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Abstract

In many applications, time series forecasting plays an irreplaceable role in time-varying

systems such as energy markets, financial markets, and so on. Predicting the dynamic

of time-varying systems is essential but is a di�cult task because it depends on not

only the nature of the system but also on external influences, such as environmental

conditions and social and economic status.

Recurrent Neural Networks (RNNs) are a special class of neural networks characterized

by the recurrent internal connections, which enable to model the nonlinear dynamical

system. Recently, they have been applied in the various forecasting tasks and reported

that they outperform the forecast accuracy compared with conventional time series fore-

casting models. However, there is a limited study of time series forecasting using RNNs

in the presence of missing data.

In this thesis, we propose a novel model that utilize Dilated RNN(DRNN) and a modified

attention mechanism, focusing on the problem of time series forecasting with missing

data. The proposed model outperforms existing models such as AutoRegressive Inte-

grated Moving Average(ARIMA) and Gated Recurrent Unit(GRU), with respect to the

forecast accuracy on benchmark datasets.

Besides, we provide a formal description of the learning procedure of RNNs, referred

as truncated BPTT(k2, k1), and explain how to construct mini-batches of the training

dataset for the forecasting tasks with RNNs, that has not been presented before this

work. Discussions and future directions are suggested in five di↵erent perspectives at

the end.
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Chapter 1

Introduction

1.1 Short-Term Load Forecasting of Electricity Demand in

Time Series

As a type of energy resource, electricity has a unique characteristic which should be

generated as soon as demanded because it cannot be stored [5]. In modern society, the

irregularity of electricity demands becomes increasing due to a growth of population, an

appearance of the new business, an increase of personal electric appliance, and so on.

Accordingly, the importance of demand forecasting is emphasized in order to e�ciently

manage and distribute the resource which is temporally and quantitatively finite. Indeed,

forecasting the future demand of resources within a distribution network of energy is

fundamental for managing the limited availability of the assets [4]. The accurate forecast

is a crucial factor in the planning of the electricity industry and the operation of electric

power systems. It leads to substantial savings in operating and maintenance costs,

increased reliability of power supply and delivery system, and correct decisions for future

development [5].

However, load forecasting is a di�cult task for some reasons. First, the load time series

have multiple scales of time dependencies. For example, the load at a given hour is

dependent on the load at not only the previous hour, but also the same hour of the last

day, and the same hour of the day in the previous week [6]. Second, it also depends

on the exogenous variables, such as environmental conditions including variations of

climate, human activities and so forth [7].

1
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These reasons motivate the research of forecasting models capable of improving this fi-

nancial and social influence, by increasing the load forecasting accuracy even by a small

percent [8–12]. Hence exploring reliable models of load forecasting for the electricity

demand has been an active topic of research for decades. The major methods to per-

form STLF include exponential smoothing [13], ARIMA [14], neural networks [15], and

support vector machine (SVM) [16].

Figure 1.1: Classification of the forecasting application according to the forecast time
in electric power generation. A coarse classification may lead to two categories, short-
term load forecasting (STLF) and long term load forecasting (LTLF), with a cut-o↵
horizon of two weeks. Day-ahead scheduling, which forecasts from an hour to a day,
has been an important research topic for STLF. Source : Probabilistic electric load

forecasting: A tutorial review, Hong and Fan [1]

Figure 1.1 depicts the load forecasting applications and classification. There is a tacit

standard for classifying the range of load forecasts based on the forecasting horizons. A

rough classification may lead to two categories, short-term load forecasting (STLF) and

long term load forecasting (LTLF), with a cut-o↵ horizon of two weeks [17].

This thesis focuses on short-term load forecasting (STLF), specifically day-ahead schedul-

ing in Figure 1.1, because it has been a challenging issue for electric power companies

to forecast day-ahead demand due to the unpredictable factors in the representation of

the demand. An improved STLF accuracy contributes the power company to provide

safe and stable electricity to end users [5]. Hong and Fan [1] report that the literature

on STLF is much more extensive than that on LTLF.
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1.2 STLF with Recurrent Neural Networks

Over the past several decades, various forecasting models have been proposed to improve

STLF accuracy. Classical models, such as the auto-regressive model including ARIMA

[18] and exponential smoothing [19] both based on statistical background, have been

popularly applied. However, the accuracy of the forecast is limited to a given degree

because it is di�cult to precisely model nonlinear and random-like demand patterns by

making strong statistical assumptions that are realistic or suitable for di↵erent scenarios.

After the advent of recurrent neural networks (RNNs), an essential family of neural

networks, RNNs become a standard framework for STLF because of their dominant

performance and high expressivity. The networks can learn functions of arbitrary com-

plexity and deal with time series data possessing properties such as nonlinear interactions

between latent variables without making too strong statistical assumptions [4].

RNNs are characterized by recurrent internal connections, which enable to capture time

dependencies and to model a dynamical (that generates the observed variables) system

up to a given degree of accuracy [20]. As an RNN processes sequential information, it

performs the same operations on every element of the input sequence. Its output, at

each time step, depends on previous inputs and past computations. Accordingly, the

networks integrate past and current information and can predict future values [21, 22].

This allows the network to develop a memory of previous events, which is implicitly

encoded in its hidden state variables. Di↵erent types of RNNs, such as long short term

memory (LSTM) and gated recurrent unit (GRU) have been applied in various STLF

tasks, such as electricity load forecasting [23], tra�c speed prediction [24], tra�c peak

forecasting [25] and improve the accuracy compared with classical time series forecasting

models.

1.3 Challenges : STLF with RNNs towards Missing Data

Missing data are a problem because algorithms for STLF cannot explicitly deal with

them [26]. Therefore, one must fill the missing data beforehand, using imputation which

is a source of bias. In order to replace missing values in time series, manual imputation,
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which is filling up the missing values by plausible values instead of removing out, is em-

ployed [27]. Mean substitution and last value carried forward [28] are typical techniques

of manual imputation.

However, manual imputation can be still a source of bias for RNNs if values are missed for

successively long time steps. In practice, missing values very often tend to be observed

consecutively over a particular period of time. In GEFCom 2012 dataset [2], for example,

there are several time windows of one week where data are missing. As RNNs transfer

information through the recurrent connections with time delay 1, the bias provoked by

one of the imputed values in the window is accumulated and transferred to the next time

step until the window is over. The transferred bias can result in the gradual deterioration

of the forecast reliability along the time steps within the window. Figure 1.2 depicts the

gradual deterioration of the forecast for three successive missing values {xt�1, xt, xt+1}.

!" !#$% !# !#&% !'$%

ℎ) ℎ#$% ℎ# ℎ#&% ℎ'$%… …ℎ$%

*" *#$% *# *#&% *'$%

Missing Values

Figure 1.2: Unfolded graph of a single layer RNN for the STLF task of length-T
time series. Three successive values {xt�1, xt, xt+1} in the blue window are missed
thus manually imputed. As the RNN processes the input time series in a sequential
manner, bias caused by manual imputation are accumulated and transferred through
the internal self-connection. The color of the RNN units represents the degree of the

bias.

1.4 Proposed Approach : Dilated RNNs with a Modified

Attention Mechanism

In this thesis, we propose a RNN framework to deal with missing data. Specifically, it

aims to lower the e↵ect of bias caused by the manual imputation over the missing window.

The framework consists of dilated RNNs [29] with a modified attention mechanism [30].
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Figure 1.3: Unfolded graph of the proposed framework : dilated RNN(3) with mod-
ified attention mechanism. Four successive values {xt�3, xt�2, xt�1, xt} in the blue
window are missed thus manually imputed. In layer 0, bias caused by manual imputa-
tion are accumulated and transferred from left to right through its recurrent connection
with dilation 1. But the bias from the imputed values is counterbalanced when it is
processed by the upper layer, holding longer dilation in the RNN structure, since the
RNN with longer dilation updates its state less often within the time window with
missing values. A weighted average of the states h⇤

t represents the state at the time

step t over the layers. Attention weights ↵(l)
t enable the RNN to learn the layer which

provides the most reliable state each time, in the presence of missing values. The color
of the RNN units represents the degree of the bias from the imputed values.

Dilated RNNs are a stack of multiple single layer RNN with di↵erent length of dilated

recurrent skip connections, referred to ’dilations’ [29]. Recurrent units in each layer

of dilated RNNs have a dilation with a di↵erent length which provides more flexibility

and capability of modeling di↵erent time scales to capture longer dependencies in time.

In the networks, bias from the imputed values is counterbalanced by the upper layers,

holding longer dilation in the RNN structure. The RNN with longer dilation updates

its state h(l)t less often than one with shorter dilation. Therefore, the RNN with longer

dilation is less biased in the presence of long windows where data are missing.

Attention mechanism is introduced by Bahdanau et al. [30] in the field of neural machine

translation. Neural machine translation is based on the framework of RNN Encoder

Decoder, proposed by Cho et al. [31]. The attention mechanism is introduced to focus

on specific parts of the input sequence while computing output sequence using a weighted

average. In this thesis, we modify the conventional attention mechanism to utilize it in

dilated RNN structure. Modified attention mechanism focuses on a specific layer of the

dilated RNNs at each time step using a weighted average of the states from di↵erent



Introduction 6

layers to compute the output. A weighted average of the states h⇤t represents the state

at the time step t over the layers. Attention weights ↵(l)
t enable the RNN to learn

the layer which provides the most reliable state each time, especially in the presence

of missing values, and decides to which specic layer to allocate importance. Weights

usually take values in the interval
⇥
0, 1

⇤
, and they sum to 1. Figure 1.3 depicts the

proposed framework of the thesis.

This thesis focuses on the comparison of forecasting accuracy between the novel frame-

work and existing methods on two independent time series, including real world dataset.

1.5 Contributions

The major contribution of the thesis is that we develop a novel framework based on

dilated RNNs and attention mechanism for the task of STLF from missing values in

time series. As a second contribution, we provide a formal description of truncated

BPTT(k2, k1), and explain how to construct the training dataset for the forecasting

tasks with RNNs. As RNNs have been mostly used for classification, there is a lack of

knowledge of how to train them for the forecasting tasks. To the best of our knowledge,

it has not been described formally before this work.

1.6 Notations

Unless otherwise stated, the following notation will be used throughout this thesis:

• Scalars will be written in lowercase, for example, x

• Vectors will be written in lowercase bold, for example, x

• Matrices will be written in uppercase bold, for example, X

• time index t will be written as a subscript of any character, for example, xt

• layer index l will be written in a parenthesis of superscript of any character, for

example, x(l)
t
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1.7 Structure of Thesis

This thesis consists of ten chapters, including this introductory chapter.

Chapter 2 presents an introduction to the problem of STLF and the properties of electric-

ity demand time series. The chapter continues by reviewing several methods previously

applied for STLF based on statistical and machine learning approaches.

Chapter 3 introduces RNNs as a particular class of neural networks specialized in the

processing of sequential data, with a detailed explanation of training procedure including

forward and backward propagation through time. Expected issues while training and

the solutions are discussed.

Chapter 4 provides, as the important contribution of the thesis, the formal description

of mini-batch training based on truncated BPTT(k2, k1) learning process and explains

how to train the RNNs for the forecasting tasks using the mini-batch training.

Chapter 5 provides advanced cell architecture of RNNs, such as long short-term memory

(LSTM) and gated recurrent unit (GRU), followed by the operational principle of the

gated cell structure.

Chapter 6 begins by the description of deep RNN structure, and then introduces the

concept of recurrent skip connection. The structure of dilated RNNs are introduced by

comparing conventional stacked RNNs.

Chapter 7 introduce the procedure of missing data analysis with RNNs. Begun by the

type of missing data, the chapter provides approaches on how to deal with the missing

values in time series and how to incorporate the missing patterns into RNN analysis.

In Chapter 8, we provide, as a main contribution of the thesis, a detailed introduction

to the novel framework we propose in this thesis. To explain the novel framework, intro-

duction to conventional attention mechanism is preceded. Details of the experiments,

such as datasets, setting, and results and following discussions are given in Chapter 9.

Chapter 10 gives conclusions and future directions of the thesis.



	



Chapter 2

Introduction to the Problem of

Short-Term Load Forecasting

In many applications, short-term load forecasting plays an irreplaceable role in time-

varying systems such as energy markets, financial markets, business management, plan-

ning [32] and basic operation systems including fuel scheduling, and unit maintenance

[33]. Predicting the dynamics of time-varying systems is important but is a di�cult task

because it depends on not only the nature of the system but also on external influences,

such as environmental conditions including variations of climate, social and economic

status [7]. Therefore, exploring reliable models of short-term load forecasting (STLF)

for the time-varying systems has been an active topic of research.

During the past years, a wide variety of forecasting models has been suggested for STLF

to improve the forecasting accuracy. Two important classes of methods for STLF are

statistical approaches and machine learning approaches, though the boundary between

the two is becoming more and more ambiguous, as a result of multidisciplinary influ-

ences in the scientific community [6]. Recently, recurrent neural networks (RNNs), an

important family of neural networks within the extent of machine learning models, have

emerged and applied in the STLF task, such as electricity load forecasting [23], tra�c

speed prediction [24], tra�c peak forecasting [25] and so forth. These studies commonly

report that RNNs improve the accuracy of STLF compared with classical time series

forecasting models.

8
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In this chapter, we discuss the various models that have been applied to STLF tasks,

focusing on the RNN models applied to electricity load forecasting.

2.1 Short-Term Load Forecasting for Electricity Load

Electricity as a product has very unique characteristics compared to a material product

because electricity energy cannot be stored as it should be provided as soon as it is

demanded [5]. This property places importance on load forecasting, specifically short-

term load forecasting. STLF can reduce risk of over- and under-contracts on balancing

markets due to load prediction errors [34]. Moreover, it keeps energy markets e�cient

and provides a better understanding of the dynamics of the monitored system [35]. On

the other hand, an inaccurate STLF could give rise to either a load overestimation, which

brings to the excess of supply and consequently more costs for market participants, or

a load underestimation, which results in failures of providing enough resources needed.

Both draw serious inconvenience to energy based service end users [36, 37]. These reasons

motivate the research of forecasting models capable of reducing this financial and social

costs, by increasing the load forecasting accuracy even by a small percent [8–12].

Electricity load time series is characterized by several properties, namely, multiple time

dependencies, weather e↵ects, and calendar e↵ects. These dependencies are often com-

plex and highly nonlinear so that they make the accurate forecast di�cult [6].

2.1.1 Multiple Time Dependencies

The load time series has multiple scales of time dependencies. For example, the load at a

given hour is dependent on the load at not only previous hour but also the same hour of

the previous day and the same hour of the day in the previous week. Figure 2.1, sourced

by Dang-Ha et al. [3], shows hourly measured electricity load data at zone 1 of the

GEFCom 2012 dataset [2]. In the figure, three strong time dependencies are observed,

namely, within a day (intraday), within a week (intraweek) and across di↵erent seasons.

Time dependencies of intraday and intraweek originate from the routines of human.

For intraday cycles, the load peaks at breakfast time and before dinner. For intraweek

cycles, the load on the weekend is usually lower than on the weekdays. Seasonal time

dependency is closely related to the temperature. In Figure 2.1, the load is higher in
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Figure 2.1: Hourly load profiles in KWh of zone 1 for 4 years from GEFCom 2012
dataset [2]. Three strong time dependencies are observed, within a day, within a week
and across di↵erent seasons. Source : Local short-term electricity load forecasting:

Automatic approaches, Dang-Ha et al. [3]

summer and winter compared with other seasons. It implies that electricity consumption

is increased for heating in the winter time while for cooling in the summer time.

2.1.2 Weather E↵ects

As briefly mentioned, weather conditions have always been an important variable to

be considered in electricity load forecasting [3]. Temperature is a factor that strongly

influences the load among many meteorological factors like humidity, wind, rainfall,

cloud cover, thunderstorm and so forth. Hong and Shahidehpour [17] report that the

temperature factor can explain more than 70% of the load variance in the GEFCom

2012 dataset [2]. Hence, time series of the temperature can be considered as exogenous

input of the STLF models.

2.1.3 Calendar E↵ects

As the load of electricity consumption is closely related to human behavior, special

calendar events (holidays, festival days and so on) can demand uncommon load of elec-

tricity. Those situations represent outliers and could be treated di↵erently to improve

the model accuracy [3]. Fan and Hyndman [38] include public holidays in the statistical

STLF model with annual, weekly, and daily seasonal patterns to forecast electricity load

in Australia. The calendar e↵ects are considered critical in other domains, for example,
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transport industry like Uber which represents car sharing business. Accurate forecast-

ing of trips during special events can increase e�ciency of driver allocation, resulting

in a decrease of waiting time for the riders. To forecast the tra�c load of Uber in

special events, Laptev et al. [25] utilizes RNNs with a new architecture leveraging an

autoencoder for feature extraction. The autoencoder is out of scope in this thesis.

2.1.4 Other E↵ects

There are still obvious factors that a↵ects a load of electricity consumption, for exam-

ple, geographical locations, human comfortable temperature, heating/cooling technol-

ogy, type of consumers or purpose of electricity use (industrial or residential) and so

on [3]. These various factors make electricity load patterns become more complex and

irregular, that impedes the accuracy of the forecast.

As Almeshaiei and Soltan [5] argue that an ideal forecasting model for a case may

perform poorly for another one, it is very important for researchers to understand that a

universally best technique simply does not exist [1]. Note that the forecasting accuracy

may also di↵er significantly for di↵erent utilities, di↵erent zones within a utility, and

di↵erent time periods. Therefore, researchers should focus on discovering e�cient and

e↵ective modifications that suit the specific case, based on general techniques.

In the following sections, techniques mostly applied for STLF tasks, are reviewed in

terms of two categories : (a) statistical approaches, such as autoregressive models, and

exponential smoothing models (b) machine learning approaches, such as Support Vector

Machine (SVM), Feedforward Neural Networks (FFNNs) and Recurrent Neural Net-

works (RNNs).

2.2 Statistical approaches

In this section, we will review statistical approaches used in STLF tasks, mainly, autore-

gressive models, and exponential smoothing models. Both autoregressive and exponen-

tial smoothing models represented for many years the baseline among systems for time

series prediction [39].
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Such models require to properly select the lagged inputs to identify the correct model

orders, a procedure which demands a certain amount of skill and expertise [40]. More-

over, autoregressive models make explicit assumptions about the nature of system under

analysis.

Therefore, their use is limited to those settings in which such assumptions hold and

where a-priori knowledge on the system is available [41]. Taylor [18] showed that for

long forecasting horizons a very basic averaging model, like Autoregressive Integrated

Moving Average (ARIMA) or exponential smoothing, can outperform more sophisti-

cated alternatives. However, in many complicated systems the properties of linearity

and even stationarity of the analyzed time series are not guaranteed. Nonetheless, given

their simplicity, autoregressive models have been largely employed as practical imple-

mentations of forecast systems.

2.2.1 Autoregressive Models

Autoregressive (AR) model is one of frameworks representing a random process Xt

varying in terms of time t. Thus, it is broadly used to explain the time-varying systems,

for example trend in financial markets, and so on. The autoregressive model specifies

that the output variable depends linearly on its own previous values and on a stochastic

term. Thus the model is expressed in the form of a stochastic di↵erence equation.

Equation 2.1 denotes pth order of autoregressive model referring AR(p), where c, �i and

✏t ⇠ N(0,�2) are parameters of the model and white noise, respectively.

