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1 Introduction

In this paper we are concerned with estimates of the heat kernel (=fundamental solution) of certain
evolution equations with non-local elliptic part. The heat kernel of the classical heat equation

∂tu−∆u = 0,

where ∆ is the Laplace operator in R
d, is given by the Gauss-Weierstrass function

pt (x, y) =
1

(4πt)d/2
exp

(
−|x− y|2

4t

)
. (1.1)

For a more general parabolic equation
∂tu− Lu = 0,

∗The work was supported by SFB1283 of German Research Council. The third and the forth authors were partially

supported by the Russian Science Foundation, Project 14-50-00150

1

http://arxiv.org/abs/1707.06709v2


where L is a uniformly elliptic second order operator in divergence form, Aronson [2] proved the following
Gaussian estimates for its heat kernel:

pt (x, y) ≍
C

td/2
exp

(
−|x− y|2

ct

)
,

where the sign ≍ means both ≤ and ≥ but with different values of positive constants C, c.
A simplest heat equation with non-local elliptic part is

∂tu+ (−∆)α/2 u = 0, (1.2)

where 0 < α < 2. Applying the subordination techniques of [15] to the Gauss-Weierstrass function, one
obtains that the heat kernel of (1.2) satisfies the following estimates

pt (x, y) ≍
C

td/α

(
1 +

|x− y|
t1/α

)−(d+α)

(1.3)

(see also [3]). Note that (−∆)α/2 is an integro-differential operator of the form

(−∆)α/2 f (x) = cd,α p.v.

∫

Rd

f (x)− f (y)

|x− y|d+α
dy. (1.4)

The heavy tail of the heat kernel in the estimate (1.3) is a consequence of the heavy integral kernel in
(1.4). Similar estimates hold also for non-local heat kernels on fractals [11].

A natural class of non-local operators arises on graphs. Let Γ be a countable, locally finite, connected
graph. Let d (x, y) be the graph distance on Γ. The discrete Laplace operator ∆ on Γ acts on functions
f : Γ → R as follows:

∆f (x) =
1

deg (x)

∑

{y∈Γ:y∼x}
(f (y)− f (x)) =

∑

y∈Γ
(f (y)− f (x)) J (x, y) ,

where

J (x, y) =
1

deg (x)
1{d(x,y)=1}.

Davies has obtained in [8] the upper bounds of the heat kernel pt (x, y) of the heat equation ∂tu−∆u = 0
on Γ that in the case of uniformly bounded degree deg (x) of vertices amounts to

pt (x, y) ≤ exp

(
−ctΦ

(
d (x, y)

ct

))
, (1.5)

where
Φ (ξ) = sup

λ>0
{ξλ− cosh λ} = ξ ln

(
ξ +

√
ξ2 + 1

)
−
√

1 + ξ2.

Since

Φ (ξ) ∼ ξ2

2
as ξ → 0 and Φ (ξ) ∼ ξ ln ξ as ξ → ∞, (1.6)

the estimate (1.5) implies for small d(x,y)
t the Gaussian estimate

pt (x, y) ≤ exp

(
−d2 (x, y)

ct

)
,

and for large d(x,y)
t

pt (x, y) ≤ exp

(
−cd (x, y) ln

d (x, y)

ct

)
.
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The estimate (1.5) gives a rather sharp upper bound of the tail of the heat kernel on an arbitrary graph
because on Γ = Z the heat kernel admits the following two-sided estimate

pt (x, y) ≍
C

(t+ d (x, y))1/2

(
−2tΦ

(
d (x, y)

2t

))

(see [14]).
In this paper we consider the non-local operator A on functions f : Rd → R given by

Af = a ∗ f − f, (1.7)

where the convolution kernel a is such that

a(x) ≥ 0; a(x) = a(−x); a(x) ∈ L∞(Rd) ∩ L1(Rd), (1.8)

∫

Rd

a(x)dx = 1,

∫

Rd

|x|2a(x)dx < ∞. (1.9)

In particular, under condition (1.9) there exists a positive definite matrix σ = {σij} with σij =∫
Rd xixja(x)dx. The third condition in (1.8) implies that a(x) ∈ L2(Rd), and for the Fourier transform
â(p) we have

â(p) ∈ Cb(R
d) ∩ L2(Rd), max

Rd
â(p) = â(0) = 1, â(p) → 0 as |p| → ∞. (1.10)

The operator A takes a form of an integro-differential operator as follows:

Af (x) =

∫

Rd

(f (y)− f (x)) a (x− y) dy.

An essential difference from the operator (1.4) is that the integral kernel a (x− y) of A is bounded and
integrable. Surprisingly, these assumptions do not make the task of estimating of the heat kernel easier.

Since A is a bounded operator in L2
(
R
d
)
, its heat semigroup etA can be easily computed by using

the exponential series that leads to

etA = e−teta∗ = e−t
∞∑

k=0

tk
a∗k

k!
= e−tId + e−t

∞∑

k=1

tk
a∗k

k!
,

By removing the singular part e−tId of the heat semigroup, we obtain the regularized heat kernel

v (x, t) = e−t
∞∑

k=1

tk
a∗k (x)

k!
(1.11)

with the source at the origin. In other words, for any f ∈ L2
(
R
d
)
, a solution to the non-local Cauchy

problem
∂tu−Au = 0,

u
∣∣
t=0

= f
(1.12)

has the form u(x, t) = e−tf(x) + (v ∗ f)(x, t) with v given by (1.11). In particular, the fundamental
solution of the problem (1.12) is

u (x, t) = e−tδ (x) + v (x, t) .

The function v is the main subject of this paper.
A probabilistic interpretation of the function v(x, t) is of great interest. Under conditions (1.8),

(1.9) the operator A defined in (1.7) is a generator of a continuous time Markov jump process. If this
process starts at zero, its transition probability has a regular part and a singularity at zero, and v(x, t)
is the density of the regular part. The results of this work allow us to describe the large time behaviour
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of this Markov process in different regions of the space. In particular we obtain the local moderate and
large deviations results for this Markov process.

Recent years there is an essential progress in studying the large time behaviour of solutions to
evolution problems in R

d for convolution type operators with integrable kernels, see, for instance, [1],
[6], [7], and the references therein. One of the key questions of interest here is obtaining point-wise
estimates for the corresponding nonlocal heat kernels and solutions. To our best knowledge there
are just few papers devoted to this topic. In [5] the asymptotic behaviour of fundamental solution
for evolution equations with a convolution kernel has been considered. For Gaussian and compactly
supported kernels that are radially symmetric, two-sided estimates have been obtained. Since [5] mostly
deals with problems with unbounded initial conditions, the authors focuses on the behaviour of heat
kernel in the region of extra large |x| ≫ t, and their estimates are rather loose in other regions. The
kernels showing sub-exponential decay at infinity have been studied in [10], this work deals with the
asymptotic behaviour of the fundamental solution in the region |x| ≫ t.

Closely related results on point-wise estimates for a resolvent kernel of non-local convolution type
operators have been obtained in the recent work [12]. Both polynomially and exponentially decay-
ing kernels were considered. With the help of these estimates point-wise bounds for the principal
eigenfunction of non-local Schrödinger operator were deduced.

In the present paper we deal with convolution kernels a(x) that decay at infinity at least exponen-
tially and admit an estimate from above by a radially symmetric function: a(x) ≤ ce−b|x|p with b > 0
and p ≥ 1.

The large time behaviour of the studied heat kernel depends crucially on the relation between |x|
and t. We consider separately four different regions in (x, t) space, namely,
(i) |x| = O(t1/2),

(ii) t
1
2 ≪ |x| ≪ t,

(iii) |x| ∼ t,
(iv) |x| ≫ t.

In particular, it will be shown that in the region (iv) the function − ln v(x, t) behaves like |x|
(
ln |x|

t

) p−1
p

for a(x) ∼ e−b|x|p with p ≥ 1, and like |x| ln |x|
t for a(x) with a finite support.

Remark that for the corresponding Markov jump process with the generator defined in (1.7) the
region (i) corresponds to the standard deviations where the local central limit theorem applies, (ii) is
the region of the moderate deviations, (iii) is the region of large deviation, and (iv) should probably be
called the ”extra large” deviation region.

Before considering the case of generic convolution kernels with a light tail we first study the Gaussian
kernels for which the k-th convolution admits an explicit formula. This allows us to find the asymptotics
of the corresponding heat kernel in all the regions mentioned above, see Theorem 2.1.

The Gaussian asymptotics of a generic non-local heat kernel in the region (i) is a consequence of
the (local) central limit theorem. It is interesting to observe that in the region (ii) the logarithmic
asymptotics of the non-local heat kernel still remains the same as for the classical heat kernel with the
covariance matrix σ, see Theorem 3.1. The transition between Gaussian and non-Gaussian behaviour
occurs in the region x = rt. For small r the behaviour is still close to Gaussian, while as r → ∞ the
asymptotics of the non-local heat kernel does not look like Gaussian at all, as shown in Theorems ??
and 3.4. The difference is getting even more drastic in the region |x| ≫ t, see Theorem 3.2.

2 Gaussian convolution kernel

We consider in this section the case of a Gaussian convolution kernel:

a(x) =
1

(4π)d/2
e−

x2

4 , â(p) = e−p2 . (2.1)

In this case the convolutions a∗k(x) admit explicit formulae for all k ≥ 1 which essentially simplify
our analysis. The large time asymptotics (or log asymptotics) of the fundamental solution depends
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essentially on the relation between x and t. We consider separately four different regions in (x, t)-space,

namely, |x| = O(t
1
2 ) and |x| ∼ t

1+δ
2 with 0 < δ < 1, or δ = 1, or δ > 1.

Denote ΦG(r) = 1 + 2ξr ln ξr − ξr, where ξr is a solution to the equation ξ2 ln ξ = r2

4 .

Theorem 2.1 (Gaussian kernel). Let the convolution kernel a(x) be defined by (2.1). Then for the
function v(x, t) defined by (1.11) the following asymptotics holds as t → ∞ (see Figure 2.1):

1) For any r > 0, if |x| ≤ rt
1
2 , then

v(x, t) =
1

(4πt)d/2
e−

x2

4t (1 + o(t−
1
4 )). (2.2)

2) For any r > 0, if |x| = rt
1+δ
2 with 0 < δ < 1, then

ln v(x, t)
x2

4t

→ −1. (2.3)

In particular, if r1t
1+δ
2 ≤ |x| ≤ r2t

1+δ
2 with some 0 < r1 < r2 and 0 < δ < 1, then

e−
r22
4
tδ(1+o(1)) ≤ v(x, t) ≤ e−

r21
4
tδ(1+o(1)).

