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ABSTRACT: This paper reviews the changing environments, developing landforms and terrestrial 

stratigraphy during the Early and Middle Pleistocene stages in Scotland. Cold stages after 2.7 Ma 

brought mountain ice caps and lowland permafrost, but larger ice sheets were short-lived. The late 

Early and Middle Pleistocene sedimentary record found offshore indicates more than 10 advances of 

ice sheets from Scotland into the North Sea but only 4-5 advances have been identified from the 

terrestrial stratigraphy. Two primary modes of glaciation, mountain ice cap and full ice sheet modes, 

can be recognised. Different zones of glacial erosion in Scotland reflect this bimodal glaciation and 

the spatially and temporally variable dynamics at glacier beds. Depths of glacial erosion vary from 

almost zero in Buchan to hundreds of metres in glens in the western Highlands and in basins both 

onshore and offshore. The presence of tors and blockfields indicates repeated development of 

patches of cold-based, non-erosive glacier ice on summits and plateaux. In lowlands, chemical 

weathering continued to operate during interglacials, but gruss-type saprolites are mainly of 

Pliocene to Early Pleistocene age. The Middle Pleistocene terrestrial stratigraphic record in Scotland, 

whilst fragmentary and poorly dated, provides important and accessible evidence of changing 

glacial, periglacial and interglacial environments over at least three stadial–interstadial–interglacial 

cycles. The distributions of blockfields and tors and the erratic contents of glacial sediments indicate 

that the configuration, thermal regime and pattern of ice flow during MIS 6 were broadly 

comparable to those of the last ice sheet. Improved control over the ages of Early and Middle 

Pleistocene sediments, soils and saprolites and on long-term rates of weathering and erosion, 

combined with information on palaeoenvironments, ice extent and sea level, will in future allow 

development and testing of new models of Pleistocene tectonics, isostasy, sea-level change and ice 

sheet dynamics in Scotland. 

KEY WORDS: Early Pleistocene, erosion, landform, Middle Pleistocene, Scotland, stratigraphy, 

weathering 
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The onset of extensive glaciation in the latest Pliocene in the Northern Hemisphere marked a 

fundamental change in the suite of geomorphic processes acting on land surfaces. On the segment 

of the North Atlantic passive margin in Scotland, landscapes had evolved during the Mesozoic and 

earlier Cenozoic through the interplay of tectonics, rock properties and surface processes operating 

under warm to temperate humid climates. Denudation involved prolonged and pervasive chemical 

weathering acting on a diverse rock substrate (Godard, 1965; Hall, 1991), with formation of thick 

saprolites (Hall, 1986). The removal of weathering products was by solution and slope processes, 

with fluvial transport of the detritus of weathering towards sediment sinks on the North Atlantic 

shelf (Stoker et al., 2010) and in the North Sea basin (Japsen, 1997; Hall & Bishop, 2002).  

 During the Pleistocene (ca. 2.6–0.01 Ma), renewal of the saprolite layer slowed due to episodic 

glacier ice cover, lower average temperatures in ice-free intervals, the development of permafrost 

and increasing exposure of quick-drying rock surfaces. Chemical weathering rates remained high, 

however, as frost weathering and glacial comminution generated small rock fragments of high 

surface area that were then exposed to soil water (Raymo & Ruddiman, 1992). Periglacial slope 

processes were likely highly effective in mountain areas in moving existing and newly produced 

regolith towards river channels (Bartsch et al., 2009), as in Scotland during the Lateglacial and 

Holocene periods (Ballantyne & Harris, 1994). Episodic ice sheet development was locally 

preservative in its impact on landscapes, where cold-based, non-erosive ice covers effectively sealed 

off the landsurface from weathering and erosion for long periods (Sugden, 1968; Hall & Sugden, 

1987). Elsewhere, glacial erosion had a transformative effect on scenery, stripping away old 

weathering mantles (Clark & Pollard, 1998) and quarrying and abrading newly exposed fresh rock 

surfaces in the lowlands (Krabbendam & Bradwell, 2011). In the mountains, channelling of ice flow 

along existing and new valleys led to efficient vertical glacial erosion and the deep incision of valleys 

and cirques (Sugden, 1968; Hall & Kleman, 2014). 

 Recent work in Scotland has been focussed on the study of Late Pleistocene (128-12 ka) 

environments, landforms and sediments (Ballantyne & Small, 2018; Merrit et al., 2018; Smith et al., 

2018). Events in the Early (2.588-0.774 Ma) and Middle (774-128 ka) Pleistocene have received much 

less attention despite the far longer time periods involved. Yet these critical intervals bridge the 

deep time of the Palaeogene and Neogene and the near-present of the last glacial cycle. This paper 

aims to provide the first synoptic review of changing environments, developing landforms and 

terrestrial stratigraphy during the Early and Middle Pleistocene in Scotland. The tectonic and climatic 

framework for relief development, erosion and sedimentation is explored using evidence from 

climate proxies, the offshore sedimentary record and ice sheet models. The variable impact of glacial 

erosion across Scotland is examined using its landscapes and landforms and linked to former glacier 

basal thermal regimes. Non-glacial processes were also important in shaping the landsurface, 

especially during the Early Pleistocene, through the action of chemical weathering, pedogenesis, 

frost-riving and solifluction operating over rock substrates of diverse lithology and structure. 

Sediments of Early to Middle Pleistocene ages are not widely preserved on land in Scotland but 

those which exist represent an important archive of environmental changes before the last glacial 

cycle and the extent, flow paths and dynamics of Middle Pleistocene ice sheets.  
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1. Pleistocene tectonic and climate history 
Episodic Cenozoic uplift of Scotland commenced in the middle Palaeocene and continued into the 

Neogene (Le Coeur, 1999; Praeg et al., 2005; Gregersen & Johannessen, 2007; Stoker et al., 2010). 

The latest phase of uplift commenced at ~4 Ma, prior to the onset of extensive glaciation, and may 

have extended into the Pleistocene (Stoker et al., 2010). In the English Peak District uplift has been 

estimated at 300 m since 12 Ma (Pound & Riding, 2015) or ~3 Ma (Westaway, 2009). Evidence from 

caves of valley incision and from raised beaches suggests uplift of the Alston Block in northern 

England at rates of 0.2 mm/yr over the last 0.8 Ma (Westaway, 2016). Subsidence continued in the 

North Sea basin through the Plio-Pleistocene (Cameron et al., 1987; Westaway, 2016), with the top 

surface of Pliocene lignite-bearing deltaic sediments found in borehole 81/19 in the outer Moray 

Firth) now lying at a depth of 180 m (Andrews et al., 1990). Pleistocene uplift of the land area of 

Scotland was probably limited as an extensive peripheral planation surface of likely Pliocene age is 

now found at 80-120 m a.s.l. in Lewis, NW Scotland, Caithness and Buchan (Godard, 1965). 

Remnants of deep gruss weathering indicate prolonged subaerial exposure and a position above sea 

level during weathering. Marine deposits and platforms are absent from elevations >45 m in 

Scotland (Smith et al., 2018), although flint gravels in eastern Buchan at up to 140 m a.s.l. have been 

interpreted as beach deposits (Bridgland et al., 1997). In The Minch and the Sea of the Hebrides, the 

peripheral planation surface is dislocated, with up to 150 m of displacement along the Minch and 

Camasunary-Skerryvore Faults and uplift of up to 200 m for the Rum horst (Le Coeur, 1988), but with 

submergence of platforms W of the Outer Hebrides. Neotectonic activity, including Lateglacial 

reactivation of existing faults in response to postglacial isostatic rebound is now widely documented 

around the Inner Hebrides (Firth & Stewart, 2000; Smith et al., 2009; Stoker & Bradwell, 2009). 

 Global climate cooled through the Cenozoic Era. The first ice sheets appeared in Greenland at 38 

Ma (Eldrett et al., 2007), but it was not until ~2.7 Ma that large ice sheets developed at mid-latitudes 

in the Northern Hemisphere (Bailey et al., 2013). In the Early Pleistocene, global climate forcing was 

driven by 41 ka orbital cycles, but during the Middle Pleistocene Transition (MPT) at 1.2–0.7 Ma 

(Head & Gibbard, 2005) there was a shift towards forcing driven by 100 ka cyclicity (Clark et al., 

2006). As James Croll (1875) foresaw nearly 150 years ago, a global consequence was to produce 

longer and more intense cold periods, which changed both the timing and extent of glaciation (Lee 

et al., 2015). 
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Figure 1 The δ
18

O record for benthic foraminifera from marine core DSDP 607 (Ruddiman et al., 1989) interpreted as a 
proxy for glacier extent in Scotland. The cut-off value of >3.7‰ δ

18
O indicates when conditions were equivalent to the 

Younger Dryas event (Small & Fabel, 2016) when mountain ice caps, valley and corrie glaciers formed in Scotland 
(Clapperton 1997). The cut off value of >4.2‰ δ

18
O is that at 37.5 ka in DSDP 607, a time when the last ice sheet started to 

build up in Scotland (Hubbard et al. 2009). IG - interglacial; IS - interstadial; MIC - mountain ice cap; MPT - Mid-Pleistocene 
Transition. Marine isotope stages (MIS) marked are equivalent to the following British and NW European stages: MIS 16 
(676-621 ka; Happisburgh-Donian), MIS 12 (478-424 Ma; Anglian-Elsterian), MIS 6 (186-130 ka) (Wolstonian-Saalian) and 2 
(29-14 ka; Late Devensian-Late Weichselian). 

 The δ180 record for North Atlantic marine sediments constrains the first-order timing and 

intensity of environmental change in Scotland through the Pleistocene. This approach follows earlier 

work in Scotland (Clapperton, 1997) and northern Fennoscandia (Kleman et al., 2008; Hall et al., 

2013a). We take δ180 values for known Late Pleistocene glacial events in Scotland and assume that 

similar events occurred in the past when δ180 values were similar (Figure 1). This comparison is 

simplistic because the global ocean temperature fluctuations recorded by benthic foraminifera can 

provide only a general picture of ice sheet extent and volume at the regional scale (Clark et al., 

2009). Nonetheless, this method suggests that the build-up of ice caps in Scotland started at ~2.72 

Ma, with ice sheets covering most of Scotland for brief periods (mainly <10 ka) from 2.5 Ma 

onwards. The Early Pleistocene period was otherwise dominated by two climate types (Figure 1): (i) 

an interglacial or interstadial type, when warm or cool temperate conditions prevailed and glaciers 

were absent; and (ii) a stadial type, when ice caps developed at higher elevations and periglacial 

conditions, with periods of permafrost (Vandenberghe, 2001), prevailed for long periods at lower, 

peripheral locations. The Early Pleistocene vegetation records of East Anglia indicate warmer 

interglacial conditions than at present in England, with establishment of temperate mixed 

coniferous/deciduous forest that included Tsuga (hemlock)and Pterocarya (wingnut) (West, 1962). 