Xt = c+
pX

i=1

�iXt�i + ✏t (2.1)

This model is based on the assumption of (weak) stationarity. This means that the

stationary time series is assumed to have constant mean and variance, and autocovari-

ance only dependent on the time lag ⌧ . Equation 2.2 shows the formal expression of

stationarity for any integer t, s and ⌧ , Note that the order of the model p is fixed a-priori

while the parameters are adapted on the data at hand [42, 43].



Introduction to the Problem of Short-Term Load Forecasting 13

E[Xt] = µ

V ar[Xt] = �2
y

Cov[Xt+⌧ , Xt] =Cov[Xs+⌧ , Xs]

(2.2)

Among the di↵erent types of AR models, Autoregressive Moving Average (ARMA)

model is often used in the STLF task. ARMA models provide a parsimonious description

of a stochastic process in terms of two polynomials, one an autoregression and the other

a moving average [40, 44–46].

The qth order of moving average process, MA(q) is defined in Equation 2.3, where µ,

✓i and ✏t, ✏t�1 · · · ⇠ N(0,�2) are expectation of Xt, parameters of the model and white

noise terms.

Xt = µ+ ✏t +
qX

i=1

✓i✏t�i (2.3)

Thus ARMA(p, q), the sum of AR(p) and MA(q) is denoted in Equation 2.4, where µ

is often assumed 0.

Xt = c+ ✏t +
pX

i=1

�iXt�i +
qX

i=1

✓i✏t�i (2.4)

In practice, load data are often nonstationary. To comply with stationarity assump-

tion for autoregressive frameworks, Autoregressive Integrated Moving Average (ARIMA)

model is suggested. ARIMA model is a generalization of Autoregressive Moving Average

(ARMA) model.

The ARIMA model was adopted in STLF back in 1987 [47] and still remains a popular

baseline. The extension of ARIMA models is also used in STLF tasks, such as ARIMAX

[48, 49], generalization of ARIMA models including exogenous variables and SARIMA

[47, 50] which includes seasonality of time series.
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ARIMA applies di↵erentiation of order d on the random process Xt. Equation 2.5

denotes an ARIMA(p, d, q) model on the random process Xt, where B denotes a back-

shift operator, Xt�n = BnXt.

(1�
pX

i=1

�iB
i)(1�B)dXt = c+ (1 +

qX

i=1

✓iB
i)✏t (2.5)

One big challenge of ARIMA is that model selection, determined by hyperparameters

(p, d, q), is hard to automate and still requires human expertise [51, 52]. It gets harder if

the data includes seasonality because seasonal hyperparameters should be additionally

considered for seasonal ARIMA (SARIMA) (p, d, q, P,D,Q).

Model hyperparameters are usually derived from the Box-Jenkins test, which examines

the autocorrelation (ACF) and partial autocorrelation function (PACF) of the time series

to select the candidates of the hyperparameter set. The value of Akaike information

criterion (AIC) [53] is compared among the candidates. The most parsimonious model

with the lowest AIC will be the model hyperparameters. As (seasonal) ARIMA is based

on the linearity and parsimonious rule, it usually achieves lower performance if the data

is complex.

2.2.2 Exponential Smoothing Models

Exponential smoothing assigns exponentially decreasing weights to the observation as

they get older. In other words, recent observations are given relatively more importance

in forecasting than the older observations [54]. Depending on the characteristics of the

dataset, the number of smoothing parameters are determined by an initial analysis.

For an electricity load time series which has trend and single seasonality, exponential

smoothing models can be applied with three smoothing parameters where each parame-

ter corresponds to (deseasonal) level st, trend bt and seasonal component ct, respectively.

In the case of additive seasonality, these models consider the h time step ahead forecast-

ing value ft+h to be an aggregated value of the three components, shown in Equation

2.6, where L is a seasonal length.

ft+h = st + h · bt + ct+h�L (2.6)
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For each components, smoothing parameters are defined, ↵ for deseasonal level, � for

trend and � for seasonal component, 0 < ↵,�, � < 1. These components have recur-

sive relationship to generate each components for the next time step [19]. Equation 2.7

denotes the formal expression of the recursive relationship of each components for an

observation xt, referring each overall smoothing, trend smoothing and seasonal smooth-

ing. The optimal smoothing parameters ↵,� and � are estimated in such a way that

the mean square error between actual value and estimated value is minimized.

st = ↵(xt � ct�L) + (1� ↵)(st�1 + bt�1) : Overall smoothing

bt = �(st � st�1) + (1� �)bt�1 : Trend smoothing

ct = �(xt � st) + (1� �)ct�L : Seasonal smoothing

(2.7)

As seen in Equation 2.7, initial values for each components should be assigned. In fact,

determining initial values can become a source of bias in forecasting because the initial

values of each component will have an unreasonably large e↵ect on early forecasts if the

models put substantial weights on past observations. Kalekar [19] provides the detail of

various techniques regarding initial value selection in order to reduce the e↵ect of the

bias.

2.3 Machine Learning Approaches

Machine learning approaches try to discover consistent patterns from data, instead of

modeling the underlying physical processes heuristically. A mapping between the input

and the ground truth is estimated by the function approximation framework and then

used for the forecast [3]. The basic formulation is represented in Equation 2.8, where

xt and yt are input and the forecasted value at a time step t and the function F (·) is a

non-linear function, which could be estimated by machine learning approaches, such as

Support Vector Machines (SVMs), Feedforward neural networks (FFNNs) and RNNs.

yt = F (yt�1, yt�2 · · · , xt, xt�1, xt�2 · · · ) (2.8)
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2.3.1 Support Vector Machines

Support Vector Machines (SVMs) are learning models that analyze data and recognize

patterns, often being used for classification analysis. SVM has been shown to be very

resistant to the problem of over-fitting, and could achieve good performances for solving

time series forecasting problems [1]. Details of SVMs are represented in the article of

Sapankevych and Sankar [55] and the appendix Wickstrøm [56].

Support Vector Regression (SVR), an splitting of SVM in the continuum have been

applied in time series forecasting [55] by sequential input values in time windows of

fixed length. The approach can only succeed if there are no critical temporal dependen-

cies exceeding the windows length, making the SVR unable to learn an internal state

representation for sequence learning tasks involving time lags of arbitrary length.

2.3.2 Feedforward Neural Networks

Neural networks are a prominent example of data-driven models to learn arbitrary func-

tions. They are widely used in many practical application, such as pattern classification,

function approximation, optimization and forecast [57, 58].

Feedforward neural networks (FFNNs) [59] play a role like universal function approxi-

mators. Many studies employ FFNNs in STLF tasks to forecast one or a fixed number

of future values [60–66].

FFNNs are consisted of three types of layers, input, hidden and output layer. Each

layer have multiple number of neurons. Neurons are highly interconnected from bottom

(input layer) to top (output layer). Each neuron performs a simple computation, defined

in Equation 2.9, where j and k denote index of neuron and its input index, {oj , ik} are

output and input of the neuron, {wjk, bj} are weight / bias parameters of the neuron

and fj is an activation function.

oj = fj(
X

k

wjkik + bj) (2.9)

The architecture of FFNNs can be modified depending on the purpose of researchers, for

example, inserting multiple hidden layers. Convolutional neural networks (CNNs) are a
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Figure 2.2: Feedforward neural network with 2 hidden layers. The networks process
as inputs time windows of length 3 and provide as outputs time windows of length 3

sequentially.

type of FFNNs which are composed of alternating convolutional and subsampling layers

[67]. But to be fed into the networks as inputs, a long time series should be divided

into small windows of fixed size. Figure 2.2 shows a FFNN architecture with 2 hidden

layers, which process as inputs time windows of length 3. The operation is repeated to

forecast next values by shifting the time window across the whole time series [68].

While FFNNs have been proved to be e↵ective in many circumstances [69–72], they do

not consider temporal ordering as an explicit feature of the time series. Also, it is not

suitable in cases where the time dependency in the time series is greater than the length

of time windows. By the same reason, CNNs is not often applied for time series analysis.

On this account, a Recurrent Neural Networks (RNNs) are a more flexible model since it

encodes the temporal context in its feedback connections, which are capable of capturing

the time-varying dynamics of the underlying system [20, 73].

2.3.3 Recurrent Neural Networks

RNNs are a special class of neural networks characterized by internal self-connections,

which enable to model, in principle, any nonlinear dynamical system, up to a given
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degree of accuracy [20]. RNNs and their variants have been used in many contexts where

the temporal dependency in the data is an important feature. Applications of RNNs

include sequence transformation [74], language modeling [75–78], speech recognition [79],

learning word embeddings [80], audio modeling [81], handwriting recognition [82, 83],

image generation [84], and so on.

As an RNN processes sequential information, it performs the same operations on every

element of the input sequence. Its output, at each time step, depends on previous inputs

and past computations. This allows the network to develop a memory of previous events,

which is implicitly encoded in its hidden state variables. This is certainly di↵erent from

traditional FFNNs, where it is assumed that all inputs are independent of each other.

Theoretically, RNNs can remember arbitrarily long sequences. However, their memory is

in practice limited by their finite size and, specifically, by vanishing/exploding gradient

problem while training of their parameters. To overcome memory limitations, advanced

cell structures are suggested, referring Long-Short TermMemory (LSTM) [85] and Gated

Recurrent Unit (GRU) [86], both utilize gated structures in contrast to ordinary RNN

cells (Elman RNN, ERNN). The advanced cell structure enables the RNNs to increase

its capability of storing information for longer periods of time.

Contrarily to other linear models adopted for STLF tasks, RNNs can learn functions of

arbitrary complexity and they can deal with time series data possessing properties such

as saturation or exponential e↵ects and nonlinear interactions between latent variables

[4]. However, if the temporal dependencies of data are mostly contained in a finite and

small time interval, the use of RNNs can be unnecessary. In these cases, performances,

in terms of computational resources and accuracy, are generally lower than the ones of

time-window approaches, like ARIMA, exponential smoothing, SVM, and FFNNs.

On the other hand, in many STLF tasks, the time series to be predicted are characterized

by long term dependencies, whose extent may vary in time or be unknown in advance.

In all these situations, the use of RNNs turn out to be the best solution.

Recent studies have suggested the design of novel RNN architectures, where stacking

multiple layers of single layer (shallow) RNN with di↵erent length of time skip con-

nection (or dilation) [29, 87]. The novel architectures help RNNs to learn long term
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dependencies e�ciently, in terms of computational resources and accuracy. Details of

RNN architectures are discussed in the next several chapters.



Chapter 3

Recurrent Neural Network

Properties and Training

3.1 Properties

In general, RNNs are a learning model that updates new state ht using previous state

ht�1 and current input xt recursively. It can also be described by a network, which

is composed of multiple cells connecting in series along the time axis. Each cell in the

network computes state at a certain time step. Figure 3.1 illustrates forward propagation

of RNN in two ways. Cyclic shape in the left is called ’folded graph’ while acyclic shape

in the right is called ’unfolded graph’ which expands cyclic shape in time. Note that

parameters in the unfolded representation share their values over the cells and the values

are updated simultaneously within the optimization procedure.

!"

ℎ"
ℎ"$%

unfold

!"$%

ℎ"$%
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Figure 3.1: Folded graph of RNN (left) and the unfolded in time (right) during
forward propagation. The new state ht sequentially is updated by the current input xt

and the previous state ht�1.

Depending on the approach to update the new state ht, architectures of RNN di↵er such

as Elman RNN (ERNN), Long short-term memory (LSTM)[85] and Gated recurrent unit

20
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(GRU)[88]. Further analysis in this chapter will focus on ERNN since it has the most

simple and basic architecture among them.

3.2 Training ERNN

In general, training means a process that a model learns the optimal parameters with

a training set by minimizing defined error function which depends on trainable pa-

rameters. Training is composed of 3 steps, forward propagation, backpropagation and

parameter update respectively [4]. In RNN, backpropagation step is called backpropaga-

tion through time (BPTT) [89] as the gradient of the error must be propagated through

the unfolded version of the RNN graph.

3.2.1 Forward propagation

!"

ℎ"$% ℎ"

&'
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Figure 3.2: Forward propagation of a RNN at a time step t. The state ht, the
forecast pt and the error Jt are updated with parameters unchanged, such as weights

{Whh,Wxh,Wp} and bias {bh,bx,bp}, during forward propagation.

Target : yt = xt+�t (3.1)

At each time step t, forward propagation of RNN updates values of the state ht, the

forecast pt and corresponding error Jt with respect to the input xt and target yt. Note

that the parameters, such as weights {Whh,Wxh,Wp} and bias {bh,bx,bp}, remain

unchanged during the forward propagation. To start forward propagation with sequen-

tial training data, initial state h�1 is required to compute the first state h0. In general,
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initial state is set to zero [4]. Figure 3.2 illustrates forward propagation process within

a cell at a time step t. Equation 3.1 denotes the expression of the target yt for STLF

tasks, where �t is the number of time step that the RNN forecasts ahead.

3.2.1.1 Trainable parameters

Trainable parameters can be grouped into two depending on the purpose, such as cell

parameters and prediction parameters. The purpose of cell parameters are to update

state ht using previous state ht�1 and current input xt. On the other hand, prediction

parameters exist to compute the forecast pt using the updated state ht. Using dimension

of xt 2 Rm, ht 2 Rs and pt 2 Rm, the dimension of the trainable parameters is specified.

Cell parameters : Wxh 2 Rs⇥m, Whh 2 Rs⇥s, bh 2 Rs, bx 2 Rs

Prediction parameters : Wp 2 Rm⇥s, bp 2 Rm

3.2.1.2 State ht

At each time step, new state ht is updated by current input xt and previous state ht�1.

A set of parameters {Whh, Wxh,bh,bx} participate in the update of state. Equation

3.2 specifies the relationship, where f(·) is an activation function such that hyperbolic

tangent or Relu. Note that all the elements in input xt are usually normalized to have

z-scores xt ⇠ N(0, 1) or values within [0, 1]. In some cases, the bias bx are included to

bh thus removed in the formal expression.

ht = f(Whh · ht�1 +Wxh · xt + bh + bx)

= f(Whh · ht�1 +Wxh · xt + bh)
(3.2)

3.2.1.3 Forecast pt

The forecast pt is computed with current state h(t) and prediction parameters Wp and

bp. It is specified in Equation 3.3, where function g(·) is usually linear.
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pt = g(Wp · ht + bp) (3.3)

3.2.1.4 Error J and Error at a time Jt

Error J is defined by mean square error (MSE) of the forecast pt and target yt for all

time steps. Analogously, Jt, an error at a time step t, is quadratic error of forecast at

the time step. Note that J and Jt are both scalar values. Equation 3.4 denotes the

formal expression of J and Jt.

MSE : J =
1

T

T�1X

t=0

Jt =
1

T

T�1X

t=0

mX

i=1

{(pt)i � (yt)i}2

Jt =
mX

i=1

{(pt)i � (yt)i}2
(3.4)

3.2.2 Backpropagation

The purpose of backpropagation is to compute gradients that will be used for updating

parameters. Gradients are derived from error J but have di↵erent calculation methods

depending on the type of parameters, such as cell parameters which are used for updating

the state ht and prediction parameters used for computing the forecast pt. This is

because parameters at each group participate in computing the error with di↵erent

scheme. The chain rule is applied to compute gradients following the inverse direction

of the forward scheme during backpropagation.

3.2.2.1 Gradients of J in terms of prediction parameters

As two parameters, Wp and bp participate in computing the forecast using the updated

state, they are not engaged in updating the state. Thus, the depth of backpropagation

is bounded on the same time step when computing gradient of these parameters. That

is, the gradients in terms of the prediction parameters don’t backpropagate through

time. Fig.3.3 shows how the error at a time Jt is backpropagating to the prediction

parameters.
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Figure 3.3: Backpropagation scheme for prediction parameters {Wp,bp}. As the
parameters are not engaged in updating states within the cell during forward propaga-
tion, the gradients of the error Jt in terms of prediction parameters are bounded within
the time step. That is, the gradients do not backpropagate through time. Gradients in

terms of the prediction parameters are computed by the chain rule.

The gradient of J in terms of Wp can be represented by the mean value of the partial

derivative of Jt with respect to Wp over time. By the chain rule, the partial derivative

of Jt with respect to Wp becomes a product of two partial derivatives, the partial

derivative of Jt with respect to pt and the partial derivative of pt with respect to Wp.

The former partial derivative is simplified by 2(pt � yt) 2 Rm and the latter one is

ht 2 Rs, assuming that the function g(·) in Equation 3.3 is linear. Considering the

dimension of the gradient, cross product is operated between two vectors. Equation

3.5 denotes the formal expression of the gradients, where ⌦ represents cross product

operation.

@J

@Wp
=

1

T

T�1X

t=0

@Jt
@Wp

=
1

T

T�1X

t=0

@Jt
@pt

@pt

@Wp

=
2

T

T�1X

t=0

(pt � yt)⌦ ht

(3.5)

Likewise, gradient of the error J with respect to bp is,

@J

@bp
=

2

T

T�1X

t=0

(pt � yt) (3.6)
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3.2.2.2 Gradients of J in terms of cell parameters

The purpose of a RNN cell is to update state ht using previous state ht�1 and current

input xt. But properties of the updated state ht varies depending on the RNN cell

architecture which means a computation process to update a new state ht within a

RNN cell. There are several RNN cell architectures including LSTM [85], GRU [88]

and their variant [90]. Parameters in the RNN cell, referred to cell parameters in the

literature, also vary depending on the RNN cell architecture.

The following discussion is based on the cell parameters or ERNN, such as {Wxh,

Whh,bh}. Unlike prediction parameters, cell parameters are involved in updating the

state ht which propagates through time. Cell parameters compute current state ht�1 us-

ing previous state ht�1 which is computed by the same parameters and two-step previous

state ht�2. This sequential chain lasts until it reaches to the first cell which computes

h0.

Accordingly, the gradients in terms of cell parameters backpropagate through the path

that the state ht propagates through time. Theoretically, the error can backpropagate

to the first cell, which is used to compute the first state h0. By the chain rule, the

procedure that an error at a time step Jt backpropagates to cell parameters in every cell

behind the time t can be specified.
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Figure 3.4: Schema of how the error Jt backpropagates to the first cell(unit) through
recurrent connection with length 1, which carries gradients of the cell parameters.

Figure 3.4 illustrates how an error at time t, Jt, backpropagates to the cell at time 0. At

each time step, the gradient in terms of the state is expressed by the partial derivative

of Jt with respect to the state ht�k, where k = 0, 1, · · · t represents the number of time

step that the error backpropagates. The gradients in terms of the cell parameters are

derived from the partial derivative at each time step. It implies that the gradients of Jt
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in terms of cell parameters di↵er at each time step, unlike the same kind of parameters

have identical values through time in the forward propagation scheme. Hence, for each

parameter, the overall gradient is computed by the sum of gradients at every time step

in order to maintain the gradient identical through time.

