm for the 50 mm diamond-mesh (50D) 

(Table 1). The three knotless codends were made by monofilament nylon (PA) and 

the nominal twine thickness was always 3 mm (in line with EC Regulation 

1967/2006). The number of meshes in the codend length and circumference was 

selected (as proposed by Sala et al., 2015) to obtain in all cases similar measurements 

for the codend length (~5.6 m) and the codend circumference (~4.3 m during fishing 

operations, since according to EC Regulation 1967/2006 the codend circumference 

should be 2 or 4 times less than the extension circumference). The number of meshes 

of each codend are given in Table 1. 



       A case study has been carried out focused on the examination of the overall 

selection of three species with different characteristics; Merluccius merluccius-

European hake, a species of high commercial value with MLS at 20 cm total length 

(TL); Trachurus trachurus-Atlantic horse mackerel, an abundant but of low 

commercial value species with MLS at 15 cm (TL); Lepidorhombus boscii-four spot 

megrim, a species without legislated MLS, of medium but more constant commercial 

value because of a lower abundance. The first two species are rounded shaped fish, 

whereas the latter is a flatfish for which selectivity may not be improved by 40 mm 

square mesh codend (Sala et al., 2008). 

    To estimate the individual (gear, fisher) and overall selectivity process for each 

species, it was necessary to use a three-compartment sampling design to directly 

quantify fish escaping through the trawl codend, fish retained in the codend being 

discarded and fish retained in the codend being landed. For the first compartment, we 

used an experimental design as in the scheme published by Sala et al. (2015) based on 

the cover-codend method (Wileman et al., 1996) to collect trawl size-selectivity data. 

For each haul, the catch of each species from the cover was managed separately from 

that of the codend. In order to achieve the information for the other two 

compartments, the vessel crew was asked to sort the codend catch of each species in 

two fractions according to the market demands as usually have experienced, the 

commercial (potential landings if fishing was carried out during professional 

conditions) and that non commercial (potential discards). 

   

Data collection   

Data were collected during the experimental fishing survey. Data for European hake 

(namely hake from now on), Atlantic horse mackerel (namely horse mackerel) and 



four spot megrim (namely megrim) were collected from 16, 17 and 7 sampling 

locations, respectively. In each location, the three compartments -escapees, discards 

and landings- were recorded from each haul conducted with the three different 

codends (40D, 40S, 50D). Total length (TL, mm) of hake, horse mackerel and  

megrim individuals were measured to the nearest 1.0 mm. Measurements took place 

from all individuals of the catch of each compartment (separately for cover-escapees, 

codend-discards, codend-landings) of each studied species or in randomly selected 

sub-samples when the catch of each component consisted of numerous individuals. In 

the latter case, 200 measurements were recorded, number sufficient for a 5% 

uncertainty in selectivity parameters estimations (Herrmann et al., 2016). In some 

cases, a lower number of measurements than the expected was obtained due to 

damaged fish or bad weather conditions. Because of the three compartment sampling 

design, in each haul and each length class l, our data included the number of measured 

fish in the cover, the number of measured fish in the codend being discarded and the 

number of measured fish in the codend being landed.  

 

Modelling the overall size‐selection process  

For a fish of length l entering the codend during fishing to end up being landed in the 

harbor two conditions needs to be fulfilled: i) it needs to be retained in the codend 

during the trawl haul; ii) it needs to be selected for landing by the fisher when the 

catch is sorted on the vessel. The first condition is modelled by the fishing gear size 

selection curve with retention probability ݎ௚௘௔௥(l,νgear) and the second by the fisher 

size selection curve with retention probability ݎ௙௜௦௛௘௥	(l,νfisher). The vectors νgear and 

νfisher represents the parameters of the two parametric selection models describing 

respectively the gear size selection in the sea and the fisher size selection on the deck 



of the fishing vessel. The two selection processes are distinguished, based on a 

different amount of fish, and can be examined independently as two separate selection 

steps. However, these two sequential processes, could describe the overall selectivity 

(gear and fisher) on the total amount of fish entering the trawl codend resulting into 

three different outcomes: the escapees, the discards and  the landings. Thus, a fish 

entering the codend during the towing of the gear in the sea will end up following a 

multinomial distribution with one of three fates (probabilities) as consequence of the 

fishing activity: i) escaping through the meshes of the codend described by the 

probability ݌௘௦௖(l,νgear); ii) being discarded by the fisher, given that it had been 

retained in the trawl codend, and described by the probability ݌ௗ௜௦௖(l, vgear, vfisher) iii) 

being landed in the harbor, given that it had been retained in the trawl codend, and 

described by the probability ݌௟௔௡ௗ(l, vgear, νfisher). Based on the two and sequential size 

selection processes, the three fate probabilities can be described by: 

   

,௘௦௖൫݈݌ ൯࢘ࢇࢋࢍࣇ ൌ 1.0 െ ,௚௘௔௥൫݈ݎ ൯࢘ࢇࢋࢍࣇ

,ௗ௜௦௖൫݈݌ ,࢘ࢇࢋࢍࣇ ൯࢘ࢋࢎ࢙࢏ࢌࣇ ൌ ቀ1.0 െ ,௙௜௦௛௘௥൫݈ݎ ൯ቁ࢘ࢋࢎ࢙࢏ࢌࣇ ൈ ,௚௘௔௥൫݈ݎ ൯࢘ࢇࢋࢍࣇ

,௟௔௡ௗ൫݈݌ ,࢘ࢇࢋࢍࣇ ൯࢘ࢋࢎ࢙࢏ࢌࣇ ൌ ,௚௘௔௥൫݈ݎ ൯࢘ࢇࢋࢍࣇ ൈ ,௙௜௦௛௘௥൫݈ݎ ൯࢘ࢋࢎ࢙࢏ࢌࣇ

 (1) 

 

    Logit model has been commonly used in selectivity studies, however, other s-

shaped models can also be used to describe gear size-selectivity ݎ௚௘௔௥(l,νgear) (Millar, 

1993; Wileman et al., 1996). Discard probability by length has been described in the 

past by a nonparametric isotonic curve by Stratoudakis et al. (1998) and as logistic 

function ogives by Rochet et al. (2002), Pálsson (2003), Machias et al. (2004), Borges 

et al. (2006) and Damalas and Vassilopoulou (2013). In the present work, to describe 

the above mentioned probabilities, four models, Logit, Probit, Gompertz and Richard 

(see Supplement and Wileman et al., 1996 for more details on these models), were 

examined for each selection process in the sequential selection model. The selection 



parameters characterizing the curves of these models are:	 L50	 (the length of fish 

having 50% probability of being retained by codend) and SR (the selection range = 

L75 - L25) and for Richard model as well the additional parameter 1/δ (which expresses 

the amount of asymmetry of the curve with δ>1 or 0<δ<1 giving longer tail to the left 

or right of L50	respectively and	δ=1 giving the symmetric logistic curve). According to 

that the parameters in the present work are denoted as: 

࢘ࢇࢋࢍࣇ ൌ ൬ݎ50݃݁ܽܮ	, ,	ݎܴܽ݁݃ܵ ቀ1/ݎܽ݁݃ߜቁ൰

࢘ࢋࢎ࢙࢏ࢌࣇ ൌ ൬ݎ݄݁ݏ50݂݅ܮ	, ,	ݎ݄݁ݏ݂ܴ݅ܵ ቀ1/ݎ݄݁ݏ݂݅ߜቁ൰
 

 

Data analysis and parameter estimation 

Using each of the four basic s-shaped size selection models in each of the two 

processes in (1) lead to a total of 16 potential models for the total selectivity process. 

Evaluation of each model performance to describe the data was based on the 

calculation of p-value, which expresses the likelihood of obtaining at least as large a 

deviation between the experimental data and the applied model by coincidence. 

