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Abstract

In healthcare, vast amounts of data are stored digitally in the electronic
health records (EHRs). EHRs contain patient-specific data in the form
of unstructured free text notes as well as structured lab tests, diagnosis
codes, etc., and represent a largely untapped source of clinically relevant
information, which combined with advances in machine learning, have the
potential to transform healthcare into a more data-driven direction.

Due to the complexity and poor quality of the EHRs, data-driven health-
care is facing many challenges. In this thesis, we address the challenge
posed by lack of ground-truth labels and provide methodological solutions
to challenges related with missing data, temporality, and high dimensional-
ity. Towards that end, we present four lines of work where we develop novel
unsupervised and weakly supervised learning methodology.

The first work presents a novel kernel for a type of data that frequently occur
in the EHRs, namely multivariate time series with missing values. Key com-
ponents in the method are clustering and ensemble learning, which ensure
robustness to hyper-parameters and make the kernel well-suited as a com-
ponent in unsupervised learning frameworks. Experiments on benchmark
datasets demonstrate that the proposed kernel is robust to hyper-parameter
choices and performs well in presence of missing data.

Next, we present a novel dimensionality reduction method, which is de-
signed to account for many of the challenges data-driven healthcare is fac-
ing. One of them is high dimensionality, but in addition, the method is
capable of exploiting noisy and partially labeled multi-label data, touching
upon challenges related with lack of labels, domain complexity and noisy
data. Extensive experiments on benchmark datasets, as well as a case study
of patients suffering from chronic diseases, demonstrate the effectiveness of
the proposed algorithm.

A main motivation for the third work is to take advantage of the fact that
missing values and patterns often contain rich information about the clinical
outcome of interest. We present a multivariate time series kernel, capable
of exploiting this information to learn useful representations of incompletely
observed time series data. Moreover, we also propose a novel semi-supervised
kernel, capable of taking advantage of incomplete label information. The ef-
fectiveness of the proposed methods is demonstrated via experiments on
benchmark data and a case study of patients suffering from infectious post-
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operative complications.

In the last work, we focus on another complication following major high-
risk surgeries, namely postoperative delirium. It is a common complication
among the elderly that often goes undetected, but might have serious con-
sequences. We perform phenotyping using a weakly supervised learning
framework, wherein clinical knowledge is used to generate a noisy labeled
training set, which in turn is used to train classifiers. Experiments on a
dataset collected from a Norwegian university hospital demonstrate the ef-
ficiency of the framework.
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Chapter 1

Introduction

1.1 Data-driven healthcare

Major advances in healthcare such as the introduction of vaccines, anesthe-
sia, antibiotics, randomized control trials and radiology imagery are exam-
ples of events from the 19th and 20th century that revolutionized healthcare
and lead to improved quality of life for many people. Despite these enormous
improvements, now in the 21st century, there are still tremendous unsolved
challenges in healthcare and new challenges are continuously appearing.

For instance, one of the future challenges is related to the fact that the
demographic is changing. For the first time in history there will be more
people aged 65 and over than children under age 5 on the globe by 2020 (He
et al., 2016). Along with changes in diet and lifestyle, aging is the main
reason why chronic noncommunicable diseases such as cardiovascular dis-
eases, diabetes, and cancer are increasing in prevalence and now represent
the dominant healthcare burden globally (WHO, 2014; Marengoni et al.,
2011). In general, the challenges that health is facing are profound, and
major changes in current practice are needed (WHO, 2015).

In many disciplines such as e.g. marketing, financial services, and linguistics,
to name a few, the combination of advancements in data science and a
rapidly increasing amount of data being generated in digital format has led
to new insights and solutions to existing challenges in these fields. Also in
health, vast amounts of (biomedical) data are ubiquitously being recorded at
the patient level. One source of such biomedical data is the Electronic Health
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Chapter 1. Introduction 2

Records (EHR), which contains documentation of clinical and administrative
encounters between the healthcare providers (physicians, nurses, etc.) and
the patients (Jensen et al., 2012; Birkhead et al., 2015).

The EHRs were primarily developed for making healthcare more efficient
from an operational standpoint and for billing purposes. However, these
data undoubtedly represent a largely untapped source of clinical information
that can be exploited via secondary use (Häyrinen et al., 2008; Botsis et al.,
2010; Bellazzi and Zupan, 2008). Therefore, researchers already several years
ago saw the potential to transform healthcare by developing autonomous
monitoring systems as well as diagnosis and decision support tools based
on data-driven approaches and machine learning, leaping forward quality of
care for the individual patient, and thereby being one of the solutions to the
challenges modern healthcare are facing (Savage, 2012; Groves et al., 2013;
Murdoch and Detsky, 2013). This research direction, in which machine
learning plays a key role, is the main focus of the thesis and will be referred
to as data-driven healthcare hereafter. Figure 1.1 shows an illustration of
what data-driven healthcare might look like in practice.

Data-driven healthcare is a rapidly evolving research field that is getting
an increasing amount of attention. This is reflected by the vast amount of
startups1, initiatives2, as well as research centers3 all over the globe that are
focusing on this topic. For instance, data-driven healthcare is a research area
that is being pursued at IBM Research4, and, in particular, via their Center
for Computational Health. As a result of these efforts, many research articles
showing great promise for data-driven healthcare, have been published in
academic journals (Ng et al., 2015; Yu et al., 2016; Choi et al., 2016a; Dai
et al., 2015; Caballero Barajas and Akella, 2015; Esteva et al., 2017; Choi

1For startups on data-driven healthcare, see e.g. BenevolentAI https://

benevolent.ai/, Babylon https://www.babylonhealth.com/, and DataRobot https:

//www.datarobot.com/healthcare/.
2For initiatives on advancing ubiquitous data and services in health, see

e.g. the Norwegian government’s “One citizen – one journal” act https://

www.regjeringen.no/no/dokumenter/meld-st-9-20122013/id708609/, and Big Data
Technologies in Healthcare http://www.bdva.eu/sites/default/files/Big%20Data%

20Technologies%20in%20Healthcare.pdf
3Examples of research centers include the Computational Health Informat-

ics laboratory http://www.robots.ox.ac.uk/~davidc/index.php, SPHERE https://

www.irc-sphere.ac.uk/, Google Research https://ai.google/research/teams/brain/

healthcare-biosciences, Machine Learning in Medicine https://www.mlim-cornell.

club/, BigMed https://bigmed.no/, Norwegian Centre for E-health Research https:

//ehealthresearch.no/en/
4https://www.research.ibm.com/healthcare-and-life-sciences/

https://benevolent.ai/
https://benevolent.ai/
https://www.babylonhealth.com/
https://www.datarobot.com/healthcare/
https://www.datarobot.com/healthcare/
https://www.regjeringen.no/no/dokumenter/meld-st-9-20122013/id708609/
https://www.regjeringen.no/no/dokumenter/meld-st-9-20122013/id708609/
http://www.bdva.eu/sites/default/files/Big%20Data%20Technologies%20in%20Healthcare.pdf
http://www.bdva.eu/sites/default/files/Big%20Data%20Technologies%20in%20Healthcare.pdf
http://www.robots.ox.ac.uk/~davidc/index.php
https://www.irc-sphere.ac.uk/
https://www.irc-sphere.ac.uk/
https://ai.google/research/teams/brain/healthcare-biosciences
https://ai.google/research/teams/brain/healthcare-biosciences
https://www.mlim-cornell.club/
https://www.mlim-cornell.club/
https://bigmed.no/
https://ehealthresearch.no/en/
https://ehealthresearch.no/en/
https://www.research.ibm.com/healthcare-and-life-sciences/
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Patient at hospital

Store data in EHRs
Feedback

Intervention

DATA-DRIVEN
HEALTHCARE

Alert!

Data  
collection

Analysis

Figure 1.1: Illustration of what data-driven healthcare might look like in
practice. 1. The patient sees the doctor at the hospital. 2. Relevant tests are
performed (labs, CT, MRI, etc.) and data are collected. 3. Data are stored
in the EHRs, 4. Data-driven analysis using machine learning. 5. Provide
clinical decision support to medical practitioner (e.g. warn the doctor that
the patient is about to experience a complication). 6. Intervention (e.g.
perform surgery).

et al., 2016e; Rajkomar et al., 2018; Bai et al., 2018; Liu et al., 2018a).

A concrete example of an unsolved problem within healthcare is that there
is a large number of postoperative complications. Approximately 25 per-
cent of the patients undergoing high-risk surgeries suffer from at least one
postoperative complication within 30 days of surgery. These complications
are associated with severe consequences such as increased mortality, as ex-
emplified by the fact that in hospitals in the United Kingdom alone, 20000
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to 25000 deaths occur every year after surgical procedures (Findley, 2011).
Another consequence of postoperative complications is that many of these
patients are readmitted to the hospital, which leads to increased costs for the
healthcare providers. One study demonstrated that even relatively modest
reductions in complication rates (5% - 20%), can lead to cost savings in the
range of 31 million to 124 million US dollars per year for Medicare5 (Sweeney,
2013). Hence, the potential impact of prediction and prevention of postoper-
ative complications is immense, not only for the well-being of the individual
patients, but also in terms of cost optimization and resource allocation.

Recently, a couple of studies have shown great promise for data-driven
healthcare as a means to predict postoperative complications such as e.g.
anastomosis leakage (Soguero-Ruiz et al., 2016a; Watanabe et al., 2017;
Soguero-Ruiz et al., 2016b), acute kidney injury (Kate et al., 2016), urinary
tract infections (Taylor et al., 2018), and surgical site infections (Sanger
et al., 2016; Soguero-Ruiz et al., 2015; Ke et al., 2017). Hence, a concrete
example of a consequence of advances in data-driven healthcare is reduction
in the number of postoperative complications.

Nevertheless, despite the many promising results reported in academic jour-
nals, the seemingly large availability of biomedical data, the vast amounts
of startups and initiatives, and the many success stories and great promises
reported in mainstream media (Scutti, 2017; Mukherjee, 2017; Comstock,
2017; Murgia, 2017; Bhardwaj, 2018), big data analytics and machine learn-
ing based-approaches have yet to see the same success in healthcare as in
other fields (Lee and Yoon, 2017; Fröhlich et al., 2018). Data-driven health-
care is still only an emerging reality and has yet not transformed medicine.
One of the main reasons for this is that there are still many unresolved
challenges for data-driven healthcare. In the next section, we will briefly
describe these challenges.

1.2 Challenges for data-driven healthcare

Despite that the challenges that data-driven healthcare are facing are well
documented in the literature6, due to the complexity of the human body,

5Medicare is a federal health insurance for Americans aged 65 years and older https:

//www.medicare.gov/.
6See e.g. (Jensen et al., 2012; Weiskopf and Weng, 2013; Hripcsak and Albers, 2012;

Kuo et al., 2014; Hersh et al., 2013; Miotto et al., 2017; Yadav et al., 2018; Dinov, 2016;

https://www.medicare.gov/
https://www.medicare.gov/
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Challenges for data-
driven healthcare

Data characteristics

Domain complexity

Interpretability

Validation

Legal

Privacy

Consent
Data

sharing

Data
security

Temporality Missing data

Inaccurate and
noisy data

High
dimensionality

Multimodal

Autonomy

Lack of labels

Figure 1.2: Overview of the challenges that data-driven healthcare are facing.
Challenges that we are providing solutions to are marked in yellow.

the complexity of diseases, and the complexity of healthcare in general, it is
difficult to give a complete overview of all challenges. Moreover, biomedical
data have some uncommon characteristics that complicate analysis. In ad-
dition to the EHRs, these data also include e.g. clinical imagery, genomics
data, and data collected from wearable devices. Nevertheless, in Fig 1.2, we
have tried to provide an overview. We note that our perspective is slightly
biased towards EHR-related challenges since these are the main focus of the
thesis. A more detailed description of these challenges follows next.

Data characteristics. One of the main challenges for data-driven health-
care is that the very nature of the EHR data is uniquely complex. Such data
have some special uncommon characteristics compared to other application
domains. The data are characterized by:

Fröhlich et al., 2018; Xiao et al., 2018; Lee and Yoon, 2017; Ravı et al., 2017; Shickel et al.,
2018; Häyrinen et al., 2008; Ching et al., 2018; Banda et al., 2018; Johnson et al., 2016).
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Multiple modalities. EHRs are highly heterogeneous and consist of, for ex-
ample, unstructured text in the form of nurses reports and surgical proce-
dure notes. In addition, EHRs contain information about e.g. admissions,
discharge, blood samples, histology, radiology (imagery), etc. Some of these
data are stored in the form of structured codes for different medical con-
ditions using e.g. the International Classification of Diseases (ICD), 10th
version (WHO, 2004).

High dimensionality. Even if data extracted from EHRs often at first sight
look ”big”, also in terms of number of patients, in practical clinical scenarios
the number of patients available to train the models is often limited. On the
other hand, because of the heterogeneity of biomedical data, the number of
attributes describing each patient is often large compared to the number of
patients (large p, small n) (Wang and Krishnan, 2014; Sinha et al., 2009;
Lee and Yoon, 2017). A patient could for example be described by tens
of thousands of genes and/or a vast amount of clinical parameters such
as laboratory tests, drugs, codes, x-rays as well as unstructured free-text
documents. Such high-dimensional data is a problem for most machine
learning algorithms because of the curse of dimensionality (Friedman, 1997).

Inaccurate and noisy data. The patient records were primarily developed for
billing purposes, and are also used by healthcare professionals to plan patient
care, and to document and assess the care that is delivered (Häyrinen et al.,
2008). This means that the EHRs do not constitute a traditional research
database and therefore the data quality is in general worse than in other
databases. Erroneous, inconsistent and instable data frequently occur.

Temporality. The EHR data are longitudinal in nature since the diseases
and the patients’ health statuses progress over time. However, many existing
machine learning algorithms cannot deal with temporality, but assume static
vector based inputs.

Missing data. The data are largely missing in many different ways, often
as a result of not having been collected for research purposes (Wells et al.,
2013; Hripcsak and Albers, 2012). The reason might be as simple a human
error. For instance, it could happen that a clinician makes a mistake when
he records the result of a lab test. Data are also missing because people
usually visit healthcare providers only if they are sick or injured, i.e. there
are no available data from the periods when the patients are healthy (which
usually is most of the time). However, even for hospitalized patients missing
data frequently occur, e.g. because the doctor thinks the patient is in good
shape and therefore decides to not order a lab test. Either way, regardless of
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the reason why missing values occur, they pose a challenge for most machine
learning methods and must be handled.

Lack of labels. In a data-driven healthcare setting, labels refer to gold
standards, i.e. the true clinical outcomes or the true disease phenotypes for
the patients of interest. These types of labels are typically not consistently
captured in the EHRs and therefore not easily available. In addition, gen-
erating such ground-truth labels is often time consuming, expensive or even
impossible. Lack of labels poses a challenge because an underlying assump-
tion in the classical branch of machine learning, which is supervised learning,
is that ground-truth labels are provided for the entire training set. In this
scenario, machine learning is usually very powerful. However, when label
information is either completely lacking or incomplete, learning data-driven
algorithms usually becomes more difficult.

Legal issues. The EHRs contain private information about individual pa-
tients’ lives that should be kept secret, and therefore, privacy and legal
issues are important. However, this also poses a challenge for researchers
since restriction of access to EHR data is an obstacle for the development
of data-driven healthcare (Jensen et al., 2012).

Domain complexity. It is more complicated to understand a disease and
the inner workings of the human body than an image or speech. The many
data sources and the characteristics of the EHR data, which we described
above, also contribute to increase the complexity.

Interpretability. Many machine learning algorithms can be good at pre-
dicting e.g. a disease onset, but typically it is difficult to interpret how the
algorithm came to that conclusion (black box). However, understanding
why the algorithms provide the recommendations they do is critical to con-
vince the clinicians to trust the predictions. In addition, the General Data
Protection Regulation was adopted by the European Union recently and
gives for example patients ”right to an explanation” (Goodman and Flax-
man, 2016), which could be difficult if the predictions are made by machine
learning algorithms.

Validation. To translate an algorithm into clinical practice requires rigor-
ous validation, which is a complicated process that is both time consuming
and expensive. Algorithms reported in academic journals are typically not
sufficiently validated for clinical practice (Fröhlich et al., 2018).
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Missing data

Papers: I, III, 7, 9, 12, 13,
17

Lack of labels 
 

Papers: I, II, III, IV, 5, 6, 7, 8, 9,
10, 11, 13, 14, 15, 16, 17 

Temporality 

Papers: I, III, 6, 7, 9, 12, 13,
17, 18

High dimensionality 

Papers: I, II, III,  7, 11, 12,
13, 17

Figure 1.3: Categorization of publications according to the objectives they
deal with.

1.3 Objectives

In this thesis, we focus on some of the above-mentioned challenges. Our main
objective is to provide methodological solutions that address the challenge
posed by lack of labels. All four included papers deal with this objective.

Secondary objectives are to provide methodological solutions to challenges
related with

• missing data,
• temporality,
• high dimensionality.

In addition, we also touch upon challenges related with inaccurate and noisy
data, multiple modalities, and domain complexity. Fig. 1.3 provides an
overview of how the different publications relate to the objectives.

1.4 Proposed approaches

The work presented in this thesis is motivated by challenges that data-
driven healthcare are facing, and particularly the challenges posed by lack
of labels, missing data, temporality and high dimensionality. However, data-
driven healthcare is not the only application domain in which the process
of obtaining reliable ground-truth labels often is difficult. In e.g. computer
vision (Xiao et al., 2015), audio and speech processing (Adavanne and Virta-
nen, 2017), to name a few, one experiences similar problems. Likewise, while
temporal data frequently occur in healthcare, e.g. via lab measurements of
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hospitalized patients which naturally constitute multivariate time series sub-
ject to missing data, similar type of data also occur in other applications
such as e.g. biology, finance and geosciences (Mudelsee, 2013; Lacasa et al.,
2015). Further, high dimensionality is a challenge that almost all practical
applications share. For these reasons, we take a general approach to solve
these problems by developing novel machine learning methodology, which as
such is not restricted to medical applications, but potentially can be applied
to any domain facing similar challenges.

In this thesis, the key solution to our main objective (the challenge posed by
lack of labels) is novel unsupervised and weakly supervised learning method-
ology. An illustrative explanation of these learning frameworks is provided
in Fig. 1.4. Two of the works (Paper I and partly Paper III) present un-
supervised learning frameworks in which no label information is provided.
An alternative workaround to the lack of labels problem is to generate in-
complete or inaccurate labels. The idea is that these labels can be created
in a way that is less expensive and less time consuming than to create the
labels manually. This is a situation we study in Paper II, IV and partly Pa-
per III. For this purpose, we develop and employ semi-supervised learning
frameworks that can deal with label noise.

The unsupervised and weakly supervised learning methods developed and
employed in this thesis can be further divided into three sub-categories:

• Clustering.
• Semi-supervised learning with noisy labels.
• Representation learning (dimensionality reduction).

In Fig. 1.5, we have categorized the publications according to the three
sub-categories of methods.

In addition to the challenge posed by lack of labels, we also present ap-
proaches to address the challenges posed by missing data, temporality, and
high dimensionality. A key approach to cope with missing data and tempo-
rality is to analyze longitudinal EHR data subject to missing elements within
the framework of kernel methods, and, in particular, to consider kernels for
multivariate time series (Paper I and III). Regarding high dimensionality,
in Paper II we present a novel dimensionality reduction method. Moreover,
in the first paper we demonstrate that kernels could provide a useful tool to
learn representations of high-dimensional multivariate time series – a tool
we exploit in Paper III to learn representations of blood sample time series
containing large amounts of missing data.
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Incomplete supervision
 
 
 
 
 
 
 
 
 

Semi-supervised learning
Active learning  

 
No supervision

 
 
 
 
 
 
 
 
 
 

Unsupervised learning 

Weak supervision
Inaccurate supervision

 
 
 
 
 
 
 
 
 
 

 Learning with label noise 

Strong supervision
 
 
 
 
 
 
 
 
 
 

Supervised learning 

Figure 1.4: Illustration of the concepts unsupervised and weakly supervised
learning from a healthcare perspective. The patients in the red box have a
particular clinical outcome of interest, whereas those in the green box do
not. The fact that no supervision information is provided means that the
clinical outcome (label) is unknown for all patients under study. In this situ-
ation, we employ unsupervised learning. In other cases, weak supervision
information is provided. This could be in the form of incomplete supervision
information, i.e. the clinical outcomes of interest are known for a subset
of the patients. For this type of supervision information, we employ semi-
supervised learning algorithms. Weak supervision information could also be
provided in terms of inaccurate supervision, i.e. the clinical outcomes of
interest are known for most patients, but some of the patients have been
assigned wrong outcomes. Hence, the labels are noisy. These settings are
different from the classical branch of machine learning, namely supervised
learning, in which strong supervision information is provided in terms of
labels for the entire training set.

In this thesis, we evaluate how well the proposed approaches solve the ob-
jectives empirically on general domain benchmark datasets as well as real-
world EHR data obtained via close collaborators at our local hospital and
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Figure 1.5: Methodological categorization of papers.

a hospital in Spain. In particular, we study prediction and detection of
postoperative complications related with gastrointestinal surgery (Paper III
and IV). The majority of the patients under study undergo surgery for col-
orectal cancer, which is one of the most serious noncommunicable diseases.
In Paper II, we provide a case study of patients that suffer from multiple
noncommunicable diseases. Effectiveness of the proposed methods and so-
lutions is evaluated in a relative manner (as opposed to absolute), i.e. we
do not evaluate if the methods are effective, but if they are effective relative
to existing methods.

1.5 Brief summary of papers

Paper I. In this paper, we present a novel methodology for computing the
similarity between multivariate time series (temporal data) subject to miss-
ing data. Key components in the method are clustering and ensemble learn-
ing, which make the similarity measure robust to choice of hyper-parameters.
For this reason, the proposed similarity measure, which also is a kernel, is
well-suited when lack of labels is an issue and can be used as one component
in a larger unsupervised learning framework.

Paper II. This paper presents a novel dimensionality reduction method,
which is general and not necessarily restricted to healthcare applications.
However, the method is designed in such a way that it accounts for many
of the challenges data-driven healthcare is facing. One of them is obviously
high dimensionality, but in addition, the method is capable of exploiting
noisy and partially labeled multi-label data, touching upon challenges re-
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lated with lack of labels, domain complexity and inaccurate data.

Paper III. The paper builds upon the work presented in Paper I and studies
multivariate time series and missing data. A main motivation for this work
is that, e.g. in healthcare, instead of having missing completely at random
data, the missing values and missing patterns often contain rich informa-
tion about the clinical outcome of interest. We present a kernel, which is
capable of exploiting this information to learn a better representation of the
incompletely observed time series data. Moreover, we also propose a novel
semi-supervised kernel, capable of exploiting incomplete label information.

Paper IV. In this paper, we focus on detection of postoperative delirium,
which is a quite common complication after major high-risk surgeries among
the elderly. Delirium is a complication that often goes undetected, but might
have serious consequences both for the patients and the caregivers. For these
reasons, it is important to improve current detection models. However,
getting access to large enough amounts of ground-truth labels to train the
models is difficult. In this study, we build detection models using a weakly-
supervised framework, in which supervision information is provided in terms
of clinical knowledge. The clinical expertise is used to generate a noisy
labeled training set, which in turn is used to train classifiers.

1.6 Organization of the thesis

The remainder of this thesis is organized into four parts, machine learning
for data-driven healthcare, methodology and context, summary of research,
and included papers. The first part contains two chapters. In Chapter 2, we
provide a description of EHRs and, in particular, the data types these records
contain. Chapter 3 presents examples of machine learning for EHRs. The
methodology part is divided into three chapters, which in sum constitute the
theoretical background for the research presented in this thesis. In Chap-
ter 4, we provide an introduction to kernel methods. Chapter 5 presents
unsupervised learning, whereas weakly supervised learning is described in
Chapter 6. In the summary of research part, we provide a short overview
of the scientific contribution of each paper in this thesis. We also add some
concluding remarks and a discussion on future directions. The research pa-
pers are included in Part IV of this thesis. We also provide an appendix,
which contains a statistical description of missing data mechanisms and a
survey on common methods to deal with missing data.
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Chapter 2

Electronic health records

The EHR is an evolving concept and there exists several different defini-
tions. The Recommendation of 2 July 2008 on cross-border interoperability
of electronic health record systems (European Union) defined an EHR as
”a comprehensive medical record or similar documentation of the past and
present physical and mental state of health of an individual in electronic
form, and providing for ready availability of these data for medical treat-
ment and other closely related purposes”1.

Other definitions make stronger assumptions and require that the records
can be shared, contain information about the complete healthcare, are avail-
able instantly and securely to authorized personnel, or require that the EHR
also contains information necessary to fulfill reporting obligations or disclo-
sure obligations laid down in law or in compliance with the law 2 3 (Gunter
and Terry, 2005; Kierkegaard, 2011; Gerhard et al., 2013).

Nevertheless, despite the multitude of definitions, the intent of the EHR
systems is usually that they can be shared across healthcare providers, spe-
cialists, clinicians and laboratories, etc., and, therefore, contain information
about the complete healthcare of the patient. Therefore, the EHRs contain
whole range of data – in different forms – including the patient’s medical
history, demographics, diagnoses, vital signs, medications, treatment plans,

1Commission Recommendation of 2 July 2008 on cross-border interoperability of elec-
tronic health record systems (notified under document number C ((2008) 3282).

2https://www.healthit.gov/faq/what-electronic-health-record-ehr
3ehelse.no/standarder-kodeverk-og-referansekatalog/

elektronisk-pasientjournal-epj
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immunization status, allergies, radiology images, free text notes, and labo-
ratory test results. Moreover, irrespective of whether it is the government
(via tax payers’ money) or insurance companies that pay for the healthcare,
the healthcare providers usually are reimbursed by documenting the care
that they have provided in the EHRs via codes.

Next, we provide some examples of data types that are commonly contained
in the EHRs.

2.1 EHR data types

Descriptive data. Normally, in all EHRs, one can find demographic details
about patients such as age, sex, date of birth and death, religion, ethnicity,
marital status, etc., as well as other descriptive data such as admission and
discharge times.

Coded data. Coded data in the EHRs are recorded primarily for billing
and administrative purposes. In particular, diagnoses and diagnostic and
therapeutic procedures are often coded.

The patients’ diagnoses are typically documented in the EHRs using codes,
and for this purpose an international standard exists, namely World Health
Organization (WHO)’s International Classification of Diseases. In Europe,
most countries use the 10th version (ICD-10). However, e.g. in Spain and
Portugal, the 9th version is still in use. Moreover, many country-specific
modifications of ICD exists, and different countries have their own coding
guidelines. The US is using the ICD-10 Clinical Modification.

As an illustrative example of an ICD (-10) code, we highlight the code C18.1.
The letter ’C’ indicate that this is a code that belong to the neoplasm-family
(C and D). In particular, ’C’ represents malignant neoplasms. Further, the
number ’18’ indicates that the code represents a malignant neoplasm of a
digestive organ (C15-C26), and more specifically, ’18’ represents colon. The
digit after the period specifies where in the colon the neoplasm is, in this
case in the appendix.

Some countries, like e.g. Spain and Portugal, also use ICD for classifica-
tion of diagnostic and therapeutic procedures performed by physicians and
other health care providers (procedure coding). More specifically, they use
the ICD, 9th Revision - Clinical Modification. However, no international
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standard exists, and therefore the difference between the countries is larger
for procedure codes than for diagnosis codes (Busse et al., 2011). For ex-
ample, the US uses the Current Procedural Terminology (CPT) classifica-
tion (AMA, 2007), whereas the Nordic countries use the NOMESCO Clas-
sification of Surgical Procedures (NCSP) (NOMESCO, 2011). The NCSP
is divided into 15 main chapters describing surgical procedures related to
the functional-anatomic body system, and 4 subsidiary chapters describing
therapeutic and investigative surgical procedures.

The EHRs can also contain so-called Diagnosis Related Groups (DRG),
which is a coding-system that classifies patient cases into categories with
similar resource use. It is based on diagnoses and procedures, as well as age,
sex, status at discharge and and the presence of complications or comorbidi-
ties. This coding system is typically used for reimbursement purposes, even
though the DRG reimbursement practice could vary quite significantly from
country to country (Mihailovic et al., 2016).

In addition to codes describing diagnoses and procedures, in some records,
one can also find codes describing drugs. The Anatomical Therapeutic
Chemical (ATC) Classification System(WHO, 2016) classifies drugs accord-
ing to properties of the drug (therapeutic, pharmacological and chemical)
and according to which organ or system the drug acts on. In more de-
tail, the ATC codes are structured into five levels, referring to anatomical
main groups, chemical substance, and therapeutic, pharmacological, chem-
ical subgroups.

To illustrate the five levels in an ATC code, we highlight the code ’A10BA02’.
The 1st level ’A’ represents alimentary tract and metabolism, the 2nd level
’A10’ drugs used for used for diabetes mellitus, 3rd level ’A10B’ blood
glucose lowering drugs, excluding insulins, 4th level ’A10BA’ biguanides,
whereas the 5th level ’A10BA02’ represents metformin.

Vital signs and test results. Vital signs (body temperature, heart rate,
blood pressure and breathing rate) are typically quite regularly documented
by nurses for in-hospital patients.

Laboratory tests check samples of tissue or body fluids such as blood or urine
to get more information about the health status of the patients. Information
from these tests are usually recorded in the EHRs.
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Clinical notes. A lot of the patient information in the EHRs is in free
text. Clinical notes that contain free text include e.g. the admission journal,
nursing notes, doctor notes, descriptive surgical reports, intensive care re-
ports, hospital discharge summaries, reports of electrocardiogram and imag-
ing studies (radiology reports), and administration records of intravenous
medications and medication orders.

Unstructured free text from EHRs have some characteristics that make it
different from other published text. For instance, clinical notes are charac-
terized by that (i) a limited amount of time is spent on entering the text
into the documents, simply because the document is a dictate of a con-
versation during a consultation, or because conversations are recorded and
then later transcribed by a secretary; (ii) incomplete sentences and spelling
errors are more common in medical text than in usual published text; and
(iii) abbreviations and acronyms frequently occur. Even though the free text
documents obviously contain a lot of information, from a computational and
informatics point of view, the characteristics of the clinical notes pose many
challenges.

Standard healthcare terminologies. In many EHR systems, the
healthcare workers document some patient information using standardized
terminologies. These are sometimes also referred to as medical ontolo-
gies, dictionaries or standard vocabularies. Among these, the most promi-
nent example is the Systematized Nomenclature of Medicine-Clinical Terms
(SNOMED-CT) (Stearns et al., 2001), which is the medical terminology
of choice of both WHO and the International Health Terminology Stan-
dards Development Organization. SNOMED-CT is a systematic collection
of clinical terms consisting of four core components: (i) numerical codes de-
scribing clinical terms, organized in hierarchies, (ii) textual descriptions of
the codes, (iii) relationships between codes with similar meaning, and (iv)
reference sets that groups clinical terms into sets. These sets can be used
for cross-mapping to other standards. This means that SNOMED-CT also
contains coded data and therefore the medical ontologies are closely con-
nected to the coded data we mentioned above. Indeed, the ICD and ATC
classification systems are examples other vocabularies (or ontologies).

We also include some examples of other commonly used terminologies:

• The US-specific medication terminology RxNorm4 (Bennett, 2012).

4https://www.nlm.nih.gov/research/umls/rxnorm/

https://www.nlm.nih.gov/research/umls/rxnorm/
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Terminology Full name Topic

ICD International Classification of Diseases Diagnoses
ATC Anatomical Therapeutic Chemical Medications
RxNorm RxNorm Medications
CPT Current Procedural Terminology Procedures
NCSP NOMESCO Classification of Surgical Procedures Procedures
LOINC Logical Observation Identifiers, Names and Codes Laboratory tests
DRG Diagnosis Related Groups Diagnos., procedu.
SNOMED-CT Systematized Nomenclature of Medicine-Clinical Terms General
UMLS Unified Medical Language System General
MeSH Medical Subject Headings PUBmed

Table 2.1: Healthcare terminologies.

• Logical Observation Identifiers, Names and Codes (LOINC)5 (Forrey
et al., 1996) is a commonly used standard vocabulary describing lab-
oratory test results.

• Medical Subject Headings (MeSH)6 is a controlled and hierarchically–
organized vocabulary for indexing of medical journals in the MED-
LINE/PubMed database7. Each article in the database is described
by a set of MeSH terms. The MeSH terms can be mapped to other
terminologies such as ICD-10 and ATC.

• MeSH Norwegian8 9 is the Norwegian version of MeSH. In addition,
MeSH has been translated to many other languages.

• The Unified Medical Language System (UMLS)10 (Lindberg et al.,
1993) is a compendium of many vocabularies, which includes all above-
mentioned vocabularies.

In Tab. 2.1, we summarize the healthcare terminologies we have described
in this chapter.

5https://loinc.org/
6https://www.nlm.nih.gov/mesh/
7https://www.ncbi.nlm.nih.gov/pubmed
8https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/MSHNOR/

metadata.html
9http://mesh.uia.no

10https://www.nlm.nih.gov/research/umls/

https://loinc.org/
https://www.nlm.nih.gov/mesh/
https://www.ncbi.nlm.nih.gov/pubmed
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/MSHNOR/metadata.html
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/MSHNOR/metadata.html
http://mesh.uia.no
https://www.nlm.nih.gov/research/umls/
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Figure 2.1: Example of a fictive radiology report from University Hospital of
North Norway (UNN).

2.2 Tromsø EHR corpus

The data that are used in Paper III and Paper IV (and most of the Papers
5-18) are extracted from a real EHR system, obtained from the UNN. UNN
has allocated resources for retrieving, pre-processing and making available
EHR data from an entire department, namely the Department of Gastroin-
testinal Surgery for the years 2004-today. This longitudinal dataset contains
more than 35000 unique patients and approximately 264 000 outpatient vis-
its. Use of the data (de-anonymized) for research is granted by the Regional
Committee for Medical Research Ethics (REK) and Norwegian Social Sci-
ence Data Services (NSD).

The dataset contains the following sources of data.

• Procedure codes: More than 1 000 000 NCSP codes.
• Diagnosis codes: More than 1 000 000 ICD-10 codes.
• Laboratory tests: More than 1 600 000 lab tests.
• Free text notes: More than 1 800 000. There are hundreds of dif-

ferent document categories included in the database. The main pa-
tient journals are, however, the admission journals, nurse notes, doc-
tor notes, descriptive surgical reports, intensive care reports, and dis-
charge notes. The degree of structure in the documents varies, but
many of them are completely unstructured (pure free text).
• Radiologic examinations: More than 60 000 radiology reports.
• Histology data: more than 500 000 pathology reports, including (re)-

admittance and death dates.
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Patient ID 1 2

Procedure code JFB30 JFH20
Date of procedure 14.02.2010 24.04.2008
Age 69 46
Sex Male Female
Elective procedure Yes Yes
Main diagosis code C182 K589
Open surgery Yes Yes
Stoma No Yes
ASA score NA 3
Type of anesteshia General and epidural General anesthesia
Start of anesteshia 2010-02-14 10:01:00 2008-04-24 09:23:31
End of anesteshia 2010-02-14 12:39:52 2008-04-24 13:38:08
Start of surgery 2010-02-14 10:28:25 2008-04-24 10:05:00
End of surgery 2010-02-14 12:21:31 2008-04-24 13:25:25

Table 2.2: Structured EHR data from UNN.

  

Nurses note

Doctor's note

Surgical operation note

Radiology report

Chosen using domain knowledge.

Figure 2.2: Example of a fictive nurse note from UNN.

Tab. 2.2 shows an example of structured data extracted for two fictive pa-
tients in connection with a surgical procedure performed at UNN. In Fig. 2.1
and Fig. 2.2, we show fictive examples of two document types from the EHRs
from UNN, namely a radiology report and a nurse’s note, respectively.
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2.3 Fuenlabrada EHR corpus

The PhD-project was done in collaboration with our partners at the Uni-
versidad Rey Juan Carlos, Fuenlabrada, Spain, and for that reason we have
also been using data collected from EHRs at the University Hospital of
Fuenlabrada in this work.

In Paper II (and Paper 17), we used a dataset that was extracted from the
EHRs at the University Hospital of Fuenlabrada, which is a public hospital
in the southern area of Madrid, Spain, that covers a region with more than
200.000 inhabitants. The patient dataset consists of a structured subset of
the patients’ records from the year 2012. This subset contains information
about time and place for the encounter with the health system, demographic
data, pharmacy dispensation in the Madrid area, as well as information
about diagnoses and procedures from patient encounters with primary and
specialized care in the Fuenlabrada area. In total, there are more than 64000
patients in the dataset.

The information about diagnoses and procedures is provided in terms of
codes according to the ICD-9 - Clinical Modification, whereas information
about drugs is provided in terms of pharmacological dispensing codes ac-
cording to the ATC classification systems (WHO, 2016).

In addition, the dataset contains information obtained from a specific Pa-
tient Classification System (PCS) (Davis and LaCour, 2016), namely the
Clinical Risk Group (CRG) (Hughes et al., 2004). PCSs stratify patients
according to different measures such as e.g. morbidity, health status, re-
source consumption, etc., based on information extracted during a certain
a period of time. In particular, the CRGs provide useful information about
the health status of patients potentially suffering from a multitude of chronic
conditions. Each CRG is described by a five-digit code, where the first digit
represents the core health status group, ranging from healthy to catastrophic
(1 - 9). The three next digits represent the base risk group, whereas the last
digit characterizes the severity-of-illness level.
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Examples of machine
learning for EHRs

In this chapter, we review related work on machine learning for EHRs. We
have sorted the work according to five non-mutually exlusive categories, i.e
the papers do not necessarily exclusively belong to the category they are
listed under. These categories are

• Phenotyping,
• Representation learning,
• Patient similarity,
• Predictive modeling,
• Other uses of machine learning for EHRs.

Figure 3.1 illustrate an example of a data-driven healthcare pipeline benefit-
ing from the concepts discussed in Part I of this thesis, starting with the raw
EHR data, followed by patient cohort identification via a machine learning
driven phenotyping algorithm and representation learning, and finally,
clinical decision support, for example via predictive modeling of diseases
or patient similarity analytics for clinical knowledge extraction.

3.1 Phenotyping

Electronic phenotyping, EHR-based phenotyping, or simply just phenotyp-
ing, is the process of identifying patients with certain medical conditions

23
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Patient similarity
- personalized medicine

- clustering for knowledge
extraction

Raw EHR data 
Demographics
Diagnoses
Medications
Vital signs 
Laboratory tests 
Clinical notes

Representation learningIdentify patient cohort
via phenotyping

Clinical decision support and knowledge extraction 

Predictive modelling 

Figure 3.1: Illustration of a machine learning for EHR pipeline.

or characteristics of interest1 (Yu et al., 2017a; Banda et al., 2017, 2018).
Examples of phenotypes include specific diseases such as breast cancer, com-
plex medical conditions such as stage III colorectal cancer and chronic ob-
structive pulmonary disease, and observable traits such as height and drug
response (Wei and Denny, 2015). Phenotyping is one of the fundamental
EHR research topics as it forms the basis of e.g. clinical decision support,
translational research, population health analyses based on EHR data, and
comparative effectiveness studies (Banda et al., 2018).

Patient cohort identification

A typical use of phenotyping algorithms is for patient cohort identification,
i.e. finding cases (and controls) for certain phenotypes (Shivade et al., 2013;
Yu et al., 2017a). There exist many works on uses of machine learning for
this purpose.

1EHR-based phenotyping is, however, not well defined in literature and therefore its
meaning is wide ranging (Shivade et al., 2013).
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Huang et al. (2007) were among the first ones to use machine learning for the
purpose of phenotyping in their study of type II diabetic patients. Carroll
et al. (2011) proposed a framework for detecting rheumatoid arthritis using
a support vector machine trained on Natural Language Processing (NLP)-
derived concepts in addition to structured EHR data. Yu et al. (2015) devel-
oped a phenotyping algorithm to identify patients with rheumatoid arthritis
who also suffered from coronary artery disease. In particular, they focused
on investigating the use of automated extraction of NLP text features, which
combined with structured codes, were used as input to a regularized logistic
regression classifier. Teixeira et al. (2017) developed and evaluated sev-
eral different phenotyping algorithms and categories of EHR information to
identify hypertensive cases and controls.

The survey by Shivade et al. (2013) showed that cancer and diabetes are, by
far, the two most common phenotypes to study. 49 of the included articles
studied cancer or diabetes, whereas only 31 of the articles studied any other
phenotype (heart failure, rheumatoid arthritis, cataract, pneumonia, etc.).
However, there are also works focusing on more rare phenotypes, such as
special types of voice disorders (Ghassemi et al., 2014b, 2016).

Reducing labeling efforts One line of research within phenotyping has
focused on methods for exploiting noisy labeled training data in order to re-
duce labeling efforts. Examples include so-called anchor learning and silver
standard learning (Halpern et al., 2016; Agarwal et al., 2016). These are two
very similar frameworks. In (Agarwal et al., 2016), the silver standard labels
were created using descriptive phrases from the clinical notes such as e.g.
“type 2 diabetes mellitus”. Halpern et al. (2016) created noisy labels using
so-called anchors, which are highly informative, clinically relevant variables,
typically defined by clinical experts. These methods of course provide some
wrongly labeled instances, but according to the theory in noisy label learn-
ing (Simon, 1996; Aslam and Decatur, 1996), the error that these models
make compared to identical models trained on clean labels is bounded and
can be compensated for by using enough training examples. Bulk learn-
ing (Chiu and Hripcsak, 2017) is a hierarchical learning framework based
on ensemble learning that uses a sparsely annotated training set to evaluate
many phenotypes at once, which do not require much intervention of clinical
experts. In particular, their focus was on phenotyping infectious diseases.
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Unsupervised discovery of phenotypes

With their perspective article (Hripcsak and Albers, 2012), Hripscak and
Albers introduced a shift from expert crafted phenotypes to electronic, si-
multaneuous generation of many phenotypes via so-called high-throughput
phenotyping. This idea was further elaborated on in a more recent perspec-
tive piece (Hripcsak and Albers, 2018), which also introduced a new term,
namely high-fidelity phenotyping.

High-throughput phenotyping can be referred to as the process of mapping
the raw data from the EHRs into medical concepts or representations that
are meaningful to a medical expert, which in turn can be used for further
research (Ho et al., 2014a; Albers et al., 2018). Hence, it can be thought
of as a form of (unsupervised) representation learning, or dimensionality
reduction, where the extracted features are informative (clinically meaning-
ful) (Ho et al., 2014b). Then, the idea is that the extracted features actually
are phenotypes themselves, either new ones or phenotypes known from be-
fore. Therefore, high-throughput phenotyping can also be referred to as
unsupervised discovery of new phenotypes.

In particular, nonnegative tensor factorization (generalized nonnegative ma-
trix factorization (Lee and Seung, 2001)) has been a very popular tool to use
for designing models that performs high-throughput phenotyping, since it
offers an effective approach to convert massive electronic health records into
meaningful clinical concepts (phenotypes) (Ho et al., 2014a,b; Wang et al.,
2015a; Chen et al., 2015; Gunasekar et al., 2016; Yang et al., 2017; Perros
et al., 2017, 2018; Kim et al., 2017a,b; Henderson et al., 2018). However,
many alternative approaches have also been proposed. For example, Pivo-
varov et al. (2015) presented the UPhenome model, a probabilistic graphical
model for unsupervised phenotyping. Lasko et al. (2013) proposed a phe-
notype discovery method based on deep learning and Gaussian processes,
whereas Che et al. (2015) introduced the deep computational phenotyping
framework, in which deep neural networks were used to identify features
associated with different diagnoses.

Other authors have investigated the use of topic models such as latent Dirich-
let allocation (Blei et al., 2003). Ghassemi et al. (2014a) investigated the use
of topic modeling to discover phenotypes from clinical narratives, whereas
Chen et al. (2015) used latent Dirichlet allocation to translate EHR data into
phenotype topics and investigated the portability of such topics across dif-
ferent institutions. Topic models also play a key role in PhenoLines (Glueck



27 3.1. Phenotyping

et al., 2018), a visualization tool for easier interpretation of the phenotype
topics (disease subtype topics).