For the parameter Wxh within a cell at time step t � k, the gradient of an error Jt is

expressed in Equation 3.7 by the chain rule,

At t� kth cell :
@Jt

@Wxh
=

@Jt
@ht�k

@ht�k

@Wxh

=
@Jt
@ht

@ht

@ht�1

@ht�1

@ht�2
· · · @ht�k+1

@ht�k

@ht�k

@Wxh

=
@Jt
@ht

(
k�1Y

⌧=0

@ht�⌧

@ht�⌧�1
)
@ht�k

@Wxh

(3.7)

The overall gradient in Equation 3.8 is the sum of the gradients at every time step

induced by one error Jt. The second last term of Equation 3.8 within braces, products

of the partial derivative, is noteworthy because it causes vanishing or exploding gradient

problem depending on its value, and that will be discussed later.

Overall :
@Jt

@Wxh
=

tX

k=0

@Jt
@ht

(
k�1Y

⌧=0

@ht�⌧

@ht�⌧�1
)
@ht�k

@Wxh
(3.8)

The gradient of total error J is the average of gradient of an error Jt for T-length

sequential data, denoted in Equation 3.9.

@J

@Wxh
=

1

T

T�1X

t=0

@Jt
@Wxh

=
1

T

T�1X

t=0

tX

k=0

@Jt
@ht

(
k�1Y

⌧=0

@ht�⌧

@ht�⌧�1
)
@ht�k

@Wxh

(3.9)

Three partial derivative terms in Equation 3.9,

@Jt
@ht

,
k�1Y

⌧=0

@ht�⌧

@ht�⌧�1
,

@ht�k

@Wxh
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can be expanded using the expressions in forward propagation.

The first term means the gradient of an error Jt in terms of the updated state ht at the

same time step. Using expressions in Equation 3.3 and 3.4, the term can be expanded

in Equation 3.10 ,where g(·) is linear.

@Jt
@ht

=
@Jt
@pt

@pt

@ht
= 2(pt � yt) ·Wp

@Jt
@pt

=2(pt � yt)

@pt

@ht
=Wp

,
Jt =

mX

i=1

{(pt)i � (yt)i}2 (3.4)

pt = g(Wp · ht + bp) (3.3)

(3.10)

The second term, the product of the partial derivatives, implies the transmission of

the gradient of Jt which backpropagates from time step t to t � k. As the gradient

backpropagates in sequential manner, the process can be factorized by one time step

backpropagation. Considering the formula of updating state ht in Equation 3.2 with

activation function f as hyperbolic tangent, the product of factorized partial derivative

is specified in Equation 3.11 with element-wise product operator �.

k�1Y

⌧=0

@ht�⌧

@ht�⌧�1
=

k�1Y

⌧=0

(1� h2
t�⌧ ) ·Whh

= {(1� h2
t ) ·Whh}� {(1� h2

t�1) ·Whh} · · ·

� {(1� h2
t�k+2) ·Whh}� {(1� h2

t�k+1) ·Whh}

@ht�⌧

@ht�⌧�1
= (1� h2

t�⌧ ) ·Whh

, ht�⌧ = tanh(Whh · ht�⌧�1 +Wxh · xt�⌧ + bh) (3.2)

(3.11)

The third term shows how the cell parameter Wxh is influenced by the backpropagated

gradient at time step t�k. Using the expression of 3.2, the partial derivative is expanded

in Equation 3.12, where ⌦ represents cross product operation.
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@ht�k

@Wxh
= (1� h2

t�k)⌦ xt�k

, ht�k = tanh(Whh · ht�k�1 +Wxh · xt�k + bh) (3.2)

(3.12)

Thus, Equation 3.9 can be specified in the expression of 3.13 using Equation 3.10, 3.11,

and 3.12.

@J

@Wxh
=

1

T

T�1X

t=0

tX

k=0

@Jt
@ht

(
k�1Y

⌧=0

@ht�⌧

@ht�⌧�1
)
@ht�k

@Wxh
(3.9)

=
2

T

T�1X

t=0

tX

k=0

{(pt � yt) ·Wp}{
k�1Y

⌧=0

(1� h2
t�⌧ ) ·Whh}{(1� h2

t�k)⌦ xt�k}

(3.13)

Likewise, gradients in terms of Whh and bh are given in Equation 3.14 and 3.15 respec-

tively.

@J

@Whh
=

1

T

T�1X

t=0

tX

k=0

@Jt
@ht

(
k�1Y

⌧=0

@ht�⌧

@ht�⌧�1
)
@ht�k

@Whh

=
2

T

T�1X

t=0

tX

k=0

{(pt � yt) ·Wp}{
k�1Y

⌧=0

(1� h2
t�⌧ ) ·Whh}{(1� h2

t�k)⌦ ht�k�1}

(3.14)

@J

@bh
=

1

T

T�1X

t=0

tX

k=0

@Jt
@ht

(
k�1Y

⌧=0

@ht�⌧

@ht�⌧�1
)
@ht�k

@bh

=
2

T

T�1X

t=0

tX

k=0

{(pt � yt) ·Wp}{
k�1Y

⌧=0

(1� h2
t�⌧ ) ·Whh}(1� h2

t�k)

(3.15)
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3.2.3 Parameters Update using Gradient Descent Algorithm

For parameters such that Whh, Wxh, Wp, bh and bp, BPTT identifies each partial

derivatives with respect to the error J . Identified gradients are used to update parame-

ters by gradient decent algorithm 1 with learning rate µ.

Wnew = Wold � µ
@J

@Wold
(3.16)

3.2.4 Vanishing or Exploding Gradient

To ensure local stability, the network must operate in a ordered regime [91, 92]. However,

the product of partial derivatives in Equation 3.11 can cause the gradient to vanish or

explode, that deteriorate training procedure. Two factors, length of the time step that

error backpropagates and the value of the partial derivative are engaged in the problem

[93]. While an error backpropagates from the cell corresponding to the current time

step t to the first cell corresponding to t = 0, the partial derivative term is multiplied

by itself at every time step.

f
0
(t, ⌧) =

@ht�⌧

@ht�⌧�1
(3.17)

For the partial derivative term f
0
(t, ⌧) in Equation 3.17, if the error backpropagates

through su�ciently long time steps upon condition |f 0
(t, ⌧)| < 1, the gradient vanishes to

a very small value near zero before computing the appropriate gradient of the parameters

in the first cell. On the other hand, an error that backpropagates upon condition |f 0
(t, ⌧)|

> 1 many time steps, it explodes to very large value, that causes the parameters never

reach their optimal values, which hinder error function converge upon its minimum. In

general, the network enters into a chaotic regime, where its computational capability is

hindered [94].

1Details will be discussed in the Appendix.



Chapter 4

Mini-batch Training in RNNs for

STLF

Mini-batch training is a well-known method in neural networks for the advantages in

terms of e�ciency and robustness. However, to the best of my knowledge, mini-batch

training has not been specifically described for STLF tasks using RNNs. This section

explains mini-batch training based on the learning algorithm called truncated backprop-

agation through time (truncated BPTT).

4.1 Truncated BPTT (k2, k1)

To avoid vanishing or exploding gradient problem, the time steps that RNNs backprop-

agate at a time in an unfolded graph is restricted. Roughly, a long sequence should be

divided into several chunks with same length that RNNs can learn if the time series is

longer than its limit. RNNs repeat forward and backpropagation for chunks that are se-

quentially fed. It is important to keep the sequential continuity between chunks because

the last state at a chunk carries information of the sequence processed so far to the next

chunk. Accordingly, shu✏ing the order of the chunks is not possible, unlike traditional

Neural Networks. This learning procedure is called truncated backpropagation through

time (truncated BPTT) [95].

Figure 4.1 illustrates a simple scheme of truncated BPTT for a sequence with length

T . The figure shows that a long sequence with length T which is divided into two

30
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Figure 4.1: Folded graph of truncated BPTT(k2, k2). The RNNs are fed by truncated
sequences with length k2. The truncated sequences should be fed into network in
sequential manner because the last state at a chunk carries information of the sequence

processed so far to the next chunk.

chunks with length k2. The chunks are fed into the RNNs sequentially. The state hk2�1

computed by the last input of the first chunk xk2�1 is transferred to the initial state of

the second chunk to compute hk2 .

Two hyperparameters, the length of backward pass k2 and the length of forward pass

k1, are determined a-priori for truncated BPTT.

4.1.1 Length of Backward Pass k2

The length of the backward pass k2 is the time steps at which the RNNs backpropagate.

The length of k2 should be determined after considering whether the RNNs enable to

backpropagate to k2 time steps without vanishing or exploding gradient. In general, the

RNNs using cells of gated architecture, such as LSTM and GRU, can backpropagate

without vanishing gradient farther than the RNNs using Elman cell.

The length that RNNs can backpropagate also depends on the property of the input to

learn, such as the expected maximum extent of time dependencies in the sequence or

complexity. For example, in a periodic time series with period t, it may be unnecessary

or even detrimental to set k2 > t [4]. Meanwhile, a too small k2 can increase unnecessary
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computational cost because it makes the RNNs update parameters too often. The too

often parameter update can make the RNNs concentrate more on the local minima

within the chunk than global minima which can be obtained based on the long-term

dependencies in some cases. Accordingly, it requires more iteration of training until the

RNNs converge to the global minima. Therefore, the length of the backward pass k2

must be carefully tuned to achieve e↵ective training.

4.1.2 Length of Forward Pass k1

A chunk in Figure 4.1 can be interpreted as a sampled sequence by time window with

length k2, where the window moves forward for every k2 time steps. The length of

the window represents the length of backward pass. The length that the window moves

forward is defined as the length of forward pass. Hence, the learning procedure is referred

to truncated BPTT(k2, k2), where the first and second arguments are the length of

backward and forward pass respectively.

Even though truncated BPTT(k2, k2) enables the RNNs to learn a long sequence, it still

has a drawback. For an arbitrary sequence, truncated BPTT(k2, k2) does not guarantee

that the gradients for all chunks can be backpropagated to the length of backward pass

k2 without vanishing or exploding. That is, for some chunk in the sequence, the gradient

may not be fully backpropagated, that harms the fidelity of learning.

Figure 4.2: Procedure of a chunk generation for truncated BPTT(k2, k1). The RNNs
learns from the chunks with length k2 and a new chunk created for each k1 time steps.

The length of forward pass k1, where k2 > k1 � 1, is introduced to improve the draw-

back. Truncated BPTT(k2, k1) backpropagates to the length of k2 for every k1 time

steps. Figure 4.2 shows how a long sequence is transformed to chunks to be learned by

truncated BPTT(k2, k1). Note that a chunk of truncated BPTT(k2, k1) have overlapped

information of length k2 � k1 with neighboring chunks, unlike the chunk of truncated

BPTT(k2, k2). This redundancy, obtained from the overlapped information, alleviates

the impact that occurs in the drawback where the gradient is not fully backpropagated.
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Truncated BPTT(k2, 1), referred to true truncated BPTT(k2), learns the sequence in

the most detail but requires expensive computational cost that may be unnecessary.

Williams and Peng [95] reports that truncated BPTT(2h, h) is a good trade-o↵ between

accuracy and computational cost, giving comparable accuracy with Truncated BPTT(k2,

1) and speed advantage.

4.2 Mini-batch Training with Truncated BPTT (k2, k1)

Algorithm 1 Pseudocode of mini-batch training with truncated BPTT(k2,k1)

for i in range(number of iterations) do
for j in range(number of mini-batches) do
Forward propagation:compute states and errors of a mini-batch

Backpropagation:estimate gradients of parameters

Parameter updates

Deliver the last states to the next mini-batch

end for
end for

In the following, a technique of mini-batch training for which implements truncated

BPTT(k2, k1) [95] is described. Mini-batch training is an algorithm that splits the

training dataset into small batches that are used to calculate model error and update

model parameters. It reduces variance of the gradient of the error and improves the

quality and e�ciency at computing optimal parameters. The pseudocode explains the

procedure of mini-batch training with truncated BPTT(k2,k1).

4.2.1 Dimension of a Mini-batch

In the previous section, a chunk of a sequence according to a truncated BPTT (k2, k1) is

defined as a sequence sampled by a time window of length k2, where the window moves

forward to k1 time steps at a time. For a sequence xt 2 Rm, a mini-batch which has

three dimension (sB, k2,m), where sB is batch size, is a set of chunks stacked in parallel.

Figure 4.3 illustrate the formation of a mini-batch for truncated BPTT(k2, k1).

Batch size sB is defined by the number of multiples of k1 between zero to k2. Math-

ematically, it is a rounded value of k2
k1

to its upper integer. In practice, batch size sB

shown in Equation 4.1, is always integer as k2 is defined by the multiple of k1 .
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Figure 4.3: Formation of a mini-batch for truncated BPTT(k2, k1). A mini-batch
with dimension (sB , k2,m) is a set of chunks stacked in parallel.

k2 = sB · k1 (4.1)

With respect to the chunks in the first mini-batch, each chunk starts with time step

index of k1 multiples, 0, k1, 2k1, · · · , (sB � 1)k1. Analogously, the examples in the

second mini-batch starts with time step index k2, k2+ k1, k2+2k1, · · · , k2+(sB � 1)k1,

shown in Figure 4.4.

4.2.2 Number of Mini-batches and Zero Padding

ntemp
B = floor(

T

k2
)

nB =

8
><

>:

ntemp
B + 1 if T > ntemp

B · k2 + (sB � 1)k1

ntemp
B if T  ntemp

B · k2 + (sB � 1)k1

nZ = nBk2 + (sB � 1)k1 � T

(4.2)

In practice, some part of the sequence can be lost while transforming the sequence into

a series of mini-batches depending on the value of k2 and k1. It can be improved by

padding zeros into the sequence. To compute the number of zeros to be padded, the

number of mini-batches nB should be defined first. The number of batches nB for a

sequence with length T is roughly defined by a rounded value of T
k2

to its lower integer
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or adding one to the value depending on the condition in Equation 4.2 which denotes the

number of batches nB and the number of zeros to be padded nZ based on the assumption

that k1 is a divisor of k2.
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Figure 4.4: A series of mini-batches with zero padded sequential data. Each mini-
batch starts from the multiples of k2 and each row within a mini-batch starts the

multiples of k1.

Figure 4.4 illustrates the new sequence generated by concatenating the zero vector with

length nZ to the end of given sequence with length T and mini-batches with the new

sequence. As the zero padding part is allocated to the end of the sequence, the last

batch nB contains zeros. Note that identical zero padding and batch generating method

must be applied to the target yt when training. To eliminate the e↵ect of zero padding,

it can be simply done by ignoring the last mini-batch.

4.3 Forward Propagation within a Mini-batch

For STLF tasks, forward propagation updates the state ht, the forecast pt, and errors Jt

at each time step over the mini-batch. Figure 4.5 describes how a mini-batch of input,

Xb computes the forecast Pb by truncated BPTT(k2,k1). An input mini-batch Xb is

split into k2 layers along the axis of sequential time step and each layer is fed into the

RNNs. RNNs compute state Hb using the input Xb.
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Figure 4.5: Forward propagation with a mini-batch for truncated BPTT(k2, k1). For
input a mini-batch Xb, it is split along the axis of time step k2 and fed into the RNNs.
Truncated BPTT(k2, k1) returns a mini-batch of state Hb which computes forecast

mini-batch Pb by FFNNs.
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Figure 4.6: Dimension of mini-batches that are used in truncated BPTT(k2, k1) :
input Xb, state Hb and the forecast Pb

The forecast mini-batch Pb, having the same dimension with the input mini-batch Xb,

is obtained from the state Hb. Figure 4.6 depicts the each dimension of the mini-batch

of input Xb, state Hb and the forecast Pb. Note that the propagation is available only

along the axis of sequential time step, neither along the axis of batch size nor along the

dimension axis. The state from the last cell will be kept to carry information processed

so far to the next mini-batch.

4.3.1 Mini-batch Error Jb

Mini-batch error Jb is defined by the total sum of mean square error of all elements

along three axes of the mini-batch (sB, k2, m).

Jb =
1

k2 · sB

X

j2sB

k2�1X

t=0

mX

i=1

{(pt)ji � (yt)ji}2 (4.3)

4.4 Backpropagation within a Mini-batch

4.4.1 Gradients of Jb in terms of Prediction Parameters

Truncated BPTT(k2, k1) follows the same procedure of traditional BPTT explained

above except for the length of backward pass k2 and mini-batch. The gradient of batch

error Jb in terms of prediction parameters {Wp,bp} are computed by the average of

gradients not only along the backward pass axis but also along the batch size axis,

which is specified in Equation 4.4.
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@Jb
@Wp

=
2

k2 · sB

X

j2sB

k2�1X

t=0

{(pt)j � (yt)j}⌦ (ht)j

@Jb
@bp

=
2

k2 · sB

X

j2sB

k2�1X

t=0

{(pt)j � (yt)j}

(4.4)

4.4.2 Gradients ofJb in terms of Cell Parameters

Gradients of batch error Jb in terms of cell parameters {Wxh,Whh,bh} can be shown

by the same procedure with conventional BPTT. The gradients of cell parameters back-

propagate through time but the maximum depth of the time is bounded by k2. That is,

the gradients don’t backpropagate over the mini-batches.

@Jb
@Wxh

=
2

k2 · sB

X

j2sB

k2�1X

t=0

tX

k=0

⇥
{(pt)j � (yt)j} ·Wp}

⇤

⇥ k�1Y

⌧=0

{1� (h2
t�⌧ )j} ·Whh

⇤⇥
{1� (h2

t�k)j}⌦ (xt�k)j
⇤

@Jb
@Whh

=
2

k2 · sB

X

j2sB

k2�1X

t=0

tX

k=0

⇥
{(pt)j � (yt)j} ·Wp}

⇤

⇥ k�1Y

⌧=0

{1� (h2
t�⌧ )j} ·Whh

⇤⇥
{1� (h2

t�k)j}⌦ (xh�k�1)j
⇤

@Jb
@bh

=
2

k2 · sB

X

j2sB

k2�1X

t=0

tX

k=0

⇥
{(pt)j � (yt)j} ·Wp}

⇤

⇥ k�1Y

⌧=0

{1� (h2
t�⌧ )j} ·Whh

⇤
{1� (h2

t�k)j}

(4.5)



	



Chapter 5

Advanced RNN Architectures

This chapter describes two advanced RNN units, long short-term memory (LSTM) and

gated recurrent unit (GRU), which improve vanishing gradient problem of ERNN.

The architecture of ERNN cell, specifically non-linear activation function f(·) of state

ht, causes vanishing or exploding gradient problem when the gradient backpropagates

through time because it generates the product of partial derivative of ht�⌧ with respect

to ht�⌧�1 for every backward time step. Truncated BPTT(k2, k1)[95] is one solution for

this problem. However, due to the truncation, the RNNs don’t backpropagate longer

than k2. It may cause another problem where the RNNs can not capture the long-term

dependencies greater than k2 in the training.

LSTM and GRU both provide longer range where the RNNs can learn without vanishing

or exploding gradient by changing the architecture the RNN cell. The new approaches

both utilized gated structure that enables the networks update information without

non-linear activation function.

Figure 5.1: Schema of two RNN cells, LSTM (left) and GRU (right). GRU has a
simpler architecture with the less number of gates than LSTM.

39
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5.1 Long Short-term Memory (LSTM)

For LSTM, cell state Ct and three gate layers, such as forget gate, input gate and output

gate, are newly introduced[85]. Cell state inherits information from previous cell and

conveys it to the next cell. The gates determine the amount of information to to inherit,

update and convey to the next cell by interacting with the cell state. Figure 5.2 shows

the unfolded graph of a RNN with LSTM cells.
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Figure 5.2: Unfolded graph of a RNN with LSTM cell that consist of three gates.

