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Abstract— In this paper dual-quaternions are used to model a
fully actuated rigid-body. A backstepping-controller that solves
the trajectory tracking problem is derived and proved to pro-
vide uniform asymptotical stabilization of the error dynamics.
Numerical simulations are provided where the controller is
compared to existing dual-quaternion tracking controllers and
it is shown to have similar performance.

I. INTRODUCTION

The motion of rigid-bodies has been extensively re-
searched within the framework of classical mechanics. The
commonly known Newton-Euler equations completely de-
scribe the motion of a rigid-body having six degrees of
freedom and have successfully been used for modelling of a
wide range of dynamic systems, such as satellites, aircrafts
and underwater vehicles. In this framework the rotational
and translational movement are often considered separately,
and control solutions usually deal with 3+3 DOF motion.
In recent years a reformulation of the equations of motion
has been considered using dual-quaternions. This formulation
combines translation and rotation into a unified framework
and allows for efficient and compact notation. By combining
translation and rotational motion in a single framework the
total motion of the rigid-body can be controlled with a single
controller. Instead of 3+3 DOF motion we can consider
the full 6DOF motion of the rigid-body in our controller
design. This can be beneficial in systems where rotational
and translational movement are highly-coupled; for instance
fixed-wing aerial vehicles and quadrotors.

A considerable amount of research has been done on
the use of dual-quaternions in theoretical kinematics. The
original motivation for this is that the motion of a rigid-
body in three-dimensional Euclidian space can be described
by six parameters, which can be regarded as a point in
a six-dimensional space. Work was carried out by Study
in [1] to apply the work of Clifford [2] to the kinematics
of rigid-bodies where the motion of a rigid-body can be
seen as a point on a six-dimensional manifold in eight-
dimensional space. This idea was further developed by [3] to
represent Euclidian displacements using four coordinates in a
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dual-space to study the kinematic motion of rigid-bodies. In
[4] dual-numbers were used to express the six-dimensional
motion of a rigid-body in a three-dimensional dual-space
by the use of a dual inertia operator. This work was later
used in [5] to study the control of satellite formations where
a PD-like tracking controller based on the logarithm of
dual-quaternions. The work of [3] was later used by [6] to
solve the general dynamics problem using dual-quaternions.
Additionally dual-quaternions has also been applied in the
study of navigation in [7] where navigational equations of
motion are derived using dual-quaternions and the resulting
algorithms were shown to be suitable for high precision
navigation systems. Although the study of dual-quaternions
is prevalent in kinematics and the use of dual-numbers
in rigid-body dynamics, less work has been done on the
application of dual-quaternions on the dynamics of rigid-
bodies. Most of the application of dual-quaternions has been
centered around satellite pose control [5], [8], [9], [10].
In [9] the set-point regulation problem was studied and a
velocity-free controller was derived. In [11] a velocity-free
tracking controller was derived with a dual-quaternion filter
that provides dampening injection. In [12] a discontinuous
backstepping controller was derived that solved the maneuver
problem of a rigid spacecraft while in [13] a PD-controller
was developed for tracking taking into account unknown
mass and inertia and unknown disturbances.

In this paper a continuous backstepping controller is
proposed that solves the trajectory tracking problem for a
general fully actuated rigid-body. This allows the controller
to be easily adapted to a wide variety of systems such as
satellites, fully actuated multirotors and composite systems
such as quadrotors with camera gimbals. A simple method-
ology in introduced for deriving a backstepping controller
by introducing a anti-diagonal matrix in the augmented
Lyapunov function, which avoids the introduction of swap
operators. A numerical simulation is presented and the result
is compared to the controllers in [11] and [14].

The outline of this paper is as follows. In Section 2
presents the essential preliminaries associated with dual-
quaternions. Section 3 outlines the problem statement, error
kinematics, control design and stability analysis. Section 4
provides a numerical simulation results and a conclusion on
the work is provided in Section 5.