The work of Yu et al. (2015), which we have already briefly discussed, can be
thought of as a combined approach for high-throughput phenotyping (un-
supervised phenotype discovery) and phenotyping (patient cohort identifi-
cation). This method was improved and refined with the surrogate-assisted
feature extraction (SAFE) framework (Yu et al., 2017a). In the method,
candidate features are selected by extracting medical concepts (UMLS con-
cepts) using named entity recognition on articles from five sources2. The
final task is to predict a target phenotype Y , and in order to do so, the cor-
responding ICD-9 and NLP (UMLS) counts are used to create noisy labels.
The candidate features and noisy labels are fed into an elastic-net logistic
regression, which is used to selected a subset of highly predictive features
from the set of candidate features. The final phenotyping classifier (for the
phenotype Y ) is then trained using gold-standard labels and the selected
subset of features. SAFE was used to identify patients suffering from coro-
nary artery disease, rheumatoid arthritis, Crohn’s disease, and ulcerative
colitis.

Other work on phenotyping

Boland et al. (2015) proposed the Classification Approach for Extracting
Severity Automatically from Electronic Health Records (CAESAR), a method
for classifying severity at the phenotype-level based on random forests. By
classifying severity at the phenotype-level, it is meant to distinguish be-
tween e.g. mild and severe variants of the same condition. A concrete
example is acne and myocardial infarction. In contrast, patient-level sever-
ity determines if a given patient has a mild or severe form of the condition.
With the goal to reduce labeling efforts, CAESAR was adapted using ac-
tive learning (Settles, 2012) to the CAESAR-Active Learning Enhancement
framework (Nissim et al., 2015, 2017).

One line of research aims particularly at accounting for the temporal and
dynamic nature of the EHRs while performing phenotyping. Dagliati et al.
(2017) used careflow mining (Quaglini et al., 2001) for electronic temporal

2Wikipedia https://www.wikipedia.org/, Merck Manuals https://www.msdmanuals.
com/, Medscape https://www.medscape.com/, Mayo Clinic Diseases and Conditions
https://www.mayoclinic.org/diseases-conditions/index, and MedlinePlus Medical
Encyclopedia https://medlineplus.gov/encyclopedia.html.

https://www.wikipedia.org/
https://www.msdmanuals.com/
https://www.msdmanuals.com/
https://www.medscape.com/
https://www.mayoclinic.org/diseases-conditions/index
https://medlineplus.gov/encyclopedia.html
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phenotyping, whereas Liu et al. (2015) proposed a graph based framework
for the same purpose. In this regard, we also highlight the phenotyping
frameworks based on non-linear time series analysis (Albers et al., 2014;
Hripcsak et al., 2015) and the Care Pathway Explorer (Perer et al., 2015),
in which frequent sequence mining is used to extract sequences of medical
events that can be visualized via the provided user interface.

3.2 Representation learning

Several works have focused on methods for learning domain appropriate rep-
resentations of the EHR that account for its unique characteristics (multiple
modalities, temporality, etc.) and can be useful for further analysis such as
e.g. predictive modeling. We note that phenotyping (phenotype discovery,
in particular) and learning EHR representations often are two closely con-
nected tasks. Hence, several methods described in the previous section also
belong to this section, and vice versa.

Representation of unstructured clinical notes

Bag-of-words (simple frequency counts of words) is often the standard choice
for representing clinical text, and it has been shown that for a variety of
clinical tasks, bag-of-words types of representations yield comparable perfor-
mance to more advanced NLP methods (Jung et al., 2015). Latent Dirichlet
allocation and other topic models have also been popular choices for repre-
senting clinical notes. For example, Rumshisky et al. (2016) examined the
use latent Dirichlet allocation to decompose clinical notes into meaningful
features, and used these features to predict early psychiatric readmission.

Miotto et al. (2016) proposed the Deep patient framework, an unsuper-
vised deep feature learning method based on denoising autoencoders (Vin-
cent et al., 2010). As input to the three-layer denoising autoencoders, they
used latent Dirichlet allocation compressed vectors of bag-of-words counts of
coded EHR data and concepts extracted from clinical notes. Beaulieu-Jones
et al. (2016) also used denoising autoencoders to learn patient representa-
tions, but tested the framework only on synthetic data. In Paper 11, we used
autoencoders to learn patient representations from free text nurses notes and
explored the use of these representations in an anchor learning phenotyping
framework.
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Skip-gram Learning word embeddings, which are techniques for mapping
words or phrases to real-valued vectors, has proven useful in many NLP
tasks (Bengio et al., 2003). In particular, the skip-gram model (word2vec)
of Mikolov et al. (2013) has been popular in use for EHR applications.
Word2vec is based on two-layer neural networks and capable of capturing
complicated relationships between words. For instance, Minarro-Giménez
et al. (2014) used skip-gram to learn embeddings of medical concepts from
unstructured text extracted from several different medical text corpora. In-
stead of training the skip-gram model directly on terms extracted from clin-
ical notes, De Vine et al. (2014) first extracted UMLS concepts from the
notes and thereafter trained the model over sequences of such concepts.

NLP for non-English clinical notes The extent of research on clinical
NLP for non-English records is still quite limited, partly because of scarce
availability of shared annotated corpora and medical dictionaries (Velupillai
et al., 2015; Viani et al., 2017b). However, there are some works that have
focused on creating representations of free text from non-English records.

Viani et al. (2017b) created a system for extracting and summarizing infor-
mation from Italian EHRs based on a NLP pipeline in which one of the com-
ponents was a Support Vector Machine (SVM). Viani et al. (2017a) explored
the use of Recurrent Neural Network (RNN) (Elman, 1990) architectures for
clinical event extraction from Italian EHRs. Dalianis and colleagues have
several publications on NLP for Swedish clinical notes (Dalianis et al., 2012;
Henriksson et al., 2014, 2015; Skeppstedt et al., 2014; Velupillai et al., 2014;
Weegar et al., 2015; Jacobson and Dalianis, 2016; Perez et al., 2017).

We also mention that in Paper 6, we represented patients by converting
Norwegian EHR free text into conceptual information. In more detail, the
unstructured EHR text was matched with concepts corresponding to dis-
eases, drugs and surgical procedures in MeSH Norwegian3 using the Smith-
Waterman algorithm (Smith and Waterman, 1981). Moreover, to learn to
distinguish between real-time data describing the state of the patient, and
retrospective data and noise (negations and internal communication etc.),
three naive Bayes classifiers (Russell and Norvig, 2016) were trained to sep-
arate between real-time and history, real-time and noise, and history and
noise, respectively. From the learned patient representation we created dis-
ease trajectories and used them for identification of cancer patients in need

3See Section 2.1 for an explanation of MeSH Norwegian.



Chapter 3. Examples of machine learning for EHRs 30

of resource demanding treatment and/or readmission, and for identification
of events enabling individual risk estimation of subsequent events. For a
survey on clinical NLP in non-English languages, we refer to (Névéol et al.,
2018).

Representation of longitudinal structured EHR data and/or
unstructured EHR data

Skip-gram and GRAM Instead of free text notes, Choi et al. (2016f,d,b)
focused on structured longitudinal visit records, and used skip-grams to
learn representations of medical concepts such as e.g. ICD diagnoses codes,
CPT procedure codes and SNOMED-CT codes. Farhan et al. (2016) modi-
fied the skip-gram models to support dynamic windows and thereby create
contextual embedding representations of sequential medical events such as
diagnoses, prescriptions, and laboratory tests. With the graph-based at-
tention model (GRAM), Choi et al. (2017) focused particularly on creating
representations of medical concepts that accounts for the hierarchical infor-
mation inherent to medical ontologies. In an attempt to minimize the need
for preprocessing and tuning of parameters, Bajor et al. (2018) proposed a
representation learning framework that also was based on a methodology
closely related to skip-gram.

Bayesian approaches and Gaussian processes. Many recent works
have focused on modeling longitudinal clinical data using Bayesian approaches
and Gaussian processes. Albers et al. (2018) developed a method for learn-
ing to represent, or automatically summarize, raw laboratory data by tak-
ing a Bayesian approach wherein parametric models (Weibull) and concepts
from information theory (Kullback-Leibler divergence) played a central role.
Ghassemi et al. (2015) used multi-task Gaussian process models for multi-
variate time series modeling of both physiological signals and clinical notes,
and used the models to assess the severity of illnesses. Caballero Barajas
and Akella (2015) used dynamic Bayesian networks to model clinical data as
time series of topics and calculate probabilities of mortality. Krishnan et al.
(2017) proposed the deep Markov model, which is a generative model where
a multi-layer perceptron is used instead of linear emission and transition
distributions, to model sequential data. A survey on dynamic (temporal)
Bayesian networks applied to temporal clinical data can be found in (Or-
phanou et al., 2014).

Boltzmann machines and autoencoders Mehrabi et al. (2015) used di-
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agnoses codes recorded over time as inputs to a Boltzmann machine (Aarts
and Korst, 1989). In Paper 13, we proposed a framework for creating com-
pressed representations of multivariate time series representations of blood
tests using autoencoders (Hinton and Salakhutdinov, 2006) and kernel align-
ment with the Time series Cluster Kernel (TCK) (see Paper I). A key com-
ponent in the framework was the deep kernelized autoencoder (Kampffmeyer
et al., 2018).

RNNs A great deal of works apply RNNs to clinical time series data. (Lip-
ton et al., 2015) used Long Short-Term Memory (LSTM) RNNs (Hochreiter
and Schmidhuber, 1997) to establish a framework for multi label classifica-
tion of diagnoses based on multivariate time series representations of struc-
tured clinical data such as vital signs and laboratory tests. This framework
was extended and adapted in (Lipton et al., 2016) such that it directly mod-
eled missing data using binary indicator variables instead of using heuristic
imputation. Similarly, Pham et al. (2016) used LSTM RNNs to create repre-
sentations of admission episodes, described by diagnoses and interventions.
Paper 17 presents a representation learning framework for multivariate time
series subject to missing data based on stacked bidirectional RNNs and ker-
nel alignment with the TCK. Among other things, we used the method to
learn vector representations of blood sample data from the Tromsø EHR
corpus.

In the DOCTOR AI framework, Choi et al. (2016a) used RNNs with Gated
Recurrent Units (GRU) (Cho et al., 2014; Chung et al., 2014) for represent-
ing longitudinal patient visit records and prediction of diagnosis, medication
order and visit time. Che et al. (2018) proposed a novel GRU RNN archi-
tecture, namely GRU-D, to better account for informative missing patterns
in the multivariate time series, whereas Vani et al. (2017) introduced a RNN
architecture, called Grounded recurrent neural network, and used it to un-
derstand what medical concepts were mentioned and discussed in patients’
discharge summaries.

Convolutional neural networks Suresh et al. (2017) focused on learning
representations from all available ICU sources (vitals, labs, notes, demo-
graphics) to predict multiple invasive interventions. For this purpose they
used both LSTM RNN and Convolutional Neural Network (CNN)s (Krizhevsky
et al., 2012). Similarly, with the Health-ATM, Ma et al. (2018) proposed
a hybrid RNN and CNN network to incorporate both attention and time-
awareness. (Razavian et al., 2016b) also explored the use of both LSTM
RNNs and CNNs. CNNs were also the key component in Deepr, a general
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framework for extracting features from EHRs and risk prediction (Nguyen
et al., 2017). Rajkomar et al. (2018) proposed a to create patient representa-
tions by mapping raw EHR records to the Fast Healthcare Interoperability
Resources (FHIR) format (Mandel et al., 2016) and demonstrated that deep
learning methods trained on this representation can provide accurate pre-
dictive models.

Other methods Various other methods have also been employed to learn
representations of longitudinal clinical data. Zhao et al. (2015b) explored
three different ’bag-of-words’ strategies, namely bag of events, bag of binned
events, and bag of weighted events. Zhao et al. (2017) proposed to use
different symbolic sequence representations of temporal clinical data. Key
components were the use of symbolic aggregate approximation (SAX) (Lin
et al., 2003) and time series subsequences (shapelets (Ye and Keogh, 2009)).
Moskovitch et al. (2017) introduced a framework based on time interval
mining analytics for longitudinal clinical data, and several different works
have created representations using temporal association rules (Orphanou
et al., 2016, 2018, 2014).

Dubois et al. (2017) explored the use of transfer learning (Pan et al., 2010)
with RNNs to learn representations of clinical notes in cases when the train-
ing set is small (less than 1000 patients), but found that a conceptually
simple NLP approach, called embed-and-aggregate, provided competitive
results on various predictive modeling tasks. Embed-and-aggregate learns
vector space embeddings for medical concepts in which each element is a
real vector using the GloVE algorithm (Pennington et al., 2014) and large
unannotated text corpora.

3.3 Patient similarity

Often, when the learned vectorial representations of (temporal) clinical data
is used for further analysis (e.g. predictive modeling), one measures how sim-
ilar, or dissimilar, the representations are using Euclidean distance. How-
ever, some times other metrics or measures of similarity can prove more
useful, and therefore, as an alternative, one can also learn suitable measures
for the similarity between pairs of patients.

Appropriate patient similarity measures are essential, for example, in or-
der to allow meaningful stratification of patients into subgroups (Parimbelli
et al., 2018; Brown, 2016; Hu et al., 2016). Once a suitable patient similarity
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measure is defined, it can be used to identify cohorts of patients that are
similar relative to an index patient, enabling personalized predictions and
personalized medicine (Sharafoddini et al., 2017). Patient similarity also
play a key role in initiatives such as Patients like me4.

Subtyping of diseases or patients One of the most common uses of
patient similarity is for disease subtyping or patient subtyping. Using cluster-
ing one can, for example, identify subgroups of patients with similar disease
evolution. Examples of diseases that have been subtyped using clustering
include autism spectrum disorders (Doshi-Velez et al., 2014; Lingren et al.,
2016), autoimmune diseases (Schulam et al., 2015), hypotension (Dai et al.,
2017), Parkinson’s disease (Lewis et al., 2005), cystic fibrosis and Crohn’s
disease (Chen et al., 2007), juvenile idiopathic arthritis (Cole et al., 2013)
and hypertension (Chen et al., 2016a).

Clustering has also been used for other patient stratification tasks such as
subgrouping of ICU patients (Vranas et al., 2017). Baytas et al. (2017)
proposed a general patient subtyping framework based on so-called time-
aware LSTM RNN Networks to irregular time intervals in the longitudinal
EHRs. The network produced a vector representation of the patients, which
in turn was clustered using k-means.

The majority of the papers mentioned above exploited existing clustering
methods such as hierarchical clustering, k-means, consensus clustering, or
model based clustering (see Section 5.1) in order to extract new knowledge
for a specific disease. However, some authors have also been developing new
clustering methods for patient stratification. These works include Bayesian
biclustering (Khakabimamaghani and Ester, 2016) and mixture models for
multivariate clinical time series with missing data (Marlin et al., 2012).

Li et al. (2015) presented a clustering framework based on topological data
analysis (Carlsson, 2009) to identify type 2 diabetes subgroups using both
molecular and clinical EHR data. Schulam et al. (2015) proposed the prob-
abilistic subtyping model, which is a clustering method for time series of
clinical markers obtained from routine visits to subgroup similar patients.

In Paper 5 (prior work presented in Paper 14 and 15), we developed a
novel consensus clustering method based on mode seeking, which we in a
case study applied to subtype patients undergoing major abdominal surgery
based on free-text from nurses notes.

4https://www.patientslikeme.com/

https://www.patientslikeme.com/
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Other patient similarity applications In addition to disease subtyping
and patient stratification, patient similarity measures have also played a key
role in various other EHR applications. These include:

• Personalized predictive modeling (Ng et al., 2015; Lee et al., 2015; Suo
et al., 2017).
• Treatment recommendation (Zhang et al., 2014; Wang et al., 2015b).
• Exploring drug effects (Ghalwash et al., 2017).
• Clinical decision support (Gottlieb et al., 2013; Gallego et al., 2015).
• Visualization (Cahan and Cimino, 2016; Kwon et al., 2018).
• Predicting disease trajectories and disease progression modeling (Ebadol-

lahi et al., 2010; Mould, 2012; Wang et al., 2014c).

Disease trajectories and disease progression modeling have also been studied
under other frameworks such as dynamic topic modeling (Elibol et al., 2016)
and Gaussian processes (Schulam and Saria, 2016; Futoma et al., 2016a,b).
In this regard, we also note that Paper 6, which we discussed above, focuses
on the identification of cancer patient trajectories.

Similarity measures Some works apply existing similarity measures to
evaluate patient similarity. For example, Ebadollahi et al. (2010); Sun et al.
(2010b,a, 2012); Ng et al. (2015) explored the use of local supervised metric
learning (Wang and Zhang, 2007), which is a supervised similarity measure
that has proven useful for patient similarity evaluation.

Other authors propose novel similarity measures, designed for different pur-
poses. For example, Wang (2015); Huang et al. (2014) propose methods for
measuring similarity between patients in terms of clinical or diagnostic pat-
terns, Zhang et al. (2014); Ghalwash et al. (2017) designed drug similarity
measures, Ramos et al. (2016) proposed a similarity measure for radiology
reports, whereas Wang and Sun (2015a) proposed a general patient similar-
ity framework.

The underlying methodology used for defining the similarity measures vary
quite significantly between the different methods. For example, Suo et al.
(2017); Zhu et al. (2016) built CNN-based similarity measures, whereas Zhan
et al. (2016) used Mahalanobis distance and low-rank sparse feature selection
as key components in the similarity measure, and (Sha et al., 2016) used
the Smith-Waterman algorithm (Smith and Waterman, 1981) to define a
similarity measure for temporal and irregularly sampled EHR data.
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Kernels form a particular class of similarity measures as they satisfy the
positive-semidefiniteness property (see Section 4). In further analysis, these
measures can be used as inputs to kernel machines such as the SVM. Soguero-
Ruiz et al. (2016a) used kernel methods to predict postoperative compli-
cations. Bogojeska et al. (2012) introduced the history-alignment model,
which is a kernel approach that predicts whether the outcome of particu-
lar HIV therapy choices are successful. Parbhoo et al. (2017) modified the
history-alignment model and combined it with model-based reinforcement
learning (Sutton et al., 1998) via a mixture-of-experts approach (Jordan and
Jacobs, 1994), and used the framework to recommend a HIV therapy.

Some works have focused on designing kernels for multivariate time series
and applying them to EHR data. For example, Kale et al. (2014) applied
a linear kernel (Euclidean distance), the global alignment kernel (Cuturi,
2011), vector autoregressive kernel (Cuturi and Doucet, 2011), kernelized
locality sensitive hashing (Kulis and Grauman, 2012) as well as a non-valid
(not positive-semidefinite) kernel, dynamic time warping (Berndt and Clif-
ford, 1994), to three clinical datasets. We refer to (Kale et al., 2014) and
Papers I and III for more related work on this topic, and to Section 4 for
more background on kernel methods. As a remark, we also note that in
Paper 13 and 17, a key component is kernel alignment (Cristianini et al.,
2002), which is a measure of similarity either between two kernels or between
a target function and a kernel.

3.4 Predictive modeling

A great deal of work on machine learning for EHRs focuses on predictive
modeling, i.e. to learn models that can transform input data (e.g. EHRs)
into a prediction of the outcome of a variable of interest (e.g. a disease).
In particular, models for predicting the risk of developing certain diseases
have been popular to study. Examples include type 2 diabetes (Razavian
et al., 2016a; Albers et al., 2017; Dagliati et al., 2018), congestive heart
failure (Choi et al., 2016e,c; Cheng et al., 2016), chronic obstructive pul-
monary disease (Cheng et al., 2016), Parkinson’s disease (Che et al., 2017),
sepsis (Futoma et al., 2017a,b), among many others. Other authors have fo-
cused on complications and adverse events of various types, such as diabetes
complications (Liu et al., 2018a), adverse drug events (Zhao et al., 2014a,b,
2015a), surgical site infection (Ke et al., 2017; Shankar et al., 2018; Soguero-
Ruiz et al., 2015; Sanger et al., 2016), and anastomosis leakage (Soguero-
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Ruiz et al., 2016a), to name a few.

Mortality prediction has been a popular task (Johnson and Mark, 2017; Lee
et al., 2015; Aczon et al., 2017). In addition, researchers have focused on
various other tasks, such as prediction of readmission (Rumshisky et al.,
2016; Shameer et al., 2017; Xue et al., 2018), wound healing (Jung and
Shah, 2015; Jung et al., 2016), future high-cost patients (Tamang et al.,
2017), comorbidities (Yousefi et al., 2017), age (Wang et al., 2017b), drug
interactions (Zhang et al., 2015), and onset of clinical interventions such
as vasopressors and mechanical ventilation (Suresh et al., 2017; Ghassemi
et al., 2017; Wu et al., 2017; Ren et al., 2018).

3.5 Other uses of machine learning for EHRs

It is impossible to provide a comprehensive and complete review of all re-
search papers on uses of machine learning for EHRs. However, to conclude
this chapter, we provide some examples of other uses that have not been
discussed so far.

• Uncertainty-aware prediction using Bayesian modeling (Soleimani et al.,
2018).
• Interpretable models (Wickstrøm et al., 2018; Bai et al., 2018; Wang

et al., 2017a; Ross et al., 2017; Doshi-Velez and Kim, 2018; Zhang
et al., 2018).
• Privacy and discrimination (Boag et al., 2018).
• Counterfactual models for reliable clinical decision support (Schulam

and Saria, 2017).
• Behavioral modeling (Hao et al., 2017).
• Doctor recommendation (Guo et al., 2016).
• Risk profiling (Shah et al., 2015).
• Treatment recommendation and estimation of treatment response (Zhang

et al., 2017; Raghu et al., 2017; Xu et al., 2016; Soleimani et al., 2017).
Observational research via treatment pathways (Hripcsak et al., 2016).
• Identification of reference intervals for laboratory tests (Poole et al.,

2016).
• Active surveillance of diagnostic accuracy (Schroeder et al., 2016).
• Learning knowledge bases linking diseases and symptoms (Rotmensch

et al., 2017).
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Chapter 4

Kernel methods

This chapter presents background theory on kernel methods, which is rel-
evant to Paper I and III. Kernel methods became popular in the late 90’s
and have since then been an important part of machine learning and pat-
tern recognition (Shawe-Taylor and Cristianini, 2004; Jenssen, 2010, 2013;
Gu and Sheng, 2017; Løkse et al., 2017; Kampffmeyer et al., 2018; Camps-
Valls and Bruzzone, 2009; González et al., 2018).

While the theoretical and mathematical foundations of kernel methods might
appear involved and difficult to understand for people not familiar with the
field, the underlying idea is simple and intuitive: Most learning algorithms
aim at learning a function f over a set X . One of the easiest and most
well understood such functions, notably for classification, regression and
dimensionality reduction, is the linear function,

f(x) = 〈a, x〉 = aTx. (4.1)

The linear function is easily interpretable, but in many practical scenarios
the data are not linearly separable and therefore the linear methods do not
provide the wanted performance. The idea in kernel methods is, however,
to map the data to a new high-dimensional space where data are linearly
separable. Hence, kernel methods are also linear in nature, but since they
can be expressed solely in terms of inner-products and because of the so-
called kernel trick, one can avoid explicit calculation of the high-dimensional
representations of the data. Instead, the function f can be expressed in
terms of a kernel k, which is computed in the input space,

f(x) =
∑
i

αik(xi, x). (4.2)

39
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Figure 4.1: Conceptual illustration of a kernel machine. Non-linear data are
mapped to a higher-dimensional space where it is linearly separable.

The function k measures how similar two elements x,y ∈ X are via the value
k(x,y), and since this function might be non-linear, kernel methods can also
be applied to non-linear problems. We will return to the expression (4.2)
later. However, before that we will take a look at the kernel k.

4.1 Kernels

In mathematics, the term kernel is highly ambiguous. Also within kernel
methods, a kernel can be defined in several different, but equivalent ways.

Definition 1 Let X be a non-empty set. A function k : X × X → R is a
kernel if there exists a R-Hilbert space H and a map Φ : X → H such that
∀x, y ∈ X ,

k(x,y) = 〈Φ(x),Φ(y)〉H. (4.3)

The function Φ is often referred to as a feature map and H the feature space
of the kernel k. Eq. (4.3) forms the basis of a key concept in kernel methods,
namely the kernel trick. Any (linear) algorithm that can be expressed solely
in terms of inner-products can be kernelized simply by replacing the inner-
products with any kernel. Hence, by explicitly computing the kernel k(x,y)
over the original input space, one can implicitly map the data to a possibly
infinite-dimensional space, where hopefully the data are linearly separable.
An equivalent definition of kernels, which is useful in practice, is as follows.

Definition 2 Let X be a non-empty set. A function k : X × X → R is a
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kernel if, for any n ∈ N, {xi ∈ X}ni=1, and {ci ∈ R}ni=1

k(xi,xj) = k(xj ,xi) (4.4)
n∑
i=1

n∑
j=1

cicjk(xi,xj) ≥ 0. (4.5)

Def. 2 states any symmetric (Eq. (4.4)) and positive semidefinite (Eq. (4.5))
function k : X × X → R can be used to design a kernel. Another practical
aspect, which is related to Def. 2, is that typically in kernel machines one has
to solve optimization problems that contain terms of the form cTKc, where
K is a matrix of kernel evaluations (K = {k(xi,xj)}). Eq. (4.5) ensures
that also the kernel matrix (Gram matrix) K is positive semidefinite, which
implies that the optimization problems can be solved efficiently using convex
programming and the algorithms converge to the relevant solution (Boyd
and Vandenberghe, 2004). The interested reader can find a proof of the
equivalence between Def. 1 and Def. 2 in (Schölkopf et al., 2002), i.e that it
is possible to take one of them as definition and prove that the other follows
from that, and vice versa.

Reproducing kernel Hilbert spaces In addition to the feature map
view in Def. 1 and the positive semidefiniteness view in Def. 2, kernels
can also be viewed from a functional analysis viewpoint (Hille and Phillips,
1996). In that respect, the concepts reproducing kernels and Reproducing
Kernel Hilbert Space (RKHS) are of major importance.A reproducing kernel
is defined as follows.

Definition 3 Let X be a non-empty set, H a Hilbert space of functions
f : X → R, and k : X ×X → R a function. Then, k is a reproducing kernel
if

H = span{k(x, · ) | x ∈ X}, (4.6)

〈f, k( · ,x)〉H = f(x), ∀x ∈ X , ∀f ∈ H, (4.7)

where S̄ denotes completion of the set S. Eq. (4.6) states that k has to span
H, whereas Eq. (4.7) is commonly referred to as the reproducing property.

The definition of a RKHS is closely connected to the previous definition:

Definition 4 A RKHS is a Hilbert space H of functions f : X → R, with
a reproducing kernel k : X × X → R.
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These concepts are tightly connected to kernels. In fact, reproducing kernels
are kernels, which means that every RKHS defines a kernel. Conversely,
the Moore-Aronszajn theorem states that every kernel is associated with a
unique RKHS (Aronszajn, 1950). Hence, the functional analysis viewpoint
(Def. 3 and 4) is equivalent both to the positive-semidefiniteness viewpoint
(Def. 2), and the feature map viewpoint (Def. 1).

Remark. So far we have not mentioned the well-known Mercer’s theorem,
which is commonly used to construct a feature space for a valid kernel. We
note that the theorem is not required in itself, since the RKHS construction
serves the same purpose (Shawe-Taylor and Cristianini, 2004). However,
the advantage of using Mercer’s theorem is that it defines the feature space
explicitly in terms of feature vectors instead of using a function space.

4.2 Representer theorem

Now that we have explained some properties of the kernels, let us return to
Eq. (4.2). The reason why the output of most kernel machines can be written
in that form is that they can be formulated as regularized empirical risk
optimization problems in a RKHS (Schölkopf et al., 2001). In fact, Eq. (4.2)
is actually a direct consequence of the Representer theorem (Kimeldorf and
Wahba, 1971), which can be stated as follows.

Theorem 1 Let X be a non-empty set endowed with a kernel k and let Hk
be its corresponding RKHS. Further, let {xi ∈ X}ni=1 and Ψ : Rn+1 → R
be a function that is strictly increasing for the last argument. Then, any
f ∈ Hk that minimizes the (regularized) empirical risk functional

Ψ(f(x1), . . . , f(xn), ‖f‖Hk
) (4.8)

admits a representation of the form

f(x) =

n∑
i=1

αik(xi, x), αi ∈ R. (4.9)

This is a very strong result, because it states that a whole range of learning
algorithms that are formulated as potentially infinite-dimensional empirical
risk minimization problems have a solution that can be expressed as a finite
linear combination of kernels centered at the training points. Hence, the



43 4.3. Examples of kernel machines

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

Figure 4.2: Illustration of a SVM classifier trained on a simple 2D dataset.

dimensionality of the solution is finite, and, at most, equal to the number
of training points.

The SVM is the best known kernel machine and can be used for classifi-
cation, regression, anomaly detection, and more (Cortes and Vapnik, 1995;
Steinwart and Christmann, 2008). In the (canonical) support vector classi-
fier, the empirical risk is given by

Ψ(f(x1), . . . , f(xn), ‖f‖Hk
) =

1

λ

n∑
i=1

max(0, 1− yif(xi)) + ‖f‖22 (4.10)

Even though it is not explicitly stated in Eq. (4.10), the empirical risk
for the SVM is also a function of the labels yi. We note that for the
SVM, the representer theorem has to be slightly modified to account for
the constant term b (Schölkopf et al., 2001), and the solution is given by
sign(

∑n
i=1 αik(xi, x) + b). Fig. 4.2 shows a simple example of a SVM clas-

sifier trained to separate between two classes. The figure shows both the
decision line between the classes, and the so-called support vectors.

4.3 Examples of kernel machines

The kernelized version of Principal Component Analysis (PCA)1 for dimen-
sionality reduction, namely Kernel Principal Component Analysis (KPCA),
is an other well-known kernel machine (Schölkopf et al., 1997). It has been
shown that for KPCA, the empirical risk can be written as

Ψ(f(x1), . . . , f(xn), ‖f‖Hk
) = ψ(f(x1), . . . , f(xn)) + φ(‖f‖Hk

), (4.11)

1For a brief introduction to PCA, see Section 5.2.
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Figure 4.3: Dimensionality reduction of a synthetic two-class dataset con-
sisting of two-variate time series using PCA and KPCA, respectively.

where

ψ(f(x1), . . . , f(xn)) =

0, if
n∑
i=1

(
f(xi)− 1

n

∑n
j=1 f(xj)

)2
= n

∞, otherwise,

(4.12)
and φ is an arbitrary strictly increasing function (Schölkopf et al., 1999).

For convenience, we also summarize the KPCA-algorithm here. Given a
dataset {xi}ni=1, a kernel K and a point x ∈ R, first compute the matrix
K = (K(xi,xj)), secondly find the k dominant {λi,ai} s.t. Kai = nλiai
and ||ai||2 = (nλi)

−1 and then, eventually compute the projections y(j) =∑n
i=1 aj(i)K(xi,x) for j = 1, 2, .., k.

Fig. 4.3 shows an example of dimensionality reduction of a synthetic two-
class dataset consisting of 200 two-variate time series using PCA and KPCA
with a non-linear time series kernel, respectively. KPCA is capable of cre-
ating a two-dimensional representation of the data wherein the classes are
(almost) linearly separable, whereas this is not the case for PCA.

Examples of other kernel machines include kernel Fisher discriminant anal-
ysis (Mika et al., 1999), the kernel perceptron (Bordes et al., 2005), kernel
k-means and spectral clustering (Dhillon et al., 2004), and kernel ridge re-
gression (Shawe-Taylor and Cristianini, 2004), to name a few. We also note
that while Gaussian processes (Rasmussen, 2004) were not originally formu-
lated in terms of a regularized optimization problem in a RKHS, but rather
in terms of marginal and conditional distributions, this family of methods
is closely connected to the kernel methods (Kanagawa et al., 2018). One of
the reasons is that a key component in Gaussian processes is to use positive-
semidefinite kernel functions.
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4.4 Examples of kernels

We have now seen that kernel methods are formulated in terms of notions
like RKHS, optimization and regularization, and that at the end of the day,
for most kernel methods, everything boils down to learning functions of the
form f(·) =

∑
i αik(xi, · ). More specifically, given a kernel k and training

data {xi}ni=1, the algorithms learn the coefficients αi.

The only problem is that the kernel is not ”given”. It actually has to be
selected by the user, and, as we have seen, the selected kernel defines a unique
Hilbert space of functions (Moore-Aronszajn theorem), which is exactly the
function space from where the candidate functions that the algorithm aims
at learning are selected. I.e., the fact that the kernel defines this function
space, largely dictates what types of functions the kernel machine can learn.
Hence, depending on what type of kernel that is selected, the properties of
the kernel machine can change considerably.

An additional aspect is that the selected kernel should also be a good mea-
sure of how similar pairs of objects are. However, all kernels are not suitable
similarity measures for any data type. Hence, the bottom line is that one
must select an appropriate kernel for the data analysis task at hand. Next,
we list examples of some of the most common kernels.

Polynomial kernel. k(x,y) = (〈x, y〉+ r)d, r ≥ 0, d ∈ N.

Radial Basis Function (RBF). k(x,y) = exp
(
− 1

2σ2 ‖x− y‖2
)
, σ > 0.

Laplacian kernel. k(x,y) = exp (−α‖x− y‖) , α > 0.

Shared properties of these kernels are that

(i) they are dependent on hyper-parameters and it is often critical to tune
these correctly to in order to achieve the desired performance;

(ii) they are designed for vector-based inputs.

For other examples of kernels, we refer to (Hofmann et al., 2008; Shawe-
Taylor and Cristianini, 2004).

4.5 Why should we use kernel methods?

We have already discussed several advantages of kernel methods, but would
like to highlight two additional aspects here.
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Real-world data are not necessarily vectorial. One of the great ad-
vantages of kernel methods is that, unlike many traditional machine learning
methods that are formulated only for vectors, positive semidefinite kernels
can be defined on any non-empty set of any type of objects. Therefore,
in addition to vectors, kernel methods can be applied to objects like e.g.
graphs (Gärtner et al., 2003), histograms and probability measures (Hein
and Bousquet, 2005), manifolds (Jayasumana et al., 2013), and multivariate
time series that are of particular interest in this thesis (Paper I and III).

The reason why kernel methods can be straight-forwardly applied to non-
vectorial data is that they can be thought of as a two-step procedure, where
the first step consists in mapping n training points to a n × n similarity
matrix using an appropriate kernel for the data at hand. Then, in the second
step, one employs the learning algorithm with the similarity matrix as input.
Hence, the learning part (second step) is independent of the complexity of
the objects and the data type. In other words, the computational complexity
of kernel methods is a function of the number of training points rather
than the dimensionality of the input data. We note that this is not always
an advantage. For instance, in large scale problems where the number of
training points is very large, kernel methods are often very slow or not even
feasible to train.

Real-world data are often heterogeneous. An additional aspect of ker-
nel methods is multi-modality. An increasing amount of real-world datasets
are collected from multiple sources. In fact, we have already seen that one
of the challenges for data-driven healthcare is multi-modal data.

The classical way to deal with multi-modal data is to train individual mod-
els on separate modalities, and then, after training, aggregate the decision
functions. On the other hand, in kernel methods, this problem is mitigated
in a more elegant way, namely by exploiting the fact that the convex com-
bination of multiple kernels is also a kernel. Hence, one can design powerful
composite kernels (Lanckriet et al., 2004a; Noble et al., 2004; Lanckriet
et al., 2004b; Ben-Hur and Noble, 2005; Soguero-Ruiz et al., 2016a). This is
one of at least two uses of the more general multiple kernel learning frame-
work (Gönen and Alpaydın, 2011). Multiple kernel learning can also be
used as a mean to select an appropriate kernel for the problem at hand in a
data-driven way. From that point of view, the kernel we propose in Paper I
can be considered as a particular multiple kernel learning method.
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Unsupervised learning

Unsupervised learning algorithms aim at describing data and extracting
knowlegde from data without access to a labeled training set. As a back-
ground for the research presented in this thesis, in this chapter we describe
the most classical type of unsupervised learning, namely clustering. In ad-
dition, we discuss ensemble learning and provide a brief introduction to
dimensionality reduction.

5.1 Clustering

This section introduces clustering and presents relevant background material
for Paper I, III, and IV.

Clustering is typically based on the notion of similarity. Given a dataset and
a measure of similarity, a clustering algorithm aims at identifying subsets
(clusters), such that the similarities between pairs of data points from the
same cluster are high and the similarities between pairs not from the same
cluster are low. However, clustering algorithms are not necessarily based on
this notion. In fact, there exists no universal definition of what a cluster
is (Jain, 2010; Guyon et al., 2009; Filippone et al., 2008; Jain et al., 1999).
However, in this thesis we stick to the above definition.

In addition to a wide range of biomedical applications (Doshi-Velez et al.,
2014; Lingren et al., 2016; Elakkia and Narendran, 2016; Smistad et al., 2015;
Schulam et al., 2015; Dai et al., 2017; Lewis et al., 2005; Chen et al., 2007;

47
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Cole et al., 2013; Chen et al., 2016a; Vranas et al., 2017) (see also (Parim-
belli et al., 2018) and references therein), clustering has also been applied
in areas such as astrophysics (Anderson et al., 2014), computational chem-
istry (Downs and Barnard, 2002), traffic analysis (Gopalakrishnan et al.,
2016), web mining (Runkler and Bezdek, 2003), remote sensing (Gómez-
Chova et al., 2012), credit scoring analysis (Mancisidor et al., 2018), among
many others.

The combination of the facts that (i) the number of applications of clustering
is large, (ii) clustering is both task and data dependent, and (iii) clustering
is subjective and no universal definition of a cluster exists, has resulted in a
large number of different clustering algorithms. There are several possible
ways to categorize clustering methods, for example, into hard and soft clus-
tering algorithms. In hard clustering, each data point belongs completely to
one cluster. On the other hand, in soft clustering, each data point poten-
tially can belong to multiple clusters, i.e. the probability of being a member
of a cluster can be non-zero for more than one cluster.

Alternatively, from a statistical perspective, clustering algorithms roughly
fall into three distinct categories according to how they deal with probabil-
ity density estimation: combinatorial algorithms, (parametric) model-based
clustering (mixture models), and (nonparametric) modal clustering (Hastie
et al., 2009; Menardi, 2015). All these three categories are relevant to this
thesis. Next, we provide a brief description of these three categories of clus-
tering algorithms. For a more complete survey on clustering, we point the
interested reader to the survey papers by von Luxburg (2007); Vega-Pons
and Ruiz-Shulcloper (2011); Filippone et al. (2008); Jain (2010); Menardi
(2015).

5.1.1 Combinatorial algorithms

Combinatorial algorithms do not explicitly model an underlying probability
density function. Instead, they work directly on the observed data. In these
algorithms typically the dataset is divided into clusters in such a way that
each data point belongs to exactly one cluster. Additionally, the user has
to set the number of clusters in advance.

Some of the most popular clustering methods belong to this category, and ex-
amples include k-means (Florek et al., 1951), hierarchical clustering (Gower
and Ross, 1969; Seifoddini, 1989), and spectral clustering (Ng et al., 2002;
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Løkse et al., 2017; Filippone et al., 2008).

k-means is an example of a centroid -based clustering algorithm. In these
methods, one aims at learning cluster representatives (e.g. mean vectors),
typically by optimizing a cost function. Similarities between data points
are measured in terms of the Mahalanobis distance (elliptical metric), or
the Euclidean distance (spherical metric) as a special case. For this reason,
e.g. k-means can only identify convex clusters, i.e. linearly separable cluster
structures.

In order to be able to identify non-convex clusters, k-means has been kernel-
ized by mapping the input data to a high-dimensional space via a non-linear
function (Schölkopf et al., 1998). Kernel k-means is closely connected to
spectral clustering (Dhillon et al., 2004), which is a family of methods that
exploits the spectrum of a similarity matrix to perform non-linear dimen-
sionality reduction before clustering in the lower-dimensional space. Spec-
tral clustering is often formulated as a graph-partition problem, wherein the
objective is to minimize the normalized cut (Shi and Malik, 2000). These
algorithms are also closely related to KPCA. In fact, KPCA combined with
k-means is a spectral clustering algorithm.

Hierarchical clustering algorithms are different from those we have consid-
ered so far since they result in a set of nested clusters instead of a single
clustering of the dataset. These algorithms can be divided into two sub-
categories, agglomerative and divisive methods. In the latter subcategory,
one starts with only one cluster and then recursively divides the data points
into more and more clusters, whereas in the agglomerative methods one ini-
tially consider each data point as a cluster and then recursively join similar
clusters. In both cases, the result is a hierarchy of clusters, which often is or-
ganized as a tree (dendrogram). The agglomerative linkage methods (Gower
and Ross, 1969; Seifoddini, 1989) are among the most prominent examples
of hierarchical clustering algorithms.

Fig. 5.1a shows an example of a clustering of a synthetic two-dimensional
dataset obtained via a hierarchical clustering algorithm. The corresponding
dendrogram is shown in Fig. 5.1b. In hierarchical clustering, the number
of clusters can be chosen according to the longest lifetime of the clusters.
As we can see from the dendrogram, the longest lifetime in this example is
achieved when the number of clusters is three.



Chapter 5. Unsupervised learning 50

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(a) Example of a clustering of a syn-
thetic two-dimensional dataset.

28 29 25  1  2  4  3  8  7  6  5 30  9 21 26 10 18 23 11 17 13 22 24 12 15 20 19 27 14 16

0.2

0.25

0.3

0.35

0.4

(b) Dendrogram.

Figure 5.1: Clustering example.

5.1.2 Model-based clustering

Model-based clustering, also referred to as distribution-based clustering or
mixture modeling (McLachlan and Basford, 1988; Fraley and Raftery, 2002),
assumes that the dataset is sampled Independent and Identically Distributed
(IID) from a probability distribution. This distribution is assumed to be a
mixture of several components. Each component of the mixture is associated
with a cluster, and the data points are assigned to the cluster with the
highest density according to the parametric model.

Mixture models can be thought of as generative models where data are
generated according to a two-step random process as follows:

(i) select one out of K clusters by sampling from a (categorical) distribu-
tion π = (π1, . . . , πK),

(ii) sample a data point according to the probability distribution, pk(X|φk),
of the selected cluster k.

The marginal distribution associated with this generative model is

p(X | φ) =
K∑
k=1

πkpk(X | φk), (5.1)

where φk are the parameters that uniquely define the parametric model
associated with cluster k and φ is the collection of parameters for all the
K clusters. The parameters π = (π1, . . . , πK) are commonly referred to as
mixing coefficients, or mixing probabilities, and therefore satisfy 0 ≤ πk ≤ 1
and

∑K
k=1 πk = 1.



51 5.1. Clustering

The mixture models are often expressed via latent variables, or more pre-
cisely, the cluster assignment of data point X is expressed in terms of a
latent random variable, Z, with Z = k if X belongs to cluster k. The data
are then assumed to be generated according to

Z ∼ Cat(π), (5.2)

X | Z = k ∼ pk(X | φk). (5.3)

By marginalizing out Z, i.e. p(X) =
∑

Z p(Z)p(X | Z), one obtain the
expression in Eq. (5.1).

Hence, given a dataset {Xi}Ni=1, each of the data points are assumed to be
IID samples generated from the process described above. We note that, in
practice, the user has to specify the distributions for each pk(X | φk), and,
typically, one uses the same parametric model for all clusters. For example, if
the parametric models are chosen to be normal distributions, the clustering
algorithm is referred to as a Gaussian Mixture Model (GMM).

During inference, the goal is to estimate the unknown cluster assignments
Zi via the posterior P (Zi |Xi), which can be calculated using Bayes’ rule. In
practice, this boils down to estimating the parameters θ = (π, φ). The most
common way of estimating θ is via maximum likelihood and the Expectation-
Maximization (EM) algorithm (Bilmes, 1998). Alternatively, one can put
priors over the parameters θ and use Bayesian approaches to estimate them.
In that case, the model is a Bayesian mixture model. In Paper I and III,
we consider Bayesian mixture models for multivariate time series where we
put informative priors over the parameters to account for large amounts of
missing data.