5.2 Training LSTM

5.2.1 Forward Propagation

Figure 5.3 depicts the architecture of LSTM cell when the RNNs propagate forward.

There is an important bypass on top of the cell where cell state Ct flows. As the bypass

doesn’t have any activation functions, such as hyperbolic tangent or sigmoid �(·), it is

less influenced by the vanishing or exploding gradient caused by the product of partial

derivatives in the learning procedure.

5.2.1.1 Variables and trainable parameters

The following table shows all trainable parameters and variables of LSTM cell with

dimensional information.
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Figure 5.3: LSTM cell architecture. Note that the bypass without non-linear activa-
tion function for cell state Ct enables to avoid vanishing or exploding gradient problem

and backpropagate the gradients to the further past.

Gate type Variable Parameters
Forget gate Gf ft 2 Rs Wxf 2 Rs⇥m Whf 2 Rs⇥s bf 2 Rs

Input gate Gi
it 2 Rs Wxi 2 Rs⇥m Whi 2 Rs⇥s bi 2 Rs

C̃t 2 Rs Wxc 2 Rs⇥m Whc 2 Rs⇥s bc 2 Rs

Output gate Go ot 2 Rs Wxo 2 Rs⇥m Who 2 Rs⇥s bo 2 Rs

Prediction pt 2 Rm Wp 2 Rm⇥s bp 2 Rm

Table 5.1: Variables and trainable parameters of LSTM cell

5.2.1.2 Cell State Ct

Cell state, which conveys the processed information so far to the next cell, plays a similar

role like state ht in ERNN. However, the state ht in ERNN has non-linear property due

to the activation function f(·) while cell state Ct in LSTM is expressed by a linear

combination as shown in Equation 5.1.

Ct = ft �Ct�1 + it � C̃t (5.1)

The linear property brings a promising result during BPTT phase. As its partial deriva-

tive doesn’t generate product terms, LSTM doesn’t su↵er from vanishing or exploding

gradient problem as ERNN does.
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Instead, cell state is regulated by three variables ft, it and C̃t which come from forget and

input gate. For extreme case in Equation 5.1 such that ft = 1 and it = 0, Ct only inherits

from its previous cell state Ct�1. In other words, cell state keeps same information

between t and t� 1, which can be interpreted as short-term memory. Furthermore, by

optimizing parameters regarding the variables, the short-term memory can last for long

period of time. Thus, for ideally trained LSTM network with a sequence with length

T , cell state can reserve closely identical information through T-cells, that is why this

RNN model is called long short-term memory.

5.2.1.3 Forget Gate Variable ft

ft = �(Whf · ht�1 +Wxf · xt + bf ) (5.2)

Forget gate returns the variable ft. The range of the element values of ft is restricted

within 0 and 1 due to the sigmoid function �(·) in Equation 5.2. As shown in Equation

5.1, ft determines the portion of the previous cell state Ct�1 to be inherited by the

current cell state Ct by the element-wise multiplication.

5.2.1.4 Input Gate Variable it and Candidate C̃t

C̃t = tanh(Whc · ht�1 +Wxc · xt + bc)

it = �(Whi · ht�1 +Wxi · xt + bi)
(5.3)

Input gate generates a variable it and a candidate C̃t. The element-wise product of

the variable and the candidate participates in updating cell state Ct by adding to the

element-wise product of ft and Ct�1 as shown in Equation 5.1.

The candidate C̃t plays a role to collect and update new information from the training

data xt, like ht in ERNN. However, unlike ht of ERNN which conveys information to the

next cell directly, the candidate C̃t is adjusted by the variable it which element values

spanned within 0 to 1. As definition of it, shown in Equation 5.3, is identical to the

definition of ft, it plays a similar role like ft, determining the portion of the candidate

C̃t to be updated to the cell state Ct.
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5.2.1.5 State ht and Output Gate Variable ot

ht = ot � tanh(Ct)

ot = �(Who · ht�1 +Wxo · xt + bo)
(5.4)

Output gate generates state ht and a variable ot as shown in Equation 5.4. State ht

delivers information to the next cell using a di↵erent path as cell state does.

However, the information delivered by ht is originated from the cell state Ct which

keeps processed information so far. As the cell state has only linear property, state ht

requires activation function that enables the network to keep the non-linear property

that allows the cells to be connected in series along the time. Therefore, hyperbolic

tangent is applied to the cell state as an activation function, as shown in Equation 5.4.

The variable ot determines the portion of tanh(Ct) to be delivered to the next cell by

element-wise multiplication, as ft and it do. These three variables can be interpreted

as a dimming switch and their operating characteristic is defined by their parameters

which are optimized during backpropagation phase.

5.2.1.6 Forecast pt and error J

As the forecast pt and error Jt are not included in LSTM cell, these expressions are

identical to the ones for ERNN. Equation 5.5 is the repetition of 3.3 and 3.4.

pt = g(Wp · ht + bp)

J =
1

T

T�1X

t=0

Jt =
1

T

T�1X

t=0

mX

i=1

{(pt)i � (yt)i}2
(5.5)

5.2.2 Back Propagation

For the LSTM network, parameters can be discriminated into two groups depending

on the approach of computing gradients, prediction parameters, and cell parameters.

Computing gradients of the prediction parameters such as Wp, doesn’t require BPTT.

On the other hand, computing gradients of the cell parameters, such as Wxf , Wxi,

Wxc, Wxo etc, requires BPTT.
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In terms of BPTT for the cell parameters, the gradients backpropagate through two

paths, cell state Ct�k and state ht�k, where index k = 0, 1, · · · t denotes the number of

time step that the gradients backpropagate. For the cell corresponding the t� kth time

step which counts from the beginning, the gradients in terms of cell parameters are only

dependent on the gradients in terms of cell state Ct�k and state ht�k.

In this section describes the gradients in terms of cell parameters following by the discus-

sion of the gradients in terms of prediction parameters. Cell parameters are distinguished

to two, depending on the paths where the gradients backpropagate, cell state Ct�k or

state ht�k.

5.2.2.1 Gradients of J in terms of Prediction Parameters
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Figure 5.4: Gradient of Jt in terms of prediction parameters {Wp,bp}. As prediction
parameters locate out of the recurrent connections that enable the information over
time, the error at a time step Jt only influences prediction parameters at the same time
step, that is, the gradients of prediction parameters don’t backpropagate through time.

Figure 5.4 shows how the error at one time step t is back-propagating to the prediction

parameters. As illustrated in the figure, prediction parameters are located out of the

LSTM cell. Thus, the parameters are not influenced by the gradients that backpropagate

through time, unlike cell parameters and their backpropagation scheme is identical with

the one of ERNN in Chapter 2. For a sequence with length T , the gradients of total

error J in terms of the prediction parameters are given in Equation 5.6.
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@J

@Wp
=

1
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T�1X
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@Wp

=
2
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(pt � yt)⌦ ht

@J

@bp
=

1

T

T�1X

t=0

@Jt
@bp

=
2

T

T�1X

t=0

(pt � yt)

(5.6)

5.2.2.2 Gradients of J in terms of Cell Parameters

For the t � kth cell from the beginning, gradients in terms of cell parameters can be

discriminated into two groups depending on the path where the gradients backpropagate

: Path A, gradients through state ht�k (See Figure 5.5) and path B, gradients through

cell state Ct�k (See Figure 5.6). The parameters in the output gate are involved in the

path A, while the parameters in the input gate and forget gate are involved in the path

B.

· Path A : Gradients through ht�k
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Figure 5.5: Back-propagating error through state ht�k. Output gate Go only
involves in this backpropagation. Gradients in terms of output gate parameters
{Wxo, ,Who,bo} can be expressed by the chain rule that is derived from the partial

derivative of an error Jt with respect to ht�k and ht�k with respect to ot�k.

The gradients of output gate parameters, such as Wxo, Who and bo, backpropagate

through the path of ht�k and ot�k. Overall gradient for a sequence with length T is

expressed by the chain rule of three partial derivatives in Equation 5.7, where the last

two partial derivatives are expanded in Equation 5.8. Discussion regarding the first

partial derivative @Jt
@ht�k

will be followed later.



Advanced RNN Architectures 46
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(5.7)

@ht�k

@ot�k
= tanh(Ct�k)

@ot�k

@Wxo
= ot�k � (1� ot�k)⌦ xt�k

()
ht = ot � tanh(Ct)

ot = �(Who · ht�1 +Wxo · xt + bo)
(5.8)

For other parameters in the output gate {Who,bo}, their gradients are in Equation 5.9.
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(5.9)

· Path B : Gradients through Ct�k
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Figure 5.6: Back-propagating error through state Ct�k. Forget and input gate, Gf

and Gi, involve in the backpropagation. Gradients in terms of parameters can be
expressed by the chain rule that is derived from the partial derivative of an error Jt

with respect to Ct�k and others depending on the parameters.

As the parameters in forget and input gate contribute to update cell state in the forward

propagation, the gradients backpropagate through the same path. But the e↵ect of the

gradient through the cell state di↵ers between input and forget gates.
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For the parameters in input gate {Whi,Wxi,Whc,Wxc,bi,bc}, the backpropagating

gradients branch o↵ into two, one for the variable it�k and one for the candidate C̃t�k.

As they experience di↵erent activation functions and paths, their expressions di↵er.

Overall gradients of input gate parameters for a sequence with length T is expressed in

Equation 5.10 and 5.11.
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(5.11)

For the parameters in forget gate {Whf ,Wxf ,bf}, the gradients backpropagate through
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Ct and ft. Overall gradients of forget gate parameters for a sequence with length T is

expressed in Equation 5.12.
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=
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(5.12)

5.2.2.3 Backpropagating Gradients between Neighboring Time Steps
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Figure 5.7: BPTT in terms of cell state and state over LSTM cells. Jt, an error
at time t, backpropagate through the inner architecture of LSTM cell which has two
di↵erent paths between the neighboring cells. The partial derivative of Jt with respect

of Ct�k or ht�k represents the e↵ect of the error on the cell that k steps behind.
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In the following, the discussion concentrates on the inner paths of LSTM cell, where

the gradients backpropagate through time. As the gradients in terms of cell parameters

depend on the partial derivatives of Jt with respect to state Ct�k or state ht�k, it is

important to understand how the partial derivatives are computed. In unfolded graph,

the gradients backpropagate cell by cell through two paths, cell stateCt�k and state ht�k

where k = 1, · · · t, shown in Figure 5.7. The paths where the gradients backpropagate

through the inner architecture of the LSTM cell between two neighboring time steps,

t� k and t� k + 1 are discussed respectively.

· Partial derivative of Jt with respect to ht and Ct

@Jt
@ht

=
@Jt
@pt

@pt

@ht
= 2(pt � yt) ·Wp

@Jt
@Ct

=
@Jt
@ht

@ht

@Ct

= 2{(pt � yt) ·Wp}� ot � {1� tanh2(Ct)}

(5.13)

As shown in the right box of Figure 5.7, the partial derivatives of Jt with respect to ht

and Ct are simply computed as shown in Equation 5.13 because the error Jt doesn’t

backpropagate through time yet. Note that the partial derivative of Jt with respect to

Ct is originated from the partial derivative with respect to ht.

· Partial derivative of Jt with respect to ht�k
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Figure 5.8: Four di↵erent paths that the gradients backpropagate to ht�k

Figure 5.8 depicts four di↵erent paths within the LSTM cell that the gradients back-

propagate to ht�k. The paths 1 passing by the forget gate, and 2 , 3 both passing

by the input gate, start from Ct�k+1 while the path 4 passing by output gate, starts
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from ht�k+1. Accordingly, the partial derivative of Jt with respect to ht�k can be ex-

pressed by the sum of the inflow from four paths (See Equation 5.14). Each path can

be factorized by the chain rule (See Equation 5.15).

@Jt
@ht�k

=
@Jt

@Ct�k+1

@Ct�k+1

@ht�k

1
+

@Jt
@Ct�k+1

@Ct�k+1

@ht�k

2

+
@Jt

@Ct�k+1

@Ct�k+1

@ht�k

3
+

@Jt
@ht�k+1

@ht�k+1

@ht�k

4
(5.14)
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@ht�k

= tanh(Ct�k+1)� {ot�k+1 � (1� ot�k+1) ·Who}

(5.15)

Figure 5.8 and Equation 5.14 and 5.15 reveals that the partial derivative of Jt with

respect to ht�k includes the non-linear activation function so that gradients backprop-

agating through the paths have risk of vanishing or exploding like ERNN.

· Partial derivative of Jt with respect to Ct�k

As shown in Figure 5.9, the gradients backpropagate to the cell state Ct�k through two

paths, 5 from Ct�k+1 and 6 from ht�k. The partial derivative of Jt with respect to

Ct�k is the sum of gradients from two paths (See Equation 5.16), where the path 6
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Figure 5.9: Two paths that the gradients backpropagate to Ct�k. Gradients that
backpropagate through the path (5) don’t get vanishing or exploding thanks to the

lack of activation function.

stems from the partial derivative of ht�k which is the sum of four path in the Figure

5.8.
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(5.16)

The path 5 has a special property. As it doesn’t have non-linear activation function on

the path unlike other the paths, the gradients that backpropagate through the path 5

don’t su↵er from the vanishing or exploding issue. The path 5 provides a long-term

bypass that enables the RNNs with LSTM cell to learn long-term dependencies in the

sequence.

On the other hand, the path 6 includes hyperbolic tangent which is a non-linear

activation function. Partial derivative of ht�k with respect to Ct�k returns ot�k � {1�

tanh2(Ct�k)}, whose elements are equal to or less than one.
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= ft�k

@ht�k

@Ct�k

6
= ot�k � {1� tanh2(Ct�k)}

(5.17)

5.3 Gated recurrent unit (GRU)

In this section, gated recurrent unit (GRU) is suggested as an advanced RNN model

from LSTM. Two notable di↵erences compared with LSTM are found in Figure 5.10. At

first, GRU has two gates, referred to reset and update gate respectively. It implies that

GRU has fewer parameters to train, that allows to reduce computation load and time.

The second, GRU doesn’t have an independent memory cell, such as cell state Ct in

LSTM. It suggests that the information is forward and backpropagates only through the

state ht. Despite fewer gates and simpler architecture, it is known that GRU provides at

least comparable prediction accuracy to LSTM and outperforms in terms of computation

time.
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Figure 5.10: Unfolded graph of a RNN with GRU cell that consist of two gates.
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Figure 5.11: GRU cell architecture. Note that the bypass without non-linear activa-
tion function for state ht enables to avoid vanishing or exploding gradient problem and

backpropagate the gradients to the further past.

5.4 Training GRU

5.4.1 Forward propagation

Figure 5.11 depicts the architecture of GRU cell with two gate layers. Like LSTM, GRU

architecture also has a bypass for state ht, which transfer information without experi-

encing activation function, such as sigmoid �(·) or hyperbolic tangent. It enables the

gradients backpropagate without vanishing or exploding so that the RNNs can capture

long-term dependencies of the sequence which is not possible with ERNN.

5.4.1.1 Variables and trainable parameters

The following table shows all trainable parameters and variables of GRU cell with di-

mensional information. As prediction parameters works as same as they do for LSTM

and ERNN, it is excluded from the following discussion.
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Gate type Variable Parameters
Reset gate Gr rt 2 Rs Wxr 2 Rs⇥m Whr 2 Rs⇥s br 2 Rs

Update gate Gu
ut 2 Rs Wxu 2 Rs⇥m Whu 2 Rs⇥s bu 2 Rs

h̃t 2 Rs Wxh 2 Rs⇥m Whh 2 Rs⇥s bh 2 Rs

Prediction pt 2 Rm Wp 2 Rm⇥s bp 2 Rm

Table 5.2: Variables and trainable parameters of GRU cell

5.4.1.2 State ht

ht = (1� ut)� ht�1 + ut � h̃t (5.18)

State ht conveys the information processed so far to the next cell by a linear combination

shown in Equation 5.18. Due to the linear combination, GRU is free from the vanishing

or exploding gradient problem when the gradients backpropagate through time.

The variable ut participates in determining the portion of the information inherited from

the previous state ht�1 also generated from the current candidate h̃t like a bidirectional

switch. For one extreme case, the linear combination in Equation 5.18 turns to a bypass

through all cells when ut�k = 0, where k = 0, 1, · · · t. The bypass can be interpreted as

a memory which makes all state ht�k keep the same information.

5.4.1.3 Update Gate Variable ut and Candidate h̃t

ut = �(Whu · ht�1 +Wxu · xt + bu)

h̃t = tanh{Whh · (rt � ht�1) +Wxh · xt + bh}
(5.19)

Update gate generates a variable ut and the candidate h̃t. Mathematical expression of

ut, shown in Equation 5.19, is identical to the expression of the variables of LSTM, ft,

it and ot. However, the role of the variable ut is slightly di↵erent.

In LSTM, two variables ft and it respectively determines the portion of the information,

to inherit or to update. In GRU, one variable ut determines the portion in two ways.

(1� ut) takes charge of the role of ft while ut takes it’s role. Thus, update gate is

interpreted as a coupled gate that forget and input gate in LSTM are combined.

Candidate h̃t has a unique feature. Reset gate variable rt determines the portion of the

previous information ht�1 to include in generating the new candidate by element-wise
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multiplication, as shown in Equation 5.19. For an extreme case, the candidate h̃t is

generated by only the input data xt when r(t) = 0.

5.4.1.4 Reset Gate Variable rt

rt = �(Whr · ht�1 +Wxr · xt + br) (5.20)

Reset gate variable rt participates in computing new candidate h̃t. Compared with

output gate variable ot in LSTM, ot filters the information in Ct and helps in gener-

ating state ht which is fed into the next cell. Whereas reset gate variable rt filters the

information carried by the state from previous cell ht�1 only for the candidate h̃t.

5.4.2 Back Propagation

Like LSTM and ERNN, parameters are discriminated by two groups, prediction parame-

ters and cell parameters. The gradients in terms of prediction parameters are computed

in the same way as the gradients in LSTM and ERNN are.

Cell parameters are divided into three branches depending on the backpropagating paths,

such as parameters of the candidate h̃t, parameters of update variable ut and parameters

of reset variable rt.

Lastly, discussion for the gradient in terms of the state ht�k is followed. As the gradients

backpropagate through state ht�k, k = 0, 1, · · · t over cells, the cell parameters in each

cell also experience error from the state in the same cell. To explore it, gradients in

terms of the state at two time steps, t and t� 1, are compared. From the insight found

by the comparison, generalization of the gradients is discussed at the end.

5.4.2.1 Gradients of J in terms of Parameters regarding Candidate h̃t�k

The candidate parameters {Wxh,Whh,bh} shown in Figure 5.12, receive the gradients

through the state ht�k and h̃t�k. The chain rule provides a formal expression of the

gradients of J in terms of the parameters, shown in Equation 5.21.
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Figure 5.12: Gradients in terms of candidate parameters {Wxh,Whh,bh} can be
expressed by the chain rule that is derived from the partial derivative of an error Jt

with respect to ht�k and ht�k with respect to h̃t�k.
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(5.21)

5.4.2.2 Gradients of J in terms of Parameters regarding Update Variable

ut�k

The parameters of update gate variable ut, {Wxu,Whu,bu}, experience the error from

two paths as shown in Figure 5.13. Thus, the gradients in terms of the parameters

are the sum of the gradients backpropagating through two paths. For the path 1 ,

partial derivative of ht�k in terms of ut�k is simply acquired as h̃t�k by the definition in

Equation 5.18. In the same context, the partial derivative by the path 2 is �ht�k�1.
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Figure 5.13: Gradients in terms of update parameters {Wxu,Whu,bu} can be ex-
pressed by the chain rule that is derived from the partial derivative of an error Jt with

respect to ht�k and ht�k with respect to ut�k.

