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Abstract

The time series cluster kernel (TCK) provides a powerful tool for analysing multivariate time series subject to missing data. TCK is

designed using an ensemble learning approach in which Bayesian mixture models form the base models. Because of the Bayesian

approach, TCK can naturally deal with missing values without resorting to imputation and the ensemble strategy ensures robustness

to hyperparameters, making it particularly well suited for unsupervised learning.

However, TCK assumes missing at random and that the underlying missingness mechanism is ignorable, i.e. uninformative, an

assumption that does not hold in many real-world applications, such as e.g. medicine. To overcome this limitation, we present a

kernel capable of exploiting the potentially rich information in the missing values and patterns, as well as the information from the

observed data. In our approach, we create a representation of the missing pattern, which is incorporated into mixed mode mixture

models in such a way that the information provided by the missing patterns is effectively exploited. Moreover, we also propose a

semi-supervised kernel, capable of taking advantage of incomplete label information to learn more accurate similarities.

Experiments on benchmark data, as well as a real-world case study of patients described by longitudinal electronic health record

data who potentially suffer from hospital-acquired infections, demonstrate the effectiveness of the proposed methods.
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1. Introduction

Multivariate time series (MTS) frequently occur in a whole

range of practical applications such as medicine, biology, and

climate studies, to name a few. A challenge that complicates

the analysis is that real-world MTS are often subject to large

amounts of missing data. Traditionally, missingness mecha-

nisms have been categorized into missing completely at random

(MCAR), missing at random (MAR) and missing not at random

(MNAR) [1]. The main difference between these mechanisms

consists in whether the missingness is ignorable (MCAR and

MAR) or non-ignorable (MNAR) [1, 2, 3]. In e.g. medicine,

non-ignorable missingness can occur when the missing patterns

R are related to the disease under study Y . In this case, the

distribution of the missing patterns for diseased patients is not

equal to the corresponding distribution for the control group,

i.e. p(R | Y = 1) � p(R | Y = 0). Hence, the missingness is

informative [4, 5, 6]. By contrast, uninformative missingness

will be referred to as ignorable in the remainder of this paper.

Both ignorable and informative missingness occur in real-

world data. An example from medicine of ignorable missing-
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ness occurs e.g. if a clinician orders lab tests for a patient and

the tests are performed, but because of an error the results are

not recorded. On the other hand, informative missingness could

occur if it is decided to not perform lab tests because the doc-

tor thinks the patient is in good shape. In the latter case, the

missing values and patterns potentially contain rich informa-

tion about the diseases and clinical outcomes for the patient.

Efficient data-driven approaches aiming to extract knowledge,

perform predictive modeling, etc., must be capable of capturing

this information.

Various methods have been proposed to handle missing data

in MTS [7, 8, 9]. One simple approach is to create a complete
dataset by discarding the time series with missing data. How-

ever, this gives unbiased predictions only if the missingness

mechanism is MCAR. As an alternative, a preprocessing step

involving imputation of missing values with some estimated

value, such as the mean, is common. Other so-called single
imputation methods exploit machine learning based methods

such as multilayer perceptrons, self-organizing maps, k-nearest

neighbors, recurrent neural networks and regression-based im-

putation [10, 11]. Alternatively, one can impute missing values

using various smoothing and interpolation techniques [12, 10].

Among these, a prominent example is the last observation car-

ried forward (LOCF) scheme that imputes the last non-missing
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value for the following missing values. Limitations of impu-

tation methods are that they introduce additional bias and they

ignore uncertainty associated with the missing values.

Multiple imputation [13] resolves this problem, to some

extent, by estimating the missing values multiple times and

thereby creating multiple complete datasets. Thereafter, e.g. a

classifier is trained on all datasets and the results are combined

to obtain the final predictions. However, despite that multiple

imputation and other imputation methods can give satisfying

results in some scenarios, these are ad-hoc solutions that lead

to a multi-step procedure in which the missing data are han-

dled separately and independently from the rest of the analy-

sis. Moreover, the information about which values are actually

missing (the missing patterns) is lost, i.e. imputation methods

cannot exploit informative missingness.

Due to the aforementioned limitations, several research ef-

forts have been devoted over the last years to process incom-

plete time series without relying on imputation [6, 14, 15, 16,

17, 18, 19]. In this regard, powerful kernel methods have been

proposed, of which the recently proposed time series cluster
kernel (TCK) [20] is a prominent example. The TCK is de-

signed using an ensemble learning approach in which Bayesian

mixture models form the base models. An advantage of TCK,

compared to imputation methods, is that the missing data are

handled automatically and no additional tasks are left to the

user. Multiple imputation instead requires a careful selection of

the imputation model and other variables are needed to do the

imputation [7], which particularly in an unsupervised setting

can turn out to be problematic.

A shortcoming of the TCK is that unbiased predictions are

only guaranteed for ignorable missingness, i.e. the kernel can-

not take advantage of informative missing patterns frequently

occurring in medical applications. To overcome this limita-

tion, in this work, we present a novel time series cluster ker-

nel, TCKIM . In our approach, we create a representation of the

missing patterns using masking, i.e. we represent the missing

patterns using binary indicator time series. By doing so, we ob-

tain MTS consisting of both continuous and discrete attributes.

To model these time series, we introduce mixed mode Bayesian

mixture models, which can effectively exploit information pro-

vided by the missing patterns.

The time series cluster kernels are particularly useful in un-

supervised settings. In many practical applications such as e.g.

medicine it is not feasible to obtain completely labeled training

sets [21], but in some cases it is possible to annotate a few sam-

ples with labels, i.e. incomplete label information is available.

In order to exploit the incomplete label information, we pro-

pose a semi-supervised MTS kernel, ssTCK. In our approach,

we incorporate ideas from information theory to measure simi-

larities between distributions. More specifically, we employ the

Kullback-Leibler divergence to assign labels to unlabeled data.

Experiments on benchmark MTS datasets and a real-world

case study of patients suffering from hospital-acquired infec-

tions, described by longitudinal electronic health record data,

demonstrate the effectiveness of the proposed TCKIM and

ssTCK kernels.

The remainder of this paper is organized as follows. Sec-

tion 2 presents background on MTS kernels. The two proposed

kernels are described in Section 3 and 4, respectively. Exper-

iments on synthetic and benchmark datasets are presented in

Section 5, whereas the case study is described in Section 6.

Section 7 concludes the paper.