3) For any r > 0, if |x| = rt, then
ln v(x, t)

t
→ −ΦG(r). (2.4)

Furthermore, the function ΦG(r) possesses the following properties:

0 < ΦG(r) < r2/4 for all r 6= 0,

ΦG(r) =
r2

4 (1 + o(1)) as r → 0+

ΦG(r) = r
√
ln r(1 + o(1)) as r → ∞

4) If |x| > t
1+δ
2 with δ > 1, then

ln v(x, t)

|x|
√

ln |x|
t

→ −1. (2.5)

Corollary 2.2. For any r > 0, if |x| = rt
1+δ
2 with δ > 1, then it follows from (2.5) that

ln v(x, t)

t
δ+1
2

√
ln t

→ −c̃(δ, r), with c̃(δ, r) = r

√
δ − 1

2
.

Remark 2.3. In the case δ > 1 the function x2

4t = r2

4 t
δ exhibits the faster polynomial growth at infinity

than the function t
δ+1
2

√
ln t. Consequently, in this region the nonlocal heat kernel v(x, t) has a more

”fat” tail v(x, t) ∼ e−c̃(δ,r)t
δ+1
2

√
ln t than the classical heat kernel w(x, t) = 1

(4π)d/2td/2
e−

x2

4t ∼ e−
r2

4
tδ .

In the next sections we prove all statements of Theorem 2.1.

2.1 Asymptotics in the case |x| ≤ rt
1
2

The asymptotics (2.2) follows from the local limit theorem for a general probability distribution that
satisfies (1.8) - (1.9). To justify the estimate for the reminder in (2.2) we give a short analytic proof
based on the following representation for v(x, t)

v(x, t) =

∫

Rd

eixp
(
e−t(1−â(p)) − e−t

)
dp.

5



t

|x|

|x|
4t

2

√ ln |x|
t
_|x|

t   
 (r

)
Φ

|x|=rt

|x|
=rt

δ '
|x

|=
rt

δ '
'

-

-

-

Figure 2.1: The large time behaviour of the function ln v(x, t) depends crucially on whether |x| ≪ t
(under the lower curve), or |x| ∼ t (the middle curve), or |x| ≫ t (over the upper curve). Here δ′ < 1
and δ′′ > 1.

This integral can be rewritten as the following sum:

v(x, t) =

∫

|p|<
√
ln 2t

eixpe−t(1−â(p))dp− e−t

∫

|p|<
√
ln 2t

eixpdp +

∫

|p|>
√
ln 2t

eixp
(
e−t(1−â(p)) − e−t

)
dp. (2.6)

The second and the third integral in (2.6) can be estimated from above by O(e−t(ln t)
d
2 ) and o(e−tt)

correspondingly. Denoting 1− â(p) = p2−p4f(p) and taking into account the relation p4f(p) = O(−t
4
3 )

valid for |p| < t−
1
3 , for the first integral in (2.6) we get

∫

|p|<
√
ln 2t

eixpe−t(1−â(p))dp =

∫

|p|<t−
1
3

eixpe−t(p2−p4f(p))dp+

∫

t−
1
3<|p|<

√
ln 2t

eixpe−t(1−â(p))dp (2.7)

=
1

(4π)d/2 t
d
2

e−
x2

4t

(
1 + o(t−

1
4 )
)
+ o(e−t

1
4 ).

This yields (2.2).

2.2 The case |x| = r t
1+δ
2 , 0 < δ ≤ 1

In this region we exploit the first representation for v(x, t) in (1.11). Since

a∗k(x) = ck e−
x2

4k with ck =
c̃

kd/2
, c̃ > 0, (2.8)
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then using Stirling’s approximation we get

tka∗k(x)
k!

= exp

{
k ln t− k ln k + k − x2

4k
− c(d) ln k + rk

}
(2.9)

with a constant c(d) = d+1
2 and |rk| ≤ C. Let us estimate the maximal term in the sum

∞∑

k=1

tka∗k(x)
k!

. (2.10)

To this end we introduce a function

S(z, t) =
(
z ln t− z ln z + z − x2

4z
− c(d) ln z

)∣∣∣
x2=rt1+δ

, z > 0, (2.11)

and locate max
z>0

S(z, t) in z for each t > 0. Since for each positive t the function S(z, t) tends to −∞
both as z → 0 and as z → ∞, it attains its maximum on (0,+∞). Denote

ẑ = ẑ(t) = argmaxz>0S(z, t).

Proposition 2.4. Let δ > 0, then ẑ(t) = tξ̂(t), where ξ̂ = ξ̂(t) is the solution of equation

4

r2
ξ2 ln ξ +

4c(d)

r2t
ξ = tδ−1. (2.12)

Moreover, ξ̂(r, t) = ξr(t)(1 + o(1)), t → ∞, where ξr(t) is the solution of equation

4

r2
ξ2 ln ξ = tδ−1. (2.13)

Proof. The maximum point of S(z, t) is defined by the equation

∂

∂z
S(z, t) = ln t− ln z +

x2

4z2
− c(d)

z
= 0. (2.14)

Making the change of variables z = tξ, we rewrite (2.14) as (2.12). Denote a solution of this equation
by ξ̂(r, t). In what follows if it does not lead to ambiguity we drop the arguments of the function ξ̂(r, t).
Observe that ξ̂ > 1 for sufficiently large t. Indeed, for ξ ∈ (0, 1] we have ξ2 ln ξ ≤ 0, and ξ

t = o
(
tδ−1

)
as

t → ∞. This yields the required inequality.
Notice that the function on the left-hand side of (2.12) is increasing as ξ ∈ (1,+∞) and therefore,

equation (2.12) has a unique solution for large t. It is easy to see that

4c(d)

r2t
ξ = o

(
ξ2 ln ξ

)
if ξ → ∞ and t ≥ 1,

and
4c(d)

r2t
ξ = o(tδ−1) as t → ∞ and ξ is bounded.

Consequently, the solution ξ̂(r, t) of (2.12) can be approximated for large t by the solution ξr(t) of
equation (2.13).

We consider separately the following cases: 0 < δ < 1 and δ = 1.

In the case 0 < δ < 1 we have tδ−1 → 0 as t → ∞ and, therefore, the solution of (2.13) converges to 1.
The Taylor expansion of 4

r2
ξ2 ln ξ about 1 reads

4

r2
ξ2 ln ξ =

4

r2
(ξ − 1) +

6

r2
(ξ − 1)2 +O((ξ − 1)3), ξ − 1 → 0.
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Combining this expansion with (2.12) we obtain

4

r2
(ξ − 1) +

6

r2
(ξ − 1)2 = tδ−1 − 4c(d)

r2t
+O((ξ − 1)3 + (ξ − 1)t−1).

The straightforward computations yield

ξ̂(r, t) = 1 +
r2

4
tδ−1 −

(3r2
8

t2(δ−1) +
c(d)

t

)
+ o
(
max{t2(δ−1), t−1}

)

and

ẑ = tξ̂ = t+
r2

4
tδ −

(3r2
8

t2δ−1 + c(d)
)
+ o
(
max{t2δ−1, 1}

)
.

Substituting this expression for ẑ in (2.11) and considering the relation x2 = r2t1+δ we get

S(ẑ, t) = t− r2

4
tδ +

r4

16
t2δ−1 − c(d) ln t+ o

(
max{t2δ−1, ln t}

)
. (2.15)

Now from (1.11) and (2.9), taking into account the fact that a∗k(x) > 0 for all k and x, we obtain the
following estimate of v(x, t) from below:

v(x, t) = e−t
∞∑

k=1

tka∗k(x)
k!

≥ e−t+S(ẑ,t) = e−
r2

4
tδ+ r4

16
t2δ−1−c(d) ln t+o(max{t2δ−1, ln t}), as t → ∞. (2.16)

To get an upper bound on v(x, t) we divide the sum in (1.11) into two parts, in the first sum the
summation index varies from 1 to n0 where n0 is chosen in such a way that

tn+1e−
x2

n+1

(n+ 1)!

n!

tne−
x2

n

=
t

n+ 1
e

x2

n(n+1) <
1

2
for all n ≥ n0. (2.17)

Using the relation x2 = r2t1+δ and the fact that f(u) = uecu
2
is an increasing function for any c > 0,

we have

t

n+ 1
e

x2

n(n+1) <
1

3
e

r2

9
tδ−1

<
1

2
for all n > n0 = [3t] and t ≥

( r2

9 ln(3/2)

) 1
1−δ

.

This implies that

∑

n>3t

tn a∗n(x)
n!

≤ eS(ẑ,t) = et−
c
4
tδ+ c2

16
t2δ−1−c(d) ln t+o(max{t2δ−1, ln t}), t → ∞. (2.18)

Due to (2.9) and (2.11) the upper bound for the sum
∑[3t]

n=1
tn a∗n(x)

n! reads

[3t]∑

n=1

tn a∗n(x)
n!

≤ 3CteS(ẑ,t) = et−
r2

4
tδ+ r4

16
t2δ−1−(c(d)−1) ln t+o(max{t2δ−1, ln t}), t → ∞. (2.19)

From (2.18) and (2.19) we derive the estimate of v(x, t) from above as t → ∞:

v(x, t) = e−t

[3t]∑

k=1

tka∗k(x)
k!

+ e−t
∑

k>3t

tka∗k(x)
k!

≤ e−
r2

4
tδ+ r4

16
t2δ−1−(c(d)−1) ln t+o(max{t2δ−1, ln t}).

(2.20)

Finally from (2.16) and (2.20) we get (2.3).
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Remark 2.5. Since x2

4t = r2tδ

4 , 0 < δ < 1, the logarithmic asymptotics of v(x, t) coincides with that
for the classic heat kernel:

ln v(x, t)
x2

4t

→ −1 as t → ∞. (2.21)

Moreover, for δ ≤ 1
2 estimates (2.16) and (2.20) take the form

C1 t
1−d
2 e−

r2

4
tδ ≤ v(x, t) ≤ C2 t

1−d
2 e−

r2

4
tδ (2.22)

with C1, C2 > 0. For δ ∈ (12 , 1) estimates (2.16) and (2.20) imply that

v(x, t) = e−
r2

4
tδ+ r4

16
t2δ−1+o(t2δ−1). (2.23)

We proceed with the case δ = 1. In this case equation (2.13) reads

ξ2 ln ξ =
r2

4
. (2.24)

It is easy to check that equation (2.24) has a unique solution ξr ∈ (1,∞). Then for solution ξ̂(r, t) of
(2.12) by the implicit function theorem it follows that ξ̂(r, t) = ξr +O(t−1). Therefore,

S(ẑ, t) = tξr ln t− tξr(ln t+ ln ξr) + tξr − tξr ln ξr +O(ln t) = t(ξr − 2ξr ln ξr) +O(ln t), ẑ = tξ̂,

and using the same arguments as above we have

v(x, t) = e−t(1+2ξr ln ξr−ξr)+O(ln t), t → ∞, (2.25)

where ξr > 1 is the solution of (2.24). Thus the logarithmic asymptotics of v(x, t) is given by

ln v(x, t)

t
→ −ΦG(r), as t → ∞, (2.26)

where ΦG(r) = ΦG(ξr) = 1 + 2ξr ln ξr − ξr.

Lemma 2.6. For any r > 0

0 < ΦG(r) <
r2

4
. (2.27)

Moreover,

ΦG(r) =
1

4
r2(1 + o(1)), as r → 0,

ΦG(r) = r
√
ln r(1 + o(1)) as r → ∞.