Gradient in terms of the parameter Wxu backpropagating through each path is shown

in Equation 5.22.
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(5.22)

For a sequence with length T , overall gradients in terms of update gate parameters

{Wxu,Whu,bu} are denoted in Equation 5.23.
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Figure 5.14: Gradients in terms of reset gate parameters {Wxr,Whr,br} can be
expressed by the chain rule that is derived from the partial derivative of an state ht�k

with respect to candidate h̃t�k and h̃t�k with respect to rt�k.

5.4.2.3 Gradients of J in terms of Parameters regarding Reset Variable rt�k

The path that gradients backpropagate to reset gate parameters {Wxr,Whr,br} is

shown in Figure 5.14. The gradients introduced through the state ht�k, propagates

back to reset gate variable rt�k through candidate h̃t�k. Thus, the gradient in terms

of reset gate parameters can be expressed by the chain rule. Equation 5.24 shows the

gradients for a sequence with length T , where the partial derivative of h̃t�k with respect

to rt�k is given in Equation 5.25 .
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@h̃t�k
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t�k) ·Whh}� ht�k�1

() h̃t = tanh{Whh · (rt � ht�1) +Wxh · xt + bh}
(5.25)

5.4.2.4 Backpropagating Gradients between Neighboring Time Steps

In the following, the discussion concentrates on the paths within the GRU cell, where

the gradients backpropagate through the inner architecture of the cell between two

neighboring time steps, t� k and t� k + 1. Four di↵erent paths, path A in Figure

5.16, path B in Figure 5.17. path C in Figure 5.18 and path D in Figure 5.19, are

suggested for the backpropagation of GRU. Among the paths, path A provide a bypass

without non-linear activation so that the gradients can backpropagate without vanishing

or exploding problem caused by the derivative of the activation function. Details will

be discussed later.
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The formal expressions of gradients for all gate parameters in Equation 5.21, 5.23 and

5.24, include the partial derivative of Jt with respect to ht�k, which represents how the

error at a time step t influence to the state ht�k at k time step back from t, shown in

Figure 5.15. That can be specified by the sum of the backpropagated gradients from

four paths, as shown in Equation 5.26.
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Figure 5.15: BPTT in terms of state over GRU cells. Jt, an error at time t, back-
propagate through the inner architecture of GRU cell between the neighboring cells.
The partial derivative of Jt with respect of ht�k represents the e↵ect of the error on

the cell that k steps behind.
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· Path A : Bypass without Activation Function
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Figure 5.16: Path that gradients backpropagating to ht�k through a bypass.
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@ht�k+1

@ht�k

(A)

= 1� ut�k+1

() ht = (1� ut)� ht�1 + ut � h̃t

(5.27)

The path A, shown in Figure 5.16, doesn’t hold any non-linear activation function in

the path. Thus, the partial derivative of ht�k+1 with respect to ht�k in this case doesn’t

have multiplicative term, as denoted in Equation 5.27. The term 1� ut�k+1 allows that

the partial derivative of Jt with respect to ht�k can be same as partial derivative of Jt

with respect to ht�k+1 if ut�k+1 is equal to zero. Therefore, the path plays an important

role in avoiding the vanishing or exploding gradient problem.

· Path B : Backpropagation through Candidate h̃t�k+1
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Figure 5.17: Path that the error backpropagating through the candidate h̃t�k+1
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(5.28)

Path B, shown in Figure 5.17, includes one non-linear activation function which is

used for generating the candidate h̃t�k+1 in the forward propagation scheme. Note

that the partial derivative of ht�k+1 with respect to the candidate h̃t�k+1 in Equation

5.28 returns the variable ut�k+1, which contributes to avoid the vanishing or exploding

gradient problem in path A.
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· Path C : Backpropagation through Update Variable ut�k+1
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Figure 5.18: Path that the error backpropagating through update variable ut�k+1.
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(5.29)

In path C, shown in Figure 5.18, the gradients backpropagate through the variable

ut�k+1 before arriving the state ht�k. A non-linear sigmoid function is observed in the

path. Due to the nature of sigmoid, its partial derivative also returns sigmoid itself.

Equation 5.29 shows the partial derivative of ht�k+1 with respect to ht�k for path C.

· Path D : Backpropagation through Reset Variable rt�k+1
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Figure 5.19: Path that the error backpropagating through reset variable rt�k+1.
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As reset gate variable rt�k+1 participates in computing the candidate h̃t�k+1, the error

backpropagating to rt�K+1 must pass through h̃t�k+1. Thus, path D, shown in Figure

5.19, includes two non-linear activation functions, a hyperbolic tangent in h̃t�k+1 and a

sigmoid in rt�k+1. The derivative of h̃t�k+1 with respect to h̃t�k for path D is specified

in Equation 5.30.It includes the term ut�k+1 like other gradients above.
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(5.30)



	



Chapter 6

Deep RNN Architectures

6.1 Formal Description of Deep RNNs

Deep learning is built around a hypothesis that a deep, hierarchical model can be expo-

nentially more e�cient at representing some functions than a shallow one. In general,

depth of a neural network’s architecture refers to the number of levels of composition

of non-linear operations in the function learned [96]. However, the depth of an RNN is

more di�cult to define unlike in the case of feedforward neural networks, because RNNs

have an additional depth in time resulting from the composition of multiple nonlinear

layers when unfolded in time [76].

Pascanu et al. [76] suggest a formal definition of deep RNN which can be obtained by

adding extra layers in specific locations. Three options are proposed to obtaion a deep

RNN : (a) deep transition RNN (b) deep output RNN (c) stacked RNN. Figure 6.1

shows each architecture deep RNN.

Deep transition RNN, shown in Figure 6.1(a), is characterized by the deep part located

between the input and hidden states. It can extract more non-temporal structure from

the input. The architecture is known to give a better disentanglement of the underlying

factors of variation than the original input[97]. Equation 6.1 specifies the formal de-

scription of deep transition RNN , where fl and {Wxl,Whl,Wsl,bl} are element-wise

nonlinear function and the weight/bias parameters for lth layer of intermediate layers,

l = 1, 2, · · ·L.
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Figure 6.1: Di↵erent architectures of deep RNN : (a) deep transition RNN , (b) deep
output RNN, (c) stacked RNN

s(l)t = ·fl(Whl · ht�1 +Wxl · xt + bl), l = 1

s(l)t = fl(Wsl · s
(l�1)
t + bl), l > 1

ht = s(L)t

(6.1)

In the same context, deep output RNN, shown in Figure 6.1(b) can be useful to disen-

tangle the factors of variations in the hidden state, by implementing more non-linearity

to compute the output. This allows the hidden state of the model to be more compact

and may result in the model being able to summarize the history of previous inputs more

e�ciently [76]. Equation 6.2 specifies the formal description of deep output RNN, where

gl and {Wyl,bl} are element-wise nonlinear function and the weight/bias parameters

for lth layer of intermediate layers, l = 1, 2, · · ·L.

ht = g(Whh · ht�1 +Wxh · xt + bh), out of deep part

s(l)t = gl(Wsl · ht + bl), l = 1

s(l)t = gl(Wsl · s
(l�1)
t + bl), l > 1

yt = s(L)t

(6.2)
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Stacked RNN, shown in Figure 6.1(c) is defined by stacking multiple recurrent hidden

layers on top of each other [98–100]. New state at layer l h(l)
t , l = 1, 2 · · ·L is defined in

Equation 6.3 where fl is the nonlinear function. Similar to Equation 3.2, Whl represents

weight parameter for the hidden state from the previous time step at the same layer and

Wxl represents weight parameter for the input state from the same time step but from

previous layer. When l = 1, state h(l)
t is computed by the input xt, instead of h(l�1)

t .

Each recurrent level of the stacked RNN captures the information in a di↵erent time

scale of the input [101].

h(l)
t = fl(Whl · h

(l)
t�1 +Wxl · h

(l�1)
t + bl) (6.3)

Deep transition RNN and stacked RNN can be complementary because these two RNNs

extend the standard RNN in orthogonal ways [59]. Using the orthogonal properties of

the two RNNs, there is an attempt of the new architecture by adding non temporal

depth in each level of stacked RNN for neural machine translation [102]. However,

while being powerful in principle, these architectures are seldom used recently due to

exacerbated gradient propagation issues resulting from extremely long back propagation

paths. Therefore, recent researches regarding time series problem tend to apply only

stacked RNNs to guarantee su�cient non-linearity in their model instead of adding deep

transition layers in it [86, 87, 103].

6.2 Recurrent Skip Connections

The fact that a stacked RNN architecture provides a su�cient number of non-linearity

enable to learn doesn’t guarantee the RNNs readily to learn. Rather, an unnecessarily

su�cient number of non-linearities, along with the axis of ’depth’ or ’time’, obstruct the

learning process, as derivative of the non-linear activation functions can cause vanish-

ing/exploding gradient in BPTT phase. This phenomenon is observed more prominently

in learning long sequences because memorizing extremely long-term dependencies while

maintaining mid- and short-term memory is di�cult [29]. For intuitive understandings,

skip connections in this section is discussed relying on single layer RNNs, instead of

stacked RNNs. Thus, non-linearities exists only along the axis of ’time’, not ’depth’.
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There are two common ways in which RNNs can learn long sequences. One option is

to utilize the gated structure of a recurrent cell, such as LSTM [85] and GRU [88]. The

gated recurrent cells are based on the idea of creating paths through time that have

derivatives neither vanish nor explode [104] and that enable information to propagate

forward and backward over longer time steps than ordinary recurrent cell such as Elman

cell.

Another option is to use skip connections through time in the RNN architecture. Skip

connection is defined to add a direct connection from a cell in distant past to a present

cell. The di↵erence to an ordinary RNN, where a recurrent connection goes from a cell

at one previous time step to a present cell, is that a recurrent cell with skip connection

at time t have two recurrent connections from previous time steps, namely, t � 1 and

t� s.

ht = f(ht�s,ht�1,xt) (6.4)

Equation 6.5 provides formal definition of recurrent neural network with skip connec-

tions, where s is referred as ’skip length’. Compared with Equation 3.2, the model with

skip connections in Equation 6.4 includes hidden state term from s time step earlier.

Through the skip connections, the RNNs can skip non-linearities and shorten the number

of time step when the network transport information over time. Gradients also back

propagate quicker across time steps [99, 105]. Goodfellow et al. [104] refers that skip

connections help the RNNs to obtain slower time scales. Figure 6.2 shows the recurrent

neural network with skip connection s = 2.

Figure 6.2: Recurrent Neural Network with skip connection s = 2. The RNN updates
the state through two recurrent connections with length 1 and s = 2.
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6.3 Stacked RNNs with Skip Connections

h(l)
t = f(h(l)

t�1,h
(l)
t�s,h

(l�1)
t ) (6.5)

El Hihi and Bengio [99] suggest an architecture combining stacked RNNs and skip con-

nections. This architecture is a stack of multiple single layer RNNs where each single

layer RNN has a di↵erent skip length. Skip length of each level is predefined by the pur-

pose of the task and the structure of dataset. Depending on the skip length, each level

of the RNNs learns at a di↵erent time scale. Figure 6.3 shows one simple architecture

of stacked RNN with skip connections.

Figure 6.3: Hierarchical RNN with skip connection s = {2, 4}

This architecture is applicable on the tasks in which the dataset have both slower-

varying components with faster-varying ones over time, for example, speech recognition

and synthesis [106, 107] and financial and economic forecasting [108]. Recent studies

in the field of NLP utilize the architecture in allocating di↵erent semantic analysis in

each level, for example, the lowest level for word analysis and the upper level for phrase

analysis, using more advanced architecture referred as clockwork RNN [109], hierarchical

multi-scale RNN [103] and so on.

6.4 Dilated RNNs

Stacked RNNs with skip connections can capture multiple time scales by the di↵erent

skip length in each layer. However, they still have limitations in stacking up many

layers because both forward and back propagation are performed in a sequential manner.
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Specifically, length 1 recurrent connections commonly existing over all layers result in

the RNNs unnecessarily complex.

Hence, Chang et al. [29] suggest a multi-layer, and cell-independent architecture called

dilated RNNs, characterized by dilated recurrent skip connections, referring ’dilations’.

Recurrent cells with dilations are simplified by removing commonly existing length 1

recurrent connections while keeping longer term skip connections. Therefore, recurrent

cells in each layer of dilated RNNs have only one recurrent connection with di↵erent

skip length which provides more flexibility and capability of modeling time scales and

longer dependencies. Figure 6.4 shows the architecture of dilated RNN with dilations

d = {1, 2, 4}.

d = 4

d = 2

d = 1

Figure 6.4: Dilated RNN with dilations d = {1, 2, 4}

6.4.1 Dilated Recurrent Skip Connections

h(l)
t = f(h(l)

t�d,h
(l�1)
t ) (6.6)

Dilated Recurrent skip connections, referring dilations is defined by Equation 6.6, where

l = 1, 2, · · ·L representing the index of the levels of the architecture.

Compared with Equation 6.5, 6.6 shows the elimination of the term h(l)
t�1 which represents

length 1 connection to the cell at time step t in the same layer l. The elimination brings

significant enhancement of computational e�ciency because the networks require fewer
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parameters [29]. The saved cost of computation can be invested into capturing other

hidden time dependencies by stacking another recurrent units with dilations.

6.4.2 Exponentially Increasing Dilations

By so stacking multiple layers of a RNN with a di↵erent dilation, dilated RNNs can

capture multiple time dependencies and aggregate multi-scale temporal context. The

setting that literature suggests is to let dilations have exponentially increasing length,

as introduced in WaveNet [107] and dilated CNN [110]. Let d(l) and d0 be value of the

dilation and initial value of the dilation, where M , l = 1, 2, · · ·L are common ratio of

dilation and the index of the layers.

d(l) = d0M
l�1 (6.7)

There are two benefits to have exponentially increasing dilations. First, it makes dif-

ferent layers focus on di↵erent time scales. Second, it reduces the average length of

paths between nodes at di↵erent time steps, called mean recurrent length [105], which

improves the ability of RNN to extract long-term dependencies and prevents vanishing

and exploding gradients [29]. In general, initial dilation d0 is set to one to let the first

layer capture time dependency through length 1 recurrent connection.



	



Chapter 7

Missing Data Analysis with

RNNs

For scientific researchers missing data is a common problem because their possible e↵ect

on the results of the investigation is seldom quantified despite the fact that they are a

likely source of bias [26]. Statisticians suggest sophisticated methods to estimate missing

values such multiple imputation (MI) [111], full information maximum likelihood (FIML)

[112]. However, despite good performance, they have limitation because these methods

require statistical assumptions for the dataset, that somehow restrict the flexibility of

methods.

On the other hand, machine learning approaches are more flexible with no or little prior

assumptions. In addition, these are more capable of processing outliers, missing and

noisy data [113]. Yi et al. [114] estimate the missing values in air quality data with

geographical features by utilizing correlation in multiple points of view, called multi-

view learning. Wang et al. [115] apply collaborative filtering to estimate missing values

in recommendation system. Schnabel et al. [116] employ matrix completion method to

estimate missing value in training and evaluation the recommender system.

Machine learning approach expands to missing data problems in time series. In the liter-

ature of Yu et al. [117] which suggests matrix factorization with temporal regularization,

matrix completion method is applied for estimating missing values in multivariate time

series.

71
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RNNs significantly contributes to the analysis of missing data problem in time series. It

is reasonable because RNNs’ property, which consider not only the values (or substitution

values if missing) at the current time step, but also all the previous information over

time, enables the network somehow to learn the missing pattern for the purpose of

minimizing the output error [21, 22]. Lipton et al. [118] argue that RNNs successfully

attain classification task with missing data in multivariate clinical records.

Before initiating a recurrent dynamic, manual imputation techniques are introduced for

missing region, such as mean substitution, zero imputation and last value carried for-

ward to fill up the missing region by plausible values [27]. The techniques are simple

to implement. However, strategy of choosing a proper technique should be carefully

considered because it can deteriorate performance due to the bias occurred by the im-

putation [119], for example, underestimating the variance. In the aforementioned study

from Lipton et al. [118] compares classification accuracy according to imputation tech-

niques, zero imputation and last value carried forward. Detail and e↵ect of each manual

imputation techniques will be discussed in this chapter.

RNN analysis for missing data in time series di↵ers into two groups. The first aims

to estimate missing value explicitly, trying to find the most probable values to the

corresponding missing value using recurrent nature [21, 120, 121]. As it consider each

missing value as a variable to estimate, manual imputation for missing values is not

necessary. While, the other group directly tackles to the task, such as classification,

short term load forecasting and so on, to achieve the minimum loss rather than estimate

the exact value in the missing region [122–124]. Manual imputation techniques are

usually applied for the missing values.

As the missing values and patterns also provide rich information, called ’informative

missingness’ [125], recent studies put an e↵ort to systemically model missing patterns

into recurrent dynamic without manual imputation. Che et al. [90] suggest a modified

RNN cell structure for time series classification with missing clinical data. Yoon et al.

[126] suggest multi-directional RNN (M-RNN) to estimate missing values in multivari-

ate time series under a recurrent dynamic. M-RNN utilize information in two ways,

referring intra-stream and inter-stream. Intra-stream utilizes longitudinal information

of each variate using bi-directional RNN (bi-RNN) [127] and inter-stream utilizes corre-

lation among the variates in multiple time steps. Cao et al. [128] suggest Bi-directional
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Recurrent Imputation for Time Series (BRITS) that enable to train the network for

missing value estimation and classification simultaneously.

7.1 Types of Missing Data

It is important to distinguish between the types of missing data because the assumptions

that why the data are missing can a↵ect the underlying assumptions of the statistical

modelling techniques that will be applied [129]. Statisticians found out that the approach

should di↵er depending on the type of ’missingness’, namely, missing completely at

random (MCAR), missing at random (MAR), not missing at random (NMAR) [28].

7.1.1 Missing Completely at Random (MCAR)

MCAR is assumed if the events that lead to any particular item being missing are

independent both of observable variables and of unobservable parameters of interest,

and occur entirely at random [130]. When data are MCAR, the analysis performed on

the data is unbiased. That is, the reduced dataset would represent a randomly drawn

sub-sample of the original data. In practice, it is usually di�cult to meet the MCAR

assumption [28].

7.1.2 Missing at Random (MAR)

MAR is an assumption that the missingness is not MCAR, but where missingness can

be fully accounted for by variables where there is complete information. That is, the

pattern of missingness is traceable or predictable from other variates in the dataset,

rather than appear the specific variate on which the data are missing [28]. Depending

on the analysis method, these data can still induce parameter bias in analyses due to

the contingent missingness [129].

