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ABSTRACT

Bighead carps (Aristichthys nobilis) were divided into four groups with different
feeding strategies: group A, nature live food only (fertiliser only, 200 g urea + 160 g
ethylamine phosphate + 250 g Huangjintai bio-fertiliser); group B, nature live food +
1/2 formulated feed; group C, nature live food + formulated feed; and group D,
formulated feed only. The intestinal microbiomes of the different groups were
compared through the Illumina MiSeq sequencing of the bacterial 16S rRNA gene.
The specific growth rate (SGR), survival and blood biochemical factors of the fish
were also investigated. Results showed that feeding treatment influenced the
intestinal communities in the fish. In specific, more bacterial phyla dominated in
groups A and B (phyla Bacteroidetes, Fusobacteria, Firmicutes and Proteobacteria
in group A, phyla Proteobacteria and Fusobacteria in group B) than in groups

C and D (phylum Proteobacteria). The diversity was also lower in groups C and D
than in groups A and B. Unweighted pair-group method analysis revealed a clear
difference in intestinal microbiota among the different feeding treatments. No
difference in survival rate was found among the treatment groups, but the SGR was
significantly higher (P < 0.01) in groups B, C and D than in group A. Functional
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vertebrates (Wong ¢» Rawls, 2012; Tarnecki et al., 2017). Microorganisms from water and
food can adhere and colonise the fish gut, and an imbalanced fish gut microbiota can alter
the immune regulatory functions of the gut and contribute to disease manifestation
(Pérez et al., 2010; Ghanbari, Kneifel ¢ Domig, 2015). Many factors, such as species, age,
developmental stage, geographic location, gender, environmental factors, the individual
genetics of fish can modulate the gut microbiota composition (Nayak, 2010; Li et al.,
2012, 2013, 2016; Ringo et al., 2016). In addition, diet, including dietary replacement

of fishmeal modulate the gut bacterial community in fish (Merrifield et al., 2011; Ye et al,
2014; Baldo et al., 2015; Estruch et al., 2015; Eichmiller et al., 2016; Ringo et al., 2016;
Zhou et al., 2017). However, less information is available about differences in the gut
microbiomes of fish species fed live food or artificial feed (Savas, Kubilay ¢» Basmaz, 2005;
Ni et al., 2014). Ni et al. (2014) revealed that the gut microbiota of grass carp
(Ctenopharyngodon idella) was modulated by ryegrass (Lolium perenne) or commercial
feed, and this modulation help to digest otherwise undigested dietary polysaccharose to
achieve nutritional and physiological homeostasis.

In China, bighead carp (Aristichthys nobilis), silver carp (Hypophthalmichthys molitrix),
grass carp and black carp (Mylopharyngodon piceus) are the major carp species (Y1,
Tang ¢ Li, 2010). Following the successful breeding of these species during the late 1950s
(Zhong, Li &» Zhang, 1965), bighead carp has become one of the most intensively exploited
fish species in aquaculture, with an annual global production of over 10 million tons
in 2015 and China is the main producer (Food and Agriculture Organization of the United
Nations (FAO), 2015). As filter feeders, bighead carp preferentially consumes zooplankton,
but also ingests phytoplankton and detritus, and they are also used as a potential
biological control agent to improve water quality and increase fish production in culture
ponds (Lazareva, Omarov & Lezina, 1977; Burke, Bayne & Rea, 1986; Xie ¢ Liu, 2001;
Conover, Simmonds ¢ Whalen, 2007). With the increasing demand of bighead
carp for consumption, pond models with a high density of carp has received considerable
attention (Mi, Wen ¢ Ge, 2016). Moreover, feeding bighead carp formulated feed to
increase farm yield has become popular and acceptable (Huang ¢» Pan, 2013; Mi, Wen &
Ge, 2016). Considering the influence of diet on fish gut bacterial community, it is of
interest to extend the knowledge of bighead carp gut microbiome and their potential
metabolic function when the fish is fed natural live food or formulated feed.