Model deviance (D) compared to the number of degrees of freedom (DOF) can be 

used to help judge the ability of a model to describe the experimental data; in general 

model D should not exceed DOF (Madsen et al., 2012).  Detailed information on the 

selectivity models evaluation is included in Wileman et al. (1996). AIC criterion 

(Akaike, 1974) should  then be examined to select the best one of the models; the 

lowest value indicating the best model. 

    For the estimation of the selection parameters of the dual sequential model (1), the 

maximum log-likelihood function (that can be minimized as equivalent to maximize) 

was used , accounting in the present work the sub-sampling ratios, as follows: 



-∑ ∑ ቄ௡௖௢೗೔
௤௖௢೔

ൈ ݈݊ ቀ݌௘௦௖൫݈, ࢜௚௘௔௥൯ቁ ൅
௡ௗ೗೔
௤ௗ೔

ൈ ݈݊ ቀ݌ௗ௜௦௖൫݈, ࢜௚௘௔௥, ࢜௙௜௦௛௘௥൯ቁ ൅
௡௖௠೗೔

௤௖௠೔
ൈ௛

௜ୀଵ௟

݈݊ ቀ݌௟௔௡ௗ൫݈, ࢜௚௘௔௥, ࢜௙௜௦௛௘௥൯ቁቅ			 (2) 

where (ncoli): the number of measured fish in the cover in length class l-escapees; 

(ndli): the number of measured  fish in the codend being discarded in length class l-

discards;  (ncmli): the number of measured fish in the codend to be landed in length 

class l-landings; qcoi, qdi and qcmi: the corresponding sub-sampling ratios for the 

cover, discarded and landed compartment in each haul, respectively, and calculated by 

dividing the weight of each sub-sample by the total weight of the catch of each 

component. The subscript i refers to the specific fishing haul. The outer summation is 

over the length classes l and the inner over the h fishing hauls included in the analysis. 

     Besides the selection parameters νgear and νfisher for the two size selection processes, 

we calculated based on the estimated curve for the length dependent landing 

probability ݌௟௔௡ௗ(l, vgear, νfisher) the parameters L50land and SRland, which quantify the 

length of a fish with 50% probability for end up being landed (conditioned it enters 

the codend during the fishing haul) and the corresponding selection range (L75land – 

L25land), respectively. Simply, following the technique described in Sistiaga et al. 

(2010), we numerically solved the equation ݌௟௔௡ௗ(l, vgear, νfisher)=0.5 with respect to l 

to obtain the value for L50land. SRland was obtained by the same technique by first 

solving for L25land and L75land for the landing probability fixed at respectively 0.25 

and 0.75. 

      In addition, since discards is an issue of main importance in fisheries 

management, parameters related to discard probability curve, were examined. The 

following parameters describing the discards were calculated based on the discard 

curve by a numerical technique; ܴܦ଴.଴ହ	, ,	଴.ଶହܴܦ ,	଴.ହܴܦ  ଴.ଽହ: theܴܦ and	଴.଻ହܴܦ

difference between the two sizes of the bell-shape curve with probability 0.05, 0.25, 



0.5, 0.75 and 0.95, respectively (expressed in cm);	݌ܦ௠௔௫: the maximum discard 

probability; ݌ܦܮ௠௔௫: the length at the maximum discard probability (in cm); ܣܦ଴.଴ହ: 

the surface of the discard bell-shape curve when probability is  0.05. Figure 3 shows 

these parameters on a plot. The aim for the discard parameters is to obtain values 

close to zero, that is interpreted as negligible discards. 

    Traditionally, the estimation of mean selectivity from a set of hauls is based on 

individual hauls selectivity (Fryer, 1991). In the present study, in some individual 

hauls, the numbers of the studied species was very low in some length classes. 

Moreover, some of the hauls presented only escapees or only retained individuals. As 

a result, the size selection would not be possible to be estimated haul by haul. To 

overcome this problem, "average" selectivity parameters were obtained by pooling the 

data for all hauls based on fitting a single "average" curve, as proposed by Millar 

(1993) if fisheries issues are of primary interest and not between haul variation. 

Moreover, in order to incorporate the within and between haul variation in our 

selectivity estimates, the double bootstrapping method was used (Efron, 1982); an 

outer bootstrap resample with replacement from the group of hauls for between-haul 

variation and an inner bootstrap resample with replacement for the data of each length 

class within each resampled haul, for within-haul variation (Millar, 1993). Bootstrap 

involved pooling the raised data for all hauls per compartment and resulted in a 

pooled set of data, which then was analysed using (1) and (2). The inner bootstrap 

was performed prior to the raising of the data to avoid overestimation of the within-

haul variation. For each case 1000 bootstrap repetitions were conducted to estimate 

the "Efron percentile" 95% confidence limits (95% CI) of the selectivity curve (Efron, 

1982). This approach avoids underestimation of the uncertainty and consequently of 

the 95% confidence intervals of the "average" selection curves, which according to 



Fryer (1991), would occur from simply estimating them from pooled data.  The 

method has been applied in several published works (e.g. Sistiaga et al., 2010; 

Herrmann et al., 2012; 2013a,b; Eigaard et al., 2012; Madsen et al., 2012; Sala et al., 

2015; Brčić et al., 2015; 2016; Özbilgin et al., 2015; Alzorriz et al., 2016; Larsen et 

al., 2017). 

 The whole procedure was implemented using the computer software SELNET 

(SELection in trawl NETting). SELNET is a flexible software tool developed to 

acquire, analyze and simulate size selectivity which enables the analysis of data for 

experimental designs involving multiple compartments (Herrmann et al., 2012; 

2013a).  

       In the present study, the analysis of data was conducted separately by species and 

codend mesh. Overlapping of the 95% CI of the parameters was used to compare the 

parameters among the three codends (as proposed by Frandsen et al., 2010). 

Moreover, comparison of the fisher selection among the three gears was based on the 

95% CI of the entire curves. Frandsen et al. (2009) mentioned that by checking for 

overlap of the approximate 95% confidence bands for the different selection curves 

we could compare the selectivities for all length classes.   

 

Results 

Data from experimental design 

    Tables 2, 3 and 4 list the number of individuals of hake, horse mackerel and 

megrim, respectively, measured in each compartment (cover-escapees, codend-

discards, codend-landings) and their percentage to the total catch of each species in 

each compartment. For each species, one haul performed with 50D codend was not 

considered valid because of damaged net (Table 2, 3 and 4). In total, for 40D, 40S and 



50D codends, 2955, 3285 and 3476 hake were measured (71.35%, 36.90% and 

60.99% of the total entering the trawl net population) with lengths ranging between 4-

63 cm, 5-58 cm and 5-69 cm, respectively. The total amount of horse mackerel 

measured was 1812 (31.14%), 1881 (33.72%) and 1837 (26.32%) individuals for 

40D, 40S and 50D, respectively; length span between 5-36 cm, 5-39 cm and 4-37 cm 

for the same codends, respectively. Similarly, the total number of megrim measured 

was 521 (53.44%), 1096 (94.81%) and 797 (84.07%) for 40D, 40S and 50D, 

respectively; lengths ranging between 4-38 cm, 3-36 cm and 4-37 cm. Hake was very 

abundant in many hauls providing a strong sample for our analysis. This was not the 

case for the other two species since the sampling design followed hauls of the 

commercial bottom trawl fishery, targeting mainly hake, mullet, rose shrimp and 

Norway lobster and including megrim and horse mackerel as by-catch. In some hauls 

the number of individuals in each compartment was <10;  these hauls were kept in the 

analysis first because their inclusion did not affected the results (analysis done with 

and without them) and second because for comparison purposes, if these were 

excluded, we had to exclude also the other two hauls performed in the same location 

with the other two codends. 

  

Modelling the overall size-selection 

The overall selection pattern throughout the fishing process was modelled for each 

species and codend using the formulas (1) and (2) and based on the fish collected in 

the cover (escapees), the compartment of the codend being discarded and the 

compartment of the codend being landed.  