II. PRELIMINARIES

A. Notation and Reference frames

Vectors are denoted as lower-case bold letters while scalars
are non-bold for instance x ∈ Rn is an n-dimensional vector
while a ∈ R is a scalar. Matrices are upper-case bold letters



where the transpose of an n by m matrix M ∈ Rnxm is
denoted MT . The n by n identity matrix is denoted Inxn
while an n by m matrix with zero entries is denoted 0nxm.
The derivative with respect to time is denoted as ẋ = dx

dt .
Reference frames are denoted F(·), and superscripts are used
to denote a variables frame of reference, such that the vector
xA is referenced in FA. The norm is denoted as ‖x‖ =
〈x,x〉 12 . The set of quaternions is defined as

H :=
{

(q0, qv) : q0 ∈ R, qv ∈ R3
}

where q0 is the scalar part and qv is the vector part, while
the set of unit-quaternions is defined as

Hu := {q ∈ H : ‖q‖ = 1}

The set of vector quaternions is defined as

Hv := {q ∈ H : q0 = 0}

The set of unit dual-quaternions is defined as

Ĥu :=
{
qp + εqd : qp ∈ Hu, qp ⊗ q∗d + qd ⊗ q∗p = 0

}
where qp is called the primary part and qd is called the dual
part. The set of dual-vectors is defined as

Ĥv := {qp + εqd : qp ∈ Hv, qd ∈ Hv}

were the dual unit ε satisfies ε 6= 0 and ε2 = 0. The reference
frames that are used in this work are given as follows:

Inertial frame This reference frame denoted Fi has its
origin at a fixed point in space and its axes are fixed.

Body frame This coordinate reference frame denoted Fb

is fixed at the rigid-body’s centre of mass and the axes are
fixed to the rigid-body.

Desired frame This coordinate reference frame denoted
Fd represents the rigid-body’s desired pose.

B. Dual quaternions

In this section a brief introduction to dual-quaternions is
given, for a more comprehensive treatment c.f. [3], [6], [13],
[9]. A dual-quaternion is a quaternion where each element
is a dual number instead of a real number. They were
first introduced by Clifford in [2] and later on Study [15]
applied them to the representation of rigid-body motion. The
quaternion product between dual-quaternions can be written
as

q̂1 ⊗ q̂2 = q1,p ⊗ q2,p + ε
(
q1,p ⊗ q2,d + q1,d ⊗ q2,p

)
(1)

while addition and subtraction of two dual-quaternions can
be written as

q̂1 ± q̂2 = q1,p ± q2,p + ε
(
q1,d ± q2,d

)
.

Two conjugates can be defined for dual-quaternions, the first
denoted by ¯̂q defined as

¯̂q = qp − εqd.

and the second denoted q̂∗ defined as

q̂∗ = q∗p + εq∗d.

In this paper the inner product between two dual-quaternions
is defined as

〈q̂1, q̂2〉 = 〈q1,p, q2,p〉+ 〈q1,d, q2,d〉

which defines the norm of a dual-quaternion as

‖q̂‖ = 〈q̂, q̂〉 12 =

√
(qp)

T
qp + (qd)

T
qd

The identity unit dual-quaternion is defined as q̂I =[
1 0 0 0

]
+ ε0 with the properties

q̂I ⊗ q̂ = q̂ ⊗ q̂I = q̂

q̂∗ ⊗ q̂ = q̂I

and 0̂ = 0 + ε0 denotes the zero element for dual-vectors.

C. Kinematics

The position and orientation of a rigid-body relative to
some inertial reference frame Fi can be compactly expressed
through a dual-quaternion

q̂ = qi,b + ε
1

2
pi ⊗ qi,b = qi,b + ε

1

2
qi,b ⊗ pb (2)

where pi ∈ Hv is the rigid-body’s inertial position while
qi,b ∈ Hu represents the rigid-body’s attitude. As the rigid-
body moves and rotates the dual-quaternion will change over
time which can be expressed as