2. Multivariate time series kernels to handle missing data

Kernel methods have been of great importance in machine

learning for several decades and have applications in many

different fields [22, 23, 24]. Within the context of time se-

ries, a kernel is a similarity measure that also is positive semi-

definite [25]. Once defined, such similarities between pairs of

time series may be utilized in a wide range of applications, such

as classification or clustering, benefiting from the vast body

of work in the field of kernel methods. Here we provide an

overview of MTS kernels, and describe how they deal with

missing data.

The simplest of all kernel functions is the linear kernel, which

for two data points represented as vectors, x and y, is given

by the inner product 〈x, y〉, possibly plus a constant c. One

can also apply a linear kernel to pairs of MTS once they are

unfolded into vectors. However, by doing so the information

that they are MTS and there might be inherent dependencies in

time and between attributes, is then lost. Nevertheless, in some

cases such a kernel can be efficient, especially if the MTS are

short [26]. If the MTS contain missing data, the linear kernel

requires a preprocessing step involving e.g. imputation.

The most widely used time series similarity measure is dy-
namic time warping (DTW) [27], where the similarity is quanti-

fied as the alignment cost between the MTS. More specifically,

in DTW the time dimension of one or both of the time series

is warped to achieve a better alignment. Despite the success

of DTW in many applications, similarly to many other similar-

ity measures, it is non-metric and therefore cannot non-trivially

be used to design a positive semi-definite kernel [28]. Hence,

it is not suited for kernel methods in its original formulation.

However, because of its popularity there have been attempts to

design kernels exploiting the DTW. For example, Cuturi et al.

designed a DTW-based kernel using global alignments [29]. An

efficient version of the global alignment kernel (GAK) is pro-

vided in [30]. The latter has two hyperparameters, namely the

kernel bandwidth and the triangular parameter. GAK does not

naturally deal with missing data and incomplete datasets, and

therefore also requires a preprocessing step involving imputa-

tion.

Two MTS kernels that can naturally deal with missing data

without having to resort to imputation are the learned pat-
tern similarity (LPS) [31] and TCK. LPS generalizes the well-

known autoregressive modelsto local autopatterns using multi-

ple lag values for autocorrelation. These autopatterns are sup-

posed to capture the local dependency structure in the time se-

ries and are learned using a tree-based (random forest) learning

strategy. More specifically, a time series is represented as a ma-

trix of segments. Randomness is injected to the learning pro-

cess by randomly choosing time segment (column in the matrix)

and lag p for each tree in the random forest. A bag-of-words
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type compressed representation is created from the output of the

leaf-nodes for each tree. The final time series representation is

created by concatenating the representation obtained from the

individual trees, which in turn are used to compute the similar-

ity using a histogram intersection kernel [32].

The TCK is based on an ensemble learning approach wherein

robustness to hyperparameters is ensured by joining the cluster-

ing results of many Gaussian mixture models (GMM) to form

the final kernel. Hence, no critical hyperparameters have to be

tuned by the user, and the TCK can be learned in an unsuper-

vised manner. To ensure robustness to sparsely sampled data,

the GMMs that are the base models in the ensemble, are ex-

tended using informative prior distributions such that the miss-

ing data is explicitly dealt with. More specifically, the TCK

matrix is built by fitting GMMs to the set of MTS for a range

of number of mixture components. The idea is that by generat-

ing partitions at different resolutions, one can capture both the

local and global structure of the data. Moreover, to capture di-

versity in the data, randomness is injected by for each resolution

(number of components) estimating the mixture parameters for

a range of random initializations and randomly chosen hyper-

parameters. In addition, each GMM sees a random subset of

attributes and segments in the MTS. The posterior distributions

for each mixture component are then used to build the TCK

matrix by taking the inner product between all pairs of poste-

rior distributions. Eventually, given an ensemble of GMMs, the

TCK is created in an additive way by using the fact that the sum

of kernels is also a kernel.

Despite that LPS and TCK kernels share many properties, the

way missing data are dealt with is very different. In LPS, the

missing data handling abilities of decision trees are exploited.

Along with ensemble methods, fuzzy approaches and support

vector solutions, decision trees can be categorized as machine
learning approaches for handling missing data [10], i.e. the

missing data are handled naturally by the machine learning al-

gorithm. One can also argue that the way missing data are dealt

with in the TCK belongs to this category, since an ensemble

approach is exploited. However, it can also be categorized as a

likelihood-based approach since the underlying models in the

ensemble are Gaussian mixture models. In the likelihood-based

approaches, the full, incomplete dataset is analysed using max-

imum likelihood (or maximum a posteriori, equivalently), typ-

ically in combination with the expectation-maximization (EM)

algorithm [7, 9]. These approaches assume that the missingness

is ignorable.

3. Time series cluster kernel to exploit informative missing-
ness

In this section, we present the novel time series cluster ker-

nel, TCKIM , which is capable of exploiting informative miss-

ingness.

A key component in the time series cluster kernel frame-

work is ensemble learning, in which the basic idea consists in

combining a collection of many base models into a compos-

ite model. A good such composite model will have statistical,

computational and representational advantages such as lower

variance, lower sensitivity to local optima and is capable of rep-

resenting a broader span functions (increased expressiveness),

respectively, compared to the individual base models [33]. Key

to achieve this is diversity and accuracy [34], i.e. the base mod-

els cannot make the same errors on new test data and have to

perform better than random guessing. This can be done by inte-

grating multiple outcomes of the same (weak) base model as

it is trained under different, often randomly chosen, settings

(parameters, initialization, subsampling, etc.) to ensure diver-

sity [35].

In the TCKIM kernel, the base model is a mixed mode

Bayesian mixture model. Next, we provide the details of this

model.

Notation

The following notation is used. A multivariate time series

(MTS) X is defined as a (finite) combination of univariate time

series (UTS), X = {xv ∈ RT | v = 1, 2, . . . ,V}, where each

attribute, xv, is a UTS of length T . The number of UTS, V , is the

dimension of X. The length T of the UTS xv is also the length

of the MTS X. Hence, a V–dimensional MTS, X, of length T
can be represented as a matrix in RV×T . Given a dataset of N
MTS, we denote X(n) the n-th MTS. An incompletely observed

MTS is described by the pair U(n) = (X(n),R(n)), where R(n) is

a binary MTS with entry r(n)
v (t) = 0 if the realization x(n)

v (t) is

missing and r(n)
v (t) = 1 if it is observed.

Mixed mode mixture model

Assume that a MTS U = (X,R) is generated from two modes.