The aim of this study was evaluate (1) how the intestinal microbiome structure is
modulated by different feeding regimes, filter-feeding and formulated diet; (2) and
what’s the relationship between intestinal microbiome and metabolic functions of bighead
carp. The results will improve our understanding of the gut microbiome of filter-feeding
and feeding formulated diet fish.

MATERIALS AND METHODS

Experimental designs

The experiment was conducted in 12 rectangular enclosure (length 9 m x width 6 m x
height 2.5 m) in earth ponds (2666.4 m?) at Yaowan fish farming base (30.16N, 112.18E)
in Yangtze River Fisheries Research Institute in Jingzhou City, China. Four different
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pond management systems, triplicate ponds, were used. Group A (nature live food only):
fertilised ponds to obtain zooplankton; cladocera, copepod and rotifer, which were
identified in lab according to Jiang ¢» Du (1979), Shen (1979) and Wang (1961),

group B (nature live food +1/2 formulated feed): fertilised ponds in which bighead carp
were fed 1-1.5% of the body weight (BW) with formulated feed, group C (nature

live food + formulated feed): fertilised ponds where fish were fed 2-3% of the BW with
formulated feed and group D (only formulated feed): fish were fed 2-3% of the BW
with formulated feed.

Pond preparation and management

All ponds were drained, renovated and sterilised with Lime (CaO) prior to the experiment.
Each pond was filled with well water to 50 cm and treated with compound fertiliser (200 g
urea + 160 g ethylamine phosphate + 250 g Huangjintai bio-fertiliser (made of fish
protein, dairy products, astragalan and functional peptides, Hubei Daming Aquatic
Science and Technology Co., Ltd, Jingzhou, Hubei, China) for 1 week before experimental
start. This was done to culture natural live food for bighead carp. Thereafter, the water
level was increased up to 160 cm. The fertiliser was used twice every week during the
experiment in pond A, B and C. Commercially formulated feed (Zhengchang Company,
Changzhou, Jiangsu, China; diameter: 4.0-5.0 mm) was fed to fish in pond B, C and D.
The biochemical composition of the formulated feed was; crude protein >34.0%, crude
lipid >3.0%, lysine >1.4%, total phosphorus >1.0%, crude ash <15.0%, crude fiber
<12.0%, calcium = 1.0-4.0% and moisture < 12.0%.

Fish were transferred from Hubei Daming Aquatic Science and Technology Co., Ltd in
Jingzhou City to the Yaowan fish farming base. A total of 192 fish with initial BW of
906.7 £+ 102.4 g and body length (BL) of 37.6 + 2.0 cm were randomly distributed to the
ponds, 16 fish per pond, where they were fed formulated diet at a rate of 2-3% of biomass
twice a day (9:00 and 16:00). Each pond was equipped with one nanodisk to ensure
adequate oxygen level. The experiment was carried out from April 2014 to September
2014, and the main environmental factors of the ponds are displayed in Table S1.

Sample collection and pre-processing

A total of 180 days after the experimental start, fish were captured with falling nets in order

to avoid additional stress responses. The falling nets were used twice in each pond, and

one or two fish from each pond were randomly collected and anesthetised with an

overdose (70 mg/L) of MS 222 (Syndel, Ferndale, WA, USA). Final BL, BW and whole

length were measured prior to blood sampling, and specific growth rate (SGR) (% d™) was

calculated: SGR = [(In final weight—In initial weight)/rearing duration in days] x 100.

Blood was collected from caudal artery by sterile syringes and transferred into sterile tubes

and centrifuged at 3.000 rpm for 10 min at 4 °C. The separated serum was transported to

the laboratory under refrigeration and stored at —80 °C prior to biochemical analysis.
Fish exterior surfaces were swabbed with 75% ethanol before the ventral midline

was dissected. Faecal content was collected using sterile scalpel and forceps into a

sterile tube by squeezing along the exterior side of the intestine as described elsewhere
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(Lietal, 2014; Ye et al., 2014). Intestinal samples of 23 fish (group A, seven fish; group B,
seven fish; group C, five fish; and group D, four fish) were immediately frozen in

liquid nitrogen, transported to the laboratory and then stored at —80 °C until DNA
extraction. All samples were collected within 1 h post-fish capture.