˙̂q =
1

2
q̂ ⊗ ω̂b (3)

where ω̂b = ωb
i,b + εvb is called the dual velocity. The

quaternion product can be used to combine several dual-
quaternions representing the combined rotation and trans-
lation. Given three reference frames Fa, Fb and Fc related
to each other by the dual-quaternions

q̂a,b = qa,b + ε
1

2
taAB ⊗ qa,b

q̂b,c = qb,c + ε
1

2
tbBC ⊗ qb,c

where we have introduced an intermediary notation q̂a,b to
help differentiate between the dual-quaternions. The com-
bined dual-quaternion q̂a,c can be defined as

q̂a,c = q̂a,b ⊗ q̂b,c

= q̂a,c = qa,c + ε
1

2
taAC ⊗ qa,c

where q̂a,c = q̂a,b⊗ q̂b,c and taAC = taAB + taBC which is the
displacement from frame Fa to Fc. Similarly if we have two
dual-quaternions q̂a,b and q̂a,d which relates from Fa to Fb

and Fa to Fd respectively, the difference between Fb and
Fd can be represented as

q̂b,d = q̂∗a,b ⊗ q̂a,d.



D. Dynamics

It was shown in [16] that the dual velocity can be related
to the dual momentum through a dual inertia operator

ĥb = M̂ω̂b (4)

where ĥ = hL + εhA with hL representing the linear
momentum and hA representing the angular momentum. The
dual inertia operator is a matrix with dual number elements,
however it has also been shown that M̂ can be defined as in
[17]

M̂ =


0 01,3 1 01,3

03,1 03x3 03,1 mI3
1 01,3 0 01,3

03,1 Jb 01x3 03,3

 .
This matrix always has an inverse and the product with its
inverse yields the identity matrix as shown in [17]. The dual
force is related to the derivative of the dual momentum which
is expressed as

M̂ ˙̂ωb = f̂ bu − f̂ bG − ω̂b × M̂ω̂b (5)

where f̂ bG = f b
G + ε0 is the gravitational forces expressed

in the body frame, while f̂ bu = f b + ετ b with f b ∈ Hv

and τ b ∈ Hv represents the combined applied forces and
moments in the body frame and in this work it specifically
it represents the control force to be designed.

III. CONTROLLER DESIGN

A. Problem statement

Consider a fully actuated rigid-body with kinematics and
dynamics described by (3) and (5) respectively. Let a desired
dual-quaternion be defined as q̂d = qi,d+ε 12qi,d⊗p

d and let
it be a two times continuously differentiable bounded time-
varying trajectory. Design a feedback law that ensures that
q̂ → q̂d and ω̂ → ω̂d as t→∞.

B. Error kinematics

The error dual-quaternion can be defined as

q̂e = q̂∗d ⊗ q̂

= qe + ε
1

2
qe ⊗ pbe (6)

where qe = q∗i,d ⊗ qi,b is the orientation error and pbe =

pb − pbd is the position error expressed in the body frame.
Taking the derivative of (6) gives us

˙̂qe =
1

2
q̂e ⊗ ω̂b

e (7)

ω̂b
e = ω̂b − ω̂b

d = ωb
e + εvbe − ωb

i,d × pbe

where ω̂d
d = ωd

i,d + εvdd is the desired dual velocity, ωb
e =

ωb
i,b−ωb

i,d is the angular velocity error expressed in the body
frame and vbe = vb − vbd is the velocity error expressed in
the body frame.

C. Integrator backstepping

In this section an integrator backstepping control law
is derived using control Lyapunov functions following the
methodology of [18]. The following assumptions are as-
sumed to hold:

a) Assumption 1: It is assumed that q0(t)q0(t0) ≥
0,∀t > t0

b) Assumption 2: The mass and inertia matrix are
assumed constant and there exists a set of principal axes
such that Jb is diagonal.

c) Assumption 3: q̂, ω̂d
d and ˙̂ωd

d are continuous and
bounded.

Step 1: Control of (6): Consider the Lyapunov function
candidate

V (q̂e) = (q̂e − q̂I)
T

(q̂e − q̂I) (8)

where q̂T q̂ means 〈q̂, q̂〉. The Lyapunov function candidate
is clearly zero when q̂e = q̂I and positive definite otherwise.
The derivative of (8) is

V̇ = 2 (q̂e − q̂I)
T ˙̂qe

which through inserting (7), expanding terms and simplifying
can shown to be

V̇ = ζ̂T
(
ω̂b − q̂∗e ⊗ ω̂d

d ⊗ q̂e
)

where ζ̂ = vec(qe) + ε 12p
b
e. Let ω̂b be a virtual control input

ω̂b
c and define it as

ω̂b
c = q̂∗e ⊗ ω̂d

d ⊗ q̂e − k1ζ̂. (9)