7.1.3 Not Missing at Random (NMAR)

NMAR is the case except two other cases above. The pattern of missingness is non-

random and it is not predictable from other variables in the dataset. In other words, the
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probability that an observation is missing is directly related to the means of measure-

ment. This is sometimes referred to as non-ignorable because this cannot be ignored in

the modelling process [129].

7.2 Manual Imputation Techniques

3 4 5 2 -2 -5 -4

1 1 2 1

-3 -6 0 3 6 3

!"
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0 1 2 3 4 5 6 7 8timestep t

Figure 7.1: Missing data example in multivariate time series. Horizontal axis : time
step, vertical axis : variable. Gray colored room illustrates one missing value.

In a broad sense, imputation techniques attempt to estimate the values of the missing

data and fill-in or substitute new values [28]. Once this has been achieved then the

researcher can proceed as the dataset were considered complete. For the task using

RNNs such as classification, short term load forecasting and so on, traditional approach

is based on the manual imputation. The most simple three techniques will now be

described. Figure 7.1 shows the example of multivariate missing data in time series. In

the figure, horizontal axis represents timestep while vertical axis represents each variable.

7.2.1 Last Value Carried Forward

Last value carried forward technique is to carry the last available value and impute

this value for the missing values until new available value exists. Figure 7.2 shows this

technique based on the multivariate missing data example. The technique is under

the assumption that there will be no change within the missing period of time. If the

assumption is not satisfied, dataset will be biased. This will also cause serious bias if

the data is not MCAR [28]. Formal expression of last value carried forward technique

is shown in the Equation 7.1. For xvt , a value of variable v at timestep t,
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Figure 7.2: Last value carried forward for the multivariate missing data

xvt =

8
><

>:

xvt , if xvt is observed

xv
t0
, otherwise

(7.1)

where t
0
< t is the timestep of lastly observed value of the variable v.

7.2.2 Mean Substitution

3 4 5 2 0.43 -2 0.43 -5 -4

1 1.25 1 1.25 1.25 1.25 2 1 1.25

-3 -6 0.5 0 3 6 3 0.5 0.5

!"

!#

!$

0 1 2 3 4 5 6 7 8timestep t

Figure 7.3: Mean substitution for the multivariate missing data

Mean substitution technique is to replace missing value with the mean value within the

same variable. In Figure 7.3, gray colored room is filled with mean value of corresponding

variable. The mean value is computed by ’observed values’. This approach assumes the

data is MCAR but is not recommended as it can lead to under-estimate of the variance

[28]. Formal expression of mean substitution technique is shown in the Equation 7.2.

For xvt , a value of variable v at timestep t,
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xvt =

8
><

>:

xvt , if xvt is observed

xv, otherwise
(7.2)

where xv is the mean of observed values of the variable v.

7.2.3 Zero Imputation
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Figure 7.4: Zero imputation for the multivariate missing data

Zero imputation technique is the simplest thus frequently used technique (see Figure

7.4). This results in similar e↵ects with mean substitution technique when each variable

has zero-mean. If not, it can cause more serious bias than mean substitution. Equation

7.3 shows the formal expression.

xvt =

8
><

>:

xvt , if xvt is observed

0, otherwise
(7.3)

7.3 RNN Analysis with Manually Imputed Values

Manual 
Imputation!"#$$#%& RNN Structure

{ERNN, LSTM, GRU}ℎ()*

Figure 7.5: RNN analysis of missing data using only manual imputation

The simplest approach to deal with missing data in RNNs is to fill up the missing region

by manual imputation techniques and run RNNs with the imputed time series(see Figure
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7.5). However, this approach can give rise to severe bias because the RNNs don’t know

whether the input value is imputed or observed. This phenomenon is getting worse in

the cases that the data is missing for a long time successively or that the ratio of missing

to observed values is larger.

Lipton et al. [118] report that RNNs can realize the imputed values with only simple

binary indicators for missingness, referring binary mask M. Binary mask describes

observed/missing values of input X at each time step t and variate v. the binary mask

mv
t for input x

v
t is given by Equation 7.4. Figure 7.6 illustrates binary mask in accordance

with the missing data example in Figure 7.3.

mv
t =

8
><

>:

1, if xvt is observed

0, otherwise
(7.4)
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Figure 7.6: Binary mask for the multivariate missing data
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Imputation!"#$$#%& RNN Structure

{ERNN, LSTM, GRU}

Single layer RNN
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'

ℎ)*+ = ℎ, ; 	ℎ.

Figure 7.7: RNN analysis of missing data using manual imputation and binary mask.
Binary mask sequenceM is fed into external RNNs which are jointly trained with RNNs

having Xmissing as an input.
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In this study, binary mask M is fed into an LSTM cell so that the RNN learn the

history of missingness, shown in Figure 7.7. State output from X (upper cell in the

figure) and another state output from M (lower cell in the figure) are concatenated to

be an aggregated output for the RNN.

7.4 RNN Analysis for Systematical Modelling of Missing

Patterns : GRU with Trainable Decay (GRU-D)

Recent studies [90, 126, 128] attempt to include the imputation procedure into a re-

current dynamic, that is, manual imputation is not required. To put it concretely, this

approach modifies the structure of the recurrent cell to be able to impute the missing

value with a plausible value using previous information processed by RNNs. Che et al.

[90] suggest a modified cell structure from GRU for a missing pattern modelling, re-

ferring GRU with trainable decay (GRU-D). Strauman et al. [119] report that GRU-D

provides an outstanding performance in classification task compared with other manual

imputation techniques. In this section, details of GRU-D are discussed.

To deal with missing values in input data X, binary mask M and missing time interval

�} are newly introduced for GRU-D. For formal expression, a multivariate time series

with m variates of length T is denoted as X = {x0, x1, · · · , xT�1} 2 Rm⇥T , where

xt 2 Rm represents tth observations of all variates and xvt denotes the observation of vth

variate of xt. In the same context, binary mask M 2 Rm⇥T and missing value interval

� 2 Rm⇥T are denoted where mv
t and �vt denote the observation of vth variable at time

t of mt and �t respectively.

7.4.1 Comparison between GRU-D and GRU

As shown in the Figure 7.8, GRU-D shares the gated structure of conventional GRU

such as update gate and reset gate. Also, two noticeable changes are found at input node

(gray shaded in the figure) and trainable decay �x and �h (red circle). Che et al. [90]

claim that these two changes are independent from RNN cell structure thus applicable

to the other RNN cells.
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Figure 7.8: Schema of GRU and GRU-D. Two di↵erences are found at input node
gray-shaded region and extra switches in red dot-circled region.

7.4.2 Change in Input Node
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Figure 7.9: Schema of GRU for missing data. upper : last value carried forward.
lower : mean substitution

In GRU-D, manual imputation is not operated thus missing values are remained by null

in input X. The change of input node of RNN cell enables the imputation procedure

using binary mask mv
t within the cell. Equation 7.5 denotes input node modification in

terms of two aforementioned imputation techniques, last value carried forward technique

and mean substitution. Figure 7.9 describes them in the context of GRU.
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xvt  mv
tx

v
t + (1�mv

t )x
v
t0

: last value carried forward

xvt  mv
tx

v
t + (1�mv

t )x
v

: mean substitution

(7.5)

GRU-D incorporate two imputation techniques, last value carried forward and mean

substitution with input decay �x. Therefore, if the input xvt is missing, input node

of GRU-D computes the substitute value cxvt between the value from last value carried

forward xv
t0

and mean substitution value xv depending on �vx,t. Equation 7.6 provides

the formal expression.

cxvt  mv
tx

v
t + (1�mv

t ){�vx,t · xvt0 + (1� �vx,t)x
v} (7.6)

7.4.3 Two Trainable Decays : �x and �h

The change in input node is known to have empirical limitations if its last observation

happens a long time ago. First, the influence of the inputs is only significant in a certain

temporal context and fade away over time [131]. Second, the missing value tend to be

close to some default value (e.g mean or last value) [132].

GRU-D improves the limitations by applying decay mechanism into the RNN cells. Two

decay rate vectors, input decay rate �x,t 2 Rm and state decay rate �h,t 2 Rs, standing

for decay mechanism, imply two important ideas. First, decay rate should be considered

as a vector because each variable of the time series has its own meaning and importance.

Secondly, decay rate should learn from the dataset instead of having a fix priori because

missing patterns are usually unknown and complex.

To prevent fluctuation of the decay rates in long missing time intervals, each decay rate

monotonically decreases in a reasonable range between 0 and 1. �vx,t, v
th variable of

input decay rate vector �x,t and �qh,t, q
th variable of state decay rate vector �h,t are

denoted in Equation 7.7, where Wx,� 2 Rm⇥m, bx,� 2 Rm, Wh,� 2 Rs⇥m, bh,� 2 Rs.
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Note that Wx,� constrains to be diagonal to make input decay rate of each variates

independent.

�vx,t = exp
⇥
�max{0, (Wx,� · �t + bx,�)

v}
⇤

�qh,t = exp
⇥
�max{0, (Wh,� · �t + bh,�)

q}
⇤ (7.7)

, where �t represents duration of missingness over time and helps RNNs to encapsulate

hidden temporal missing pattern, referring missing time interval. Missing time interval

is defined by actual observation time st which is introduced to incorporate time step t

and actual observation time e�ciently. For convenience sake, initial time for the first

timestep s0 is set to zero. Equation 7.8 reveals the definition of missing time interval �t.

�vt =

8
>>>>><

>>>>>:

st � st�1 + �vt�1, t > 1,mv
t�1 = 0

st � st�1, t > 1,mv
t�1 = 1

0, t = 0

(7.8)
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Figure 7.10: Regularly observed missing time interval. st = {0, 1, 2, 3, 4, 5, 6, 7, 8}

An example of missing time interval �vt are shown in Figure 7.10 based on the actual

observation time st in the upper side of each figure. Compared with binary mask mv
t ,

the pattern of missing time interval �vt shows one timestep lagged from binary mask.
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Each decay rate commonly utilizes the history of missingness from missing time interval

�t but regulates the amount of information in a di↵erent way for each input xt and

state ht. Input decay rate �x,t facilitates the input candidate bxt to have plausible value

between the last value and mean of the observed value if the value is missing as shown

in Equation 7.6. State decay rate �h,t aids to capture missing patterns by protecting

the previous state ht�1 from long and successive missing values. State candidate dht�1

is defined in Equation 7.9, element-wise product of (current) state decay rate �h,t and

(previous) hidden state ht�1.

dht�1 = �h,t � ht�1 (7.9)

ut = �(Whu · dht�1 +Wxu · bxt +Wmu ·mt + bu)

rt = �(Whr · dht�1 +Wxr · bxt +Wmr ·mt + br)

h̃t = tanh{Whh · (rt � dht�1) +Wxh · bxt +Wmh ·mt + bh}

ht = (1� ut)� dht�1 + ut � h̃t

(7.10)

Referring the formal expression of GRU, bxt from 7.6 and dht�1 from 7.9, GRU-D is

defined in Equation 7.10. Note that unlike conventional GRU, binary mask mt 2 Rm

is involved in controlling the gates ut and rt also generating the candidate h̃t with its

weight parameters, {Wmu,Wmr,Wmh} 2 Rs⇥m.



Chapter 8

Proposed Approach : STLF with

Missing Data Through Dilated

RNNs and Attention

8.1 STLF with Missing Data Through standard RNNs

Standard RNN architectures implementing self connections with time lag 1 can be inef-

ficient for STLF tasks on missing data. Very often, missing values tend to be observed

consecutively over a certain period of time, i.e. there are large time windows (for ex-

ample 1 week) where data are missing. As standard architecture transfers information

through recurrent connection with time delay 1, the internal state of the network is up-

dated many times with ’fake’ input values (e.g. zeros if missing values are replaced with

zero imputation). This gradually destroys the content of the RNN state in presence of

long sequences of missing values.

Figure 8.1 depicts an unfolded graph of standard architecture for a STLF task, where 3

consecutive values {xt�1, xt, xt+1} are missing (thus manually imputed). It is analogous

that the last prediction of missing region pt+1 is less reliable than other predictions

because three unreliable inputs {xt�1, xt, xt+1} are fed into the RNN sequentially and

involved in the computation procedure of pt+1. Analogously, the forecasting accuracy

are influenced by the choice of manual imputation techniques.

83
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Figure 8.1: Unfolded graph of standard architecture for a time series with 3 missing
values. Last prediction of missing region pt+1 is less reliable than other predictions
because three unreliable inputs {xt�1, xt, xt+1} are fed into the RNN sequentially.

8.2 Proposed Approach : Dilated RNNs with Attention

In this thesis we propose a framework to deal with missing data problems using RNNs.

The proposed framework consists of dilated RNNs [29] combining with a modified at-

tention mechanism [30] to handle missing data.

Intuitively, updating the state less often will protect the RNNs from the bias caused by

a long window of consecutively imputed values. In unfolded graph, it is interpreted by

a utilizing a long skip connection or dilation. On the other hand, the RNNs don’t need

to exploit from the long dilation if the values are correctly observed. In the proposed

approach, dilated RNNs provide multiple layers with di↵erent length of dilations and a

modified attention mechanism enables the RNNs to learn how to exploit the layers with

di↵erent dilations in order to achieve minimum error for STLF tasks.

8.2.1 Dilated RNNs for Missing Data

Dilated RNNs are a stack of multiple single layer RNN with di↵erent dilations. Re-

current cells in each layer of dilated RNNs have a dilation with di↵erent length which

provides more flexibility and capability of modeling time scales and longer dependencies.

Flexibility of dilated RNNs, given by the di↵erent lengths of dilation, can improve the

accuracy of the forecast in the missing region. Each layer of the network can capture

di↵erent temporal dependencies by utilizing its own dilation. As a result, each layer

participates in the forecast with its own information from di↵erent time steps in the

past.
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Figure 8.2: Dilated RNNs with dilation d = {1, 2, 4} for missing data analysis. Bias
will decrease when forecasting pt by allocating more importance to the state in layer 2
than layer 0. In this manner, the forecast accuracy of missing data can be improved by

exploiting multiple time scales.

Figure 8.2 depicts the inflow of information at time step t in dilated RNN with d =

{1, 2, 4} and missing values {xt�3, xt�2, xt�1, xt}. Due to unreliable inputs in the missing

region, states in the blue box of the figure is somehow biased. But the e↵ect of bias is not

identical for each layer. For example, let’s take the components belonging to the time

step t. The state at layer 0, h(0)t , has been updated with imputed values four time steps

before while the state at layer 2, h(2)t , is never updated with imputed values. Thus, it

can assumed that bias will decrease when forecasting pt by allocating more importance

to the state in layer 2 than layer 0. In this manner, the forecast accuracy of missing

data can be improved by exploiting multiple time scales. h(l)t , state at time step t and

layer l expressed in Equation 8.1 where l = 0, 1, 2.

h(0)t = f(h(0)t�1, xt)

h(1)t = f(h(1)t�2, h
(0)
t )

h(2)t = f(h(2)t�4, h
(1)
t )

(8.1)

8.2.2 Attention Mechanism

Attention mechanism is introduced by Bahdanau et al. [30] in the field of neural machine

translation. Neural machine translation is based on the framework of RNN Encoder

Decoder, proposed by Cho et al. [31]. With an encoder and a decoder for each language,
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Figure 8.3: Attention mechanism in a encoder decoder framework. The attention
mechanism is to focus on specific internal states generated by encoder at each decoding

step. The contribution of each state is governed by means of a weighted average.

this framework applies to each sentence whose outputs are compared [133]. An encoder

neural network reads and encodes a source sentence into a fixed length vector. A decoder

then outputs a sequence with variable length from the encoded vector. The whole

encoder decoder system consists of the encoder and the decoder for a language pair

which are jointly trained to maximize the probability of a correct translation given a

source sentence [30].

The attention mechanism is to focus on specific internal states generated by encoder at

each decoding step. The contribution of each state is governed by means of a weighted

average. Figure 8.3 illustrates the attention mechanism in a encoder decoder framework.

An aggregated information of input formed by taking a weighted average of encoder state

ht, t = 0, 1, · · ·T�1 with weights ↵n
t , is transferred as input to the decoder that modifies

its states sn n = 0, 1, · · ·N � 1. The weights ↵n
t usually take values in the interval

⇥
0, 1

⇤

so that the weighted average decides specic time steps to allocate importance.

sn = f(sn�1, yn�1, cn) Decoder state

cn =
T�1X

t=0

↵n
t ht Weighted average

↵n
t =

exp(ent )PT�1
k=0 exp(enk)

Softmax

ent = g(sn�1, ht) Feedforward NN

(8.2)
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The weights ↵n
t are produced by the scores ent , which represents how well the inputs

around position t and the output at position n match. The scores are computed by a

feedforward network g(·) with the RNN decoder state sn�1 and the encoder sentence ht.

Equation 8.2 denotes the formal expression of the attention mechanism [104].

8.2.3 STLF with Missing Data Through Attention and Dilated RNNs
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Figure 8.4: Modified attention mechanism in dRNN(3) with dilation d = {1, 2, 4}.
The networks learn how to utilize di↵erent time scales for the optimal forecast using

weights ↵(l)
t which decide the contribution of each state from one layer h(l)

t . For a long
window of consecutive missing values, the network is expected to concentrate on the

higher layer which has longer time scales.

The proposed approach applies the attention mechanism on the states h(l)t from dilated

RNN to learn which layer provides the most reliable state each time, in presence of

missing values in the input sequence. In other words, the networks learn how to utilize

di↵erent time scales for the optimal forecast depending on whether the values are missing

or not. Figure 8.4 illustrates the attention mechanism in dilated RNNs. The weights

↵(l)
t are intended to decide the contribution of each state from one layer h(l)t so that

at each time step each layer has a di↵erent importance for computing the output. As

a result, for a long window of consecutive missing values, the network is expected to

concentrate on the higher layer which has longer time scales. This is done by learning

higher ↵(l)
t , to suppress bias induced by manual imputation. The aggregated state h⇤t
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formed by taking a weighted average of state of each layer h(l)t , l = 0, 1, 2 with weights

↵(l)
t , is used for computing the forecast pt in a general manner. Equation 8.3 denotes

the formal expression for L layer dilated RNN, or dRNN(L).

pt = g(h⇤t ) Forecast value

h⇤t =
L�1X

l=0

↵(l)
t h(l)t Weighted average

(8.3)

8.2.4 Composition of weights ↵(l)
t
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Figure 8.5: Schema of weight composition for dRNN(3) in Figure 8.4. The weight

↵(l)
t is obtained by the score e(l)t applied by a softmax function. The score is derived

by the concatenation of missing history �t and the state of the dRNN(3) h(l)
t applied

by feedforward NN.

↵(l)
t =

exp(e(l)t )
PL�1

k=0 exp(e
(k)
t )

Softmax

e(l)t = g(h(l)t ; �t) Feedforward NN

�t = f(�t�1,mt) External RNN

(8.4)

The weights {↵(l)
t }, l = 0, 1, · · ·L�1 are derived from the scores {e(l)t }, l = 0, 1, · · ·L�1

processed by the softmax function so that they have values within the interval
⇥
0, 1

⇤
and

the sum over the layers is one.
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As the scores e(l)t play a role in incorporating current state at each layer and the missing

history from binary mask mt in Equation 8.5, they are derived by the concatenation of

two vectors h(l)t and �t, referring state at layer l and history of missingness respectively,

processed by a feedforward network.