X is a V-variate real-valued MTS (X ∈ RV×T ), whereas R is a

V-variate binary MTS (R ∈ {0, 1}V×T ). Further, we assume that

U is generated from a finite mixture density,

p(U | Φ,Θ) =

G∑
g=1

θg f (U | φg), (1)

where G is the number of components, f is the density of

the components parametrized by Φ = (φ1, . . . , φG), and Θ =

(θ1, . . . , θg) are the mixing coefficients, 0 ≤ θG ≤ 1 and∑G
g=1 θg = 1.

Now, introduce a latent random variable Z, represented as

a G-dimensional one-hot vector Z = (Z1, . . . ,ZG), whose

marginal distribution is given by p(Z | Θ) =
∏G

g=1 θ
Zg
g . The un-

observed variable Z records the membership of U and therefore

Zg = 1 if U belongs to component g and Zg = 0 otherwise.

Hence, p(U |Z, Φ) =
∏G

g=1 f (U | φg)Zg , and therefore it follows

that

p(U,Z | Φ,Θ) = p(U |Z, Φ)p(Z | Θ) =

G∏
g=1

[
f (U | φg)θg

]Zg
(2)

U = (X,R) consists of two modalities X and R. We now naively

assume that

f (U | φg) = f (X | R, μg,Σg) f (R | βg), (3)
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where f (X | R, μg,Σg) is a density function given by

f (X | R, μg,Σg) =

V∏
v=1

T∏
t=1

N(xv(t) | μgv(t), σgv)rv(t), (4)

and f (R | βg) is a probability mass given by

f (R | βg) =

V∏
v=1

T∏
t=1

βrv(t)
gvt (1 − βgvt)

1−rv(t). (5)

The parameters of each component are φg = (μg,Σg, βg), where

μg = {μgv ∈ RT | v = 1, ...,V} is a time-dependent mean (μgv is

a UTS of length T ), Σg = diag{σ2
g1, ..., σ

2
gV } is a time-constant

diagonal covariance matrix in which σ2
gv is the variance of at-

tribute v, and βgvt ∈ [0, 1] are the parameters of the Bernoulli

mixture model (5). The idea is that even though the missing-

ness mechanism is ignored in f (X | R, μg,Σg), which is only

computed over the observed data, the Bernoulli term f (R | βg)

will capture information from the missing patterns.

The conditional probability of Z given U, can be found using

Bayes’ theorem,

πg ≡ P(Zg = 1 | U,Φ,Θ)

=

θg
V∏

v=1

T∏
t=1

[
N(xv(t) | μgv(t), σgv)βgvt

]rv(t)
(1 − βgvt)

1−rv(t)

G∑
g=1
θg

V∏
v=1

T∏
t=1

[
N(xv(t) | μgv(t), σgv)βgvt

]rv(t)
(1 − βgvt)1−rv(t)

.

(6)

Similarly to [20], we introduce a Bayesian extension and

put informative priors over the parameters of the normal dis-

tribution, which enforces smoothness over time and that clus-

ters containing few time series, to have parameters similar to

the mean and covariance computed over the whole dataset. A

kernel-based Gaussian prior is defined for the mean, P(μgv) =

N
(
μgv | mv, S v

)
. mv are the empirical means and the prior co-

variance matrices, S v, are defined as S v = svK , where sv are

empirical standard deviations and K is a kernel matrix, whose

elements are Ktt′ = b0 exp(−a0(t − t′)2), t, t′ = 1, . . . ,T. a0,

b0 are user-defined hyperparameters. An inverse Gamma dis-

tribution prior is put on the standard deviation σgv, P(σgv) ∝
σ−N0

gv exp
(
−N0 sv

2σ2
gv

)
, where N0 is a user-defined hyperparameter.

We denote Ω = {a0, b0,N0} the set of hyperparameters.

Then, given a dataset {U(n)}Nn=1
, the parameters {Φ,Θ} can be

estimated using maximum a posteriori expectation maximiza-

tion (MAP-EM) [36, 37]. This leads to Algorithm 1.

3.1. Forming the kernel
We now explain how the mixed mode mixture model is used

to form the TCKIM kernel.

We use the mixed mode Bayesian mixture model as the base

model in an ensemble approach. To ensure diversity, we vary

the number of components for the base models by sampling

from a set of integers IC = {I, . . . , I + C}. For each num-

ber of components, we apply Q different random initial con-

ditions and hyperparameters. We let Q = {q = (q1, q2) | q1 =

Algorithm 1 MAP-EM for mixed mode mixture model

Require: Dataset {U (n) = (X(n),R(n))}Nn=1
, hyperparameters Ω and

number of mixtures G.

1: Initialize the parameters Θ = (θ1, . . . , θG) and Φ = {μg, σg, βg}Gg=1
.

2: E-step. For each MTS U (n), evaluate the posterior probabilities

using Eq. (6) with the current parameter estimates.

3: M-step. Update parameters using the current posteriors

θg = N−1 ∑N
n=1 π

(n)
g

σ2
gv =

N0 s2
v +

∑N
n=1

∑T
t=1 r(n)

v (t) π(n)
g

(
x(n)

v (t) − μgv(t)
)2

N0 +
∑N

n=1

∑T
t=1 r(n)

v (t) π(n)
g

μgv =
S −1

v mv + σ
−2
gv

∑N
n=1 π

(n)
g diag(r(n)

v ) x(n)
v

S −1
v + σ

−2
gv

∑N
n=1 π

(n)
g diag(r(n)

v )

βgvt = (
∑N

n=1 π
(n)
g )−1

∑N
n=1 π

(n)
g r(n)

v (t)

4: Repeat step 2-3 until convergence.

Ensure: Posteriors Π(n) ≡
(
π(n)

1
, . . . , π(n)

G

)T
and parameter estimates Θ

and Φ.

1, . . .Q, q2 ∈ IC} be the index set keeping track of initial condi-

tions and hyperparameters (q1), and the number of components

(q2). Each base model q is trained on a random subset of MTS

{(X(n),R(n))}n∈η(q). Moreover, for each q, we select random sub-

sets of variablesV(q) as well as random time segments T (q).

The inner products of the normalized posterior distributions

from each mixture component are then added up to build the

TCKIM kernel matrix. Note that, in addition to introducing

novel base models to account for informative missingness, we

also modify the kernel by normalizing the vectors of posteriors

to have unit length in the l2-norm. This provides an additional

regularization that may increase the generalization capability of

the learned model. The details of the method are presented in

Algorithm 2. The kernel for MTS not available during training

can be evaluated according to Algorithm 3.