The mixture models discussed so far assume that the number of clusters is
finite. However, also infinite (countable) mixture models exist (Rasmussen,
2000). These are commonly studied under the framework of Bayesian non-
parametrics, and we refer to Gershman and Blei (2012); Hjort et al. (2010)
for a more detailed description of these methods.

5.1.3 Modal clustering

Modal clustering is similar to model-based clustering in the sense that it
is also based on probability density functions. The difference between the
methods consists in that modal clustering algorithms take a nonparametric
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approach and aims at estimating distinct modes of the density directly. In
these approaches, a cluster is defined as a connected high density region.

Modal clustering can be divided into two main categories, mode seeking and
level set methods (Menardi, 2015). Level set clustering is based on the idea
that the probability density function can be thresholded and thereafter the
clusters can be identified as connected regions of high density (Chaudhuri
et al., 2014; Cuevas et al., 2001; Stuetzle and Nugent, 2012). In mode seek-
ing, the goal is to identify local maxima (modes) on the estimated density
and use the modes to represent the clusters (Duin et al., 2012). The next
step is that each data point is attracted to a mode via the gradient flow of
the probability density function. All points in the basin of attraction for a
local mode are assigned to the same cluster (Chacón, 2012).

Many mode seeking algorithms are modifications of the so-called mean-shift
algorithm, originally proposed by Fukunaga and Hostetler (1975). The mod-
ification typically consists in proposing an alternative strategy for finding
the local modes (Comaniciu and Meer, 2002; Georgescu et al., 2003; Cheng,
1995; Arias-Castro et al., 2016). The underlying idea in the mean shift algo-
rithm is to estimate the probability density function, f , in a nonparametric
way via a differentiable kernel1 , K, as follows

f̂(x) =
1

N

N∑
i=1

K (‖x− xi‖) , (5.4)

and then perform gradient ascent on the estimated density f̂ . This results
in an iterative scheme,

x←m(x), (5.5)

where the mean shift vector m(x) is given by

m(x) =

∑N
i=1 xi K

′ (x− xi)∑N
i=1K

′ (x− xi)
− x. (5.6)

This iterative scheme is performed for each data point xi, i = 1, . . . , N , and
each point that converges to the same mode belongs to the same cluster.

The algorithm we proposed in Paper 5, which is also a part of the method-
ology in Paper IV presented in this thesis, is partly based on a variation of

1The kernels used in non-parametric density estimation should not be confused with
kernel methods and the kernels discussed in Chapter 4. In density estimation, a kernel is a
weighting function, which is real-valued (non-negative), symmetric and integrable. These
kernels are often normalized such that they integrate to one over the real line.
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mean shift, where the density is estimated by a k-Nearest Neighbors (kNN)
density estimate (Duin et al., 2012). The kNN density is given by

f̂(x) =
1

‖x− xk‖2
, (5.7)

where xk is the k−th neighbor of x. To create a robust clustering method, we
used this algorithm in an ensemble learning framework, which we describe in
the next section. For more details on kNN mode seeking and our algorithm,
we refer to (Duin et al., 2012) and Paper 5.

An other variation of mode seeking, Modal EM (Li et al., 2007a), formu-
lates mode seeking as an EM algorithm by considering density estimation
as a GMM. We also mention density based spatial clustering of applications
with noise (DBSCAN), and its extensions (Ester et al., 1996; Birant and
Kut, 2007; Kisilevich et al., 2010), which is a popular clustering algorithm
that is related to modal clustering since it captures modal regions and is
more robust to noise. However, DBSCAN is different from the methods
discussed above since it is not based on the notion of probability density
functions (Menardi, 2015).

In the next subsection, we provide a brief introduction to ensemble learning,
which is a key concept in Paper I and in many clustering algorithms.

5.1.4 Ensemble learning

Ensemble learning is a general learning framework that is not restricted to
unsupervised learning. The underlying idea consists in combining a collec-
tion of many base models into a composite model. A good such ensemble
model will have statistical, computational and representational advantages
such as lower variance, lower sensitivity to local optima and a broader span
of representable functions, respectively, compared to the individual models.
Ensemble learning has been successfully adopted in both supervised and un-
supervised learning, exemplified by the fact that many data competitions,
such as the Imagenet large scale visual recognition challenge (Russakovsky
et al., 2015) for computer vision, are often won by ensemble models2.

In classification, a necessary and sufficient condition for an ensemble of clas-
sifiers to be better than any of its individual base models is diversity and
accuracy (Hansen and Salamon, 1990), i.e. the base models cannot make

2http://image-net.org/challenges/LSVRC/2016/results

http://image-net.org/challenges/LSVRC/2016/results
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the same errors on new test data and have to perform better than random
guessing. Examples of ensemble methods for classification include boosting
trees and random forests, and a more thorough overview of these and other
supervised ensemble methods can be found in (Hastie et al., 2009).

In unsupervised learning, ensemble methods have mainly been proposed
for clustering (Fred and Jain, 2002; Monti et al., 2003; Strehl and Ghosh,
2003), but also for other purposes such as density estimation (Glodek et al.,
2013) and for designing kernel functions. The probabilistic cluster ker-
nel (Izquierdo-Verdiguier et al., 2015) for vectorial data, and the time series
cluster kernels (Paper I and III) and learned pattern similarity (Baydogan
and Runger, 2016) for time series, are examples of the latter. In this thesis,
unsupervised ensemble learning, is a (smaller or larger) part of the method-
ology in Paper I, III and IV.

In ensemble clustering, also called consensus clustering, typically, one inte-
grates the outcomes of the same or different (weak) clustering algorithms as
they are trained under different, often randomly chosen, cluster settings (pa-
rameters, initialization or resampling) (Li et al., 2007a; Monti et al., 2003;
Lourenço et al., 2015; Topchy et al., 2005; Strehl and Ghosh, 2003; Vega-
Pons and Ruiz-Shulcloper, 2011; Jain, 2010). Moreover, consensus clustering
can be considered as a two step clustering process, where the first step con-
sists of running multiple clusterings of the data with different parameters,
initializations and/or random subsets each time. In the second step, one
measures the consensus over all the iterations to obtain the final clustering,
which is supposed to be a more robust clustering than the single algorithm
clusterings. The consensus over the ensemble can be measured in several
different ways, which broadly can be divided into methods based on median
partition and co-association (Li et al., 2007b; Fred, 2001; Vega-Pons and
Ruiz-Shulcloper, 2011).

Median partition methods are based on a cost function formulation that aims
at making the final clustering similar to the ensemble clusterings, whereas co-
association methods create a consensus matrix, which contains (normalized)
counts of how many times each pair of data points are clustered together.
The consensus matrix forms a similarity matrix, which is used as input to a
new clustering algorithm such as hierarchical clustering (done in e.g. (Fred,
2001; Fred and Jain, 2005) and Paper 5), or spectral clustering (done in
Paper 14).
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5.2 Dimensionality reduction

Dimensionality reduction is relevant for Paper II, and partly Paper I and III.
Here, as a service for readers not familiar with machine learning, we provide
a brief introduction to some basics on dimensionality reduction. For more
details we point the interested reader to the surveys (Van Der Maaten et al.,
2009; Burges et al., 2010; Khalid et al., 2014; Cunningham and Ghahramani,
2015; Wang and Sun, 2015b), and the related work section in Paper II.

The most well-known unsupervised dimensionality reduction method is PCA,
which linearly transforms the data such that the covariance matrix becomes
a diagonal matrix. By doing so, PCA transforms a dataset consisting of ob-
servations of potentially correlated variables into data points with linearly
uncorrelated variables.

Mathematically, PCA can be described as follows. Assume that we have the
random variable x ∈ Rd, where the covariance is given by the d× d matrix
Σx. PCA aims at finding a linear transformation

y = T (x) = ATx. (5.8)

Covariance matrices are symmetric and positive semi-definite, and therefore
we can find an orthonormal set {ei}di=1 that satisfies

Σxei = λiei, i = 1,2,...,d, (5.9)

where λ1 ≥ λ2 ≥ ... ≥ λd ≥ 0. Define D = diag(λi) and E = [e1 e2 ... ed].
Thus we can write (5.9) as

ΣxE = DE. (5.10)

Moreover, because of the symmetric and positive semi-definite property, the
matrix E is orthogonal, i.e. ET = E−1, which in turn implies that

D = ETΣxE. (5.11)

We also have that

Σy ≡ E[(y − µy)(y − µy)T ] = E[AT (x− µx)(x− µx)TA] = ATΣxA
(5.12)

Let A = E and we obtain that

Σy = ETΣxE = D. (5.13)
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Thus the linear transformation y = ETx, where E contains the eigenvectors
of Σx, makes the matrix Σy diagonal. The elements of Σy are the eigenvalues
of Σx. In order to reduce dimension one can decide to use only the k top
eigenvalues and eigenvectors, i.e. let

y = ETk x, (5.14)

where k < d and Ek = [e1 e2 ... ek]. Since the eigenvectors are ordered by
decreasing eigenvalue, they correspond to directions of decreasing variance
in the data. Thus, the k-dimensional subspace span{ei}ki=1 capture more of
the variance in the data than any other k-dimensional subspace.

PCA does not take label information into account and is therefore an exam-
ple of an unsupervised dimensionality reduction method. The most promi-
nent example of a supervised dimensionality reduction method is linear dis-
criminant analysis(Fisher, 1936), which aims at finding the linear projection
that maximizes the within-class similarity and at the same time minimizes
the between-class similarity in the projected space. More specifically, in lin-
ear discriminant analysis the transformation matrix A (Eq. (5.8)) is given
by

A = argmaxG Tr

(
GTSbG

GTSwG

)
, (5.15)

where the between-class scatter matrix Sb is given by

Sb =

C∑
c=1

nc(mc −m)(mc −m)T , (5.16)

and the within-class scatter matrix Sw is given by

Sw =

C∑
c=1

∑
i∈Ic

(xi −mc)(xi −mc)
T , (5.17)

and Tr is the trace operator, C is the number of classes, mc the mean
of class c, m the global mean, nc the number of data points in class c,
Ic = {i | yi = c}, and yi ∈ {1, . . . , C} the label of data point xi, i =
1, . . . , N . The optimization problem (5.15) can be solved via (generalized)
eigen-decomposition.
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Weakly supervised learning

In this thesis, we refer to weakly supervised learning as the collection of learn-
ing algorithms that can learn from weak supervision information, as opposed
to strong supervision information such as completely labeled training data.
Weakly supervised learning aims to bypass the need of large amounts man-
ually annotated data for training the models.

There are several types of weak supervision information (Zhou, 2017; Chapelle
et al., 2006; Patrini et al., 2016; Frenay and Verleysen, 2014). These include

• Incomplete supervision. Only a subset of the training data is labeled.

• Inaccurate supervision. Labels are potentially noisy.

• Inexact supervision. Some supervision information is provided, but it
is not as exact as desired.

• Constraint supervision. Some data points are subject to constraints.

Weak supervision information can also be a combination of two or more of
these types.

Fig. 6.1 shows an overview of different types of supervision information
and the most common learning frameworks to deal with the each type of
supervision information.

Constraint supervision information can for example be additional informa-
tion provided as pairwise must-link or cannot-link constraints, i.e. some data
points must have, or cannot have, the same label. This setting is commonly
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Figure 6.1: Overview of common types of supervision information in ma-
chine learning, and learning paradigms that deal with the different types of
supervision information.

studied in so-called constrained clustering, also called semi-supervised clus-
tering, which consists in performing clustering guided by constraints (Basu
et al., 2004; Wang et al., 2008; Kulis et al., 2009; Wang et al., 2014b; Basu
et al., 2008).

An example of a situation where inexact supervision information occurs is
when labeled data are provided, but the labels are more coarse-grained than
desired. As an example, in sentiment analysis of online reviews from e.g.
Tripadvisor, coarse-grained document annotations could often be easy to ob-
tain via star ratings. However, often these reviews also contain finer-grained
annotations (e.g. pros and cons about a visit to a restaurant), which are not
that easy to extract since they provided in the form of free text (Angelidis
and Lapata, 2018). The typical learning framework to deal with this type of
supervision is multi-instance learning (Foulds and Frank, 2010), which we
do not discuss in more detail in this text. However, we refer to the excel-
lent review paper by Zhou (2017) for a short survey on methods for inexact
supervision. In the remainder of this chapter, we focus on incomplete and
inaccurate supervision, which are the types of weak supervision that are
relevant for the research presented in Paper II, III and IV.
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6.1 Incomplete supervision

There are two main learning frameworks for dealing with incomplete su-
pervision information, active learning Settles (2012) and semi-supervised
learning (Chapelle et al., 2006).

In active learning, the underlying idea is that an algorithm trained on
sparsely annotated data can perform better if it is allowed to select some
unlabeled data points and get new labels for these. This is typically achieved
via human intervention by letting the active learner pose queries to a human
expert, or in general, an oracle. Hence, active learning assumes that human
intervention is possible, whereas this is not the case in semi-supervised learn-
ing, which we describe next. For more details on active learning, we point
the interested reader to the survey by Settles (2012).

Semi-supervised learning

While alternative and more general definitions exist (Chapelle et al., 2006),
in this text we define semi-supervised learning as follows.

Definition 5 Semi-supervised learning is the learning task aiming to learn
from unlabeled data and weak supervision information provided in terms of
the desired output for a subset of the data points in the training set.

Hence, in semi-supervised learning, we are provided with a training set con-
sisting of unlabeled data and some data points with known label for the
particular learning task at hand. Therefore semi-supervised learning can
naturally be thought of as a mix of the two classical branches in machine
learning, unsupervised learning and supervised learning.

The final objective of semi-supervised learning can be either a classical su-
pervised learning task, i.e. to learn a predictor, or an unsupervised learning
task.

Regarding the latter case, we note that constrained clustering is not covered
by the definition above since supervision information is provided in terms
of constraints (on the labels) rather than explicit label information. On the
other hand, semi-supervised clustering methods (Bair, 2013) which assume
that some labels are known are covered by the definition.



Chapter 6. Weakly supervised learning 60

Semi-supervised dimensionality reduction

An other classical unsupervised learning task that fall within this category
is dimensionality reduction. In the context of semi-supervised learning, we
refer to it as semi-supervised dimensionality reduction. There exist three
different problem formulations (settings), which we describe below, that
lead to semi-supervised dimensionality reduction. We note that only two of
them are semi-supervised according to Def. 5.

Setting 1. The ultimate goal of the learning task is dimensionality reduc-
tion, and therefore the desired output of the learning framework is the new
representation in the low dimensional space. Weak supervision information
is provided as the exact mapping of certain data points.

According to our definition, algorithms developed for this purpose are semi-
supervised. As an example, Yang et al. (2006) proposed several different
methods for this purpose.

Setting 2. The setting is classification, i.e. the desired outputs are class
labels. As a goal in itself, as a preprocessing step, or as an integral part of
the learning procedure, one performs dimensionality reduction. The training
set consists of both unlabeled data and a subset of data points with known
class labels.

In this case, one can also perform dimensionality reduction in a semi-supervised
manner. There are many examples of methods designed for this purpose, and
these include (Cai et al., 2007; Lee et al., 2010) as well as the unified frame-
works by Song et al. (2008); Nie et al. (2010b), in which semi-supervised
versions of classical methods such as e.g. PCA, linear discriminant analysis,
maximum margin criterion, locality preserving projections, and their kernel-
ized versions, can be seen as special cases. This category is not restricted to
standard multi-class classification. It may also be that the semi-supervised
dimensionality reduction methods are designed for multi-labels1 (Zhang and
Zhou, 2007). In fact, the method proposed in Paper II is an example of the
latter. We refer to that paper for more examples of such dimensionality
reduction methods.

Setting 3. The ultimate goal of the learning task is classification. However,
in this case, weak supervision information is provided in terms of pairwise
constraints.

1In multi-label learning, each data point can potentially belong to multiple classes.
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This setup is not covered by Def. 5. Examples of dimensionality reduc-
tion methods proposed for this purpose include the semi-supervised dimen-
sionality reduction algorithm by Zhang et al. (2007) and some methods for
non-negative matrix factorization (Chen et al., 2008; Wang et al., 2008).

Semi-supervised classification

In the remainder of this section, we focus on the former case described above,
i.e. semi-supervised learning for classical supervised learning tasks. In more
detail, we assume the following setting.

Given F a hypothesis space, X an input space, and Y an output (label)
space, the goal of the learning task is to learn a predictor f ∈ F , f : X → Y.
For this purpose, we assume that we are given a dataset of N data points, L

of which are labeled {xi, yi}Li=1
IID∼ p(x, y), and the remaining U = N−L are

unlabeled {xi}Ni=L+1
IID∼ p(x). Here, p(x, y) is an unknown joint distribution

and p(x) the corresponding marginal.

It is common to distinguish between inductive and transductive semi-supervised
classifiers. In the former case, the goal is to learn a predictor f that per-
forms better on unseen test data x ∈ X than a predictor trained on only
{xi, yi}Li=1. On the other hand, in the transductive case, the goal is to
classify the unlabeled training data {xi}Ni=L+1.

In general, there are three assumptions about the underlying distribution
of the data that are commonly made in semi-supervised learning (Chapelle
et al., 2006):

1. Smoothness assumption: If two points, xi and xj, in a high-density
region are close, then so should the corresponding targets yi and yj be.

2. Cluster assumption: Points that belong to the same cluster are likely to
be of the same class. or, equivalently the decision boundaries between
classes should lie in low-density regions.

3. Manifold assumption: The high-dimensional data (from X ) lie on a
lower-dimensional manifold.

If it should be possible to learn efficient models via semi-supervised learning,
typically, at least one of these three assumption must hold. Next, we discuss
some of the main semi-supervised learning approaches for classification.
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Generative models There have been several attempts to learn genera-
tive mixture models for both labeled and unlabeled data (Miller and Uyar,
1997; Nigam et al., 2000). The difference between these models and the clus-
tering mixture models is that the latent variables for the labeled data are
not hidden, but known and equal to the class labels. The semi-supervised
generative models incorporate this information in their formulation of the
likelihood and the EM-algorithm. We refer to Section 5.1.2 for more details
on mixture models. We also note that there have been attempts to combine
generative and discriminative approaches for semi-supervised learning (Fu-
jino et al., 2005).

Low-density separation methods As the name suggests, low-density
separation methods aim at pushing the decision boundaries, {x ∈ X |f(x) =
0}, away from the unlabeled points and into areas with low density. The
semi-supervised support vector machines (S3VMs) are among the most promi-
nent examples of methods in this category (Joachims, 1999; Chapelle and
Zien, 2005; Li et al., 2013). The S3VMs are kernel machines in which the
empirical risk (see Eq. (4.8)) typically takes the form

Ψ(f(x1), . . . , f(xn), ‖f‖Hk
) =

1

L

L∑
i=1

max(0, 1− yif(xi)) + λ1‖f‖22

+
λ2
U

N∑
i=L+1

max(0, 1− |f(xi)|). (6.1)

Fig. 6.2 shows an illustration of a SVM and a S3VM trained on a simple two-
class and two-dimensional semi-supervised classification task, where there
are only two labeled data points in each class. As we can see, S3VM accounts
for the cluster assumption and places the decision boundary in the area with
low density, whereas SVM only accounts for the labeled training points.

Heuristic approaches Several heuristic approaches to semi-supervised
learning have been proposed. Common to these methods is that unlabeled
data, in one way or another, are made use of within a supervised framework.

One approach is to first in an unsupervised way learn a representation, a
metric, or a kernel, and then, apply a supervised learning algorithm only for
the labeled subset using the learned representation, metric or kernel.
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S3VM
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Unlabeled, class 2 

Unlabeled, class 1

Labeled, class 1

Labeled, class 2

Figure 6.2: Illustration of a SVM and a S3VM trained on a simple two-
class and two-dimensional semi-supervised classification task. The decision
boundary of the SVM is dashed.

A second approach is self-training, also called bootstrapping2, which refers
to a repetitive procedure where a classifier is trained on the labeled data
and then used to classify unlabeled data. By doing so, one obtains labels
for previously unlabeled data. Typically, data points corresponding to the
most confident predictions are added to the labeled subset, and then the
procedure is repeated (Fazakis et al., 2016; Tanha et al., 2017).

Co-training (Blum and Mitchell, 1998), refers to an approach where two
classifiers generate labels for one another by training on two different sets
of features.

Graph-based methods Graph-based learning methods model the whole
dataset as a graph. The nodes of the graph represents the data points,
whereas the edges correspond to pairwise similarities between the patterns.
In semi-supervised learning, the graph-based methods are typically trans-
ductive. For example, a common strategy is to use the graph to propagate
label information to the unlabeled data points, i.e. perform label propa-
gation (Zhu and Ghahramani, 2002; Yang et al., 2016; Belkin and Niyogi,
2003; Hensley et al., 2015; Zhu et al., 2003a; Nie et al., 2010a; Sandryhaila
and Moura, 2013). This is a strategy we also employ in Paper II.

The structure of the graph is given by the adjacency matrix A, which can be

2Not related to bootstrapping in statistics.
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Figure 6.3: Illustration of a kNN graph (k = 3). Large nodes represent data
points that are labeled, whereas the small nodes represent data points that
are unlabeled. An edge between two data points indicate that the similarity
is 1. If there is no edge between data points then the similarity is 0.

defined in many different ways and therefore affects the performance of the
method. One can for example define a fully-connected graph, whose edges
are weighted by the adjacency matrix given via the RBF-kernel,

Aij = exp

(−‖xi − xj‖22
2σ2

)
. (6.2)

Other formulations of A include a binary kNN graph, used for example
by Yu et al. (2017b), where

Aij =

{
1, if xj ∈ N (xi)

0, otherwise.
(6.3)

with N (·) denoting a neighborhood of size k. Fig. 6.3 shows an illustration
of a kNN graph computed over a toy dataset consisting of both labeled and
unlabeled data.

Yet another alternative is the linear neighborhood graph (Wang and Zhang,
2008), which is defined by

Aij = argmin‖xi −
∑

xj∈N (xi)

Aijxj‖22, s.t. Aij ≥ 0 and
∑
j

Aij = 1. (6.4)

As a representative of the label propagation methods, we here briefly de-
scribe the learning with local and global consistency algorithm (Zhou et al.,
2004).
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Define the symmetrically normalized adjacency matrix

W = D−1/2AD−1/2, where Dii =
∑
j

Aij . (6.5)

Let YL ∈ RL×C be a one-hot representation of the labels (assuming C
classes). Then, soft labels F = [FL; FU ] ∈ RN×C can be learned using the
iterative procedure described by

F(t+1) = αWF(t) + (1− α)Y, α ∈ (0, 1), (6.6)

where the initial value F(0) = Y = [YL; 0U×C ]. This procedure ensures
smoothness (continuity) of the label assignments on the manifold, i.e. global
consistency, whereas the second term minimizes discrepancy of the soft labels
with their prior values (local consistency). With this method, in contrast to
methods where the labeled data are clamped (Zhu and Ghahramani, 2002),
the final value of the labels for the labeled points usually diverges from their
initial value, i.e. FL 6= YL. This can be beneficial in presence of label
noise (Bengio et al., 2006) (see next section). It can be shown that the
update iteration in (6.6) converges to

F = (I− αW)−1Y, (6.7)

which implies that the solution F can be found by solving a linear system
of equations.

Learning with positive and unlabeled data Learning with Positive
and Unlabeled data (PU-learning) can be considered as a special case of
semi-supervised learning where it is assumed that the labeled set only con-
sists of positive examples.

The traditional task in PU-learning is binary classification (Elkan and Noto,
2008; Mordelet and Vert, 2014; Du Plessis et al., 2014), but the framework
has also been formulated for e.g. matrix completion (Hsieh et al., 2015),
streaming networks (Chang et al., 2016), ranking and multi-label learn-
ing (Kanehira and Harada, 2016). Researchers have found PU-learning use-
ful in several different application areas, such as text classification (Liu
et al., 2003), bioinformatics (Cerulo et al., 2010), medicine (Halpern et al.,
2014), to name a few.

In the case of classification, PU-learning takes a quite different approach
compared to the semi-supervised methods described above that use unla-
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beled data for regularization purposes under the cluster or manifold assump-
tion. Instead of being based on such restrictive distributional assumptions,
PU-learning directly extracts label information from the unlabeled data.

The work of Elkan and Noto (2008) is particularly relevant to Paper IV.
They consider binary classification with a problem setting as follows. Let
x ∈ Rd and y ∈ {−1, 1} be random input and target variables with an
underlying joint density p(x, y). A set, U, of nu unlabeled data points is
sampled from the marginal density p(x), which is given by

p(x) = πp+(x) + (1− π)p−(x), (6.8)

where p+(x) = p(x | Y = 1), p−(x) = p(x | Y = −1), and π = P (Y = 1)
is the class-prior. A set P of n+ data points from the positive class is then
sampled from p+(x). Let z ∈ {−1, 1} be random variable that takes the
value 1 if a positive label is observed, i.e. if x belongs to P.

Then, Elkan and Noto (2008) assumes that the labeled positive data points
form a random subset of all data points in the positive class, i.e.

P (z = 1 | y = 1, x) = P (z = 1 | y = 1), . (6.9)

Using the randomness assumption, it is shown that

P (z = 1 | x) = P (y = 1, z = 1 | x)

= P (y = 1 |x)P (z = 1 | y = 1, x)

= P (y = 1 |x)P (z = 1 | y = 1). (6.10)

It follows that
P (y = 1 |x) = C · P (z = 1 | x), (6.11)

where C−1 = P (y = z | y = 1), i.e. the classifier trained on the positive and
unlabeled data is off only by a constant factor, which implies that this clas-
sifier will provide the same ranking of new unseen data as a classifier trained
on both negative and positive examples. One can choose any classifier and
the constant C can be estimated empirically in several different ways.

This framework does, however, in most cases lead to biased risk estimators,
and to account for that, Du Plessis et al. (2014, 2015) proposed unbiased risk
estimators for PU-learning. Later, Kiryo et al. (2017) proposed PU-learning
with non-negative risk estimators.

We also highlight the work of Niu et al. (2016), which theoretically studied
under what circumstances PU-learning is expected to outperform regular
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supervised learning, and, in particular, how many unlabeled data points,
nu, are needed to outperform the corresponding supervised classifier trained
on n+ positive examples and n− negative examples. Under mild assumptions
on the distribution of the data and the function class, they showed that the
estimation error bound of the risk minimizer in PU-learning is tighter than
of supervised learning if

π√
n+

+
1√
nu

<
1− π√
n−

. (6.12)

PU-learning has also been extended to incorporate negative data (Sakai
et al., 2017). Hence, the setting is the same as in classical semi-supervised
learning, but because of the properties of PU-learning the common distri-
butional assumptions in semi-supervised learning do not have to be made.

6.2 Inaccurate supervision

Inaccurate supervision information occurs when some of the observed labels
are corrupted and therefore do not coincide with the ground-truth labels.
Such inaccurate labels are referred to as noisy labels (Frenay and Verleysen,
2014; Liu and Tao, 2016a; Natarajan et al., 2013). In this thesis, both Paper
II and IV consider learning situations where label noise occurs.

There are many different sources of label noise. For example, when hu-
man experts (e.g. medical doctors) are involved in the annotation pro-
cess, labeling errors naturally occur (Frenay and Verleysen, 2014). Some of
the most common reasons are imperfect evidence (inadequate information),
data-entry errors, and subjective labeling errors (e.g., experts do not agree
on what is the correct label) (Smyth, 1996; Brodley and Friedl, 1999; Frenay
and Verleysen, 2014).

Label noise may also occur when automated algorithms are involved in the
labeling process. For example, Zhu et al. (2018) proposed a Bayesian fusion
model designed for noisy labels provided by multiple imperfect automated
algorithms. In other cases, a combination of human experts and automated
algorithms is used for annotating the data, also resulting in label noise. This
is the case in frameworks such as anchor learning (Halpern et al., 2016) and
silver standard learning (Agarwal et al., 2016), in which both the so-called
anchor variables and the silver standards are examples of noisy labels.
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The fact that learning with label noise is a problem of great practical im-
portance, has led to a great deal of work on the problem, both in terms of
practical (McDonald et al., 2003; Pechenizkiy et al., 2006; Nettleton et al.,
2010) and theoretical studies (Angluin and Laird, 1988; Natarajan et al.,
2013; Bi and Jeske, 2010; Simon, 1996; Aslam and Decatur, 1996).

The theoretical studies of label noise often assume Random Classification
Noise (RCN) (Natarajan et al., 2013), i.e. instead of ground-truth labels,
the learning algorithm sees labels that have independently been corrupted
with some small probability.

There are three main approaches to learning supervised classifiers with label
noise: noise-robust models, data cleaning approaches, and noise-tolerant
learning (Bouveyron and Girard, 2009; Frenay and Verleysen, 2014). Next,
we discuss these three approaches.

Label noise-robust models A learning algorithm is robust to label noise
if the model trained on noisy labeled data performs similarly on noise-free
test data as the corresponding model trained on noise free data (Manwani
and Sastry, 2013). Hence, label noise-robust models simply ignore the label-
noise and are instead trained as if the labels were clean. Many learning
algorithms, such as e.g. the SVM, tend to overfit to noisy training data,
and therefore they do not generalize well to test data. However, it has been
shown that certain algorithms are less influenced by the presence of noise
than others. For example, Manwani and Sastry (2013); Ghosh et al. (2015)
studied theoretically label noise-robust loss functions and found that 0-1 loss,
sigmoid loss, ramp loss and probit loss are robust when the noise is uniform,
whereas the exponential loss (Adaboost), log loss (logistic regression), and
hinge loss (SVM) are not robust even in the case of uniform label noise.
Further, Nettleton et al. (2010) showed empirically that the Naive Bayes
classifier is more noise robust than many other standard classifiers.

Data cleaning approaches A second set of approaches adds a prepro-
cessing step in which the noisy labels are cleaned before a classifier is trained
in the standard way, i.e. by assuming noise-free labels. These methods rely
on correctly identifying the corrupted labels. Corrupted labels are then
either relabeled (altered) or filtered out.

There exist many different methods for identifying corrupted labels. Some
approaches search for label mismatch among the k-nearest neighbors (Wilson
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and Martinez, 2000), whereas the graph-based methods represent training
sets via neighborhood graphs and use the graph to detect corrupted la-
bels (Lallich et al., 2002) (also see Paper II). It is also quite common to take
an ensemble learning approach and train multiple classifiers on the noisy
labeled data to look for disagreement between the methods (Brodley and
Friedl, 1999; Zhu et al., 2003b).

Inherently label noise-tolerant learning algorithms A third set of
approaches consists of algorithms that are designed to inherently account
for label-noise e.g. by directly modeling the noise process.

Some works aim at making specific classifiers or algorithms tolerant to noise.
For example, Lawrence and Schölkopf (2001) built a kernel Fisher discrimi-
nant classifier wherein they explicitly modeled the noise process as one com-
ponent in a generative model. The perceptron algorithm has been modified
in various ways to become noise-tolerant (Khardon and Wachman, 2007),
whereas Sukhbaatar et al. (2014) studied how to train deep neural networks
in presence of label noise.

Other works study noise tolerant learning from a more general perspective,
typically, starting by making some assumptions on the noise process. Early
work focused on Probably Approximately Correct (PAC) learning intro-
duced by Valiant (1984). In this framework, a learner is given F , a class of
functions it can choose from, a training set {xi, yi}, and ε and δ, accuracy
and confidence parameters. The task is to find a close approximation of an
unknown binary target function f . More precisely, a PAC-learner has to find
a hypothesis function, f̂ ∈ F , such that with high probability (at least 1−δ),
the generalization error is lower than ε. An assumption in PAC-learning is
that the labels are noise-free.

The works of Simon (1996); Aslam and Decatur (1996) studied PAC-learning
in the presence of label noise, by assuming RCN, which is a simple noise
model introduced by Angluin and Laird (1988) where each data point is
assumed to be mislabeled independently and randomly with a fixed random
classification error η. More precisely, Aslam and Decatur (1996) studied
the increase in sample complexity in presence of label noise, i.e. how many
noisy labeled training examples are needed for a PAC-learner, and obtained
a lower bound on the number of training samples needed given by

N ≥ CV C(F)− log δ

ε(1− 2η)2
, (6.13)
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where C is some constant and VC (Vapnik and Chervonenkis, 2015), the
Vapnik-Chervonenkis dimension of F .

More recent works have considered the situation when the noise process
is not uniform. One such situation is asymmetric RCN or class-conditional
noise, i.e. the probability that a label is corrupted depends on which class the
data point belongs to. Scott et al. (2013) proposed a general classification
framework for class-conditional noise, whereas Natarajan et al. (2013) stud-
ied risk optimization of a particular surrogate loss function to obtain noise
tolerant classifiers and proved that e.g. weighted logistic regression (King
and Zeng, 2001) is noise tolerant. Liu and Tao (2016b) also considered class-
conditional noise and focused on how to efficiently estimate the noise rate
η, which in most practical scenarios is unknown.

A special type of class-conditional noise can occur in PU-learning, since by
definition, the unlabeled class cannot contain label noise3 . Hence, label
noise can only occur among the positive examples. Learning with noisy
positives and unlabeled data was studied by (Jain et al., 2016).

We conclude this chapter with an example, illustrating some practical con-
sequences of the work of (Aslam and Decatur, 1996).

Example Note that Eq. (6.13) is also true in the case of clean labels,
which corresponds to η = 0. Hence, given N RCN-noisy labeled examples
with random classification error equal to η and by assuming a finite VC
dimension, we can use the bound to estimate the number of clean labels,
Nc, needed to obtain similar generalization error by looking at the fraction

N

Nc
≈
C V C(F)−log δ

ε(1−2η)2

C V C(F)−log δ
ε(1−2·0)2

=
1

(1− 2η)2
. (6.14)

Hence, the number of clean labels needed is given by Nc = (1−2η)2N , which
means that if, for example, the fraction of mislabeled examples is 0.05 in
the noisy labeled dataset, one needs to annotate Nc = 0.81N examples with
clean labels to achieve similar performance given that the underlying as-
sumptions hold. In other words, this means that if an automated algorithm
is capable of creating (cheap) noisy labels for 5000 data points with a noise
rate of 5%, human experts will have to manually label approximately 4000
data points to achieve the same performance.

3PU-learning can, however, be cast into a corrupted label setting (Natarajan et al.,
2013; Menon et al., 2015).
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Chapter 7

Summary of papers

Paper I - Time series cluster kernel for learning similarities
between multivariate time series with missing data

The paper presents a new kernel function for multivariate time series that
contain missing data, namely the TCK. The kernel is designed following an
ensemble learning approach with GMMs as base models. A key to ensure
robustness to missing data is to take a Bayesian approach and extend the
GMMs with priors over the parameters. By doing so, the cluster means
are forced to be smooth over time and, hence, less sensitive to missing ele-
ments. The parameters of the Bayesian GMMs are learned using maximum
a posteriori EM. Figure 7.1 shows an illustration of how the TCK kernel is
constructed.

MTS

X(i) X(j)

Ki,j

Kernel

time T

...
...
v1

v2

vV

Random
Init 1

Random
Init 2...

Random
Init |Q|

GMM1

GMM2

...
GMM|Q|

Ensemble

-Classification
-Clustering
-Dim. reduct.
-Outlier remov.
· · ·

Figure 7.1: Illustration of how the TCK kernel for multivariate time series
(MTS) is constructed.
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The idea of using Bayesian mixture models for multivariate time series sub-
ject to missing data is not a novelty in itself. Marlin et al. (2012) used the
same mixture models to cluster patients based on time series originating
from EHRs. The novelty in our work is to use an ensemble approach to
design a time series kernel from the GMMs. Ensemble learning ensures ro-
bustness to hyper-parameter changes, and therefore the TCK kernel is ideal
to use as one component in an unsupervised learning scheme where cross-
validation cannot be used to select hyper-parameters. Further, the ensemble
approach makes the space of representable functions larger and enables the
creation of a kernel, which is more general than a single clustering of the
time series and can be used in a whole range of learning tasks, such as
classification, clustering, dimensionality reduction, anomaly detection, etc.

The experimental results demonstrate that the TCK is robust to hyper-
parameter choices, provides competitive results for multivariate time series
without missing data and outperforms other kernels when missing data are
present. There are few existing kernels designed for multivariate time series
subject to missing data, and therefore we believe that the TCK can be a
useful tool across a variety of applied domains in time series analysis.

An extended abstract (Paper 9) of preliminary work, leading to this paper,
was presented at the 3rd International Workshop on Pattern Recognition
for Healthcare Analytics, International Conference on Pattern Recognition
(ICPR), Cancun, Mexico in 2016. In addition, a conference paper version
(Paper 7) was presented at the IEEE International Workshop on Machine
Learning for Signal Processing (MLSP), Tokyo, Japan in 2017.

Contributions by the author The idea was conceived by myself and fur-
ther developed in collaborations with the other co-authors. The implemen-
tation and experiments were carried out by myself with the help of Filippo
Bianchi. I wrote the main draft of the manuscript.

Paper II - Noisy multi-label semi-supervised dimensionality
reduction

The paper presents a novel dimensionality reduction method for partially
and noisy labeled multi-label data. We call the method Noisy multi-label
semi-supervised dimensionality reduction (NMLSDR). The proposed method
can be considered as a two-stage procedure. In the first stage, we take a
graph-based approach to simultaneously clean the noisy multi-labels and
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Figure 7.2: Illustration of the proposed framework applied in the case study
in Paper II.

find labels for the unlabeled data using a novel label propagation algorithm
specially designed for this purpose. In the second stage, we learn a lower di-
mensional representation of the data by maximizing the dependence between
the enlarged and cleaned multi-label space and the features in the projected
space. As an additional contribution, we propose a novel framework for
semi-supervised classification of noisy multi-label data.

Experiments on toy data and ten benchmark datasets demonstrate that
NMLSDR is superior to baseline dimensionality reduction methods accord-
ing to seven multi-label evaluation metrics. In a case study, we employ the
proposed framework for semi-supervised classification of noisy multi-label
data for EHR-based phenotyping. Our objective is to identify patients with
certain chronic diseases. More specifically, the phenotypes we consider are
hypertension, diabetes mellitus and a multi-morbidity, namely hypertension
and diabetes mellitus. In our framework, we use clinical expertise to cre-
ate a partially and noisy labeled dataset. An illustration of this framework
is shown in Figure 7.2. We think that NMLSDR can be a useful method
across a variety of applied domains, and particularly in healthcare applica-
tions, which we also illustrate in our real-world case study from healthcare.

Contributions by the author The idea was conceived by myself and
further developed in collaborations with the other co-authors. The imple-
mentation and experiments were carried out by myself. I wrote the main
draft of the manuscript.

Paper III - Time series cluster kernels to exploit informative
missingness and incomplete label information

A main motivation for the third work is to take advantage of the fact that
in data-driven healthcare missing values and patterns often contain rich in-
formation about the clinical outcomes of interest. To this end, we build



Chapter 7. Summary of papers 76

upon the work presented in Paper I and propose a multivariate time series
kernel capable of exploiting informative missingness to learn useful repre-
sentations of incompletely observed time series data. In our approach, we
create a representation of the missing patterns using masking, i.e. we rep-
resent the missing patterns using binary indicator time series. By doing so,
we obtain multivariate time series consisting of both continuous and discrete
attributes, which we model using mixed mode Bayesian mixture models.

Moreover, we also propose a novel semi-supervised kernel, capable of taking
advantage of incomplete supervision information. To this end, we incorpo-
rate ideas from information theory to measure similarities between distri-
butions. More specifically, we employ the Kullback-Leibler divergence to
assign labels to unlabeled data.

In addition to experiments on benchmark data, we demonstrate the effec-
tiveness of the proposed kernels trough a case study of patients suffering
from infectious postoperative complications. More specifically, we consider
the problem of identifying patients that get surgical site infection after hav-
ing undergone colorectal cancer surgery. Surgical site infection is a common
hospital-acquired infection, and is associated with increased mortality rate,
prolonged hospitalization and increased risk of readmission. Similarly to
several earlier studies, we base the analysis on only blood samples, which
are naturally represented as multivariate time series subject to missing data.
The methodology considered in the case study in illustrated in Fig. 7.3. Our
results show that the proposed kernel is capable of exploiting the informa-
tive missing patterns in the blood sample time series to a much larger degree
than the baselines we compare to.

We believe the proposed kernels will be particularly useful in the medical
domain where lack of labels and large amounts of missing data are two char-
acteristic challenges. However, the kernels are not limited to this domain.
Other application domains facing similar challenges might also benefit from
the use of these kernels.

Contributions by the author The idea was conceived by myself and the
method was further developed in collaborations with the other co-authors.
Implementation of the method and experiments were carried out by myself.
I wrote the draft of the manuscript.
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Figure 7.3: Illustration of the methodology employed in the case study pre-
sented in Paper III.

Paper IV - Using anchors from free text in electronic health
records to diagnose postoperative delirium

This paper presents an approach for detecting postoperative delirium us-
ing free text documents from electronic health records without access to a
labeled training set. The proposed methodology is based on a recent phe-
notyping algorithm in which noisy labeled training data are created semi-
automatically by transforming key observations (anchors) into labels (Halpern
et al., 2016). The anchors variables are highly informative for the phenotype
of interest and are typically defined by clinical experts. Anchor learning is
a PU-learning framework since the patients for which the anchor variable
is present get a positive label, whereas nothing can be said for the patients
that do not have the anchor.

The novelties in this paper are that we propose a novel approach for specify-
ing anchors from free text documents, following an exploratory data analysis
approach based on clustering and data visualization techniques. Addition-
ally, we modify the existing anchor learning framework, by introducing a
classifier that is better suited for low sample size problems. Experiments
demonstrate that the proposed approach is well suited to detect postopera-
tive delirium. An illustration of the methodology employed in this work is
shown in Figure 7.4.
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Figure 7.4: Graphical abstract for Paper IV.

Another novelty of this work is to study the problem of detecting postoper-
ative delirium using anchor learning. For this reason, in addition to being of
interest to theoretically oriented readers, this work is also useful for clinical
practitioners. Postoperative delirium is a complication that is often seen in
geriatric patients undergoing major surgery. Despite that the consequences
of this complication are potentially very serious, delirium is hard to detect
and therefore often goes undiagnosed. It is also an example of a resource
demanding complication that is under-coded, and thereby leads to too low
reimbursement for the hospitals. Creating a method that accurately detects
delirium might therefore help uncover the prevalence of this complication,
providing clinically relevant knowledge, and a more correct income for the
hospitals.

Preliminary work, which lead to this paper, was presented at the Work-
shop on Machine Learning in Healthcare, Conference on Neural Information
Processing Systems Montreal (NIPS), December 2015 and Regional helse-
forskningskonferanse 2016, Tromsø, Norway, November 2016.

Contributions by the author I developed the method in close collabora-
tion with the other co-authors. Implementation of the method and experi-
ments were carried out by myself. I wrote the draft of the manuscript.



Chapter 8

Concluding remarks

In this thesis, we addressed the problem of getting access to large amounts
of high quality labeled training data in data-driven healthcare. One of our
solutions to this problem was to develop and employ machine learning meth-
ods that can deal with unlabeled training data, i.e. unsupervised methods.
In the first and third work, we presented novel kernels for multivariate time
series subject to missing data, which frequently occur in EHRs. These ker-
nels are particularly useful when there is a lack of labels.

We also investigated the use of clinical expertize to extract partially and
noisy labeled training data in a semi-automatic manner. In the second
paper, we developed a semi-supervised dimensionality reduction method,
specially designed for this type of data. The method can deal with multi-
label data, and we therefore foresee that it can be a very useful tool e.g. in
studies of patients suffering from multi-morbidities, which we demonstrated
in a case study. The third work also presented a time series kernel capable
of exploiting weak supervision information. In the last work, we created
partially and noisy labeled training data. However, in this case, the par-
tially labeled subset is supposed to contain only positive examples, leading
to a PU-learning problem. Using this framework, we were able to accurately
identify patients suffering from postoperative delirium, a common compli-
cation among the elderly after high-risk surgeries.

In addition to the challenge posed by lack of labels, we also advanced data-
driven healthcare by addressing challenges related to other characteristics
of EHR data, such as missing data, temporality, and high dimensionality.
In fact, one of the main focuses of the first and third work was to deal
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with temporal data in presence of missing elements, whereas in the second
work we presented a dimensionality reduction method. In Paper I, we also
demonstrated that the TCK could be useful for learning lower dimensional
representations of multivariate time series by using it as a kernel in KPCA.
In Paper III, we learned representations of blood sample time series contain-
ing large amounts of missing values by exploiting the fact that the missing
patterns were informative.