The experiments were performed in accordance with the Regulations for the
Administration of Affairs Concerning Experimental Animals of China. The protocols
applied in the present study were approved by the Institutional Animal Care and Use
Committee of the Yangtze River Fisheries Research Institute, Chinese Academy of Fishery
Sciences (Approval ID: CAFSCJ-2014-001).

Blood biochemical parameters

Frozen blood samples were first thawed at —20 °C and then at 4 °C as described by
Zhang et al. (2010). Blood biochemical parameters, alanine aminotransferase

(ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total protein (TP),
glucose (GLU), triglyceride (TG), total cholesterol (TC), high-density lipoprotein
cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C), were analysed with
an Olympus® AU2700 Automated Chemistry Analyzer using commercial kits (D-20097;
Olympus life and Material Science Europa GmbH, Hamburg, Germany) at Hubei
Provincial Hospital of TCM.

DNA extraction, PCR and sequencing

For the analysis of bacterial diversity, 0.25 g (wet weight) of the intestinal samples was used
to extract DNA by the Powerfecal DNA Isolation kit (Mo Bio Laboratories Inc., Carlsbad,
CA, USA) in accordance with the manufacturer’s protocols. The 338F (ACTCCTAC
GGGAGGCAGCA) and 806R (GGACTACNNGGGTWTCTAAT) primers were used to
amplify the bacterial 16S rRNA gene V3-V4 fragments. PCR integrant and protocols
were carried out as described by Gu et al. (2016): 95 °C for 2 min, followed by 27 cycles at
95 °C for 30 s, 55 °C for 30 s, and 72 °C for 45 s and a final extension at 72 °C for 10 min,
10 °C until halted by user.

The PCR products were separated by 2% agarose gel electrophoresis and negative
controls were always performed to make sure there was no contamination. All bands of the
desired size (approximately 468 bp) were purified using the AxyPrep DNA Gel Extraction
Kit (Axygen Biosciences, Union City, CA, USA). Prior to sequencing, purified PCR
products were quantified by Qubit®3.0 (Life Invitrogen, Waltham, MA, USA) and every
24 amplicons whose barcodes were different were mixed equally. The pooled DNA
product was used to construct Illumina Pair-End library following Illumina’s genomic
DNA library preparation procedure. Then the amplicon library was paired-end sequenced
(2 x 250) on an Illumina MiSeq platform (Shanghai Majorbio Bio-Pharm Technology and
Lingen Biotechnology Co., Ltd) according to the standard protocols.

Process of sequencing data
Trimmomatic and QIIME (version 1.17) was used to process and quality-filter the raw
fastq files (Caporaso et al., 2010; Gu et al., 2016). Three criteria were followed: (i) reads
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were truncated at any site receiving an average quality score <20 over a 50 bp sliding
window, discarding the truncated reads that were shorter than 50 bp; (ii) Exact barcode
matching, <20% mismatches were allowed, and reads containing ambiguous

characters were removed; (iii) only sequences that overlap by longer than 10 bp were
assembled according to their overlap sequence; (iv) adjust the sequence direction,

the mismatch number of barcode is 0, and the maximum primer mismatch number is 2
(Sun et al., 2015). UPARSE was used to cluster operational taxonomic units (OTUs) with
97% similarity cutoff, and UCHIME was applied to identify and remove chimeric
sequences based on both mode reference database and de novo. The phylogenetic
affiliation analysis of each 16S rRNA gene sequence was introduced by RDP Classifier
against the SILVA (SSU115)16S rRNA database with a confidence threshold of 70%
(Schloss & Westcott, 2011; Westcott & Schloss, 2015).