(2.28)

Proof. Let γ(ξ) = 1 + 2ξ ln ξ − ξ. To prove the lower bound in (2.27) we notice that γ(1) = 0 and
∂
∂ξγ(ξ) = 1 + 2 ln ξ ≥ 1 (for ξ ≥ 1). To prove that

1 + 2ξr ln ξr − ξr <
r2

4
= ξ2r ln ξr,

we denote by κ(ξ) = ξ2 ln ξ. Then γ(1) = κ(1) = 0, and γ′(ξ) < κ
′(ξ), ξ > 1. This yields the desired

upper bound in (2.27).
The asymptotics (2.28) is a particular case of Theorem 3.8 describing the asymptotic behaviour of

Φ(r) under the general assumptions on the kernel a(x). In our case ΦG(r) = Φ(ξ−1
r ), and if we take

p = 2, b = 1
4 , then I(s) = 1

4s
2, and we immediately obtain (2.28) from (3.22).
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2.3 The case |x| ≥ t
1+δ
2 , δ > 1

In this subsection we consider a region in (x, t)-space of super-large |x|, where |x| > t(1+δ)/2 with δ > 1.
In this case we again begin with the description of max

z
S(z, t, x), where

S(z, t, x) =
(
z ln t− z ln z + z − x2

4z
− c(d) ln z

)
, z > 0.

Since t → ∞, we can omit the last term in (2.11), and write as above the following equation on
ẑ = ẑ(t, x) = argmax S(z, t, x) :

∂

∂z
S(ẑ, t, x) = ln t− ln ẑ +

x2

4ẑ2
= 0, (2.29)

or equivalently,

x2 = 4ẑ2(ln ẑ − ln t) = 4ẑ2 ln
ẑ

t
. (2.30)

Taking the logarithm on both sides of equation (2.30) we obtain

ln ẑ = ln |x| (1 + o(1)),

consequently equality (2.30) can be rewritten as

x2 = 4ẑ2 ln
|x|
t
(1 + o(1)), t → ∞.

Substituting |x|
2
√

ln
|x|
t

for ẑ in (2.11), we get

S(ẑ, t, x) =
|x|

2
√

ln |x|
t

ln t− |x|

2
√

ln |x|
t

(ln |x| − ln 2− 1

2
ln ln

|x|
t
) +

|x|

2
√

ln |x|
t

−
x2
√

ln |x|
t

2|x| +O(ln |x|) =

−|x|
√

ln
|x|
t

(1 + o(1)), t → ∞.

Since |x| > t(1+δ)/2 with δ > 1, we can take n0 = |x| in (2.17)for large enough t. Then as above we get
the following two-sided estimate on v(x, t):

e−t e−|x|
√

ln
|x|
t
(1+o(1)) ≤ v(x, t) ≤ |x|e−te−|x|

√

ln
|x|
t
(1+o(1)).

Since t = o(|x|), this yields

ln v(x, t)

|x|
√

ln |x|
t

→ −1, as t → ∞, |x| > t(1+δ)/2, δ > 1. (2.31)

Conclusions.

1. If |x| ≤ rt1/2, then the main term of the asymptotics of v(x, t) coincides with the classical heat
kernel pt(x, 0) defined by (1.1).

2. If |x| ≤ rt
1
2
+ δ

2 , 0 < δ < 1, then the main term of the logarithmic asymptotics of v(x, t) coincides
with that of the classical heat kernel.
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3. If |x| = rt, then the leading term of the logarithmic asymptotics of v(x, t) is a linear function
ΦG(r)t. , The leading term of the logarithmic asymptotics of the classical heat kernel is also a
linear function (r2/4)t. However, the corresponding coefficient ΦG(r) is strictly less than r2/4 for
all r > 0. This reflects the fact that in this range of x the non-local heat kernel has more heavy
tail than the classical one. It should also be noted that the coefficient ΦG(r) is close to r2/4 for
small r while ΦG(r) ≪ r2 for large r.

4. If |x| ≥ rt1+δ, δ > 1, then the main term of the logarithmic asymptotics of v(x, t) given by (2.31)
differs essentially from the logarithmic asymptotics of the classical heat kernel, in particular v(x, t)
has more heavy tail, than the classical heat kernel.

3 Kernels with generic light tails

3.1 Main results

In this section we consider generic non-local operators with convolution kernels that have light tails at
infinity. More precisely, we assume that, in addition to (1.8)–(1.9), the convolution kernel a(x) satisfies
for some p ≥ 1 the following condition

0 ≤ a(x) ≤ C1e
−b|x|p , (3.1)

or even a more strong condition

a(x) ∈ C0(R
d), supp a(x) ⊂ Kµ = {x ∈ Rd : |x| ≤ µ} for some µ > 0. (3.2)

In what follows we assume that µ is chosen in the optimal way, that is µ = min{µ̃ > 0 : supp a ⊂ Kµ̃}.
Since, in contrast with the Gaussian case, here a∗k do not admit an explicit formula for k ≥ 1, we

have to obtain sharp enough estimates for these higher order convolutions. To this end we first make use
of the results on the asymptotic behaviour of distributions of the sums of i.i.d. random variables, such
as the local central limit theorem and the large deviations principle, and then combine these results
with analytic techniques in order to obtain the asymptotics for v(x, t).

As in the previous section, for large t four different regions of x are considered:

1) |x| ≤ rt1/2(1 + o(1)) (standard deviations region)

2) |x| = r t
1+δ
2 (1 + o(1)), 0 < δ < 1 (moderate deviations region)

3) |x| = rt(1 + o(1)) (δ = 1) (large deviations region)

4) |x| = rt
1+δ
2 (1 + o(1)), δ > 1 (”extra-large” deviations region)

The next two theorems describe the asymptotic behaviour of v(x, t) in the regions 1, 2, and 4.

Theorem 3.1 (The regions of standard and moderate deviations). Assume that a(x) satisfies (1.8)–
(1.9) and (3.1). Then for the function v(x, t) the following asymptotic relations hold as t → ∞:

1) if |x| ≤ rt
1
2 for some r > 0, then

v(x, t) =
c(σ)

t
d
2

e−
(σ−1x,x)

2t (1 + o(1)) , (3.3)

where c(σ) = (2π)−
d
2 |det(σ)|− 1

2 , σ is the covariance matrix of the distribution a(x);

2) if x = rt
1+δ
2 (1 + o(1)) with 0 < δ < 1 and r ∈ Rd\{0}, then

v(x, t) = e−
(σ−1x,x)

2t
(1+o(1)) = e−

1
2
(σ−1r,r) tδ(1+o(1)). (3.4)
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Theorem 3.2 (The regions of extra-large deviations). Assume that a(x) satisfies (1.8)–(1.9) and (3.1).

Then for |x| = rt
1+δ
2 (1 + o(1)) with δ > 1 and r > 0 the following asymptotic upper bound holds:

v(x, t) ≤ e−cpt
δ+1
2 (ln t)

p−1
p (1+o(1)), as t → ∞, (3.5)

where the constant cp = cp(b, r) depends on b, r and p.

If in addition a(x) satisfies (3.2), then for |x| = rt
δ+1
2 (1 + o(1)) with δ > 1

v(x, t) ≤ e−c̃(µ) t
δ+1
2 ln t(1+o(1)), as t → ∞, (3.6)

where c̃(µ) = (δ−1)r
2µ .

In the region x ∼ t, usually called large deviations region, our approach relies essentially on the
properties of the rate function I(r) of the sum of i.i.d. random variables. From now on Sk stands
for the sum of i.i.d. random variables (vectors) X1, . . . ,Xk with common distribution a(x). From
(3.1) it follows that the random variables Xj have exponential moment Λ(γ) = EeγX1 for all γ from a
neighborhood of 0 (the so-called Cramer condition). Under this condition the large deviation principle
holds for Sk with a rate function

I(r) = sup
γ

(γ · r − L(γ)), r, γ ∈ Rd, (3.7)

where I(r) is the Legendre transform of the cumulant generating function L(γ) = lnΛ(γ), and γ · r
stands for the scalar product in Rd.

In order to formulate the main result of this section we denote by ξr a positive solution of the
equation

ln ξ = I(ξr)− ξr · ∇I(ξr), ξ ∈ R, (3.8)

and introduce the function

Φ(r) = 1− 1

ξr

(
1 + ln ξr − I(ξrr)

)
. (3.9)

Equation (3.8) has a unique solution ξr > 0 for any r ∈ Rd \ {0}, moreover 0 < ξr < 1, see Lemma 3.11
below.

We introduce now additional technical conditions on the kernel.
(A1) in the case p = 1 for any b1 > b and any θ ∈ Sd−1

Eeb1X·θ = ∞, (3.10)

where b is the same constant as in (3.1).
(As

1) in the case p = 1 for any θ ∈ Sd−1

E|X|ebX·θ = ∞.

(Ap) in the case p > 1

L(γ) = lnEeγ·X = C(b, p)|γ|p/(p−1)(1 + o(1)), as |γ| → ∞, (3.11)

where C(b, p) = p−1
p (bp)−1/(p−1) is a constant appearing in the logarithmic asymptotics of the Laplace

transform of e−b|x|p .

Remark 3.3. Condition Ap, p ≥ 1, can be treated as a sort of soft lower bound for a(x). In particular,
it holds if a(x) satisfies the following two-sided estimate

C2e
−b|x|p ≤ a(x) ≤ C1e

−b|x|p , p ≥ 1.

Observe also that under condition Ap, p ≥ 1, the function a(x) can not satisfy (3.2).
It should be emphasized that in the case p = 1 conditions A1,A

s
1 are required for proving the main

result on the asymptotics of the heat kernel, while in the case p > 1 condition Ap is only used for
determining the asymptotic behaviour of the function Φ(r) for large r.
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Theorem 3.4 (Asymptotic upper bounds). Let conditions (1.8)–(1.9) and (3.1) be fulfilled , and
assume additionally that in the case p = 1 condition A1 holds. Then for any r ∈ Rd\{0} and for
x = rt(1 + o(1)) the following asymptotic estimate holds as t → ∞:

v(x, t) ≤ e−Φ(r)t(1+o(1)) , (3.12)

where the function Φ(r) is defined by (3.9).
Moreover, Φ(0) = 0, Φ(r) > 0, if r 6= 0, Φ is a convex function, and the following limit relations

hold:

Φ(r) = 1
2 σ

−1r · r (1 + o(1)), as r → 0; (3.13)

Φ(r) → ∞, as r → ∞. (3.14)

If p = 1, then
Φ(r) = b|r| (1 + o(1)), as |r| → ∞. (3.15)

If p > 1 and condition Ap holds, then

Φ(r) =
p

p− 1

(
b(p− 1)

)1/p|r|(ln |r|)
p−1
p (1 + o(1)), as |r| → ∞. (3.16)

If condition (3.2) holds, then

Φ(r) ≥ 1

µ
|r| ln |r| as |r| → ∞. (3.17)

Remark 3.5. Notice that under the assumptions of Theorem 3.4 the function Φ(r) need not be
isotropic. This is illustrated by formula (3.13). However, the additional condition Ap ensures that
for large |r| the principal term of the asymptotics of Φ(r) is radially symmetric, see (3.15)–(3.16).