We conclude that, with the four lines of research presented in this thesis,
we contributed to advance the field of data-driven healthcare, mainly by
addressing the challenges posed by lack of labels, missing data, temporality
and high dimensional data, and we made theoretical contributions to the
fields of unsupervised and weakly supervised learning.

8.1 Limitations and further work

We acknowledge that every research paper has both strengths and weak-
nesses. Therefore, we end this part by providing a discussion of limitations,
usefulness and future work for the research presented in this thesis.

Paper I. We mentioned in Paper I that in future work it would be interesting
to investigate if the use of more general covariance structures in the mixture
models and/or hidden Markov models (Panuccio et al., 2002) as base models
could improve TCK. However, we have also identified several weaknesses
that should be considered as future work.

An underlying assumption in the TCK is that the missingness mechanism
(see Appendix A) is missing at random (MAR). However, our experiments
demonstrated that even though in practice the missingness mechanism is
missing not at random (MNAR), the TCK could still provide the desired
performance. Nevertheless, we acknowledge that the assumption of MAR
is a limitation. For instance, temporal data extracted from EHRs in some
cases contain missing values that are MNAR and informative. Therefore,
it would be interesting to create a kernel with weaker assumptions on the
missingness mechanism.

Much real-world time series data are irregularly sampled, i.e. the time inter-
vals are of different length. It would therefore be useful to modify the TCK
to account for irregular sampling. We also believe that the TCK can be
modified to better account for the cluster assumption (points in high den-
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sity regions belong to the same cluster), for instance using concepts from
information theory such as divergence. Further, it would be interesting to
weigh the contribution from the individual base models in a data-driven
way. For instance, using ideas from multiple kernel learning (Gönen and
Alpaydın, 2011). Finally, we also mention that, even though the TCK can
be implemented via an embarrassingly parallel procedure, it would be useful
to work on reducing the computational complexity.

Paper II. In the experimental section of this work, in addition to eval-
uating the proposed method visually for some datasets, we combined the
NMLSDR with a popular multi-label classifier, namely the multi-label k-
nearest neighbor classifier (ML-kNN) (Zhang and Zhou, 2007). By doing so,
we could quantitatively evaluate the quality of the embeddings learned by
the NMLSDR and compare to alternative dimensionality reduction meth-
ods. However, it should be noticed that many other multi-label classifiers
exist (Tahir et al., 2012; Madjarov et al., 2012; Xu, 2013; Chen et al., 2016b;
Liu et al., 2018b; Wang et al., 2014a; Trajdos and Kurzynski, 2015, 2018;
Zhuang et al., 2018). It would be interesting to investigate if the proposed
method outperforms alternative dimensionality reduction methods in con-
junction with other classifiers as well.

When performing label propagation using a graph there are a couple choices
that can be made, which possibly could influence the result. More precisely,
there are two main components that affect the outcome of label propagation;
the particular method chosen and how the graph is constructed. Both of
these two components are important (Zhu, 2005, 2006). In our work, we
employed a kNN neighborhood graph with binary weights. However, it
would be interesting to investigate how sensitive NMLSDR is to the choices
made for constructing the graph.

In this work, we considered a case study of patients suffering from multi-
morbidities and showed that the proposed method performed well for this
purpose. However, we restricted the study to only consider patients suffering
from at most two different chronic conditions. In future work, we would
like to extend this and consider simultaneous phenotyping of many multi-
morbidities.

Paper III. With this work, we addressed one of the main limitations of Pa-
per I, namely that the missingness mechanism was assumed to be ignorable.
To this end, we introduced mixed mode mixture models into the ensem-
ble learning framework to model both the data and the missing patterns.
The discrete modality (the missing patterns) was modeled using Bernoulli
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distributions. One reason for using a relatively simple model such as the
Bernoulli distribution is related to the fact the we were using an ensemble
learning approach. More precisely, two necessary conditions in ensemble
learning are diversity and accuracy (see Sec. 5.1.4). However, often there
is a trade-off between these two conditions. Making the base models more
flexible could lead to improved individual accuracy, but could also come at
the cost of decreased diversity since the probability that the base models
make the same errors on test data might increase with increased flexibility
(different base models might overtrain for the same reason). Hence, it is
not necessarily the case that the time series cluster kernels will improve if
we use more flexible base models (e.g. general covariance structure instead
of diagonal covariance, incorporating time dependence and attribute depen-
dence for the discrete modality, etc.). Nevertheless, we acknowledge that
there might exist other approaches to design the base models such that one
in a better way captures the missing patterns. Thanks to the ”modularity”
of our framework, it is possible to seamlessly extend our model to include a
more sophisticated formulation to model the missing data.

To make the kernels better suited to situations when some labels are pro-
vided, we also proposed methods to incorporate both strong and weak su-
pervision information into the procedure for learning the kernel. This was
done in an intermediate and independent processing step. However, it would
be interesting to incorporate label information into the training of param-
eters of the base models as well. In this regard, one could consider to use
similar frameworks to the ones presented by Miller and Uyar (1997); Xing
et al. (2013) as base models.

Paper IV. A long discussion of limitations and further work is provided
in the paper. However, we would like to highlight a few more aspects here.

One of the main limitations of anchor learning is that in practice it could
be difficult to find reliable anchors. In particular, the more the condition
P (Y = 1 | A = 1) = 1, is broken, the more corrupted the positive labels
will get. We introduced a problem-specific method to define anchors for
postoperative delirium such that thes condition holds to a larger degree.

However, an alternative approach, which probably is more general than our
solution, would be to explicitly account for label noise among the positive
examples. In this regard, recent theoretical and practical advances in PU-
learning are highly relevant. For instance, Jain et al. (2016) developed an
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effective algorithm for high-dimensional data, which is robust to label noise
in the positive examples. Menon et al. (2015) developed an alternative
algorithm for the same purpose. These two algorithms were key components
in the MutPred2 framework, a software package genetic and molecular data,
developed by Pejaver et al. (2017). We believe that these methods could also
make anchor learning more robust to label noise.

The current formulation of anchor learning is based on the PU-learning
framework introduced by Elkan and Noto (2008). This framework does,
however, only lead to unbiased risk estimators if the class-conditional densi-
ties for the positive and negative class have non-overlapping support. This
is an unrealistic assumption, and if it was true, then any sufficiently flexible
classifier would do a perfect job to separate the classes. Hence, we believe
that the performance can be improved using frameworks such as the ones
proposed by (Du Plessis et al., 2014, 2015) in which the risk estimators are
unbiased. Moreover, to formulate anchor learning via flexible models such
as deep neural networks would also be interesting. In that case, we think
the framework proposed by Kiryo et al. (2017) is useful.

We also think that the work of Niu et al. (2016) could be useful to incorporate
into anchor learning. By doing so, one could theoretically estimate how
many patients one needs to manually annotate with ground-truth labels in
order to achieve similar performance as anchor learning.

Finally, we mention that an important next step for researchers working
with data-driven healthcare is to also start to translate promising algo-
rithms to clinical practice so that the final outcome of research is not just
a performance gain reported in an academic journal, but also leads to im-
proved healthcare. There are probably many reasons why the impact on
current clinical practice has been low until now; a mismatch between the
performance of the methods and unrealistically high expectations, difficul-
ties related to privacy, legal aspects, ethics and interpretation of predictions,
and lack of prospective clinical trials to validate and demonstrate benefits
compared to current practice (Fröhlich et al., 2018). To improve this in
the future, probably large interdisciplinary efforts are needed. Healthcare
workers, data scientists, politicians, regulatory agencies, etc., have to go to-
gether to establish a common ground for what is reasonable to expect (avoid
hype) as the outcome and benefits of data-driven healthcare and to establish
practical guidelines and plans for how to effectively implement data-driven
healthcare solutions into clinical practice.
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Similarity-based approaches represent a promising direction for time series analysis. However, many such 

methods rely on parameter tuning, and some have shortcomings if the time series are multivariate (MTS), 

due to dependencies between attributes, or the time series contain missing data. In this paper, we ad- 

dress these challenges within the powerful context of kernel methods by proposing the robust time series 

cluster kernel (TCK). The approach taken leverages the missing data handling properties of Gaussian mix- 

ture models (GMM) augmented with informative prior distributions. An ensemble learning approach is 

exploited to ensure robustness to parameters by combining the clustering results of many GMM to form 

the final kernel. 

We evaluate the TCK on synthetic and real data and compare to other state-of-the-art techniques. 

The experimental results demonstrate that the TCK is robust to parameter choices, provides competitive 

results for MTS without missing data and outstanding results for missing data. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Time series analysis is an important and mature research topic, 

especially in the context of univariate time series (UTS) prediction 

[1–4] . The field tackles real world problems in many different ar- 

eas such as energy consumption [5] , meteorology [6] , climate stud- 

ies [7] , biology [8] , medicine [9–12] and finance [13] . However, the 

need for analysis of multivariate time series (MTS) [14] is growing 

in modern society as data is increasingly collected simultaneously 

from multiple sources over time, often plagued by severe missing 

data problems [15,16] . These challenges complicate analysis con- 

siderably, and represent open directions in time series analysis re- 

search. The purpose of this paper is to answer such challenges, 

which will be achieved within the context of the powerful kernel 

methods [17,18] for reasons that will be discussed below. 

Time series analysis approaches can be broadly categorized into 

two families: (i) representation methods , which provide high-level 

features for representing properties of the time series at hand, 

∗ Corresponding author at: Department of Mathematics and Statistics, Faculty of 

Science and Technology, UiT – The Arctic University of Norway, TromsØ N-9037, 

Norway. 

E-mail address: karl.o.mikalsen@uit.no (K.Ø. Mikalsen). 

and (ii) similarity measures , which yield a meaningful similarity be- 

tween different time series for further analysis [19,20] . 

Classic representation methods are for instance Fourier trans- 

forms, wavelets, singular value decomposition, symbolic aggregate 

approximation, and piecewise aggregate approximation [21–25] . 

Time series may also be represented through the parameters of 

model-based methods such as Gaussian mixture models (GMM) 

[26–28] , Markov models and hidden Markov models (HMMs) [29–

31] , time series bitmaps [32] and variants of ARIMA [33–35] . An 

advantage with parametric models is that they can be naturally 

extended to the multivariate case. For detailed overviews on rep- 

resentation methods, we refer the interested reader to [19,20,36] . 

Of particular interest to this paper are similarity-based ap- 

proaches. Once defined, such similarities between pairs of time 

series may be utilized in a wide range of applications, such as 

classification, clustering, and anomaly detection [37] . Time series 

similarity measures include for example dynamic time warping 

(DTW) [38] , the longest common subsequence (LCSS) [39] , the ex- 

tended Frobenius norm (Eros) [40] , and the Edit Distance with Real 

sequences (EDR) [41] , and represent state-of-the-art performance 

in UTS prediction [19] . However, many of these measures cannot 

straightforwardly be extended to MTS such that they take rela- 

tions between different attributes into account [42] . The learned 

https://doi.org/10.1016/j.patcog.2017.11.030 

0031-3203/© 2017 Elsevier Ltd. All rights reserved. 
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pattern similarity (LPS) is an exception, based on the identification 

of segments-occurrence within the time series, which generalizes 

naturally to MTS [43] by means of regression trees where a bag- 

of-words type compressed representation is created, which in turn 

is used to compute the similarity. 

A similarity measure that also is positive semi-definite (psd) is 

a kernel [18] . Kernel methods [18,44,45] have dominated machine 

learning and pattern recognition over two decades and have been 

very successful in many fields [46–49] . A main reason for this suc- 

cess is the well understood theory behind such methods, wherein 

nonlinear data structures can be handled via an implicit or explicit 

mapping to a reproducing kernel Hilbert space (RKHS) [50,51] de- 

fined by the choice of kernel. Prominent examples of kernel meth- 

ods include the support vector machine (SVM) [52] and kernel 

principal component analysis (kPCA) [53] . 

However, many similarities (or equivalently dissimilarities) are 

non-metric as they do not satisfy the triangle-inequality, and in ad- 

dition most of them are not psd and therefore not suited for kernel 

methods [54,55] . Attempts have been made to design kernels from 

non-metric distances such as DTW, of which the global alignment 

kernel (GAK) is an example [56] . There are also promising works 

on deriving kernels from parametric models, such as the probabil- 

ity product kernel [57] , Fisher kernel [58] , and reservoir based ker- 

nels [59] . Common to all these methods is however a strong de- 

pendence on a correct hyperparameter tuning, which is difficult to 

obtain in an unsupervised setting. Moreover, many of these meth- 

ods cannot naturally be extended to deal with MTS, as they only 

capture the similarities between individual attributes and do not 

model the dependencies between multiple attributes [42] . Equally 

important, these methods are not designed to handle missing data, 

an important limitation in many existing scenarios, such as clinical 

data where MTS originating from electronic health records (EHRs) 

often contain missing data [9–11,60] . 

In this work, we propose a new kernel for computing simi- 

larities between MTS that is able to handle missing data with- 

out having to resort to imputation methods [61] . We denote this 

new measure as the time series cluster kernel (TCK). Importantly, 

the novel kernel is robust and designed in an unsupervised man- 

ner, in the sense that no critical hyperparameter choices have to be 

made by the user. The approach taken is to leverage the missing 

data handling properties of GMM modeling following the idea of 

[26] , where robustness to sparsely sampled data is ensured by ex- 

tending the GMM using informative prior distributions. However, 

we are not fitting a single parametric model, but rather exploit- 

ing an ensemble learning approach [62] wherein robustness to hy- 

perparameters is ensured by joining the clustering results of many 

GMM to form the final kernel. This is to some degree analogous 

to the approaches taken in [63] and [64] . More specifically, each 

GMM is initialized with different numbers of mixture components 

and random initial conditions and is fit to a randomly chosen sub- 

sample of the data, attributes and time segment, through an em- 

barrassingly parallel procedure. This also increases the robustness 

against noise. The posterior assignments provided by each model 

are combined to form a kernel matrix, i.e. a psd similarity matrix. 

This opens the door to clustering, classification, etc., of MTS within 

the framework of kernel methods, benefiting from the vast body of 

work in that field. The procedure is summarized in Fig. 1 . 

In the experimental section we illustrate some of the potentials 

of the TCK by applying it to classification, clustering, dimensional- 

ity reduction and visualization tasks. In addition to the widely used 

DTW, we compare to GAK and LPS. The latter inherits the decision 

tree approach to handle missing data, is similar in spirit to the TCK 

in the sense of being based on an ensemble strategy [43] , and is 

considered the state-of-the-art for MTS. As an additional contribu- 

tion, we show in Appendix A that the LPS is in fact a kernel itself, 

a result that to the authors best knowledge has not been proven 

before. The experimental results demonstrate that TCK is very ro- 

bust to hyperparameter choices, provides competitive results for 

MTS without missing data and outstanding results for MTS with 

missing data. This we believe provides a useful tool across a vari- 

ety of applied domains in MTS analysis, where missing data may 

be problematic. 

The remainder of the paper is organized as follows. In 

Section 2 we present related works, whereas in Section 3 , we 

give the background needed for building the proposed method. 

In Section 4 we provide the details of the TCK, whereas in 

Section 5 we evaluate it on synthetic and real data and compare 

to LPS, GAK and DTW. Section 6 contains conclusions and future 

work. 

2. Related work 

While several (dis)similarity measures have been defined over 

the years to compare time series, many of those measures are not 

psd and hence not suitable for kernel approaches. In this section 

we review some of the main kernels functions that have been pro- 

posed for time series data. 

The simplest possible approach is to treat the time series as 

vectors and apply well-known kernels such as a linear or radial 

basis kernel [17] . While this approach works well in some circum- 

stances, time dependencies and the relationships among multiple 

attributes in the MTS are not explicitly modeled. 

DTW [38] is one of the most commonly used similarity mea- 

sures for UTS and has become the state-of-the-art in many practi- 

cal applications [65–68] . Several formulations have been proposed 

to extend DTW to the multidimensional setting [42,69] . Since DTW 

does not satisfy the triangle inequality, it is not negative definite 

and, therefore, one cannot obtain a psd kernel by applying an ex- 

ponential function to it [70] . Such an indefinite kernel may lead to 

a non-convex optimization problem (e.g., in an SVM), which hin- 

ders the applicability of the model [54] . Several approaches have 

been proposed to limit this drawback at the cost of more complex 

and costly computations. In [71,72] ad hoc spectral transformations 

were employed to obtain a psd matrix. Cuturi et al. [56] designed 

a DTW-based kernel using global alignments (GAK). Marteau and 

Gibet proposed an approach that combines DTW and edit distances 

with a recursive regularizing term [55] . 

Conversely, there exists a class of (probabilistic) kernels oper- 

ating on the configurations of a given parametric model, where 

the idea is to leverage the way distributions capture similarity. 

For instance, the Fisher kernel assumes an underlying genera- 

tive model to explain all observed data [58] . The Fisher kernel 

maps each time series x into a feature vector U x , which is the 

gradient of the log-likelihood of the generative model fit on the 

dataset. The kernel is defined as K(x i , x j ) = U 

T 
x i 

I −1 U x j , where I 
is the fisher information matrix. Another example is the prob- 

ability product kernel [57] , which is evaluated by means of the 

Bhattacharyya distance in the probability space. A further repre- 

sentative is the marginalized kernel [73] , designed to deal with 

objects generated from latent variable models. Given two visible 

variables, x and x ′ and two hidden variables, h and h ′ , at first, a 

joint kernel K z ( z, z ′ ) is defined over the two combined variables 

z = (x, h ) and z ′ = (x ′ , h ′ ) . Then, a marginalized kernel for visible 

data is derived from the expectation with respect to hidden vari- 

ables: K(x, x ′ ) = 

∑ 

h 

∑ 

h ′ p(h | x ) p(h ′ | x ′ ) K z (z, z ′ ) . The posterior dis- 

tributions are in general unknown and are estimated by fitting a 

parametric model on the data. 

In several cases, the assumption of a single parametric model 

underlying all the data may be too strong. Additionally, finding the 

most suitable parametric model is a crucial and often difficult task, 

which must be repeated every time a new dataset is processed. 

This issue is addressed by the autoregressive kernel [63] , which 
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Fig. 1. Schematic depiction of the procedure used to compute the TCK. 

evaluates the similarity of two time series on the corresponding 

likelihood profiles of a vector autoregressive model of a given or- 

der, across all possible parameter settings, controlled by a prior. 

The kernel is then evaluated as the dot product in the parameter 

space of such profiles, used as sequence representations. The reser- 

voir based kernels [59] , map the time series into a high dimen- 

sional, dynamical feature space, where a linear readout is trained 

to discriminate each signal. These kernels fit reservoir models shar- 

ing the same fixed reservoir topology to all time series. Since the 

reservoir provides a rich pool of dynamical features, it is consid- 

ered to be “generic” and, contrarily to kernels based on a single 

parametric model, it is able to represent a wide variety of dynam- 

ics for different datasets. 

The methodology we propose is related to this last class of ker- 

nels. In order to create the TCK, we fuse the framework of repre- 

senting time series via parametric models with similarity and ker- 

nel based methods. More specifically, the TCK leverages an ensem- 

ble of multiple models that, while they share the same parametric 

form, are trained on different subset of data, each time with dif- 

ferent, randomly chosen initial conditions. 

3. Background 

In this section we provide a brief background on kernels, intro- 

duce the notation adopted in the remainder of the paper and pro- 

vide the frameworks that our method builds on. More specifically, 

we introduce the diagonal covariance GMM for MTS with missing 

data, the extended GMM framework with empirical priors and the 

related procedure to estimate the parameters of this model. 

3.1. Background on kernels 

Thorough overviews on kernels can be found in [17,18,52,70] . 

Here we briefly review some basic definitions and properties, fol- 

lowing [52] . 

Definition 1. Let X be a non-empty set. A function k : X × X → R 

is a kernel if there exists a R -Hilbert space H and a map � : 

X → H such that ∀ x, y ∈ X , k (x, y ) = 〈 �(x ) , �(y ) 〉 H 

. 

From this definition it can be shown that a kernel is symmetric 

and psd, meaning that ∀ n ≥ 1, ∀ (a 1 , . . . , a n ) ∈ R 

n , ∀ (x 1 , . . . , x n ) ∈ 

X 

n , �i, j a i a j K ( x i , x j ) ≥ 0. Of major importance in kernel methods 

are also the concepts of reproducing kernels and reproducing ker- 

nel Hilbert spaces (RKHS), described by the following definition. 

Definition 2. Let X be a non-empty set, H a Hilbert space and k : 

X × X → R a function. k is a reproducing kernel, and H a RKHS, if 

∀ x ∈ X , ∀ f ∈ H, k (·, x ) ∈ H and 〈 f, k (·, x ) 〉 H 

= f (x ) (reproducing 

property). 

These concepts are highly connected to kernels. In fact repro- 

ducing kernels are kernels, and every kernel is associated with a 

unique RKHS (Moore–Aronszajn theorem), and vice versa. More- 

over, the representer theorem states that every function in an RKHS 

that optimizes an empirical risk function can be expressed as a lin- 

ear combination of kernels centered at the training points. These 

properties have very useful implications, e.g. in an SVM, since an 

infinite dimensional empirical risk minimization problem can be 

simplified to a finite dimensional problem and the solution is in- 

cluded in the linear span of the kernel function evaluated at the 

training points. 

3.2. MTS with missing data 

We define a UTS, x , as a sequence of real numbers ordered 

in time, x = { x (t) ∈ R | t = 1 , 2 , . . . , T } . The independent time vari- 

able, t , is without loss of generality assumed to be discrete and the 

number of observations in the sequence, T , is the length of the UTS. 

A MTS X is defined as a (finite) sequence of UTS, X = { x v ∈ 

R 

T | v = 1 , 2 , . . . , V } , where each attribute, x v , is a UTS of length 

T . The number of UTS, V , is the dimension of X . The length T of 

the UTS x v is also the length of the MTS X . Hence, a V -dimensional 

MTS, X , of length T can be represented as a matrix in R 

V ×T . 

Given a dataset of N MTS, we denote X 

( n ) the n th MTS. An 

incompletely observed MTS is described by the pair ( X 

( n ) , R ( n ) ), 

where R ( n ) is a binary MTS with entry r (n ) 
v (t) = 0 if the realiza- 

tion x (n ) 
v (t) is missing and r (n ) 

v (t) = 1 if it is observed. 

3.3. Diagonal covariance GMM for MTS with missing data 

A GMM is a mixture of G components, with each component 

belonging to a normal distribution. Hence, the components are de- 

scribed by the mixing coefficients θ g , means μg and covariances 

�g . The mixing coefficients θ g satisfy 0 ≤ θ g ≤ 1 and 

∑ G 
g=1 θg = 1 . 

We formulate the GMM in terms of a latent random variable 

Z , represented as a G -dimensional one-hot vector, whose marginal 

distribution is given by p(Z | �) = 

G ∏ 

g=1 

θ
Z g 
g . The conditional distri- 

bution for the MTS X , given Z , is a multivariate normal distribu- 

tion, p(X | Z g = 1 , �) = N (X | μg , �g ) . Hence, the GMM can be 

described by its probability density function (pdf), given by 

p(X ) = 

∑ 

Z 

p(Z) p(X | Z, �) = 

G ∑ 

g=1 

θg N ( X | μg , �g ) . (1) 

The GMM described by Eq. (1) holds for completely observed 

data and a general covariance. However, in the diagonal covari- 

ance GMM considered in this work, the following assumptions 

are made. The MTS are characterized by time-dependent means, 

expressed by μg = { μgv ∈ R 

T | v = 1 , . . . , V } , where μgv is a UTS, 

whereas the covariances are constrained to be constant over time. 

Accordingly, the covariance matrix is �g = diag{ σ 2 
g1 

, . . . , σ 2 
gV 

} , be- 

ing σ 2 
gv the variance of attribute v . Moreover, the data is assumed 
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to be missing at random (MAR), i.e. the missing elements are only 

dependent on the observed values. 

Under these assumptions, missing data can be analytically inte- 

grated away, such that imputation is not needed [74] , and the pdf 

for the incompletely observed MTS ( X, R ) is given by 

p(X | R, �) = 

G ∑ 

g=1 

θg 

V ∏ 

v =1 

T ∏ 

t=1 

N (x v (t) | μgv (t) , σgv ) 
r v (t) (2) 

The conditional probability of Z given X , can be found using Bayes’ 

theorem, 

πg ≡ P (Z g = 1 | X, R, �) 

= 

θg 

∏ V 
v =1 

∏ T 
t=1 N ( x v (t) | μgv (t) , σgv ) 

r v (t) 

∑ G 
g=1 θg 

∏ V 
v =1 

∏ T 
t=1 N ( x v (t) | μgv (t) , σgv ) 

r v (t) 
. (3) 

θ g can be thought of as the prior probability of X belonging to 

component g , and therefore Eq. (3) describes the corresponding 

posterior probability. 

To fit a GMM to a dataset, one needs to learn the parame- 

ters � = { θg , μg , σg } G g=1 
. The standard way to do this is to per- 

form maximum likelihood expectation maximization (EM) [75] . 

However, to be able to deal with large amounts of missing data, 

one can introduce informative priors for the parameters and es- 

timate them using maximum a posteriori expectation maximiza- 

tion (MAP-EM) [26] . This ensures each cluster mean to be smooth 

over time and clusters containing few time series, to have parame- 

ters similar to the mean and covariance computed over the whole 

dataset. We summarize this procedure in the next subsection (see 

Ref. [26] for details). 

3.4. MAP-EM diagonal covariance GMM augmented with empirical 

prior 

To enforce smoothness, a kernel-based Gaussian prior is de- 

fined for the mean, P (μgv ) = N (μgv | m v , S v ) . m v are the em- 

pirical means and the prior covariance matrices, S v , are defined 

as S v = s v K, where s v are empirical standard deviations and K 

is a kernel matrix, whose elements are K t t ′ = b 0 exp (−a 0 (t −
t ′ ) 2 ) , t , t ′ = 1 , . . . , T . a 0 , b 0 are user-defined hyperparameters. An 

inverse Gamma distribution prior is put on the standard deviation 

σ gv , P (σgv ) ∝ σ
−N 0 
gv exp (− N 0 s v 

2 σ 2 
gv 

) , where N 0 is a user-defined hyper- 

parameter. We denote � = { a 0 , b 0 , N 0 } the set of hyperparameters. 

Estimates of parameters � are found using MAP-EM [76,77] , ac- 

cording to Algorithm 1 . 

4. Time series cluster kernel (TCK) 

Methods based on GMM, in conjunction with EM, have been 

successfully applied in different contexts, such as density estima- 

tion and clustering [78] . As a major drawback, these methods of- 

ten require to solve a non-convex optimization problem, whose 

outcome depends on the initial conditions [77,79] . The model de- 

scribed in the previous section depends on initialization of param- 

eters � and the chosen number of clusters G [26] . Moreover, three 

different hyper-parameters, a 0 , b 0 , N 0 , have to be set. In particular, 

modeling the covariance in time is difficult; choosing a too small 

hyperparameter a 0 leads to a degenerate covariance matrix that 

cannot be inverted. On the other hand, a too large value would 

basically remove the covariance such that the prior knowledge is 

not incorporated. Furthermore, a single GMM provides a limited 

descriptive flexibility, due to its parametric nature. 

Ensemble learning has been adopted both in classification, 

where classifiers are combined through e.g. bagging or boosting 

[80–82] , and clustering [83–85] . Typically, in ensemble clustering 

one integrates the outcomes of the same algorithm as it processes 

Algorithm 1 MAP-EM diagonal covariance GMM. 

Input Dataset { (X (n ) , R (n ) ) } N n =1 , hyperparameters � and number of 

mixtures G . 

1: Initialize the parameters �. 

2: E-step. For each MTS X (n ) , evaluate the posterior prob- 

abilities using current parameter estimates, π(n ) 
g = P (Z g = 

1 | X (n ) , R (n ) , �) . 

3: M-step. Update parameters using the current posteriors 

θg = N 

−1 ∑ N 
n =1 π

(n ) 
g 

σ 2 
gv = 

(
N 0 + 

N ∑ 

n =1 

T ∑ 

t=1 

r (n ) 
v (t) π(n ) 

g 

)−1 

×
(

N 0 s 
2 
v + 

N ∑ 

n =1 

T ∑ 

t=1 

r (n ) 
v (t) π(n ) 

g 

(
x (n ) 

v (t) − μgv (t) 
)2 

)

μgv = 

(
S −1 

v + σ−2 
gv 

N ∑ 

n =1 

π(n ) 
g diag (r (n ) 

v ) 

)−1 

×
(

S −1 
v m v + σ−2 

gv 

N ∑ 

n =1 

π(n ) 
g diag (r (n ) 

v ) x (n ) 
v 

)

4: Repeat steps 2 and 3 until convergence. 

Output Posteriors 	(n ) ≡
(
π(n ) 

1 
, . . . , π(n ) 

G 

)T 

and mixture parame- 

ters �. 

different data subsets, being configured with different parameters 

or initial conditions, in order to capture local and global structures 

in the underlying data [84,86] and to provide a more stable and 

robust final clustering result. Hence, the idea is to combine the 

results of many weaker models to deliver an estimator with sta- 

tistical, computational and representational advantages [62] , which 

are lower variance, lower sensitivity to local optima and a broader 

span of representable functions, respectively. 

We propose an ensemble approach that combines multiple 

GMM, whose diversity is ensured by training the models on sub- 

samples of data, attributes and time segments, using different 

numbers of mixture components and random initialization of �

and hyperparameters. Thus, we generate a model robust to param- 

eters and noise, also capable of capturing different levels of granu- 

larity in the data. To ensure robustness to missing data, we use the 

diagonal covariance GMM augmented with the informative priors 

described in the previous section as base models in the ensemble. 

Potentially, we could have followed the idea of [87] to create 

a density function from an ensemble of GMM. Even though sev- 

eral methods rely on density estimation [78] , we aim on deriving 

a similarity measure , which provides a general-purpose data repre- 

sentation, fundamental in many applications in time-series analy- 

sis, such as classification, clustering, outlier detection and dimen- 

sionality reduction [37] . 

Moreover, we ensure the similarity measure to be psd, i.e. a 

kernel . Specifically, the linear span of posterior distributions π g , 

formed as G -vectors, with ordinary inner product, constitutes a 

Hilbert space. We explicitly let the feature map � be these posteri- 

ors. Hence, the TCK is an inner product between two distributions 

and therefore forms a linear kernel in the space of posterior distri- 

butions. Given an ensemble of GMM, we create the TCK using the 

fact that the sum of kernels is also a kernel. 

4.1. Method details 

To build the TCK kernel matrix, we first fit different diag- 

onal covariance GMM to the MTS dataset. To ensure diversity, 

each GMM model uses a number of components from the inter- 
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Algorithm 2 TCK kernel. Training phase. 

Input Training data { (X (n ) , R (n ) ) } N n =1 , Q initializations, C maximal 

number of mixture components. 

1: Initialize kernel matrix K = 0 N×N . 

2: for q ∈ Q do 

3: Compute posteriors 	(n ) (q ) ≡
(
π(n ) 

1 
, . . . , π(n ) 

q 2 

)T 

, 

n = 1 , . . . , N, by applying Algorithm 1 with q 2 clusters and 

by randomly selecting, 

i. hyperparameters �(q ) , 

ii. a time segment T (q ) of length T min ≤ |T (q ) | ≤ T max , 

iii. a subset of attributes, V(q ) ⊂ (1 , . . . , V ) , with cardinality 

V min ≤ |V(q ) | ≤ V max , 

iv. a subset of MTS, η(q ) ⊂ (1 , . . . , N) , with cardinality N min ≤
| η(q ) | ≤ N, 

v. initialization of the mixture parameters �(q ) . 

4: Update kernel matrix, K nm 

= K nm 

+ 	(n ) (q ) T 	(m ) (q ) , 

n, m = 1 , . . . , N. 

5: end for 

Output K TCK kernel matrix, time segments T (q ) , subsets of at- 

tributes V(q ) , subsets of MTS η(q ) , GMM parameters �(q ) and 

posteriors 	(n ) (q ) . 

val [2, C ]. For each number of components, we apply Q differ- 

ent random initial conditions and hyperparameters. We let Q = 

{ q = (q 1 , q 2 ) | q 1 = 1 , . . . Q, q 2 = 2 , . . . , C} be the index set keeping 

track of initial conditions and hyperparameters ( q 1 ), and the num- 

ber of components ( q 2 ). Moreover, each model is trained on a ran- 

dom subset of MTS, accounting only a random subset of variables 

V, with cardinality |V| ≤ V, over a randomly chosen time segment 

T , |T | ≤ T . The inner products of the posterior distributions from 

each mixture component are then added up to build the TCK ker- 

nel matrix, according to the ensemble strategy [88] . Algorithm 2 

describes the details of the method. 

In order to be able to compute similarities with MTS not avail- 

able at the training phase, one needs to store the time segments 

T (q ) , subsets of attributes V(q ) , GMM parameters �( q ) and pos- 

teriors 	( n ) ( q ). Then, the TCK for such out-of-sample MTS is eval- 

uated according to Algorithm 3 . 

Algorithm 3 TCK kernel. Test phase. 

Input Test set 
{
(X ∗(m ) , R ∗(m ) ) 

}M 

m =1 
, time segments T (q ) , subsets of 

attributes V(q ) , subsets of MTS η(q ) , GMM parameters �(q ) 

and posteriors 	(n ) (q ) . 

1: Initialize kernel matrix K 

∗ = 0 N×M 

. 

2: for q ∈ Q do 

3: Compute posteriors 	∗(m ) (q ) , m = 1 , . . . , M by applying Eq. 

(3) with mixture parameters �(q ) . 

4: Update kernel matrix, K 

∗
nm 

= K 

∗
nm 

+ 	(n ) (q ) T 	∗(m ) (q ) , n = 

1 , . . . , N, m = 1 , . . . , M. 

5: end for 

Output K 

∗ TCK test kernel matrix 

4.2. Parameters and robustness 

The maximal number of mixture components in the GMM, C , 

should be set high enough to capture the local structure in the 

data. On the other hand, it should be set reasonably lower than the 

number of MTS in the dataset in order to be able to estimate the 

parameters of the GMM. Intuitively, a high number of realizations 

Q improves the robustness of the ensemble of clusterings. How- 

ever, more realizations comes at the expense of an increased com- 

putational cost. In the end of next section we show experimentally 

that it is not critical to correctly tune these two hyperparameters 

as they just have to be set high enough. 

Through empirical evaluations we have seen that none the 

other hyperparameters are critical. We set default hyperparame- 

ters as follows. The hyperparameters are sampled according to a 

uniform distribution from pre-defined intervals. Specifically, we let 

a 0 ∈ (0.001, 1), b 0 ∈ (0.005, 0.2) and N 0 ∈ (0.001, 0.2). The subsets of 

attributes are selected randomly by sampling according to a uni- 

form distribution from { 2 , . . . , V max } . The lower bound is set to 

two, since we want to allow the algorithm to learn possible inter- 

dependencies between at least two attributes. The time segments 

are sampled from { 1 , . . . , T } and the length of the segments are 

allowed to vary between T min and T max . In order to be able to cap- 

ture some trends in the data we set T min = 6 . We let the minimal 

size of the subset of MTS be 80% of the dataset. 

We do acknowledge that for long MTS the proposed method 

becomes computationally demanding, as the complexity scales as 

O(T 3 ) . Moreover, there is a potential issue in Eq. (3) since mul- 

tiplying together very small numbers both in the nominator and 

denominator could yield to numerically unstable expressions close 

to 0/0. While there is no theoretical problem, since the normal 

distribution is never exactly zero, the posterior for some outliers 

could have a value close to the numerical precision. In fact, since 

the posterior assignments are numbers lower than 1, the value of 

their product can be small if V and T are large. We address this 

issue by putting upper thresholds on the length of the time seg- 

ments, T max , and number of attributes, V max , which is justified by 

the fact that the TCK is learned using an ensemble strategy. More- 

over, to avoid problems for outliers we put a lower bound on the 

value for the conditional distribution for x v ( t ) at N (3 | 0 , 1) . In 

fact, it is very unlikely that a data point generated from a normal 

distribution is more than three standard deviations away from the 

mean. 

4.3. Algorithmic complexity 

4.3.1. Training complexity 

The computational complexity of the EM procedure is domi- 

nated by the update of the mean, whose cost is O(2 T 3 + NV T 2 ) . 

Hence, for G components and I iterations, the total cost is 

O(IG (2 T 3 + NV T 2 )) . The computation of the TCK kernel involves 

both the MAP-EM estimation and the kernel matrix generation for 

each q ∈ Q , whose cost is upper-bounded by O(N 

2 C) . The cost of 

a single evaluation q is therefore bounded by O(N 

2 C + IC(2 T 3 max + 

NV max T 
2 

max )) . We underline that the effective computational time 

can be reduced substantially through parallelization, since each in- 

stance q ∈ Q can be evaluated independently. As we can see, the 

cost has a quadratic dependence on N , which becomes the dom- 

inating term in large datasets. We note that in spectral methods 

the eigen-decomposition costs O(N 

3 ) with a consequent complex- 

ity higher than TCK for large N . 

4.3.2. Testing complexity 

For a test MTS one has to evaluate |Q| posteriors, with a 

complexity bounded by O(CV max T max ) . The complexity of com- 

puting the similarity with the N training MTS is bounded by 

O(NC) . Hence, for each q ∈ Q , the testing complexity is O(NC + 

CV max T max ) . Note that also the test phase is embarrassingly paral- 

lelizable. 

4.4. Properties 

In this section we demonstrate that TCK is a proper kernel and 

we discuss some of its properties. We let X = R 

V ×T be the space 

of V -variate MTS of length T and K : X × X → R be the TCK. 
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Theorem 1. K is a kernel. 

Proof. According to the definition of TCK, we have K(X (n ) , X (m ) ) = ∑ 

q ∈Q 

k q (X (n ) , X (m ) ) , where k q (X (n ) , X (m ) ) = 	(n ) (q ) T 	(m ) (q ) . 

Since the sum of kernels is a kernel, it is sufficient to demonstrate 

that k q is a kernel. We define H q = { f = 

∑ N 
n =1 αn 	

(n ) (q ) 
∣∣ N ∈ 

N , X (1) , . . . , X (N) ∈ X , α1 , . . . , αN ∈ R } . Since H q is the linear 

span of posterior probability distributions, it is closed under 

addition and scalar multiplication and therefore a vector space. 

Furthermore, we define an inner product in H q as the ordinary 

dot-product in R 

q 2 , 〈 f, f ′ 〉 H q = f T f ′ . �

Lemma 1. H q with 〈·, ·〉 H q is a Hilbert space. 

Proof. H q is equipped with the ordinary dot product, has finite 

dimension q 2 and therefore is isometric to R 

q 2 . �

Lemma 2. k q is a kernel. 

Proof. Let �q : X → H q be the mapping given by X → 	( q ). 

It follows that 〈 �q (X (n ) ) , �q (X (m ) ) 〉 H q = 〈 	(q ) (n ) , 	(q ) (m ) 〉 H q = 

(	(q ) (n ) ) T 	(q ) (m ) = k q (X (n ) , X (m ) ) . �

Now, let H be the Hilbert space defined via direct sum, 

H = 

⊕ 

q ∈Q 

H q . H consists of the set of all ordered tuples 

�(n ) = (	(n ) (1) , 	(n ) (2) , . . . , 	(n ) (|Q| )) . An induced inner prod- 

uct on H is 〈 �(n ) , �(m ) 〉 H 

= 

∑ 

q ∈Q 

〈 	(n ) (q ) , 	(m ) (q ) 〉 H q . If we let 

� : X → H be the mapping given by X 

( n ) → �( n ) , it follows that 

〈 �(X (n ) ) , �(X (m ) ) 〉 H 

= 〈 �(n ) , �(m ) 〉 H 

= 

∑ 

q ∈Q 

k q (X (n ) , X (m ) ) = 

K(X (n ) , X (m ) ) . 

This result and its proof unveil important properties of TCK. (i) 

K is symmetric and psd; (ii) the feature map � is provided ex- 

plicitly; (iii) K is a linear kernel in the Hilbert space of posterior 

probability distributions H ; (iv) the induced distance d , given by 

d 2 (X 

(n ) , X 

(m ) ) = 〈 �(X 

(n ) ) − �(X 

(m ) ) , �(X 

(m ) ) − �(X 

(m ) ) 〉 H 

= K(X 

(n ) , X 

(n ) ) − 2 K(X 

(n ) , X 

(m ) ) + K(X 

(m ) , X 

(m ) ) 

is a pseudo-metric as it satisfies the triangle inequality, takes non- 

negative values, but, in theory, it can vanish for X 

( n ) � = X 

( m ) . 

5. Experiments and results 

The proposed kernel is very general and can be used as input in 

many learning algorithms. It is beyond the scope of this paper to 

illustrate all properties and possible applications for TCK. Therefore 

we restricted ourselves to classification, with and without missing 

data, dimensionality reduction and visualization. We applied the 

proposed method to one synthetic and several benchmark datasets. 

The TCK was compared to three other similarity measures, DTW, 

LPS and the fast global alignment kernel (GAK) [56] . DTW was ex- 

tended to the multivariate case using both the independent (DTW 

i) and dependent (DTW d) version [69] . To evaluate the robustness 

of the similarity measures, they were trained unsupervisedly also 

in classification experiments, without tuning hyperparameters by 

cross-validation. In any case, cross-validation is not trivial in mul- 

tivariate DTW, as the best window size based on individual at- 

tributes is not well defined [43] . 

For the classification task, to not introduce any additional, un- 

necessary parameters, we chose to use a nearest-neighbor (1NN) 

classifier. This is a standard choice in time series classification lit- 

erature [89] . Even though the proposed method provides a kernel, 

by doing so, it is easier to compare the different properties of the 

similarity measures directly to each other. Performance was mea- 

sured in terms of classification accuracy on a test set. 

To perform dimensionality reduction we applied kPCA using 

the two largest eigenvalues of the kernel matrices. The different 

Table 1 

Clustering performance, measured in terms of CA and ARI, on simulated VAR(1) 

datasets for TCK and GMM. 

TCK GMM TCK UTS TCK ρ=0 

CA 0.990 0.910 0.775 0.800 

ARI 0.961 0.671 0.299 0.357 

kernels were visually assessed by plotting the resulting mappings 

with the class information color-coded. 

The TCK was implemented in R and Matlab, and the code is 

made publicly available at [90] . In the experiments we used the 

same parameters on all datasets. We let C = 40 and Q = 30 . For 

the rest of the parameters we used the default values discussed in 

Section 4.2 . The only exception is for datasets with less than 100 

MTS, in that case we let the maximal number of mixtures be C = 

10 . The hyperparameter dependency is discussed more thoroughly 

in the end of this section. 

For the LPS we used the Matlab implementation provided by 

Baydogan [91] . We set the number of trees to 200 and number of 

segments to 5. Since many of the time series we considered were 

short, we set the minimal segment length to 15% of the length of 

MTS in the dataset. The remaining hyperparameters were set to 

default. For the DTW we used the R package dtw [92] . The GAK 

was run using the Matlab Mex implementation provided by Cu- 

turi [93] . In accordance with [93] we set the bandwidth σ to two 

times the median distance of the MTS in the training set, scaled 

by the square root of the median length of the MTS. The triangular 

parameter was set to 0.2 times the median length. 

In contrast to the TCK and LPS, the DTW and GAK do not natu- 

rally deal with missing data and therefore we imputed the overall 

mean for each attribute and time interval. 