   In total, 16 different models for the overall selection on the population entering the 

trawl codend, combining size-selectivity of the gear and fisher, were estimated by 



species for each one of the three codends. Their fit statistics permitted to consider 

their performance relevant to the data they described in all cases (following the rules: 

p-values>0.05, Deviance< or close to DOF value). The best model was finally 

identified based on the AIC-value (Table 5). For each codend and species, the best 

identified model and its fit statistics, shown in Table 6, clearly described the size-

selection data of the present work. Moreover, plots in Figures 4-6 show the graphical 

representation of the best model by species, codend type and compartment, indicating 

the good performance of the models to the experimental rates per length class. On the 

same graphs, confidence intervals (95% CI) of the curves are also in most of cases 

quite narrow supporting the hypothesis of the proposed model and indicating the 

strength of  the sampling design for the three compartment pattern used for the data 

analysis. Horse mackerel and megrim showed in few cases wider 95% CI, probably 

related to the low number of samples analysed, while the strong sampling for hake 

provided very narrow 95% CI in all cases. Gear size-selectivity for 40S and 50D 

seemed to be better described by Richard model for all three studied species, whereas 

40D presented a variety of models depending on the species. 

   The plots in Figures 4-6 show always, that escape and landing probability are 

described by an S-curve, whereas discard probability is fitted by a bell-shaped curve, 

with zero values in small and large length classes and a peak value among them. This 

was symmetric (e.g. discard probability in 40D of megrim, Figure 6) or asymmetric 

with longer tail to the left or right side (e.g. discard probability in 50D of horse 

mackerel, Figure 5). Discard probability ranged between 0.0 and 1.0 depending on the 

escape probability of the gear in small sizes and the landing probability from fisher-

selection in large sizes. The overall size selection on the population is given finally by 



the landing probability (sequential retention probability for landings on deck of the 

fishing vessel). 

 

Escape,  Discard  and  Landing  size‐dependent  probability  by  species  and  codend 

type  

 

Hake   

The model describing the overall and the escape, discard and landing pattern for hake 

fitted very well the datapoints for all the three codend types (40D, 40S and 50D) and 

the three catch compartments (Figure 4). 

    The escape probability of hake differed among the three codends, with lower 

 did not show	50௚௘௔௥ܮ values for 40D and higher for 40S. The 95% CI of	50௚௘௔௥ܮ

overlap (Table 6). Escape probability for 40D decreased significantly (<0.3) at lengths 

>8 cm and tends to be zero when TL15 cm. In contrast, for 40S escape likelihood 

became <0.3 at lengths >15 cm and tends to be zero when TL20 cm. In 50D codend, 

values ranged between those of 40D and 40S codends. Taking into account the hake 

size structure entering the trawl codend (Figure 4), it was obvious that an important 

part of young individuals can escape to the sea only when 40S is used. 

    The discard probability for 40D presented very high values for lengths between 8-

14 cm TL, corresponding to a big part of the total amount of hake entering the gear 

that has low probability to escape through this net (Figure 4). Table 7 summarizes the 

information on the discard probability of hake. The 40S codend showed the best 

discard parameters compared with the other two codends. Discard range (DR0.05-0.95) 

presented the narrowest values for 40S decreasing to zero before the probability 0.5, 

whereas for 40D and 50D it was always >0. The maximum discard probability Dpmax 



for 40S was 0.43 at 15.23 cm TL; that for 50D and 40D was 0.75 at 13.51 cm TL and 

0.98 at 11.62 cm TL, respectively. The discard surface (DA0.05) for probability 0.05 

was significantly lower for 40S without overlapping with the 95% CI of the other two 

codends (Table 7). 

   It is worth mentioning that landing probability of hake and the related parameters 

 ,50௟௔௡ௗ and SRland were almost identical among the three codend types (Figure 4ܮ

Table 6), indicating that fishers behaviour for the selection of hake landings is quite 

constant. This was also obvious in Figure 7, where the curves of fisher selection and 

their 95%  CI for the case of 40D, 40S and 50D demonstrate overlapping among 

them. In fact, for all codends landing probability started at 12-13 cm and became 0.5 

at 15-16 cm, reaching top at lengths ~20 cm TL that is the minimum landing size 

(MLS) of the species (Figures 4 and 7).  

 

Horse Mackerel 

The model describing the overall and the escape, discard and landing pattern for horse 

mackerel fitted well the experimental data in all cases, although 50D codend showed 

wider 95% CI for escape and discard probability in small sizes, because of some small 

individuals in the codend (TL: 7 cm) (Figure 5). 

   The escape probability of horse mackerel differed among 40D and the other two 

codends, with lower 50ܮ௚௘௔௥ for 40D. Overlap among 40S and 50D was found for the 

95% CI of 50ܮ௚௘௔௥	(Table 6). Escape probability for 40D decreased significantly 

(<0.3) at lengths >11 cm and became almost null between 13-19 cm TL. In contrast, 

for the other studied codends escape likelihood became <0.3 at lengths >15 cm and 

null when TL17 or 20 cm for 40S and 50D, respectively. 



   A big amount of horse mackerel entering the 40D codend has probability of being 

discarded; particularly individuals with lengths between 9-13 cm TL, that in the case 

of 40S and 50D have important probability to escape. The worst discard parameters 

were found for 40D. No important differences were detected among the discard 

parameters of 40S and 50D as shown by the overlapping of their 95% CI (Table 7); 

the lower ݌ܦ௠௔௫ and higher ݌ܦܮ௠௔௫ values of 50D related to some big individuals 

found in the cover (TL: 18-20 cm).  

   The most impressive result for horse mackerel was that, for all codends, individuals 

with lengths 15cm (the MLS of the species-EC Regulation 1967/2006) and 19cm 

TL, either have a low likelihood to escape or mainly are discarded (~0.9). Even 

individuals of large sizes (19-23 cm), much larger than MLS, presented a probability 

of being discarded between 0.15-0.95 (Figure 5). 

    The constant fishers behaviour selecting only the few very big individuals from 

those entering the trawl codend, resulted in similar landing curves (Figures 5 & 7) and 

landing selection parameters for horse mackerel for  the three studied codends (Table 

6).  

 

Megrim 

The model for the escape, discard and landing likelihoods for megrim described well 

the datapoints in all cases, although 50D codend showed wider 95% CI for escape and 

discard probability in small sizes, because of gaps in some length classes and the 

presence of small individuals in the codend (Figure 6). 

      For all the three codends, escape probability concerned a small part of the entering 

the codend megrims. The biggest amount of them had a probability of being 

discarded; whereas another small part of being landed. Landing probability became 



>0.01 at lengths of 13 cm, and became higher than 0.5 at lengths 18 cm TL in all 

cases (Figure 6 and 7). 50ܮ௚௘௔௥	values for the three codends did not show important 

differences with overlap of their 95% CI, although the wide range of CI in 50D do not 

allow a clear suggestion (Table 6). However, the 50D 50ܮ௙௜௦௛௘௥ and  50ܮ௟௔௡ௗ values 

differed from those of 40D and 40S, although a small overlap appeared between the 

upper limit of 50D and the lower of 40S for these parameters (Table 6). Examination 

of the fisher selection curves showed that the curve of 50D differed significantly from 

the other two curves without overlap among their 95% CI, except in the case of sizes 

<17 cm where a small overlap was observed among the three curves (Figure 7). 

Discard parameters did not show a clear situation because of the overlapping of 95% 

of CI in many cases, although the average parameters values for 50D seemed a little 

better than those of the other two nets (Table 7).  