Corollary 3.6 (Spherically symmetric kernels). Let a(x) = a(|x|), x ∈ Rd, be a spherically symmetric
kernel satisfying all the conditions of Theorem 3.4. Then for any s > 0 and for |x| = st(1 + o(1)) the
following asymptotic estimate holds as t → ∞:

v(x, t) ≤ e−Φ(s)t(1+o(1)), (3.18)

where the function Φ(s) is defined in (3.9), and formulae (3.13) - (3.17) from Theorem 3.4 take an
easier form, namely

Φ(s) =
s2

2σ
(1 + o(1)), as s → 0; (3.19)

Φ(s) → ∞, as s → ∞ (3.20)

If p = 1, then
Φ(s) = bs (1 + o(1)), s → ∞. (3.21)

If p > 1 and in addition conditions Ap hold, then

Φ(s) =
p

p− 1

(
b(p− 1)

)1/p
s(ln s)

p−1
p (1 + o(1)), s → ∞. (3.22)

If (3.2) holds, then

Φ(s) ≥ 1

µ
s ln s as s → ∞. (3.23)

Remark 3.7. Observe that relation (3.18) and the asymptotics in (3.19) and (3.23) of Φ coincide with
the estimates of the heat kernel on graphs [8] (see (1.5)–(1.6)).
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Using another approach that relies on some exponential transformation of the random variable
with density a(x) under slightly more strong condition (for p = 1) we can show that the upper bound
obtained in Theorem 3.4 gives in fact the large time asymptotics of the fundamental solution. The
following statement holds.

Theorem 3.8 (Large time asymptotics). Let conditions (1.8)–(1.9) and (3.1) be fulfilled , and assume
additionally that in the case p = 1 condition As

1 holds. Then for any r ∈ Rd\{0} and x = rt(1 + o(1))

v(x, t) = e−Φ(r)t(1+o(1)) as t → ∞, (3.24)

where the function Φ(r) is defined by (3.9) and possesses all the properties enumerated in Theorem 3.4.

3.2 Properties of I(r) and Φ(r)

We preface the proof of the theorems by a number of technical statements. We discuss in this section
the asymptotic properties of the function I(r) defined by (3.7) that will be used further in the analysis
of the function v(x, t) in the regions of moderate and large deviations. Due to the symmetry of a(x)
stated in (1.8) the functions I(r) and L(γ) are symmetric with respect to zero, that is I(−r) = I(r) and
L(−γ) = L(γ). We denote by A the convex hull of the support of a(·). From our conditions (1.8)–(1.9)
it follows that A contains a neighbourhood of zero. Notice that the set A is symmetric with respect to
the origin.

First we consider the 1-D case. In this case, A = [inf supp a, sup supp a] = [−µ, µ].

Proposition 3.9 (1-D case). 1. For any distribution a(x) satisfying (1.8)–(1.9) and(3.1) we have

I(s) =
s2

2σ
(1 + o(1)) as s → 0. (3.25)

2. If the distribution a(x) in addition satisfies condition Ap, p ≥ 1, then I(s) has the following
asymptotics as s → ∞:

I(s) = bs(1 + o(1)), if p = 1; I(s) = bsp(1 + o(1)), if p > 1, (3.26)

where b is the same constant as in (3.1). If p > 1 then

lim
s→∞

I(s)

|s| = +∞. (3.27)

3. If the distribution a(x) in addition satisfies (3.2), then I(s) is a smooth function on (−µ, µ),

I(s) → ∞ as s → µ− 0 or s → −µ+ 0,

and I(s) = ∞ if |s| ≥ µ.

Proof. 1. By the definition of I(s) considering the smoothness of L(γ) in the vicinity of zero we
have I(s) = sγ⋆ − L(γ⋆), where γ⋆ = γ⋆(s) is the solution of equation s = L′(γ). Using the Taylor
decomposition for L′(γ) about zero by the implicit function theorem we obtain γ⋆ = s

L′′(0)(1 + o(1)) =
s
σ (1 + o(1)) for small enough s. Consequently,

I(s) = sγ⋆ − L(γ⋆) =
s2(1 + o(1))

σ
− 1

2
γ⋆2L′′(0) =

s2

2σ
(1 + o(1)).

2. In the case p = 1 conditions (3.1) and (3.10) on the distribution a(x) imply that Λ(b1) = ∞ for
any b1 > b, and Λ(b′) is finite for all 0 < b′ < b. Therefore, for s ≥ 0

I(s) < bs, I ′(s) ≤ b, and lim
s→∞

I ′(s) ≤ b. (3.28)
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The last limit exists since I ′(s) is monotone and bounded. If we assume that lim
s→∞

I ′(s) = a < b, then

taking β = a+b
2 we get

I(s) = sup
γ<b

(γs − L(γ)) > βs− L(β) = βs(1 + o(1)) as s → ∞. (3.29)

On the other hand, if lim
s→∞

I ′(s) = a < β, then I(s) < as(1 + o(1)) as s → ∞, which contradicts (3.29).

Thus lim
s→∞

I ′(s) = b, and the first formula in (3.26) follows.

In the case p > 1 due to (3.11) the solution γ⋆ of equation L′(γ) = s has the asymptotics γ⋆ =
bp sp−1(1 + o(1)) as s → ∞, and thus

I(s) = sup
γ
(sγ − L(γ)) = sγ⋆ − L(γ⋆) = bsp(1 + o(1)).

Limit relation (3.27) follows from the fact that for p > 1 the function L(γ) is finite for all γ ∈ R. Then
for any N > 0

I(x) = sup
γ
(sγ − L(γ)) ≥ sN − L(N),

and thus lim inf
s→∞

I(s)
s ≥ N , which yields (3.27).

3. Since supp a ⊂ [−µ, µ], then, for γ ≥ 0, Λ(γ) =
∫
eγxa(x)dx ≤ eγµ. Consequently, L(γ) ≤ γµ,

and for s > µ we have
I(s) = sup

γ
(γs− L(γ)) ≥ sup

γ
(s− µ)γ = ∞.

On the other hand, since µ = sup suppa, for γ ≥ 0 and for any δ > 0

Λ(γ) =

∫
eγxa(x)dx ≥ cδe

γ(µ−δ)

for some cδ > 0. Thus,

L(γ) ≥ ln cδ + γ(µ − δ) and I(s) ≤ sup
γ
(s− (µ − δ))γ − ln cδ < ∞,

if s < µ − δ. Since we take an arbitrary δ > 0, then I(s) is finite for all s ∈ (−µ, µ). The smoothness
of I(s) follows from the standard convexity arguments.

It remains to prove that I(s) → ∞ as s → µ− 0. Since a(x) ≤ C1, we have

Λ(γ) ≤ C1

µ∫

−µ

eγxdx =
C1

γ
(eµγ − e−µγ) <

C1

γ
eµγ .

Then
L(γ) < − ln γ + γµ+ lnC1,

and
I(s) ≥ sup

γ
((s − µ)γ + ln γ)− lnC1 ≥ (s− µ)γ∗(s) + ln γ∗(s)− lnC1,

where γ∗(s) = 1
µ−s is the argmax of the function (s− µ)γ + ln γ. Since γ∗(s) → ∞, as s → µ− 0, then

I(s) ≥ ln γ∗(s)− C̃ → +∞, as s → µ− 0.

The statement for negative s follows from the symmetry of a.

Next we describe the properties of the rate function I(r) in the multidimensional case.
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Proposition 3.10 (Multi-dimensional case). 1. For any distribution a(x) satisfying (1.8)–(1.9) and
(3.1) we have

I(r) =
1

2
σ−1r · r (1 + o(1)) as r → 0. (3.30)

2. If p = 1, and in addition to the above conditions A1 is fulfilled, then I(r) has the following asymp-
totics:

I(r) = b|r|(1 + o(1)), ∇I(r) = b
r

|r|(1 + o(1)), as |r| → ∞, (3.31)

where b is the same constant as in (3.1). Moreover, |∇I(r)| ≤ b for all r ∈ Rd.
If p > 1, and in addition to (1.8)–(1.9) and(3.1) the function a(x) satisfies condition Ap, then

I(r) = b|r|p(1 + o(1)), as |r| → ∞. (3.32)

3. If (3.2) holds, then I(r) is a smooth function in the interior of the convex hull A. Moreover,
I(r) → ∞ as dist(r, ∂A) → 0, and I(r) = ∞ for all r ∈ Rd\A.

Proof. The proof of this proposition is mostly based on the same arguments as the proof of Proposition
3.9.

1. Using the Taylor decomposition for L(γ) about zero we obtain as above γ⋆ = (∇∇L(0))−1r(1 +
o(1)) for small enough r. Consequently,

I(r) = (∇∇L(0))−1r · r − 1

2
∇∇L(0)γ∗ · γ∗ + o(r2) =

1

2
(∇∇L(0))−1r · r + o(r2) =

1

2
σ−1r · r + o(r2),

since σ = ∇∇L(0), and the asymptotics (3.30) follows.
2. In the case p = 1 conditions (3.1) and (3.10) on the distribution a(x) imply that for any θ ∈ Sd−1

Λ(b1θ) = Eeb1θ·X = ∞, if b1 > b and Λ(b1θ) < ∞ if b1 < b.

Therefore,
I(r) = sup

γ∈Rd

(r · γ − L(γ)) = sup
|γ|≤b

(r · γ − L(γ)) < |r|b. (3.33)

The function I(sθ) is a convex function of s ∈ R1 for any θ ∈ Sd−1. Consequently, (3.33) implies
inequality

|∇I(r)| ≤ b ∀r ∈ Rd. (3.34)

In the same way as in Proposition 3.9 using the convexity of I(sθ) we obtain

b|r|(1 + o(1)) ≤ I(r) ≤ b|r|, and
(
∇I(r) · r

|r|
)
→ b as |r| → ∞.

Combining the last relation with (3.34) we obtain the second equality in (3.31).
In the case p > 1 considering the convexity of L(γ) with the help of the implicit function theorem

we get that the solution γ∗ ∈ Rd of equation ∇L(γ) = r has the asymptotics

γ∗ = bp|r|p−2r(1 + o(1)) as r → ∞.

This implies (3.32).
3. Denote by G(r) the following auxiliary function:

G(r) =

{
0, r ∈ A,
+∞, r 6∈ A.