Inserting (9) into (8) yields

V̇ = −k1ζ̂T ζ̂ (10)

which is negative definite. Define ẑ as

ẑ = ω̂b − ω̂b
c (11)

which we would like to drive to zero to ensure (10).
Step 2 backstepping for ẑ: The derivative of (11) is

M̂ ˙̂z = M̂ ˙̂ωb − M̂ ˙̂ωb
c (12)

and inserting (5) into (12) gives us

M̂ ˙̂z = f̂ bu − f̂ bG − ω̂b × M̂ω̂b − M̂ ˙̂ωb
c.

Consider now the augmented Lyapunov function

V (q̂e, ẑ) = (q̂e − q̂I)
T

(q̂e − q̂I) +
1

2
ẑT K̂M̂ ẑ (13)

where K̂ is a square matrix such that K̂M̂ is diagonal, for
instance

K̂ =


0 01,3 1 01,3

03,1 03x3 03,1 I3x3
1 01,3 0 01,3

03,1 I3x3 01x3 03,3

 . (14)

The derivative of (13) is then

V̇ = ζ̂T
(
ω̂b − q̂∗e ⊗ ω̂d

d ⊗ q̂e
)

+ ẑT K̂M̂ ˙̂z.



Inserting (11) and (12) gives us

V̇ =ζ̂T
(
ẑ − k1ζ̂

)
+

ẑK̂
(
f̂ bu − f̂ bG − ω̂b × M̂ω̂b − M̂ ˙̂ωb

c

)
. (15)

Choosing the input dual force as

f̂ bu = f̂ bG + ω̂b × M̂ω̂b + M̂ ˙̂ωb
c − K̂−1

(
k2ẑ + ζ̂

)
and inserting it into (15) yields

V̇ = −ζ̂T k1ζ̂ − ẑT k2ẑ.
D. Stability analysis
Theorem 1. Consider a rigid-body with its kinematics and
dynamics described by (3) and (5) together with Assumption
2. Given a desired time-varying trajectory q̂d, ω̂d

d and ˙̂ωd
d in

accordance with Assumption 3, define the error kinematics
as in (6) and (7) together with Assumption 1. If the input
dual force is given by

f̂ bu = f̂ bG + ω̂b × M̂ω̂b + M̂ ˙̂ωb
c − K̂−1

(
k2ẑ + ζ̂

)
(16)

Then
(
q̂, ω̂b

)
→
(
q̂d, ω̂

b
d

)
as t→∞ for any initial condition.

Proof: From (13) we have that V (q̂e, ẑ) > 0 for q̂e ∈
Ĥu \ {q̂I} and ẑ ∈ Ĥv \ {0̂} and that V

(
q̂I , 0̂

)
= 0. There

exist a ρM > ρm > 0 such that ρm‖χ‖2 ≤ V (q̂e, ẑ) ≤
ρM‖χ‖2 where χ =

[
ζp ζd zp zd

]T
. From (15) it is

seen that V̇ < −ρ1‖χ‖2 for some ρ1 > 0 which implies
that q̂e → q̂I and ẑ → 0̂ as t→∞. This further implies that
q̂ → q̂d and therefore ζ → 0̂. Since ẑ → 0̂ we have from (11)
that ω̂b → ω̂b

c which implies that ω̂b → ω̂b
d since ζ → 0̂ in

(9). Therefore based on standard Lyapunov arguments [19]
(Theorem 4.9) it can be concluded that the equilibrium point
(q̂e, ẑ) is uniformly asymptotically stable.

Remark Since the primary part of a dual-quaternion is
a unit-quaternion there are two equilibrium points for q̂e
namely q̂I and −q̂I since they represent the same physical
orientation. Therefore a choice has to be made of which
equilibrium point to stabilize. This is a well known problem
and several solutions have been proposed for instance [20],
[21] and references therein.