4. Semi-supervised time series cluster kernel

This section presents a semi-supervised MTS kernel, ssTCK,

capable of exploiting incomplete label information. In ssTCK,

the base mixture models are learned exactly in the same way

as in TCK or TCKIM . I.e. if there is no missing data,

or the missingness is ignorable, the base models will be the

Bayesian GMMs. Conversely, if the missingness is informa-

tive, the base models are the mixed mode Bayesian mixture

models presented in the previous section. Both approaches

will associate each MTS X(n) with a q2-dimensional posterior

Π(n) ≡
(
π(n)

1
, . . . , π(n)

q2

)T
, where π(n)

g represents the probability

that the MTS belongs to component g and q2 is the total num-

ber of components in the base mixture model.

In ssTCK, label information is incorporated in an intermedi-

ate processing step in which the posteriorsΠ(n) are transformed,

before the transformed posteriors are sent into Algorithm 2 or 3.

More precisely, the transformation consists in mapping the pos-

terior for the mixture components to a class ”posterior” (proba-

bility), i.e. we seek to find a functionM : [0, 1]q2 → [0, 1]Nc ,
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Algorithm 2 Time series cluster kernel. Training phase.

Require: Training set of MTS {(X(n),R(n))}Nn=1
, Q initializations, set

of integers IC controlling number of components for each base

model.

1: Initialize kernel matrix K = 0N×N .

2: for q ∈ Q do
3: Compute posteriors Π(n)(q) ≡ (π(n)

1
, . . . , π(n)

q2
)T , by fitting a

mixed mode mixture model with q2 clusters to the dataset and by

randomly selecting:

i. hyperparameters Ω(q),

ii. a time segment T (q) of length Tmin ≤ |T (q)| ≤ Tmax to

extract from each X(n) and R(n),

iv. a subset of attributesV(q), with cardinality Vmin ≤ |V(q)| ≤
Vmax, to extract from each X(n) and R(n),

vi. a subset of MTS, η(q), with Nmin ≤ |η(q)| ≤ N,

vii. initialization of the mixture parameters Θ(q) and Φ(q).

4: Update kernel matrix, Knm = Knm +
Π(n)(q)TΠ(m)(q)

‖Π(n)(q)‖·‖Π(m)(q)‖ .

5: end for
Ensure: K kernel matrix, time segments T (q), subsets of attributes

V(q), subsets of MTS η(q), parameters Θ(q), Φ(q) and posteriors

Π(n)(q).

Algorithm 3 Time series cluster kernel. Test phase.

Require: Test set
{
X∗(m)

}M
m=1, time segments T (q) subsets of attributes

V(q), VR(q), subsets of MTS η(q), parameters Θ(q), Φ(q) and

posteriors Π(n)(q).

1: Initialize kernel matrix K∗ = 0N×M .

2: for q ∈ Q do
3: Compute posteriors Π∗(m)(q), m = 1, . . . ,M using the mixture

parameters Θ(q), Φ(q).

4: Update kernel matrix, K∗nm = K∗nm +
Π(n)(q)TΠ∗(m)(q)

‖Π(n)(q)‖·‖Π∗(m)(q)‖ .

5: end for
Ensure: K∗ test kernel matrix.

Π(n) M
−→ Π̃(n). Hence, we want to exploit the incomplete label

information to find a transformation that merges the q2 com-

ponents of the mixture model into Nc clusters, where Nc is the

number of classes.

The mappingM can be thought of as a (soft) Nc-class clas-

sifier, and hence there could be many possible ways of learning

M. However, choosing a too flexible classifier for this purpose

leads to an increased risk of overfitting and could also unnec-

essarily increase the algorithmic complexity. For these reasons,

we restrict ourselves to searching for a linear transformation

M(Π(n)) = WTΠ(n), W ∈ [0, 1]q2×Nc . (7)

Since the Nc-dimensional output Π̃(n) = M(Π(n)) should repre-

sent a probability distribution, we add the constraint
∑Nc

i=1
Wji =

1, j = 1, . . . , q2.

A natural first step is to first assume that the label information

is complete and look at the corresponding supervised kernel. In

the following two subsections, we describe our proposed meth-

ods for learning the transformationM in supervised and semi-

supervised settings, respectively.

Algorithm 4 Supervised posterior transformation

Require: Posteriors {Π(n)}Nn=1
from mixture models consisting of q2

components and labels {y(n)}Nn=1
,

1: for i = 1, . . . , q2, j = 1, . . . ,Nc do

2: Compute Wi j =

∑N
n=1

y(n)
j π

(n)
i∑N

n=1
y(n)

j
.

3: Wi j =
Wi j∑Nc

j=1
Wi j

.

4: end for
5: Transform training and test posteriors via Π̃ = WTΠ

Ensure: Transformed posteriors Π̃(n)

4.1. Supervised time series cluster kernel (sTCK)

Supervised setting. Each base mixture model consists of q2

components, and we assume that the number of components

is greater or equal to the number of classes Nc. Further, as-

sume that each MTS X(n) in the training set is associated with a

Nc–dimensional one-hot vector y(n), which represents its label.

Hence, the labels of the training set can be represented via a

matrix Y ∈ {0, 1}N×Nc , where N is the number of MTS in the

training set.

We approach this problem by considering one component at

the time. For a given component g, the task is to associate it

with a class. One natural way to do this is to identify all mem-

bers of component g and then simply count how many times

each label occur. To account for class imbalance, one can then

divide each count by the number of MTS in the corresponding

class. One possible option would then be to assign the compo-

nent to the class with the largest normalized count. However,

by doing so, one is not accounting for uncertainty/disagreement

within the component. Hence, a more elegant alternative is to

simply use the normalized counts as the weights in the matrix

W. Additionally, one has to account for that each MTS can si-

multaneously belong to several components, i.e. each MTS X(n)

has a only soft membership to the component g, determined by

the value π(n)
g . This can be done usingΠ(n) as weights in the first

step. This procedure is summarized in Algorithm 4.

4.2. Semi-supervised time series cluster kernel (ssTCK)

Setting. Assume that the labels {y(n)}Ln=1, L < N, are known

and {y(n)}Nn=L+1
are unknown.

In this setting, if one naively tries to apply Algorithm 4 based

on only the labeled part of the dataset, one ends up dividing by

0s. The reason is that some of the components in the mixture

model will contain only unlabeled MTS (the soft label analogy

is that the probability that any of the labeled MTS belong to

that particular component is zero or very close to zero). Hence,

we need a way to assign labels to the components that do not

contain any labeled MTS.

Note that each component is described by a probability dis-

tribution. A natural measure of dissimilarity between probabil-

ity distributions is the Kullback-Leibler (KL) divergence [38].