 

Discussion 

In the present work, the overall size-selection on the total amount of individuals of a 

species entering the trawl codend is described and modelled for first time. The model 

was based on the concept of a multinomial distribution with three size-selection 

probabilities related to two size-selection processes. For a fish entering the trawl 

codend, the model describes the escape probability through the gear to the sea and the 

landing probability by the fisher-selection with S-shaped curves leading to a bell-

shaped curve for the discard probability affected by the gear selectivity (first selection 

and retention in the codend) and the fisher-selection (sequential selection). In contrast 

to models that have traditionally studied these two processes separately (e.g. Wileman 

et al., 1996; Stratoudakis et al., 1998; Rochet et al., 2002; Machias et al., 2004; 

Borges et al., 2006; Damalas and Vassilopoulou, 2013), the present dual sequential 



model accounts for the fact that these processes are sequential with the second 

depending on the first one. This kind of models have also been used in various studies 

(e.g. Zuur et al., 2001; Sistiaga et al., 2010; Herrmann et al., 2013a; Brčić et al., 2015; 

Larsen et al., 2017). 

   Historically, the logit model has been used to describe the size-selectivity of the 

trawl gear (Millar et al., 1993; Wileman et al., 1996) and the discard selection pattern 

(Rochet et al., 2002;  Pálsson, 2003; Machias et al., 2004; Damalas and Vasilopoulou, 

2013). The present work has demonstrated that other models can describe better these 

selection processes. More complicated models can be tested in the future as well as 

the incorporation of factors affecting the examined probabilities to better interpret the 

deviance of the double sequential model. However, in the present phase, the simplest 

possible approach of the initial concept, has been attempted. 

    The developed model described well the experimental data for all the three studied 

species and codend types. Sampling scheme of three compartments (escapees, 

discards, landings) proved adequate for modelling the overall selection process on the 

total amount of entering the gear fish.  As a result, it can be proposed to be used also 

for other species and codend types. More cases can be tested in the future that is also 

in the purpose of the authors. 

    The described model permits to designate the overall length-dependent selection as 

well as the individual selection processes (gear or fishers). Several selection 

parameters (e.g. 50ܮ௚௘௔௥, 50ܮ௙௜௦௛௘௥ ,50ܮ௟௔௡ௗ) can be estimated at the same time. 

Discard parameters such as ܴܦ଴.଴ହ, ݌ܦ௠௔௫, ݌ܦܮ௠௔௫ and ܣܦ଴.଴ହ, that can be used as a 

kind of discard indicators, can also be available. These are useful tools in fisheries 

management. In addition, the developed model demonstrates the image of the overall 

exploitation pattern and therefore the overall impact on the total amount of a fish 



entering the trawl codend. This is important in assessment studies for the estimation 

of mortality in exploited stocks (Wileman et al., 1996) and seems to support more the 

Environmental Approach to Fisheries Management by studying in a more holistic way 

factors affecting stock sustainability. It can also be useful to understand discards 

patterns and their relation to gear selectivity and to fishers behaviour. As a result, 

different scenarios can be proposed, based on experiments or simulations for changes 

in gear selection, fishers selection or both processes, useful for alternative exploitation 

patterns. Recently, different exploitation patterns have been studied for trawl size-

selectivity by Stepputtis et al. (2016). Similar attempts could be examined for discard 

and landing selection patterns for useful alternative scenarios in discards 

management. Alternative concepts in fisheries management have been debated to date 

(Hall et al., 2000; Zhou et al., 2010; Rochet et al., 2011; Garcia et al., 2012), thus 

investigation should be focused on how to bring all new findings into practice. 

Furthermore, the useful tools that the present model can offer to fisheries management 

are provided by many different studies to date consuming big budgets and time. The 

advantage of combining selectivity and discards studies may reduce funding 

necessities. 

    In the present work, hake escape probability through bottom trawl codend was 

generally low for the species population structure in the fishing grounds examined, 

where commercial trawl fishery is practiced. More escapees were found for 40S, 

although even in this case, 50ܮ௚௘௔௥  was below the minimum landing size (MLS) of the 

species nominated at 20 cm (EC Regulation 1967/2006) and much more lower than 

the length at first maturity (LFM) of hake in the area (~30 cm, Tsikliras and Stergiou, 

2013). This has also been found by Pertakis and Stergiou (1997), Aydin and 

Tosunoğlu (2010), Tokaç et al. (2010) and Özbilgin et al. (2012) for hake in the 



Aegean Sea. The square net showed also less discards. Thus, among the three 

codends, 40S presented the lowest impact on hake population. Fishers behaviour 

remained constant regarding selection probability for landings among the three 

codends with high likelihood (0.4-0.9) to keep undersized hake between 15-19 cm for 

marketable purposes. This probability was higher in 40D and lower in 40S. Thus, the 

use of 40S net triggers fishers to include less illegal sizes in landings and therefore act 

with more compliance to the existing regulations. Machias et al. (2004), Damalas and 

Vassilopoulou (2013) and Keskin et al. (2014), based on onboard observations, found 

also undersized hake in landings as in our case. Moreover, Tsagarakis et al. (2017) 

mentioned that among various Mediterranean countries hake size at which 50% is 

discarded (or retained) ranges between 10-17 cm. All the above results are in 

accordance and support the findings of the present model and its usability.  

   For horse mackerel, the overall selection pattern revealed that an important part of 

individuals can escape to the sea from 40S and 50D codends; this was not the case for 

40D with much more discards amount than the other two nets. Better selectivity for 

this species was also found by Aydin and Tosunoğlu (2010) for square than diamond 

meshes codend in the Aegean Sea. Although 40S showed better 50ܮ௚௘௔௥ value, none 

of the codends achieved MLS (15 cm) and certainly not LFM size (~20 cm, Tsikliras 

and Stergiou, 2013). For all codends, the vast amount of horse mackerel entering the 

trawl presented very high probability (~0.9) of being discarded at lengths above the 

MLS (15 cm) and less than 20 cm. A very small part of horse mackerel with size >23 

cm (larger than LFM) have mainly probability of being landed. Horse mackerel is a 

fish of very low commercial value and besides the MLS establishment, it constitutes 

mainly an unwanted bycatch. This is also in accordance with the findings of Machias 

et al. (2004) and Damalas and Vassilopoulou (2013) from onboard observations on 



commercial fishing vessels. Tsagarakis et al. (2017) certifies this phenomenon for 

various areas of the Mediterranean, where the mean size of 50% discarding practice 

for horse mackerel ranges between 18-21 cm, fact that also supports the findings of 

the present model and its usability.    

   Megrim selection by the gear and the fisher followed generally a similar pattern 

among the three codends, with a small part of escapees, a small part of landings and a 

large amount of discards including many individuals above the LFM (~14 cm, 

Tsikliras et al., 2013). The better average values of discard parameters for 50D than 

40S can be explained by the fact that square meshes do not offer improvement in 

selection of flatfish as also mentioned by Petrakis and Stergiou (1997), Sala et al. 

(2008) and Özbilgin et al. (2012). No MLS exists for megrim and its medium 

commercial value makes fishers select mainly big sized specimens for landings that 

can be marketable. 50ܮ௚௘௔௥values did not seem to differ among the three codends, fact 

possibly affected by the large 95% CI of 50D, and these were always lower than LFM 

of the species. Regarding fisher selection, 50D curve was found to differ from the 

other two codends for sizes >17 cm. The reason of such a difference, not easily 

explained, may be attributed to difference in the catch composition and quantity. In 

fact, a lower amount of megrim arrived on deck in the case of 50D (772 ind.) than in 

the other two cases (40D: 898 ind., 40S: 1052 ind.), that may has affected fisher 

selection behaviour. Fisher selection pattern was common for megrims <17 cm, 

indicating that fisher selection is constant for sizes that are not marketable, but this 

may be affected by other factors in larger sizes. None of the codends seemed to be 

adequate and gear selectivity needs improvement since gear fish small sized megrims 

and fishers land mainly megrim larger than LFM resulting to a large amount of 

discards.  