Comparison with MIS 5 temperature gradients in NW Europe (Sejrup & Larsen, 1991) suggests the 

widespread growth at low elevations in Scotland of deciduous woodland in warm stages of the Early 

Pleistocene.  

 The MPT is not readily apparent in the DSDP 607 record (Fig. 1) but the intensity and duration of 

the cooling events after 0.7 Ma is striking, implying up to 10 subsequent phases of ice sheet 
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development in the British Isles. Last (MIS 3-2) ice sheet models indicate a maximum ice surface 

elevation of 1.5-2 km (Kuchar et al., 2012). Ice sheets of equivalent or greater thickness probably 

developed in the culminations of the MIS 16, 12 and 8 to 6 cold stages (Figure 1). Although the 

dating and extent of some Middle Pleistocene glaciations in eastern England remain controversial 

(White et al., 2017), glacial deposits in East Anglia (Lee et al., 2015) and in the North Sea (Bendixen 

et al., 2017) have been correlated with each of these cold stages. Flow of ice from Scotland is 

recorded by indicator heavy minerals and erratic clasts in Middle Pleistocene tills in East Anglia (Lee 

et al., 2012). 

 At the onset of Northern Hemisphere glaciation, mountains ~1 km-high existed in those parts of 

Scotland that hold high summits today. Hence it is likely that the first extensive glaciation of 

northern Fennoscandia at 2.7 Ma (Flesche Kleiven et al., 2002) was accompanied by the growth of 

mountain glaciers in Scotland. Ice-rafted Carboniferous debris records multiple phases of glaciation 

in Ireland between 2.6 and 1.7 Ma (Thierens et al., 2011). Iceberg scours are reported from the floor 

of the northern North Sea through the Early and Middle Pleistocene (Dowdeswell & Ottesen, 2013), 

requiring marine termination of the Fennoscandian Ice Sheet (FIS) on several occasions. Thick 

glacimarine sediments accumulated in the northern North Sea, sourced mainly from Fennoscandia, 

between 2 and 1.2 Ma, but there is no firm evidence for advance of the Fennoscandian or British ice 

sheets into the central part of the basin in this period (Reinardy et al., 2017) and fluvial 

sedimentation continued E of Shetland (Ottesen et al., 2014). Subsequent glaciation by an early 

Shetland ice cap is recorded by N-S oriented mega-scale glacial lineations (MSGLs) seen in seismic 

surveys close to the Fladen Ground and dated to 1.1-1.0 Ma (Buckley, 2017). 

 In the west central North Sea, the Early Pleistocene Aberdeen Ground Formation is truncated by 

an extensive erosional unconformity, the Upper Regional Unconformity (URU), formed at ~ 1.2 Ma 

(Reinardy et al., 2017), that is widely regarded as predominantly of glacial origin (Larsen et al., 2000; 

Bradwell et al., 2008b; Graham et al., 2010; Graham et al., 2011). Increasing sediment influx from 

the west above the URU indicates the growing importance through the MPT of glaciers in Scotland 

as sediment conveyors to the North Sea. Several sets of MSGLs attributed to subglacial streamlining 

of sediment have been reported from the Middle to Late Pleistocene sequence, for example, in the 

Witch Ground Basin between 58˚ and 59˚N (Graham et al., 2007; Graham et al., 2010; Stewart et al., 

2013). In addition, seven generations of tunnel valleys, thought to have been formed mainly by 

subglacial meltwater flow, have also been observed above the URU in the central North Sea (Stewart 

& Lonergan, 2011). These glacial landforms provide strong evidence supporting inferences from the 

isotope record (Figure 1) for multiple advances of grounded ice sheets from Scotland into the North 

Sea basin since 0.774 Ma. 

 Patterns of ice flow derived from the transport of glacial erratics by the last ice sheet have long 

indicated coalescence from discrete ice centres (Figure 2) (Geikie, 1901). Major centres for ice build-

up included the high mountains of Galloway, the western Grampians, the NW Highlands and the 

Cairngorms, with minor ice domes over the Skye Cuillin and Mull (Sissons, 1967). Other large, locally 

warm-based ice masses, including low-elevation cirque glaciers (Barr et al., 2017), formed over the 

mainly low ground of the Outer Hebrides (von Weymarn, 1979), Orkney (Ballantyne et al., 2007) and 

Shetland (Flinn, 1978b), indicating high snow accumulation rates along the North Atlantic seaboard. 

These growth points are also evident in models of the last British-Irish Ice Sheet (BIIS) (Boulton & 

Hagdorn, 2006; Hubbard et al., 2009). Topographic lows developed on Palaeozoic and Mesozoic 

sedimentary basins exerted a strong influence over the location and orientation of major ice streams 

draining the last BIIS in the Sea of the Hebrides, The Minch, the Moray Firth and the Forth. That 

these topographic and climatic controls also influenced the dynamics of earlier ice sheets is 
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indicated by the geometry and provenance of sediment stacks along the edge of the North Atlantic 

shelf (Stoker, 1997) and in the North Sea basin (Stoker & Bent, 1985). The topographic low centred 

on the Fladen Ground (Figure 2) received ice lobes from the eastern BIIS and the western edge of 

the FIS (Sejrup et al., 1987). The Norwegian Channel ice stream became a recurrent feature after 1.1 

Ma (Sejrup et al., 2003), directing ice flow towards the N and perhaps thereafter reducing the 

westward extent of Scandinavian ice in the central North Sea (Batchelor et al., 2017). During glacial 

maxima in the Middle Pleistocene, the BIIS and FIS were probably confluent across a shifting, broad 

zone in the North Sea (Bendixen et al., 2017) (Figure 2). 

 

Figure 2 Main features of the Pleistocene glaciation of Scotland. Major and minor centres of ice sheet growth are shaded in 
blue. Note the belt of ribbon lakes in the western Highlands and the associated basins of the inner sea lochs of the west 
coast that define a zone of glacial over-deepening beneath former mountain ice caps. FG: Fladen Ground. 

 Periglacial environments in the present interglacial have remained confined to high elevations in 

Scotland (Ballantyne & Harris, 1994). In the cold stages of the Pleistocene, however, periglacial 

conditions, including permafrost extended down to sea level across large parts of NW Europe 

beyond glacial limits (Renssen & Vandenberghe, 2003). The cumulative duration of these phases was 

long, especially in the Early Pleistocene when the total duration may have approached 1 Myr (Fig. 1). 

Frost-churning of soils first appears in MIS 22 (0.82 Ma: Beestonian) in East Anglia and indicators of 

cold climates, including ice wedge casts, reappear throughout the Middle Pleistocene stratigraphy 

(Rose et al., 1985). In Buchan, the record of permafrost, frost weathering and mass wasting extends 

back into the Middle Pleistocene (Connell & Hall, 1987). Largely through the work of Colin Ballantyne 

and his collaborators, the periglacial landforms and materials of the Late Pleistocene and Holocene 

have been mapped, analysed and dated in Scotland to a level of detail that is unmatched in any 

other similar-sized terrain in the world (Ballantyne 2018). This dataset provides the starting point for 

assessment of the impacts of periglacial processes in earlier periods. 
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2. Morphological evidence of Pleistocene glacial and non-

glacial erosion 
Scotland, despite its modest land area, carries remarkably varied landforms and landscapes that 

provide evidence of the cumulative impact of the glacial and non-glacial processes that operated on 

landsurfaces through the Pleistocene. At the onset of Pleistocene glaciation, a diversity of fluvial 

landscapes existed in Scotland, developed in response to episodic Neogene uplift. In the Outer 

Hebrides and Assynt, an extensive peripheral planation surface backed by mountains was drained by 

rivers flowing to The Minch and the Sea of the Hebrides (Le Coeur, 1999). The main watershed lay 

close to its present position in Northern Scotland (Figure 3) but later shifted eastward in places after 

glacial breaching (Godard, 1965; Jarman, 2007). From Glen Affric southwards towards the central 

lowlands, the watershed zone was highly dissected, with deep valleys set between narrow ridges 

(Godard, 1965). Further E in the Northern and Grampian Highlands, extensive plateaux, carrying 

fragments of elevated planation surfaces, were set between broad straths and basins (Godard, 1965; 

Hall & Bishop, 2002; Jarman, 2017). Peripheral planation surfaces extended across Caithness, Buchan 

and, probably, the Forth lowlands. The central lowlands held considerable relief due to differential 

weathering and erosion of Palaeozoic igneous and sedimentary rocks (Sissons, 1976). The Neogene 

geomorphology of the Southern Uplands has not been examined closely but, in its gross form, 

comprised broad uplands drained, as now, by rivers flowing towards the North Sea, North Channel 

and Solway Firth (Sissons, 1960). In all areas, sets of major landforms – hill masses and isolated hills, 

scarps, basins and valleys - had developed through the Neogene on a diverse geology in response to 

differential weathering and erosion acting under humid climates (Hall, 1991).  

 

Figure 3 Non-glacial landforms and regolith in the northern Scottish Highlands. Submerged platforms in western Scotland 
after Le Coeur (1988). Other non-glacial landforms from Godard (1965) and Hall (1991). Plateau surfaces with no or weak 
development of glacial erosion forms mapped from NextMap imagery. Blockfield distribution in the NW and W Highlands 
from Ballantyne and others (see text below for references). Saprolites and tors from field mapping and literature reports. 
Coastal rock features from Smith et al. (2018). Comment [  1]: Editor note to copy editor. 

Reviewer noted that this figure should be 
reproduced at a scale that shows the detail. 
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 The forms of glacial erosion are cut into the smooth slopes of this older relief (Figure 4). Valley 

heads became settings for corrie glaciers, and river valleys provided ready conduits for glacier flow 

(Glasser, 1995) (Figure 5). Valley deepening, coupled with increasing valley connectivity, may have 

led to the adaptation of the topography towards more efficient evacuation of ice flow and to a 

reduction in valley incision rates through the Pleistocene (Kaplan et al., 2009). In lowland areas with 

crystalline bedrock, smooth, low-relief surfaces were stripped of regolith, roughened and, in places, 

streamlined by glacial erosion (Krabbendam & Bradwell, 2011; Krabbendam & Bradwell, 2014). 