IV. SIMULATION

In this section we detail the simulation of a rigid-body
using the dual-quaternion formulation derived in Section II-
D. The parameters of the rigid-body can be found in Table
II. We define a desired trajectory for the rigid-body to follow

pid =
[
0 r sin(ω0t) r cos(ω0t) 10

]
ṗid =

[
0 ω0r cos(ω0t) −ω0r sin(ω0t) 0

]
p̈id =

[
0 −ω2

0r sin(ω0t) −ω2
0r cos(ω0t) 0

]
where ω0 = 0.35 and r = 10 which describes a circle with
radius 10 meters at an altitude of 10 meters. The desired
trajectory for the orientation is

ωd
n,d =

[
0 0.2 −0.1 0.5

]
ω̇d

n,d =
[
0 0 0 0

]
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Fig. 1. Inertial position.
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Fig. 2. Primary part of the error dual-quaternion.
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Fig. 3. Dual part of the error dual-quaternion.
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Fig. 4. Primary part of the error dual-velocity.
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Fig. 5. Dual part of the error dual-velocity.
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Fig. 6. Primary part of the actuator dual force.
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Fig. 7. Dual part of the actuator dual force.
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Fig. 8. Control effort comparison with controller f̂2 from and f̂3.

0 5 10 15 20

0

5

10

15

20

25

Fig. 9. Combined translational and rotational error comparison with
controller f̂2 from and f̂3.



TABLE I
TOTAL CONTROL EFFORT FROM FIGURE 8.

Controller Total Control Effort
f̂1 3175 [N2m2s]
f̂2 3234 [N2m2s]
f̂3 3116 [N2m2s]

TABLE II
PARAMETERS FOR A RIGID-BODY

Parameter Value Unit
Rigid-body mass, m 1.2463 kg
X-axis inertia, Jxx 0.047316 kg·m2

Y-axis inertia, Jyy 0.047316 kg·m2

Z-axis inertia, Jzz 0.539632 kg·m2

The desired dual-quaternion and dual-velocity is constructed
based on (2) and (3) in Section II-C. The initial condition
for the rigid-body is

q̂ =


0.5
0.5
0.5
0.5

+ ε


−7.5
1.5
2.5
3.5

 , ω̂b = 0 + ε0.

The controller gains k1 and k2 are both set to 1 while K̂
is defined as in (14). As can be seen in Figure 1 the rigid-
body quickly converges to the desired translational trajectory
and follows it, the same can be infered from Figure 2 since
the primary part of the error dual-quaternion is P (q̂e) = qe
which is a unit-quaternion it is seen that qe → qI and
therefore qi,b → qi,d. In Figure 8 and 9 the backstepping
controller f̂1 in (16) is compared to the controller f̂2 in
[14] and the controller f̂3 in [11]. The dual-quaternion filter
[11] has been excluded since it is assumed that the velocity
measurments are available and the adaptive part in [14] is
omitted since the true values of the dual inertia matrix is
known and there if no disturbance force. In Figure 9 the norm
of the dual-quaternion tracking error is shown, where the
controllers have been tuned to have approximately the same
settling time (the actual convergence is in the order f̂2, f̂1
then f̂3) and it can be seen that f̂1 has similar performance to
that of f̂2, however in Figure 8 which plots the control effort
in accordance with [13] shows that f̂1 has less control effort
than f̂2. Compared to f̂3 the backstepping controller initially
converges faster which results in a larger control effort in the
beginning as can be seen in Figure 8. The total control effort
is provided in Table I and it can be seen that f̂1 is in the
middle of f̂2 and f̂3. The seemingly high total control error
comes from the fact that the reference is time-carying so
there is always a control force being applied to the rigid-body
to track the reference. After an initial convergence the control
effort of all three controllers have an equal slope implying
that the control effort is equal for the three controllers.

V. CONCLUSIONS

In this paper the trajectory tracking problem for a fully
actuated rigid-body was solved in a dual-quaternion frame-
work using a backstepping controller. A dynamic model for

a general rigid-body was presented using dual-quaternions.
A backstepping controller was presented and proved to
be uniformly asymptotically stable. A numerical example
was provided through a simulation which showed fast con-
vergence and zero tracking error, a comparison to some
existing dual-quaternion controllers also showed that the
proposed controller shows similar performance. Future work
includes extending the result here to composite underactuated
rigid-bodies such as quadrotors and fixed-wing UAVs with
gimbaled payloads and extending the backstepping controller
to the adaptive case.
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