5.1. Synthetic example: vector autoregressive model 

We first applied TCK in a controlled experiment, where we gen- 

erated a synthetic MTS dataset with two classes from a first-order 

vector autoregressive model, VAR(1) [4] , given by (
x 1 (t) 
x 2 (t) 

)
= 

(
α1 

α2 

)
+ 

(
ρx 0 

0 ρy 

)(
x 1 (t − 1) 
x 2 (t − 1) 

)
+ 

(
ξ1 (t) 
ξ2 (t) 

)
(4) 

To make x 1 ( t ) and x 2 ( t ) correlated with corr (x 1 (t) , x 2 (t)) = ρ, 

we chose the noise term s.t., corr (ξ1 (t) , ξ2 (t)) = ρ (1 − ρx ρy ) [(1 −
ρ2 

x )(1 − ρ2 
y )] −1 . For the first class, we generated 100 two- 

variate MTS of length 50 for the training and 100 for the test, 

from the VAR(1)-model with parameters ρ = ρx = ρy = 0 . 8 and 

E [(x 1 (t) , x 2 (t)) T ] = (0 . 5 , −0 . 5) T . Analogously, the MTS of the sec- 

ond class were generated using parameters ρ = −0 . 8 , ρx = ρy = 

0 . 6 and E [(x 1 (t) , x 2 (t)) T ] = (0 , 0) T . On these synthetic data, 

in addition to dimensionality reduction and classification with 

and without missing data, we also performed spectral cluster- 

ing on the TCK matrix in order to be able to compare TCK 

directly to a single diagonal covariance GMM optimized using 

MAP-EM. 

5.1.1. Clustering 

Clustering performance was measured in terms of adjusted rand 

index (ARI) [94] and clustering accuracy (CA). CA is the maximum 

bipartite matching ( map ) between cluster labels ( l i ) and ground- 

truth labels ( y i ), defined as CA = N 

−1 
∑ N 

i =1 δ(y i , map (l i )) , where 

δ( ·, ·) is the Kronecker delta and map( ·) is computed with the Hun- 

garian algorithm [95] . 

The single GMM was run with a 0 = 0 . 1 , b 0 = 0 . 1 and N 0 = 

0 . 01 . Table 1 show that spectral clustering on the TCK achieves a 

considerable improvement compared to GMM clustering and verify 

the efficacy of the ensemble and the kernel approach with respect 
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TCK Lin. Kernel

Fig. 2. Projection of the VAR(1) dataset to two dimensions using kPCA with the TCK and a linear kernel. The different colors indicate the true labels of the MTS. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 3. Classification accuracy on simulated VAR(1) dataset of the 1NN-classifier configured with a (dis)similarity matrix obtained using LPS, DTW (d), DTW (i), GAK and 

TCK. We report results for three different types of missingness, with an increasing percentage of missing values. 

Table 2 

Description of benchmark time series datasets. Columns 2–5 show the number of attributes, samples in training and test set, 

and classes, respectively. T min is the length of the shortest MTS in the dataset and T max the longest MTS. T is the length of the 

MTS after the transformation. 

Datasets Attributes Train Test Classes T min T max T Source 

ItalyPower 1 67 1029 2 24 24 24 UCR 

Gun Point 1 50 150 2 150 150 150 UCR 

Synthetic control 1 300 300 6 60 60 60 UCR 

PenDigits 2 300 10,692 10 8 8 8 UCI 

Libras 2 180 180 15 45 45 23 UCI 

ECG 2 100 100 2 39 152 22 Olszewski 

uWave 3 200 4278 8 315 315 25 UCR 

Char. Traj. 3 300 2558 20 109 205 23 UCI 

Robot failure LP1 6 38 50 4 15 15 15 UCI 

Robot failure LP2 6 17 30 5 15 15 15 UCI 

Robot failure LP3 6 17 30 4 15 15 15 UCI 

Robot failure LP4 6 42 75 3 15 15 15 UCI 

Robot failure LP5 6 64 100 5 15 15 15 UCI 

Wafer 6 298 896 2 104 198 25 Olszewski 

Japanese vowels 12 270 370 9 7 29 15 UCI 

ArabicDigits 13 6600 2200 10 4 93 24 UCI 

CMU 62 29 29 2 127 580 25 CMU 

PEMS 963 267 173 7 144 144 25 UCI 

to a single GMM. Additionally, we evaluated TCK by concatenat- 

ing the MTS as a long vector and thereby treating the MTS as an 

UTS (TCK UTS ) and on a different VAR(1) dataset with the attributes 

uncorrelated (TCK ρ=0 ). The superior performance of TCK with re- 

spect to these two approaches illustrates that, in addition to ac- 

counting for similarities within the same attribute, TCK also lever- 

ages interaction effects between different attributes in the MTS to 

improve clustering results. 

5.1.2. Dimensionality reduction and visualization 

To evaluate the effectiveness of TCK as a kernel, we compared 

kPCA with TCK and kPCA with a linear kernel (ordinary PCA). 

Fig. 2 shows that TCK maps the MTS on a line, where the two 

classes are well separated. On the other hand, PCA projects one 

class into a compact blob in the middle, whereas the other class is 

spread out. Learned representations like these can be exploited by 

learning algorithms such as an SVM. In this case, a linear classifier 

will perform well on the TCK representation, whereas for the other 

representation a non-linear method is required. 

5.1.3. Classification with missing data 

To investigate the TCK capability of dealing with missing data in 

a classification task, we removed values from the synthetic dataset 

according to three missingness patterns: missing completely at ran- 
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Fig. 4. Classification accuracies with different proportions of MCAR data for Japanese vowels and uWave. uWave long represents the uWave dataset where the MTS have their 

original length ( T = 315 ). Shaded areas represent standard deviations calculated over 10 independent runs. 

Table 3 

Classification accuracy on different UTS and MTS benchmark datasets obtained us- 

ing TCK, LPS, DTW (i), DTW (d) and GAK in combination with a 1NN-classifier. The 

best results are highlighted in bold. 

Datasets TCK LPS DTW (i) DTW (d) GAK 

ItalyPower 0.922 0.933 0.918 0.918 0.950 

Gun Point 0.923 0.790 1.0 0 0 1.0 0 0 0.900 

Synthetic control 0.987 0.975 0.937 0.937 0.870 

Pen digits 0.904 0.928 0.883 0.900 0.945 

Libras 0.799 0.894 0.878 0.856 0.811 

ECG 0.852 0.815 0.810 0.790 0.840 

uWave 0.908 0.945 0.909 0.844 0.905 

Char. Traj. 0.953 0.961 0.903 0.905 0.935 

Robot failure LP1 0.890 0.836 0.720 0.640 0.720 

Robot failure LP2 0.533 0.707 0.633 0.533 0.667 

Robot failure LP3 0.703 0.687 0.667 0.633 0.633 

Robot failure LP4 0.848 0.914 0.880 0.840 0.813 

Robot failure LP5 0.596 0.688 0.480 0.430 0.600 

Wafer 0.982 0.981 0.963 0.961 0.967 

Japanese vowels 0.978 0.964 0.965 0.865 0.965 

ArabicDigits 0.945 0.977 0.962 0.965 0.966 

CMU 1.0 0 0 1.0 0 0 1.0 0 0 1.0 0 0 1.0 0 0 

PEMS 0.878 0.798 0.775 0.763 0.763 

dom (MCAR), missing at random (MAR) and missing not at random 

(MNAR) [74] . To simulate MCAR, we uniformly sampled the ele- 

ments to be removed. Specifically, we discarded a ratio p MCAR of 

the values in the dataset, varying from 0 to 0.5. To simulate MAR, 

we let x i ( t ) have a probability p MAR of being missing, given that 

x j ( t ) > 0.5, i � = j . Similarly, for MNAR we let x i ( t ) have a probability 

p MNAR of being missing, given that x i ( t ) > 0.5. We varied the prob- 

abilities from 0 to 0.5 to obtain different fractions of missing data. 

For each missingness pattern, we evaluated the performance of 

a 1NN classifier configured with TCK, LPS, DTW (d), DTW (i) and 

GAK. Classification accuracies are reported in Fig. 3 . First of all, we 

see that in absence of missing data, the performance of TCK and 

LPS are approximately equal, whereas the two versions of DTW 

and GAK yield a lower accuracy. Then, we notice that the accu- 

racy for the TCK is quite stable as the amount of missing data in- 

creases, for all types of missingness patterns. For example, in the 

case of MCAR, when the amount of missing data increases from 0 

to 50%, accuracy decreases to from 0.995 to 0.958. Likewise, when 

p MNAR increases from 0 to 0.5, accuracy decreases from 0.995 to 

0.953. This indicates that our method, in some cases, also works 

well for data that are MNAR. On the other hand, we notice that 

for MCAR and MAR data, the accuracy obtained with LPS decreases 

much faster than for TCK. GAK seems to be sensitive to all three 

types of missing data. Performance also diminishes quite fast in 

the DTW variants, but we also observe a peculiar behavior as the 

accuracy starts to increase again when the missing ratio increases. 

This can be interpreted as a side effect of the imputation proce- 

dure implemented in DTW. In fact, the latter replaces some noisy 

data with a mean value, hence providing a regularization bias that 

benefits the classification procedure. 

5.2. Benchmark time series datasets 

We applied the proposed method to multivariate benchmark 

datasets from the UCR and UCI databases [96,97] and other pub- 

lished work [98,99] , described in Table 2 . In order to also illus- 

trate TCK’s capability of dealing with UTS, we randomly picked 
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Fig. 5. Projection of three MTS datasets onto the two top principal components when different kernels are applied. The different colors indicate true class labels. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

three univariate datasets from the UCR database; ItalyPower, Gun 

Point and Synthetic control . Some of the multivariate datasets con- 

tain time series of different length. However, the proposed method 

is designed for MTS of the same length. Therefore we followed the 

approach of Wang et al. [100] and transformed all the MTS in the 

same dataset to the same length, T , determined by T = � T max 

� T max 
25 

� � , 
where T max is the length of the longest MTS in the dataset and � � 
is the ceiling operator. We also standardized to zero mean and unit 

standard deviation. Since decision trees are scale invariant, we did 

not apply this transformation for LPS (in accordance with [43] ). 

5.2.1. Classification without missing data 

Initially we considered the case of no missing data and ap- 

plied a 1NN-classifier in combination with the five different 

(dis)similarity measures. Table 3 shows the mean classification ac- 

curacies, evaluated over 10 runs, obtained on the benchmark time 

series datasets. First, we notice that the dependent version of DTW, 

in general, gives worse results than the independent version. Sec- 

ond, TCK gives the best accuracy for 8 out of 18 datasets. LPS and 

GAK are better than the competitors for 8 and 3 datasets, respec- 

tively. The two versions of DTW achieve the highest accuracy for 

Gun Point. On CMU all methods reach a perfect score. We also see 

that TCK works well for univariate data and gives comparable ac- 

curacies to the other methods. 

5.2.2. Classification with missing data 

We used the Japanese vowels and uWave datasets to illustrate 

the TCKs ability to classify real-world MTS with missing data. We 

removed different fractions of the values completely at random 

(MCAR) and ran a 1NN-classifier equipped with TCK, LPS, DTW (i) 

and GAK. We also compared to TCK and LPS with imputation of 

the mean. Mean classification accuracies and standard deviations, 

evaluated over 10 runs, are reported in Fig. 4 . 

On the Japanese vowels dataset the accuracy obtained with LPS 

decreases very fast as the fraction of missing data increases and is 

greatly outperformed by LPS imp. The performance of GAK also di- 

minishes quickly. The accuracy obtained with DTW (i) decreases 

from 0.965 to 0.884, whereas TCK imp decreases from 0.978 to 

0.932. The most stable results are obtained using TCK: as the ra- 

tio of missing data increases from 0 to 0.5, the accuracy decreases 
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Fig. 6. Accuracies for (left) Q = 30 and varying C , and (right) C = 40 and varying Q , over three datasets. Shaded areas represent standard deviations calculated over 10 

replications. 

from 0.978 to 0.960. We notice that, even if TCK imp yields the 

second best results, it is clearly outperformed by TCK. 

Also for the uWave dataset the accuracy decreases rapidly for 

LPS, DTW and GAK. The accuracy for TCK is 0.908 for no miss- 

ing data, is almost stable up to 30% missing data and decreases 

to 0.868 for 50% missing data. TCK imp is outperformed by TCK, 

especially beyond 20% missingness. We notice that LPS imp gives 

better results than LPS also for this dataset. For ratios of missing 

data above 0.2 TCK gives better results than LPS imp, even though 

in absence of missingness the accuracy for LPS is 0.946, whereas 

TCK yields 0.908 only. 

To investigate how TCK works for longer MTS, we classified the 

uWave dataset with MTS of original length, 315. In this case the 

LPS performs better than for the shorter MTS, as the accuracy de- 

creases from 0.949 to 0.916. We also see that the accuracy de- 

creases faster for LPS imp. For the TCK the accuracy increased from 

0.908, obtained on uWave with MTS of length 25, to 0.914 on this 

dataset. TCK still gives a lower accuracy than LPS when there is no 

missing data. However, we see that TCK is very robust to missing 

data, since the accuracy only decreases to 0.912 when the missing 

ratio increases to 0.5. TCK imp performs equally well up to 30% 

missing data, but performs poorly for higher missing ratios. 

These results indicate that, in contrast to LPS, TCK is not sensi- 

tive to the length of the MTS. It can deal equally well with short 

MTS and long MTS. 

5.2.3. Dimensionality reduction and visualization 

In Fig. 5 we have plotted the two principal components of 

uWave, Japanese vowels and Character trajectory , obtained with 

kPCA configured with TCK, LPS and a linear kernel. We notice 

a tendency in LPS and linear kernel to produce blob-structures, 

whereas the TCK creates more compact and separated embeddings. 

For example, for Japanese vowels TCK is able to isolate two classes 

from the rest. 

5.3. Sensitivity analysis 

The hyperparameters in the TCK are: maximum number of mix- 

tures C , number of randomizations Q , segment length, subsample 

size η, number of attributes, hyperparameters � and initialization 

of GMM parameters �. However, all of them except C and Q , are 

chosen randomly for each q ∈ Q . Hence, the only hyperparameters 

that have to be set by the user are C and Q . 

We have already argued that the method is robust and not 

sensitive to the choice of these hyperparameters. Here, we evalu- 

ate empirically TCK’s dependency on the chosen maximum num- 

ber of mixture components C and of randomizations Q , on the 

three datasets Japanese vowels, Wafer and Character trajectories . 

Fig. 6 (left) shows the classification accuracies obtained using TCK 

in combination with a 1NN-classifier on the three datasets by fix- 

ing Q = 30 and varying C from 5 to 50. We see that the accuracies 

Table 4 

Running times (s) for computing the similarity between the test and training set 

for two datasets. The time in brackets represents time used to train the models 

for the methods that need training. For the PEMS dataset we used the original 963 

attributes, but also ran the models on subsets consisting of 100, 10 and 2 attributes, 

respectively. For the uWave dataset we varied the length from T = 315 to T = 25 . 

PEMS V = 963 V = 100 V = 10 V = 2 

TCK 3.6 (116) 3.5 (115) 2.5 (84) 1.2 (31) 

LPS 22 (269) 3.3 (33) 1.3 (4.5) 0.9 (2.9) 

GAK 514 52 5.8 1.6 

DTW (i) 1031 119 13 3.5 

uWave T = 315 T = 200 T = 100 T = 25 

TCK 42 (46) 39 (45) 41 (46) 27 (35) 

LPS 26 (17) 17 (11) 11 (7) 6.6 (2.5) 

GAK 28 25 21 20 

DTW (i) 506 244 110 59 

are very stable for C larger than 15–20. Even for C = 10 , the ac- 

curacies are not much lower. Next, we fixed C = 40 and varied 

Q from 5 to 50. Fig. 6 (right) shows that the accuracies increase 

rapidly from Q = 1 , but also that the it stabilizes quite quickly. It 

appears sufficient to choose Q > 10, even if the standard errors are 

a bit higher for lower Q . These results indicate that it is not critical 

to tune the hyperparameters C and Q correctly, which is important 

if the TCK should be learned in an unsupervised way. 

5.4. Computational time 

All experiments were run using an Ubuntu 14.04 64-bit sys- 

tem with 64 GB RAM and an Intel Xeon E5-2630 v3 processor. We 

used the low-dimensional uWave and the high-dimensional PEMS 

dataset to empirically test the running time of the TCK. To inves- 

tigate how the running time is affected by the length and num- 

ber of variables of the MTS, for the PEMS dataset we selected 

V = { 963 , 100 , 10 , 2 } attributes, while for the uWave dataset we let 

T = { 315 , 200 , 100 , 25 } . Table 4 shows the running times (s) for 

TCK, LPS, GAK and DTW (i) on these datasets. We observe that the 

TCK is competitive to the other methods and, in particular, that its 

running time is not that sensitive to increased length or number 

of attributes. 

6. Conclusions 

We have proposed a novel similarity measure and kernel for 

multivariate time series with missing data. The robust time series 

cluster kernel was designed by applying an ensemble strategy to 

probabilistic models. TCK can be used as input in many different 

learning algorithms, in particular in kernel methods. 

The experimental results demonstrated that the TCK (1) is ro- 

bust to hyperparameter settings, (2) is competitive to established 

methods on prediction tasks without missing data and (3) is better 

than established methods on prediction tasks with missing data. 
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In future works we plan to investigate whether the use of more 

general covariance structures in the GMM, or the use of HMMs as 

base probabilistic models, could improve TCK. 
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Appendix A 

Theorem 2. LPS is a kernel. 

Proof. The LPS similarity between two time series X 

( n ) and X 

( m ) 

is computed from the LPS representation, given by the frequency 

vectors H ( X 

( n ) ) and H ( X 

( m ) ), where H(X (n ) ) = [ h (n ) 
1 , 1 

, . . . , h (n ) 
R,J 

] ∈ N 

RJ 
0 

being h (n ) 
r, j 

∈ N 0 the number of segments of X 

( n ) contained in the 

leaf r of tree j and J the number of trees [43] . Let N s = T − L − 1 be 

the total number of segments of length L in the MTS X of length 

T . Without loss of generality we assume that N s and R , the total 

number of leaves, are constant in all trees. The LPS similarity reads 

S 
(
X 

(n ) , X 

(m ) 
)

= 

1 

RJ 

R ∑ 

r=1 

J ∑ 

j=1 

min 

(
h 

(n ) 
r, j 

, h 

(m ) 
r, j 

)
∈ [0 , 1] . (A.1) 

We notice that, if we ignore the normalizing factor, Eq. (A.1) is the 
computation of the intersection between H ( X 

( n ) ) and H ( X 

( m ) ). In or- 
der to complete the proof, we now introduce an equivalent binary 
representation of the frequency vectors in the leaves. We represent 
the leaf r of the tree j as a binary sequence, with h r, j 1s in front 
and 0s N s − h r, j in the remaining positions 

H̄ (X ) = 

⎡ 

⎢ ⎣ 

h 1 , 1 ︷ ︸︸ ︷ 
1 , . . . , 1 , 

N s −h 1 , 1 ︷ ︸︸ ︷ 
0 , . . . , 0 ︸ ︷︷ ︸ 

leaf (1 , 1) 

, . . . , 

h r, j ︷ ︸︸ ︷ 
1 , . . . , 1 , 

N s −h r, j ︷ ︸︸ ︷ 
0 , . . . , 0 ︸ ︷︷ ︸ 

leaf (r, j) 

, . . . , 

h R,J ︷ ︸︸ ︷ 
1 , . . . , 1 , 

N s −h R,J ︷ ︸︸ ︷ 
0 , . . . , 0 ︸ ︷︷ ︸ 

leaf (R,J) 

⎤ 

⎥ ⎦ 

∈ { 0 , 1 } N s RJ . 

The intersection between H ( X 

( n ) ) and H ( X 

( m ) ), yielded by 

Eq. (A.1) , can be expressed as a bitwise operation through dot 

product (
H(X 

(n ) ) ∧ H(X 

(m ) ) 
)

= H̄ (X 

(n ) ) T H̄ (X 

(m ) ) , (A.2) 

which is a linear kernel in the linear span of the LPS representa- 

tions, which is isometric to R 

N s RJ . �
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Abstract

Noisy labeled data represent a rich source of information that often are easily accessible and cheap to obtain, but label noise might
also have many negative consequences if not accounted for. How to fully utilize noisy labels has been studied extensively within
the framework of standard supervised machine learning over a period of several decades. However, very little research has been
conducted on solving the challenge posed by noisy labels in non-standard settings. This includes situations where only a fraction
of the samples are labeled (semi-supervised) and each high-dimensional sample is associated with multiple labels. In this work,
we present a novel semi-supervised and multi-label dimensionality reduction method that effectively utilizes information from both
noisy multi-labels and unlabeled data. With the proposed Noisy multi-label semi-supervised dimensionality reduction (NMLSDR)
method, the noisy multi-labels are denoised and unlabeled data are labeled simultaneously via a specially designed label propagation
algorithm. NMLSDR then learns a projection matrix for reducing the dimensionality by maximizing the dependence between the
enlarged and denoised multi-label space and the features in the projected space. Extensive experiments on synthetic data, as well
as benchmark datasets, demonstrate the effectiveness of the proposed algorithm and show that it outperforms state-of-the-art multi-
label feature extraction algorithms. Finally, we illustrate the benefits of the proposed method in a realistic healthcare case study,
achieving statistically significant gains compared to the previous state-of-the-art on the problem of identifying patients suffering
from multiple chronic diseases.

Keywords: Noisy labels, Multi-label learning, Semi-supervised learning, Dimensionality reduction, Healthcare case study

1. Introduction

Supervised machine learning crucially relies on the accu-
racy of the observed labels associated with the training sam-
ples [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Observed labels may be cor-
rupted and, therefore, they do not necessarily coincide with the
true class of the samples. Such inaccurate labels are also re-
ferred to as noisy [2, 11, 4]. Label noise can occur because
of imperfect evidence or fatigue on the part of the labeler, e.g.
in healthcare where a medical doctor may be annotating or la-
beling thousands of patients manually, potentially making mis-
takes in the process [12, 5]. In other cases, noisy labels may re-
sult from the use of frameworks such as anchor learning [13, 14]
or silver standard learning [15], which have received interest for
instance in healthcare analytics [16, 17]. A review of various
sources of label noise can be found in [2].

In standard supervised machine learning settings, the chal-
lenge posed by noisy labels has been studied extensively.
For example, many noise-tolerant versions of well-known
classifiers have been proposed, including discriminant analy-
sis [8, 18], logistic regression [9], the k-nearest neighbor clas-
sifier [19], boosting algorithms [20, 21], perceptrons [22, 23],

∗Corresponding author at: Department of Mathematics and Statistics, Fac-
ulty of Science and Technology, UiT – The Arctic University of Norway, N-
9037 Tromsø, Norway

support vector machines [24], deep neural networks [7, 25, 26].
Others have proposed more general classification frameworks
that are not restricted to particular classifiers [4, 11].

However, very little research has been conducted on solving
the challenge posed by noisy labels in non-standard settings,
where the magnitude of the noisy label problem is increased
considerably. One good example (among many) of such a non-
standard setting occurs for instance within the healthcare do-
main, used here as an illustrative case-study. Non-standard set-
tings include (i) Semi-supervised learning [27], referring to a
situation where only a few (noisy) labeled data points are avail-
able, making the impact of noise in those few labels more preva-
lent, and where information must also jointly be inferred from
unlabeled data points. In healthcare, it may be realistic to ob-
tain some labels through a (imperfect) manual labeling process,
but the vast amount of data remains unlabeled; (ii) Multi-label
learning, wherein objects may not belong exclusively to one
category. This situation occurs frequently in a number of do-
mains, including healthcare, where for instance a patient could
suffer from multiple chronic diseases; (iii) High-dimensional
data, where the abundance of features and the limited (noisy)
labeled data, lead to a curse of dimensionality problem. In such
situations, dimensionality reduction (DR) [28] is useful, either
as a pre-processing step, or as an integral part of the learning
procedure. This is a well-known challenge in health, where the
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number of patients in the populations under study frequently
is small, but heterogeneous potential sources of data features
from electronic health records for each patient may be enor-
mous [29, 30, 31, 32].

In this paper, and to the best of our knowledge, we pro-
pose the first noisy label, semi-supervised and multi-label DR
machine learning method, which we call the Noisy multi-label
semi-supervised dimensionality reduction (NMLSDR) method.
Towards that end, we propose a label propagation method
that can deal with noisy multi-label data. Label propaga-
tion [33, 34, 35, 36, 37, 38, 39], wherein one propagates the
labels to the unlabeled data in order to obtain a fully labeled
dataset, is one of the most successful and fundamental frame-
works within semi-supervised learning. However, in contrast to
many of these methods that clamp the labeled data, in our multi-
label propagation method we allow the labeled part of the data
to change labels during the propagation to account for noisy la-
bels. In the second part of our algorithm we aim at learning a
lower dimensional representation of the data by maximizing the
feature-label dependence. Towards that end, similarly to other
DR methods [40, 41], we employ the Hilbert-Schmidt indepen-
dence criterion (HSIC) [42], which is a non-parametric measure
of dependence.

The NMLSDR method is a DR method, which is general and
can be used in many different settings, e.g. for visualization or
as a pre-processing step before doing classification. However,
in order to test the quality of the NMLSDR embeddings, we
(preferably) have to use some quantitative measures. For this
purpose, a common baseline classifier such as the multi-label k-
nearest neighbor (ML-kNN) classifier [43] has been applied to
the low-dimensional representations of the data [44, 45]. Even
though this is a valid way to measure the quality of the em-
beddings, to apply a supervised classifier in a semi-supervised
learning setting is not a realistic setup since one suddenly as-
sumes that all labels are known (and correct). Therefore, as
an additional contribution, we introduce a novel framework for
semi-supervised classification of noisy multi-label data.

In our experiments, we compare NMLSDR to baseline meth-
ods on synthetic data, benchmark datasets, as well as a real-
world case study, where we use it to identify the health status
of patients suffering from potentially multiple chronic diseases.
The experiments demonstrate that for partially and noisy la-
beled multi-label data, NMLSDR is superior to existing DR
methods according to seven different multi-label evaluation
metrics and the Wilcoxon statistical test.

In summary, the contributions of the paper are as follows.

• A new semi-supervised multi-label dimensionality reduc-
tion method based on dependence maximization that is ro-
bust to noisy labels.

• A novel framework for semi-supervised classification of
noisy multi-label data.

• A comprehensive experimental section that illustrate the
effectiveness of the NMLSDR, and in particular, a real-
world case study where the proposed framework is used to

identify the health status of patients with multiple chronic
diseases.

The remainder of the paper is organized as follows. Re-
lated work is reviewed in Sec. 2. In Sec. 3, we describe
our proposed NMLSDR method and the novel framework for
semi-supervised classification of noisy multi-label data. Sec. 4
describes experiments on synthetic and benchmark datasets,
whereas Sec. 5 is devoted to the case study where we study
chronically ill patients. We conclude the paper in Sec. 6.

2. Related work

In this section we review related unsupervised, semi-
supervised and supervised DR methods.1

Unsupervised DR methods do not exploit label information
and can therefore straightforwardly be applied to multi-label
data by simply ignoring the labels. For example, principal com-
ponent analysis (PCA) aims to find the projection such that
the variance of the input space is maximally preserved [47].
Other methods aim to find a lower dimensional embedding that
preserves the manifold structure of the data, and examples of
these include Locally linear embedding [48], Laplacian eigen-
maps [49] and ISOMAP [50].

One of the most well-known supervised DR methods is lin-
ear discriminative analysis (LDA) [51], which aims at finding
the linear projection that maximizes the within-class similar-
ity and at the same time minimizes the between-class similar-
ity. LDA has been extended to multi-label LDA (MLDA) in
several different ways [52, 53, 54, 55, 56]. The difference be-
tween these methods basically consists in the way the labels
are weighted in the algorithm. Following the notation in [56],
wMLDAb [52] uses binary weights, wMLDAe [53] uses
entropy-based weights, wMLDAc [54] uses correlation-based
weights, wMLDAf [55] uses fuzzy-based weights, whereas
wMLDAd [56] uses dependence-based weights.

Canonical correlation analysis (CCA) [57] is a method that
maximizes the linear correlation between two sets of variables,
which in the case of DR are the set of labels and the set of fea-
tures derived from the projected space. CCA can be directly
applied also for multi-labels without any modifications. Multi-
label informed latent semantic indexing (MLSI) [58] is a DR
method that aims at both preserving the information of inputs
and capturing the correlations between the labels. In the Multi-
label least square (ML-LS) method one extracts a common sub-
space that is assumed to be shared among multiple labels by
solving a generalized eigenvalue decomposition problem [59].

In [40], a supervised method for doing DR based on de-
pendence maximization [42] called Multi-label dimensionality
reduction via dependence maximization (MDDM) was intro-
duced. MDDM attempts to maximize the feature-label depen-
dence using the Hilbert-Schmidt independence criterion and
was originally formulated in two different ways. MDDMp is

1DR may be obtained both by feature extraction, i.e. by a data transforma-
tion, and by feature selection [46]. Here, we refer to DR in the sense of feature
extraction.
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based on orthonormal projection directions, whereas MDDMf
makes the projected features orthonormal. Yu et al. showed
that MDDMp can be formulated using least squares and added
a PCA term to the cost function in a new method called Multi-
label feature extraction via maximizing feature variance and
feature-label dependence simultaneously (MVMD) [41].

The most closely related existing DR methods to NMLSDR
are the semi-supervised multi-label methods. The Semi-
supervised dimension reduction for multi-label classification
method (SSDR-MC) [60], Coupled dimensionality reduction
and classification for supervised and semi-supervised multil-
abel learning [61], and Semisupervised multilabel learning with
joint dimensionality reduction [62] are semi-supervised multi-
label methods that simultaneously learn a classifier and a low
dimensional embedding.

Other semi-supervised multi-label DR methods are semi-
supervised formulations of the corresponding supervised multi-
label DR method. Blascho et al. introduced semi-supervised
CCA based on Laplacian regularization [63]. Several different
semi-supervised formulations of MLDA have also been pro-
posed. Multi-label dimensionality reduction based on semi-
supervised discriminant analysis (MSDA) adds two regulariza-
tion terms computed from an adjacency matrix and a similarity
correlation matrix, respectively, to the MLDA objective func-
tion [64]. In the Semi-supervised multi-label dimensionality
reduction (SSMLDR) [44] method one does label propagation
to obtain soft labels for the unlabeled data. Thereafter the soft
labels of all data are used to compute the MLDA scatter ma-
trices. An other extension of MLDA is Semi-supervised multi-
label linear discriminant analysis (SMLDA) [65], which later
was modified and renamed Semi-supervised multi-label dimen-
sionality reduction based on dependence maximization (SM-
DRdm) [45]. In SMDRdm the scatter matrices are computed
based on only labeled data. However, a HSIC term is also added
to the familiar Rayleigh quotient containing the two scatter ma-
trices, which is computed based on soft labels for both labeled
and unlabeled data obtained in a similar way as in SSMLDR.

Common to all these methods is that none of them explictly
assume that the labels can be noisy. In SSMLDR and SM-
DRdm, the labeled data are clamped during the label propa-
gation and hence cannot change. Moreover, these two methods
are both based on LDA, which is known heavily affected by out-
liers, and consequently also wrongly labeled data [66, 67, 68].

3. The NMLSDR method

We start this section by introducing notation and the setting
for noisy multi-label semi-supervised linear feature extraction,
and thereafter elaborate on our proposed NMLSDR method.

3.1. Problem statement
Let {xi}ni=1 be a set of n D-dimensional data points, xi ∈ RD.

Assume that the data are ordered such that the l first of the data
points are labeled and u are unlabeled, l + u = n. Let X be a
n × d matrix with the data points as row vectors.

Assume that the number of classes is C and let YL
i ∈ {0, 1}C

be the label-vector of data point xi, i = 1, . . . , l. The elements

are given by YL
ic = 1, c = 1, . . . ,C if data point xi belongs to

the c−th class and YL
ic = 0 otherwise. Define the label matrix

YL ∈ {0, 1}l×C as the matrix with the known label-vectors YL
i ,

i = 1, . . . , l as row vectors and let YU ∈ {0, 1}u×C be the corre-
sponding label matrix of the unknown labels.

The objective of linear feature extraction is to learn a pro-
jection matrix P ∈ RD×d that maps a data point in the original
feature space x ∈ RD to a lower dimensional representation
z ∈ Rd,

z = PT x, (1)

where d < D and PT denotes the transpose of the matrix P.
In our setting, we assume that the label matrix YL is poten-

tially noisy and that YU is unknown. The first part of our pro-
posed NMLSDR method consists of doing label propagation in
order to learn the labels YU and update the estimate of YL. We
do this by introducing soft labels F ∈ Rn×C for the label matrix

Y =

(
YL

YU

)
, where Fic represents the probability that data point

xi belong to the c− th class. We obtain F with label propagation
and thereafter use F to learn the projection matrix P. However,
we start by explaining our label propagation method.

3.2. Label propagation using a neighborhood graph
The underlying idea of label propagation is that similar data

points should have similar labels. Typically, the labels are prop-
agated using a neighborhood graph [33]. Here, inspired by [69],
we formulate a label propagation method for multi-labels that
is robust to noise. The method is as follows.

Step 1. First, a neighbourhood graph is constructed. The
graph is described by its adjacency matrix W, which can be
designed e.g. by setting the entries to

Wi j = exp(−σ−2‖xi − x j‖2), (2)

where ‖xi− x j‖ is the Euclidean distance between the datapoints
xi and x j, and σ is a hyperparameter. Alternatively, one can use
the Euclidian distance to compute a k-nearest neighbors (kNN)
graph where the entries of W are given by

Wi j =


1, if xi among x j’s kNN or x j among xi’s kNN
0, otherwise.

(3)
Step 2. Symmetrically normalize the adjacency matrix W by

letting
W̃ = D−1/2WD−1/2, (4)

where D is a diagonal matrix with entries given by dii =∑n
k=1 Wik.
Step 3. Calculate the stochastic matrix

T = D̃−1W̃, (5)

where d̃ii =
∑n

k=1 W̃ik. The entry Ti j can now be considered as
the probability of a transition from node i to node j along the
edge between them.

Step 4. Compute soft labels F ∈ Rn×C by iteratively using the
following update rule

F(t + 1) = IαT F(t) + (I − Iα)Y, (6)
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where Iα is a n×n diagonal matrix with the hyperparameters αi,
0 ≤ αi < 1, on the diagonal. To initialize F, we let F(0) = Y ,
where the unlabeled data are set to YU

ic = 0, c = 1, . . . ,C.

3.2.1. Discussion
Setting αi = 0 for the labeled part of the data corresponds to

clamping of the labels. However, this is not what we aim for
in the presence of noisy labels. Therefore, a crucial property of
the proposed framework is to set αi > 0 such that the labeled
data can change labels during the propagation.

Moreover, we note that our extension of label propagation
to multi-labels is very similar to the single-label variant intro-
duced in [69], with the exception that we do not add the outlier
class, which is not needed in our case. In other extensions to
the multi-label label propagation [44, 45], the label matrix Y is
normalized such that the rows sum to 1, which ensures that the
output of the algorithm F also has rows that sum to 1. In the
single-label case this makes sense in order to maintain the in-
terpretability of probabilities. However, in the multi-label case
the data points do not necessarily exclusively belong to a single
class. Hence, the requirement

∑
c Fic = 1 does not make sense

since then xi can maximally belong to one class if one think of
F as a probability and require the probability to be 0.5 or higher
in order to belong to a class.

On the other hand, in our case, a simple calculation shows
that 0 ≤ Fic(t + 1) ≤ 1:

Fic(t + 1) = αi

n∑

m=1

TimFmc(t) + (1 − αi)Yic

≤ αi

n∑

m=1

Tim + (1 − αi) = αi + (1 − αi) = 1, (7)

since Fic(t) ≤ 1 and Yic ≤ 1. However, we do not necessarily
have that

∑
c Fic = 1.

From matrix theory it is known that, given that I − IαT is
nonsingular, the solution of the linear iterative process (6) con-
verges to the solution of

(I − IαT )F = (I − Iα)Y, (8)

for any initialization F(0) if and only if IαT is a convergent
matrix [70] (spectral radius ρ(IαT ) < 1). IαT is obviously con-
vergent if 0 ≤ αi < 1 ∀i. Hence, we can find the soft labels F
by solving the linear system given by Eq. (8).

Moreover, Fic can be interpreted as the probability that data-
point xi belongs to class c, and therefore, if one is interested in
hard label assignments, Ỹ , these can be found by letting Ỹic = 1
if Fic > 0.5 and Ỹic = 0 otherwise.

3.3. Dimensionality reduction via dependence maximization

In this section we explain how we use the labels obtained
using label propagation to learn the projection matrix P.

The motivation behind dependence maximization is that
there should be a relation between the features and the label of
an object. This should be the case also in the projected space.
Hence, one should try to maximize the dependence between the

feature similarity in the projected space and the label similarity.
A common measure of such dependence is the Hilbert-Schmidt
independence criterion (HSIC) [42], defined by

HS IC(X,Y) =
1

(n − 1)2 tr(KHLH), (9)

where tr denotes the trace of a matrix. H ∈ Rn×n is given by
Hi j = δi j − n−1, where δi j = 1 if i = j, and δi j = 0 otherwise. K
is a kernel matrix over the feature space, whereas L is a kernel
computed over the label space.

Let the projection of x be given by the projection matrix P ∈
RD×d and function Φ : RD → Rd, Φ(x) = PT x. We select
a linear kernel over the feature space, and therefore the kernel
function is given by

K(xi, x j) = 〈Φ(xi),Φ(x j)〉 = 〈PT xi, PT x j〉 = PT xixT
j P (10)

Hence, given data {xi}ni=1, the kernel matrix can be approxi-
mated by K = XPT PXT .

The kernel over the label space, L, is given via the labels
yi ∈ {0, 1}C . One possible such kernel is the linear kernel

L(yi, y j) = 〈yi, y j〉. (11)

However, in our semi-supervised setting, some of the labels are
unknown and some are noisy. Hence, the kernel L cannot be
computed. In order to enable DR in our non-standard problem,
we propose to estimate the kernel using the labels obtained via
our label propagation method. For the part of the data that was
labeled from the beginning we use the hard labels, ỸL, obtained
from the label propagation, whereas for the unlabeled part we
use the soft labels, FU . Hence, the kernel is approximated via

L = F̃F̃T , where F̃ =

(
ỸL

FU

)
. The reason for using the hard la-

bels obtained from label propagation for the labeled part is that
we want some degree of certainty for those labels that change
during the propagation (if the soft label FL

ic changes with less
than 0.5 from its initial value 0 or 1 during the propagation, the
hard label YL

ic does not change).
The constant term, (n− 1)−2, in Eq. (9) is irrelevant in an op-

timization setting. Hence, by inserting the estimates of the ker-
nels into Eq. (9), the following objective function is obtained,

Ψ(P) = tr(HXPT PXT HF̃F̃T ) = tr(PT XT HF̃F̃T HXP). (12)

Note that the matrix XT HF̃F̃T HX is symmetric. Hence, by re-
quiring that the projection directions are orthogonal and that the
new dimensionality is d, the following optimization problem is
obtained

arg max
P

Ψ(P) = arg max
P

tr(PT (XT HF̃F̃T HX)P), (13)

s.t. P ∈ RD×d, PPT = I.

As a consequence of the Courant-Fisher characterization [71], it
follows that the maximum is achieved when P is an orthonormal
basis corresponding to the d largest eigenvalues. Hence, P can
be found by solving the eigenvalue problem

XT HF̃F̃T HXP = ΛP. (14)
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The dimensionality of the projected space, d, is upper
bounded by the rank of F̃F̃T , which in turn is upper bounded
by the number of classes C. Hence, d cannot be set larger than
C.

3.4. Semi-supervised classification for noisy multi-label data
The multi-label k-nearest neighbor (ML-kNN) classifier [43]

is a widely adopted classifier for multi-label classification.
However, similarly to many other classifiers, its performance
can be hampered if the dimensionality of the data is too high.
Moreover, the ML-kNN classifier only works in a completely
supervised setting. To resolve these problems, as an additional
contribution of this work, we introduce a novel framework for
semi-supervised classification of noisy multi-label data, con-
sisting of two steps. In the first step, we compute a low dimen-
sional embedding using NMLSDR. The second step consists of
applying a semi-supervised ML-kNN classifier. For this clas-
sifier we use our label propagation method on the learned em-
bedding to obtain a fully labeled dataset, and thereafter apply
the ML-kNN classifier.

4. Experiments

In this paper, we have proposed a method for computing a
low-dimensional embedding of noisy, partially labeled multi-
label data. However, it is not a straightforward task to measure
how well the method works. Even though the method is def-
initely relevant to real-world problems (illustrated in the case
study in Sec. 5), the framework cannot be directly applied to
most multi-label benchmark datasets since most of them are
completely labeled, and the labels are assumed to be clean.
Moreover, the NMLSDR provides a low dimensional embed-
ding of the data, and we need a way to measure how good
the embedding is. If the dimensionality is 2 or 3, this can
to some degree be done visually by plotting the embedding.
However, in order to quantitatively measure the quality and si-
multaneously maintain a realistic setup, we will apply our pro-
posed end-to-end framework for semi-supervised classification
and dimensionality reduction. In our experiments, this realistic
semi-supervised setup will be applied in an illustrative example
on synthetic data and in the case study.

A potential disadvantage of using a semi-supervised clas-
sifier, is that it does not necessarily isolate effect of the DR
method that is used to compute the embedding. For this rea-
son, we will also test our method on some benchmark datasets,
but in order to keep everything coherent, except for the method
used to compute the embedding, we compute the embedding
using NMLSDR and baseline DR methods based on only the
noisy and partially labeled multi-label training data. Thereafter,
we assume that the true multi-labels are available when we train
the ML-kNN classifier on the embeddings.

The remainder of this section is organized as follows. First
we describe the performance measures we employed, baseline
DR methods, and how we select hyper-parameters. Thereafter
we provide an illustrative example on synthetic data, and sec-
ondly experiments on the benchmark data. The case study is
described in the next section.

4.1. Evaluation metrics
Evaluation of performance is more complicated in a multi-

label setting than for traditional single-labels. In this work, we
decide use the seven different evaluation criteria that were em-
ployed in [40], namely Hamming loss (HL), Macro F1-score
(MaF1), Micro F1 (MiF1), Ranking loss (RL), Average preci-
sion (AP), One-error (OE) and Coverage (Cov).

HL simply evaluates the number of times there is a mismatch
between the predicted label and the true label, i.e.

HL =

n∑

i=1

‖ŷi ⊕ yi‖1
nC

, (15)

where ŷi denotes the predicted label vector of data point xi and
⊕ is the XOR-operator. MaF1 is obtained by first computing
the F1-score for each label, and then averaging over all labels.

MaF1 =
1
C

C∑

c=1

2
∑n

i=1 ŷicyic∑n
i=1 ŷic +

∑n
i=1 yic

, (16)

MiF1 calculates the F1 score on the predictions of different la-
bels as a whole,

MiF1 =
2
∑n

i=1
∑C

c=1 ŷicyic∑n
i=1

∑C
c=1 ŷic +

∑n
i=1

∑C
c=1 yic

, (17)

We note that HL, MiF1 and MaF1 are computed based on hard
labels assignments, whereas the four other measures are com-
puted based on soft labels. In all of our experiments, we obtain
the hard labels by putting a threshold at 0.5.

RL computes the average ratio of reversely ordered label
pairs of each data point. AP evaluates the average fraction of
relevant labels ranked higher than a particular relevant label.
OE gives the ratio of data points where the most confident pre-
dicted label is wrong. Cov gives an average of how far one
needs to go down on the list of ranked labels to cover all the
relevant labels of the data point. For a more detailed descrip-
tion of these measures, we point the interested reader to [72].

In this work, we modify four of the evaluation metrics such
that all of them take values in the interval [0, 1] and “higher
always is better”. Hence, we define

HL′ = 1 − HL, (18)
RL′ = 1 − RL, (19)
OE′ = 1 − OE, (20)

and normalized coverage (Cov’) by

Cov′ = 1 −Cov/(C − 1). (21)

4.2. Baseline dimensionality reduction methods
In this work, we consider the following other DR methods:

CCA, MVMD, MDDMp, MDDMf and four variants of MLDA,
namely wMLDAb, wMLDAe, wMLDAc and wMLDAd. These
methods are supervised and require labeled data, and are there-
fore trained only on the labeled part of the training data. In
addition, we compare to a semi-supervised method, SSMLDR,
which we adapt to noisy multi-labels by using the label propa-
gation algorithm we propose in this paper instead of the label
propagation method that was originally proposed in SSMLDR.
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Figure 1: 3 dimensional embedding of the synthetic dataset obtained using (a) SSMLDR; (b) NMLSDR; (c) NMLSDR with multi-classes included; and (d) PCA.