    The application of the model for hake, horse mackerel and megrim indicated that in 

all cases selectivity parameters were lower than the regulated MLS and much more 

lower than LFM. The discrepancy between retention sizes and LFM is expected to 

impede the sustainability of the stocks (Tsagarakis et al., 2017 and references 

therein). Another important observation is that discard and landing selection is 

affected mainly by the market demands and less by the establishment or not of MLS. 

Fishers may land undersized catch (as in the case of hake), but also may land much 

larger fish than the LFM (as in the case of horse mackerel and megrim) depending on 

the species and their marketability. This was also suggested by Machias et al. (2004), 

Damalas and Vassilopoulou (2013), Keskin et al. (2014), Bellido et al. (2014) and 

Tsagarakis et al. (2014, 2017) for the Mediterranean fishery. These findings may 

imply for more compliance to the legislated MLS as in the case of hake. However, 

they imply also for more surveillance and control of the market and for more 

community awareness to avoid the demand of small fish. Furthermore, the results of 

the present work indicate that MLS should be higher in order to be closer to LFM to 

ensure opportunity for reproduction, and this can be supposed to be easily acceptable 

by fishers for species that landing sizes are larger than LFM. However, it is doubtful 

if MLS revision would drive fishers to avoid juveniles or to further black market for 

undersized individuals (Tsagarakis et al., 2017 and references therein). Alternative 

scenarios for legal sized fish of not being discarded but used for other purposes 

(cosmetics, fish meat) can also be proposed. Finally, other issues that can arise are 

related to the effectiveness of the nets used. 40D was found to be a harmful net since 

it is characterised by low escape and high discard probabilities for all the three 

species. Therefore the prohibition of this net was a correct measure. 40S codend 

showed better selectivity than 50D for hake, but this was not so obvious for mackerel 



and megrim. Square mesh was examined in the past in several studies carried out in 

the Mediterranean, which showed that in most cases it improves trawl selectivity (e.g. 

Petrakis and Stergiou. 1997; Bahamοn et al., 2006; Guijarro & Massuti, 2006; 

Özbilgin et al., 2012; 2015); but see Petrakis and Stergiou (1997), Sala et al. (2008; 

2015), Tokaç et al. (2010), Özbilgin et al. (2012). As a result, alternative scenarios 

have been investigated (e.g. Sardá et al, 2004; Tokaç et al., 2010; Aydin and 

Tosunoğlu, 2010; Brčić et al., 2015) to find solutions for the case of multispecies 

Mediterranean bottom trawl fishery. However, a common solution seems difficult 

because of other important commercially species losses (e.g. Ordines et al., 2006; 

Bahamon et al. 2006, Özbilgin et al., 2015). Spatiotemporal protection of nursery 

grounds (e.g. for hake) and more regional solutions could lead to new approaches for 

this complex issue. 

   In summary, the proposed in the present study model can be a useful tool in 

fisheries management since it has been proved efficient to combine selectivity and 

discards studies and at the same time implying for a cost-benefit approach. 

Furthermore, it may initiate further debates in terms of trawl gear selectivity, discards 

management, fishers behaviour, fish market control and consumers habits to offer 

various alternatives in fisheries management. More studies with more species in 

various geographical areas and using different trawl gear designs should be examined 

in the future. 
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List of Figures 

Figure 1. Map of the sampling area with the hauls of the experimental fishing 

 

Figure 2. Trawl gear used in the present study (common design of the gear in the 

Greek trawl fishery). 



 

Figure 3. Plot indicating Discard parameters calculated in the present study. 

 

Figure 4. Size selectivity plots for hake. Left column  plots represent size selectivity 

of the codend with 40 mm diamond meshes (40D), middle column plots represent the 

codend with 40 mm square meshes (40S) and right column plots represent size 

selectivity of codend with 50 mm meshes (50D). First row plots correspond  to gear 

escape size selectivity (pesc), second row plots correspond to discard probability (pdisc) 

and last row plots correspond to landing probability (pland). Black lines represent 

selectivity curves and grey lines represent the size structure of the population entering 

the trawl codend. Circles correspond to experimental ratios and grey areas to 95% 

confidence intervals. Dashed vertical line indicates MLS. 

 

Figure 5. Size selectivity plots for horse mackerel. Left column  plots represent size 

selectivity of the codend with 40 mm diamond meshes (40D), middle column plots 

represent the codend with 40 mm square meshes (40S) and right column plots 

represent size selectivity of codend with 50 mm meshes (50D). First row plots 

correspond  to gear escape size selectivity (pesc), second row plots correspond to 

discard probability (pdisc) and last row plots correspond to landing probability (pland). 

Black lines represent selectivity curves and grey lines represent the size structure of 

the population entering the trawl codend. Circles correspond to experimental ratios 

and grey areas to 95% confidence intervals. Dashed vertical line indicates MLS. 

 

Figure 6. Size selectivity plots for megrim. Left column  plots represent size 

selectivity of the codend with 40 mm diamond meshes (40D), middle column plots 



represent the codend with 40 mm square meshes (40S) and right column plots 

represent size selectivity of codend with 50 mm meshes (50D). First row plots 

correspond  to gear escape size selectivity (pesc), second row plots correspond to 

discard probability (pdisc) and last row plots correspond to landing probability (pland). 

Black lines represent selectivity curves and grey lines represent the size structure of 

the population entering the trawl codend. Circles correspond to experimental ratios 

and grey areas to 95% confidence intervals. 

 

Figure 7. Fisher selection curves by species for the three studied codends (40D: 

continuous line; 40S: dashed line; 50D: dot line; light grey areas: 95% CI of each 

curve, dark grey areas: overlap of 95% CI of the curves). 

 



Table 1. Characteristics of the three codends with 40 mm diamond (40D), 40 mm 
square (40S) and 50 mm diamond (50D) meshes used in the present study. 

 

 

 

              Codend 40D 40S 50D 
Nominal mesh size (mm)    40 40 50 
Measured mesh size (mm) 43.20.6 43.20.6 51.090.7 
Nominal twine thickness (mm) 3 3 3 
Measured twine thickness (mm) 2.80.1 2.80.1 2.80.1 
Number of meshes in codend 
circumference 
Codend Circumference at sea (mm)

400 
 

4.32

200 
 

4.32

340 
 

4.34 
Number of meshes in codend length 130 260 110 
Codend longitudinal length (m) 5.616 5.616 5.619 



Table 2. Number of hake (Merluccius merluccius) with measured total length and their percentage (in 
parenthesis) to the total catch of the species in the three compartments (C: cover, D: discards, L: landings) of 
each haul carried out in each sampling location with one of the three codends (40D: 40 mm diamond mesh, 
40S: 40 mm square mesh, 50D: 50 mm diamond mesh). 

CODEND 40D  40S  50D 
Sampling 
location 

C D L  C D L  C D L 

1 23 
(100%) 

143 
(100%) 

164 
(100%) 

 84 
(93.33%) 

19 
(95.0%) 

126 
(100%) 

 82 
(100%) 

50 
(100%) 

125 
(100%) 

2 16 
(94.12%) 

200 
(35.71%) 

427 
(100%) 

 200 
(23.57%) 

200 
(43.96) 

295 
(100%) 

 200 
(98.04%) 

208 
(29.30%) 

404 
(100%) 

3 43 
(100%) 

200 
(100%) 

325 
(100%) 

 146 
(8.47%)

200 
(44.44%)

306 
(100%)

 270 
(79.18%) 

199 
(35.28%) 

331 
(100%)

4 0 
(100%) 

4 
(80%) 

21 
(100%)  

0 
(100%)

0 
(100%)

14 
(100%)  

0 
(100%) 

0 
(100%) 

15 
(100%) 

5 20 
(100%) 

78 
(92.86%) 

77 
(100%)  200 

(74.07%)
15 

(100%)
130 

(100%)
 99 

(100%) 
107 

(91.45%) 
103 

(100%)
6 0 

(100%) 
1 

(100%) 
30 

(100%) 
 2 

(100%) 
3 

(100%) 
17 

(100%)  not  valid  haul 

7 0 
(100%) 