Then the Legendre transform of G is equal to G∗(γ) = µ( γ
|γ|) |γ|, where

µ(θ) = sup
r∈A

r · θ = sup
r∈supp a

r · θ, θ ∈ Sd−1.
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In the same way as in the proof of Proposition 3.9 one can show that

L(γ) = lnE eγ·X = µ(
γ

|γ|) |γ|(1 + o(1)), |γ| → ∞, (3.35)

and moreover,

L(γ) ≤ µ(
γ

|γ| ) |γ| − ln |γ|+C (3.36)

for some constant C.
Since G∗∗(r) = G(r), comparing (3.35) with G∗(γ) we conclude that I(r) = +∞ in Rd\A and

I(r) < ∞ for r in the interior of A. The fact that I(r) → ∞ as dist (r, ∂A) → 0 can be justified in the
same way as in the proof of Proposition 3.9 using inequality (3.36).

Lemma 3.11. Let a(x) satisfy (1.8)–(1.9) and (3.1). Then for any r ∈ Rd\{0} equation (3.8) has a
unique solution ξr and 0 < ξr < 1.

Proof. If the convex hull A of supp a coincides with Rd, then differentiating the right-hand side of (3.8)
in ξ we obtain

r · ∇I(ξr)− r · ∇I(ξr)− ξr · ∇∇I(ξr)r = −ξr · ∇∇I(ξr)r ≤ 0

because of convexity of I; here ∇∇ denotes the Hessian. Moreover, for sufficiently small ξ we have
−r · ∇∇I(ξr)r < 0. Thus the function on the right-hand side of (3.8) is decreasing in ξ, and, since
I(0) = 0, we immediately conclude that (3.8) has a unique solution and 0 < ξr < 1.

If A 6= Rd, but the ray {sr}s≥0 lies inside A, then we can use the same arguments as above. If
the ray {sr}s≥0 intersects ∂A at a point s∗r, then it follows from Proposition 3.10 that I(sr) → ∞ as
s → s∗r − 0. In addition, the convexity of I(r) and the Newton-Leibniz formula imply

lim
s→s∗r−0

d
dsI(sr)

I(sr)
= ∞.

Consequently,

I(sr)− sr · ∇I(sr) = I(sr)− s
d

ds
I(sr) → −∞ as s → s∗r − 0,

and again we obtain the unique solution 0 < ξr < 1 of equation (3.8).

Proposition 3.12. The function Φ(r) is a convex function, Φ(0) = 0, and Φ(r) > 0 for any r ∈ Rd \ {0}.
Moreover, if a(x) satisfies (3.1) with p ≥ 1 and, in the case p = 1, also condition As

1, then Φ is strictly
convex: ∇∇Φ(r)r · r > 0.

Proof. If r = 0, then (3.8) implies that ξ0 = 1, and Φ(0) = 0. Let us show that ∇Φ(r) · r > 0 for any
r ∈ Rd\{0}. Indeed, Φ(r) = Φ(ξ(r)) with ξ(r) = ξr, then using (3.8) and considering the properties of
I(r) we have

∇Φ(r) =
∇ξ(r)

ξ2(r)

[
ln ξ(r)− I(ξ(r)r) + ξ(r)r · ∇I(ξ(r)r)

]
+∇I(ξ(r)r) = ∇I(ξ(r)r).

Consequently, ∇Φ(r) · r = ∇I(ξ(r)r) · r > 0 and Φ(r) > 0 for any r ∈ Rd \ {0}.
To prove the convexity of Φ we differentiate equation (3.8) in r and obtain

∇ξ(r) = −ξ2(r)∇∇I(ξ(r)r) r
[
ξ(r) + r · ∇ξ(r)

]
.

The assumption ∇ξ(r) · r > 0 leads to a contradiction. Therefore, ∇ξ(r) · r ≤ 0 and ξ(r)+ r ·∇ξ(r) ≥ 0
for all r ∈ Rd. This yields the inequality ∇∇Φ(r)r · r ≥ 0. Additionally, ∇∇I(r)r · r > 0 and
ξ(r) + r · ∇ξ(r) > 0 in the case p > 1 or p = 1 under condition As

1. This yields a strict convexity of
Φ.
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Proposition 3.13 (Skewed distribution). 1. Let distribution a(x) satisfy (1.8)–(1.9) and (3.1). As-
sume also that in the case p = 1 condition As

1 is fulfilled and in the case p > 1 the following condition
holds: ∫

x·θ>N

a(x)dx > 0 for any N > 0 and any θ ∈ Sd−1. (3.37)

Then for any x∗ ∈ Rd equation
∇L(γ) = x∗ (3.38)

has a unique solution γ∗ ∈ Rd and, furthermore, the following relations hold

I(x∗) = x∗ · γ∗ − L(γ∗) (3.39)

1

Λ(γ∗)

∫
xa(x)eγ

∗·xdx = x∗. (3.40)

Moreover, denoting aγ(x) =
a(x)eγ·x

Λ(γ) we get

a∗k(kx∗) = a∗kγ∗(kx∗)e−I(x∗)k. (3.41)

2. If distribution a(x) satisfies (3.1) (or (3.2)), then for any small enough x∗ ∈ Rd equation (3.38)
has a unique solution γ∗, and relations (3.39)–(3.41) hold.

Proof. 1. Assume first that p > 1. From the properties of the function L it follows that ∇L : Rd → Rd

is a semicontinuous strictly monotone operator, i.e. (∇L(γ1) − ∇L(γ2)) · (γ1 − γ2) > 0. Condition
(3.37) implies that Λ(γ) > eN‖γ‖c(N) with c(N) > 0 for any N , and consequently

L(γ) >
1

2
N‖γ‖ for all large enough ‖γ‖. (3.42)

Since L is a convex function, then ∇L(γ)·γ
‖γ‖ is monotonically increasing. This together with (3.42) and

L(0) = 0 imply that

lim
‖γ‖→∞

∇L(γ) · γ
‖γ‖ = +∞.

Then the unique solution of (3.38) exists by the solvability theorem for monotone operators, see e.g. [13].

If with p = 1, then under condition As
1 using the Lebesgue theorem we obtain that lim‖γ‖→b−0

∇L(γ)·γ
‖γ‖ =

+∞. Then we can repeat the similar arguments to prove the existence of the unique solution of (3.38).
Equallity (3.39) follows from the definition (3.7) of the function I(r). Equality (3.40) follows from

(3.38). Equality (3.41) is a direct consequence of relation (3.39).
2. If x∗ ∈ Rd is small enough, then for any distribution a(x) satisfying (3.1), (3.2) equation (3.38)

can be solved using the implicit function theorem.

3.3 The regions of standard and moderate deviations. Proof of Theorem 3.1

Under our standing assumptions the local central limit theorem applies to the sum of independent
random variables with a common distribution a(x), see for instance [4, Theorem 19.1]. This implies
the desired asymptotics (3.3) of v(x, t) in the region |x| ≤ rt1/2 with an arbitrary r > 0.

In this subsection we show that, in the region x = rt
1+δ
2 (1+o(1)) with 0 < δ < 1 and r ∈ R

d\{0}, the
asymptotics (3.4) for v(x, t) holds, as t → ∞. First we obtain the asymptotics for the k-th convolution
power a∗k(x) for large enough k. Our approach essentially relies on probabilistic arguments.

Lemma 3.14. Let conditions (1.8)–(1.9) be satisfied, and assume that (3.1) holds. Then

a∗k(x) = e−
1
2

σ−1x·x
k

(1+o(1)), as k → ∞,
|x|2
k

→ ∞, and
|x|
k

→ 0, (3.43)

where σ is the covariance matrix of the distribution a(x), and o(1) → 0 as |x|2
k → ∞.
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Proof. Let x∗ = x
k . Then x∗ → 0 as |x| → ∞, k → ∞, and using Proposition 3.13 we conclude that

the equation ∇L(γ) = x∗ has a unique solution γ∗ = γ∗(x, k), where γ∗ → 0 as x∗ → 0. Relation (3.41)
implies

a∗k(x) = a∗k(kx∗) = a∗kγ∗(kx∗)e−I(x∗)k = a∗kγ∗(kx∗)e−I(x
k
)k. (3.44)

It follows from (3.40) and the local limit theorem for the sum of i.i.d. random variables with the
common distribution aγ∗ that

a∗kγ∗(kx∗) =
det σ−1

γ∗

(2πk)d/2
(1 + o(1)) =

detσ−1

(2πk)d/2
(1 + o(1)), as x∗ → 0 (and γ∗ → 0), (3.45)

where σ is the covariance matrix for a(x).
Finally using the asymptotic relation (3.30) for I(xk ) we obtain (3.43) from (3.44) – (3.45).

Corollary 3.15. If x = rt
1+δ
2 (1 + o(1)) with 0 < δ < 1 and k ∼ t, then σ−1x·x

k ∼ (σ−1r · r)tδ and

a∗k(x) = e−
1
2
(σ−1r·r) t1+δ

k
(1+o(1)), as k → ∞. (3.46)

Let us study now the asymptotic behaviour of the function tka∗k(x)
k! as t → ∞ and x = rt

1+δ
2 (1 +

o(1)), 0 < δ < 1. By Lemma 3.14 and estimate (3.46) for any constants α1 and α2 such that 0 < α1 <
1 < α2 < ∞, and for all k from the interval α1t < k < α2t the following asymptotics holds:

tka∗k(x)
k!

= exp

{
k ln t− k ln k + k − c̃

t1+δ

k
(1 + o(1))

}
= expS(k, t), t → ∞,

where c̃ = 1
2 σ

−1r · r and S(z, t) = z ln t− z ln z + z − c̃ t1+δ

z (1 + o(1)). If α1 is sufficiently small and α2

is sufficiently large then the max
α1t<z<α2t

S(z, t) is attained in an interior point of the interval (α1t, α2t),

and the corresponding necessary condition reads

ln
t

z
+ c̃

t1+δ

z2
= 0.

Setting z = ξt we arrive at the following equation for ξ:

ξ2 ln ξ = c̃ tδ−1.

Since 0 < δ < 1, the right-hand side in this equation vanishes as t → ∞. Therefore, the solution ξ̂ of
this equation admits the representation ξ̂ = 1 + c̃tδ−1(1 + o(1)). Consequently,

ẑ = ξ̂t = t+ c̃tδ + o(tδ), max
α1t<z<α2t

S(z, t) = S(ẑ, t) = t− c̃tδ + o(tδ),

and for any α1 and α2 such that 0 < α1 < 1 < α2 < ∞ we have

max
α1t<k<α2t

tka∗k(x)
k!

≤ eS(ẑ,t) = et−
1
2
(σ−1r·r)tδ+o(tδ), as t → ∞. (3.47)

To estimate v(x, t) in the region x = rt
1+δ
2 (1 + o(1)) we split the sum in (1.11) into three parts:

v(x, t) = e−t

[t/2]∑

k=1

tka∗k(x)
k!

+ e−t

[2t]∑

k=[t/2]+1

tka∗k(x)
k!

+ e−t
∑

k>2t

tka∗k(x)
k!

. (3.48)

Considering the inequalities k! > kke−k and a∗k(x) ≤ C1, one can estimate the first sun in (3.48) as
follows

e−t

[t/2]∑

k=1

tka∗k(x)
k!