4.3. Hyper-parameter selection

For the ML-kNN classifier we set k = 10. The effect of
varying the number of neighbors will be left for further work.
In order to learn the NMLSDR embedding we use a kNN-graph
with k = 10 and binary weights. Moreover, we set αi = 0.6 for
labeled data and αi = 0.999 for unlabeled data. By doing so,
one ensures that an unlabeled datapoint is not affected by its
initial value, but gets all contribution from the neighbors during
the propagation.

4.4. Illustrative example on synthetic toy data

Dataset description. To test the framework in a controlled ex-
periment, a synthetic dataset is created as follows.

A dataset of size 8000 samples is created, where each of the
data points has dimensionality 320. The number of classes is
set to 4, and we generate 2000 samples from each class. 30%
from class 1 also belong to class 2, and vice versa. 20% from
class 2 also belong to class 3 and vice versa, whereas 25% from
class 3 also belong to class 4 and vice versa.

A sample from class i is generated by randomly letting 10%
of the features in the interval {20(i − 1) + 1, . . . , 20i} take a ran-
dom integer value between 1 and 10. Since there are 4 classes,
this means that the first 80 features are directly dependent on
the class-membership.

For the remaining 240 features we consider 20 of them at
the time. We randomly select 50% of the 8000 samples and
randomly let 20% of the 20 features take a random integer value
between 1 and 10. We repeat this procedure for the 12 different
sets of 20 features {20(i − 1) + 1, . . . , 20i}, i = 5, 6, . . . , 16.

All features that are not given a value using the procedure
described above are set to 0. Noise is injected into the labels
by randomly flipping a fraction p = 0.1 of the labels and we
make the data partially labeled by removing 50 % of the labels.
2000 of the samples are kept aside as an independent test set.
We note that noisy labels are often easier and cheaper to ob-
tain than true labels and it is therefore not unreasonable that the
fraction of labeled examples is larger than what it commonly is
in traditional semi-supervised learning settings.

Results. We apply the NMLSDR method in combination with
the semi-supervised ML-kNN classifier as explained above and
compare to SSMLDR. We create two baselines by, for both of
these methods, using a different value for the hyperparameter
αi for the labeled part of the data, namely 0, which corresponds
to clamping. We denote these two baselines by SSMLDR* and
NMLSDR*. In addition, we compare to baselines that only
utilize the labeled part of the data, namely the supervised DR
methods explained above in combination with a ML-kNN clas-
sifier. The data is standardized to 0 mean and 1 in standard
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Method HL’ RL’ AP OE’ Cov’ MaF1 MiF1
CCA 0.863 0.884 0.898 0.852 0.816 0.787 0.785
MVMD 0.906 0.912 0.924 0.897 0.836 0.850 0.849
MDDMp 0.906 0.911 0.924 0.897 0.836 0.851 0.850
MDDMf 0.859 0.888 0.900 0.855 0.819 0.785 0.783
wMLDAb 0.844 0.871 0.885 0.831 0.807 0.754 0.750
wMLDAe 0.864 0.885 0.899 0.855 0.818 0.790 0.788
wMLDAc 0.865 0.887 0.900 0.857 0.818 0.787 0.785
wMLDAd 0.869 0.891 0.907 0.869 0.822 0.788 0.786
SSMLDR* 0.863 0.883 0.899 0.859 0.814 0.796 0.793
SSMLDR 0.879 0.898 0.910 0.871 0.827 0.817 0.814
NMLSDR* 0.907 0.919 0.929 0.903 0.842 0.861 0.859
NMLSDR 0.913 0.925 0.935 0.912 0.846 0.868 0.866

Table 1: Performance of different embeddings on the synthetic dataset.

deviation and we let the dimensionality of the embedding be 3.
Fig. 1a and 1b show the embeddings obtained obtained using

SSMLDR and NMLSDR, respectively. For ivisualization pur-
poses, we have only plotted those datapoints that exclusively
belong to one class. In Fig. 1c, we have added two of the multi-
classes for the NMLSDR embedding. For comparison, we also
added the embedding obtained using PCA in Fig. 1d. As we can
see, in the PCA embedding the classes are not separated from
each other, whereas in the NMLSDR and SSMLDR embed-
dings the classes are aligned along different axes. It can be seen
that the classes are better separated and more compact in the
NMLSDR embedding than the SSMLDR embedding. Fig. 1c
shows that the data points that belong to multiple classes are
placed where they naturally belong, namely between the axes
corresponding to both of the classes they are member of.

Tab. 1 shows the results obtained using the different meth-
ods on the synthetic dataset. As we can see, our proposed
method gives the best performance for all metrics. Moreover,
NMLSDR with αL

i = 0, which corresponds to clamping of the
labeled data during label propagation gives the second best re-
sults but cannot compete with our proposed method, in which
the labels are allowed to change during the propagation to ac-
count for noisy labels. We also note that, even though the
SSMLDR improves the MLDA approaches that are based on
only the labeled part of the data, it gives results that are consid-
erably worse than NMLSDR.

4.5. Benchmark datasets

Experimental setup. We consider the following benchmark
datasets 2: Birds, Corel, Emotions, Enron, Genbase, Medi-
cal, Scene, Tmc2007 and Yeast. We also add our synthetic
toy dataset as a one of our benchmark datasets (described in
Sec. 4.4). These datasets are shown in Tab. 2, along with some
useful characteristics. In order to be able to apply our frame-
work to the benchmark datasets, we randomly flip 10 % of the
labels to generate noisy labels and let 30 % of the data points
training sets be labeled. All datasets are standardized to zero
mean and standard deviation one.

We apply the DR methods to the partially and noisy labeled
multi-label training sets in order to learn the projection matrix

2Downloaded from mulan.sourceforge.net/datasets-mlc.html
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Figure 2: Mean of the Wilcoxon score obtained over the 7 different metrics.

P, which in turn is used to map the D-dimensional training and
test sets to a d−dimensional representation. d is set as large
as possible, i.e. to C − 1 for the MLDA-based methods and
C for the other methods. Then we train a ML-kNN classi-
fier using the low-dimensional training sets, assuming that the
true multi-labels are known and validate the performance on the
low-dimensional test sets.

In total we are evaluating the performance over 10 different
datasets and across 7 different performance measures for all the
feature extraction methods we use. Hence, to investigate which
method performs better according to the different metrics, we
also report the number of times each method gets the highest
value of each metric. In addition, we compare all pairs of meth-
ods by using a Wilcoxon signed rank test with 5% significance
level [73]. Similarly to [56], if method A performs better than B
according to the test, A is assigned the score 1 and B the score
0. If the null hypothesis (method A and B perform equally) is
not rejected, both A and B are assigned an equal score of 0.5.

Results. Tab. 3 shows results in terms of HL’. NMLSDR gets
best HL’-score for eight of the datasets and achieves a maximal
Wilcoxon score, i.e performs statistically better than all nine
other methods according to the test at a 5 % significance level.
The second best method MDDMp gets the highest HL’ score for
three datasets and Wilcoxon score of 7.5. From Tab. 4 we see
that NMLSDR achieves the highest RL’-score seven times and
a Wilcoxon score of 8.5. The second best method is MVMD,
which obtains three of the highest RL’ values and a Wilcoxon
score of 8.0.

Tab. 5 shows performance in terms of AP. The highest AP
score is achieved for NMLSDR for eight datasets and it gets a
maximal Wilcoxon score of 9.0. According to the Wilcoxon
score second place is tied between MVMD and MDDMp.
However, MVMD gets the highest AP score for two datasets,
whereas MDDMp does not get the highest score for any of
them. OE’ is presented in Tab. 6. We can see that NMLSDR
gets a maximal Wilcoxon score and the highest OE’ score for
seven datasets. MVMD is number two with a Wilcoxon score
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Dataset Domain Train instances Test instances Attributes Labels Cardinality
Birds audio 322 323 260 19 1.06
Corel scene 5188 1744 500 153 2.87
Emotions music 391 202 72 6 1.81
Enron text 1123 579 1001 52 3.38
Genbase biology 463 199 99 25 1.26
Medical text 645 333 1161 39 1.24
Scene scene 1211 1196 294 6 1.06
Tmc2007 text 3000 7077 493 22 2.25
Toy synthetic 6000 2000 320 4 1.38
Yeast biology 1500 917 103 14 4.23

Table 2: Description of benchmark datasets considered in our experiments.

CCA MVMD MDDMp MDDMf wMLDAb wMLDAe wMLDAc wMLDAd SSMLDR NMLSDR
Birds 0.947 0.950 0.950 0.947 0.948 0.949 0.949 0.949 0.949 0.951
Corel 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.980
Emotions 0.715 0.771 0.778 0.711 0.696 0.714 0.709 0.717 0.786 0.787
Enron 0.941 0.950 0.950 0.942 0.941 0.941 0.941 0.940 0.938 0.950
Genbase 0.989 0.996 0.996 0.988 0.990 0.991 0.988 0.989 0.994 0.997
Medical 0.976 0.974 0.974 0.976 0.974 0.975 0.975 0.976 0.966 0.975
Scene 0.810 0.899 0.900 0.809 0.810 0.814 0.817 0.810 0.873 0.897
Tmc2007 0.914 0.928 0.928 0.912 0.911 0.911 0.911 0.916 0.922 0.929
Toy 0.836 0.894 0.894 0.839 0.821 0.831 0.831 0.854 0.861 0.903
Yeast 0.780 0.791 0.790 0.782 0.785 0.783 0.781 0.781 0.793 0.793
Best values 2 2 3 2 1 1 1 2 2 8
Wilcoxon 2.0 7.0 7.5 2.5 2.0 3.0 2.5 3.5 6.0 9.0

Table 3: Performance in terms of 1 - Hamming loss (HL’) across 10 different benchmark datasets.

CCA MVMD MDDMp MDDMf wMLDAb wMLDAe wMLDAc wMLDAd SSMLDR NMLSDR
Birds 0.715 0.766 0.767 0.734 0.709 0.718 0.719 0.725 0.681 0.771
Corel 0.800 0.808 0.808 0.800 0.799 0.799 0.800 0.800 0.801 0.814
Emotions 0.695 0.824 0.824 0.709 0.693 0.700 0.676 0.714 0.829 0.845
Enron 0.894 0.911 0.911 0.893 0.893 0.892 0.891 0.893 0.883 0.914
Genbase 0.993 0.995 0.995 0.993 0.994 0.992 0.992 0.991 0.995 1.000
Medical 0.925 0.952 0.949 0.925 0.916 0.921 0.919 0.945 0.856 0.946
Scene 0.585 0.900 0.898 0.629 0.574 0.583 0.572 0.616 0.853 0.898
Tmc2007 0.831 0.906 0.906 0.830 0.830 0.830 0.831 0.847 0.872 0.910
Toy 0.871 0.909 0.909 0.870 0.849 0.865 0.861 0.888 0.887 0.926
Yeast 0.806 0.820 0.819 0.811 0.810 0.809 0.806 0.803 0.818 0.816
Best values 0 3 0 0 0 0 0 0 0 7
Wilcoxon 3.0 8.0 7.5 4.5 1.5 2.0 2.0 5.0 3.0 8.5

Table 4: Performance in terms of 1 - Ranking loss (RL’) across 10 different benchmark datasets.

CCA MVMD MDDMp MDDMf wMLDAb wMLDAe wMLDAc wMLDAd SSMLDR NMLSDR
Birds 0.389 0.499 0.500 0.426 0.374 0.392 0.379 0.424 0.357 0.502
Corel 0.260 0.277 0.277 0.261 0.265 0.263 0.263 0.268 0.266 0.288
Emotions 0.669 0.781 0.773 0.686 0.672 0.687 0.666 0.704 0.799 0.808
Enron 0.592 0.669 0.670 0.583 0.584 0.582 0.580 0.578 0.526 0.675
Genbase 0.963 0.990 0.993 0.964 0.960 0.968 0.963 0.969 0.984 0.997
Medical 0.673 0.722 0.716 0.666 0.644 0.674 0.669 0.723 0.446 0.725
Scene 0.491 0.836 0.835 0.534 0.481 0.488 0.475 0.521 0.781 0.834
Tmc2007 0.584 0.714 0.713 0.587 0.579 0.576 0.577 0.623 0.662 0.721
Toy 0.882 0.921 0.921 0.880 0.862 0.880 0.875 0.900 0.897 0.933
Yeast 0.732 0.748 0.747 0.731 0.733 0.733 0.729 0.725 0.745 0.741
Best values 0 2 0 0 0 0 0 0 0 8
Wilcoxon 3.5 7.5 7.5 4.0 1.0 3.5 1.0 5.0 3.0 9.0

Table 5: Performance in terms of Average precision (AP) across 10 different benchmark datasets.

of 8.0 and two best values.

Tab. 7 shows Cov’. NMLSDR gets a maximal Wilcoxon
score and the highest Cov’ value for seven datasets. Despite
that MVMD gets the highest Cov’ for three datasets and MD-

DMp for none of the datasets, the second best Wilcoxon score
is 7.5 and tied between MVMD and MDDMp. MaF1 is shown
in Tab. 8. The best method, which is our proposed method
gets a maximal Wilcoxon score and the highest MaF1 value
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CCA MVMD MDDMp MDDMf wMLDAb wMLDAe wMLDAc wMLDAd SSMLDR NMLSDR
Birds 0.273 0.419 0.407 0.314 0.250 0.273 0.250 0.297 0.203 0.419
Corel 0.250 0.261 0.262 0.252 0.255 0.254 0.253 0.267 0.260 0.283
Emotions 0.535 0.673 0.644 0.564 0.535 0.589 0.550 0.589 0.718 0.728
Enron 0.620 0.762 0.762 0.610 0.587 0.604 0.606 0.579 0.544 0.765
Genbase 0.950 0.990 0.995 0.955 0.935 0.960 0.950 0.965 0.980 0.995
Medical 0.583 0.607 0.592 0.589 0.538 0.583 0.577 0.628 0.323 0.619
Scene 0.265 0.732 0.729 0.319 0.258 0.264 0.247 0.303 0.656 0.727
Tmc2007 0.527 0.650 0.648 0.531 0.523 0.519 0.516 0.578 0.604 0.656
Toy 0.821 0.888 0.887 0.819 0.785 0.821 0.811 0.850 0.849 0.903
Yeast 0.760 0.755 0.749 0.740 0.747 0.751 0.748 0.744 0.751 0.739
Best values 1 2 1 0 0 0 0 1 0 7
Wilcoxon 3.5 8.0 7.0 4.0 1.0 3.5 1.0 5.0 3.0 9.0

Table 6: Performance in terms of 1 - One error (OE’) across 10 different benchmark datasets.

CCA MVMD MDDMp MDDMf wMLDAb wMLDAe wMLDAc wMLDAd SSMLDR NMLSDR
Birds 0.821 0.851 0.852 0.830 0.818 0.824 0.824 0.831 0.808 0.860
Corel 0.601 0.617 0.617 0.603 0.600 0.599 0.601 0.603 0.603 0.628
Emotions 0.563 0.684 0.679 0.579 0.567 0.565 0.554 0.587 0.679 0.696
Enron 0.738 0.762 0.763 0.736 0.737 0.736 0.734 0.736 0.724 0.768
Genbase 0.983 0.984 0.984 0.983 0.985 0.981 0.981 0.980 0.985 0.991
Medical 0.918 0.941 0.939 0.917 0.909 0.913 0.911 0.936 0.859 0.939
Scene 0.637 0.899 0.898 0.672 0.625 0.633 0.624 0.663 0.860 0.898
Tmc2007 0.740 0.835 0.835 0.741 0.740 0.739 0.741 0.762 0.790 0.840
Toy 0.809 0.837 0.837 0.807 0.794 0.805 0.802 0.822 0.820 0.849
Yeast 0.513 0.533 0.532 0.526 0.526 0.523 0.519 0.518 0.530 0.528
Best values 0 3 0 0 0 0 0 0 0 7
Wilcoxon 2.5 7.5 7.5 4.5 2.0 2.5 1.5 5.0 3.0 9.0

Table 7: Performance in terms of 1 - Normalized coverage (Cov’) across 10 different benchmark datasets.

CCA MVMD MDDMp MDDMf wMLDAb wMLDAe wMLDAc wMLDAd SSMLDR NMLSDR
Birds 0.011 0.079 0.076 0.027 0.002 0.000 0.000 0.039 0.006 0.104
Corel 0.012 0.023 0.022 0.014 0.010 0.010 0.010 0.019 0.010 0.021
Emotions 0.381 0.599 0.604 0.419 0.366 0.385 0.371 0.415 0.623 0.649
Enron 0.044 0.102 0.105 0.048 0.043 0.049 0.044 0.065 0.063 0.101
Genbase 0.520 0.561 0.603 0.514 0.497 0.515 0.497 0.442 0.558 0.630
Medical 0.153 0.168 0.164 0.159 0.135 0.126 0.133 0.197 0.038 0.175
Scene 0.059 0.705 0.707 0.132 0.084 0.055 0.041 0.098 0.569 0.700
Tmc2007 0.183 0.419 0.418 0.189 0.171 0.177 0.175 0.212 0.349 0.434
Toy 0.732 0.830 0.828 0.741 0.709 0.722 0.724 0.758 0.776 0.845
Yeast 0.266 0.318 0.323 0.276 0.281 0.279 0.248 0.233 0.321 0.342
Best values 0 1 2 0 0 0 0 1 0 6
Wilcoxon 2.5 7.5 7.5 5.0 2.0 2.0 1.0 3.5 5.0 9.0

Table 8: Performance in terms of Macro F1-score (MaF1) across 10 different benchmark datasets.

CCA MVMD MDDMp MDDMf wMLDAb wMLDAe wMLDAc wMLDAd SSMLDR NMLSDR
Birds 0.036 0.178 0.172 0.063 0.006 0.000 0.000 0.065 0.019 0.197
Corel 0.017 0.033 0.031 0.019 0.013 0.013 0.013 0.031 0.015 0.033
Emotions 0.459 0.630 0.639 0.450 0.404 0.448 0.430 0.460 0.652 0.666
Enron 0.351 0.523 0.530 0.413 0.340 0.378 0.369 0.310 0.346 0.518
Genbase 0.882 0.953 0.959 0.872 0.885 0.902 0.873 0.881 0.932 0.968
Medical 0.459 0.501 0.495 0.505 0.400 0.440 0.455 0.498 0.212 0.496
Scene 0.066 0.700 0.702 0.142 0.086 0.058 0.041 0.102 0.584 0.698
Tmc2007 0.421 0.589 0.586 0.443 0.440 0.438 0.438 0.485 0.540 0.590
Toy 0.729 0.828 0.826 0.739 0.706 0.719 0.721 0.756 0.774 0.843
Yeast 0.573 0.605 0.607 0.577 0.582 0.584 0.555 0.548 0.609 0.626
Best values 0 1 2 1 0 0 0 0 0 7
Wilcoxon 2.5 8.0 7.5 5.0 1.5 2.5 2.0 4.0 3.5 8.5

Table 9: Performance in terms of Micro F1-score (MiF1) across 10 different benchmark datasets.

for six datasets. Tab. 9 shows MiF1. NMLSDR achieves 8.5
in Wilcoxon score and has the highest MiF1 score for seven
datasets.

In total, NMLSDR consistently gives the best performance

for all seven evaluation metrics. Moreover, in order to summa-
rize our findings, we compute the mean Wilcoxon score across
all seven performance metrics and plot the result in Fig. 2. If
we sort these results, we get NMLSDR (8.86), MVMD (7.64),
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MDDMp (7.43), wMLDAd (4.43), MDDMf (4.21), SSMLDR
(3.79), CCA (2.79), wMLDAe (2.71) and wMLDAb/wMLDAc
(1.57). The best method, which is our proposed method, gets
a mean value that is 1.22 higher than number two. The second
best method is MVMD, slightly better than MDDMp. The best
MLDA-based method is wMLDAd, which is ranked 4th, how-
ever, with a much lower mean value than the three best meth-
ods. The semi-supervised extension of MLDA (SSMLDR) is
ranked 6th and is actually performing worse that wMLDAd,
which is a bit surprising. However, SSMLDR also uses a bi-
nary weighting scheme, and should therefore be considered as
a semi-supervised variant of wMLDAb, which it performs con-
siderably better than. wMLDAb and wMLDAc give the worst
performance of all the 10 methods.

The main reason why the MLDA-based approaches in gen-
eral perform worse than the other DR methods is probably re-
lated to what we discussed in Sec. 2, namely that LDA-based
approaches are heavily affected by outliers and wrongly labeled
data. More concretely, the fact that the number of labeled data
points are relatively few and that the labels are noisy, leads
to errors in the scatter matrices that even might amplify since
one has to invert a matrix to solve the generalized eigenvalue
problem. The semi-supervised extension of MLDA, SSMLDR,
improves quite much compared to wMLDAb, but the starting
point is so bad that even though it improves, it cannot compete
with the best methods. On the other hand, the MDDM-based
methods (MVMD and MDDMp) are not so sensitive to label
noise and the fact that there are few labels, and therefore these
methods can perform quite well even though they are trained
only on the labeled subset. Hence, the reasons to the good per-
formance of NMLSDR are probably that MDDMp is the ba-
sis of NMLSDR, and that NMLSDR in addition uses our label
propagation method to improve.

5. Case study

In this section, we describe a case study where we study pa-
tients potentially suffering from multiple chronic diseases. This
healthcare case study reflects the need for label noise-tolerant
methods in a non-standard situation (semi-supervised learning,
multiple labels, high dimensionality). The objective is to iden-
tify patients with certain chronic diseases, more specifically hy-
pertension and/or diabetes mellitus. In order to do so, we take
an approach where we use clinical expertise to create a par-
tially and noisy labeled dataset, and thereafter apply our pro-
posed end-to-end framework, namely NMLSDR for dimension-
ality reduction in combination with semi-supervised ML-kNN
to classify these patients. An overview of the framework em-
ployed in the case study is shown in Fig. 3.

Chronic diseases. According to The World Health Organisa-
tion, a disease is defined as chronic if one or several of the fol-
lowing criteria are satisfied: the disease is permanent, requires
special training of the patient for rehabilitation, is caused by
non-reversible pathological alterations, or requires a long pe-
riod of supervision, observation, or care. The two most preva-
lent chronic diseases for people over 64 years are those that

we study in this paper, namely hypertension and diabetes melli-
tus [74]. These types of diseases represent an increasing prob-
lem in modern societies all over the world, which to a large de-
gree is due to a general increase in life expectancy, along with
an increased prevalence of chronic diseases in an aging popu-
lation [75]. Moreover, the economical burden associated with
these chronic conditions is high. For example, in 2017, treat-
ment of diabetic patients accounted for 1 out of 4 healthcare
dollars in the United States [76]. Hence, in the future, a signifi-
cant amount of resources must be devoted to the care of chronic
patients and it will be important not only to improve the patient
care, but also more efficiently allocate the resources spent on
treatment of these diseases.

5.1. Data
In this case study, we study a dataset consisting of patients

that potentially have one or more chronic diseases. All of these
patients got some type of treatment at University Hospital of
Fuenlabrada, Madrid (Spain) in the year 2012. The patients
are described by diagnosis codes following the International
Classification of Diseases 9th revision, Clinical Modification
(ICD9-CM) [77], and pharmacological dispensing codes ac-
cording to Anatomical Therapeutic Chemical (ATC) classifica-
tion systems [78]. Some preprocessing steps are considered.
Similarly to [79, 80], the ICD9-CM and ATC codes are repre-
sented using frequencies, i.e, for each patient, we consider all
encounters with the health system in 2012 and we count how
many times each ICD9-CM and ATC code appear in the elec-
tronic health record. In total there are 1517 ICD9-CM codes
and 746 ATC codes. However, all codes that appear for less
than 10 patients across the training set are removed. After this
feature selection, the dimensionality of the data is 455, of which
267 represent ICD9-CM codes and 188 represent ATC codes.

We do have access to ground truth labels that indicate what
type of chronic disease(s) the patients have. These are provided
by a patient classification system developed by the company
3M [81]. This classification system stratify patients into so-
called Clinical Risk Groups (CRG) that indicate what type(s)
of chronic disease the patient has and the severity based on the
patient encounters with the health system during a period of
time, typically one year. A five-digit classification code is used
to assign each patient to a severity risk group. The first digit of
the CRG is the core health status group, ranging from healthy
(1) to catastrophic (9); the second to fourth digits represents the
base 3M CRG; and the fifth digit is used for characterizing the
severity-of-illness levels.

For the purpose of this work, the ground truth labels are only
used for cohort selection and final evaluation of our models.
For the remaining parts they are considered unknown. To select
a cohort, we consider the first four digits of the CRGs to ana-
lyze the the following chronic conditions: CRG-1000 (healthy),
which contains 46835 individuals; CRG-5192 (hypertension)
with 12447 patients; CRG-5424 (diabetes), which has 2166 pa-
tients; and CRG-6144 (hypertension and diabetes), with a total
of 3179 patients. We employ an undersampling strategy and
randomly select 2166 patients from each of the four categories,
and thereby obtain balanced classes. An independent test set is
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Figure 3: Illustration of proposed framework applied to identify patients with chronic diseases.

created by randomly selecting 20 % of these patients. Hence,
the training set contains 6932 patients and the test set 1732 pa-
tients.

5.2. Rule-based creation of noisy labeled training data using
clinical knowledge

There are some important ICD9-CM codes and ATC-drugs
that are strongly correlated with hypertension and diabetes, re-
spectively. These are verified by our clinical experts and de-
scribed in Tab. 10. In particular, the ICD9-CM code 250 is
important for diabetes because it is the code for diabetes melli-
tus. Similarly, the ICD9-CM codes 401-405 are important for
hypertension because they describe different types of hyperten-
sion.

In this case study we are interested in four groups, namely
those that have hypertension, those that have diabetes, those
that have both, and those that do not have any these two chronic
diseases. Thanks to the clinical expertise and the information
that they provided us with, which is summarized in Tab. 10,
we can create a partially and noisy labeled dataset using the
following set of rules.

1. Those that have the ICD codes 250 and any of the codes
401-405 are assigned to both the hypertension and diabetes
class.

2. Those that have the ICD code 250, but none of the 7 ICD9-
CM codes and 64 ATC drugs listed by the clinicians as
indicators for hypertension, are labeled with diabetes.

3. Those that have any of the ICD9-CM codes 401-405, but
none of the 4 ICD9-CM codes for diabetes or 12 ATC
drugs for diabetes, are labeled with hypertension.

4. Those that do not have any of the ICD9-CM codes or ATC
drugs listed up in Tab. 10 are labeled as healthy.

5. The remaining patients do not get a label.

In total, this leads to 1734 in the healthy class, 2547 in the
hypertension class, 1971 in the diabetes class. 1302 of the
patients in the hypertension class also belongs to the diabetes
class. 1982 of the patients do not get a label using the the
routine described above. To be able to examine for statistical
significance, we randomly select 1000 of the noisy labeled pa-
tients and 1000 of the unlabeled patients. By doing so, we can
repeat the experiments several times and test for significance
using a pairwise t-test. We do the repetition 10 times and let the
significance level be 95%.

5.2.1. Performing feature extraction and classification
After having obtained the partially and noisy labeled multi-

label dataset, we do feature extraction using NMLSDR, fol-
lowed by semi-supervised multi-label classification, exactly in
the same manner as we did it for the synthetic toy data in Sec-
tion 4.4. In this case study, we use the same evaluation met-
rics, hyper-parameters and baseline feature extraction methods
as explained in Sec. 4.1. The dimensionality of the embedding
is set to 2 for all embedding methods.

5.3. Results

Tab. 11 shows the performance of the different DR methods
on the task of classifying patients with chronic diseases in terms
of seven different evaluation metrics. According to the pairwise
t-test, our method achieves the best performance for all met-
rics. Second place is tied between MDDMp and MVMD. The
semi-supervised variant of MLDA, namely SSMLDR, performs
better than the supervised counterparts (wMLDAb, wMLDAc,
wMLDAd, wMLDAe) and is consistently ranked 4th accord-
ing to all metrics. Interestingly, the more advanced weighting
schemes in wMLDAc and wMLDAd actually lead to worse re-
sults than what the simple weights in wMLDAb and wMLdAe
give. CCA gives the worst performance according to 4 of the
evaluation measures, for the 3 other measures the difference be-
tween CCA and wMLDAd is not significant.

Fig. 4 shows plots of the two-dimensional embeddings of
the chronic patients obtained using four different DR meth-
ods, namely MDDMp, wMLDAb, NMLSDR and SSMLDR.
The different colors and markers represent the true CRG-labels
of the patients. As we can see, visually the MDDMp and
NMLSDR embeddings look quite similar. The healthy patients
are squeezed together in a small area (purple dots), and the yel-
low dots that represent patients that have both diabetes and hy-
pertension are placed between the blue dots, which are those
that have only hypertension, and the red dots, which represent
the patient that only have diabetes. Intuitively, this placement
makes sense. On the other hand, the embedding obtained us-
ing SSMLDR does not look similar to its counterpart obtained
using wMLDAb, and it is easy to see why the performance of
wMLDAb is worse.

6. Conclusions

In this paper we have introduced the NMLSDR method, a di-
mensionality reduction method for partially and noisy labeled
multi-label data. To our knowledge, NMLSDR is the only
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Chronicity ATC codes ICD9-CM codes
Hypertension C01AA, C01BA, C01BA, C01BC, C01BD, C01CA, C01CB, C01CX, 362,

C01DA, C01DX, C01EB, C02AB, C02AC, C02CA, C02DB, C02DC, 401,
C02DD, C02K, C02LC, C03AA, C03AX, C03BA, C03CA, C03DA 402,
C03EA, C03EB, C04AD, C04AE, C04AX, C05AA, C05AD, C05AE, 403,
C05AX, C05BA, C05BB, C05BX, C05CA, C05CX, C07AA, C07AB, 404,
C07AG, C07B, C07G, C07D, C07E, C07X, C08CA, C08DA, C08DB, 405,
C08GA, C09AA, C09BA, C09BB, C09CA, C09DA, C09DB, C09XA, 760
C10AA, C10AB, C10AC, C10AD, C10AX, C10BA, C10BX

Diabetes A10AB, A10AC, A10AD, A10AE, A10AF, A10BA, A10BB, 250, 588,
A10BD, A10BFM, A10BGM, A10BH, A10BX, 648, 775

Table 10: ICD9-CM codes and ATC codes associated with hypertension and diabetes.

Method HL’ RL’ AP OE’ Cov’ MaF1 MiF1
CCA 0.782 ± 0.009 0.823 ± 0.008 0.866 ± 0.006 0.755 ± 0.011 0.798 ± 0.004 0.712 ± 0.012 0.741 ± 0.011
MVMD 0.875 ± 0.006 0.930 ± 0.006 0.942 ± 0.004 0.894 ± 0.006 0.861 ± 0.005 0.853 ± 0.008 0.858 ± 0.006
MDDMp 0.875 ± 0.006 0.930 ± 0.005 0.942 ± 0.003 0.895 ± 0.006 0.861 ± 0.005 0.853 ± 0.008 0.858 ± 0.006
MDDMf 0.811 ± 0.010 0.853 ± 0.012 0.888 ± 0.009 0.798 ± 0.017 0.815 ± 0.006 0.750 ± 0.015 0.774 ± 0.013
wMLDAb 0.794 ± 0.007 0.844 ± 0.012 0.883 ± 0.008 0.788 ± 0.017 0.810 ± 0.008 0.731 ± 0.012 0.744 ± 0.011
wMLDAe 0.805 ± 0.008 0.856 ± 0.009 0.891 ± 0.006 0.801 ± 0.014 0.818 ± 0.005 0.749 ± 0.013 0.763 ± 0.012
wMLDAc 0.790 ± 0.007 0.842 ± 0.008 0.882 ± 0.004 0.783 ± 0.009 0.810 ± 0.005 0.729 ± 0.012 0.745 ± 0.011
wMLDAd 0.779 ± 0.013 0.838 ± 0.012 0.874 ± 0.008 0.770 ± 0.016 0.805 ± 0.008 0.720 ± 0.017 0.729 ± 0.018
SSMLDR 0.839 ± 0.005 0.889 ± 0.009 0.911 ± 0.006 0.839 ± 0.012 0.835 ± 0.008 0.799 ± 0.007 0.811 ± 0.005
NMLSDR 0.882 ± 0.005 0.939 ± 0.004 0.950 ± 0.003 0.909 ± 0.006 0.867 ± 0.005 0.864 ± 0.007 0.865 ± 0.005

Table 11: Results in terms of 7 evaluation measures (average±std) obtained by doing feature extraction using different methods, followed by semi-supervised
ML-kNN classification, on partially and noisy labeled chronicity data. The best performing methods according to each of the 7 metrics are marked in bold, where
the statistical significance is examined using a pairwise t-test at 95% significance level.

method the can explicitly deal with this type of data. Key com-
ponents in the method are a label propagation algorithm that can
deal with noisy data and maximization of feature-label depen-
dence using the Hilbert-Schmidt independence criterion. Our
extensive experimental sections show that NMLSDR is a good
dimensionality reduction method in settings where one has ac-
cess to partially and noisy labeled multi-label data.

In the future, we will investigate more thoroughly the effect
of using different weighting schemes in NMLSDR, similarly to
how it is done in MLDA with wMLDAb, wMLDAc, wMLDAd
and wMDLAd.
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Abstract

The time series cluster kernel (TCK) provides a powerful tool for analysing multivariate time series subject to missing data. TCK is
designed using an ensemble learning approach in which Bayesian mixture models form the base models. Because of the Bayesian
approach, TCK can naturally deal with missing values without resorting to imputation and the ensemble strategy ensures robustness
to hyperparameters, making it particularly well suited for unsupervised learning.

However, TCK assumes missing at random and that the underlying missingness mechanism is ignorable, i.e. uninformative, an
assumption that does not hold in many real-world applications, such as e.g. medicine. To overcome this limitation, we present a
kernel capable of exploiting the potentially rich information in the missing values and patterns, as well as the information from the
observed data. In our approach, we create a representation of the missing pattern, which is incorporated into mixed mode mixture
models in such a way that the information provided by the missing patterns is effectively exploited. Moreover, we also propose a
semi-supervised kernel, capable of taking advantage of incomplete label information to learn more accurate similarities.

Experiments on benchmark data, as well as a real-world case study of patients described by longitudinal electronic health record
data who potentially suffer from hospital-acquired infections, demonstrate the effectiveness of the proposed methods.

Keywords: Multivariate time series, Kernel methods, Missing data, Informative missingness, Semi-supervised learning

1. Introduction

Multivariate time series (MTS) frequently occur in a whole
range of practical applications such as medicine, biology, and
climate studies, to name a few. A challenge that complicates
the analysis is that real-world MTS are often subject to large
amounts of missing data. Traditionally, missingness mecha-
nisms have been categorized into missing completely at random
(MCAR), missing at random (MAR) and missing not at random
(MNAR) [1]. The main difference between these mechanisms
consists in whether the missingness is ignorable (MCAR and
MAR) or non-ignorable (MNAR) [1, 2, 3]. In e.g. medicine,
non-ignorable missingness can occur when the missing patterns
R are related to the disease under study Y . In this case, the
distribution of the missing patterns for diseased patients is not
equal to the corresponding distribution for the control group,
i.e. p(R | Y = 1) , p(R | Y = 0). Hence, the missingness is
informative [4, 5, 6]. By contrast, uninformative missingness
will be referred to as ignorable in the remainder of this paper.

Both ignorable and informative missingness occur in real-
world data. An example from medicine of ignorable missing-

∗Corresponding author at: Department of Mathematics and Statistics, Fac-
ulty of Science and Technology, UiT – The Arctic University of Norway, N-
9037 Tromsø, Norway

ness occurs e.g. if a clinician orders lab tests for a patient and
the tests are performed, but because of an error the results are
not recorded. On the other hand, informative missingness could
occur if it is decided to not perform lab tests because the doc-
tor thinks the patient is in good shape. In the latter case, the
missing values and patterns potentially contain rich informa-
tion about the diseases and clinical outcomes for the patient.
Efficient data-driven approaches aiming to extract knowledge,
perform predictive modeling, etc., must be capable of capturing
this information.

Various methods have been proposed to handle missing data
in MTS [7, 8, 9]. One simple approach is to create a complete
dataset by discarding the time series with missing data. How-
ever, this gives unbiased predictions only if the missingness
mechanism is MCAR. As an alternative, a preprocessing step
involving imputation of missing values with some estimated
value, such as the mean, is common. Other so-called single
imputation methods exploit machine learning based methods
such as multilayer perceptrons, self-organizing maps, k-nearest
neighbors, recurrent neural networks and regression-based im-
putation [10, 11]. Alternatively, one can impute missing values
using various smoothing and interpolation techniques [12, 10].
Among these, a prominent example is the last observation car-
ried forward (LOCF) scheme that imputes the last non-missing
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value for the following missing values. Limitations of impu-
tation methods are that they introduce additional bias and they
ignore uncertainty associated with the missing values.

Multiple imputation [13] resolves this problem, to some
extent, by estimating the missing values multiple times and
thereby creating multiple complete datasets. Thereafter, e.g. a
classifier is trained on all datasets and the results are combined
to obtain the final predictions. However, despite that multiple
imputation and other imputation methods can give satisfying
results in some scenarios, these are ad-hoc solutions that lead
to a multi-step procedure in which the missing data are han-
dled separately and independently from the rest of the analy-
sis. Moreover, the information about which values are actually
missing (the missing patterns) is lost, i.e. imputation methods
cannot exploit informative missingness.

Due to the aforementioned limitations, several research ef-
forts have been devoted over the last years to process incom-
plete time series without relying on imputation [6, 14, 15, 16,
17, 18, 19]. In this regard, powerful kernel methods have been
proposed, of which the recently proposed time series cluster
kernel (TCK) [20] is a prominent example. The TCK is de-
signed using an ensemble learning approach in which Bayesian
mixture models form the base models. An advantage of TCK,
compared to imputation methods, is that the missing data are
handled automatically and no additional tasks are left to the
user. Multiple imputation instead requires a careful selection of
the imputation model and other variables are needed to do the
imputation [7], which particularly in an unsupervised setting
can turn out to be problematic.

A shortcoming of the TCK is that unbiased predictions are
only guaranteed for ignorable missingness, i.e. the kernel can-
not take advantage of informative missing patterns frequently
occurring in medical applications. To overcome this limita-
tion, in this work, we present a novel time series cluster ker-
nel, TCKIM . In our approach, we create a representation of the
missing patterns using masking, i.e. we represent the missing
patterns using binary indicator time series. By doing so, we ob-
tain MTS consisting of both continuous and discrete attributes.
To model these time series, we introduce mixed mode Bayesian
mixture models, which can effectively exploit information pro-
vided by the missing patterns.

The time series cluster kernels are particularly useful in un-
supervised settings. In many practical applications such as e.g.
medicine it is not feasible to obtain completely labeled training
sets [21], but in some cases it is possible to annotate a few sam-
ples with labels, i.e. incomplete label information is available.
In order to exploit the incomplete label information, we pro-
pose a semi-supervised MTS kernel, ssTCK. In our approach,
we incorporate ideas from information theory to measure simi-
larities between distributions. More specifically, we employ the
Kullback-Leibler divergence to assign labels to unlabeled data.

Experiments on benchmark MTS datasets and a real-world
case study of patients suffering from hospital-acquired infec-
tions, described by longitudinal electronic health record data,
demonstrate the effectiveness of the proposed TCKIM and
ssTCK kernels.

The remainder of this paper is organized as follows. Sec-

tion 2 presents background on MTS kernels. The two proposed
kernels are described in Section 3 and 4, respectively. Exper-
iments on synthetic and benchmark datasets are presented in
Section 5, whereas the case study is described in Section 6.
Section 7 concludes the paper.

2. Multivariate time series kernels to handle missing data

Kernel methods have been of great importance in machine
learning for several decades and have applications in many
different fields [22, 23, 24]. Within the context of time se-
ries, a kernel is a similarity measure that also is positive semi-
definite [25]. Once defined, such similarities between pairs of
time series may be utilized in a wide range of applications, such
as classification or clustering, benefiting from the vast body
of work in the field of kernel methods. Here we provide an
overview of MTS kernels, and describe how they deal with
missing data.

The simplest of all kernel functions is the linear kernel, which
for two data points represented as vectors, x and y, is given
by the inner product 〈x, y〉, possibly plus a constant c. One
can also apply a linear kernel to pairs of MTS once they are
unfolded into vectors. However, by doing so the information
that they are MTS and there might be inherent dependencies in
time and between attributes, is then lost. Nevertheless, in some
cases such a kernel can be efficient, especially if the MTS are
short [26]. If the MTS contain missing data, the linear kernel
requires a preprocessing step involving e.g. imputation.

The most widely used time series similarity measure is dy-
namic time warping (DTW) [27], where the similarity is quanti-
fied as the alignment cost between the MTS. More specifically,
in DTW the time dimension of one or both of the time series
is warped to achieve a better alignment. Despite the success
of DTW in many applications, similarly to many other similar-
ity measures, it is non-metric and therefore cannot non-trivially
be used to design a positive semi-definite kernel [28]. Hence,
it is not suited for kernel methods in its original formulation.
However, because of its popularity there have been attempts to
design kernels exploiting the DTW. For example, Cuturi et al.
designed a DTW-based kernel using global alignments [29]. An
efficient version of the global alignment kernel (GAK) is pro-
vided in [30]. The latter has two hyperparameters, namely the
kernel bandwidth and the triangular parameter. GAK does not
naturally deal with missing data and incomplete datasets, and
therefore also requires a preprocessing step involving imputa-
tion.

Two MTS kernels that can naturally deal with missing data
without having to resort to imputation are the learned pat-
tern similarity (LPS) [31] and TCK. LPS generalizes the well-
known autoregressive modelsto local autopatterns using multi-
ple lag values for autocorrelation. These autopatterns are sup-
posed to capture the local dependency structure in the time se-
ries and are learned using a tree-based (random forest) learning
strategy. More specifically, a time series is represented as a ma-
trix of segments. Randomness is injected to the learning pro-
cess by randomly choosing time segment (column in the matrix)
and lag p for each tree in the random forest. A bag-of-words
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type compressed representation is created from the output of the
leaf-nodes for each tree. The final time series representation is
created by concatenating the representation obtained from the
individual trees, which in turn are used to compute the similar-
ity using a histogram intersection kernel [32].

The TCK is based on an ensemble learning approach wherein
robustness to hyperparameters is ensured by joining the cluster-
ing results of many Gaussian mixture models (GMM) to form
the final kernel. Hence, no critical hyperparameters have to be
tuned by the user, and the TCK can be learned in an unsuper-
vised manner. To ensure robustness to sparsely sampled data,
the GMMs that are the base models in the ensemble, are ex-
tended using informative prior distributions such that the miss-
ing data is explicitly dealt with. More specifically, the TCK
matrix is built by fitting GMMs to the set of MTS for a range
of number of mixture components. The idea is that by generat-
ing partitions at different resolutions, one can capture both the
local and global structure of the data. Moreover, to capture di-
versity in the data, randomness is injected by for each resolution
(number of components) estimating the mixture parameters for
a range of random initializations and randomly chosen hyper-
parameters. In addition, each GMM sees a random subset of
attributes and segments in the MTS. The posterior distributions
for each mixture component are then used to build the TCK
matrix by taking the inner product between all pairs of poste-
rior distributions. Eventually, given an ensemble of GMMs, the
TCK is created in an additive way by using the fact that the sum
of kernels is also a kernel.

Despite that LPS and TCK kernels share many properties, the
way missing data are dealt with is very different. In LPS, the
missing data handling abilities of decision trees are exploited.
Along with ensemble methods, fuzzy approaches and support
vector solutions, decision trees can be categorized as machine
learning approaches for handling missing data [10], i.e. the
missing data are handled naturally by the machine learning al-
gorithm. One can also argue that the way missing data are dealt
with in the TCK belongs to this category, since an ensemble
approach is exploited. However, it can also be categorized as a
likelihood-based approach since the underlying models in the
ensemble are Gaussian mixture models. In the likelihood-based
approaches, the full, incomplete dataset is analysed using max-
imum likelihood (or maximum a posteriori, equivalently), typ-
ically in combination with the expectation-maximization (EM)
algorithm [7, 9]. These approaches assume that the missingness
is ignorable.