2 
(100%) 

27 
(100%)  1 

(100%) 
0 

(100%)
40 

(100%)  3 
(100%) 

0 
(100%) 

14 
(100%) 

8 0 
(100%) 

0 
(100%) 

12 
(100%)  

0 
(100%)

1 
(100%) 

12 
(100%)  

0 
(100%) 

0 
(100%) 

13 
(100%)

9 1 
(100%) 

34 
(100%) 

136 
(100%)  20 

(95.24%) 
5 

(100%) 
62 

(100%)  32 
(100%) 

58 
(100%) 

137 
(100%)

10 5 
(100%) 

86 
(100%) 

158 
(100%)  11 

(91.67%) 
5 

(100%) 
118 

(100%)  22 
(100%) 

53 
(100%) 

148 
(100%)

11 90 
(100%) 

64 
(7.30%) 

61 
(100%) 

 200 
(7.65%) 

143 
(26.88%) 

121 
(100%) 

 178 
(18.18%) 

174 
(27.29%) 

107 
(100%)

12 1 
(100%) 

75 
(98.68%) 

34 
(100%)  28 

(100%)
14 

(100%)
41 

(100%)
 11 

(100%) 
17 

(85%) 
20 

(100%)
13 4 

(100%) 
50 

(100%) 
56 

(100%)  76 
(98.70%) 

63 
(100%) 

66 
(100%)

 4 
(100%) 

33 
(91.67%) 

38 
(100%) 

14 2 
(100%) 

104 
(95.41%)

43 
(100%)  79 

(98.75%) 
30 

(100%) 
21 

(100%)  36 
(100%) 

73 
(97.33%) 

35 
(100%) 

15 2 
(100%) 

35 
(100%) 

36 
(100%)  61 

(100%)
27 

(100%)
33 

(100%)
 2 

(100%) 
7 

(100%) 
9 

(100%)
16 4 

(100%) 
12 

(100%) 
49 

(100%)  10 
(100%)

3 
(61.07%)

37 
(100%)

 10 
(90.91%) 

8 
(88.89%) 

41 
(100%)

TOTAL 211 
(99.50%) 

1088 
(47.85%)

1656 
(100%) 

 
1118 

(19.15%)
728 

(44.80%)
1439 

(99.93%)
 

949 
(51.97%) 

987 
(42.31%) 

1540 
(100%)

 

 



Table 3. Number of horse mackerels (Trachurus trachurus) with measured total length and their percentage 
(in parenthesis) to the total catch of the species in the three compartments (C: cover, D: discards, L: landings) 
of each haul carried out in each sampling location with one of the three codends (40D: 40 mm diamond 
mesh, 40S: 40 mm square mesh, 50D: 50 mm diamond mesh). 

CODEND 40D  40S  50D 
Sampling 
location 

C D L  C D L  C D L 

1 
200 

 (60.98%) 
 103 

(88.03%) 
0 

(100%) 
 200 

(66.04%) 
179 

(100%) 
0 

(100%) 
 21 

(100%) 
104 

(100%) 
0 

(100%) 

2 
12 

(100%) 
3 

(100%) 
22 

(100%) 
 0 

(100%) 
2 

(100%) 
19 

(100%) 
 6 

(100%) 
5 

(100%) 
2 

(100%) 

3 3 
(100%) 

9 
(100%) 

0 
(100%) 

 3 
(100%) 

1 
(100%) 

0 
(100%) 

 24 
(100%) 

2 
(100%) 

1 
(100%) 

4 
12 

(100%) 
22 

(100%) 
0 

(100%) 
 14 

(100%) 
0 

(100%) 
2 

(100%) 
 7 

(100%) 
2 

(95.58%) 
0 

(100%)

5 
3 

(100%) 
0 

(100%) 
0 

(100%) 
 10 

(100%)
0 

(100%)
0 

(100%) 
 23 

(100%) 
53 

(98.15%) 
0 

(100%) 

6 
3 

(100%) 
3 

(100%) 
0 

(100%) 
 21 

(100%) 
11 

(100%) 
1 

(100%) 
 27 

(100%) 
11 

(100%) 
4 

(100%) 

7 
2 

(100%) 
5 

(100%) 
5 

(100%) 
 23 

(95.83%) 
0 

(100%) 
3 

(100%) 
 16 

(100%) 
0 

(100%) 
0 

(100%) 

8 
97 

(90.65%) 
16 

(100%) 
0 

(100%) 
 200 

(52.91%) 
23 

(61.03%)
0 

(100%) 
 165 

(96.49%) 
0 

(100%) 
0 

(100%) 

9 
0 

(100%) 
200 

(86.96%) 
4 

(100%) 
 18 

(100%) 
24 

(100%) 
0 

(100%) 
 10 

(100%) 
50 

(100%) 
14 

(100%) 

10 122 
(31.28%) 

200 
(9.48%)

2 
(100%) 

 200 
(7.74%)

190 
(16.67%)

0 
(100%)

 200 
(17.61%) 

200 
(11.25%) 

3 
(100%)

11 
200 

(44.0%) 
200 

(19.04%) 
0 

(100%) 
 200 

(74.91%) 
63 

(100%) 
0 

(100%) 
 200 

(10.37%) 
200 

(19.72%) 
2 

(100%) 

12 0 
(100%) 

34 
(20.0%) 

16 
(100%) 

 1 
(100%) 

116 
(100%) 

36 
(100%) 

 46 
(100%) 

104 
(100%) 

19 
(100%) 

13 
6 

(100%) 
200 

(39.06%) 
6 

(100%) 
 23 

(100%) 
184 

(100%) 
4 

(100%) 
 81 

(100%) 
200 

(71.94%) 
3 

(100%) 

14 
2 

(100%) 
2 

(100%) 
26 

(96.30%) 
 0 

(100%) 
0 

(100%) 
63 

(100%) 
 1 

(100%) 
1 

(100%) 
2 

(100%) 

15 1 
(100%) 

7 
(100%) 

3 
(100%) 

 2 
(100%) 

1 
(100%) 

0 
(100%) 

 3 
(100%) 

4 
(100%) 

0 
(100%) 

16 0 
(100%) 

0 
(100%) 

15 
(100%) 

 0 
(100%) 

0 
(100%) 

23 
(100%) 

 0 
(100%) 

0 
(100%) 

21 
(100%) 

17 
0 

(100%) 
35 

(27.03%) 
11 

(100%) 
 0 

(100%) 
19 

(100%) 
2 

(100%) 
 

not valid haul 

TOTAL 663 
(50.10%) 

1039 
(23.70%) 

90 
(99.10%) 

 
915 

(25.08%) 
813 

(45.73%) 
153 

(100%) 
 

830 
(23.71%) 

936 
(27.47%) 

71 
(100%) 

  

 

 

 



Table 4. Number of four spot megrims (Lepidorhombus boscii) measured and their percentage (in 
parenthesis) to the total catch of the species in the three compartments (C: cover, D: discards, L: landings) 
of each haul carried out in each sampling location with one of the three codends (40D: 40 mm diamond 
mesh, 40S: 40 mm square mesh, 50D: 50 mm diamond mesh). 