Computational experiments have suggested that low-relief plateaux on glaciated passive margins of 

the Northern Hemisphere were formed exclusively by glacial erosion (Egholm et al., 2017). In 

Scotland, however, as in Scandinavia (Etzelmuller et al., 2007; Ebert et al., 2011), such plateaux are 

most extensive in eastern areas and lack bedforms indicative of efficient glacial erosion (Fig. 3) 

whereas, towards the W, plateaux become increasingly fragmented and glacially roughened. 

Morphological transition and transformation are consistent with Pleistocene glacial modification and 

dissection of pre-existing landsurfaces.  

 

Figure 4 Landscape of selective linear glacial erosion at Lochnagar in the eastern Grampians. The glacial trough now 
occupied by Loch Muick is cut into the Mounth plateau, a fragment of an extensive planation surface now at 800 m a.s.l. A 
200-300 m high scarp rises to the domed granite summits of Lochnagar. 

Page 9 of 83

Cambridge University Press

Earth and Environmental Science Transactions of the Royal Society of Edinburgh



For Peer Review

10 
 

 

Figure 5 Mountain scenery in the SW Grampians shaped by multiple episodes of fluvial, glacial, periglacial and paraglacial 
activity. Late Caledonian Etive igneous complex rocks dominate the area shown, with the fault-guided course of Glen Etive 
in the foreground. The forested hills in the middle ground probably represent remnants of a precursor valley floor of a 
broad strath, now standing at 310-390 m a.s.l. The glacial trough occupied by Loch Etive descends to 145 m below sea level 
in rock basins (Audsley et al., 2016). The high summits show glacially roughened rock surfaces and were overwhelmed by 
warm-based glacier ice beneath the last and earlier ice sheets. During the Loch Lomond Stadial (12.9-11.7 ka), an outlet 
glacier drained from Rannoch Moor through Glen Etive. Extensive talus accumulations occur at the foot of slopes. 

3. Glacial erosion 

3.1 Erosion patterns 
The variable impact of glacial erosion across Scotland was identified by Linton (1959). Comparisons 

of maps of non-glacial (Figure 3) and glacial (Figure 6) landforms and regolith for the northern 

Scottish Highlands reveal inverse correlations that can be linked to model results for former glacier 

basal thermal regimes (Fig. 7). Saprolites, tors and pre-Devensian tills are concentrated in NE 

Scotland and in the eastern parts of the Northern Highlands, areas which lack roughened or 

streamlined terrain typical where glacial erosion has been effective. Conversely, these non-glacial 

features are virtually absent from across the Lewisian lowlands over the Outer Hebrides, apart from 

N Lewis (Hall, 1996), and also from the NW Highlands, with its distinctive cnoc-and-lochain terrains. 

Similar observations led to the recognition of zones of glacial erosion at regional (Linton, 1963; 

Clayton, 1974; Haynes, 1983) and sub-regional (Gordon, 1979; Hall, 1986; Hall & Sugden, 1987) 

scales across Scotland. 

 The contrasting modes of mountain ice cap and full ice sheet glaciation interpreted from the 

oxygen isotope record from marine core DSDP 607 (Fig. 1) are also important for understanding 

patterns of glacial erosion and deposition across Scotland. Because of differences in ice extent, the 

zones of erosion and deposition beneath mountain ice caps and full ice sheets may not coincide, 

particularly in areas E of the main ice divide. Glacial landform distribution in western Scotland 

provides evidence for prolonged erosion by mountain ice caps. Alpine glacial topography is 

restricted to small areas on Skye and in Lochaber (Haynes, 1983). Glacial over-deepened rock basins 
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are distributed mainly in 15-30 km wide zones on both sides of the main watershed throughout its 

length (Fig. 2). The basins include radial troughs around Rannoch Moor that were excavated by ice 

flowing from a large ice dome over the SW Grampian mountains (Linton, 1972). An axial ice-shed 

zone of low erosion exists along the watershed of the Northern Highlands, bounded by areally 

scoured landscapes and over-deepened valleys to W and E (Gordon, 1979) (Fig. 6). Belts of thick 

glacial deposits occur around the inner Moray Firth and in the lower Clyde basin that include, at 

depth, pre-MIS 3 tills (Section 6.2). Landform and sediment distribution appears to conform to the 

erosional and depositional zones of former mountain ice caps that developed through the Middle 

and Late Pleistocene. Mountain ice-cap extent may have been strongly influenced by calving at 

marine limits in the inner Moray Firth, the Forth and Clyde lowlands and within the Inner Hebrides 

(Sissons, 1981).  

 Areas of ice-roughened and ice-streamlined bedrock also occur far outside the mountain ice cap 

limits reached during the Loch Lomond Stadial. Ice roughening extends across much of the Outer 

Hebrides and beyond the present coastline of the Northern Highlands in Sutherland and Easter Ross 

(Figure 6). The onset zones for former ice streams in western Scotland also lie mainly outside Loch 

Lomond Stadial limits and extend across large areas of the sea bed in The Minch and the Sea of the 

Hebrides (Bradwell et al., 2008a). Ice streams excavated deep basins in the Mesozoic rocks of The 

Minch (Sissons, 1967) and in the inner Moray Firth (Sutherland & Gordon, 1993). Streamlined 

terrains in the Tweed (Everest et al., 2007) and Forth valleys (Golledge & Stoker, 2006) and around 

the Firth of Clyde (Finlayson et al., 2010; Finlayson et al., 2014) also continue across adjacent areas 

of the present sea bed. The main ice sheet depocentres were on the North Atlantic shelf and in the 

North Sea basin (Holmes, 1997). Glacial erosion and deposition in areas peripheral to the main ice 

centres must relate to large ice sheets. Bimodal patterns of glacial erosion and deposition linked to 

mountain ice cap and ice sheet glaciation have been recognised across Fennoscandia (Kleman et al., 

2008) but the smaller, highly dynamic glaciers and ice sheets that formerly covered the more 

complex topography of Scotland have received less attention (Haynes, 1977). 

 Glacial dissection of mountain areas is strongly developed in the western Highlands (Linton, 1949; 

Haynes, 1977; Jarman, 2007). An absence of inherited cosmogenic nuclides from low elevation sites 

requires removal of >2.5 m of rock in the last glacial cycle (Fame et al., 2018). In Assynt, rates of 

valley deepening were rapid, estimated at 2 m/ka during periods of glaciation since 280 ka (Hebdon 

et al., 1998). The density and interconnectivity of glacial valleys drops towards eastern areas 

(Haynes, 1977) (Figure 6). Progressive glacial modification of valley systems is evident moving E-W 

across the central Grampians. Little-modified fluvial valley networks remain in the Tarf basin but 

valleys become deeply incised in the Forest of Atholl, with the first stages of glacial breaching of 

watersheds, and pass westwards at Drumochter into highly dissected mountains with 

interconnected valley systems and deep glacial breaches and cols (Hall & Jarman, 2004). Valley-in-

valley forms are common in Scotland, products of linear glacial excavation of trenches within broad 

straths (Hall, 1991) (Fig. 5). Where glacial valleys are developed from fluvial precursors, as in the 

Cairngorms (Sugden, 1968; Hall & Gillespie, 2016) and across much of the southern Highland 

boundary (Linton, 1940), the timescales for glacial modification likely span the Pleistocene (Fredin et 

al., 2013). Large meltwater channels may have been re-occupied in successive glaciations, especially 

where meltwater flow was constrained by topography in cols, for example the many Nye channels in 

the eastern Grampians (Clapperton & Sugden, 1977), or against hill flanks, for example in the Ochils 

(Russell, 1995) and Lammermuirs (Sissons, 1961). The presence of pre- MIS 5 and younger deposits 

in channel floors in Moray, Buchan and Caithness (Section 6) indicates at least localised 

reoccupation. 

Page 11 of 83

Cambridge University Press

Earth and Environmental Science Transactions of the Royal Society of Edinburgh



For Peer Review

12 
 

 

Figure 6 Glacial landscapes and landforms in the northern Scottish Highlands. Glacially eroded depressions from Sutherland 
& Gordon (1993). Corries from (Barr et al., 2017). Glacial streamlining and roughening mapped from NextMap imagery. 

 Glacial modification of landscapes had a marked vertical component. A morphological gradation, 

from ice-scoured valley floors to roughened valley flanks and smooth plateaux, is a conspicuous 

feature of many valley cross profiles in the central and eastern Scottish Highlands. Along the western 

seaboard, blockfields that predate the last glaciation (Hopkinson & Ballantyne, 2014) and which 

mark zones of very limited glacial erosion are confined to the highest summits (Ballantyne et al., 

1997; Ballantyne et al., 1998). Many blockfields are associated with fragments of older, rounded 

montane topography, dissected by valleys and 'cookie-cut' by corries. Only in a few areas, such as 

Knoydart, does ice-roughening extend to summits and here blockfields are almost absent 

(Ballantyne, 2000) (Figure 3). Blockfields drop in altitude towards eastern Sutherland and Caithness 

(Ballantyne & Hall, 2008; Phillips et al., 2008). Blockfields have not been mapped systematically in 

the eastern Grampians but tors drop from elevations of 1200-600 m in the Cairngorms to 400 m at 

the Cabrach, 40 km to the NE (Blyth, 1969), and to 100 m in Buchan (Hall, 2005). When compared to 

the distribution and height of low-relief upland surfaces lacking in glacial erosion forms (Figure 3), it 

is clear that the upper limit of effective glacial erosion also declines from W to E across much of the 

Highlands. This gradient is similar in trend to that seen in models of basal temperature for the last 

ice sheet (Fig. 7). 

 

Figure 7 Cumulative time that the bed for the last (MIS 3-2) British-Irish 

Ice Sheet was at pressure melting point (PMP) expressed as a percentage 

of the total simulation time in experiment E102b2 (Hubbard et al., 2009). 

Persistent frozen basal conditions are indicated by black shading (%PMP 

< 2.5%). Assuming that similar basal temperatures developed beneath 

Early and Middle Pleistocene ice sheets, comparison with Figs 3 and 6 

indicates close correlations between: (i) distributions of areas with 

persistent cold-based ice and non-glacial landforms; and (ii) areas of 

more frequent warm-based conditions and landscapes of glacial 

roughening and streamlining. 

Comment [  2]: Editor note to copy editor. 
Reviewer noted that this figure should be 
reproduced at a scale that shows the detail. 
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3.2 Erosion depths 
Depths of cumulative glacial erosion can be estimated by using non-glacial landforms and 

landsurfaces as reference points and surfaces for erosion. Glacial forms, mainly cnoc-and-lochain 

terrain, rock basins, valleys and corries, are cut into pre-glacial landsurfaces and so, along with any 

glacial lowering of hilltops and interfluves, represent total glacial erosion through the Pleistocene 

(Hall et al., 2013b). Minor non-glacial forms and weathering mantles – such as many tors (Hall & 

Sugden, 2007) and blockfields (Ballantyne, 2010b) and some shallow saprolites (Wright, 1997) – are 

of Early to Middle Pleistocene age and indicate little or no glacial erosion through later glacial cycles. 