3. Time series cluster kernel to exploit informative missing-
ness

In this section, we present the novel time series cluster ker-
nel, TCKIM , which is capable of exploiting informative miss-
ingness.

A key component in the time series cluster kernel frame-
work is ensemble learning, in which the basic idea consists in
combining a collection of many base models into a compos-
ite model. A good such composite model will have statistical,
computational and representational advantages such as lower

variance, lower sensitivity to local optima and is capable of rep-
resenting a broader span functions (increased expressiveness),
respectively, compared to the individual base models [33]. Key
to achieve this is diversity and accuracy [34], i.e. the base mod-
els cannot make the same errors on new test data and have to
perform better than random guessing. This can be done by inte-
grating multiple outcomes of the same (weak) base model as
it is trained under different, often randomly chosen, settings
(parameters, initialization, subsampling, etc.) to ensure diver-
sity [35].

In the TCKIM kernel, the base model is a mixed mode
Bayesian mixture model. Next, we provide the details of this
model.

Notation

The following notation is used. A multivariate time series
(MTS) X is defined as a (finite) combination of univariate time
series (UTS), X = {xv ∈ RT | v = 1, 2, . . . ,V}, where each
attribute, xv, is a UTS of length T . The number of UTS, V , is the
dimension of X. The length T of the UTS xv is also the length
of the MTS X. Hence, a V–dimensional MTS, X, of length T
can be represented as a matrix in RV×T . Given a dataset of N
MTS, we denote X(n) the n-th MTS. An incompletely observed
MTS is described by the pair U(n) = (X(n),R(n)), where R(n) is
a binary MTS with entry r(n)

v (t) = 0 if the realization x(n)
v (t) is

missing and r(n)
v (t) = 1 if it is observed.

Mixed mode mixture model

Assume that a MTS U = (X,R) is generated from two modes.
X is a V-variate real-valued MTS (X ∈ RV×T ), whereas R is a
V-variate binary MTS (R ∈ {0, 1}V×T ). Further, we assume that
U is generated from a finite mixture density,

p(U | Φ,Θ) =

G∑

g=1

θg f (U | φg), (1)

where G is the number of components, f is the density of
the components parametrized by Φ = (φ1, . . . , φG), and Θ =

(θ1, . . . , θg) are the mixing coefficients, 0 ≤ θG ≤ 1 and∑G
g=1 θg = 1.
Now, introduce a latent random variable Z, represented as

a G-dimensional one-hot vector Z = (Z1, . . . ,ZG), whose
marginal distribution is given by p(Z | Θ) =

∏G
g=1 θ

Zg
g . The un-

observed variable Z records the membership of U and therefore
Zg = 1 if U belongs to component g and Zg = 0 otherwise.
Hence, p(U |Z, Φ) =

∏G
g=1 f (U | φg)Zg , and therefore it follows

that

p(U,Z | Φ,Θ) = p(U |Z, Φ)p(Z | Θ) =

G∏

g=1

[
f (U | φg)θg

]Zg
(2)

U = (X,R) consists of two modalities X and R. We now naively
assume that

f (U | φg) = f (X | R, µg,Σg) f (R | βg), (3)
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where f (X | R, µg,Σg) is a density function given by

f (X | R, µg,Σg) =

V∏

v=1

T∏

t=1

N(xv(t) | µgv(t), σgv)rv(t), (4)

and f (R | βg) is a probability mass given by

f (R | βg) =

V∏

v=1

T∏

t=1

βrv(t)
gvt (1 − βgvt)1−rv(t). (5)

The parameters of each component are φg = (µg,Σg, βg), where
µg = {µgv ∈ RT | v = 1, ...,V} is a time-dependent mean (µgv is
a UTS of length T ), Σg = diag{σ2

g1, ..., σ
2
gV } is a time-constant

diagonal covariance matrix in which σ2
gv is the variance of at-

tribute v, and βgvt ∈ [0, 1] are the parameters of the Bernoulli
mixture model (5). The idea is that even though the missing-
ness mechanism is ignored in f (X | R, µg,Σg), which is only
computed over the observed data, the Bernoulli term f (R | βg)
will capture information from the missing patterns.

The conditional probability of Z given U, can be found using
Bayes’ theorem,

πg ≡ P(Zg = 1 | U,Φ,Θ)

=

θg
V∏

v=1

T∏
t=1

[
N(xv(t) | µgv(t), σgv)βgvt

]rv(t)
(1 − βgvt)1−rv(t)

G∑
g=1

θg
V∏

v=1

T∏
t=1

[
N(xv(t) | µgv(t), σgv)βgvt

]rv(t)
(1 − βgvt)1−rv(t)

.

(6)

Similarly to [20], we introduce a Bayesian extension and
put informative priors over the parameters of the normal dis-
tribution, which enforces smoothness over time and that clus-
ters containing few time series, to have parameters similar to
the mean and covariance computed over the whole dataset. A
kernel-based Gaussian prior is defined for the mean, P(µgv) =

N
(
µgv | mv, S v

)
. mv are the empirical means and the prior co-

variance matrices, S v, are defined as S v = svK , where sv are
empirical standard deviations and K is a kernel matrix, whose
elements are Ktt′ = b0 exp(−a0(t − t′)2), t, t′ = 1, . . . ,T. a0,
b0 are user-defined hyperparameters. An inverse Gamma dis-
tribution prior is put on the standard deviation σgv, P(σgv) ∝
σ−N0

gv exp
(
−N0 sv

2σ2
gv

)
, where N0 is a user-defined hyperparameter.

We denote Ω = {a0, b0,N0} the set of hyperparameters.
Then, given a dataset {U(n)}Nn=1, the parameters {Φ,Θ} can be

estimated using maximum a posteriori expectation maximiza-
tion (MAP-EM) [36, 37]. This leads to Algorithm 1.

3.1. Forming the kernel
We now explain how the mixed mode mixture model is used

to form the TCKIM kernel.
We use the mixed mode Bayesian mixture model as the base

model in an ensemble approach. To ensure diversity, we vary
the number of components for the base models by sampling
from a set of integers IC = {I, . . . , I + C}. For each num-
ber of components, we apply Q different random initial con-
ditions and hyperparameters. We let Q = {q = (q1, q2) | q1 =

Algorithm 1 MAP-EM for mixed mode mixture model
Require: Dataset {U (n) = (X(n),R(n))}Nn=1, hyperparameters Ω and

number of mixtures G.
1: Initialize the parameters Θ = (θ1, . . . , θG) and Φ = {µg, σg, βg}Gg=1.
2: E-step. For each MTS U (n), evaluate the posterior probabilities

using Eq. (6) with the current parameter estimates.
3: M-step. Update parameters using the current posteriors

θg = N−1 ∑N
n=1 π

(n)
g

σ2
gv =

N0 s2
v +

∑N
n=1

∑T
t=1 r(n)

v (t) π(n)
g

(
x(n)

v (t) − µgv(t)
)2

N0 +
∑N

n=1
∑T

t=1 r(n)
v (t) π(n)

g

µgv =
S −1

v mv + σ−2
gv

∑N
n=1 π

(n)
g diag(r(n)

v ) x(n)
v

S −1
v + σ−2

gv
∑N

n=1 π
(n)
g diag(r(n)

v )

βgvt = (
∑N

n=1 π
(n)
g )−1 ∑N

n=1 π
(n)
g r(n)

v (t)

4: Repeat step 2-3 until convergence.
Ensure: Posteriors Π(n) ≡

(
π(n)

1 , . . . , π(n)
G

)T
and parameter estimates Θ

and Φ.

1, . . .Q, q2 ∈ IC} be the index set keeping track of initial condi-
tions and hyperparameters (q1), and the number of components
(q2). Each base model q is trained on a random subset of MTS
{(X(n),R(n))}n∈η(q). Moreover, for each q, we select random sub-
sets of variablesV(q) as well as random time segments T (q).

The inner products of the normalized posterior distributions
from each mixture component are then added up to build the
TCKIM kernel matrix. Note that, in addition to introducing
novel base models to account for informative missingness, we
also modify the kernel by normalizing the vectors of posteriors
to have unit length in the l2-norm. This provides an additional
regularization that may increase the generalization capability of
the learned model. The details of the method are presented in
Algorithm 2. The kernel for MTS not available during training
can be evaluated according to Algorithm 3.

4. Semi-supervised time series cluster kernel

This section presents a semi-supervised MTS kernel, ssTCK,
capable of exploiting incomplete label information. In ssTCK,
the base mixture models are learned exactly in the same way
as in TCK or TCKIM . I.e. if there is no missing data,
or the missingness is ignorable, the base models will be the
Bayesian GMMs. Conversely, if the missingness is informa-
tive, the base models are the mixed mode Bayesian mixture
models presented in the previous section. Both approaches
will associate each MTS X(n) with a q2-dimensional posterior
Π(n) ≡

(
π(n)

1 , . . . , π(n)
q2

)T
, where π(n)

g represents the probability
that the MTS belongs to component g and q2 is the total num-
ber of components in the base mixture model.

In ssTCK, label information is incorporated in an intermedi-
ate processing step in which the posteriors Π(n) are transformed,
before the transformed posteriors are sent into Algorithm 2 or 3.
More precisely, the transformation consists in mapping the pos-
terior for the mixture components to a class ”posterior” (proba-
bility), i.e. we seek to find a functionM : [0, 1]q2 → [0, 1]Nc ,
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Algorithm 2 Time series cluster kernel. Training phase.
Require: Training set of MTS {(X(n),R(n))}Nn=1 , Q initializations, set

of integers IC controlling number of components for each base
model.

1: Initialize kernel matrix K = 0N×N .
2: for q ∈ Q do
3: Compute posteriors Π(n)(q) ≡ (π(n)

1 , . . . , π(n)
q2 )T , by fitting a

mixed mode mixture model with q2 clusters to the dataset and by
randomly selecting:

i. hyperparameters Ω(q),

ii. a time segment T (q) of length Tmin ≤ |T (q)| ≤ Tmax to
extract from each X(n) and R(n),

iv. a subset of attributesV(q), with cardinality Vmin ≤ |V(q)| ≤
Vmax, to extract from each X(n) and R(n),

vi. a subset of MTS, η(q), with Nmin ≤ |η(q)| ≤ N,

vii. initialization of the mixture parameters Θ(q) and Φ(q).

4: Update kernel matrix, Knm = Knm +
Π(n)(q)T Π(m)(q)
‖Π(n)(q)‖·‖Π(m)(q)‖ .

5: end for
Ensure: K kernel matrix, time segments T (q), subsets of attributes
V(q), subsets of MTS η(q), parameters Θ(q), Φ(q) and posteriors
Π(n)(q).

Algorithm 3 Time series cluster kernel. Test phase.

Require: Test set
{
X∗(m)}M

m=1, time segments T (q) subsets of attributes
V(q), VR(q), subsets of MTS η(q), parameters Θ(q), Φ(q) and
posteriors Π(n)(q).

1: Initialize kernel matrix K∗ = 0N×M .
2: for q ∈ Q do
3: Compute posteriors Π∗(m)(q), m = 1, . . . ,M using the mixture

parameters Θ(q), Φ(q).
4: Update kernel matrix, K∗nm = K∗nm +

Π(n)(q)T Π∗(m)(q)
‖Π(n)(q)‖·‖Π∗(m)(q)‖ .

5: end for
Ensure: K∗ test kernel matrix.

Π(n) M−→ Π̃(n). Hence, we want to exploit the incomplete label
information to find a transformation that merges the q2 com-
ponents of the mixture model into Nc clusters, where Nc is the
number of classes.

The mappingM can be thought of as a (soft) Nc-class clas-
sifier, and hence there could be many possible ways of learning
M. However, choosing a too flexible classifier for this purpose
leads to an increased risk of overfitting and could also unnec-
essarily increase the algorithmic complexity. For these reasons,
we restrict ourselves to searching for a linear transformation

M(Π(n)) = WT Π(n), W ∈ [0, 1]q2×Nc . (7)

Since the Nc-dimensional output Π̃(n) = M(Π(n)) should repre-
sent a probability distribution, we add the constraint

∑Nc
i=1 W ji =

1, j = 1, . . . , q2.
A natural first step is to first assume that the label information

is complete and look at the corresponding supervised kernel. In
the following two subsections, we describe our proposed meth-
ods for learning the transformationM in supervised and semi-
supervised settings, respectively.

Algorithm 4 Supervised posterior transformation
Require: Posteriors {Π(n)}Nn=1 from mixture models consisting of q2

components and labels {y(n)}Nn=1,
1: for i = 1, . . . , q2, j = 1, . . . ,Nc do

2: Compute Wi j =

∑N
n=1 y(n)

j π
(n)
i

∑N
n=1 y(n)

j
.

3: Wi j =
Wi j

∑Nc
j=1 Wi j

.

4: end for
5: Transform training and test posteriors via Π̃ = WT Π

Ensure: Transformed posteriors Π̃(n)

4.1. Supervised time series cluster kernel (sTCK)

Supervised setting. Each base mixture model consists of q2
components, and we assume that the number of components
is greater or equal to the number of classes Nc. Further, as-
sume that each MTS X(n) in the training set is associated with a
Nc–dimensional one-hot vector y(n), which represents its label.
Hence, the labels of the training set can be represented via a
matrix Y ∈ {0, 1}N×Nc , where N is the number of MTS in the
training set.

We approach this problem by considering one component at
the time. For a given component g, the task is to associate it
with a class. One natural way to do this is to identify all mem-
bers of component g and then simply count how many times
each label occur. To account for class imbalance, one can then
divide each count by the number of MTS in the corresponding
class. One possible option would then be to assign the compo-
nent to the class with the largest normalized count. However,
by doing so, one is not accounting for uncertainty/disagreement
within the component. Hence, a more elegant alternative is to
simply use the normalized counts as the weights in the matrix
W. Additionally, one has to account for that each MTS can si-
multaneously belong to several components, i.e. each MTS X(n)

has a only soft membership to the component g, determined by
the value π(n)

g . This can be done using Π(n) as weights in the first
step. This procedure is summarized in Algorithm 4.

4.2. Semi-supervised time series cluster kernel (ssTCK)

Setting. Assume that the labels {y(n)}Ln=1, L < N, are known
and {y(n)}Nn=L+1 are unknown.

In this setting, if one naively tries to apply Algorithm 4 based
on only the labeled part of the dataset, one ends up dividing by
0s. The reason is that some of the components in the mixture
model will contain only unlabeled MTS (the soft label analogy
is that the probability that any of the labeled MTS belong to
that particular component is zero or very close to zero). Hence,
we need a way to assign labels to the components that do not
contain any labeled MTS.

Note that each component is described by a probability dis-
tribution. A natural measure of dissimilarity between probabil-
ity distributions is the Kullback-Leibler (KL) divergence [38].
Moreover, since the components are described by parametric
distributions, the KL divergence has a simple closed-form ex-
pression. The KL divergence between two components, i and j,
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Algorithm 5 Semi-supervised posterior transformation
Require: Posteriors {Π(n)}Nn=1 from mixture models consisting of q2

components, labels {y(n)}Ln=1, and hyperparameter h.
1: for i = 1, . . . , q2, j = 1, . . . ,Nc do

2: Compute Wi j =

∑N
n=1 y(n)

j π
(n)
i

∑N
n=1 y(n)

j
.

3: end for
4: for all k s.t.

∑Nc
j=1 Wk j < h do

5: Let L = {l s.t.
∑Nc

j=1 Wl j ≥ h}
6: Wk j = Wl j where l = arg min

l∈L
DS

KL( f (k) ‖ f (l)).

7: end for
8: for i = 1, . . . , q2, j = 1, . . . ,Nc do
9: Wi j =

Wi j
∑Nc

j=1 Wi j
.

10: end for
11: Transform training or test posterior via Π̃ = WT Π

Ensure: Transformed posteriors Π̃(n)

in our Bayesian GMM is given by

DKL( f (i) ‖ f ( j)) =
1
2

( V∑

v=1

T∑

t=1

σ2
ivσ
−2
jv + σ−2

jv (µ jv(t) − µiv(t))2

− 1 + log(σ2
jv) − log(σ2

iv)
)
, (8)

where f (i) = f (X | R, µi,Σi) is the density given in Eq. (4). The
KL-divergence can be made symmetric via the transformation

DS
KL( f (i) ‖ f ( j)) =

1
2

(
DKL( f (i) ‖ f ( j)) + DKL( f ( j) ‖ f (i))

)
. (9)

The underlying idea in our semi-supervised framework is to
learn the transformation W for the clusters with only unlabeled
points by finding the nearest cluster (in the DS

KL-sense) that con-
tain labeled points. This leads to Algorithm 5.

5. Experiments on synthetic and benchmark datasets

The experiments in this paper consists of two parts. The pur-
pose of the first part was to demonstrate within a controlled
environment situations where the proposed TCKIM and ssTCK
kernels might prove more useful than the TCK. In the second
part (Sec. 6), we present a case study from a real-world medical
application in which we compared to several baseline methods.

In the first part, we considered synthetic and benchmark
datasets. The following experimental setup was considered. We
performed kernel principal component analysis (KPCA) using
time series cluster kernels and let the dimensionality of the em-
bedding be 10. Thereafter, we trained a kNN-classifier with
k = 1 on the embedding and evaluated performance in terms
of classification accuracy on an independent test set. We let
Q = 30 and IC = {Nc, . . . ,Nc + 20}. An additional hyperpa-
rameter h was introduced for ssTCK. We set h to 10−1 in our
experiments. We also standardized each attribute to zero mean
and unit standard deviation.

Table 1: Accuracy on the synthetic VAR(1) dataset.
Unsupervised Semi-supervised Supervised

TCK 0.826 0.854 0.867
TCKIM 0.933 0.967 0.970

5.1. Synthetic example
To illustrate the effectiveness of the proposed methods, we

first considered a controlled experiment in which a synthetic
MTS dataset with two classes was sampled from a first-order
vector autoregressive model,

(
x1(t)
x2(t)

)
=

(
α1
α2

)
+

(
ρ1 0
0 ρ2

) (
x1(t − 1)
x2(t − 1)

)
+

(
ξ1(t)
ξ2(t)

)
(10)

To make x1(t) and x2(t) correlated with corr(x1(t), x2(t)) = ρ, we
chose the noise term s.t., corr (ξ1(t), ξ2(t)) = ρ (1 − ρ1ρ2) [(1 −
ρ2

1)(1−ρ2
2)]−1. For the first class (y = 1), we generated 100 two-

variate MTS of length 50 for the training and 100 for the test,
from the VAR(1)-model with parameters ρ = ρ1 = ρ2 = 0.8 and
E[(x1(t), x2(t))T | y = 1] = (0.5,−0.5)T . Analogously, the MTS
of the second class (y = 2) were generated using parameters
ρ = −0.8, ρ1 = ρ2 = 0.6 and E[(x1(t), x2(t))T | y = 2] = (0, 0)T .

To simulate MNAR and inject informative missing patterns,
we let x(n)

i (t) have a probability p(n) of being missing, given that
x(n)

i (t) > −1, i = 1, 2. We let p(n) = 0.9 if y(n) = 1 and p(n) = 0.8
otherwise. By doing so, the missing ratio was roughly 63% in
both classes.

Tab. 1 shows the accuracy on the test data for the differ-
ent kernels. As expected, the TCK gives the lowest accuracy,
0.826. The ssTCK improves the accuracy considerably (0.854),
and the supervised version (sTCK) gives further improvement
(0.867). However, as we can see, the effect of explicitly mod-
eling the missingness mechanism in the TCKIM is larger. In
this case the accuracy increases from 0.826 to 0.933. The two
corresponding embeddings are plotted in Fig. 1(a) and 1(d), re-
spectively. In the TCK embedding, there are many points from
different classes that overlap with each other, whereas for the
TCKIM the number of overlapping points is much lower.

The ssTCKIM improves the accuracy to 0.967 (from 0.933 for
TCKIM and 0.854 for ssTCK). The two embeddings obtained
using the semi-supervised methods are shown in Fig. 1(b)
and 1(e). The supervised version sTCKIM yields a slight im-
provement in terms of accuracy compared to ssTCKIM (0.970
vs 0.967). Plots of the supervised embeddings are shown in
Fig. 1(c) and 1(f). We can see that for the sTCKIM the classes
are clearly separated.

5.2. Performance of ssTCK on benchmark datasets
The purpose of the experiments reported in the following

paragraph was to evaluate the impact of incorporating incom-
plete label information in the ssTCK. Towards that end, we con-
sidered benchmark datasets and artificially modified the num-
ber of labeled MTS in the training sets. We applied the pro-
posed ssTCK to four MTS benchmark datasets from the UCR
and UCI databases [39, 40] and other published work [41], de-
scribed in Tab. 2. Since some of the datasets contain MTS of
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Figure 1: Plot of the two-dimensional KPCA representation of the synthetic data obtained using 6 different time series cluster kernels. The datapoints are color-coded
according to their labels.

Table 2: Description of benchmark time series datasets. Column 2 to 5 show
the number of attributes, samples in training and test set, and number of classes,
respectively. Tmin is the length of the shortest MTS in the dataset and Tmax the
longest MTS. T is the length of the MTS after the transformation.
Datasets Attributes Train Test Nc Tmin Tmax T Source
uWave 3 200 4278 8 315 315 25 UCR
Char.Traj. 3 300 2558 20 109 205 23 UCI
Wafer 6 298 896 2 104 198 25 Olsz.
Japan.vow. 12 270 370 9 7 29 15 UCI

varying length, we followed the approach of Wang et al. [42]
and transformed all the MTS in the same dataset to the same
length, T , determined by T =

⌈
Tmax

d Tmax
25 e

⌉
,where Tmax is the length

of the longest MTS in the dataset and d e is the ceiling operator.
The number of labeled MTS was set to max{20, 3 · Nc}. ssTCK
was compared to ordinary TCK and sTCK (assuming complete
label information in the latter case).

Tab. 3 shows the performance of ssTCK for the 4 benchmark
datasets. As we can see, compared to TCK, the accuracy in

Table 3: Classification accuracy for benchmark datasets obtained using TCK,
ssTCK and sTCK.

Datasets TCK ssTCK sTCK
Char. Traj. 0.908 0.928 0.934
uWave 0.867 0.881 0.894
Wafer 0.956 0.970 0.970
Japanese vowels 0.946 0.962 0.968

general increases using ssTCK. For the Wafer dataset, ssTCK
yields the same performance as the supervised kernel. For the
three other datasets, the performance of ssTCK is slightly worse
than sTCK. These experiments demonstrate that ssTCK is ca-
pable of exploiting incomplete label information.

Further, we created 8 synthetic datasets by randomly remov-
ing 50% and 80%, respectively, of the values in each of the 4
benchmark datasets. As we can see from the results presented
in Tab. 4, also in presence of missing data the accuracy in gen-
eral increases using ssTCK, compared to TCK.

For comparison, in Tab. 4 we also added the results obtained
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Table 4: Classification accuracy for benchmark datasets obtained using TCK, ssTCK and sTCK.
Missing rate Datasets TCK ssTCK sTCK GAK Linear LPS
50% Char. Traj. 0.751 0.780 0.797 0.588 0.589 0.127

uWave 0.812 0.834 0.850 0.828 0.813 0.411
Wafer 0.956 0.970 0.972 0.792 0.791 0.823
Japanese vowels 0.929 0.948 0.947 0.827 0.824 0.746

80% Char. Traj. 0.282 0.310 0.331 0.194 0.192 0.062
uWave 0.589 0.592 0.603 0.441 0.464 0.234
Wafer 0.926 0.934 0.934 0.796 0.805 0.819
Japanese vowels 0.809 0.836 0.847 0.473 0.489 0.389

Table 5: Classification accuracy on synthetic benchmark datasets that contain missing data.

Correlation TCK TCKB TCK0 TCKIM TCK TCKB TCK0 TCKIM

Wafer Japanese vowels
0.2 0.951 0.951 0.951 0.955 0.938 0.954 0.951 0.940
0.4 0.961 0.953 0.955 0.961 0.932 0.938 0.938 0.941
0.6 0.961 0.900 0.965 0.996 0.922 0.946 0.924 0.962
0.8 0.958 0.893 0.963 1.000 0.922 0.924 0.935 0.968

uWave Character trajectories
0.2 0.763 0.457 0.755 0.841 0.854 0.742 0.847 0.851
0.4 0.807 0.587 0.813 0.857 0.851 0.788 0.842 0.867
0.6 0.831 0.674 0.837 0.865 0.825 0.790 0.824 0.871
0.8 0.834 0.699 0.844 0.884 0.839 0.707 0.853 0.901

using three other kernels; GAK, the linear kernel, and LPS.
GAK and the linear kernel cannot process incomplete MTS and
therefore we created complete datasets using mean imputation
for these two kernels. LPS1 was run using default hyperparam-
eters, with the exception that we adjusted the segment length to
be sampled from the interval [6, 0.8T ] to account for the rela-
tively short MTS in our datasets. In accordance with [43], for
GAK2 we set the bandwidth σ to 0.1 times the median distance
of all MTS in the training set scaled by the square root of the
median length of all MTS, and the triangular parameter to 0.2
times the median length of all MTS. Distances were measured
using the canonical metric induced by the Frobenius norm. In
the linear kernel we set the constant c to 0. As we can see,
the performance of these kernels is considerably worse than the
time series cluster kernels for 7 out of 8 datasets. For uWave
with 50% missingness, the performance of GAK and the linear
kernel is similar to the TCK kernels.

5.3. Exploiting informative missingness in synthetic bench-
mark datasets

To evaluate the effect of modeling the missing patterns in
TCKIM , we generated 8 synthetic datasets by manually in-
jecting missing elements into the Wafer and Japanese vowels
datasets using the following procedure. For each attribute v ∈
{1, . . . ,V}, a number cv ∈ {−1, 1} was randomly sampled with
equal probabilities. If cv = 1, the attribute v is positively corre-
lated with the labels, otherwise negatively correlated. For each
MTS X(n) and attribute, a missing rate γnv was sampled from the

1Matlab implementation: http://www.mustafabaydogan.com/
2Matlab implementation: http://www.marcocuturi.net/GA.html

uniform distributionU[0.3+E ·cv ·(y(n)−1), 0.7+E ·cv ·(y(n)−1)].
This ensures that the overall missing rate of each dataset is ap-
proximately 50%. y(n) ∈ {1, . . .Nc} is the label of the MTS X(n)

and E is a parameter, which we tune for each dataset in such a
way that the absolute value of the Pearson correlation between
the missing rates for the attributes γv and the labels y(n) takes the
values {0.2, 0.4, 0.6, 0.8}, respectively. The higher the value of
the Pearson correlation, the higher is the informative missing-
ness.

Tab. 5 shows the performance of the proposed TCKIM and
three baseline models (TCK, TCKB, and TCK0). The first base-
line is ordinary TCK, which ignores the missingness mecha-
nism. For the Wafer dataset, the performance of this baseline
was quite similar across all four settings. For the Japanese vow-
els dataset, the performance actually decreases as the informa-
tion in the missing patterns increases. In the second baseline,
TCKB, we tried to model the missing patterns by concatenating
the binary missing indicator MTS R to the MTS X and creat-
ing a new MTS with 2V attributes. Then, we trained ordinary
TCK on this representation. For the Wafer dataset, the perfor-
mance decreases considerably as the informative missingness
increases. For the Japanese vowels, this baseline yields the best
performance when the correlation is 20%. However, the per-
formance actually decreases as the informative missingness in-
creases. Hence, informative missingness is not captured with
this baseline. In the last baseline, TCK0, we investigated if it is
possible to capture informative missingness by imputing zeros
for the missing values and then training the TCK on the imputed
data. This baseline yields similar performance across all 4 set-
tings for the Wafer dataset, and for Japanese vowels, TCK0 has
a similar behaviour as TCKB, i.e. it does not capture informa-
tive missing patterns. The proposed TCKIM achieves the best
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accuracy for 7 out of 8 settings and has the expected behaviour,
namely that the accuracy increases as the correlation between
missing values and class labels increases. The performance is
similar to TCK when the amount of information in the missing
patterns is low, whereas TCK is clearly outperformed when the
informative missingness is high. This demonstrates that TCKIM

effectively utilizes informative missing patterns.
To also test if TCKIM is capable of exploiting other types

of informative missingness, we generated 8 synthetic datasets
from uWave and Character trajectories using the following ap-
proach. Both of these datasets consists of 3 attributes. For
each attribute v ∈ {1, . . . ,V}, a number cv ∈ {−1, 1} was ran-
domly sampled with equal probabilities. For the attribute(s)
with cv = −1, we let it be negatively correlated with the labels
by sampling the missing rate γnv fromU[0.7− E · (y(n) − 1), 1−
E · (y(n) − 1)]. For the attribute with cv = 1, we let it be pos-
itively correlated with the labels by sampling the missing rate
γnv from U[0.3 + E · (y(n) − 1), 0.6 + E · (y(n) − 1)]. We let
each element with x(n)

v (t) > µv have a probability γnv of being
missing, where µv is the mean of attribute v computed over the
complete dataset. The fact that the probability of being missing
depends on the missing values means that, within each class,
the missingness mechanism is MNAR. We tuned the parameter
E such that the mean absolute value of the Pearson correlation
between γv and the labels took the values {0.2, 0.4, 0.6, 0.8}.
By doing so, the overall missing rate was approximately 32%
for uWave and 45% for the Characters. However, we note that
in this case the overall missing rate varies slightly as a function
of the Pearson correlation.

Tab. 5 shows the performance on the 8 synthetic datasets cre-
ated from uWave and Char. traj. One thing to notice here is the
poor performance of TCKB. This demonstrates the importance
of using the mixed mode mixtures to model the two modalities
in U = (X,R). To naively apply TCK based on the GMMs to
the concatenated MTS do not provide the desired performance.
Further, we see that TCKIM achieves the best accuracy for 7
out of 8 settings and the accuracy increases as the correlation
increases. For the Characters, the performance of TCKIM is
similar to TCK for low correlation but increases as the missing-
ness information increases, whereas the performance of TCK
actually decreases. One possible explanation is that for this
dataset, two of the variables were positively correlated with the
labels and therefore the missing rate increases with increasing
correlation. Regarding the results for uWave, it is a bit surpris-
ing that the largest difference in performance between TCK and
TCKIM occurs when the correlation is lowest. There might be
several reasons to this: a peculiarity of the dataset and/or that
the MNAR missingness created missing patterns that negatively
affect TCK.

6. Case study: Detecting infections among patients under-
going colon rectal cancer surgery

In this case study, the focus was to detect Surgical Site In-
fection (SSI), which is one of the most common types of noso-
comial infections [44] and represents up to 30% of hospital-
acquired infections [45, 46]. The importance of the topic of SSI

Table 6: List of extracted blood tests and their corresponding missing rates.
Attribute nr. Blood test Missing rate

1 Hemoglobin 0.646
2 Leukocytes 0.727
3 C-Reactive Protein 0.691
4 Potassium 0.709
5 Sodium 0.712
6 Creatinine 0.867
7 Thrombocytes 0.921
8 Albumin 0.790
9 Carbamide 0.940
10 Glucose 0.921
11 Amylase 0.952

prediction is reflected in several recent initiatives. For instance,
the current study is part of a larger research effort by the cur-
rent team, on SSI prediction and detection of postoperative ad-
verse events related to gastrointestinal surgery within the con-
text of improving the quality of surgery [21, 24, 47, 48, 49, 50].
Clearly, the reason for this massive interest is that a reduction
in the number of postoperative complications such as SSI will
be of great benefit both for the patients and for the society.

Many studies have shown that laboratory tests, and blood
tests in particular, are especially important predictors for SSI,
both pre- and post-operatively [51, 49, 52, 53, 48, 54, 55, 56,
57, 58, 59]. Therefore, blood tests provided the basis also for
this case study.

6.1. Data collection

Ethics approval for the parent study was obtained from the
Data Inspectorate and the Ethics Committee at the University
Hospital of North Norway (UNN) [50]. In [50], a cohort con-
sisting of 7741 patients was identified by extracting the elec-
tronic health records for all patients that underwent a gastroin-
testinal surgical procedure at UNN in the years 2004–2012.
In this case study, we were particularly interested in detecting
SSI, which is an infection particularly associated with colorec-
tal cancer surgery [60]. Therefore, patients who did not undergo
this type of surgery were excluded, reducing the size of the co-
hort to 1137 patients.

In collaboration with a clinician (author A. R.), we extracted
data for 11 of the most common blood tests from the patient’s
EHRs. The value of a patient’s blood test, e.g. his or hers
hemoglobin level, can be considered as a continuous variable
over time. However, blood tests are usually measured on a daily
basis, and therefore, for the purpose of the current analysis, we
discretized time and let each time interval be one day. Hence,
the blood samples could naturally be represented as MTS and
needed no further feature preprocessing in our framework.

All blood tests were not available every day for each patient,
which means that the dataset contained missing data, and we
expected the missing patterns to be informative since whether
a test is performed depends on whether the doctor thinks it is
needed. We focused on detection of SSI within 10 days after
surgery and therefore the length of the time series is 10. Patients
with no recorded lab tests during the period from postoperative
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Figure 2: Overview of the approach taken to detect postoperative SSI from MTS blood samples.

day 1 until day 10 were removed from the cohort, which lead
to a final cohort consisting of 858 patients. The average pro-
portion of missing data in the cohort was 80.7%. Tab. 6 shows
a list of the blood tests we considered in this study and their
corresponding missing rate.

Guided by input from clinicians, the International Classifica-
tion of Diseases (ICD10) or NOMESCO Classification of Sur-
gical Procedures (NCSP) codes related to severe postoperative
complications were considered to identify the patients in the
cohort that developed postoperative SSI. Patients that did not
have these codes and did not have the word “infection” in any
of their postoperative text documents were considered as con-
trols. This lead to a dataset with 227 infected patients (cases)
and 631 non-infected patients (control).

6.2. Experimental setup
The objective of this case study was to evaluate how the pro-

posed MTS kernels perform in a real-world application from
medicine. We would like to emphasize that the proposed ker-
nels are mainly designed for situations when there are no, or
only a few, ground-truth labels available. However, in order to
evaluate the quality of these kernels, we adopted a supervised
scheme. Hence, we followed the scheme presented in Fig. 2,
i.e. we computed the kernel from the MTS representations of
the blood tests and performed KPCA, followed by kNN classi-
fication in the KPCA space. We set the dimensionality of the
KPCA-representation to 10 in all experiments. The number of
neighbors k was set using 5-fold cross validation.

Four baseline kernels were considered, namely TCK, LPS,
GAK and the linear kernel. GAK and the linear kernel can-
not work on incomplete datasets, and therefore, we created 2
complete datasets using mean and LOCF imputation. In order
to investigate if it is possible to better exploit the information

from the missing patterns for the LPS, GAK and linear kernels,
we also created baselines by concatenating the binary indicator
MTS R(n) to the MTS X(n).

We performed 5-fold cross validation and reported results in
terms of F1-score, sensitivity, specificity and accuracy. Sensi-
tivity is the fraction of actual positives (has SSI) correctly clas-
sified as positive, whereas specificity is the fraction of actual
negatives that are correctly classified as negative. F1-score is
the harmonic mean of precision and sensitivity, where preci-
sion is the fraction of actual positives among all those that are
classified as positive cases.

6.3. Results

Tab. 7 shows the performance in terms of 4 evaluation met-
rics for 11 baseline kernels as well as the proposed TCKIM ker-
nel on the task of detecting patients suffering from SSI. We see
that the kernels that rely on imputation performs much worse
than other kernels in terms of F1-score, sensitivity and accu-
racy. These methods do, however, achieve a high specificity.
However, any classifier can achieve a specificity of 1 simply by
classifying all cases as negative, but this of course leads to lower
F1-score and sensitivity. The main reasons why these methods
do not perform better are probably that the imputation methods
introduce strong biases into the data and that the missingness
mechanism is ignored. The TCK and LPS kernels perform quite
similarly across all 4 evaluation metrics (LPS slightly better).
The F1-score, sensitivity and accuracy achieved for these meth-
ods are considerably higher than the corresponding scores for
the GAK and linear kernel. One of the reasons why these meth-
ods perform better than the imputation methods is that ignoring
the missingness leads to lower bias than replacing missing val-
ues with biased estimates. The performance of the linear kernel
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Table 7: Performance (mean ± se) on the SSI dataset.
Kernel F1-score Sensitivity Specificity Accuracy

Ignore TCK 0.726 ± 0.045 0.678 ± 0.035 0.930 ± 0.024 0.863 ± 0.023
missingness LPS 0.746 ± 0.035 0.696 ± 0.056 0.939 ± 0.019 0.875 ± 0.016
Impute GAKLOCF 0.570 ± 0.045 0.484 ± 0.059 0.924 ± 0.022 0.808 ± 0.017

GAKmean 0.629 ± 0.046 0.502 ± 0.059 0.966 ± 0.023 0.843 ±0.016
LinearLOCF 0.557 ± 0.058 0.480 ± 0.073 0.914 ± 0.017 0.800 ± 0.018
Linearmean 0.599 ± 0.030 0.489 ± 0.041 0.948 ± 0.043 0.826 ± 0.024

Informative LPSIM 0.720 ± 0.062 0.661 ± 0.069 0.937 ± 0.036 0.863 ± 0.032
GAKIM+LOCF 0.669 ± 0.015 0.586 ± 0.024 0.940 ± 0.021 0.846 ± 0.011
GAKIM+mean 0.696 ± 0.030 0.617 ± 0.033 0.945 ± 0.022 0.856 ±0.011
LinearIM+LOCF 0.628 ± 0.016 0.529 ± 0.030 0.945 ± 0.011 0.834 ± 0.005
LinearIM+mean 0.668 ± 0.037 0.568 ± 0.033 0.951 ± 0.030 0.850 ± 0.021
TCKIM 0.802 ± 0.016 0.806 ± 0.027 0.927 ± 0.017 0.895 ± 0.010
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Figure 3: Plot of the two-dimensional KPCA representation of the colon rectal cancer surgery patients obtained using 5 kernels.

and GAK improves a bit by accounting for informative miss-
ingness, whereas the performance of LPS decreases. TCKIM

performs similarly to the baselines in terms of specificity, but
considerably better in terms of F1-score, sensitivity and accu-
racy. This demonstrates that the missing patterns in the blood

test time series are informative and the TCKIM is capable of ex-
ploiting this information to improve performance on the task of
detecting patients with infections.

Fig. 3 shows KPCA embeddings corresponding to the two
largest eigenvalues obtained using 5 different kernels. While
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the representations obtained using GAK and the linear ker-
nel are noisy and to a large degree mix the infected and non-
infected patients, the two classes (SSI and non-SSI) are more
separated in the representations obtained using TCK and LPS.
The TCKIM is even better at forcing the SSI patients to stay
in the same region or cluster while it at the same time spreads
out the patients without infection, revealing the diversity among
these patients.

7. Conclusions and future directions

In this work, we presented robust multivariate time series ker-
nels capable of exploiting informative missing patterns and in-
complete label information. In contrast to other frameworks
that exploit informative missingness [6, 16], which need com-
plete label information, the time series cluster kernels are spe-
cially designed for situations in which no labels or only a few la-
bels are available. Lack of labels and large amounts of missing
data are two challenges that characterize the medical domain,
and therefore, we think the proposed kernels will be particularly
useful in this domain, which we also demonstrated in this work
through a case study of postoperative infections among colon
rectal cancer patients. However, the kernels are not limited to
this domain. We believe that these kernels could be useful tools
in other application domains facing similar challenges.

A limitation of TCKIM is that if the missingness is by no
means correlated with the outcome of interest, there will be lim-
ited gain in performance compared to the TCK, or might even
a decrease in performance. For this reason it is important that
the user has some domain knowledge and has some understand-
ing about the process that led to missing values in the data, as
illustrated in our case study from healthcare.

An other limitation of the time series cluster kernels is that
they are designed for MTS of the same length. A possible next
step would be to work on a formulation that can deal with vary-
ing length. In further work, we would also like to investigate
the possibility of introducing a Bayesian formulation for the
discrete modality in the mixed mode mixture models by putting
informative priors over the parameters in the Bernoulli part of
the model.
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a b s t r a c t 

Objectives: Postoperative delirium is a common complication after major surgery among the elderly. De- 

spite its potentially serious consequences, the complication often goes undetected and undiagnosed. In 

order to provide diagnosis support one could potentially exploit the information hidden in free text doc- 

uments from electronic health records using data-driven clinical decision support tools. However, these 

tools depend on labeled training data and can be both time consuming and expensive to create. 

Methods: The recent learning with anchors framework resolves this problem by transforming key ob- 

servations (anchors) into labels. This is a promising framework, but it is heavily reliant on clinicians 

knowledge for specifying good anchor choices in order to perform well. In this paper we propose a novel 

method for specifying anchors from free text documents, following an exploratory data analysis approach 

based on clustering and data visualization techniques. We investigate the use of the new framework as a 

way to detect postoperative delirium. 

Results: By applying the proposed method to medical data gathered from a Norwegian university hospi- 

tal, we increase the area under the precision-recall curve from 0.51 to 0.96 compared to baselines. 

Conclusions: The proposed approach can be used as a framework for clinical decision support for post- 

operative delirium. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Complications after major surgery are unfortunately not uncom- 

mon. Central nervous system dysfunction, including postoperative 

delirium (PD), is often seen in geriatric patients undergoing major 

surgery [1] . Despite its potentially serious consequences, such as 

an increase in length of hospitalization, morbidity, mortality, and 

adverse events, it is often hard to detect PD [2] . Moreover, if the 

complication goes undiagnosed, it could have economical conse- 

quences for the care giver, as hospitals’ reimbursement rates are 

dependent on correct coding. 

∗ Corresponding author: 

E-mail address: karl.o.mikalsen@uit.no (K.Ø. Mikalsen). 

For these reasons several works have investigated risk factors 

and prediction of PD. Bohner et al. predicted the risk for PD among 

patients undergoing aortic, carotid, and peripheral vascular surgery 

using multivariate linear logistic regression [3] . In [4,5] , the authors 

predicted risk for PD after major abdominal surgery and found 

well-known predictors such as advanced age or ASA-score. Com- 

mon for the previous studies is that only a few structured variables 

have been used as features for the prediction model. However, we 

believe that also the free text documents in the patients’ electronic 

health records (EHRs) contain valuable information about PD that 

can be used for diagnosis support. In particular, nurses collect use- 

ful information about the patient health status since they observe 

the patients after the surgery and report about them three times 

every day. 

http://dx.doi.org/10.1016/j.cmpb.2017.09.014 

0169-2607/© 2017 Elsevier B.V. All rights reserved. 



106 K.Ø. Mikalsen et al. / Computer Methods and Programs in Biomedicine 152 (2017) 105–114 

Recent advances in machine learning for healthcare have shown 

great potential for exploiting the “hidden” information in the EHRs 

to provide data-driven clinical decision support, especially if large 

amounts of labeled data are available [6–9] . In the aforementioned 

studies, the patients were manually labeled with and without PD. 

However, the labeling task could be a time consuming and expen- 

sive process [10] . To overcome this drawback Halpern et al. pro- 

posed a very promising framework, with a large number of possi- 

ble applications. In this framework, which we refer to as the an- 

chor method (AM), one can learn phenotypes and predict clinical 

state variables from EHR unlabeled data only by specifying a few 

key observations called anchors [11,12] . An underlying assumption 

is that the presence of an anchor variable implies the presence of 

the latent label of interest. Thus, training examples for which the 

anchor variable is present are positive examples, while nothing can 

be said for the remaining examples. 

If the data mainly consist of free text, a limitation with AM 

is that trustworthy anchors could be difficult to identify, even for 

clinicians. Moreover, in settings where the sample size is larger 

than the dimensionality ( N > d ) , the originally proposed (ridge) l 2 - 

regularized logistic regression classifier within AM works well. It 

keeps all variables in the model and the coefficients of correlated 

variables are shrunken toward each other. However, when d � N 

ridge regularization is not a good choice [13] . 