Statistical analysis

Rarefaction analysis based on treatment and technical replicates was performed after
sequence re-sampling using the Mothur program (version 1.30.1, http://www.mothur.org/
wiki/Schloss_SOP#Alpha_diversity). Alpha diversity indices were determined from
rarefied tables using the Shannon-Wiener index and Simpson index for species diversity
and the Chaol index for species richness to reveal changes in intestinal microbiota in
different samples (Caporaso et al., 2011). The unweighted pair-group method based on
Bray-Curtis dissimilarity was used to perform a hierarchical clustering of different
samples. Taxonomic composition-based non-metric multidimensional scaling analysis
and weighted UniFrac distance-based PCoA analysis were conducted to illustrate the
overall patterns of microbial communities in the different samples. Multiple regression of
environmental variables with the microbial community groups was analysed. Independent
regression models of genus taxonomy and biochemical parameters were established to
screen the microbial genera that could significantly predict metabolic characters and to
explore the potential relationships between intestinal microbes and host metabolism.
Regression analysis was run on the entire dataset, and only significant differences were
shown. Moreover, functional predictions on family-level microbiome were also performed
in PICRUSt. All data were expressed as mean = SD. Two-tailed Student’s ¢-test was
used to assess fish growth parameters and metabolic differences, and false discovery rate
correction (Benjamini-Hochberg) was considered. Multivariate ANOVA was used

to assess the differences in bighead carp intestinal bacterial communities between the
different treatments. Statistical analyses were performed with the software SPSS 22.0
(IBM, New York, NY, USA) and R (ver. 3.0.1) package (R Core Team, 2013). The level of
significance was set at a P-value of < 0.05.

RESULTS

Growth performance and biochemical parameters

Feed application significantly affected fish growth and SGR. The SGRs of bighead carp
were significantly higher (P < 0.01) in groups B, C and D than that in group A, whereas the
survival rate showed no difference among the treatments (Table 1).
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Table 1 Main growth performance of bighead carp in different treatments.

Group A Group B Group C Group D P-value
Final weight (g)  965.8 + 125.3"  1233.6 3439 11883 + 284.4"°  1426.6 + 159.0°  <0.01
Survival (%) 96.0 = 5.20% 70.8 £ 30.2% 75.0 £ 10.5% 70.8 £ 10.5% NS
SGR (% d ") 0.04 £ 0.03" 0.17 + 0.16" 0.16 + 0.08" 0.25 + 0.06" <0.01
Note:
Mean + SD.

*>¢ Indicates significant association (P < 0.05).

Table 2 Comparison of metabolic differences between fish groups under different treatments.

Group A Group B Group C Group D P-value
ALT(U/L) 23.6 + 3.90° 29.1 + 8.90° 33.8 + 13.3° 713 +13.3° <0.01
AST(U/L) 57.6 +21.2 36.7 + 5.20 452 +10.5 425 + 4.70 NS
ALP(U/L) 320+ 193 69.0 + 35.7 70.4 + 25.1 61.3 + 38.8 NS
TP (g/L) 224 +270°  29.7 + 450 29.5 + 1.90" 312 +3.50° <0.01
TC (mmol/L) 1.80 + 0.40° 2.60 + 0.50° 2.70 + 0.40° 2.80 + 0.10° <0.01
TG (mmol/L) 0.40 + 0.10° 2.20 + 0.40° 1.70 + 0.20° 1.70 + 0.10° <0.01
GLU (mmol/L) 4.50 + 0.40° 530 + 1.10™" 6.10 + 1.10° 7.90 + 0.80° <0.01
HDL-C (mmol/L) 0.20 £ 0.10° 0.30 + 0.10° 0.30 + 0.10>¢ 0.4 + 0.10° <0.01
LDL-C (mmol/L) 0.50 + 0.20° 0.60 + 0.10" 0.06 + 0.20*" 0.80 + 0.10° <0.05
Notes:
Mean + SD.