Non-glacial and glacially roughened slopes have been themselves lowered by weathering and 

erosion through the Pleistocene (Phillips et al., 2006; Hopkinson & Ballantyne, 2014; Andersen et al., 

2018).  

 Increasing glacial erosion depths are evident moving W across the Grampians. In eastern Buchan, 

where Tertiary gravel deposits survive on ridge tops (Hall et al., 2015a), erosion is locally of the order 

of metres. In the type landscape of selective linear erosion in the Cairngorms (Sugden, 1968), glacial 

erosion of plateau surfaces was negligible (Hall & Glasser, 2003), although non-glacial denudation of 

bare rock surfaces operated at 2.8 to 12.0 m/Ma (Phillips et al., 2006). Most erosion resulted from 

glacial deepening of valleys by <200-350 metres (Sugden, 1968; Hall & Gillespie, 2016). Estimated 

Pleistocene erosion depths across the Dee catchment are estimated at 30-60 m, with a substantial 

contribution from the removal of saprock and saprolite (Glasser & Hall, 1997). In the western 

Grampians, inheritance of 10Be cosmogenic nuclides is highest on ridge tops and declines or is absent 

at lower elevations. Modelled erosion rates decline eastwards from 40 to 20 m/Ma (Fame et al., 

2018). 

 Glacially streamlined terrain found along parts of the Great Glen, in much of Caithness and in 

patches along the lower Dee valley towards Aberdeen (Fig. 6) merges laterally with non-streamlined 

terrain of similar ridge-top elevations, suggesting that erosion has been restricted mainly to the 

excavation of valleys and depressions. Similarly, in terrain on the Lewisian basement gneiss of the 

western seaboard, it has long been thought that glacial erosion has been largely restricted to the 

removal of regolith (Godard, 1961), with deep erosion of basement only in basins and valleys 

(Krabbendam & Bradwell, 2014) . On the Ross of Mull (Fig. 8), the cnoc-and-lochain terrain has been 

interpreted as a glacially stripped and roughened tor field developed on an erosion platform of 

Pliocene age (Le Coeur, 1988). Depths of erosion above cnoc summits, however, remain poorly 

constrained in both streamlined and roughened terrains. The recognition of mega-grooves 0.1-6 km 

long, 10-100 m wide and 5-15 m deep on the streamlined bed of a former ice stream in Assynt 

(Bradwell et al., 2008a) and the floors of The Minch (Bradwell et al., 2007) and the Sea of the 

Hebrides (Dove et al., 2015) demonstrate that, in zones of fast ice flow, glacial erosion of hard 

crystalline rock was, at least locally, highly efficient. 
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Figure 8 Cnoc-and-lochain terrain developed in Caledonian granite, Fionnphort, Ross of Mull. 1. Cnoc developed in massive 
granite. 2. Rock basin excavated in fractured granite. 3. Major fracture transverse to ice-flow. 4. Granite monoliths, with 
>10 m vertical fracture spacing, acting as resistant, stoss-side bastions.  

 Deep glacial erosion is manifest elsewhere. In the mountains of the western Highlands, glacial 

erosion has been highly effective, excavating basins and fjords below sea level and dissecting and 

lowering pre-existing watersheds (Sissons, 1967). Glacially polished surfaces above 500 m in Glen 

Shiel and Glen Nevis show little or no cosmogenic 10Be inheritance, indicating ≥2.5 m of erosion in 

the last glacial cycle (Fame et al., 2018). Ice tends to flow towards and stream along pre-existing 

fluvial valley systems, a confluent flow pattern leading to highly effective linear erosion (Sugden, 

1968) (Nesje & Whillans, 1994), the main component of the glacial buzzsaw (Hall & Kleman, 2014). 

Transfluent ice flow in the western Highlands led to breaching of watersheds and to cutting of new 

valleys (Haynes 1977). Rock basins reach depths of 200-300 m below sea level in lochs Ness and 

Morar (Sissons, 1967), and basins in the Sound of Raasay and Loch Linnhe are of even greater depths 

(Sissons, 1976). In the upper Forth valley, sharp contrasts exist in depths of glacial erosion. Resistant 

lava plateaux and tapered interfluves developed in softer rocks but somewhat sheltered from glacial 

erosion in lee locations stand ~100 metres above the drift-filled floors of the Forth and Teith valleys 

(Linton, 1962) (Figure 9).  Glacially excavated trenches and rock basins extend below these valley 

floors to depths below sea level of 100 m E of Stirling and 170 m at Bo’ness (Sissons, 1969; Francis et 

al., 1970). Borehole records also show rockhead at 100 m below the Devon valley to the E (Soons, 

1959)In W Fife, the thick Late Carboniferous dolerite sill between the M90 motorway and the 

Lomond Hills now forms a fragmented scarp that has been breached and lowered by ice flow. Many 

crag and tail forms in the glacially streamlined terrain of the Central Lowlands are erosional features, 

with crags formed in volcanic plugs and tails formed in sedimentary rock (Burke, 1969; Sissons, 1971; 

Evans & Hansom, 1996). The difference in elevation of beds on the stoss and lee sides  provides a 

minimum depth of glacial erosion around the crags of 25 to 100 m (Geikie, 1887). 

 Little attention has been given to the substantial thicknesses of weakly consolidated 

Carboniferous to Neogene sedimentary rocks likely removed by glacial erosion from the basins and 

shelves surrounding Scotland. Major unconformities truncating Early and Middle Pleistocene 

sediments are mapped in the North Sea (Cameron et al., 1987) and on the North Atlantic shelf 

(Stoker et al., 1993). Progressively older Cenozoic to Palaeozoic rocks sequences are also truncated 

to landward (Andrews et al., 1990). The mass balance of rock removal and its transfer to the shelf by 

glacial processes has not been fully quantified but preliminary investigations suggest that lowering of 
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extensive areas of shelf by glacial erosion was required to produce the large volumes of Pleistocene 

sediment (Clayton, 1996; Glasser & Hall, 1997). Such scalping of inner shelves by glacial erosion and 

during episodes of low sea level is apparent in the URU off western Norway (Rise et al., 2005). Mass 

transfer from Scotland may have been sufficient to induce isostatic rebound of the land area in 

response to Pleistocene erosion (Hall & Bishop, 2002) and tilting towards North Sea depocentres 

(Løseth et al., 2013) but also awaits further quantification. 

 

 

Figure 9 Uneven impact of glacial erosion in the upper Forth valley. Smooth, tapered interfluves (Linton, 1962) and 
benches are developed in sandstones of mainly Devonian age (brown dashed lines). Carboniferous lava plateaux, marked 
by red dashed lines, have been lowered, roughened and weakly streamlined by glacial erosion. The intervening valleys 
have been over-deepened and thick sediments infill rock basins below the Carse of Stirling (CS) that reach depths of >100 
m (Sissons, 1967). GH Gargunnock Hills. MH Menteith Hills. OH Ochil Hills. General direction of ice flow is indicated by 
arrows. 

3.3 Corries 
Corries, or cirques, are striking components of Scottish mountain scenery. Many corries were 

occupied by small glaciers during the Loch Lomond Stadial but the small volumes of debris found in 

end moraines indicate that erosion of the corrie basins has extended over a much longer period 

(Sissons, 1976). Corrie dimensions are moderate, with headwalls generally ranging in height from 

150-450 m and with width and length rarely exceeding 1  km (Gordon, 1977). Such dimensions, 

when averaged over Pleistocene time, indicate quite slow erosion but this is potentially misleading 

because cirque erosion rates were highly variable through the Pleistocene (Crest et al., 2017) and 

also many corries may have been occupied by independent glaciers for only short periods before 

being overwhelmed by ice sheet advance (Richardson & Holmund, 1996). Corries with glacially-

rounded upper slopes are common in the SW Grampians (Sissons, 1976), close to a major centre of 

ice sheet accumulation. Here, and perhaps elsewhere, the main phases of corrie erosion may have 

occurred during the many stadial periods of the Early Pleistocene, with long periods of burial 

beneath the ice sheets of the Middle and Late Pleistocene and more limited erosion in the short 

intervening phases of mountain glaciation. Some support for this hypothesis is provided by model 

results with an apparently short duration of warm-based conditions at high elevations across 
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Scotland beneath the last ice sheet (Fig. 7). The frequency of rock-slope failures and failure scarps 

within corries in NW Scotland suggests that cirque enlargement during successive glacial-interglacial 

cycles involved deepening by glacial erosion, headwall retreat by rock-slope failure and removal of 

RSF debris during subsequent glaciation (Ballantyne, 2013; Cave & Ballantyne, 2016). 

 Corrie distribution in Scotland is a function of climate, topography and time. Corrie floor 

elevations are low along the western seaboard but rise across the main Highland watershed towards 

the eastern Grampians. Snowfall from moisture-bearing North Atlantic air masses fed the corrie 

glaciers, with precipitation decreasing markedly with distance from the present shoreline (Barr et al., 

2017). Corries are typical of high mountain scenery in Scotland, indicating the effect of decreasing air 

temperature with altitude. Most corries face NE and N, the sector of least direct solar radiation and 

hence least ablation (Sissons, 1967). Topographic controls on corrie distribution exist at the regional 

and local scales (Gordon, 1977). Corries are largely absent from Caithness, eastern Sutherland, 

Moray and the central and eastern Southern Uplands because few hills stood above 700 m a.s.l. 

before glaciation. East of the main watershed in northern Scotland, corries are developed mainly in 

valley heads on the northern flanks of glens draining to the Moray Firth (Figure 6). Corrie floor 

altitudes vary in elevation by 350 and 400 m in parts of the Grampian Highlands and Cairngorms 

(Sissons, 1976). This broad range reflects local geological and topographical controls (Gordon, 1977) 

but corries with floors at different altitudes may also have been occupied at different times, a 

reminder that several generations of corries may exist within individual mountain groups (Godard, 

1965; Sugden, 1969; Rudberg, 1994). 

3.4 Controls on glacial erosion 
Complex interactions between geological, topographic, climatic and glaciological factors influenced 

patterns of ice flow and depths of glacial erosion across Scotland.  