≤ C1
t

2
e−t(2e)t/2 ≤ C2e

−βt, t → ∞ (3.49)
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with an arbitrary β ∈ (0, 1−ln 2
2 ). For the third sum using the relation t

k < 1
2 we get

e−t
∑

k>2t

tka∗k(x)
k!

≤ C1e
t−2t ln 2. (3.50)

To estimate the second sum in (3.48) we use (3.47). This yields

e−t

[2t]∑

k=[t/2]+1

tka∗k(x)
k!

≤ 2te−teS(ẑ,t) ≤ e−
1
2
(σ−1r·r) tδ+o(tδ), t → ∞. (3.51)

Finally, from (3.48) – (3.51) we get the asymptotical upper bound in the region x = rt
1+δ
2 (1 + o(1)).

Taking in the sum (3.48) just one term that corresponds to maxS(z, t) we obtain the lower bound

v(x, t) ≥ e−teS(ẑ,t) ≥ e−
1
2
(σ−1r·r) tδ(1+o(1)).

This completes the proof of (3.4).

3.4 The regions of extra-large deviations: Proof of Theorem 3.2

This section deals with the large time behaviour of v(x, t) in the region x ≫ t which is associated with
the ”extra-large” deviations of the corresponding process. In this region we use the Markov inequality
for estimating Pr(|Sk| > |x|).

Lemma 3.16. Let Xi be i.i.d. 1-D random variables with a common distribution a(x), satisfying
(1.8)–(1.9) and (3.1). Then there exist constants αp = αp(b, p) and κp = κp(b, p), such that for all
1 ≤ k ≤ αpx the following estimate holds

P{Sk > x} ≤ e−κp(x
k )

p
k. (3.52)

Proof. The cases p = 1 and p > 1 are considered in a slightly different way. If p = 1, the inequality

EemX1 ≤ ehm
2

being valid for all m ∈ (0, b
2) with some constant h > 0. Then the Markov inequality implies that

P{Sk > x} ≤ min
0<m≤ b

2

(EemX1)k

emx
= e

min
0<m≤ b

2

(hm2k−mx)

= e
hb2k

4
− bx

2 = e(
hb2k

4
− bx

4
)− bx

4 ≤ e−
bx
4 (3.53)

for k < x
hb . Thus in the case p = 1 inequality (3.52) holds with κ1 =

b
4 and α1 =

1
2hb .

If p > 1 then applying the Markov inequality we get

P{Sk > x} ≤ min
m>0

(EemX1)k

emx
=

(
min
m>0

EemX1

e
mx
k

)k

. (3.54)

Let us estimate EemX1 . Setting ϕ(x) = mx− bxp, x > 0, we obtain

max
x

ϕ(x) = ϕ

((
m

bp

) 1
p−1

)
= c2(b, p)m

p
p−1 , c2(b, p) =

p− 1

p
(bp)−

1
p−1 , (3.55)

and ϕ(x) < 0 as x > x1 =
(
m
b

) 1
p−1 . Since mx− bxp ≤ ϕ′(x1)(x − x1) = m(1 − p)(x − x1) for x ≥ x1,

from (3.55) it follows that

EemX1 ≤
∫

|x|≤x1

eϕ(x)dx+

∫

|x|>x1

emxa(x)dx ≤ c3(b, p)m
1

p−1 ec2(b,p)m
p

p−1
+ C1((p − 1)m)−1.
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Then there exists a constant c4 = c4(p, b) such that for all m ≥ 1

EemX1 ≤ ec4(b,p) m
p

p−1
. (3.56)

Inserting (3.56) into (3.54) yields

P{Sk > x} ≤
(
min
m≥1

ec4(b,p)m
p

p−1−mx
k

)k

= e
k min

m≥1
fp,k(m)

, (3.57)

where
fp,k(m) = c4(b, p)m

p
p−1 −m

x

k
, m ≥ 1.

If we take k ≤ αpx with αp ≤ p−1
2pc4

, then fp,k(1) < 0 and f ′
p,k(1) < 0. Determining the minimum of fp,k

we obtain
min
m≥1

fp,k(m) = −κp

(x
k

)p

with some constant κp > 0. Inequality (3.52) then follows from (3.57).

Corollary 3.17. In the multidimensional case estimate (3.52) takes the form

P{|Sk| > |x|} ≤ e
−κp

(

|x|
k

)p
k(1+o(1))

, as |x| → ∞. (3.58)

Proof. Given a sequence of i.i.d. random vectors Xj , j = 1, 2, . . ., with a common distribution density
a(·), for any θ ∈ Sd−1 we consider 1-D random variables θ ·Xj . Denote the distribution density of θ ·Xj

by aθ(s). Then
aθ(s) ≤ C(1 + s)d−1e−b|s|p.

Therefore, by (3.52)

P{Sj · θ > |x|} ≤ e
−κp

(

|x|
k

)p
k(1+o(1))

. (3.59)

For a d-dimensional random vector X and arbitrary ε > 0 one can find a finite collection of unit vectors
θ1, . . . , θN , N = N(ε, d) such that

{|X| > |x|} ⊂
N⋃

i=1

{θi ·X > (1− ε)|x|}

Then
P{|X| > |x|} ≤ N(ε, d) P{θ ·X > (1− ε)|x|},

and together with (3.59) it gives the desired asymptotic estimate (3.58) for P (|Sk| > |x|) in the multi-
dimensional case.

We proceed with obtaining point-wise estimates for a∗k(x). Denote by Fk(s) the distribution func-
tion of |Sk|, then in the case p = 1 we have

a∗(k+1)(x) ≤ C1

∞∫

0

e−b(|x|−s) dFk(s) =

C1

1
2
|x|∫

0

e−b(|x|−s) dFk(s) + C1

∞∫

1
2
|x|

e−b(|x|−s) dFk(s) ≤ C1e
− 1

2
b|x| +C1P

{
|Sk| ≥

1

2
|x|
}
.

Together with estimates (3.58) and (3.53), where κ1 =
b
4 , this yields for all k ≤ α1|x|:

a∗k(x) ≤ 2C1 e−
b
8
|x|. (3.60)
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The case p > 1 can be treated similarly, and for any k ≤ αp|x| we obtain

a∗(k+1)(x) ≤ C1

∞∫

0

e−b(|x|−s)p dFk(s) ≤ C1e
− b

2p
xp

+ C1e
−κp

xp

2pkp−1 ≤ C2e
−κ̃p

xp

kp−1 . (3.61)

In order to obtain upper bounds for the terms of the sum in (1.11) we make use of estimates
(3.60)–(3.61). We denote

S(z, t) = z ln t− z ln z + z + ln a∗z(x), S0(z, t) = z ln t− z ln z + z = z ln
t

z
+ z. (3.62)

Notice that
max

z
S0(z, t) = S0(t, t) = t,

and S0(z, t) is decreasing in z as z > t. Consequently, for any c > 0 and for sufficiently large t we have

max
z≥ct

δ+1
2

S0(z, t) = S0

(
ct

δ+1
2 , t

)
< −c̃t

δ+1
2 ln t. (3.63)

In the case p = 1, considering the upper bound a∗k(x) ≤ C1, we get

max
z≥ct

δ+1
2

S(z, t) ≤ max
z≥ct

δ+1
2

S0(z, t) + lnC1 < −c̃1t
δ+1
2 ln t. (3.64)

If k < α1|x| = α1rt
δ+1
2 (1 + o(1)), then estimate (3.60) implies the following uniform in k upper

bound

a∗k(x) < C2 e−
b
8
|x| = C2 e−

b
8
rt

δ+1
2 (1+o(1)). (3.65)

Consequently,

max
k<α1rt

δ+1
2

S(k, t) ≤ S0(t, t) + max
k<α1rt

δ+1
2

ln a∗k(x) ≤ t− b

8
rt

δ+1
2 . (3.66)

Finally, using (3.64) and (3.66), we conclude that in the case p = 1 the asymptotic estimate (3.5)
holds with c1 =

b
8r. Indeed,

v(x, t) = e−t
∞∑

k=1

tka∗k(x)
k!

= e−t
α1rt

δ+1
2∑

k=1

tka∗k(x)
k!

+ e−t
∑

k>α1rt
δ+1
2

tka∗k(x)
k!

≤ α1rt
δ+1
2 e−

b
8
rt

δ+1
2 +O

(
e−t

δ+1
2 ln t

)
≤ e−

b
8
rt

δ+1
2 (1+o(1)) as t → ∞.

In the case p > 1, using estimates (3.63) and (3.61), for all k ≤ αp|x| = αprt
δ+1
2 (1 + o(1)) we have

max
k≤αp|x|

S(k, t) = max
k≤αp|x|

{S0(k, t) + ln a∗k(x)} ≤ max
k≤αp|x|

{
S0(k, t) − κ̃pr

p t
δ+1
2

p

kp−1

}
≤ −c(1)p t

δ+1
2 (ln t)

p−1
p .

In order to justify the last inequality we notice that

k̂(t) := argmax

{
S0(k, t)− κ̃pr

p t
δ+1
2

p

kp−1

}
= ĉ

t
δ+1
2

(ln t)
1
p

= o(t
δ+1
2 )

with a constant ĉ = ĉ(p, δ, r). Then k̂(t) < αp|x| and, therefore,

tka∗k(x)
k!

≤ e−c
(1)
p t

δ+1
2 (ln t)

p−1
p
, k < k̂(t).
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Estimating S(k, t) for k > k̂(t) relies on the inequalities for the function S0(k, t) similar to those in
(3.63) and the upper bound a∗k(x) ≤ C1. We have for k > k̂(t)

tka∗k(x)
k!

< C1e
S0(k̂(t),t) = C1e

k̂(t)(ln t−ln k̂(t)+1) ≤ e−c
(2)
p t

δ+1
2 (ln t)

p−1
p (1+o(1)).

Finally, taking into account the fact that t
k < 1

2 for all k > k̂(t) = ĉt
δ+1
2 (ln t)

− 1
p , we conclude that in

the case p > 1

v(x, t) = e−t
∑

k≤k̂(t)

tka∗k(x)
k!

+ e−t
∑

k>k̂(t)

tka∗k(x)
k!

≤ C1t
δ+1
2 e−t−c

(1)
p t

δ+1
2 (ln t)

p−1
p

+ e−t−c
(2)
p t

δ+1
2 (ln t)

p−1
p (1+o(1)) ≤ e−cpt

δ+1
2 (ln t)

p−1
p (1+o(1).

Now let us consider the case of a(x) with a compact support. If (3.2) holds then

v(x, t) = e−t
∑

k> r
µ
t
δ+1
2

tka∗k(x)
k!

≤ C1e
−t exp



 max

k> r
µ
t
δ+1
2

S0(k, t)



 , (3.67)

where S0 has been defined in (3.62). The function S0(k, t) is decreasing in variable k as k > t, hence

max
k> r

µ
t
δ+1
2

S0(k, t) = S0

(
r

µ
t
δ+1
2 , t

)
= − r

µ

δ − 1

2
t
δ+1
2 ln t(1 + o(1)). (3.68)

Finally, (3.67) and (3.68) imply estimate (3.6). This completes the proof of Theorem 3.2.