Moreover, since the components are described by parametric

distributions, the KL divergence has a simple closed-form ex-

pression. The KL divergence between two components, i and j,
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Algorithm 5 Semi-supervised posterior transformation

Require: Posteriors {Π(n)}Nn=1
from mixture models consisting of q2

components, labels {y(n)}Ln=1, and hyperparameter h.

1: for i = 1, . . . , q2, j = 1, . . . ,Nc do

2: Compute Wi j =

∑N
n=1

y(n)
j π

(n)
i∑N

n=1
y(n)

j
.

3: end for
4: for all k s.t.

∑Nc
j=1

Wk j < h do
5: Let L = {l s.t.

∑Nc
j=1

Wl j ≥ h}
6: Wk j = Wl j where l = arg min

l∈L
DS

KL( f (k) ‖ f (l)).

7: end for
8: for i = 1, . . . , q2, j = 1, . . . ,Nc do
9: Wi j =

Wi j∑Nc
j=1

Wi j
.

10: end for
11: Transform training or test posterior via Π̃ = WTΠ

Ensure: Transformed posteriors Π̃(n)

in our Bayesian GMM is given by

DKL( f (i) ‖ f ( j)) =
1

2

( V∑
v=1

T∑
t=1

σ2
ivσ
−2
jv + σ

−2
jv (μ jv(t) − μiv(t))2

− 1 + log(σ2
jv) − log(σ2

iv)
)
, (8)

where f (i) = f (X | R, μi,Σi) is the density given in Eq. (4). The

KL-divergence can be made symmetric via the transformation

DS
KL( f (i) ‖ f ( j)) =

1

2

(
DKL( f (i) ‖ f ( j)) + DKL( f ( j) ‖ f (i))

)
. (9)

The underlying idea in our semi-supervised framework is to

learn the transformation W for the clusters with only unlabeled

points by finding the nearest cluster (in the DS
KL-sense) that con-

tain labeled points. This leads to Algorithm 5.

5. Experiments on synthetic and benchmark datasets

The experiments in this paper consists of two parts. The pur-

pose of the first part was to demonstrate within a controlled

environment situations where the proposed TCKIM and ssTCK

kernels might prove more useful than the TCK. In the second

part (Sec. 6), we present a case study from a real-world medical

application in which we compared to several baseline methods.

In the first part, we considered synthetic and benchmark

datasets. The following experimental setup was considered. We

performed kernel principal component analysis (KPCA) using

time series cluster kernels and let the dimensionality of the em-

bedding be 10. Thereafter, we trained a kNN-classifier with

k = 1 on the embedding and evaluated performance in terms

of classification accuracy on an independent test set. We let

Q = 30 and IC = {Nc, . . . ,Nc + 20}. An additional hyperpa-

rameter h was introduced for ssTCK. We set h to 10−1 in our

experiments. We also standardized each attribute to zero mean

and unit standard deviation.

Table 1: Accuracy on the synthetic VAR(1) dataset.

Unsupervised Semi-supervised Supervised

TCK 0.826 0.854 0.867

TCKIM 0.933 0.967 0.970

5.1. Synthetic example
To illustrate the effectiveness of the proposed methods, we

first considered a controlled experiment in which a synthetic

MTS dataset with two classes was sampled from a first-order

vector autoregressive model,

(
x1(t)
x2(t)

)
=

(
α1

α2

)
+

(
ρ1 0

0 ρ2

) (
x1(t − 1)

x2(t − 1)

)
+

(
ξ1(t)
ξ2(t)

)
(10)

To make x1(t) and x2(t) correlated with corr(x1(t), x2(t)) = ρ, we

chose the noise term s.t., corr (ξ1(t), ξ2(t)) = ρ (1 − ρ1ρ2) [(1 −
ρ2

1)(1−ρ2
2)]−1. For the first class (y = 1), we generated 100 two-

variate MTS of length 50 for the training and 100 for the test,

from the VAR(1)-model with parameters ρ = ρ1 = ρ2 = 0.8 and

E[(x1(t), x2(t))T | y = 1] = (0.5,−0.5)T . Analogously, the MTS

of the second class (y = 2) were generated using parameters

ρ = −0.8, ρ1 = ρ2 = 0.6 and E[(x1(t), x2(t))T | y = 2] = (0, 0)T .

To simulate MNAR and inject informative missing patterns,

we let x(n)
i (t) have a probability p(n) of being missing, given that

x(n)
i (t) > −1, i = 1, 2. We let p(n) = 0.9 if y(n) = 1 and p(n) = 0.8

otherwise. By doing so, the missing ratio was roughly 63% in

both classes.

Tab. 1 shows the accuracy on the test data for the differ-

ent kernels. As expected, the TCK gives the lowest accuracy,

0.826. The ssTCK improves the accuracy considerably (0.854),

and the supervised version (sTCK) gives further improvement

(0.867). However, as we can see, the effect of explicitly mod-

eling the missingness mechanism in the TCKIM is larger. In

this case the accuracy increases from 0.826 to 0.933. The two

corresponding embeddings are plotted in Fig. 1(a) and 1(d), re-

spectively. In the TCK embedding, there are many points from

different classes that overlap with each other, whereas for the

TCKIM the number of overlapping points is much lower.

The ssTCKIM improves the accuracy to 0.967 (from 0.933 for

TCKIM and 0.854 for ssTCK). The two embeddings obtained

using the semi-supervised methods are shown in Fig. 1(b)

and 1(e). The supervised version sTCKIM yields a slight im-

provement in terms of accuracy compared to ssTCKIM (0.970

vs 0.967). Plots of the supervised embeddings are shown in

Fig. 1(c) and 1(f). We can see that for the sTCKIM the classes

are clearly separated.

5.2. Performance of ssTCK on benchmark datasets
The purpose of the experiments reported in the following

paragraph was to evaluate the impact of incorporating incom-

plete label information in the ssTCK. Towards that end, we con-

sidered benchmark datasets and artificially modified the num-

ber of labeled MTS in the training sets. We applied the pro-

posed ssTCK to four MTS benchmark datasets from the UCR

and UCI databases [39, 40] and other published work [41], de-

scribed in Tab. 2. Since some of the datasets contain MTS of
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Figure 1: Plot of the two-dimensional KPCA representation of the synthetic data obtained using 6 different time series cluster kernels. The datapoints are color-coded

according to their labels.

Table 2: Description of benchmark time series datasets. Column 2 to 5 show

the number of attributes, samples in training and test set, and number of classes,

respectively. Tmin is the length of the shortest MTS in the dataset and Tmax the

longest MTS. T is the length of the MTS after the transformation.