• Ice streams developed on sticky, rigid beds only where lubricated by meltwater 

(Krabbendam & Bradwell, 2013). On soft beds, with slippery, fine-grained sedimentary rocks 

or deformable unconsolidated basal substrates (Boulton & Jones, 1979; Golledge & Stoker, 

2006), basal sliding was facilitated, leading to draw-down of ice towards the Mesozoic basins 

of the Moray Firth, Minch and Forth Approaches. Thin-skinned glacitectonics triggered by 

high pore-water pressures contributed to erosion through the thrusting and transport of 

glacial rafts of rock and sediment (Phillips & Merritt, 2008; Phillips et al., 2013). Such 

processes are highly effective along the margins of ice streams (Patterson, 1998) and help to 

account for the high frequency of glacial rafts found along the shores of the inner Moray 

Firth (Merritt et al., 2003) and the Firths of Clyde (Merritt et al., 2014) and Forth (Kendall & 

Bailey, 1908).  

• The pre-glacial topography of the western Highlands was already at high elevation and 

fluvially dissected at the start of the Pleistocene and so provided gradients at the beds of 

alpine glaciers and ice sheets that were steeper than on the plateaux and lowlands more 

typical of the topography of eastern areas. Broad straths and lowland corridors established 

before the Pleistocene also guided ice flow towards major ice streams (Fig. 2). 

• Climatic gradients across Scotland were probably more marked in the cold stages of the 

Pleistocene (Golledge et al., 2008) but, as today, precipitation and air temperature were 

both higher on the mountains closest to the North Atlantic (Barr et al., 2017), leading to high 

rates of snow accumulation and warmer ice temperatures (Boulton & Hagdorn, 2006; 

Hubbard et al., 2009).  

• Steeper gradients, higher accumulation rates and higher ice temperatures combined to 

generate fast-moving, wet-based glacier flow for longer periods in the west. In the east, 
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slower-moving and cold-based glaciers generally persisted for long periods, with short-lived, 

or no, phases of fast flow (Fig. 7).  

Vertical contrasts in glacial erosion in glaciated uplands reflect greater ice thickness and flow velocity 

at low points in the landscapes (Glasser, 1995) and the fundamental importance of englacial thermal 

boundaries in providing sharp upper limits to effective glacial erosion (Sugden, 1968; Hall & Glasser, 

2003; Fabel et al., 2012).  

 Ice extent and dynamics varied in space and time as ice fronts advanced and retreated (Haynes, 

1983) and as basal thermal conditions changed (Gordon, 1979). Simulations for the last ice sheet 

indicate the importance of long binge and short (10-30% relative duration) purge cycles. Ice sheet 

thickening produced extensive, protective cold-based glaciers (Hubbard et al., 2009). During purges, 

warm-based ice became extensive, with ice streams propagating from the shelf edge towards onset 

zones on the present land area (Boulton & Hagdorn, 2006). High ice velocities promote rapid glacial 

erosion (Näslund et al., 2003; Hubbard et al., 2009), implying that roughened and streamlined rock 

landscapes are mainly products of relatively brief phases of erosion when ice thinned rapidly. The 

total duration of Pleistocene ice sheet cover was limited (~500 ka in build-up centres; Fig. 1) and was 

further reduced at increasing distances from the main ice accumulation centres (Hubbard et al., 

2009). Hence, whilst rates of glacial erosion may be high, the rather brief duration over which 

efficient glacial erosion operated through the Pleistocene reduced its impact on the landscape. 

 Scotland’s maritime location and its 0.8-1.4 km high mountains create near-optimal conditions 

for the rapid development of mountain ice caps in response to moderate (3 to 6·5°C) falls in summer 

temperatures (Payne & Sugden, 1990; Golledge et al., 2008). The δ180 isotope record (Figure 1) 

suggests that during the Early Pleistocene, the dominant mode of glaciation was by mountain ice 

caps. During the Middle and Late Pleistocene, however, mountain ice caps existed mainly during the 

slow build-up to full ice sheet cover. One model for mountain ice cap and alpine glacier growth in 

Scotland is provided by the Loch Lomond Stadial when conditions of rapid temperature fall, steep 

precipitation gradients to north and east and persistent sea ice brought rapid build-up of ice caps in 

western Scotland (Hubbard, 1999; Golledge et al., 2010). Markedly different configurations may 

have developed under conditions with more gradual temperature fluctuations, such as in the period 

of increasing ice volume at 38-32 ka, when an extensive ice cap is reconstructed over the Cairngorm 

mountains in mathematical simulations (Hubbard et al., 2009). Full ice sheet growth required 

greater temperature falls (>6·5°C) (Payne & Sugden, 1990) of longer duration (3-10 ka) (Hubbard et 

al. 2009).  

 Large ice sheets developed over Scotland from ~1.2 Ma onwards and extended onto the North 

Atlantic shelf (Figure 2). As there is no reliable evidence for the existence of nunataks above the last 

ice sheet at its maximum (Fabel et al., 2012) and models of the last ice sheet indicate ice surface 

elevation above 1.5 km (Kuchar et al., 2012), then it is likely that earlier ice sheets of equivalent or 

greater extent also covered all of the Scottish mainland, including its highest summits. Streamlining 

of bedrock (Bradwell et al., 2008a) and excavation of glacial valleys (Graf, 1970) contributed to the 

progressive adaptation of topography and the glacier bed towards more efficient ice flow through 

the Pleistocene. Middle Pleistocene ice sheets terminated near to the North Atlantic shelf edge 

(Stoker et al., 1993) or against or near to the western edge of the FIS in the North Sea (Fig. 2). This 

apparent overstep of Early Pleistocene ice limits, also seen in the southern British Isles (Lee et al., 

2015), implies that the British-Irish Ice Sheet, unlike the Laurentide Ice Sheet (Balco & Rovey, 2010), 

did not approach or reach its maximum limits in the earliest Pleistocene. The position of the British 

Isles below 60˚N, where insolation intensity is less sensitive to changes in Earth's obliquity, may have 
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prevented the build-up of large ice sheets under the 40 ka cycles of the Early Pleistocene (Huybers & 

Tziperman, 2008). 

 

Figure 10 View N up Helmsdale towards Griam Mor and Griam Beag in Sutherland, isolated hill masses developed on 
Devonian conglomerate. Extensive low-relief surfaces have been only weakly dissected by fluvial and glacial erosion during 
the Pleistocene. 

 The varied glacial landscapes of Scotland can be seen as products of average conditions with two 

end members. Landscapes of little or no glacial erosion occur where cold-based conditions were 

established repeatedly and for long periods beneath successive ice sheets and ice caps through the 

Pleistocene (Fig. 7). Landscapes of deep and extensive glacial erosion are found where streams of 

fast, warm-based ice flow developed during successive glacial cycles. Most of the landscapes of 

Scotland, however, fall between these two extremes, with ice sheet models indicating long periods 

of cold-based ice cover and only brief phases of fast ice flow (Fig. 7). The morphological impact of 

glacial erosion on these intermediate landscapes was weak (Figure 10). 

4. Weathering and non-glacial erosion 
Through the Pleistocene, non-glacial processes operated whenever and wherever slopes were free 

of glacier ice and above sea level. The cumulative time over which these processes operated was 

long, over 1 Myr in the Early Pleistocene (Fig. 1), and greatest in areas peripheral to the main areas 

of ice sheet build-up. The duration of the post-glacial period has been short (15 - 20 kyr) but 

significant geomorphic change has occurred in this interval (Ballantyne, 2002), offering insights into 

the main impacts in earlier ice-free periods. In the mountains, rock walls that were steepened during 

glaciation became degraded and locally collapsed (Jarman, 2006), particularly in the Lateglacial 

paraglacial phase (Ballantyne et al., 2013), generating large volumes of rock debris. Glacial and slope 

deposits have been reworked by mass movement and stream transport to accumulate on valley 

floors (Figure 5). In the lowlands, streams and rivers have eroded glacial and glacifluvial landforms 

and the sediment released, in part, has been built into large river terraces. Soil formation has 

extended to depths of up to 2 m in loose parent materials (Bain et al., 1993) but scarcely begun on 

rock and boulder surfaces (Kirkbride, 2006; Kirkbride & Bell, 2010). Viewed against the background 

of multiple glacial-interglacial cycles in the Pleistocene, the main impact of processes operating 

through the present interglacial can be seen as producing and transporting debris and regolith. After 

earlier interglacials, debris of similar origin would have been entrained at the glacier bed as glaciers 

advanced.  

 Glacial steepening of rock slopes, debris production and evacuation operated across multiple 

glacial cycles. Only in zones of negligible glacial erosion in peripheral lowlands and on high plateaux 

is extensive evidence apparent of the processes of weathering and non-glacial erosion that operated 
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before the last glacial cycle. The rock coasts of Scotland, however, preserve in many places till-

covered rock platforms and cliffs (Fig. 3) that predate at least the last ice sheet. Buried features of 

rock coasts represent a largely overlooked record of marine erosion and sea level change earlier in 

the Pleistocene (Smith et al., 2018). 

4.1 Chemical weathering before and during the Pleistocene 
The record of chemical weathering at and beneath the landsurface in Scotland is long and complex. 

Whilst the dating of saprolites that lack stratigraphic context is challenging (Hall, 1993a), most 

weathering profiles and soils appear to have developed in the near-surface during the Neogene and 

Pleistocene. A clay-rich, kaolinitic and base-poor saprolite type is found in E Buchan as part of a 

Palaeogene landscape that includes the Buchan Gravels Formation (Hall, 1985; Hall et al., 2015a). 

Similar geochemically evolved saprolites found elsewhere in Scotland are probably either exhumed 

from beneath sedimentary cover (Humphries, 1961; Parnell et al., 2000) or hydrothermal in origin, 

the latter including kaolins on Shetland (May & Phemister, 1968) and at Pittodrie, Bennachie (Hall, 

1993d; Hall et al., 2015a). Elsewhere, only gruss-type weathering profiles are found, with high sand 

and low fines contents and retention of weathering-susceptible primary minerals such as Ca-feldspar 

and biotite (Hall, 1985). Gruss localities are concentrated in NE Scotland, the Caithness-Sutherland 

border and NW Lewis but are almost certainly more widespread than shown in Figure 3 because 

large parts of Highland Scotland have not yet been surveyed for weathering remnants. The 

mineralogy of North Sea sediments (Dypvik, 1983; Nielsen et al., 2015) indicates that the gruss 

weathering type started to develop from the Late Miocene onwards in response to climate cooling. 