3.5 The region of large deviations: Proof of Theorem 3.4

The main step of the proof is obtaining point-wise estimates for a∗k.

Lemma 3.18. Let a(x) satisfy (1.8)–(1.9) and (3.1), and assume that, in the case p = 1, condition
A1 holds. Then for x = rt(1 + o(1)), r ∈ Rd\{0}, and for any positive constants α1 < α2 we have

a∗k(x) ≤ e−I(x
k
)k(1+o(1)), if α1t ≤ k ≤ α2t. (3.69)

Furthermore, there exists a positive constant α1 > 0 such that

a∗k(x) ≤ e−I(r) t(1+o(1)); if 1 ≤ k ≤ α1t. (3.70)

If condition (3.2) is fulfilled, then for any α2

a∗k(x) = 0, if k ≤ |x|
µ
, and a∗k(x) ≤ e−I(x

k
)k(1+o(1)), if

|x|
µ

≤ k ≤ α2t. (3.71)

Proof. We start with the case p = 1, α1t ≤ k ≤ α2t. The kernel a∗(k+1)(x) can be written as follows:

a∗(k+1)(x) =

∫

{z: I( z
k
)≤I(x

k
)}

a∗k(z)a(x − z)dz +

∫

{z: I( z
k
)>I(x

k
)}

a∗k(z)a(x − z)dz. (3.72)

Denote by A1 = {z : I( zk ) ≤ I(xk )}, A2 = {z : I( zk ) > I(xk )}. Using the large deviations principle for
the sum of i.i.d. random vectors, see [9], we obtain the upper estimate for the second integral in (3.72),
when α1t ≤ k ≤ α2t:

∫

A2

a∗k(z)a(x− z)dz ≤ C1P (Sk ∈ A2) ≤ C1 exp

{
− inf

kρ∈A2

I(ρ) k + o(k)

}
= e−I(x

k
)k+o(k). (3.73)
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To estimate the first integral in (3.72) we introduce

Fk(s) =

∫

{z: I( z
k
)k≥s}

a∗k(z)dz, where s ∈
(
0, I(

x

k
)k
)
,

then we have
Fk(0) = 1, Fk(∞) = 0, Fk(s) = e−s(1+o(1)) (k → ∞). (3.74)

If we denote Ls = {z : I( zk )k = s}, then dist(x,Ls) is a decreasing continuous function on [0, I(xk )k],
it is smooth on (0, I(xk )k]. For each s ∈ [0, I(xk )k] there exists a unique zs ∈ Ls such that dist(x,Ls) =
|x − zs|. All these assertions are elementary consequences of convexity of the function I. Clearly,
z0 = 0, zI(x

k
)k = x.

It follows from Proposition 3.10 and estimate (3.1) that for any x, z ∈ Rd, such that I( zk ) < I(xk ),
the following inequality holds true:

(
I(

x

k
)− I(

z

k
)
)
k ≤ max

r∈l(x
k
, z
k
)
|∇I(r)| |x− z| ≤ b |x− z| ≤ − ln a(x− z),

where by l(x, y) we denote the segment connecting points x and y. Consequently,

e−I( z
k
)k a(x− z) ≤ e−I(x

k
)k. (3.75)

Then using (3.74) and inequality (3.75) we rewrite the first integral in (3.72) as follows:

∫

A1

a∗k(z)a(x − z)dz ≤ C1

∫

A1

a∗k(z)e−b|x−z|dz ≤ C1

I(x
k
)k∫

0

e−b dist(x,Ls)d(−Fk(s))

= C1e
−b dist(x,Ls)Fk(s)

∣∣∣
0

I(x
k
)k

− C1b

I(x
k
)k∫

0

Fk(s)e
−b dist(x,Ls) d

ds
dist(x,Ls)ds

= C1e
−b|x| − C1e

−I(x
k
)k(1+o(1)) − C1b

I(x
k
)k∫

0

e−s(1+o(1))e−b|x−zs| d

ds
dist(x,Ls)ds

≤ e−I(x
k
)k(1+o(1)) − C1b

I(x
k
)k∫

0

e−I( zs
k
)k(1+o(1))e−b|x−zs| d

ds
dist(x,Ls)ds

≤ e−I(x
k
)k(1+o(1)) − C1be

−I(x
k
)k(1+o(1))

I(x
k
)k∫

0

d

ds
dist(x,Ls)ds

≤ e−I(x
k
)k(1+o(1)) + C1be

−I(x
k
)k(1+o(1))|x| ≤ e−I(x

k
)k(1+o(1)).

This inequality together with (3.73) imply (3.69) in the case p = 1.

To prove the upper bound (3.69) for p > 1 and α1t ≤ k ≤ α2t we rewrite a∗(k+1)(x) as a sum

a∗(k+1)(x) =

∫

|z−x|<hk1/p

a∗k(z)a(x − z)dz +

∫

|z−x|≥hk1/p

a∗k(z)a(x − z)dz. (3.76)

The second integral in (3.76) has an upper bound

max
|u|≥hk

1
p

a(u) ≤ C1e
−bhpk.
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If the constant h > 0 is taken in such a way that bhp > I( r
α1
), then bhp > I( r

α1
) > I(xk ) for any

k ∈ [α1t, α2t]. Thus, the second term in (3.76) is bounded by (3.69).
For k ∼ t and for arbitrary κ > 0 the first term in (3.76) can be estimated from above as

∫

|z−x|<hk1/p

a∗k(z)a(x − z)dz ≤ C1

∫

|z−x|<hk1/p

a∗k(z)dz ≤ C1 Pr{|Sk − x| < κk}

≤ C1 exp{− inf
ρ∈Aκ

I(ρ)k + o(k)} ≤ e−I(x
k
)k+o(k),

where Aκ = {z : |z− x
k | < κ}. Here we used the large deviations principle for estimating Pr{|Sk−x| <

κk} and continuity of I(r).

In the case p = 1 and k ≤ α1t we apply the upper bound

a(x) ≤ A ã(|x|), with some constant A > 1, (3.77)

where ã(|x|) = a1e
−b|x| is a spherically symmetric kernel satisfying (3.1) with the same b. Next we need

the following statement for 1-D random variables.

Proposition 3.19. Let a(x), x ∈ R, satisfy (3.1) with p = 1 and condition A1 holds. Then there exists
positive constant C̃1 such that

a∗k(x) ≤ C̃1e
−I(x

k
)k(1+o(1)); for all k ≥ 1. (3.78)

Proof. We represent a∗(k+1)(x), x ∈ R as follows:

a∗(k+1)(x) =

0∫

−∞

a∗k(z)a(x − z)dz +

∫ x

0
a∗k(z)a(x− z)dz +

∫ ∞

x
a∗k(z)a(x − z)dz. (3.79)

Since I(xk )k < bx, the first integral in (3.79) admits the estimate

0∫

−∞

a∗k(z)a(x − z)dz ≤ C1e
−bx ≤ e−I(x

k
)k.

For the last integral in (3.79) we apply the Markov inequality:

∞∫

x

a∗k(z)dz = P (Sk > x) ≤ inf
γ

(
EeγX1

)k

ekγ
x
k

= inf
γ
ekL(γ)−kγ x

k = e−I(x
k
)k. (3.80)

Then we get for any k and any x > 0

∞∫

x

a∗k(z)a(x− z)dz ≤ C1P (Sk > x) ≤ C1e
−I(x

k
)k.

To estimate the second integral in (3.79) denote F̃k(x) =
∞∫
x
a∗k(z)dz = P (Sk > x). Then

x∫

0

a∗k(z)a(x − z)dz ≤ C1

x∫

0

e−b(x−z)d(−F̃k(z)) = C1e
−b(x−z)F̃k(z)|0x + C1b

x∫

0

e−b(x−z)F̃k(z)dz ≤

C1e
−bx + C1b

x∫

0

e−I( z
k
)k−b(x−z)dz ≤ C1e

−bx + C1bxe
−I(x

k
)k ≤ C2xe

−I(x
k
)k;
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we have used here the inequalities

I(
x

k
)− I(

z

k
) < b

x− z

k
for all z ∈ (0, x), and I(

x

k
)k < bx.

Considering x = rt(1 + o(1)) we obtain estimate (3.78) for all k ≥ 1.

Then using (3.78) we have

a∗k(x) ≤ Akã∗k(|x|) ≤ Ake−Iã(
|x|
k
)k(1+o(1)).

Since k < α1t with a small α1, then
|x|
k > |r|

α1
≫ 1, and using asymptotic representation (3.26) for Iã(s)

as s → ∞ and inequality (3.33), we conclude that for any δ > 0 there exists α1 > 0 such that

a∗k(x) ≤ Akã∗k(|x|) ≤ Ake−b|x|(1−δ) = Ake−b|r|t(1−δ) ≤ e−b|r|t(1−δ)+α1t lnA ≤ e−I(r)t. (3.81)

In order to obtain the last inequality we chose δ = (b|r|−I(r))
4b|r| . Thus (3.70) is proved for p = 1.

If p > 1 and k ≤ α1t, then for sufficiently small α1 recalling that x = rt(1+ o(1)), from the Markov
inequality (3.80) we have

P{|Sk| >
1

2
|x|} ≤ e−Ĩ( |x|

2k
)k ≤ e

−Ĩ(
|r|
2α1

)α1t ≤ e−2I(r)t, (3.82)

where Ĩ(s) is the rate function for the 1-D random variable |X|. Here we used the fact that the function
J(α) = αĨ( sα ) is decreasing in α ∈ (0, 1], that is a consequence of convexity of Ĩ(s). Moreover, by (3.27)
we have J(α) → ∞ as α → 0+. Then using (3.82) we conclude that for a small enough constant α1 > 0
we get

a∗(k+1)(x) =

∫

|z|≤ 1
2
|x|

a∗k(z) a(x− z) dz +

∫

|z|> 1
2
|x|

a∗k(z) a(x− z) dz

≤ C1e
−b

(

|x|
2

)p

+ C1e
−Ĩ( |r|

2α1
)α1t ≤ C1e

−b̃
(

|r|
2

)p
tp
+ C1e

−Ĩ( |r|
2α1

)α1t ≤ C̃2e
−I(r)t.

This completes the proof of estimates (3.69) - (3.70).
The first relation in (3.71) is evident. The proof of the second one is based on the same arguments

as those used in the case p > 1.

Combining Stirling’s formula with the estimates of Lemma 3.18 we obtain the following statement.

Corollary 3.20. Let the assumptions of Lemma 3.18 be fulfilled. If x = rt(1 + o(1)), then for all k
such that α1t ≤ k ≤ α2t with arbitrary positive numbers α2 and α1, estimate (3.69) implies that

tka∗k(x)
k!

≤ exp
{
k ln t− k ln k + k − I(

x

k
)k + o(t)

}
= exp{S(k, t) + o(t)}, t → ∞, (3.83)

where S(k, t) = k ln t− k ln k + k − I( rtk )k.