ALT, alanine transaminase; AST, aspartate aminotransferase; ALP, alkaline phosphatase; TP, total protein; TC, total
cholesterol; TG, triglyceride; GLU, glucose; HDL-C, high-density lipoprotein; LDL-C, low-density lipoprotein.
*>¢ Indicates significant association (P < 0.05).

Biochemical blood parameters, mean and SD are shown in Table 2. The concentrations
of ALT and LDL-C were significantly lower (P < 0.01) in groups A, B and C than in group
D. TP, TC, TG, GLU and HDL-C were significantly (P < 0.01) lower in group A
compared to the other groups. No significant (P > 0.05) differences in ALP and AST levels
were noticed among the different treatments.

Intestinal microbiota diversity and richness
After quality filtering and length trimming, 759,048 high-quality bacterial sequences
were obtained, equivalent to an average of 33,002 (min 26,755 and max 38,788) reads per
sample, when representative OTU sequences were classified using the RDP classifier.
The number of OTUs was analysed for each sample with a 97% sequence similarity cut
off value. Alpha diversity metrics showed no significant (P > 0.05) differences in OTU
richness (Chaol index) among the treatments (Fig. 1). Meanwhile, the Shannon-Wiener
and Simpson indices significantly differed (P < 0.05) among the feeding strategies
(Fig. 2). Group A and B had the highest diversity; significantly (P < 0.05) different from
groups C and D, By contrast, the diversities between groups A and B or between groups C
and D revealed no significant (P > 0.05) difference.

Intestinal microbiota composition
Phyla Bacteroidetes, Fusobacteria, Firmicutes and Proteobacteria were dominant in
group A (Fig. 3A). In group B, phyla Proteobacteria and Fusobacteria dominated the
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Figure 1 Rarefaction analysis of MiSeq sequencing reads of the 16S rRNA gene in different fish
samples with different treatments. Rarefaction curves at a cutoff level of 3% were constructed at a
97% sequence similarity cutoff value. A, fertiliser; B, fertiliser + 1/2 feeding; C, fertiliser + feeding; D,
feeding. Full-size K] DOT: 10.7717/peerj.6000/fig-1

intestinal microbiome and constituted of 60.0% + 25.3% and 18.5% * 20.4%, respectively,
followed by Cyanobacteria, Bacteroidetes and Firmicutes. Phylum Proteobacteria was
dominant in the intestinal microbiomes of group C (96.1% + 2.5%) and group D
(94.5% + 6.3%), whereas other phyla comprised < 2% of the total reads.

Figure 3B revealed that family Porphyromonadaceae (40.2 £ 22.3%),
Fusobacteriaceae (29.7 + 23.3%) and Peptostreptococcaceae (12.2 + 7.6%) dominated
the intestinal microbiome of group A. Family Gammaproteobacteria_unclassified
OTU (31.6 +26.7%), Fusobacteriaceae (18.8 + 27.8%), Aeromonadaceae (14.6 + 13.5%)
and Rhodocyclaceae (4.85 + 4.70%) dominated the intestinal microbiome in
group B. In group C and D, family Gammaproteobacteria_unclassified OTU were the
dominant intestinal microbiome, with a portion of 85.3 + 11.7% and 83.0 + 17.0% of
total reads, respectively. At the genus level, significant (P < 0.01) differences
were revealed among the treatments. The abundance of Cetobacterium (phylum
Fusobacteria, family Fusobacteriaceae), Peptostreptococcaceae_incertae_sedis
OTU (phylum Firmicutes, family Peptostreptococcaceae) and Porphyromonadaceae_
uncultured OTU (phylum Bacteroidetes, family Porphyromonadaceae) were
significantly (P < 0.05) higher in group A when compared to the three other groups. The
genera Gammaproteobacteria_unclassified OTU (phylum Proteobacteria), Aeromonas
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Figure 2 Alpha diversity Shannon (A) and Simpson (B) measures based on average operational
taxonomic units (OTUs) of fish with different treatments. Error bars indicate SD. a, b indicate sig-
nificant association (P < 0.05). A, fertiliser; B, fertiliser + 1/2 feeding; C, fertiliser + feeding; D, feeding.