Datasets Attributes Train Test Nc Tmin Tmax T Source

uWave 3 200 4278 8 315 315 25 UCR

Char.Traj. 3 300 2558 20 109 205 23 UCI

Wafer 6 298 896 2 104 198 25 Olsz.

Japan.vow. 12 270 370 9 7 29 15 UCI

varying length, we followed the approach of Wang et al. [42]

and transformed all the MTS in the same dataset to the same

length, T , determined by T =
⌈

Tmax

� Tmax
25 �

⌉
,where Tmax is the length

of the longest MTS in the dataset and � � is the ceiling operator.

The number of labeled MTS was set to max{20, 3 · Nc}. ssTCK

was compared to ordinary TCK and sTCK (assuming complete

label information in the latter case).

Tab. 3 shows the performance of ssTCK for the 4 benchmark

datasets. As we can see, compared to TCK, the accuracy in

Table 3: Classification accuracy for benchmark datasets obtained using TCK,

ssTCK and sTCK.
Datasets TCK ssTCK sTCK

Char. Traj. 0.908 0.928 0.934

uWave 0.867 0.881 0.894

Wafer 0.956 0.970 0.970

Japanese vowels 0.946 0.962 0.968

general increases using ssTCK. For the Wafer dataset, ssTCK

yields the same performance as the supervised kernel. For the

three other datasets, the performance of ssTCK is slightly worse

than sTCK. These experiments demonstrate that ssTCK is ca-

pable of exploiting incomplete label information.

Further, we created 8 synthetic datasets by randomly remov-

ing 50% and 80%, respectively, of the values in each of the 4

benchmark datasets. As we can see from the results presented

in Tab. 4, also in presence of missing data the accuracy in gen-

eral increases using ssTCK, compared to TCK.

For comparison, in Tab. 4 we also added the results obtained
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Table 4: Classification accuracy for benchmark datasets obtained using TCK, ssTCK and sTCK.

Missing rate Datasets TCK ssTCK sTCK GAK Linear LPS

50% Char. Traj. 0.751 0.780 0.797 0.588 0.589 0.127

uWave 0.812 0.834 0.850 0.828 0.813 0.411

Wafer 0.956 0.970 0.972 0.792 0.791 0.823

Japanese vowels 0.929 0.948 0.947 0.827 0.824 0.746

80% Char. Traj. 0.282 0.310 0.331 0.194 0.192 0.062

uWave 0.589 0.592 0.603 0.441 0.464 0.234

Wafer 0.926 0.934 0.934 0.796 0.805 0.819

Japanese vowels 0.809 0.836 0.847 0.473 0.489 0.389

Table 5: Classification accuracy on synthetic benchmark datasets that contain missing data.

Correlation TCK TCKB TCK0 TCKIM TCK TCKB TCK0 TCKIM

Wafer Japanese vowels
0.2 0.951 0.951 0.951 0.955 0.938 0.954 0.951 0.940

0.4 0.961 0.953 0.955 0.961 0.932 0.938 0.938 0.941
0.6 0.961 0.900 0.965 0.996 0.922 0.946 0.924 0.962
0.8 0.958 0.893 0.963 1.000 0.922 0.924 0.935 0.968

uWave Character trajectories
0.2 0.763 0.457 0.755 0.841 0.854 0.742 0.847 0.851

0.4 0.807 0.587 0.813 0.857 0.851 0.788 0.842 0.867
0.6 0.831 0.674 0.837 0.865 0.825 0.790 0.824 0.871
0.8 0.834 0.699 0.844 0.884 0.839 0.707 0.853 0.901

using three other kernels; GAK, the linear kernel, and LPS.

GAK and the linear kernel cannot process incomplete MTS and

therefore we created complete datasets using mean imputation

for these two kernels. LPS1 was run using default hyperparam-

eters, with the exception that we adjusted the segment length to

be sampled from the interval [6, 0.8T ] to account for the rela-

tively short MTS in our datasets. In accordance with [43], for

GAK2 we set the bandwidth σ to 0.1 times the median distance

of all MTS in the training set scaled by the square root of the

median length of all MTS, and the triangular parameter to 0.2

times the median length of all MTS. Distances were measured

using the canonical metric induced by the Frobenius norm. In

the linear kernel we set the constant c to 0. As we can see,

the performance of these kernels is considerably worse than the

time series cluster kernels for 7 out of 8 datasets. For uWave

with 50% missingness, the performance of GAK and the linear

kernel is similar to the TCK kernels.

5.3. Exploiting informative missingness in synthetic bench-
mark datasets

To evaluate the effect of modeling the missing patterns in

TCKIM , we generated 8 synthetic datasets by manually in-

jecting missing elements into the Wafer and Japanese vowels

datasets using the following procedure. For each attribute v ∈
{1, . . . ,V}, a number cv ∈ {−1, 1} was randomly sampled with

equal probabilities. If cv = 1, the attribute v is positively corre-

lated with the labels, otherwise negatively correlated. For each

MTS X(n) and attribute, a missing rate γnv was sampled from the

1Matlab implementation: http://www.mustafabaydogan.com/
2Matlab implementation: http://www.marcocuturi.net/GA.html

uniform distributionU[0.3+E ·cv ·(y(n)−1), 0.7+E ·cv ·(y(n)−1)].

This ensures that the overall missing rate of each dataset is ap-

proximately 50%. y(n) ∈ {1, . . .Nc} is the label of the MTS X(n)

and E is a parameter, which we tune for each dataset in such a

way that the absolute value of the Pearson correlation between

the missing rates for the attributes γv and the labels y(n) takes the

values {0.2, 0.4, 0.6, 0.8}, respectively. The higher the value of

the Pearson correlation, the higher is the informative missing-

ness.

Tab. 5 shows the performance of the proposed TCKIM and

three baseline models (TCK, TCKB, and TCK0). The first base-

line is ordinary TCK, which ignores the missingness mecha-

nism. For the Wafer dataset, the performance of this baseline

was quite similar across all four settings. For the Japanese vow-

els dataset, the performance actually decreases as the informa-

tion in the missing patterns increases. In the second baseline,

TCKB, we tried to model the missing patterns by concatenating

the binary missing indicator MTS R to the MTS X and creat-

ing a new MTS with 2V attributes. Then, we trained ordinary

TCK on this representation. For the Wafer dataset, the perfor-

mance decreases considerably as the informative missingness

increases. For the Japanese vowels, this baseline yields the best

performance when the correlation is 20%. However, the per-

formance actually decreases as the informative missingness in-

creases. Hence, informative missingness is not captured with

this baseline. In the last baseline, TCK0, we investigated if it is

possible to capture informative missingness by imputing zeros

for the missing values and then training the TCK on the imputed

data. This baseline yields similar performance across all 4 set-

tings for the Wafer dataset, and for Japanese vowels, TCK0 has

a similar behaviour as TCKB, i.e. it does not capture informa-

tive missing patterns. The proposed TCKIM achieves the best
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accuracy for 7 out of 8 settings and has the expected behaviour,

namely that the accuracy increases as the correlation between

missing values and class labels increases. The performance is

similar to TCK when the amount of information in the missing

patterns is low, whereas TCK is clearly outperformed when the

informative missingness is high. This demonstrates that TCKIM

effectively utilizes informative missing patterns.