�t is the state of an external (small) RNNs, which is fed with the binary mask sequence

mt. It represents missing history of input data and plays a similar role in missing

time interval of GRU-D [90]. It is derived from binary mask time series mt processed

by another RNNs which train jointly, such as LSTM. Formal expression is denoted in

Equation 8.4.

mt =

8
><

>:

1, if xt is observed

0, otherwise
(8.5)



	



Chapter 9

Results

In this chapter, we compare the performance achieved by each RNN model presented in

Chapter 6 and Chapter 7 in terms of the forecast accuracy of two di↵erent time series

with missing values. The forecast accuracy is represented by the Mean Squared Error

(MSE) obtained on the unseen values of the test set.

The MSE is defined as:

MSE(Yk,Y⇤
k) =

1

|Xk|
X

x2Xk

(yx � y⇤
x)

2 , (9.1)

where yx 2 Yk is the output when the input x 2 Xk is processed and y⇤
x 2 Y⇤

k is the

ground-truth value that the network must learn to reproduce. The lower MSE implies

the higher forecast accuracy. All models including RNNs used for the experiments have

been implemented in Python, using Tensorflow Library [134].

9.1 Datasets

For experiments, we analyze both a synthetically generated time series and a time series

from real-world load data from a public dataset, in order to provide controlled and

easily replicable results for the architectures under analysis. The synthetic time series,

is the generated from the Mackey-Glass system [135], while the real-world time series

one comes from the GEFCom 2012 competition [2] and comes from real measurements

of electricity load.

90
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In order to obtain a forecasting problem that is not too trivial, it is reasonable to select

as forecast horizon a time interval tf that guarantees the measurements in the time series

to become linearly decorrelated. Hence, we consider the first zero of the autocorrelation

function of the time series. [4].

9.1.1 Synthetic Time Series : Mackey-Glass (MG) system

The Mackey-Glass (MG) system is commonly used as benchmark for forecasting chaotic

time series. The input signal is generated from the MG time-delay di↵erential system,

described in Equation 9.2.

dx

dt
= ↵ · xt�⌧MG

1 + x10t�⌧MG

� � · xt. (9.2)

For the forecasting task, we set ⌧MG = 17,↵ = 0.2,� = 0.1, initial condition x0 = 1.2.

Integration step for Equation 9.2 is set to 0.1. The forecast horizon tf is set to 12, which

is the first time step where the autocorrelation goes to zero.

All the time series considered in the following consist of 15, 000 time steps. We use

the first 9, 000 samples of the time series as training set to learn the parameters of

the RNN models. The next 3, 000 samples of the data are used as validation set and

the forecast accuracy achieved by the RNNs on this second dataset is used to tune the

hyperparameters of the models. The final model performance is evaluated on a test set,

corresponding to the last 3, 000 samples of the values in the time series.

As the MG time series doesn’t have missing values originally, we manually inject artificial

windows of missing data, according to the following three policies. First, each missing

window covers 50 consecutive time steps. This reflects a common phenomenon observed

in practice, that missing values very often tend to be observed consecutively over a

certain period of time. Secondly, the windows with length 50 are randomly introduced,

so that there is no specific missing pattern observed. Lastly, the total number of time

samples in all missing windows does not exceed 30 % of the whole time series. For

example, training set which have 9, 000 time steps in total, includes 2, 700 missing values

in the sequence.
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9.1.2 Real World Load Time Series : GEFCom2012 Electricity Load

The real world time series that we analyze is the electricity consumption from the Global

Energy Forecasting Competition 2012 (GEFCom 2012) [2]. The GEFCom 2012 dataset

consists of 4.5 years (1, January, 2004 - 30, June, 2008) of hourly electricity load col-

lected from a US energy supplier. The dataset comprises time series of consumption

measurements, from 20 di↵erent feeders in the same geographical area. The values in

each time series represent the average hourly load, which varies from 10, 000kWh to

200, 000kWh. For the forecasting task, we extract a aggregated time series from the

electricity consumption, which is the sum of time series from 20 di↵erent feeders.

To study the seasonality in the aggregated time series, we compute the autocorrelation

function, which is depicted as the gray line in Figure 9.1 hRighti. From the small subplot

in top-right part of the figure, relative to a small segment of the time series, it emerges a

strong seasonal pattern every 24 hours. By applying a seasonal di↵erentiation with lag 24

the main seasonal pattern is removed, as we can see from the autocorrelation function of

the di↵erentiated time series, depicted as a black line in the figure. After di↵erentiation,

the autocorrelation becomes close to zero after the first lags and, therefore, we can

exclude the presence of a second, strong seasonal pattern (e.g. a weekly pattern) [4].
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Figure 9.1: hLefti load profile in kilowatt-hour (kWh) of the aggregated electricity
consumption registered in the first 4 months of activity in 2006, from the GEFCom 2012
dataset. The sampling time in the time series is 1 hour. hRighti the autocorrelation
functions of the GEFCom time series before (gray line) and after (black line) a seasonal
di↵erentiation at lag 24. The small subplot on the top-right part of the figure reports a
magnified version of the autocorrelation function before di↵erentiation at lag t = 200.
Source : Recurrent Neural Networks for Short-Term Load Forecasting: An Overview

and Comparative Analysis, Bianchi et al. [4]

There are eight time windows with length of one week where data are missing in GEF-

Com 2012 sequence, located the year of 2005 and 2006. Those are depicted in Figure
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9.2. To be sure that missing data appear, at the same time, in the training, validation

and test set, those are constructed as follows.

• Training set with 4, 416 time steps (184 days), starts 1 o’clock of 1, June, 2015 to

24 o’clock of 1, December, 2005.

• Validation set with 888 time steps (37 days), starts 1 o’clock of 4, December, 2015

to 24 o’clock of 9, January, 2006.

• Test set with 888 time steps (37 days), starts 1 o’clock of 22, January, 2006 to 24

o’clock of 27, February, 2006.

500,000

1,000,000

1,500,000

2,000,000

2,500,000

(a) Training set

(b) Validation set (c) Test set

0

24

0

24

0

24

06/2005 07/2005 08/2005 09/2005 10/2005 11/2005 12/2005

12/2005 01/2006 01/2006 02/2006

Figure 9.2: GEFCom 2012 dataset. Each dark strip represents the missing windows
with duration of one week.

Two preprocessing operations that are applied to the GEFCom dataset are a seasonal

di↵erencing at lag 24 and a z-score standardization. The forecast time interval tf is set

to 24 with GEFCom 2012 dataset because the time series, after di↵erencing at lag 24,

have the first zero autocorrelation after 24 time steps.

9.2 Experimental Setup

The optimization of the parameters of the network is performed by means of gradient

descent, using as training objective to be minimized the MSE of the entire time series. As

optimization algorithm, Nesterov momentum [136] with momentum ✓ = 0.9 is used for

the synthetic time series and ADAM [137] optimizer is used for GEFCom 2012 dataset.
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The particular optimizer is chosen based on the fact that the loss curve on training

samples decreases monotonically as the number of iterations increases.

9.2.1 Model Comparison
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Figure 9.3: Schema of DRNN(l) models. (a) DRNN(l) with modified attention ;
(b) DRNN(l) with time ; (c) DRNN(l). Every model has input with missing values
Xmissing. The e↵ect of modified attention mechanism is compared by the model (a)
and (b), where model (b) concatenates the state output of two RNNs. Model (c) are
also suggested to see the e↵ect of binary mask towards DRNN(l) by comparing with

model (b). M and P represent binary mask and forecast respectively.

The primary purpose of the experiments is to investigate if the modified attention mech-

anism improves the forecasting accuracy under the DRNN structure. Five di↵erent

models, including two baseline models, are compared in terms of the forecast accuracy

achieved on the test set.

The principal models of interest, based on the DRNN architecture, are depicted in

Figure 9.3. Model (a) and (b) are taken into account to compare the performance of

modified attention mechanism. Model (c) is also tested to investigate the e↵ect of the

external RNN by comparing with model (b). All models based on DRNN share the

same configuration of hyperparameters, including the number of layers and the number

of neurons per layer.

Two base line models, GRU and ARIMA, are introduced to compare the forecast accu-

racy with the proposed DRNN-based models. As baseline among the di↵erent machine

learning approaches, the conventional GRU RNN was selected because it can learn
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time dependencies in a comparable way to LSTM, but it uses a simpler architecture

than LSTM. As baseline for the statistical approach, ARIMA is chosen. The order of

ARIMA(p, d, q) is carefully selected by following commonly used practices for the design

of the coe�cients1.

9.2.2 Hyperparameters

To identify an optimal configuration for the forecasting task, we evaluate each RNN by

the forecast accuracy according to the specific values of the hyperparameters. In the

following, details of configuration searching method, proposed by Bianchi et al. [4], are

discussed.

We opted for a random search as it can find more accurate results than a grid search,

when the same number of configurations are evaluated [138]. Specifically, di↵erent con-

figuration of the hyperparameters are randomly selected from admissible intervals. Table

9.1 reports the optimal configurations of each model for the forecasting tasks.

For DRNN models, the dilation at layer l = 1, 2, · · · , L, d(l) is defined as a power of 2,

denoted in Equation 9.3.

d(l) = 2l�1 (9.3)

Dataset Network L tf k2 k1 Nh N� OPT ✓ µ �

MG

DRNN+att 5 12 1024 512 20 10 Nesterov 0.9 3.34e�4 3.70e�7

DRNN+time 5 12 1024 512 20 10 Nesterov 0.9 3.34e�4 3.70e�7

DRNN 5 12 1024 512 20 Nesterov 0.9 3.34e�4 3.70e�7

GRU 1 12 64 32 20 Nesterov 0.9 3.34e�4 3.70e�7

ARIMA(3,0,0) 12

GEFCom

DRNN+att 8 24 256 128 10 5 Adam 2.00e�4 5.00e�3

DRNN+time 8 24 256 128 10 5 Adam 2.00e�4 5.00e�3

DRNN 8 24 256 128 10 Adam 2.00e�4 5.00e�3

GRU 1 24 64 32 20 Adam 3.34e�4 2.00e�3

ARIMA(2, 0, 1) 24

Table 9.1: Optimal RNNs configurations for the synthetic time series. The acronyms
in the table are: L – number of hidden layers; tf – the forecast time interval; k2 –
number of time step the gradient is propagated back in BPTT (length of backward
pass); k1 – number of new time steps processed forward before computing the BPTT
(length of forward pass); Nh – number of nodes in the hidden layer; N� – number of
nodes in the missing history �t; OPT – gradient descent strategy; ✓ – Momentum; µ –

learning rate; � – L2 regularization parameter;

1https://people.duke.edu/~rnau/arimrule.htm

https://people.duke.edu/~rnau/arimrule.htm
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The number of layer of DRNN, L is selected according to criteria that the longest

dilation should be shorter than the shortest width of missing windows. For example,

as the shortest width of a missing window used for MG dataset is 50, so that the

longest dilation d(L) should be an element within the subset d(L) 2 {1, 2, 4, 8, 16, 32},

which corresponds to having a total number of layers L 2 {1, 2, 3, 4, 5, 6} respectively.

For GEFCom 2012 dataset, the width of a missing window is 168 so that the longest

dilation is upperbounded to d(L) 2 {1, 2, 4, 8, 16, 32, 64, 128} and the corresponding layer

L 2 {1, 2, 3, 4, 5, 6, 7, 8}. For the experiment with MG set, we set L = 5 so that d(5) = 16

and with GEFCom 2012 set, we set L = 8 and d(8) = 128.

According to what discussed in Chapter 4 about the selection of the extent of the

backward and forward pass, the length of backward pass is defined as k2 = 2b, where

b is randomly chosen according to criteria, b 2 {L,L + 1, L + 2, L + 3, L + 4, L + 5} to

make k2 longer than the longest dilation d(L) = 2(L�1). The length of forward pass k1

is set to a half of k2. Regarding the number of hidden units Nh in the recurrent hidden

layer, we randomly choose one value from the set {5, 10, 15, 20} to avoid overfitting. The

number of hidden units for binary mask N� in the external recurrent hidden layer, we

manually set to have quotient of Nh divided by 2. We define learning rate, µ = 10c,

where c is sampled from the uniform interval c 2 [�4,�2]. For the L2 regularization

coe�cient �, we sample from [0, 0.1], an interval containing values commonly assigned

to this hyperparameter in RNNs [139].

Once the candidates of the possible hyperparameter configurations are selected, perfor-

mances are evaluated on the validation set, after having trained the network for 1, 000

epochs. Based on the performance, hyperparameters are fine tuned to figure out the

optimal configuration. After the optimal configuration of the hyperparameters has been

identified, we train each model for 5, 000 epochs three times using random and indepen-

dent initializations of the network parameters and compute the forecast accuracy on the

test set. We report the highest forecast accuracy on the test set among the three time

training session.
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9.3 Results

9.3.1 Synthetic Dataset

9.3.1.1 Forecast Accuracy
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Figure 9.4: MSE comparison for RNN models with MG set. (a) MSE within the
missing windows ; (b) MSE out of the missing windows ; (c) MSE of entire time series.

All subplots show that the RNN based models outperform the ARIMA model.

In Figure 9.4 we report the forecast accuracy of MG test set with respect to MSE ob-

tained from each model. To show the di↵erence between the prediction performance of

the di↵erent models with or without missing values in the input, the MSE presented

in each subplot is computed on (a) imputed inputs (within the missing windows); (b)

observed inputs (out of the missing windows); and (c) entire time series. In the figure

(a), hDRNN(5) with attentioni model obtains the lowest MSE(0.076) and the model

hDRNN(5) with timei follows by (MSE:0.081), where the models are illustrated in Fig-

ure 9.3 (a) and (b) respectively. Meanwhile, in Figure 9.4 (b), hDRNN(5) with timei

model achieves the lowest MSE(0.018) while hDRNN(5) with attentioni model gives the

greatest MSE among RNN based models. For the MSE of the entire time series shown

in Figure 9.4 (c), hDRNN(5) with timei have the lowest MSE(0.037) and hDRNN(5)

with attentioni model follows by (0.042).

The results in Figure 9.4 reveal that,
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• The RNN based models outperform the ARIMA model in terms of the forecasting

accuracy. All the plots in Figure 9.4 show that the RNNs achieve outstanding

forecast accuracy than ARIMA in the forecasting task. The result supports the

hypothesis that the RNNs are more suitable models than the conventional ARIMA

for the forecasting task. On the other hand, it is still doubtful whether the ARIMA

model is suitable for comparison to RNN models when the input data have missing

values since the forecasting accuracy of ARIMA is too low. Figure 9.5 hei depicts

that ARIMA(3,0,0) model fails to forecast with imputed inputs and always pro-

duces as output just a constant value. However, we include the ARIMA model for

a comparison because it is still widely used as a baseline of the forecasting task.

• The dilated structure contributes to the accurate forecasting within the missing

windows. In Figure 9.4 (a), DRNN based models achieve lower MSE than GRU.

Let’s compare the two models, hDRNN(5)i and GRU, which don’t have external

RNNs utilizing binary mask mt as a secondary input. Obviously, hDRNN(5)i

(MSE:0.093) brings higher accuracy than GRU(MSE : 0.132). The result supports

the hypothesis that utilizing longer dilations can improve the forecasting accuracy

within the missing windows, rather than utilizing only recurrent connections with

length 1. Figure 9.5 shows each forecast of the models for the same period of the

test set. Comparing the forecast in the missing windows with hDRNN(5)i (the

third from the top) and the baseline GRU (the fourth from the top), the forecast

(red line) of GRU gets misaligned from the target (green line) in the earlier time

steps than hDRNN(5)i. It implies that DRNN structure can capture longer term

dependencies than GRU.

• External RNNs utilizing binary mask mt as a secondary input contribute to the

accurate forecasting. Comparing hDRNN(5) with timei model to hDRNN(5)i, we

figure out that the external RNN utilizing binary mask mt as an auxiliary input

improves the forecasting accuracy. By looking at all the subplots in Figure 9.4, we

can observe that the MSEs of hDRNN(5) with timei are lower than hDRNN(5)i.

• The modified attention mechanism contributes to the accurate forecasting within

the missing windows. Figure 9.4 (a) shows that hDRNN(5) with attentioni model

achieves the highest forecast accuracy (MSE:0.076) within the missing windows of

the sequence but hDRNN(5) with timei also gives comparable accuracy (MSE:0.080).
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As the di↵erence between two models, hDRNN(5) with attentioni and hDRNN(5)

with timei, is the presence of attention mechanism, we anticipate that the im-

provement of the forecasting accuracy within the missing windows is an e↵ect of

the attention mechanism. However, since the gap in MSE between the two models

is not large enough, there would be an objection that it is uncertain to claim that

the attention mechanism contributes to the improvement. Further experiments

can clarify the conflicting opinions. For example, the performance of the modified

attention mechanism can be examined by increasing the ratio of the missingness

of MG set, that is set to 30 % in this experiment. Meanwhile, Figure 9.4 (b)

illustrates that hDRNN(5) with timei model brings a higher accuracy(MSE:0.019)

than hDRNN(5) with attentioni (MSE:0.028) for the observed inputs. We infer

that, depending on the nature of the time series, it might be more accurate for the

forecast to utilize the highest layer of DRNN consistently rather than exploit mul-

tiple layers using attention weights when the inputs of the network are observed

values. As shown in Figure 9.5, out of the missing windows, MG set exhibits a

smooth and quasi-periodic pattern which is not a challenging task for the network

to learn even with single layer. In Figure 9.4 (b), the fact that MSE of GRU(0.020)

is comparably low to MSE of hDRNN(5) with timei(0.019) supports the inference.

Accordingly, we can improve the attention mechanism such that the attention

mechanism works only when the inputs are missing values while the RNNs utilize

the longest dilation when the inputs are observed values.
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ARIMA(3,0,0)

GRU

DRNN(5)

DRNN(5)+time

DRNN(5)+att

Figure 9.5: Forecast plots
over a period of time step in test
set of MG, depending on the 5
di↵erent models. Red line de-
picts the forecast values while
green line depicts the target,
that the forecast aims to reach.
Blue and violet lines show in-
put and binary mask, which in-
dicates if the input data are
missing. From the top, hai
DRNN(5) with modified atten-
tion; hbi DRNN(5) with ex-
ternal RNN with LSTM cell
having binary mask as input;
hci DRNN(5). hdi GRU ; hei

ARIMA(3,0,0).
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9.3.1.2 Change of Attention Weight ↵(l)
t around Missing Windows
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Figure 9.6: Change of attention weights ↵(l)
t depending on the input. The bar plot

(a) depicts the weights which are derived by the observed values. The second bar plot
(b) depicts the learned weights which are returned in presence of missing values. The
weight for layer 4 (dilation 8) and 5 (dilation 16) increases while the weights for layer
1, 2, and 3 decrease when imputed values are fed into the network. Attention weights
induce the RNN to exploit information from the higher layers which are expected to be

less biased by the imputed values.

An important sanity check for the proposed model hDRNN(5) with attentioni (model

(a) in Figure 9.3), consists in verifying the change of attention weights ↵(l)
t in the dif-

ferent layers, when the input data are missing. To investigate the results, we divide

the attention weights ↵(l)
t of each layer according to whether the input is imputed(See

Figure 9.6 (a)) or observed(See Figure 9.6 (b)), and compare the change of mean values

under each condition. As the attention weights ↵(l)
t are indicators of which layer the

RNNs exploit for the forecast, the changes between the two cases can be an evidence

of the hypothesis that the networks will consider the layer with longer dilation as more

reliable towards the successive imputed values within the missing windows.