Full-size K&l DOT: 10.7717/peerj.6000/fig-2

and Pseudomonas (phylum Proteobacteria, family Aeromonadaceae and
Pseudomonadaceae, respectively) and the genus Cetobacterium were present at higher
proportions in group B than in the other groups. The abundance of the genus
Aeromonas was significantly (P < 0.01) higher in group B than in group A, C and D.
By contrast, the genus Gammaproteobacteria_unclassified OTU was significantly higher
(P < 0.01) in group C and D than in the other groups (Table 3). Meanwhile, the
shared taxa with relative abundance above 1% were further examined to evaluate core
bacterial shifts among different treatments. Clear core bacterial turnover patterns
among different treatments were visualised by the heat maps, and no individual
OTUs were shared across all diet combination treatments (Fig. S2).

Intestinal microbiota community composition

Hierarchical clustering showed that bacterial communities clustered as a consequence of
feeding strategy treatments (Fig. 4). The microbiota community of group B dispersed:
some clustered with group A, while others clustered with groups C and D. A higher
separation was revealed between group A compared with groups C and D, as the two latter
groups generally clustered together.
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intestinal microbiota with different treatments. A, fertiliser; B, fertiliser + 1/2 feeding; C, fertiliser +
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Functional analysis

The relationships between genera and biochemical parameters were investigated separately
through independent regression models to explore the potential metabolic functions of the
intestinal microbiome in bighead carp. Genera Gammaproteobacteria_unclassified

OTU, Pseudomonas, Cetobacterium and Porphyromonadaceae_uncultured OTU were
significantly (P < 0.05) related to the fish biochemical parameters (Fig. 5). Results showed that
ALT and GLU were positively associated with the genus Gammaproteobacteria_unclassified_
OTU (R* = 0.27 and R* = 0.46, respectively). By contrast, GLU was negatively associated
with the genera Cetobacterium and Porphyromonadaceae_uncultured OTU (R = 0.24
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Table 3 Average relative abundances (% of sequences per treatment) and standard deviation of the most abundant bacteria at the genus
taxonomy level in fish intestine.

Phylum Family Genus Group A (%) Group B (%) Group C (%) Group D (%) P-value

Proteobacteria ~ Aeromonadaceae Aeromonas 0.20 + 0.24" 20.7 + 12.63° 138 + 1.10° 0.98 + 1.23" <0.01

Proteobacteria Gammaproteobacteria_  0.95 + 0.76" 50.3 + 38.9" 95.8 + 2.82¢ 93.8 + 6.31° <0.01
unclassified OTU

Proteobacteria ~ Pseudomonadaceae Pseudomonas 0.02 + 0.01° 439 +3.02° 1.93 + 1.62° 2.78 + 1.22° <0.05

Fusobacteria Fusobacteriaceae Cetobacterium 34.5 +27.3" 21.8 +4.12° 0.72 + 0.79" 1.29 + 0.86° <0.05

Firmicutes Peptostreptococcaceae  Peptostreptococcaceae 16.3 + 11.9° 0.19 £ 0.17° 0.08 + 0.04" 0.04 + 0.03" <0.01

incertae_sedis OTU

Bacteroidetes Porphyromonadaceae ~ Porphyromonadaceae_  48.1 + 24.9" 2.61 +1.82° 0.17 £ 0.17° 1.06 + 0.20" <0.01
uncultured OTU

Notes:
Mean% + SD.
*b¢ Indicates significant association (P < 0.05).

groupA
groupB

groupC _| B6
B3

groupD

[
0.01

Figure 4 Unweighted pair-group method dendrograms showing the similarity of fish intestinal
microbiota with different treatments based on operational taxonomic units (OTUs). A, fertiliser; B,
fertiliser + 1/2 feeding; C, fertiliser + feeding; D, feeding. Full-size Kal DOIL: 10.7717/peerj.6000/fig-4
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and TG, triglyceride.

and R* = 0.27, respectively). Moreover, AST was negatively correlated with the genus

Pseudomonas, whereas TG was positively correlated with the genus Pseudomonas (R* = 0.72

and R? = 0.79, respectively).