To also test if TCKIM is capable of exploiting other types

of informative missingness, we generated 8 synthetic datasets

from uWave and Character trajectories using the following ap-

proach. Both of these datasets consists of 3 attributes. For

each attribute v ∈ {1, . . . ,V}, a number cv ∈ {−1, 1} was ran-

domly sampled with equal probabilities. For the attribute(s)

with cv = −1, we let it be negatively correlated with the labels

by sampling the missing rate γnv fromU[0.7− E · (y(n) − 1), 1−
E · (y(n) − 1)]. For the attribute with cv = 1, we let it be pos-

itively correlated with the labels by sampling the missing rate

γnv from U[0.3 + E · (y(n) − 1), 0.6 + E · (y(n) − 1)]. We let

each element with x(n)
v (t) > μv have a probability γnv of being

missing, where μv is the mean of attribute v computed over the

complete dataset. The fact that the probability of being missing

depends on the missing values means that, within each class,

the missingness mechanism is MNAR. We tuned the parameter

E such that the mean absolute value of the Pearson correlation

between γv and the labels took the values {0.2, 0.4, 0.6, 0.8}.
By doing so, the overall missing rate was approximately 32%

for uWave and 45% for the Characters. However, we note that

in this case the overall missing rate varies slightly as a function

of the Pearson correlation.

Tab. 5 shows the performance on the 8 synthetic datasets cre-

ated from uWave and Char. traj. One thing to notice here is the

poor performance of TCKB. This demonstrates the importance

of using the mixed mode mixtures to model the two modalities

in U = (X,R). To naively apply TCK based on the GMMs to

the concatenated MTS do not provide the desired performance.

Further, we see that TCKIM achieves the best accuracy for 7

out of 8 settings and the accuracy increases as the correlation

increases. For the Characters, the performance of TCKIM is

similar to TCK for low correlation but increases as the missing-

ness information increases, whereas the performance of TCK

actually decreases. One possible explanation is that for this

dataset, two of the variables were positively correlated with the

labels and therefore the missing rate increases with increasing

correlation. Regarding the results for uWave, it is a bit surpris-

ing that the largest difference in performance between TCK and

TCKIM occurs when the correlation is lowest. There might be

several reasons to this: a peculiarity of the dataset and/or that

the MNAR missingness created missing patterns that negatively

affect TCK.

6. Case study: Detecting infections among patients under-
going colon rectal cancer surgery

In this case study, the focus was to detect Surgical Site In-

fection (SSI), which is one of the most common types of noso-

comial infections [44] and represents up to 30% of hospital-

acquired infections [45, 46]. The importance of the topic of SSI

Table 6: List of extracted blood tests and their corresponding missing rates.

Attribute nr. Blood test Missing rate
1 Hemoglobin 0.646

2 Leukocytes 0.727

3 C-Reactive Protein 0.691

4 Potassium 0.709

5 Sodium 0.712

6 Creatinine 0.867

7 Thrombocytes 0.921

8 Albumin 0.790

9 Carbamide 0.940

10 Glucose 0.921

11 Amylase 0.952

prediction is reflected in several recent initiatives. For instance,

the current study is part of a larger research effort by the cur-

rent team, on SSI prediction and detection of postoperative ad-

verse events related to gastrointestinal surgery within the con-

text of improving the quality of surgery [21, 24, 47, 48, 49, 50].

Clearly, the reason for this massive interest is that a reduction

in the number of postoperative complications such as SSI will

be of great benefit both for the patients and for the society.

Many studies have shown that laboratory tests, and blood

tests in particular, are especially important predictors for SSI,

both pre- and post-operatively [51, 49, 52, 53, 48, 54, 55, 56,

57, 58, 59]. Therefore, blood tests provided the basis also for

this case study.

6.1. Data collection

Ethics approval for the parent study was obtained from the

Data Inspectorate and the Ethics Committee at the University

Hospital of North Norway (UNN) [50]. In [50], a cohort con-

sisting of 7741 patients was identified by extracting the elec-

tronic health records for all patients that underwent a gastroin-

testinal surgical procedure at UNN in the years 2004–2012.

In this case study, we were particularly interested in detecting

SSI, which is an infection particularly associated with colorec-

tal cancer surgery [60]. Therefore, patients who did not undergo

this type of surgery were excluded, reducing the size of the co-

hort to 1137 patients.

In collaboration with a clinician (author A. R.), we extracted

data for 11 of the most common blood tests from the patient’s

EHRs. The value of a patient’s blood test, e.g. his or hers

hemoglobin level, can be considered as a continuous variable

over time. However, blood tests are usually measured on a daily

basis, and therefore, for the purpose of the current analysis, we

discretized time and let each time interval be one day. Hence,

the blood samples could naturally be represented as MTS and

needed no further feature preprocessing in our framework.

All blood tests were not available every day for each patient,

which means that the dataset contained missing data, and we

expected the missing patterns to be informative since whether

a test is performed depends on whether the doctor thinks it is

needed. We focused on detection of SSI within 10 days after

surgery and therefore the length of the time series is 10. Patients

with no recorded lab tests during the period from postoperative
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Figure 2: Overview of the approach taken to detect postoperative SSI from MTS blood samples.

day 1 until day 10 were removed from the cohort, which lead

to a final cohort consisting of 858 patients. The average pro-

portion of missing data in the cohort was 80.7%. Tab. 6 shows

a list of the blood tests we considered in this study and their

corresponding missing rate.

Guided by input from clinicians, the International Classifica-

tion of Diseases (ICD10) or NOMESCO Classification of Sur-

gical Procedures (NCSP) codes related to severe postoperative

complications were considered to identify the patients in the

cohort that developed postoperative SSI. Patients that did not

have these codes and did not have the word “infection” in any

of their postoperative text documents were considered as con-

trols. This lead to a dataset with 227 infected patients (cases)

and 631 non-infected patients (control).