Comparing subplots in Figure 9.6, the average of attention weights of layer 4 (dilation

d = 8) and 5 (dilation d = 16) significantly increase while the weights of layer 1, 2 and

3 decrease within the missing windows, where imputed values are fed into the network.

It means that the RNNs focus the attention more on the longer dilation for a better

forecast towards the imputed inputs because the attention is finite resource, which sums

to one. Figure 9.7 shows the changes of attention weights within and out of the missing

windows in the same period of the test set of Figure 9.5. In the missing windows where

light blue line indicates zero, the the weights with respect to lower layers decreases while

weights of higher layers increase.



Results 102

Figure 9.7: Plot of attention weights ↵(l)
t over a period of time step. Rectangular

line depicts binary mask mt, displaying 0 if an input value is imputed and 1 otherwise.

Yellow and purple lines denoting the attention weight ↵(4)
t and ↵(5)

t interact with rect-
angular line, showing an increase when rectangular line is 0 and a decrease on the other

case.
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9.3.2 Results on Real World Dataset

9.3.2.1 Forecast Accuracy
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Figure 9.8: MSE comparison for RNN models with GEFCom 2012 set. (a) MSE
within the missing windows ; (b) MSE out of the missing windows ; (c) MSE of entire

time series.

In Figure 9.8 we report the forecast accuracy of GEFCom 2012 test set with respect to

MSE obtained from each model. Each subplot of 9.8 represents the MSE according to

conditions as given in Figure 9.8. Overall, MSEs of GEFCom 2012 set indicate higher

values than the MSEs of MG dataset in Figure 9.4.

In the figure (a), all the models except hDRNN(8) with timei show comparable perfor-

mance, and GRU(MSE:1.512) is slightly better than the others. Among DRNN mod-

els, hDRNN(8) with attentioni brings the lowest MSE(MSE:1.534). Figure 9.8 (b),

hDRNN(8) with timei model achieves the lowest MSE(0.798) and other DRNN based

models, hDRNN(8)i(0.843) and hDRNN(8) with attentioni(0.850), follow by. For the

MSE of the entire time series shown in Figure 9.8 (c), DRNN based models indicate

similar MSEs, achieving a higher accuracy than two baselines.

The results in Figure 9.8 reveal that,

• Compared with the experiment with MG set, all the RNN based models result in

lower forecasting accuracies with GEFCom 2012 set. It is expected by the rea-

sons. First, the task is more di�cult. For MG set, the task is designed to forecast
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tf,MG = 12 time steps ahead, while the task with GEFCom 2012 set is to fore-

cast tf,GEFCom = 24 time steps ahead. Secondly, time series has an unpredictable

pattern as shown in Figure 9.9, unlike MG set which has a smooth, quasi-periodic

pattern. Prior to the experiment, we perform preprocessing to remove seasonality

by applying seasonal di↵erencing at lag 24 on the raw version of GEFCom 2012

time series. The restored pattern from the di↵erencing is given in Figure 9.10.

Another reason is overfitting. The training with MG set doesn’t show the over-

fitting until 5000 epochs, but the GEFCom 2012 set exhibits overfitting around

500 epochs. Two remedies, L2-regularization and hidden size Nh reduction, are

applied in order to prevent the overfit but no major improvement was achieved.

• By comparing hDRNN(8)i and GRU, dilated structure achieves lower MSE than

GRU for entire time series shown in Figure 9.8 (b) and (c). We argue that the

dilations can contribute to the accurate forecasting with GEFCom 2012 set as they

do with MG set. As in the previous experiment in Figure 9.4 (c), hDRNN(8)i shows

higher accuracy than GRU in the entire series shown in Figure 9.8 (c). However,

while MG set gives higher accuracy within the missing windows, GEFCom 2012 set

shows higher accuracy with imputed inputs. This inconsistency should be verified

through additional experiments.

• In a real-world scenario, due to the irregular patterns in the time series, using

exogenous variables could greatly improve the forecast accuracy and obtain a more

accurate training of the model. In the case of electricity load forecasting, we can

improve the accuracy in future research by performing a comprehensive analysis

including external variables such as weather e↵ects, calendar e↵ects, and so on.

• Even in this case, the intuition behind the usage of attention mechanism for miss-

ing data is confirmed. Indeed, we observe a consistent result regarding modified

attention mechanism. Comparing hDRNN(8) with attentioni to hDRNN(8) with

timei, hDRNN(8) with attentioni shows lower MSE within the missing windows,

while hDRNN(8) with timei, gives lower MSE out of the missing windows as ob-

served in the experiment with MG set.
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ARIMA(2,0,1)
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DRNN(8)+time
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Figure 9.9: Forecast plots over
a period of time step in test set
of GEFCom 2012 after the sea-
sonal di↵erencing at lag 24, de-
pending on the 5 di↵erent mod-
els. Red line depicts the forecast
values while green line depicts the
target, that the forecast aims to
reach. Blue and violet lines show
input and binary mask. From
the top, hai DRNN(8) with mod-
ified attention ; hbi DRNN(8)
with external RNN with LSTM
cell having binary mask as in-
put; hci DRNN(8). hdi GRU ;
hei ARIMA(2,0,1). Overall, all
the models don’t make an accu-
rate forecast with GEFCom 2012

set.
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ARIMA(2,0,1)

GRU

DRNN(8)

DRNN(8)+time

DRNN(8)+att

Figure 9.10: Forecast plots
over a period of time step in test
set of GEFCom 2012 after restor-
ing from the seasonal di↵erencing
at lag 24, depending on the 5 dif-
ferent models. Red line depicts
the forecast values while blue line
depicts the target, that the fore-
cast aims to reach. Green line
shows the binary mask. From
the top, hai DRNN(8) with mod-
ified attention ; hbi DRNN(8)
with external RNN with LSTM
cell having binary mask as in-
put; hci DRNN(8). hdi GRU ;

hei ARIMA(2,0,1).
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9.3.2.2 Change of Attention Weight ↵(l)
t around Missing Windows

(a) mean of  !"($) out of the missing windows (b) mean of  !"($) within the missing windows

layer 1  (d=1)

layer 2 (d=2)

layer 3 (d=4)

layer 4 (d=8)

layer 5 (d=16)

0.10 0.15 0.20

0.12190
0.10972
0.10984

0.15753
0.11449

layer 6 (d=32) 0.11615

layer 7 (d=64)

layer 8 (d=128)

0.10149
0.16887

layer 1  (d=1)

layer 2 (d=2)

layer 3 (d=4)

layer 4 (d=8)

layer 5 (d=16)

0.10 0.15 0.20

0.11953
0.08739

0.11005
0.16325

0.13159
layer 6 (d=32) 0.10963
layer 7 (d=64)

layer 8 (d=128)

0.10844
0.17012 0.00124

0.00695

-0.00652

0.01710

0.00572

0.00021

-0.02233

-0.00237

Figure 9.11: Change of attention weights ↵(l)
t depending on the input. Graph (a)

depicts the weights which are derived by the observed values. Graph (b) depicts the
weights which are derived by the imputed values. The change is less striking than in
the experiment with MG set but we still can observe an increase at higher layers and

an decrease at lower layers.

Figure 9.12: In the beginning of the missing window between the blue vertical lines,
the weights with dilation d = {64, 128} increase, while others turn to decrease. Around

400 time steps, all the weights turn to be flat.

The di↵erence in the mean values of the attention weights ↵(l)
t of the two groups in

Figure 9.11 (a) and (b), is less striking than in the previous experiment with MG set

shown in Figure 9.6 but we still can observe an increase at higher layers and an de-

crease at lower layers. Furthermore, we detect an interesting change within the missing

window from Figure 9.12. Within the missing window, the network appears to trust
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the information more of the longer dilations as the time passes, because the weights

with dilation d = {64, 128} increase, while others turn to decrease. The observation

indirectly indicates that the network uses attention to find more reliable information on

its own, although the attention mechanism has not shown a definite improvement in the

forecasting performance.

9.4 Discussions

Through the experiments, we compare the forecast accuracy of the proposed model

hDRNN(l) with attentioni and its variants, hDRNN(l) with timei and hDRNN(l)i, to

two baseline models (ARIMA and GRU) with synthetic and real world time series re-

spectively. We are able to observe the improvement of the forecast accuracy from the

presence of dilated structure by comparing to GRU containing recurrent connection with

length 1. Also, we confirm that the modified attention mechanism improves the fore-

cast accuracy within the missing windows. From the experiments with di↵erent dataset,

consistency in the change of attention weights is observed, depending on whether the

input is missing or observed. This indicates empirical evidence that the proposed mech-

anism is behaving as expected. Therefore, we argue that with further research e↵ort

and a more detailed search of the hyperparameters, it would be able to achieve much

higher performance by means of the proposed procedure. In addition, real world data,

such as electricity load time series, should be analyzed with exogenous variables in or-

der to achieve higher forecasting accuracy since they are expected to have considerable

correlation.



	



Chapter 10

Conclusions and Future

Directions

10.1 Conclusions

In this thesis, we first reviewed various types of RNN for the time series forecasting task,

explaining their internal mechanisms, discussing their properties and the procedures

for the training. Concretely, one of the contributions of the thesis is that we provide

a formal description of truncated BPTT(k2, k1), and explain how to construct mini-

batches of the training dataset for the forecasting tasks with RNNs. As RNNs have been

mostly used for classification, there is a lack of knowledge of how to prepare the data

and train them for the forecasting tasks. Also, we proposed a novel model as a main

contribution that utilize dilated RNN(DRNN) and a modified attention mechanism,

focusing on the problem of STLF with missing data. The proposed model showed

significant improvement with synthetic dataset in the forecasting accuracy with respect

to the baselines, such as ARIMA and GRU. From the experiment with real world dataset,

we observed interesting phenomena which is worth further research although we couldn’t

reach the same level of improvement in terms of the forecast accuracy over the baseline

models, as in the synthetic data. The proposed models and findings presented in the

thesis would contribute to a more accurate time series forecast and eventually help to

improve e�ciency of the resource management. In industrial fields, an accurate time

series forecasting plays an irreplaceable role in managing and distributing their resources.
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However, missing values, usually missing windows, obstruct the accurate forecasting. As

conventional forecasting models such as ARIMA are not able to forecast with missing

inputs while RNNs have shown robust performance on the time series forecast, it is

natural that RNNs emerge as an alternative for the forecast tasks with missing inputs.

However, in comparison with the importance to the industries, in academia, there is a

limited study of time series forecasting using RNNs with missing inputs. The significant

performance of the proposed model identified by the synthetic dataset, suggests that

the thesis is a preliminary study of time series forecasting with missing data, which is

expected to become a promising research topic due to the possibility of various applica-

tion.

10.2 Future Directions

In order to improve the forecast accuracy, we suggest five di↵erent directions for the

future work.

First, the optimal configurations of the network, such as the number of layers l, length of

backward pass k2, the number of nodes in the hidden layer Nh, the number of nodes in

the missing history N�, and so forth, should be investigated more in detail and in relation

to the characteristics of the time series and missing patterns. During the training, we

found out that the results of the forecast vary depending on the configurations of the

network.

Secondly, we can also change the combination of dilations. For example, DRNNs can

learn the long-term dependencies of the raw data (by the longest dilation) first to outline

the data structure and then capture shorter-term dependencies by shorter dilations which

are exponentially decreasing over layers, unlike the configuration in this thesis. we can

compare the performance between exponentially increasing and exponentially decreasing

dilations in terms of the speed of training and forecast accuracy.

Third, manual imputation techniques also need further study. In this thesis, we restrict

the imputation techniques by mean substitution. But we need to make sure if similar

performance is achieved with last value carried forward (LVCF) technique. In this case,
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GRU-D [90] model can be one of the baselines because the trainable decay of GRU-D

�x consider the missing input as a value between mean substitution and LVCF.

Fourthly, to foster trust on the results, especially with real world dataset, the forecast

accuracy should be improved. In the thesis we restricted to use only univariate time series

for the forecast. But exogenous variables can be tested by measuring the improvement

of the performance in the future work.

Last but not least, the result that hDRNN(l) with timei model brings higher accuracy

out of the missing windows inspires the attention mechanism to be developed such that

the attention mechanism works only when the inputs are missing values while the RNNs

utilize the longest dilation when the inputs are observed values.



	



Appendix A

Support Vector Machine

A support vector machines (SVM)1 can be explained by a linear classifier in a kernel

space, induced by a usually non-linear kernel �(w) · �(x) = K(w, x).

`i = g(xi) = sign(�(w) · �(xi) + b), (A.1)

In order to train a SVM, the cost function �⇤(w) is minimized under the constraints

yi(�(w) · �(xi) + b) � 1.

�⇤(w) = argmin
�(w)

1

2
k�(w)k2

The constraints can be included in the previous cost function �⇤(w) by using the La-

grangian multipliers,

L(�(w), b,↵) =
1

2
||�(w)||2 �

X

i

↵i(yi(�(w) · �(xi) + b)� 1). (A.2)

It follows that the weight vectors become a linear combination of the data points

�(w) =
X

i

yi↵i�(xi), (A.3)

1The equations are referred from the master’s thesis of Wickstrøm [56]. Title: Uncertainty Modeling
and Interpretability in Convolutional Neural Networks for Polyp Segmentation
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and the classifier can be expressed as

g(x) = sign

✓X

i

yi↵i�(xi) · �(x) + b

◆
= sign

✓X

i

yi↵iK(xi, x) + b

◆
. (A.4)

If we substitute (A.4) in (A.2), we obtain the following dual cost function

W (↵) =
X

i

↵i �
1

2

X

i,j

yiyj↵i↵j�(xi) · �(xj) =
X

i

↵i �
1

2

X

i,j

yiyj↵i↵jK(xi, xj), (A.5)

and the optimization now reads

↵̂ = argmax
↵

W (↵),

such that ↵i � 0.
(A.6)

Once the training is complete, new points are classified directly by applying (A.4).



Appendix B

Optimization techniques :

Gradient Descent Algorithms

This appendix1 describes the gradient descent algorithm and its many variants.

Gradient descent is the most widely used for optimizing neural networks because gra-

dient descent only requires computing the gradients of a network which can be e�cient

compared to methods that require higher order derivatives to be computed [56].

A common issue for gradient descent algorithms are regions where the cost plateaus

before descending further, which lead to gradients close to zero and thus no parameter

updates. A typical solution is adding momentum [140] which accelerates the algorithm

in the relevant direction. Momentum is included by adding a fraction ✓ of the gradients

of the previous time step, expressed as:

vt = ✓vt�1 + µ
@J

@Wold
(B.1)

Wnew = Wold � vt (B.2)

Momentum is often illustrated as a ball rolling down a hill which can traverse flat region

as a result of the momentum it gathers while rolling down the hill. However, a ball

1The discussion is given in the master’s thesis of Wickstrøm [56]. Title: Uncertainty Modeling and
Interpretability in Convolutional Neural Networks for Polyp Segmentation
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rolling blindly down a hill might overshoot a desired minimum, so to give the ball a

sense of direction one could employ a variation of momentum known as Nesterov Mo-

mentum [136]. Nesterov Momentum considers W⇤
old = Wold�✓vt�1, thus approximating

the next position of the parameters. We can implement this procedure by

vt = ✓vt�1 + µ
@J

@W⇤
old

(B.3)

Wnew = Wold � vt (B.4)

There are a number of recent variations of gradient descent which seek to improve

the optimization procedure, such as ADAM [137], Adagrad [141], AdaDelta [142], and

RMSprop [143]. In the following we provide the details of ADAM which is a recently

proposed algorithm known as the Adaptive Moment Estimation.

ADAM computes an adaptive learning rate for each parameter by storing an exponen-

tially decaying average of past gradients and past squared gradients, defined as:

mt = �1mt�1 + (1� �1)
@J

@W⇤
old

(B.5)

vt = �2vt�1 + (1� �2)
⇣ @J

@W⇤
old

⌘2
(B.6)

where mt is an estimate of the mean of the gradients, vt is an estimate of the variance of

the gradients, �1 is the decay rate of the estimated mean of the gradients, and �2 is the

decay rate of the estimated variance of the gradients. The authors of ADAM noticed

that since mt and vt are initialized as vectors of zeros they are biased towards zero.

Therefore, they computed bias corrected estimates

m̂t =
mt

1� �t
1

(B.7)

v̂t =
vt

1� �t
2

(B.8)
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which they used update the parameters, in the following way:

Wnew = Wold �
µp

v̂t + ✏
m̂t. (B.9)

Because ADAM adjusts m̂t and v̂t automatically during the training we do not need

to tune these hyperparameters manually, which can be a time-consuming a di�cult

process.
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[20] Anton Maximilian Schäfer and Hans-Georg Zimmermann. Recurrent neural net-

works are universal approximators. International Journal of Neural Systems, 17

(04):253–263, 2007. URL 10.1142/S0129065707001111.

[21] Yoshua Bengio and Francois Gingras. Recurrent neural networks for missing or

asynchronous data. In Advances in neural information processing systems, pages

395–401, 1996.

[22] Volker Tresp and Thomas Briegel. A solution for missing data in recurrent neural

networks with an application to blood glucose prediction. In Advances in Neural

Information Processing Systems, pages 971–977, 1998.

[23] J. Zhang, J. Han, R. Wang, and G. Hou. Day-ahead electricity price forecasting

based on rolling time series and least square-support vector machine model. In

2011 Chinese Control and Decision Conference (CCDC), pages 1065–1070, May

2011. doi: 10.1109/CCDC.2011.5968342.

[24] Xiaolei Ma, Zhimin Tao, Yinhai Wang, Haiyang Yu, and Yunpeng Wang. Long

short-term memory neural network for tra�c speed prediction using remote mi-

crowave sensor data. Transportation Research Part C: Emerging Technologies, 54:

187–197, 2015.

[25] Nikolay Laptev, Jason Yosinski, Li Erran Li, and Slawek Smyl. Time-series ex-

treme event forecasting with neural networks at uber. In International Conference

on Machine Learning, number 34, pages 1–5, 2017.

[26] Mark Woodward, WCS Smith, and Hugh Tunstall-pedoe. Bias from missing val-

ues: sex di↵erences in implication of failed venepuncture for the scottish heart

health study. International journal of epidemiology, 20(2):379–383, 1991.

[27] Zhiyong Cui, Ruimin Ke, and Yinhai Wang. Deep bidirectional and unidirectional

LSTM recurrent neural network for network-wide tra�c speed prediction. CoRR,

abs/1801.02143, 2018. URL http://arxiv.org/abs/1801.02143.

[28] Derrick A Bennett. How can i deal with missing data in my study? Australian

and New Zealand journal of public health, 25(5):464–469, 2001.

10.1142/S0129065707001111
http://arxiv.org/abs/1801.02143


Bibliography 120

[29] Shiyu Chang, Yang Zhang, Wei Han, Mo Yu, Xiaoxiao Guo, Wei Tan, Xiaodong

Cui, Michael Witbrock, Mark A Hasegawa-Johnson, and Thomas S Huang. Dilated

recurrent neural networks. In Advances in Neural Information Processing Systems,

pages 77–87, 2017.

[30] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-

lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473,

2014.
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