Recalling the definition of ξr in (3.8) and the function Φ in (3.9) we have

e−t+S(ẑ,t) = exp

{
t

(
−1 +

1

ξr
(1 + ln ξr − I(ξrr))

)}
= exp{−Φ(r)t}, (3.84)

where ẑ = argmaxS(z, t). If x = rt(1 + o(1)) as t → ∞, then the following upper bound

e−t t
ka∗k(x)

k!
≤ e−Φ(r)t(1+o(1)) (3.85)

is valid for all k from the interval k ∈ (α1t, α2t).
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To estimate v(x, t) from above we decompose the sum in (1.11) into three parts:

v(x, t) = e−t
∑

k<α1t

tka∗k(x)
k!

+ e−t
α2t∑

k=α1t

tka∗k(x)
k!

+ e−t
∑

k>α2t

tka∗k(x)
k!

. (3.86)

For the first sum in (3.86) we apply upper bound (3.70). This together with (3.84) yield

a∗k(x) ≤ e−I(r)t+o(t) = e−t+S(t,t)+o(t) ≤ e−t+S(ẑ,t)+o(t) = e−Φ(r)t(1+o(1)) , (3.87)

because −I(r)t = S(t, t)− t, and maxz S(z, t) = S(ẑ, t) with ẑ > t. Consequently,

e−t
α1t∑

k=1

tka∗k(x)
k!

≤ e−Φ(r)t(1+o(1)) , as t → ∞. (3.88)

For the third sum, if k > α2t with α2 > 2 then we have

tk

k!
<

tα2t

(α2t)!
< e(α2−α2 lnα2)t.

Choosing α2 > 2 such that 1− α2 + α2 lnα2 > Φ(r), we obtain

e−t
∑

k>2t

tka∗k(x)
k!

≤ C1e
(−1+α2−α2 lnα2)t < e−Φ(r)t. (3.89)

It remains to estimate the second sum on the right-hand side of (3.86). To this end we use (3.85),
then

e−t
α2t∑

k=α1t

tka∗k(x)
k!

≤ α2te
−Φ(r)t(1+o(1)) = e−Φ(r)t(1+o(1)) , t → ∞. (3.90)

Finally, in the region x = rt(1 + o(1)), r 6= 0, from (3.88) - (3.90) we deduce:

v(x, t) ≤ e−Φ(r)t(1+o(1)) , t → ∞. (3.91)

For a(x) with a finite support we take α1 = r/µ in (3.86). Then the first sum on the right-hand
side of (3.86) does not contribute. Estimating the two other sums relies on (3.85), (3.89) and (3.90)
like in the case p > 1. This completes the proof of (3.12).

It remains to show that the function Φ(r) satisfies the asymptotic relations in (3.13)–(3.17). Con-

sidering the properties of the function I(r), in particular (3.30), it is easy to see that ξr = 1− r2

2σ +o(r2),
as r → 0. Recalling now the definition of Φ(r) in (3.9), we finally obtain asymptotic formula (3.13).

The asymptotics of Φ(r) for large r depends crucially on the rate of decay of a(x) at infinity. We
start with the case, when a(x) satisfies (3.2). Then from Proposition 3.10 it follows that I(ξr) = ∞ for
all ξ|r| > µ. Then the solution ξr of equation (3.8) satisfies the inequality ξr <

µ
|r| . By the definition of

Φ(r) we have

Φ(r) = 1− 1

ξr
+

1

ξr
ln

1

ξr
+

1

ξr
I(rξr) ≥

1

ξr

(
ln

1

ξr
− 1
)
,

Therefore, for large enough r,

Φ(r) ≥ min
x∈( |r|

µ
,∞)

x(lnx− 1) =
|r|
µ

(
ln

|r|
µ

− 1
)
,

and we obtain (3.17).

Since the principal term on the right-hand side of (3.32) only depends on |r| as r → ∞, then in the
case p > 1 for the solution ξr of equation (3.8) we have ξr = ξ|r|(1+o(1)), as r → ∞. Therefore, we can
reduce the general case to the spherically symmetric case (or the 1-D case). Notice that for any p ≥ 1
condition Ap implies (3.37). The next statement describes the asymptotic behaviour of ξr for large r
under the assumption that (3.1) and (3.37) hold true.
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Proposition 3.21. Let (3.1) and (3.37) hold. Then

u(s) := s ξs → ∞, as s → ∞. (3.92)

If p > 1 and condition Ap is fulfilled, then

ξs = hp
(ln s)1/p

s
(1 + o(1)), as s → ∞, (3.93)

where hp is a constant depending on p and b.

Proof. We first prove (3.92). If we assume that u(s) is bounded: u = u(s) < a, then for all s > 0 the
function ln ξs is bounded from below:

ln ξs = I(u)− uI ′(u) > I(a)− aI ′(a) > −∞. (3.94)

We have used here the facts that J(u) = I(u)− uI ′(u) is a decreasing function on [0,+∞), and due to
condition (3.37) the functions I(u), I ′(u) are finite for all u > 0. On the other hand,

ln ξs = ln
u(s)

s
< ln a− ln s.

For large s this inequality contradicts (3.94). This proves (3.92).
The function J(u) = I(u) − uI ′(u) < 0 is negative for all u > 0, because J(0) = 0, J ′(u) ≤ 0 for

u ≥ 0, and J ′(u) < 0 for 0 ≤ u < κ0 with some κ0 > 0. In the case p > 1 combining this inequality
with (3.8), (3.26) and (3.92) we conclude that

ln
1

ξs
= b(p − 1) (rξs)

p (1 + o(1)), s → ∞.

Consequently, we get (3.93) in the case p > 1: ξs = hp
(ln s)1/p

s (1 + o(1)) with hp =
(
b(p − 1)

)−1/p
.

Inserting (3.93) into (3.9), we finally obtain asymptotic formulas (3.16) and (3.22).

In the case p = 1 using (3.8) and (3.31) for large r we get

Φ(r) = 1− 1

ξr

(
1 + ln ξr − I(ξrr)

)
= 1− 1

ξr
+ b|r|(1 + o(1)).

According to (3.92) we have u(r) = |r|ξr → ∞ as |r| → ∞, consequently, 1
|r|ξr → 0, and 1

ξr
= o(|r|).

Thus,
Φ(r) = b |r| (1 + o(1)) as |r| → ∞,

and asymptotic formula (3.15) is proved. Theorem 3.4 is completely proved.

3.6 The region of large deviations. Proof of Theorem 3.8

In order to justify the asymptotics in (3.24) it suffices to prove that for x = rt(1 + o(1)) we have

e−Φ(r)t(1+ν1(t)) ≤ v(x, t) ≤ e−Φ(r)t(1+ν2(t)), (3.95)

where νj(t) → 0 as t → ∞, j = 1, 2. Since the upper bound has already been proved, see (3.12), we
proceed with the lower bound. Denote r̂ = x/t. Then r̂ = r(1 + o(1)) as t → ∞.

From the definition of ξr in (3.8) by the implicit function theorem we obtain that ξr is a smooth
function of r. So is rξr. Letting r∗0 = ξrr and r∗ = ξr̂r̂, we then have r∗ = r∗0(1 + o(1)).

We define γ∗(r∗) ∈ R
d as a solution to the equation ∇L(γ) = r∗. By Proposition 3.13 this equation

has a unique solution. Moreover, γ∗(r∗) is a smooth function of r∗. In particular, γ∗0 = γ∗(r∗0) =
γ∗(r∗)(1+ o(1)), as t → ∞. We recall, see Proposition 3.13 again, that for a random variable Xγ∗ with

the density aγ∗(x) = a(x)eγ
∗·x

Λ(γ∗) its expectation is equal to r∗.

Consider a family of densities ãγ∗(x) = aγ∗(x+ r∗) and the corresponding random variables X̃γ∗ =
Xγ∗ − r∗.
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Lemma 3.22. There exists a neighbourhood O of γ∗0 in R
d such that for all γ∗ ∈ O the density ãγ∗

possesses the following properties:

a. ãγ∗(x) ≤ Ce−µ|x| for some µ > 0 and C > 0.

b. The matrix

σij(γ
∗) =

∫

Rd

xixj ãγ∗(x) dx

is positive definite, σ(γ∗)ζ · ζ ≥ µ1|ζ|2 for some µ1 > 0 and for all ζ ∈ R
d.

The constants µ, µ1 and C do not depend on the choice of γ∗ ∈ O.

Proof. If p = 1 then under condition As
1 we have |γ∗0 | < b. We can choose sufficiently small neighbour-

hood O of γ∗0 in such a way that the inequality b − |γ∗| ≥ 1
2(b − |γ∗0)| holds for all γ∗ ∈ O. It is clear

that Λ(γ∗) ≥ C > 0 for all γ∗ ∈ R
d. This implies, in view of (3.1) and the definition of ãγ∗ , the first

statement of Lemma with µ1 =
1
2(b− |γ∗0 |). If p > 1, then this statement is obvious.

The second statement of Lemma is a straightforward consequence of the first one. Indeed, it follows
from a. that there exists R0 > 0 such that

∫

QR0

ãγ∗(x)dx ≥ 1

2

for all γ∗ ∈ O, here QR0 stands for the ball of radius R0 centered at the origin. Then for any θ ∈ Sd−1

we have

σij(γ
∗)θi · θj =

∫

Rd

(x · θ)2ãγ∗(x) dx ≥
∫

QR0
\Πδ

(x · θ)2ãγ∗(x) dx,

where Πδ = {x ∈ QR0 : |x · θ| < δ}. Due to a. there exists δ0 > 0 such that
∫
Πδ0

ãγ∗(x) dx ≤ 1
4 for all

γ∗ and for all θ ∈ Sd−1. Therefore,
∫

QR0
\Πδ0

(x · θ)2ãγ∗(x) dx ≥ 1

4
δ20 .

This yields b.

It follows from Lemma 3.22 that the local limit theorem applies to a family of i.i.d. random variables
with the density ãγ∗ , see Theorems 19.1 and 19.2 in [4]. Therefore,

ã∗kγ∗(0) = (2πk)−
d
2 |σ(γ∗)|−1

(
1 + o(1)

)
,

as k → ∞, and

a∗kγ∗(kr∗) = (2πk)−
d
2 |σ(γ∗)|−1

(
1 + o(1)

)
. (3.96)

Moreover, by Theorem 19.2 in [4], the convergence is uniform in γ∗ ∈ O.

According to (3.41),
a∗k(kr∗) = a∗kγ∗(kr∗)e−I(r∗)k.

Take k =
[
t
ξ r̂

]
, where [·] stands for the integer part. Then kr∗ = rt(1 + o(1)) = x(1 + o(1)), as t → ∞.

Considering (3.9), (3.84) and (3.96) and the fact that the convergence in (3.96) is uniform in γ∗ ∈ O,
we conclude that, under this choice of k,

tk

k!
a∗k(kr∗) = a∗kγ∗(kr∗)e−Φ(r̂)t(1+o(1)) = e−Φ(r)t(1+o(1)) .

This yields the desired lower bound in (3.95).
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