DISCUSSION

Recently in China, the filter-feeding fish bighead carp has been successfully fed formulated
feed to increase the farm yield to meet the increasing demand (Mi, Wen & Ge, 2016).
In the present study, the SGR of group D was significantly (P < 0.05) higher than that in
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group A, and our results are in accordance with Mi, Wen ¢ Ge (2016), suggesting feeding
formulated feed could improve the growth rate of bighead carp. Though the survival
rate is no significantly different between all treatments, 20-25% reduced survival
existed in the group B, C and D, it may due to the poor condition of fish and lower
dissolved oxygen in rainy day. In a previous study, Asadi et al. (2006) reported that ALT
and AST are mainly located in the liver and reflect its physiological state. The significant
(P < 0.05) increase in ALT activity in group D indicated a higher activity in the
amino acid catabolism of the liver. The low GLU and TG in group A may be due to the
placid behaviour of bighead carp under natural conditions, as bighead carp is more
active to catch the formulated feed in groups B, C and D than in group A (Song & Kong,
2013). These differences in catching food may induce more glycogen and protein
catabolism, which affected the concentrations of GLU and TP (Atencio, Edwards e
Pesti, 2005).

The gut microbial community of fish is modulated by dietary manipulations
(Muegge et al., 2011; Wu et al., 2011; Ringo et al., 2016). However, to our knowledge,
information about the intestinal microbiome of filter-feeding fish fed formulated feed is
lacking. The results of present study improve the knowledge on the microbial communities
of filter-feeding fish and feeding fish, and might be exploited in formulated feed
production in the future. In general, fish intestinal microbiota is dominated mainly by the
phyla Proteobacteria and Firmicutes (Navarrete et al., 2010; Sullam et al., 2012;

Estruch et al., 2015; Miyake, Ngugi ¢ Stingl, 2015), while Fusobacteria was the dominant
phylum in the current study, a finding which is in accordance with that revealed for
common carp (Cyprinus carpio L.) (Van Kessel et al., 2011). Bacteroidetes is an abundant
phyla in bighead carp (the present study), silver carp (Ye et al., 2014), paddle fish
(Psephurus glades) (Li et al., 2014), sea bass (Dicentrarchus labrax) (Carda-Diéguez,
Mira & Fouz, 2014) and marine herbivorous fish (Sullam et al., 2012). Interestingly, the
core intestinal microbial composition of bighead carp in group A was more consistent with
that previously reported in paddle fish that similar dominant phyla Bacteroidetes,
Fusobacteria, Firmicutes and Proteobacteria were revealed (Li et al., 2014). This result may
due to the fact that natural food consumed by paddle fish (Zhu, Li ¢ Yang, 2014) is similar
to that consumed by bighead carp in the present study.

In the present study, the intestinal microbial composition and community of bighead
carp had no relationships with the environmental variables (Table S2). However, they were
significantly influenced by the formulated feed; that is, bacterial community was unique for
groups A, C and D, whereas that for group B was variable (Fig. 3; Fig. S1). Considering that
more bacterial species and higher diversity of intestinal microbiome were revealed in
groups A and B than in other groups, we hypothesised that formulated feed reduces the
species and diversity of intestinal microbiome in bighead carp. The variation in eaten
natural food and its associated microbes may influence the gut bacteria diversity because
bighead carp is reportedly predominantly zooplanktivorous, and the fish may eat
phytoplankton and detritus when the concentrations of zooplankton are low (Zhang, Xie
¢ Huang, 2008). However, Bolnick et al. (2014) elucidated that multiple diet components
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can interact non-additively to modulate the gut microbial diversity in three spine
stickleback (Gasterosteus aculeatus) and Eurasian perch (Perca fluviatilis). Moreover,
despite the decreased diversity of intestinal microbiome, the growth performance was
improved in groups C and D. However, previous study has reported that pig’s BW was
significantly decreased when feeding deoxynivalenol contaminated wheat, while there were
no significant difference in their intestinal bacterial diversity comparing with control
group (Li et al., 2017).Whether fish growth performance is related to intestinal microbial
diversity merits further investigations.