In this paper we investigate the use of AM as a way to develop 

models to detect PD, and thereby being able to diagnose and code 

it properly. To resolve the problem of specifying reliable anchors 

we develop a problem specific method based on domain knowl- 

edge and exploratory data analysis using clustering and visualiza- 

tion techniques. Furthermore, we propose to use a different clas- 

sifier in the AM framework, namely the elastic net, which forces 

sparsity and has been shown to provide robustness in settings 

where the dimensionality is higher than the sample size [13,14] . 

We show that, by introducing this new methodology, AM can be 

successfully applied to problems where no obvious anchors exist. 

In particular, by applying it to clinical data gathered from a Nor- 

wegian university hospital, we show that it can be used to extract 

hidden information from unstructured free text and thereby pro- 

vide diagnosis support for PD. 

The rest of this paper is organized as follows. Section 2 de- 

scribes methods, including the AM framework and our proposed 

anchor specification method. Experiments and results are pre- 

sented in Section 4 , we discuss the results and further work. Con- 

clusions are drawn in Section 5 . 

2. Methods 

2.1. Background on the learning with anchors framework 

AM is particularly well suited for text documents where the 

features can be represented using e.g. bag-of-words or medical on- 

tologies. In the method there are two different kinds of binary vari- 

ables; observed and latent . An observed variable is a variable that 

can be observed directly from the EHR. It could for example be 

the answer to a question such as does the word “confused” appear 

anywhere in some of the free text documents? A latent variable can- 

not be extracted directly from the EHR and could be the answer 

to a higher level question such as does the patient have postoper- 

ative delirium? Formulating such questions is difficult since there 

are so many different ways to answer them, and it could also be 

that answers are not documented in the EHR. 

An anchor variable is an observed variable that can be extracted 

directly from the EHR and contains valuable information about 

the latent variable one wants to uncover. The anchor should sat- 

isfy two properties, (1) given that the anchor is observed, then 

also its latent variable is on, and (2) it is independent of all other 

observations, conditioned on the latent variable. The latter prop- 

erty states that once the value of the latent variable is known, no 

other observed variables provide additional information about the 

anchor. 

Given these definitions, a description of the steps in the origi- 

nal AM is as follows: (1) Select data source; (2) represent features 

using e.g. bag-of-words; (3) specify anchor (for this step our pro- 

posed method can be used); (4) extract the vector that represents 

the anchor from the feature matrix and use it as a label vector; (5) 

train a classifier to predict whether the anchor is on or not (elas- 

tic net can be used); (6) the trained model can be calibrated using 

a validation set [15] ; and (7) for an unseen patient where the an- 

chor is not observed, the model is used to predict the likelihood of 

the anchor being on. This scheme is illustrated in the upper part 

of Fig. 1 . 

In more detail the framework is as follows. Assume that there 

are N patients and p observed variables. Let Y be the latent variable 

we want to predict for each patient. Let x − represent all observed 

variables except for the anchor A . Assuming that we have found an 

anchor, A , the last three steps are as follows: 

(5) Learn P (A = 1 | x −) using a classifier that provides a probabilis- 

tic output. 

(6) Using a validation set, K , compute C = 

∑ 

k ∈ K P (A = 1 | x −
k 
) / | K| , 

where x −
k 

is the data for patient k with the anchor removed. 

(7) For an unseen patient, t , with A = 0 , predict P (Y t = 1) = P (A = 

1 | x −t ) /C. If A = 1 , P (Y t = 1) = 1 because of the first property of 

anchors. 

2.2. Proposed anchor framework solution 

Fig. 1 illustrates how the learning with anchors framework and 

the proposed anchor specification method work. In the following we 

explain how to specify anchors using an exploratory data analysis 

and review the proposed classifier. 

2.2.1. Predictive anchors via exploratory analysis 

The two properties that anchors are supposed to satisfy are 

very strict and therefore it often turns out that it is difficult to 

find such anchors. However, in practice, the conditional indepen- 

dence property does not have to be completely satisfied [12] . On 

the other hand, if property 1 is relaxed, the false positive rate will 

automatically increase. With our proposed method, it is possible 

to define an anchor from free text by first searching for a predictive 

anchor – an observed variable that originally does not satisfy prop- 

erty 1, but by adding a certainty measure we can define a true an- 

chor from it. This makes the AM framework applicable for a larger 

variety of problems. 

The proposed method consists of four steps, which are ex- 

plained below and is as follows. 

In step 1 one has to identify a subset of relevant document types , 

which requires domain knowledge, and create a feature represen- 

tation. 

In step 2, we define a predictive anchor, B , as a feature that is 

a surrogate for the latent variable of interest, and whose seman- 

tic meaning could vary in different settings in general, but re- 

stricted to the subset of relevant document types, it has a clearer 

meaning. We propose to use clustering to suggest predictive an- 

chor candidates, B . For this reason it is important that the clus- 

tering method is robust and not sensitive to parameter choices. 

We therefore use the kNN mode seeking consensus clustering al- 

gorithm [16] ( Appendix A ), which has been shown to be robust 

on a variety of datasets. The idea with the clustering is to iden- 

tify groups of patients of different health status. The visualization 

method t-SNE ( Appendix B ) is used, in combination with clinical 

knowledge, to further analyze the clustering results and thereby, 
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Fig. 1. Schematic diagram of the method. The upper part of the figure explains how the learning with anchors framework works and the lower part illustrates the proposed 

anchor specification method. 

identify groups containing patients with normal outcomes and 

groups of patients in worse condition. An example of a helpful tool 

for this task is to plot wordclouds of the most informative words 

for each cluster and then let the domain experts identify predictive 

anchor candidates from the wordclouds. 

In step 3 , we define the certainty, c , of the predictive anchor, B , 

as the lowest frequency that makes the predictive anchor trustwor- 

thy. Frequency in this setting means the frequency across the set 

of documents associated with a specific patient. We note that ap- 

plying a global threshold of 1 basically corresponds to saying that 

the predictive anchor is an anchor. If one wants to make more con- 

servative anchors, one can use a higher global threshold to reduce 

the probability of obtaining false positives. However, this definition 

also enables the opportunity to use a locally varying certainty. For 

example one could apply the proposed clustering and visualization 

techniques to stratify the data into groups with varying certainty. 

Step 4 consists of using the term frequency restricted to the 

subset of relevant document types of the predictive anchor can- 

didate B and the certainty measure c to define the anchor A as 

A = 

{
1 , f req (B ) ≥ c, 
0 , f req (B ) < c. 

(1) 

The idea behind the procedure is that, in general, some words are 

not anchors when they are written in a random document, but 

in certain documents it could be that the words are used in spe- 

cial settings and therefore are more trustworthy. It is also possible 

that some words, that in themselves cannot be trusted as anchors, 

could become more certain when they appear more than once. 

2.2.2. Elastic net 

In AM, a classifier that provides a probabilistic output is re- 

quired. Halpern et al. applied l 2 -regularized logistic regression. We 

propose to use the elastic net instead since it is robust in settings 

where the dimension is higher than the sample size [14] . A review 

is given here. 

For a data point, x , with an unknown label y ∈ {0, 1}, the log- 

arithm of the ratio of the posterior probabilities P (y = 0 | x ) and 

P (y = 1 | x ) is modeled via a linear function, w 0 + w 

T x . Given a 

training set, {( x k , y k )}, the parameters w = (w 0 , w ) are found by 

maximizing a regularized log-likelihood, 

l(w ) = 

N 0 ∑ 

k =1 

log P (y k = 0 | x 

(0) 
k 

, w ) + 

N 1 ∑ 

k =1 

log P (y k = 1 | x 

(1) 
k 

, w ) 

−λ
(
(1 − α) ‖ w ‖ 

2 
2 + α‖ w ‖ 1 

)
, (2) 

where λ> 0, α ∈ [0, 1], ‖ · ‖ p is the l p −norm and N j is the number 

of data points in the j th class. 

A “side-effect” of the elastic net is that it provides a ranked 

list of the most important features. The list can be used together 

with clinical knowledge to suggest new predictive anchors. One 

can then create a composite anchor out of the union of the in- 

dividual anchors. Using multiple anchors could often be beneficial 

because it gives more positive examples for training. 

3. Experiments and results 

3.1. Data description 

We wanted to use AM to detect whether a patient had devel- 

oped PD or not. Hence, the latent variable of interest was Y = 

hasP D . For this particular task we explored a data set extracted 

from the Department of Gastrointestinal Surgery (DGS) at the Uni- 

versity Hospital of North Norway (UNN) from 2004 to 2012. In 

particular, we extracted EHRs for 7741 patients. The data include 

structured data such as ICD-10 codes describing the main diagno- 

sis, age, sex, length of surgery, blood tests and health status, as 

well as free text from documents such as doctor’s notes, radiol- 

ogy reports and semi-structured nurses notes. The nurses notes are 

semi-structured since they are formulated as questionnaires with 

12 bullet points and the nurses answer the questions using free 

text. For each patient the nurses write at least three notes every 

day; morning, afternoon and evening. 

A clinician (author M.G.) made a list of surgeries of interest, 

basically consisting of major abdominal surgeries requiring gen- 

eral anesthesia. Based on this, 1138 patients who potentially could 

suffer from PD were selected into a cohort. In AM no labels are 
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Table 1 

Summary of clustering results. The table shows the number of patients belonging to each 

cluster, the marker and color representing the cluster in the t -SNE map and certain key- 

words describing the different clusters. 

Cluster # of patients Marker/color in Fig. 2 Keywords 

1 34 Purple squares Disoriented and confused 

2 134 Red diamonds Adequate and communicates 

3 31 Yellow circles Sedated 

4 631 Blue dots Good mood and nothing to report 

needed, but to test the learning system, the clinician manually read 

the EHR for a subset consisting of 308 patients and found that 24 

of them had PD after the surgery. Hence, the training set consisted 

of the remaining 830 unlabeled patients. 

The remainder of this section is divided into two main sub- 

sections. In Subsection 3.2 we apply the proposed methodology to 

specify the first anchor. For the clarity of this exposition we leave 

some of the details for Appendix C , for example the specification of 

the other anchors. In Subsection 3.3 we apply AM and demonstrate 

the results of the methodology we have proposed. 

3.2. Anchor specification using proposed method 

As a first step, our clinicians suggested some words that poten- 

tially can be used as anchors; delirium, delir, postoperative . How- 

ever, these words rarely or never occur in the EHR and cannot be 

used as anchors. We therefore employed our proposed method to 

specify anchors. 

Step 1. Identification of relevant types of text documents. It was hy- 

pothesized by our clinicians that since the nurses take care of the 

patients continuously after the surgery, most likely information 

about PD would be discovered and reported by them. In particu- 

lar, the bullet points in the semi-structured nurses notes related to 

communication/senses and knowledge/ development/ psychologi- 

cal are important descriptors of the mental status for the patient. 

Following this clinical knowledge, we chose to search for anchors 

in the free text only from the first two bullet points in the nurses 

notes. 

A term frequency - inverse patient frequency (tf-ipf) representa- 

tion was used instead of the more common inverse document fre- 

quency (idf) since we did not have access to each document for 

each patient [17] . However, the effect of the tf-ipf is the same, the 

value of the tf-ipf is proportional to the number of times a word 

appears for each patient, and is reduced by the frequency of the 

word for all patients. To further compensate for the redundancy 

in the features because of a lack of preprocessing (correlation be- 

tween misspelled and correctly spelled words, etc.) principal com- 

ponent analysis (PCA) [18] was used to reduce the dimensionality. 

Based on a plot of the eigenvalues, we decided to use the 20 di- 

mensions corresponding to the 20 top ranked eigenvalues. We no- 

tice that it is possible to compute both the tf-ipf and PCA feature 

representation also for new unseen patients. 

Step 2. Identification of a predictive anchor. The kNN mode seek- 

ing consensus clustering algorithm was run for the 830 patients 

in the training set. Based on the dendrogram [19] , the number of 

clusters was automatically chosen to 4. A low dimensional embed- 

ding of the data was created using t-SNE and the resulting map- 

ping is shown in Fig. 2 . The different colors and markers repre- 

sent the different clusters. This figure verifies that the clustering 

results are reasonable; nearby points in the two dimensional space 

are clustered together. Table 1 provides a summary of the cluster- 

ing results and more details are provided in Appendix C . Cluster 4 

Fig. 2. Locations of the four clusters in the t -SNE map, obtained using the kNN 

mode seeking consensus clustering algorithm. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 

seems to contain patients with normal, positive outcomes. In clus- 

ter 1 words like confused, unclear, disoriented dominate, whereas in 

cluster 3 the theme is sedation and sedation drugs. In cluster 2, 

many of the most frequent words are related to speech and com- 

munication. 

The fact that most of the high-frequent words in cluster 1 are 

words describing a patient’s mental status, e.g. disoriented, unclear, 

confused, messes (see Fig. C.4 in Appendix C ), indicates that it is 

natural to search for anchor candidates in this cluster. Clinicians 

suggested to use confused as the most evident word. Hence, we 

considered it as our first predictive anchor. 

Step 3. Certainty assessment. Figs. 3 a–c show the location in the 

two dimensional t -SNE map of the patients with different frequen- 

cies of the word confused in their nurses notes. We see that con- 

fused also appears for some patients in the cluster containing “nor- 

mal” patients (cluster 4), but for many of these patients only once. 

Fig. 3 c shows that patients that have a frequency of at least three 

for confused are concentrated around cluster 1 and 3. Higher fre- 

quency probably means that several nurses made the same obser- 

vation more times. Hence, it is reasonable to assume that higher 

frequency means higher certainty. An underlying cluster assump- 

tion is that patients that belong to the same cluster are similar, 

and therefore one could argue that if confused appears for a pa- 

tient that belong to cluster 1 or 3 only once, then it is probably 

not noise since the patient is supposed to be similar to patients 

for whom the word appear with a higher frequency. 

Cluster 2 and 4 are larger and have higher variance. Some ob- 

servations of confused in these clusters could be treated as noise 

and we therefore following clinicians’ input defined the certainty 
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Fig. 3. The red stars show the location in the t -SNE map of the patients for whom the word confused appear in their nurses notes. In (a) it appears at least once, in (b) at 

least twice and in (c) at least three times. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

measure, c 1 , as 

c 1 = 

{
2 , if the patient belongs to cluster 1 or 3, 
3 , if the patient belongs to cluster 2 or 4. 

Step 4. Definition of anchor. The anchor A 1 = confused ∗ was then 

defined according to Eq. (1) . The ∗ means that the certainty mea- 

sure is considered to define the anchor. Note that we probably 

could have chosen c 1 = 1 for patients in cluster 1 and 3 as well, 

but we rather want false negatives than false positives, and there- 

fore make a more conservative choice for the certainty. 

3.3. Classification based on specified anchors 

3.3.1. Feature representation for classifier 

A bag-of-words (BoW) model was used to represent the pres- 

ence or absence of each different word that appeared in the clin- 

ical narrative [20] . Stop words and words that appeared for fewer 

than five patients were removed. The structured data, gender, type 

of surgery and some ICD-10 codes, were represented as booleans. 

Age was discretized into two intervals; older or younger than 65 

years, since the literature emphasizes that especially patients older 

than 65 years have higher risk of getting PD [1,2,21] . For the Amer- 

ican Society of Anesthesiologists (ASA) physical state grade, Scholz 

et al. [22] showed that for a score of at least three is a risk fac- 

tor for PD. We therefore made a boolean by putting a threshold at 

three. In total this resulted in 20,949 different features. 

3.3.2. Evaluation of proposed method 

The R-package glmnet [23] was used to run the elastic net logis- 

tic regression. The regularization parameter λ was chosen using 10 

fold cross-validation. We could also choose the other regularization 

parameter α using cross-validation. However, to ensure that we did 

not see the effect of different types of regularizations when com- 

paring to baselines we chose α = 0 . 5 . To incorporate that our prior 

belief is that each variable is equally important, we ensured that 

the penalty applied equally to all variables by standardizing the 

binary variables to zero mean and standard deviation one [13] . We 

chose to measure performance using the area under the precision- 

recall curve (AUC-PR) because it captures the performance over the 

entire operating range and has been shown to work well on imbal- 

anced data [24] . For this measure only the ordering of the scores is 

needed and therefore it was not necessary to tune the calibration 

coefficient. 95% confidence intervals (CIs) were evaluated using 100 

bootstrap samples from the test set [25] . 

Table 2 

Area under the PR-curve (AUC-PR) for three baselines and the proposed method. 

The two first anchors are chosen from all documents, whereas the two last one are 

chosen from the nurses notes ( D ). 95% confidence intervals are shown in parenthe- 

sis. 

Anchor Confused Confused ×3 Confused + A 1 

AUC-PR 0.507 0.707 0.503 0.803 

95% CI (0.351, 0.652) (0.541, 0.856) (0.360, 0.637) (0.633, 0.918) 

3.3.3. Demonstrating the effect of exploratory anchor selection 

Section 3.2 introduced a text-based method for exploring an- 

chors from EHRs using clinical knowledge, basically creating labels 

for a classifier (see Fig. 1 ). Here we demonstrate the effect of this 

exploratory anchor selection procedure by comparing to baselines 

where we applied AM with anchors not specified using the pro- 

posed method. To isolate the effect of the proposed anchor speci- 

fication method we used the elastic net with α = 0 . 5 also for the 

baseline. The effect of the classifier choice will be demonstrated in 

a later subsection. 

The first baseline we compared to was AM with the anchor con- 

fused , where confused was specified by naively letting all patients 

where the word confused appeared in some of their documents 

have an anchor. We also applied AM to the anchor confused ×3 , 

which was defined such that it is on if confused appeared at least 

three times in any of the documents. To demonstrate that it is not 

only a matter of choosing the correct document types, we com- 

pared to yet another baseline; we applied AM to the anchor con- 

fused + , which is on only if confused is observed in the free text 

only from the first two bullet points in the nurses notes. 

Table 2 shows AUC-PR values and 95%-CIs obtained using the 

baselines and AM with the anchor A 1 . We see that with the anchor 

A 1 an AUC-PR value of 0.803 was obtained, which is a considerable 

increase compared to the baselines. 

By comparing to different baselines, we have now isolated the 

effects of (1) specifying the anchor only from the free text only 

from the first two bullet points in the nurses notes, and (2) speci- 

fying the anchor using our proposed methodology. We have shown 

that both steps are necessary to obtain a reasonably good perfor- 

mance. 

3.3.4. Demonstrating the effect of document selection in feature 

representation for classifier 

Clinical knowledge was used to suggest that anchor selection 

should come from the first two bullet points in the nurses notes. 
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Table 3 

Lists of the top ranked features obtained using elastic net logistic regression 

with the anchors A 1 = confused ∗ , A 2 = { A 1 , disoriented ∗}, A 3 = { A 1 , A 2 , unclear ∗} 

and A 4 = { A 1 , A 2 , A 3 , haloperidol ∗}, respectively, as labels. 

Rank A 1 A 2 A 3 A 4 

1 Disoriented Unclear Haloperidol Perceive 

2 Unclear Eye contact Messes Messes 

3 Clear Responds Responds Responds 

4 Case Picking Perceive Picking 

5 Bed Hands Indistinct Indistinct 

6 Messy Indistinct Agitated Understand 

7 Visions Sleep Remembers Agitated 

8 Eyes Messy Understand Opens 

9 Called Messes Hallucinated Hallucinated 

10 Fall Bring Messy Messy 

�

24 Haloperidol ASA score 1 Forgets Incomprehensible 

1 The only structured variable that appeared among the 25 top ranked vari- 

ables. 

Table 4 

AUC-PR values obtained by adding more anchors. In the columns to the right we 

have also shown AUC-PR values obtained using l 2 regularized logistic regression 

as the classifier in AM. 

Elastic net l 2 -regularization 

AUC-PR 95% CI AUC-PR 95% CI 

A 1 0.838 (0.694, 0.930) 0.692 (0.555, 0.844) 

A 2 0.925 (0.851, 0.975) 0.815 (0.658, 0.916) 

A 3 0.964 (0.911, 0.993) 0.910 (0.817, 0.975) 

A 4 0.962 (0.923, 0.996) 0.915 (0.827, 0.998) 

Supervised baseline 0.770 (0.652, 0.888) 0.580 (0.469, 0.691) 

However, it was also hypothesized that the nurses notes likely is 

the most important data source for identifying information about 

PD. Surgical operation notes, doctor’s notes, radiology reports, etc., 

will probably introduce more noise than relevant information. We 

therefore used clinical knowledge to reduce the number of data 

sources for the classifier to only structured data and free text 

from the nurses notes, which reduced the number of features to 

2008. With this approach the AUC-PR value increased from 0.803 

to 0.838, 95% CI (0.694, 0.930), with the anchor A 1 . The CI is wide, 

but at least we see that the AUC-PR did not decrease. 

3.3.5. Demonstrating the effect of adding more anchors and classifier 

choice 

The elastic net outputs a ranked list of the most important fea- 

tures, which potentially could contain suggestions of new predic- 

tive anchors. Table 3 shows the ranked features provided by AM 

when A 1 was used as anchor (second column). Based on the rank- 

ing and clinical knowledge, we added the word disoriented as a 

predictive anchor. 

Using the same certainty measure as for confused we defined 

the anchor disoriented ∗ according to Eq. (1) and created a compos- 

ite anchor, A 2 , as the union of confused ∗ and disoriented ∗. Table 4 

shows that AM with the anchor A 2 gave an AUC-PR value of 0.925, 

which is a considerable improvement. 

Based on the ranking in the third column in Table 3 and clini- 

cal knowledge we added the word unclear as a predictive anchor. 

We defined the composite anchor, A 3 , as the union of confused ∗, 

disoriented ∗ and unclear ∗. Table 4 shows that using A 3 we obtained 

an AUC-PR value of 0.964, which is a large improvement. Similarly, 

we created the anchor A 4 using the predictive anchor haloperidol . 

However, the AUC-PR value of 0.962 is very similar to the result 

obtained using the anchor A 3 . 

We see that the list of the top ranked features obtained us- 

ing four anchors contains words like messes, picking, indistinct, un- 

derstand, agitated, hallucinated, visions and incomprehensible . These 

words are definitely related to the mental status and potentially 

we could continue to add more anchors. However, we decided to 

not add more anchors because these candidates were not predic- 

tive enough and/or ambiguous. 

As we mentioned above, since the sample size is lower than 

the dimensionality, we chose to use the elastic net. We compared 

to l 2 regularization by computing AUC-PR values and 95% CIs using 

the anchors A 1 , A 2 , A 3 and A 4 . Table 4 shows that the elastic net is 

clearly beneficial. For example, for the anchor A 1 using l 2 regular- 

ization an AUC-PR value of 0.692 was obtained, whereas using the 

elastic net we got 0.838. 

We also compared to a supervised baseline where we trained a 

classifier (elastic net) on the test set using 5-fold cross-validation. 

Mean AUC-PR and standard errors were calculated using bootstrap 

(creating 100 different 5-folds). Table 4 shows that with this a ap- 

proach an AUC-PR value of 0.770 was obtained, considerably lower 

than for AM with two or more anchors. 

4. Discussion 

The proposed method is not fully automatic, it still requires 

some manual work. Therefore a natural question to ask is whether 

one actually gains something in terms of reduced labor intensity 

compared to manual label annotation. However, then one should 

keep in mind that while the latter must be done individually (e.g. 

by retrospectively reading the EHR for each patient one wants to 

label), in the former the manual work is done once and for all. 

Hence, the time spent on anchor annotation is actually not com- 

parable to manual label annotation, and the difference becomes 

larger the larger the dataset is. We also want to emphasize that 

the proposed method is not fully generalizable to all diagnostic 

challenges. That being stated, it is easy to find other clinically in- 

teresting problems, both in retro- and prospective settings, where 

the method is applicable. One example is to use this method to 

pre-operatively identify malnourished patients [26] . In this case 

the notes regarding nutritional status would be particularly rele- 

vant. We also believe that the method is transferable to predict- 

ing patients at risk for post-operative complications. Potentially the 

method can be used in more general text-based settings, not nec- 

essarily in a clinical application. 

4.1. Limitations and further work 

AM falls into the classical PU-learning setting where one as- 

sumes that only the unlabeled dataset, U , is contaminated, whereas 

the positive set, P , is assumed to not contain false positives. In 

our approach we adapted the way of choosing the set, P , such 

that this assumption is not broken. However, recently, approaches 

where one assumes that also P can be contaminated, have been 

proposed [27,28] . The main ingredient in these methods is to use 

resampling on P to provide robustness against false positives. In 

[29] Claesen et al. showed that this approach can be used to pre- 

dict whether a patient will start glucose-lowering pharmacother- 

apy. It will be interesting to use the anchors as proposed by 

Halpern et al. such that P is contaminated and thereafter apply- 

ing an approach similar to the robust ensemble SVM, proposed in 

[28] , in further work. 

There are of course many challenges related to the unstructured 

text we have available [30,31] . Often the time spent on entering 

text into the EHRs is limited. A document could for example be a 

dictate of a conversation during a consultation. In other cases in- 

formation could be recorded on an audio-recorder and then tran- 

scribed by a secretary at a later time. For these reasons incom- 

plete sentences and typos are more common in medical text than 

in usual published text. In addition, there are words that contain 
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digits, medical short forms and acronyms. Another challenge, spe- 

cial to Norwegian medical text, is related to the fact that there are 

two official languages in Norway and that a relatively large fraction 

of the employees at UNN are from other countries in Scandinavia. 

Some of them write in their own language, others have learned 

some Norwegian and therefore text written by them could be a 

mixture of several languages. We could have done more natural 

language processing to compensate for these challenges, but would 

have required a lot of effort since all the text mining software that 

is developed for English language does not exist for Norwegian 

language. However, there is ongoing work in our group trying to 

introduce less noisy conceptual features based on medical ontolo- 

gies [32] . Since the AM framework do not make any assumption on 

how the features are represented, these can be included in further 

work. 

Another limitation of our work is the quality of the gold stan- 

dards. The clinicians created the gold standard of PD based on ac- 

tual information in the EHR. Diagnosing PD was in part based on 

a consciousness assessment tool, the Observational Scale of Level 

of Arousal (OSLA) [33,34] , as the EHR lacked sufficient data to use 

standardized delirium screening instruments. Hence, there is a risk 

that the gold standard could be biased. 

Finally, we want to mention that in this work we have demon- 

strated the effects of the proposed methodology on a medium- 

sized dataset. The focus has been on diagnosing PD. However, in 

future work we would like to even more investigate the general- 

ization abilities on bigger datasets and other problems. In particu- 

lar, we will look at the problem of pre-operatively identifying and 

predicting malnourished patients at UNN. 

5. Conclusion 

We have adapted the learning with anchors framework to med- 

ical data gathered from a Norwegian university hospital. We intro- 

duced a new method for specifying anchors, providing the oppor- 

tunity to obtain a labeled training set without manual label anno- 

tation. The importance of the proposed method was demonstrated 

on task where the aim was to detect postoperative delirium. By 

creating the labels in naive way we got an area under the PR-curve 

(AUC-PR) of 0.51, whereas by introducing our suggested improve- 

ments and adaptations we got an AUC-PR value of 0.96. We believe 

that the method potentially can be used in other clinical problems 

as well as in a more general text-based settings, not necessarily 

related with healthcare. 
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Appendix A. kNN mode seeking consensus clustering 

In this section we give a brief description of the clustering 

method used for anchor specification. The clustering method be- 

longs to the consensus framework, meaning that the same kNN- 

mode seeking algorithm is applied many times with a random k - 

parameter to a resampled version of the dataset each time. The 

kNN mode seeking algorithm [35,36] is a density based algorithm, 

similar to mean-shift [37,38] , but the kernel density estimates are 

replaced by k -nearest neighbors (kNN) density estimates. This al- 

gorithm is used in each iteration in the consensus clustering. A 

detailed description of the framework is given in Algorithm 1 . An 

advantage with this method is that there are no critical parameter 

choices such as number of clusters, bandwidth parameters, etc. 

Algorithm 1 Consensus clustering using kNN mode seeking. 

Input Dataset X , range of k -values K, subsampling rate p and num- 

ber of clustering trials M. 

1: Initialize I and S as 0 N×N 

2: for each clustering trial do 

3: Draw a random k ∗ from K. 

4: Draw a random sample of size pN, X ∗, from X . 

5: For each pair of data points in X ∗ update the counter matrix 

I by I i j = I i j + 1 , where (i, j) are the indices of the data points 

in X . 

6: Use kNN mode seeking with parameter k ∗ to obtain a clus- 

tering of X ∗. 

7: For each pair of data points in X ∗, (i, j) , that belong to the 

same cluster, update S by S i j = S i j + 1 . 

8: end for 

9: Normalize the consensus matrix, S , by dividing element-wise 

by the counter matrix; S i j = 

S i j 

I i j 

10: Create a dendrogram using average linkage. 

11: Obtain the final clustering by selecting the cluster configuration 

with the longest lifetime. 

Output Clustering C of X . 

To assign cluster labels to new patients cannot be done using 

the kNN mode seeking consensus clustering algorithm since there 

exist no out-of-sample mapping. However, since the clustering al- 

gorithm is based on a k -nearest neighbors search, one could assign 

cluster labels to new data points using a kNN classifier [13] . 

Appendix B. t -distributed stochastic neighbor embedding 

( t -SNE) 

The t -SNE algorithm is one of the most well-established tech- 

niques for visualizing high-dimensional data in two or three di- 

mensions. It has shown robustness and has become the state-of- 

the-art visualization method for many different data types [39] . 

The algorithm has the property that it creates a single map that 

reveals structure in the data at many different scales. The objec- 

tive in this algorithm, which consists of two main stages, is to 

map points, x ∈ R 

p , in a high dimension, p , to a low dimension d , 

v ∈ R 

d [39] . Firstly, one estimates a joint probability distribution, 

p i j = 

p j| i + p i | j 
2 N , in the original, high-dimensional space over each 

pair of data points using a Gaussian kernel 

p j| i = 

e 
− 1 

2 σ2 
i 

|| x i −x j || 2 

∑ 

k � = i e 
− 1 

2 σ2 
i 

|| x i −x k || 2 . (B.1) 

Hence, p ij represents the similarity between the data points x i 
and x j . Secondly, the heavy-tailed Student t -distribution with one 

degree of freedom is used to model similarities in the low- 

dimensional space as 

q i j = 

(1 + || v i − v j || 2 ) −1 ∑ 

k � = l (1 + || v k − v l || 2 ) −1 
. (B.2) 

Then, the locations of the points v i are found by minimizing the 

Kullback–Leibler divergence, KL (P || Q ) = 

∑ 

i � = j p i j log (p i j q 
−1 
i j 

) , using 

gradient descent. P and Q are the joint probability distributions 

over all data points in the high- and low-dimensional space, re- 

spectively. 
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Fig. C4. By applying the clustering procedure as described in Section 3.2 to the training data four clusters were obtained. In this figure we have shown the most important 

features in each cluster. The size of each word corresponds to their relative tf-ipf values. 

Table C5 

Fraction of patients in each cluster for whom the word 

confused appeared at least 1,2,3 and 4 times, respectively, 

in their nurses notes. 

Frequency 1 2 3 4 

Cluster 1 0.7059 0.50 0 0 0.3529 0.2647 

Cluster 2 0.3507 0.2090 0.1343 0.0970 

Cluster 3 0.4839 0.2903 0.1290 0.0323 

Cluster 4 0.0349 0.0063 0.0016 0 

Overall 0.1301 0.0699 0.0422 0.0277 

Appendix C. Anchor specification 

In addition to the wordclouds ( Fig. C.4 ) and the t -SNE map 

shown in Fig. 3 a–c, Table C.5 contains information related to the 

word confused that was used to assess the certainty of this pre- 

dictive anchor. For example Table C.5 shows that for 35% of the 

patients in cluster 1 the frequency of confused is at least three, 

whereas for 71% of the patients the frequency is at least one. 

C1. Adding more anchors 

As we described in Section 3.3.5 , we used the ranking provided 

by AM with the anchor A 1 and clinical knowledge, to add the word 

disoriented as a predictive anchor. By looking at the wordcloud in 

Fig. C.4 and Table C.6 , we observe that the top ranked word disori- 

Table C6 

Fraction of patients in each cluster for whom the word 

disoriented appeared at least 1,2,3 and 4 times, respec- 

tively, in their nurses notes. 

Frequency 1 2 3 4 

Cluster 1 0.9117 0.7941 0.6470 0.5882 

Cluster 2 0.2910 0.2089 0.0970 0.0522 

Cluster 3 0.5161 0.2903 0.2258 0.1935 

Cluster 4 0.0285 0.0031 0 0 

Overall 0.1253 0.0795 0.0506 0.0397 

ented also is very frequent in cluster 1. This is another reason for 

using disoriented as the next predictive anchor. 

The semantic meanings of disoriented and confused are quite 

similar. Moreover, the t -SNE plot (not shown here) of the patients 

with the word disoriented in their nurses notes is very similar to 

the t -SNE plot corresponding to confused shown in Fig. 3 . Therefore 

we decided to use (almost) same certainty measure for these two 

predictive anchors, 

c 2 = 

{ 

2 , if the patient belongs to cluster 1 or 3, or other 
predictive anchors appear at least twice. 

3 , otherwise. 

We defined the anchor disoriented ∗ according to Eq. (1) and created 

a composite anchor, A 2 , as the union of confused ∗ and disoriented ∗. 

The two other anchors, unclear ∗ and haloperidol ∗, were added 

in a very similar fashion. From them we defined the composite 



K.Ø. Mikalsen et al. / Computer Methods and Programs in Biomedicine 152 (2017) 105–114 113 

Fig. D5. Plots of the t -SNE mapping of the test set. (a) Locations of the patients with PD in a two dimensional t-SNE map. The red squares correspond to patients that have 

PD, and the blue dots to patients that do not have PD. (b) Locations of the three clusters in a two dimensional t-SNE map. Yellow squares correspond to patients that belong 

to cluster 1, red circles to patients in cluster 2, blue dots to patients in cluster 3. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 

anchor, A 3 , as the union of confused ∗, disoriented ∗ and unclear ∗ and 

A 4 as the union of all four. 

Appendix D. Classification based on clustering of test set 

By looking at the clustering results shown as word clouds in 

Fig. C.4 it seems like cluster 1 contains many words related to PD 

and this might indicate that doing classification only based on the 

clustering results could solve the problem we have considered in 

this paper. We investigate this further here. 

We applied the clustering algorithm to the labeled test set 

alone and obtained three clusters. A t -SNE mapping of the data 

in two dimensions is shown in Fig. D.5 . By looking at the high- 

frequent words in the different clusters, we also in this case found 

a cluster containing many words related to the mental status of the 

patient. Based on these results we classified all patients in cluster 

3 as has PD and got an AUC-PR value of 0.456 with a 95% CI (0.436, 

0.483). These results are not very convincing and we conclude that 

it is meaningful to apply the AM for this problem. 
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Appendix A

Missing data

Missing data are common in many real-world applications, and might appear
for various reasons. For example, a sensor may stop working after some time
and therefore the measurements are censored, a participant in a survey may
forget to answer a question in a questionnaire, or a physician might not
order all possible blood tests for a patient because she thinks that some of
them are less relevant.

These few selected examples mentioned have in common that they lead to
incomplete datasets, but the missing data patterns may vary. The descrip-
tion of which values in an incomplete dataset are missing and which are not,
is commonly referred to as the missing data pattern. In the sensor exam-
ple, all data that should have been measured after the component stopped
working will be missing, whereas the order of unanswered questions in the
questionnaire might be completely random, and therefore the missing data
patterns are different in these two examples.

From a statistical perspective, an incomplete dataset is generated by a com-
posite random process, where there is one distribution from which complete
data are sampled and one missing data process that determines which val-
ues are missing, i.e. the missing data pattern. Traditionally, the underlying
(random) process that generates the particular patterns that are observed
in the data and the relationship between missing data, is referred to as the
missing data mechanism (Little and Rubin, 2014).

The missing data mechanism is obviously highly dependent on the problem
at hand, but according to the theory of Rubin (1976), there is one fundamen-
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tal distinction to make when categorizing missing data mechanisms, namely
whether data are missing at random, or equivalently, whether the probabil-
ity that a variable is missing is dependent on the value of the variable. Next,
we briefly review this theory introduced by Rubin.

Missing data mechanisms

Notation. Let X = {xn | xn ∈ Rd}Nn=1 denote a dataset consisting of N
d-dimensional vectors, and Xobs and Xmiss denote the observed and missing
entries of the data, respectively. Further, we define a binary missing data
indicator as R = {rn | rn ∈ {0, 1}d}Nn=1, where rni = 1 if the entry xni is
missing and rni = 0 otherwise. The missing data mechanism is assumed be
described by a conditional distribution, parametrized by θ, p(R |X, θ).
There are three types of missing data mechanisms, namely Missing Com-
pletely At Random (MCAR), Missing At Random (MAR), Missing Not At
Random (MNAR).

If the missing data mechanism is MCAR, then the probability of elements
being missing does not depend on their values, i.e. given any X ∈ RN×d
and set of parameters θ,

p(R |X, θ) = p(R | θ). (A.1)

If data are MAR the distribution of R depends only on the observed part of
X, namely Xobs, i.e.

p(R |X, θ) = p(R |Xobs, θ) (A.2)

for all possible configurations of Xmiss and θ. On the other hand, the MNAR
mechanism appears if p(R | X, θ) depends on the values of the missing
elements (Xmiss).

Methods for dealing with missing data

Missing data handling methods have been subject to extensive research since
Rubin published his famous paper in 1976. The amount of published work
on this topic is therefore tremendous. For this reason it is not possible to
provide a complete overview of the field, but we will in the following section
describe some common methods for dealing with incomplete data.
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Complete-case analysis Complete case analysis, also known as listwise
or casewise deletion, is probably the most straightforward and simple way
to treat missing data. In this approach, all cases (data points) that contain
missing values are simply discarded from the dataset. By doing so, one
obtains a new complete, rectangular dataset that is smaller than the original
incomplete dataset in terms of number of data points.

This approach could work if a large dataset with a small fraction of missing
data is available, but even in this scenario one could end up with biased
results if the missingness mechanism is not MCAR. Under other circum-
stances, complete-case analysis leads to a lot of discarded information and
models with low statistical power (Rubin, 1976; Schafer, 1997). Moreover, if
test data points are not completely observed, the method cannot be applied.
Despite these shortcomings, complete-case analysis is the most commonly
applied method for dealing with missing data in clinical trials (Bell et al.,
2014).

As an alternative, one can employ available case analysis, which is also
commonly referred to as pairwise deletion. This strategy can be applied in
methods where not all variables are analyzed at the same time. Hence, it
cannot directly be applied in most standard classifiers, but can for example
be used if one wants to estimate the covariance between to variables. In this
case one would use all data points where these two variables are present in
order to do the estimation. For more details on complete-case analysis we
point the interested reader to (Schafer and Graham, 2002).

Single imputation Imputation methods impute the missing values with
estimated values. In the so-called single imputation methods, in contrast
to multiple imputation, each missing value is imputed only once. One of
the most well-known such methods is mean imputation. Given multivari-
ate vectorial data and a missing value in a variable, one simply just fill in
the mean of that variable across all data points where that variable is not
missing. There are several different variations of this method. For example,
in a classification setting, one can restrict oneself to the mean in each class,
whereas for multivariate time series, instead of considering the population
mean, one can fill in the mean of the previous known values or the mean of
all known values for the variate.

Other related imputation methods include filling in other statistics such
as the median, maximum, minimum, or one could even fill in zeros for all
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missing data. The latter obviously introduces a bias into the data, but can
sometimes prove efficient (Hu et al., 2017). Moreover, these imputation do
not account for the uncertainty and variability in the data since all missing
values are replaced with identical values and therefore e.g. distances and
standard errors could be underestimated (Little and Rubin, 2014). An ex-
ample of a situation where single imputation could prove more efficient is
when more or less all data points in the dataset have a few missing elements,
but the overall fraction of missing data is low (Schafer and Graham, 2002).

The methods described so far utilize global properties of the dataset (except
row mean imputation). However, a broad class of the single imputation
methods are only based on local information. In this regard, the most
extreme methods are those where missing values in a data point are filled in
only based on the observed values in that single data point. An example of
such a method is the row mean imputation method discussed in the previous
paragraph. For time series data, other examples include smoothing and
interpolation techniques such as Kalman filters, linear interpolation, and
the well-known last observation carried forward scheme that imputes the
last non-missing value for the following missing values. Within this category,
one also finds Fourier transform based imputation (Rahman et al., 2015).
Other methods that are based on local information are those that impute
based on the neighboring data points. kNN based methods use the observed
variables to identify the k most similar completely observed data points
and thereafter find an estimate for the missing value by taking a weighted
average of the corresponding value among the neighbors (Garćıa-Laencina
et al., 2010). The weights can be computed using e.g. different types of
distances to the neighbors (Troyanskaya et al., 2001).

For more detailed overview of these imputation methods we refer the inter-
ested reader to Donders et al. (2006).

Multiple imputation Multiple imputation (Rubin, 2004) is the only im-
putation method that can account for uncertainty in the estimated replace-
ment values for the missing data. As the name of the method suggests, the
imputation is done by, for each missing element, finding a set of multiple
(M) possible values to fill in. Hence, M different complete datasets are
created. In order to capture the uncertainty about the correct values to im-
pute for the missing values an appropriate model that accounts for random
variation is chosen.
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Fröhlich, H., Balling, R., Beerenwinkel, N., Kohlbacher, O., Kumar, S., et al.
(2018). From hype to reality: data science enabling personalized medicine. BMC
Medicine, 16(1):150.

Fujino, A., Ueda, N., and Saito, K. (2005). A hybrid generative/discriminative
approach to semi-supervised classifier design. In Proceedings of the 20th National
Conference on Artificial Intelligence - Volume 2, AAAI’05, pages 764–769. AAAI
Press.

Fukunaga, K. and Hostetler, L. (1975). The estimation of the gradient of a den-
sity function, with applications in pattern recognition. IEEE Transactions on
information theory, 21(1):32–40.



Bibliography 162

Futoma, J., Hariharan, S., and Heller, K. (2017a). Learning to detect sepsis with a
multitask gaussian process RNN classifier. arXiv preprint arXiv:1706.04152.

Futoma, J., Hariharan, S., Heller, K., et al. (2017b). An improved multi-output
gaussian process rnn with real-time validation for early sepsis detection. In Doshi-
Velez, F. et al., editors, Proceedings of the 2nd Machine Learning for Healthcare
Conference, volume 68 of Proceedings of Machine Learning Research, pages 243–
254, Boston, Massachusetts. PMLR.

Futoma, J., Sendak, M., Cameron, B., and Heller, K. (2016a). Predicting disease
progression with a model for multivariate longitudinal clinical data. In Machine
Learning for Healthcare Conference, pages 42–54.

Futoma, J., Sendak, M., Cameron, C. B., and Heller, K. (2016b). Scalable joint
modeling of longitudinal and point process data for disease trajectory predic-
tion and improving management of chronic kidney disease. In Proc. Conf. on
Uncertainty in Artificial Intelligence, UAI’16, pages 222–231.

Gallego, B., Walter, S. R., Day, R. O., Dunn, A. G., Sivaraman, V., Shah, N.,
Longhurst, C. A., and Coiera, E. (2015). Bringing cohort studies to the bedside:
framework for a ‘green button’to support clinical decision-making. Journal of
comparative effectiveness research, 4(3):191–197.
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Häyrinen, K., Saranto, K., and Nykänen, P. (2008). Definition, structure, content,
use and impacts of electronic health records: a review of the research literature.
International journal of medical informatics, 77(5):291–304.

He, W., Goodkind, D., and Kowal, P. R. (2016). An aging world: 2015. United
States Census Bureau Washington, DC.

Hein, M. and Bousquet, O. (2005). Hilbertian metrics and positive definite kernels
on probability measures. In AISTATS, pages 136–143.

Henderson, J., Malin, B. A., Ho, J. C., and Ghosh, J. (2018). Piveted-granite: Com-
putational phenotypes through constrained tensor factorization. arXiv preprint
arXiv:1808.02602.

Henriksson, A., Kvist, M., Dalianis, H., and Duneld, M. (2015). Identifying adverse
drug event information in clinical notes with distributional semantic representa-
tions of context. Journal of biomedical informatics, 57:333–349.

Henriksson, A., Moen, H., Skeppstedt, M., Daudaravičius, V., and Duneld, M.
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