CODEND 40D  40S  50D 
Sampling 
location 

C D L  C D L  C D L 

1 6 
(100%) 

40 
(100%) 

3 
(100%) 

 8 
(100%)

170 
(100%)

72 
(100%)

 12 
(100%) 

54 
(100%) 

5 
(100%)

2 
1 

(100%) 
40 

(100%) 
8 

(100%) 
 2 

(100%)
90 

(100%)
29 

(100%)
 17 

(100%) 
57 

(100%) 
47 

(100%)

3 
21 

(100%) 
40 

(20.00%) 
24 

(100%) 
 38 

(100%)
200 

(76.91%)
52 

(100%)
 124 

(100%) 
200 

(52.77%) 
82 

(100%)

4 
0 

(100%) 
23 

(100%) 
2 

(100%) 
 0 

(100%)
23 

(100%)
1 

(100%)
 1 

(100%) 
30 

(100%) 
15 

(100%)

5 
19 

(100%) 
82 

(100%) 
0 

(100%) 
 21 

(100%)
125 

(100%)
29 

(100%)
 50 

(100%) 
69 

(100%) 
6 

(100%)

6 
30 

(100%) 
109 

(27.03%) 
54 

(100%) 
 35 

(100%)
164 

(100%)
30 

(100%)
 

not valid haul 

7 
0 

(100%) 
0 

(100%) 
19 

(100%) 
 0 

(100%)
3 

(100%)
4 

(100%)
 0 

(100%) 
0 

(100%) 
28 

(100%)

TOTAL 
77 

(100%) 
334 

(42.39%) 
110 

(100%) 
 104 

(100%)
775 

(92,81%)
217 

(100%)
 204 

(100%) 
410 

(69.61%) 
183 

(100%)
 

 

 

 



Table 5. AIC (Akaike, 1979) values obtained for the sixteen different 
models fitted to the experimental selectivity data of hake (HAK), horse 
mackerel (HOM) and four spot megrim (MEG). Models with the lowest 
AIC value are denoted by bold italics. 

 

 

 
Codend 

Gear 
Selectivity 

Model 

Fisher 
Selection 
Model 

 
 

AIC 
 
 

HAK HOM MEG 

40D 

Logit 

Logit 2616.09 3719.89 508.77 
Probit 2647.84 3729.21 505.33 
Gompertz 2641.73 3760.67 507.54 
Richard 2603.78 3721.54 508.63 

Probit 

Logit 2636.62 3747.92 504.76 
Probit 2668.38 3757.24 501.31 
Gompertz 2662.26 3788.70 503.52 
Richard 2624.32 3749.57 504.61 

Gompertz 

Logit 2612.00 3753.19 507.88 
Probit 2643.76 3762.51 504.43 
Gompertz 2637.64 3793.98 506.64 
Richard 2599.70 3754.84 507.73 

Richard 

Logit 2613.60 3721.85 509.88 
Probit 2645.36 3731.17 506.43 
Gompertz 2639.24 3762.63 508.64 
Richard 2601.30 3723.50 509.74 

40S 

Logit 

Logit 8686.78 4117.09 547.68 
Probit 8720.13 4122.84 548.43 
Gompertz 8667.05 4149.42 569.54 
Richard 8663.53 4117.12 549.66 

Probit 

Logit 8725.43 4145.26 546.26 
Probit 8758.78 4151.00 547.01 
Gompertz 8705.70 4177.59 568.12 
Richard 8702.18 4145.28 548.24 

Gompertz 

Logit 8983.23 4324.61 594.36 
Probit 9016.58 4330.36 595.11 
Gompertz 8963.50 4356.95 616.23 
Richard 8959.98 4324.64 596.35 

Richard 

Logit 8609.59 4081.12 527.26 
Probit 8642.94 4086.87 528.01 
Gompertz 8589.86 4113.45 549.12 
Richard 8586.34 4081.15 529.25 

50D 

Logit 

Logit 6966.40 7860.45 975.65 
Probit 6974.93 7869.60 977.21 
Gompertz 6996.26 7902.64 993.91 
Richard 6959.24 7862.37 976.39 

Probit 

Logit 6995.21 7865.42 971.84 
Probit 7003.74 7874.57 973.40 
Gompertz 7025.07 7907.61 990.10 
Richard 6988.05 7867.34 972.57 

Gompertz 

Logit 6970.67 7858.36 978.99 
Probit 6979.20 7867.52 980.56 
Gompertz 7000.52 7900.55 997.26 
Richard 6963.51 7860.28 979.73 

Richard 

Logit 6962.90 7848.30 971.14 
Probit 6971.43 7857.46 972.71 
Gompertz 6992.76 7890.49 989.41 
Richard 6955.74 7850.22 971.88 



Table 6. Selectivity parameters for the best model describing the overall size-selection process leading 
to the landing probability ሺ50ܮ௟௔௡ௗ, ܴܵ௟௔௡ௗሻ, the size-selectivity of gear (50ܮ௚௘௔௥, ܴܵ௚௘௔௥,  ௚௘௔௥ሻߜ/1
and the fisher size-selection (50ܮ௙௜௦௛௘௥, ܵ ௙ܴ௜௦௛௘௥,  ௙௜௦௛௘௥) in the bottom trawl codend using the 40Dߜ/1
(40 mm diamond), 40S (40 mm square) and 50D (50 mm diamond) meshes; 95% confidence intervals 
are shown in parenthesis; 1/δ is available only in the case of Richard model. (G: gear selectivity model; 
F: fisher selectivity model; DOF: degrees of freedom) 

Species         40D 
Codend  

40S 50D 

Hake 

Model 
Parameter G: Gompertz 

FF: Richard

Model 
G: Richard 
F: Richard 

 
G: Richard 
F: Richard 

50௚௘௔௥ 7.14 (6.46-7.76)ܮ 13.75 (12.99-14.41) 10.32 (9.52-10.93) 
ܴܵ௚௘௔௥ 1.97 (1.24-2.71) 3.09 (2.25-3.93) 4.11 (2.79-5.43) 
 ௚௘௔௥  0.32 (0.10-1.24) 1.98 (0.63-10.0)ߜ/1
 50௙௜௦௛௘௥ 14.90 (14.14-15.66) 15.39 (14.91-15.90) 15.12 (14.66-15.55)ܮ
ܵ ௙ܴ௜௦௛௘௥ 2.27 (1.80-2.78) 2.64 (2.07-3.21) 2.18 (1.64-2.71) 
 ௙௜௦௛௘௥ 2.01 (0.87-8.67) 4.62 (1.22-10.00) 1.84 (0.80-10.00)ߜ/1

50௟௔௡ௗ 14.90 (14.15-15.66)ܮ 15.78 (15.41-16.25) 15.30 (14.83-15.77) 

ܴܵ௟௔௡ௗ 2.27 (1.80-2.78) 2.30 (1.78-2.81) 2.24 (1.70-2.89) 
p-value 1.0000 0.9826 0.9996 
Deviance 43.22 60.66 42.75 
DOF 89 86 78
AIC 2599.70 8586.34 6955.74 

      Model  

Horse 
Mackerel 

Model 
Parameter 

  G: Logit 
  F: Logit 

G: Richard 
F: Logit

G: Richard 
F: Logit 

 50௚௘௔௥ 9.37 (8.85-10.83) 13.08 (11.50-14.45) 12.58 (10.59-13.39)ܮ
ܴܵ௚௘௔௥ 2.86 (2.26-3.41) 2.92 (1.53-4.32) 5.15 (4.08-11.63) 
 ௚௘௔௥  0.39 (0.10-3.06) 2.58 (0.10-10.00)ߜ/1
 50௙௜௦௛௘௥ 21.37 (20.46-22.01) 20.77 (20.14-21.41) 21.11 (20.54-22.08)ܮ
ܵ ௙ܴ௜௦௛௘௥ 1.74 (1.20-2.16) 1.48 (0.69-2.28) 1.73 (1.24-2.43) 
 50௟௔௡ௗ 21.37 (20.46-22.01) 20.77 (20.14-21.40) 21.18 (20.59-22.16)ܮ
ܴܵ௟௔௡ௗ 1.74 (1.20-2.16) 1.48 (0.1-2.20) 1.76 (1.28- 2.50) 
p-value 0.4628 0.9275 0.4263 
Deviance 58.34 40.54 52.22 
DOF 58 55 51
AIC 3719.89 4081.12 7848.30 