Deep gruss profiles (Fig. 11), which can extend to depths of many tens of metres (Hall et al., 1989b), 

probably developed mainly in the Pliocene period (5.333-2.588 Ma). Shallow weathering profiles, 

with depths of a few metres, almost certainly continued to develop in temperate interglacial and 

cool interstadials during the Early Pleistocene (Hall et al., 1989b). We may suppose this because the 

total duration of such ice-free intervals was long (Fig. 1), rates of gruss development can be fast 

(Dethier & Lazarus, 2006) and grussification of clasts is typical in pre-MIS 5 weathered till units in 

Scotland (Connell et al., 1982; Bloodworth, 1990) and northern England (Boardman, 1985). Where 

Middle to Late Pleistocene till units incorporate and overlie weathered rock, the period of 

weathering must predate deposition of the tills (Connell et al., 1982; Gordon, 1993a; Hall, 1993b) 

(Fig. 11). On rocks with high susceptibility to granular disintegration or oxidation, near-surface 

weathering may be entirely of post-glacial origin. For example, the rapid breakdown of some quartz 

dolerites on exposure to air (Orr, 1979) may account partly for the extensive development of onion-

skin weathering in Carboniferous sills and dykes in the Midland Valley (Henderson, 1893; Walker, 

1935).  

 

 

 

 

 

Figure 11 Gruss pocket at Cairngall 

Quarry, Mintlaw, Buchan, developed 

in medium-grained biotite granite 

below a thin till cover. Gruss 
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weathering profiles in this area reach known depths of >60 m (Hall, 1985). 

 Prior to glaciation, deep weathering covers were widespread but weathering penetrated most 

deeply in fractured, sheared and geochemically-susceptible rocks beneath basin and valley floors, 

whilst adjacent hills were developed in resistant and largely fresh rock types such as quartzite, acid 

granites and slate (Godard, 1962; Hall, 1986). One effect of glacial and non-glacial erosion was to 

progressively thin and finally remove gruss from wide areas through the Pleistocene (Clark & Pollard, 

1998; Krabbendam & Bradwell, 2014; Hall et al., 2015b). Particularly in western areas of high glacial 

erosion, the very limited survival of gruss means that tills of the last, Late Devensian glaciation are 

composed of clasts and matrix material released by the breakage and comminution of fresh rock 

debris. In contrast, in eastern areas where saprolite pockets remain, the tills may incorporate large 

amounts of former saprolite and soil materials (Wilson et al., 1984). 

4.2 Mountain-top detritus 
Mountain-top detritus (MTD) refers to frost-riven regolith of diverse character found on Scottish hills 

(Ballantyne, 1998). The character of MTD is closely controlled by rock type and fracturing and by the 

time available for its formation. Three main types of MTD have been recognised (Ballantyne, 1984): 

(i) openwork blockfields; (ii) clast-rich, sandy diamictons; and (iii) clast-rich, silty and fine sand 

diamictons. Blockfields are typical of rocks with widely spaced fractures, such as quartzite and 

granite; sandy diamictons are developed mainly on sandstones and psammites; and silty diamictons 

are common on greywackes and mica schists. MTD generally forms only shallow regolith, reaching 

depths of 0.1-1.6 m, with surface concentrations of larger clasts and more matrix fines at depth. 

Clast angularity, local derivation and vertical sorting indicate an origin by frost-riving and frost-

heaving, processes that have operated effectively at high elevations since the last deglaciation and 

probably earlier also (Ballantyne & Harris, 1994). 

 On many Scottish mountain summits there is evidence that MTD predates the last ice sheet. 

Where glacial erosion by the last ice sheet has left bare bedrock surfaces, MTD occurs only on 

densely-fractured rocks (Figure 12). MTD has not reformed on more massive rock types, indicating 

that it is slow to develop on these rocks (Fabel et al., 2012). Where glacial erosion has been 

ineffective in removing regolith, MTD may contain assemblages of clay minerals, including gibbsite 

and kaolinite, that are distinct from those found on the same rock types on lower slopes (Ballantyne, 

1994a). Many hill summits in the British Isles and Ireland show a distinct upslope limit to MTD 

(Figure 3). Earlier interpretations of this limit as a glacial trimline at the upper limit of the last ice 

sheet (Ballantyne, 1997) have given way in recent years to a recognition that the limit marks an 

englacial boundary between warm- and cold-based ice within the last ice sheet (Fabel et al., 2012; 

McCarroll, 2016). Detailed mapping has shown that the elevation of this trimline drops away from 

the main watershed towards the Outer Hebrides and to the inner Moray Firth (Ballantyne, 2010a). 

 The age of the MTD found above trimlines on mountain plateaux is poorly constrained. MTD may 

have thickened in the post-glacial period but the main phase of its formation generally predates the 

last ice sheet (Hopkinson & Ballantyne, 2014). Development of MTD requires that summits and 

plateaux are free of permanent snow and glacier ice and exposed to frost action and weathering. 

Hence blockfields may have formed or thickened during MIS 5-3 or during earlier interstadial and 

interglacial phases of the Early and Middle Pleistocene. On relict, non-glacial plateau surfaces in 

northern Scandinavia, 10Be and 26Al inventories are consistent with formation of the present MTD 

layer through the Middle and Late Pleistocene (Goodfellow et al., 2014a). In western Norway, 

cosmogenic nuclides indicate low erosion rates (4-6 m/Ma) (Andersen et al., 2018). The residence 

times of regolith on the Cairngorm plateaux are short, with maximum erosion rates for exposed rock 

surfaces ranging from 2.8 to 12.0 m/Ma, and tor emergence rates after stripping of regolith at 11-35 
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m/Ma (Phillips et al., 2006). There is also evidence, however, of low Middle to Late Pleistocene 

erosion rates. Cosmogenic exposure ages indicate that weathering pits deeper than 5–10 cm predate 

the last glacial cycle (Hall & Phillips, 2006b). Weathering pits up to 20 cm deep occur on large tabular 

blocks set within MTD. Blockfields that have been disrupted locally by ice flow and pass downslope 

into stripped, joint-bounded granite bedrock surfaces display weathering pits up to 12 cm deep. The 

weathering pits indicate formation and stripping of MTD in the Cairngorms in or before MIS 6. 

Evidence of a longer weathering history for plateau surfaces is also given by pockets of thick gruss-

type saprolite of likely Pliocene to Early Pleistocene age found on high ground in the central and 

eastern Grampians (Hall & Mellor, 1988; Phillips et al., 2006; Hall, 2007). However, for thin blankets 

of MTD to be maintained at even low erosion rates, formation of new detritus from frost weathering 

of bedrock is required over 100 ka timescales (Marquette et al., 2004). Ballantyne (2010b) has 

proposed a dynamic model of long-term blockfield evolution in which Neogene regolith cover was 

gradually removed by subaerial surface lowering during ice-free periods and progressively replaced 

by the products of frost-wedging under periglacial conditions, with most existing MTD formed 

entirely within the last 135 ka (Hopkinson & Ballantyne, 2014). Where MTD is older, the uppermost 

trimlines mapped on Scottish mountains may predate the last ice sheet, a suggestion consistent with 

the more restricted extent of the last ice sheet compared to earlier ice sheets on the North Atlantic 

shelf (Ballantyne et al., 2017) 

 

Figure 12 Mountain top detritus on the Red Cuillin, Skye. Fine- to medium-grained granite is broken into a thin cover of 
MTD with many small, angular clasts in a granular sand matrix. The summit was probably over-topped by the last ice sheet 
but exposed as a nunatak in the Loch Lomond Stadial (Small et al., 2012). Estimated erosion rates of 30-40 mm/ka are 
based on 

10
Be cosmogenic inventories (Fame et al., 2018) 

4.3 Tors 
Tors are small rock knobs produced by long-term differential weathering and erosion. At lower 

latitudes than Scotland, tors may be exhumed from thick saprolites but almost all Scottish tors sit on 

hill and ridge tops and have no close association with deep weathering. Rock compartments with 

low fracture spacing have emerged as tors through the repeated formation and stripping of thin 

regolith similar in properties to that which exists on surrounding slopes today (Hall & Sugden, 2007). 

This debris mantle, in areas such as the Cairngorms, is of complex origin, with elements that derive 
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from hydrothermal alteration (Hall & Gillespie, 2016), multiple phases of chemical weathering (Hall 

& Mellor, 1988), granular disintegration due to stress release (Phillips et al., 2006) and frost 

weathering (Ballantyne, 1994b). Studies in other humid, unglaciated granite terrains indicate rates of 

regolith formation of >5 m/Ma (Bierman, 1994; Duxbury et al., 2015), comparable to known rates of 

MTD production. Such rates, when combined with evidence of significant Holocene chemical 

weathering in the Cairngorms (Soulsby et al., 1998) and Late Devensian frost weathering and mass 

movement (Ballantyne, 1994b), suggest that much of the 0-2 m of regolith found around tors today 

has formed mainly in the Late Pleistocene. Thin regolith may be largely renewed in ice-free intervals 

during each interglacial- glacial cycle. 

 

Figure 13 Tors developed in the Northern Arran Granite emplaced at ~60 Ma (Dickin et al., 1981). Note the truncation of 
inclined, sub-parallel joints by the glacial slopes of Glen Sannox, the exposures of thin granular regolith and the weathering 
pits on granite surfaces. 

 In areas of Pleistocene glaciation, tors are absent from zones of areal scouring but may be 

present in landscapes of alpine glaciation (Small et al., 1997), selective linear erosion (Sugden, 1968; 

Sugden & Watts, 1977) and in areas of little or no erosion (André, 2004). Tor landscapes in Scotland 

(Figure 3) also include isolated hill masses around which the last British ice sheet streamed at the 

Last Glacial Maximum, for example the hills of South Uist (Ballantyne & Hallam, 2001), northern 

Arran (Godard, 1969) (Figure 13) and Ben Loyal in Sutherland (Godard, 1965). Like blockfields, the 

existence of tors was formerly attributed to these areas standing as nunataks above the last ice 

sheet (Godard, 1965). The existence of glacial erratics and glacially displaced tor blocks, however, 

leaves no doubt that these and other summits were ice-covered. It appears that the tors have 

survived beneath protective covers provided by cold-based glaciers (Sugden 1968). Where no sliding 

of ice takes place across the glacier bed, then delicate features including tors and regolith may be 
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preserved (Rapp, 1996). Evidence of localised glacial transport from the tor site is provided by 

displaced tor blocks and boulder trains (Hall & Phillips 2006a). Displaced tor blocks may reach sizes 

of 100 m3 (Figure 14) and show the distinctive weathered surfaces typical of Cairngorm tor summits 

(Hall & Phillips 2006b). In the Cairngorms, such criteria can be used to trace the movement of former 

tor blocks, allowing distances and directions of transport to be identified. Tors formed of smaller 

blocks may be partly or wholly demolished to form boulder trains (Hall & Phillips 2006a). 