In this study, genus Gammaproteobacteria_unclassified OTU substantially increased in
groups B, C and D and positively correlated with GLU and ALT concentrations, indicating
that this genus may be positively associated with carbohydrate and lipid metabolism.
The contribution of gastrointestinal microbiota to host carbohydrate and lipid metabolism
has been intensively studied in human, mice, cow and grass carp (Turnbaugh et al., 2006;
Brulc et al., 2009; Velagapudi et al., 2010; Ni et al., 2014).

Previous studies have reported that Cetobacterium somerae is a common and
widely distributed species within the guts of freshwater fishes, and its prevalence is
negatively correlated with the dietary availability of vitamin B, (Tsuchiya, Sakata &
Sugita, 2008; Eichmiller et al., 2016). Hence, Cetobacterium somerae has been assumed to
have a main role in the synthesis of vitamin By, in the fish gut (Sugita ¢& Miyajima, 1991).
However, as vitamin B, within the natural food was not investigated in the current
study, further studies on this topic are needed. Supplementation of vitamin B, in
formulated fish feed may lower the abundance of Cetobacterium in groups C and D.
However, to verify this controversial hypothesis further studies are needed. In mice and
human, Porphyromonadaceae negatively affects lipid metabolism, and it is associated
with non-alcoholic fatty liver disease, atherosclerosis and diabetes in human (Henao-
Mejia et al., 2012; Marques et al., 2015), while Peptostreptococcaceae were revealed to be
positively correlated with lipid metabolism in bighead carp (Fig. S3). In addition,
Cetobacterium and Porphyromonadaceae_uncultured OTU, as the dominant genera in
group A, were revealed to be negatively associated with GLU concentrations (Fig. 5),
suggesting the fish GLU metabolism in the fertiliser group may be limited by these
bacteria. However, Fusobacteriaceae and Peptostreptococcaceae both showed positive
correlation with carbohydrate metabolism (Fig. S3), more metagenomic sequencing
and functional activity study of intestinal microbiome in bighead carp are needed in
the future.

In the current study, the genus Pseudomonas was negatively correlated with
AST activity but positively correlated with TG, suggests that Pseudomonas may be
positively associated with lipid metabolism. Family Pseudomonadaceae also showed a
positive correlation with lipid metabolism (Fig. S3). Considering that genus
Gammaproteobacteria_unclassified OTU and Pseudomonas were highly dominated in
groups B, C and D and both bacteria were positively related to lipid metabolism,
we assumed that intestinal bacteria could enhance lipid metabolic activity for bighead carp
fed formulated feed.
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CONCLUSIONS

In summary, the remarkable effect of feeding strategies on the intestinal microbiota of
bighead carp highlight the need to determine how different feeding strategies modulate the
intestinal microbiota and how this modulation affect the host. Higher bacterial
diversities were shown in group A and B than in group C and D. The core intestinal
microbiome in group A comprised the phyla Bacteroidetes, Fusobacteria, Firmicutes and
Proteobacteria, whereas phyla Proteobacteria and Fusobacteria dominated in group B and
only phylum Proteobacteria in groups C and D. Basing on the relationships between
intestinal microbiome and the metabolic functions revealed in the present study, we
suggest that limited carbohydrate metabolism is presented in group A, while high lipid
metabolic activity exists in groups B, C and D. However, the regulatory mechanisms

of intestinal microbiome on the metabolism of bighead carp using other techniques and
the suitable feed formula for bighead carp based on intestinal microbiota functions require
further elucidation.
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