   Model  

Megrim 

Model 
Parameter 

 G: Probit 
 F: Probit 

G: Richard 
  F: Logit

G: Richard 
F: Logit 

 50௚௘௔௥ 7.53 (6.90-9.00) 9.26 (8.82-9.61) 8.45 (4.58-10.47)ܮ
ܴܵ௚௘௔௥ 2.81 (1.94-3.69) 2.14 (1.32-3.02) 9.00 (4.40-15.60) 
 ௚௘௔௥  0.10 (0.10-0.23) 0.10 (0.10-0.71)ߜ/1
 50௙௜௦௛௘௥ 19.12 (18.27-20.19) 18.49 (17.90-19.50) 17.37 (16.82-17.99)ܮ
ܵ ௙ܴ௜௦௛௘௥ 2.70 (1.88-3.34) 2.21 (1.70-2.55) 1.81 (1.19-2.17) 
 50௟௔௡ௗ 19.12 (18.27-20.19) 18.49 (17.90-19.50) 17.37 (16.82-17.99)ܮ
ܴܵ௟௔௡ௗ 2.70 (2.00-3.41) 2.21 (1.70-2.55) 1.81 (1.20-2.16) 
p-value 1.0000 1.0000 0.9968 
Deviance 19.85 16.14 29.19 
DOF 56 55 53
AIC 501.31 527.26 971.14 



 



 

 

Table 7. Discard parameters (with confidence intervals in parenthesis) based on the best model for the 
overall size-selection process by the gear and the fisher describing also the discard probability; the 
discard range (cm) at several probability levels ሺ	ܴܦ଴.଴ହ, ,	଴.ଶହܴܦ ,	଴.ହܴܦ  ଴.ଽହሻ, the maximumܴܦ
discard probability value (݌ܦ௠௔௫ ), the length (cm) at the maximum discard probability (݌ܦܮ௠௔௫) 
and the surface of the discard bell-shape curve when probability 0.05 (ܣܦ଴.଴ହ). *: noton defined 

   CODEND 
Species Parameter         40D          40S           50D 

Hake 

଴.଴ହ 13.14 (11.46-15.14)ܴܦ 11.62 (8.83-13.71) 12.82 (11.24-17.36) 
 ଴.ଶହ 9.87 (18.79-11.35) 4.74 (3.40-5.85) 7.87 (7.07-9.39)ܴܦ
 ଴.ହ 7.73 (6.76-9.01) 0.00 (0.00-1.95) 4.56 (3.59-5.60)ܴܦ
 ଴.଻ହ 5.47 (4.31-6.75) 0.00 (0.00-0.00) 0.00 (0.00-2.07)ܴܦ
 ଴.ଽହ 1.90 (0.00-3.35) 0.00 (0.00-0.00) 0.00 (0.00-0.00)ܴܦ
 ௠௔௫ 0.98 (0.92-1.00) 0.43 (0.36-0.63) 0.75 (0.66-0.82)݌ܦ
௠௔௫ 11.62 (11.56-12.71)݌ܦܮ 15.23 (14.35-15.50) 13.51 (12.53-13.60) 
 ଴.଴ହ 7.56 (6.44-8.79) 2.60 (1.89-3.29) 4.79 (4.23-5.82)ܣܦ

Horse 
mackerel 

 ଴.଴ହ 18.36 (16.15-19.68) 14.78 (12.56-19.42) 16.61 (15.12-*)ܴܦ
 ଴.ଶହ 14.38 (12.62-15.39) 10.23 (8.63-11.83) 11.78 (10.62-18.62)ܴܦ
 ଴.ହ 12.00 (10.36-12.84)  7.82 (6.29-9.31) 8.46 (7.33-10.77)ܴܦ
 ଴.଻ହ 9.59 (7.99-10.34) 5.75 (4.12-6.93) 4.66 (2.29-5.75)ܴܦ
଴.ଽହ 5.74 (3.97-6.45) 2.43 (0.00-4.26)ܴܦ 0.00 (0.00-0.00) 
 ௠௔௫ 0.99 (0.99-0.99) 0.99 (0.93-1.00) 0.89 (0.79-0.94)݌ܦ
 ௠௔௫ 17.73 (16.59-18.77) 17.53 (17.22-20.05) 18.70 (18.61- 19.75)݌ܦܮ
 ଴.଴ହ 11.89 (10.24-12.73) 8.00 (6.63-9.32) 8.14 (7.24-10.61)ܣܦ

Megrim 

 ଴.଴ହ 18.45 (15.75-20.37) 16.81 (14.60-18.65) * (17.46-*)ܴܦ
 ଴.ଶହ 14.40 (12.84-15.97) 11.76 (10.83-12.70) 15.55 (10.91-*)ܴܦ
 ଴.ହ 11.59 (10.28-12.61) 9.27 (8.67-10.22) 8.923 (6.87-13.25)ܴܦ
 ଴.଻ହ 8.79 (7.80-9.63) 7.26 (6.76-8.35) 4.55 (3.63-6.68)ܴܦ
 ଴.ଽହ 4.88 (3.58-5.84) 4.56 (4.11-5.93) 0.00 (0.00-1.31)ܴܦ
 ௠௔௫ 1.00 (0.99-1.00) 1.000(0.997-1.000) 0.92 (0.90-0.99)݌ܦ
 ௠௔௫ 13.53 (13.47-15.72) 12.26 (11.01-13.65) 15.33 (14.56-15.75)݌ܦܮ
 ଴.଴ହ 11.50 (10.20-12.52) 9.65 (8.98-10.62) 9.81 (7.79-11.83)ܣܦ
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Supplement  

The selection models used in the present work are presented below according to Wileman et 
al. (1996). 

Logit Model 

The Logistic (logit) selection curve is the cumulative distribution function of a logistic 
random variable: 

ሺ݈ሻݎ ൌ 	
exp	ሺܽ ൅ ܾ݈ሻ

1 ൅ exp	ሺܽ ൅ ܾ݈ሻ
 

Where a, b parameters to be estimated. More specific for the needs of selectivity, the above 
equation can be rewritten in terms of L50 and SR, where: 

ହ଴ܮ ൌ 	െ	ܽ ܾൗ 		,				SR ൌ 	
2 lnሺ3ሻ
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Probit Model 

The Probit selection curve (Normal probability ogive) is the cumulative distribution of a 
normal random variable, 

ሺ݈ሻݎ ൌ ሺܽߔ ൅ ܾ݈ሻ 

Where Φ is the cumulative distribution function of a standard normal random variable, while 
a, b parameters to be estimated. Likewise the previous equation, the probit can be rewritten in 
terms of L50 and SR, where: 

ହ଴ܮ ൌ 	െ	ܽ ܾൗ 		,				SR ൌ 	
ሺ0.75ݐܾ݅݋ݎ݌2 െ 0.25ሻ
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So, we have: 
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Compertz Model 

The Gompertz/Extreme value selection curve is expressed by the following equation: 

ሺ݈ሻݎ ൌ exp	ሺെ exp൫െሺܽ ൅ ܾ݈ሻ൯ሻ 

It can also be rewritten in terms of L50 and SR where: 

ହ଴ܮ ൌ 	
െ lnሺെ ݈݊ሺ0.5ሻሻ െ ܽ

ܾ
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0.3665 െ ܽ
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		,				SR ൌ 	
ln ൬

ln	ሺ0.25ሻ
ln	ሺ0.75ሻ൰

ܾ
ൎ
1.573
ܾ

 

So, we have: 
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Richard Model 

The last of the four selection curves presented here is the Richards curve which has an extra 
parameter, named δ. This parameter controls the asymmetry of the curve. While δ > 1 the 
curve has a longer left tail and when 0<δ<1 the curve has a longer right tail. When δ = 1 the 
curve is the same as the logistic curve. The equation of Richards selection curve is the 
following: 

  

ሺ݈ሻݎ ൌ 	 ൬
exp	ሺܽ ൅ ܾ݈ሻ
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Rewritten in terms of L50 and SR with: 
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