 Tors in glaciated regions have been referred to as pre-glacial landforms (e.g. Sugden 1968). The 

term is used in two senses – pre-Pleistocene or pre-glaciation, the latter where the tor predates one 

or more phases of glaciation. The advent of cosmogenic isotope analysis has allowed constraints to 

be placed on the exposure ages and erosion rates for rock surfaces on tors. Cosmogenic isotope data 

confirm that Cairngorm and Caithness tors are older than the last interglacial (Phillips et al., 2006; 

Ballantyne & Hall, 2008). The oldest Cairngorm tor surface at Clach na Gnùis has a minimum 

exposure and burial age of 675 ka (Phillips et al. 2006). This tor carries weathering pits 1 m deep and 

is unmodified by glacial erosion, yet the accumulated nuclide inventory on its top indicates that this 

tor is not a pre-Pleistocene landform. Existing tors in the Cairngorms are dynamic landforms which 

have attained their present forms through the Middle Pleistocene. 

 

Figure 14 Glacially-transported tor block, eastern Ben Avon in the eastern Cairngorms.. The tor in the background has lost 
superstructure to glacial entrainment. Extensive spreads of sandy MTD, with small blocks, are developed on the Cairngorm 
Granite. 

 Where tors or even tor roots survive in formerly glaciated areas, then the total glacial erosion 

since tor emergence has been confined to modification or removal of the protuberance, without 

significant lowering of surrounding surfaces. In glaciated tor fields, such as the Cairngorms (Gordon, 

1993b), this means that glacial erosion has been only a few metres (Hall & Phillips, 2006a). On spurs 
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that merge down slope into larger roche moutonnée forms, the survival of tor roots identifies a zone 

of very limited glacial erosion on the upper part of the spur (Sugden et al., 1992). Tors are therefore 

useful indicators of terrain that has experienced minimal glacial erosion. In such terrain, known 

erosion rates indicate that the contribution of erosion from non-glacial processes exceeds that from 

glacial processes through the Pleistocene. In the Cairngorms, at least three separate phases of glacial 

modification of tors are recognised on the basis of exposure ages (Phillips et al., 2006). On these and 

other granite hills in Scotland, the granite surfaces of tor plinths carry weathering pits > 10 cm deep 

formed during or before the last interglacial, requiring that tor removal by glacial processes occurred 

in MIS 6 or earlier (Hall & Phillips, 2006b).  

4.4 Exfoliation or sheet joints in granite terrain 
Exfoliation or sheet joints are joint sets with orientations subparallel to the present or former 

ground surface that occur at depths of 1-100 m in granite intrusions (Ziegler et al., 2013). Exfoliation 

or sheeting develops where high maximum principal compressive stresses up to a few tens of MPa 

exist at shallow depths, oriented subparallel to the ground surface, and exceed the least surface-

normal principal stress, a product of overburden thickness including topographic effects 

(Holzhausen, 1989). Extension and opening of exfoliation joints in the near-surface is a response to 

topographic curvature (Martel, 2017). Exfoliation joints guide weathering and erosion and have been 

identified in Scotland as an important control on the morphology of non-glacial forms, including 

domes (Hall et al., 2013b), tors (Goodfellow et al., 2014b) and blockfields (Hall & Glasser, 2003), and 

glacial forms, including valleys (Glasser, 1997), cirques (Haynes, 1968) and roches moutonnées 

(Gordon, 1981; Sugden et al., 1992). In areas where Pleistocene glacial erosion has led to changes in 

topography, distinct sets of exfoliation joints can be related to palaeo-topography (Ziegler et al., 

2013). In the Cairngorms, at least two generations of sheet joints are recognised oriented sub-

parallel to the slopes of plateaux and to glacial valleys and cirques (Glasser, 1997). Here and in other 

granite terrains in Scotland (Godard, 1969) (Fig. 13), sub-horizontal joint sets are also present that 

are not related to present slopes and so may relate to pre-glacial relief development. 

5. Early Pleistocene terrestrial stratigraphy 
Early Pleistocene sediments are preserved in formerly glaciated regions only where the first 

glaciations were the most extensive (e.g. Tasmania (Augustinus & Macphail, 1997), Midwest USA 

(Balco et al., 2005a) and Patagonia (Rabassa et al., 2005)) or in deep sediment traps or basins (Anne 

et al., 2017). In the British Isles, the most extensive Pleistocene glaciations occurred during the 

Middle and Late Pleistocene (Bridgland et al., 2015; Lee et al., 2017) and removed older sediment 

and regolith through glacial erosion and transfer to the Atlantic shelf and slope and to the North Sea 

Basin (Sejrup et al., 2005). In Scotland, no Early Pleistocene glacial sediments have been identified 

onshore, except perhaps for deeply buried channel-fill sands at the mouth of the River Spey (Merritt 

et al., 2003). In a few locations, however, sediments or fossils of likely Early Pleistocene age have 

been reworked into Late Pleistocene glacigenic sequences. In eastern Buchan, the Kippet Hills Sand 

and Gravel Formation includes shells reworked from the Early Pleistocene Aberdeen Ground 

Formation offshore (Cambridge, 1982; Gordon, 1993c; Merritt et al., 2003). The coeval Hatton Till 

Formation also incorporates Early Pleistocene shell fragments and dinoflagellate cysts derived from 

the same source (Merritt et al. 2003). At Leavad, in western Caithness, masses of laminated dark 

green shelly clay of possible Miocene to Early Pleistocene age, presumably derived from the inner 

Moray Firth, occur as rafts within a buried Late Pleistocene glacigenic sequence (Crampton & 

Carruthers, 1914; Gordon, 1993d). Apart from the Kippet Hills and Hatton Formations, published 

amino acid ratios for marine shells collected from tills in Caithness, Orkney and Buchan indicate 

reworking only of Middle and Late Pleistocene material (Bowen & Sykes, 1988; Bowen, 1991). An 
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Early Pleistocene age has been proposed for the Buchan Gravels Formation (Flett & Read, 1921) 

(Kesel & Gemmell, 1981)at Windy Hills (Gordon & Sutherland, 1993) and Moss of Cruden (Hall, 

1993c), but stable oxygen and hydrogen isotopes for kaolinised clasts from the gravels indicate post-

depositional weathering at high average temperatures attained in Scotland only during the Eocene 

or mid-Miocene (Hall et al. 2015a).  

6. Middle Pleistocene terrestrial stratigraphy 
The Middle Pleistocene terrestrial glacial stratigraphy of Scotland, as currently understood, does not 

replicate the complexity of the offshore record (Stewart et al. 2018). The oldest known till units 

found onshore in Scotland, at Kirkhill and Leys Quarries in Buchan, NE Scotland, are regarded as 

deposited by an ice sheet during MIS 8 (between 245 and 303 ka) (Merritt et al. 2003). Buried till 

beds elsewhere in Scotland (Fig. 15) are usually attributed to MIS 6 glaciation, at the latest (see 

below). There are several possible reasons for the apparently sparse preservation of old till units, the 

most likely being that successive ice sheets tend to erode or rework older deposits. Thus the latest 

MIS 3-2 ice sheet (>26-13 ka) is likely to have destroyed most pre-existing glacial, interglacial and 

interstadial sediment sequences. Yet the widespread survival of pre-glacial weathered rock in zones 

of limited glacial erosion in Scotland (Fig. 3) suggests that similarly fragile pre-Late Devensian glacial 

deposits should also have survived locally, at least in these zones. This is the case in central Buchan 

which shows the juxtaposition of Neogene-Early Pleistocene deep weathering and MIS 8-4 sediment 

sequences with MIS 3 glacial and non-glacial sediments (Hall & Sugden, 1987). Preservation of older 

deposits is particularly likely where deep valleys are orientated transverse to ice sheet flow that 

acted first as sediment traps and later as secure repositories for glacial sediments. Such locations are 

found to the E of Inverness (Fletcher et al., 1996), and in Easter Ross (Peach et al., 1912) and the 

Forth valley (Francis et al., 1970; Sissons & Rhind, 1970) (Fig. 15). Another potentially favourable 

location is where advancing ice fronts moved along the main straths sending ice lobes into closed 

tributary valleys, ponding lakes and disgorging sediment, before bypassing these locations as ice 

thickened and topographic control over ice flow weakened. Examples of this type of accommodation 

space are seen in the central Grampians, where thick glacilacustrine sediments have been 

overridden by later ice movements and disturbed by glacitectonics (Smith et al., 2011; Hall et al., 

2016). The possibility also exists that old tills are simply overlooked through incorrect attribution to 

younger phases of glaciation. In the virtual absence of dating constraints, the recognition of old tills 

usually rests on a position low in a stratigraphic sequence or beneath interglacial or interstadial 

sediments/soils or on the advanced weathering of till clasts. In situations where the upper part of a 

sediment pile is eroded during a glacial phase and soils and organic deposits are lost, then the till 

layers in the remaining lower part may be indistinguishable from till units of the last glaciation, 

particularly where ice flow has followed a similar path. 
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Figure 15 Sites with MIS 5 and older sediments in Scotland. 1. Fugla Ness (Hall et al., 2002). 2. Sel Ayre (Hall et al., 2002). 3. 
NW Lewis (Sutherland & Walker, 1984). 4. Inchnadamph (Lawson & Atkinson, 1995). 5. Caithness (Hall & Riding, 2016). 6. 
Dalcharn (Walker et al., 1992). 7. Allt Odhar (Walker et al., 1992). 8. Teindland (Hall et al., 1995). 9. Kirkhill (Connell et al., 
1982). 10. Camp Fauld (Whittington et al., 1993). 11. Toddlehills (Gemmell et al., 2007) and Savock Quarry (Connell, 2015). 
12. Pitlurg (Hall & Jarvis, 1995). 13. Nigg Bay (Gordon, 1993e). 14. Inverbervie (Auton et al., 2000). 15. Pattack (Merritt et 
al., 2013). 16. Balglass (Brown et al., 2006). 17. Lower Clyde (Rolfe, 1966; Finlayson et al., 2010). 18. Ayrshire (Jardine et al., 
1988; Finlayson et al., 2010). 

6.1 The Kirkhill sequence 
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Figure 16 Kirkhill and Leys schematic Middle to Late Pleistocene stratigraphy (after (Merritt et al., 2003).  

The Pleistocene sequence in the Kirkhill area (Hall & Jarvis, 1993) is unique in the British Isles 
terrestrial record in providing a detailed record of at least three complex stadial–interstadial–
interglacial cycles (Fig. 16).  