6.2. Experimental setup
The objective of this case study was to evaluate how the pro-

posed MTS kernels perform in a real-world application from

medicine. We would like to emphasize that the proposed ker-

nels are mainly designed for situations when there are no, or

only a few, ground-truth labels available. However, in order to

evaluate the quality of these kernels, we adopted a supervised

scheme. Hence, we followed the scheme presented in Fig. 2,

i.e. we computed the kernel from the MTS representations of

the blood tests and performed KPCA, followed by kNN classi-

fication in the KPCA space. We set the dimensionality of the

KPCA-representation to 10 in all experiments. The number of

neighbors k was set using 5-fold cross validation.

Four baseline kernels were considered, namely TCK, LPS,

GAK and the linear kernel. GAK and the linear kernel can-

not work on incomplete datasets, and therefore, we created 2

complete datasets using mean and LOCF imputation. In order

to investigate if it is possible to better exploit the information

from the missing patterns for the LPS, GAK and linear kernels,

we also created baselines by concatenating the binary indicator

MTS R(n) to the MTS X(n).

We performed 5-fold cross validation and reported results in

terms of F1-score, sensitivity, specificity and accuracy. Sensi-

tivity is the fraction of actual positives (has SSI) correctly clas-

sified as positive, whereas specificity is the fraction of actual

negatives that are correctly classified as negative. F1-score is

the harmonic mean of precision and sensitivity, where preci-

sion is the fraction of actual positives among all those that are

classified as positive cases.

6.3. Results

Tab. 7 shows the performance in terms of 4 evaluation met-

rics for 11 baseline kernels as well as the proposed TCKIM ker-

nel on the task of detecting patients suffering from SSI. We see

that the kernels that rely on imputation performs much worse

than other kernels in terms of F1-score, sensitivity and accu-

racy. These methods do, however, achieve a high specificity.

However, any classifier can achieve a specificity of 1 simply by

classifying all cases as negative, but this of course leads to lower

F1-score and sensitivity. The main reasons why these methods

do not perform better are probably that the imputation methods

introduce strong biases into the data and that the missingness

mechanism is ignored. The TCK and LPS kernels perform quite

similarly across all 4 evaluation metrics (LPS slightly better).

The F1-score, sensitivity and accuracy achieved for these meth-

ods are considerably higher than the corresponding scores for

the GAK and linear kernel. One of the reasons why these meth-

ods perform better than the imputation methods is that ignoring

the missingness leads to lower bias than replacing missing val-

ues with biased estimates. The performance of the linear kernel
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Table 7: Performance (mean ± se) on the SSI dataset.

Kernel F1-score Sensitivity Specificity Accuracy

Ignore TCK 0.726 ± 0.045 0.678 ± 0.035 0.930 ± 0.024 0.863 ± 0.023

missingness LPS 0.746 ± 0.035 0.696 ± 0.056 0.939 ± 0.019 0.875 ± 0.016

Impute GAKLOCF 0.570 ± 0.045 0.484 ± 0.059 0.924 ± 0.022 0.808 ± 0.017

GAKmean 0.629 ± 0.046 0.502 ± 0.059 0.966 ± 0.023 0.843 ±0.016

LinearLOCF 0.557 ± 0.058 0.480 ± 0.073 0.914 ± 0.017 0.800 ± 0.018

Linearmean 0.599 ± 0.030 0.489 ± 0.041 0.948 ± 0.043 0.826 ± 0.024

Informative LPSIM 0.720 ± 0.062 0.661 ± 0.069 0.937 ± 0.036 0.863 ± 0.032

GAKIM+LOCF 0.669 ± 0.015 0.586 ± 0.024 0.940 ± 0.021 0.846 ± 0.011

GAKIM+mean 0.696 ± 0.030 0.617 ± 0.033 0.945 ± 0.022 0.856 ±0.011

LinearIM+LOCF 0.628 ± 0.016 0.529 ± 0.030 0.945 ± 0.011 0.834 ± 0.005

LinearIM+mean 0.668 ± 0.037 0.568 ± 0.033 0.951 ± 0.030 0.850 ± 0.021

TCKIM 0.802 ± 0.016 0.806 ± 0.027 0.927 ± 0.017 0.895 ± 0.010
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Figure 3: Plot of the two-dimensional KPCA representation of the colon rectal cancer surgery patients obtained using 5 kernels.

and GAK improves a bit by accounting for informative miss-

ingness, whereas the performance of LPS decreases. TCKIM

performs similarly to the baselines in terms of specificity, but

considerably better in terms of F1-score, sensitivity and accu-

racy. This demonstrates that the missing patterns in the blood

test time series are informative and the TCKIM is capable of ex-

ploiting this information to improve performance on the task of

detecting patients with infections.

Fig. 3 shows KPCA embeddings corresponding to the two

largest eigenvalues obtained using 5 different kernels. While
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the representations obtained using GAK and the linear ker-

nel are noisy and to a large degree mix the infected and non-

infected patients, the two classes (SSI and non-SSI) are more

separated in the representations obtained using TCK and LPS.

The TCKIM is even better at forcing the SSI patients to stay

in the same region or cluster while it at the same time spreads

out the patients without infection, revealing the diversity among

these patients.

7. Conclusions and future directions

In this work, we presented robust multivariate time series ker-

nels capable of exploiting informative missing patterns and in-

complete label information. In contrast to other frameworks

that exploit informative missingness [6, 16], which need com-

plete label information, the time series cluster kernels are spe-

cially designed for situations in which no labels or only a few la-

bels are available. Lack of labels and large amounts of missing

data are two challenges that characterize the medical domain,

and therefore, we think the proposed kernels will be particularly

useful in this domain, which we also demonstrated in this work

through a case study of postoperative infections among colon

rectal cancer patients. However, the kernels are not limited to

this domain. We believe that these kernels could be useful tools

in other application domains facing similar challenges.

A limitation of TCKIM is that if the missingness is by no

means correlated with the outcome of interest, there will be lim-

ited gain in performance compared to the TCK, or might even

a decrease in performance. For this reason it is important that

the user has some domain knowledge and has some understand-

ing about the process that led to missing values in the data, as

illustrated in our case study from healthcare.

An other limitation of the time series cluster kernels is that

they are designed for MTS of the same length. A possible next

step would be to work on a formulation that can deal with vary-

ing length. In further work, we would also like to investigate

the possibility of introducing a Bayesian formulation for the

discrete modality in the mixed mode mixture models by putting

informative priors over the parameters in the Bernoulli part of

the model.
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