• In the oldest cycle believed to date to MIS 8 (245-303 ka, Merritt et al. 2003), glaciation and 
the deposition of till was possibly succeeded by a phase of weathering, prior to erosion of 
the till surface, perhaps by the meltwater that deposited the overlying glacifluvial and 
glacideltaic gravels and sands. After deglaciation of the site, periglacial conditions were 
established, with frost shattering of bedrock and solifluction and later deposition of fluvial 
gravels. After a phase of erosion, a podzolic soil formed under humid temperate conditions 
on the gravel surface. 

• The second cycle commenced with a climatic deterioration marked by development of arctic 
soil features and the onset of gelifluction. This was followed by glaciation of the site, with 
deposition of till. Subsequently, a further soil developed on this till surface and its pedogenic 
characteristics imply a return to interglacial conditions. This cycle is assigned to MIS 6 – MIS 
5e (see below). 

• The youngest cycle (Devensian) opened with deposition of a sequence of periglacial 
deposits, the subsequent development of permafrost, marked by ice-wedge casts, and the 
eventual deposition of three further till units. Subsequent deglaciation involved minor 
glacifluvial deposition and was accompanied, or succeeded, by a phase, or phases, of 
periglacial activity until soil formation began at the start of the Holocene interglacial.  

 The oldest event known in the Kirkhill/Leys area is the cutting of a linear depression into weathered basic igneous 
weathered basic igneous rock at Leys Quarry. The Leys Till Formation, containing quartzite erratics glacially transported 
glacially transported from the W, was laid down on its floor. The till contains grussified basic igneous clasts and appears to 
clasts and appears to have been weathered after deposition (although local incorporation of previously weathered bedrock 
previously weathered bedrock and subsequent limited glacial transport also occurred). The overlying Denend Gravel 
Denend Gravel Formation comprises 3 to 5 m of coarse, felsite-dominated, pebble to boulder gravel, with interstratified 
with interstratified sand units. The Denend Gravel was deposited by meltwater moving towards the W and SW, part of a 
W and SW, part of a valley sandur extending from an ice margin lying relatively close to, and E of, Leys. At Leys Quarry, 
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Leys. At Leys Quarry, high-angle, glacideltaic foresets are preserved, indicating the ponding of a glacial lake in the Ugie 

valley (  

Figure 17) at this time. It appears that ice blocked the valley E of Leys though it is unclear if this was 
ice flowing from the Moray Firth and curving S, or ice having flowed N up the western North Sea 
margin. The set of channels at Kirkhill Quarry in which these gravels and younger sediments 
accumulated may have been cut by meltwater flow at this time or earlier. Post-depositional 
disturbance of the gravels is widespread, with folding, faulting and development of wedge structures 
as the result of melt-out of glacier ice blocks originally buried within the gravels (Hall & Connell, 
1986).  
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Figure 17 SW face of Leys Quarry in the 1990s showing high-angle,glacideltaic foreset gravels of the ?MIS 8 Denend Gravel 
Formation. Flow of water was towards the W and SW. Note extensive Fe and Mn staining and local cementation of the 
sediments. Excavations below this gravel unit exposed the Leys Till resting on bedrock. 

 At Kirkhill, an angular felsite rubble up to 2 m thick rests on channel floors. Clasts in the rubble 
show a well-developed downslope fabric, indicating transport by avalanche or gelifluction. Silt 
cappings indicate incipient pedogenesis (Connell & Romans, 1984). This Kirkton Gelifluctate Bed is, in 
turn, overlain by the Pitscow Sand and Gravel Formation, with up to 4 m of mainly horizontally 
stratified sands, with gravel lags marking former channel floors. This unit is interpreted as a 
periglacial fluvial or proglacial glacifluvia245l deposit. Cross-stratification indicates transport from 
the E. Syn-depositional ice-wedge casts indicate deposition of the basal beds under permafrost 
conditions. The declining numbers of angular clasts in the upper Pitscow beds at Kirkhill, together 
with the absence of ice-wedge casts and other periglacial features, may indicate the subsequent 
amelioration of climate.  

 

 

Figure 18 South Face 1 of Kirkhill Quarry in the late1970s. 1. Floor of meltwater channel cut in a felsite dyke. 2. Pitscow 
Sand and Gravel Formation. 3. Kirkhill Palaeosol Bed. 4. Camphill Gelifluctate Bed 5. Rottenhill Till. 6. Corsend Gelifluctate 
Bed. 7. Hythie Till. 

 The first cycle ended with an important phase of pedogenesis, with formation of the Kirkhill 
Palaeosol Bed on the eroded upper surface of the Pitscow Sand and Gravel (Fig. 18). A conspicuous 
bleached horizon, up to 19 cm thick with bleached and softened felsite clasts, was found throughout 
Kirkhill Quarry, and in the NE face of Leys Quarry. This represents the former Ea horizon of a podzolic 
soil, with a lower mottled Bs horizon locally enriched in organic carbon and free iron as a result of 
pedogenic translocation. An iron pan is also found towards the base of the profile (Connell et al., 
1982). Micromorphological analysis of the palaeosol has also revealed structures typical of soils of 
arctic environments (Connell & Romans, 1984). Superimposition of periglacial soil features on an 
earlier interglacial soil horizon seems to have produced a composite soil horizon. At both Kirkhill and 
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Leys, Fe and Mn staining associated with localised cementation occurs extensively to depths of 
several metres in underlying gravels and sands (Fig. 18). These indicators of former waterlogging or 
fluctuating groundwater levels contrast sharply with the leached horizon represented by the podzol, 
though the timing and number of weathering phases involved in Fe and Mn mobilisation is 
uncertain. At Kirkhill, the truncated Kirkhill Palaeosol Bed is overlain by thin, poorly stratified and 
weakly organic sands, the Swineden Sand Bed. These sands probably represent slope-wash deposits 
and are penetrated by a series of frost-cracks (Connell et al., 1984). Beneath the sands lies a 1 to 5 
cm thick bed of black to brown, weakly laminated organic mud that drapes the truncated palaeosol 
in the E face. The organic mud contains pollen of Poaceae, together with a marked arboreal 
component of mainly Pinus and Alnus, together with charcoal. The overlying sands show a reduction 
in arboreal pollen and an increase in grasses and Calluna, possibly reflecting the establishment of an 
open, treeless environment (Connell et al., 1982). Sampling of an equivalent organic sequence in the 
W face at Kirkhill suggests that two components exist in the pollen spectra (Lowe, 1984). Open, 
grassland types represent pollen contemporaneous with sedimentation of the sands. Recycled 
pollen, with an important arboreal component, is perhaps derived from older soil horizons at the 
site. The stratigraphical position of the palaeosol indicates that it developed during a pre-Ipswichian 
interglacial, probably MIS 7 (245-186 ka; Merritt et al. 2003). 

 The start of the second cycle is seen at Kirkhill Quarry where up to 2.5 m of periglacial mass 
movement deposits, named the Camphill Gelifluctate Bed, are developed above the organic 
Swineden Sand Bed. The bed includes features indicating multiple phases of periglacial activity, 
including episodes of gelifluction, cryoturbation and development of an ice-wedge polygonal 
network. A luminescence date of 142 ± 19 ka BP (Duller et al., 1995), if correct, falls within MIS 6. 
The West Leys Sand and Gravel Formation rests in shallow channels scoured into this periglacial 
landsurface. These thin, probably glacifluvial gravels and sands show planar cross-beds indicating 
water flow from the NW and probably represent outwash or subglacial meltwater deposits. The 
overlying Rottenhill Till Formation overlies with a weak unconformity these earlier deposits (Fig. 19). 
Its clast lithology (including boulders of Strichen granite) and fabric indicate deposition by ice moving 
from the NW. Whilst only three sites are known where the Rotten Hill till is found, all show NW-SE 
ice flow. It is possible that this flow direction was being “steered” by ice in the Moray Firth impinging 
on Buchan much as it did during both early and late stages of the Middle-Late Devensian glaciation 
(Merritt et al. 2017). After deglaciation, the Fernieslack Palaeosol Bed developed on the surface of 
the underlying Rottenhill Till Formation. This second major phase of soil development is marked by 
grussification of basic igneous and granite clasts, soil horizon development and clay mineral 
weathering and translocation. Soil characteristics are typical of the B- and C-horizons of gleyed 
brown earths developed on similar parent materials in eastern Scotland during the Holocene 
(Connell & Romans, 1984) and are in contrast to the podzolic soil (Kirkhill Paleosol Bed) which 
developed on the more acidic, free draining, parent materials available at the site during the MIS 7 
interglacial. Support for this interpretation of the Fernieslack Palaeosol is provided by the presence 
of Alnus, with Betula and coryloid grains from a single sample in the profile (Connell et al., 1982). On 
the simplest interpretation and in the light of the stratigraphically lower luminescence date, the 
Fernieslack Soil probably formed during the Ipswichian Interglacial (MIS 5e).  
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Figure 19 Kirkhill Quarry North Face in the 1980s. 1. Podzolic Kirkhill Palaeosol Bed. 2. Unconformable, sub-horizontal, base 
of the brown Rottenhill Till (within which the Fernieslacks Palaeosol Bed, developed). 3. The black Corse Diamicton 
(incorporating glacitectonically deformed pale coloured sand) overlies the Rottenhill Till. 4. Hythie Till. The section is 
approximately 15 m high. 

 The latest (Devensian) cycle began with cryoturbation and gelifluction, followed by incipient 
pedogenesis and ice-wedge growth recorded by successive units within the Corsend Gelifluctate 
Bed. Ice advance to the site occurred while ground ice remained in the wedge (Connell et al., 1984). 
The Corse Diamicton Formation was first exposed at Kirkhill as a large mass of dark grey clay 
diamicton consisting largely of reworked Late Jurassic/Early Cretaceous mudstone. The overlying 
Hythie Till Formation has a clast lithology dominated by psammite and pelitic schist, with basic 
igneous rocks and felsite. A clast of rhomb porphyry typical of those found in the Oslo Graben was 
recovered from this unit and a second clast was recovered from talus below the NE face at Leys. The 
stratigraphic position of Scandinavian erratics in Buchan and their presence in tills of inland origin 
indicate that transport of these rock types into the inner Moray Firth probably occurred before MIS 
5 (Hall & Connell, 1991), perhaps in the Anglian/Elsterian (MIS 12) (Merritt et al., 2003). The 
dominance of quartzitic and basic igneous rocks in the Hythie Till Formation indicates a western 
provenance. The unit can be correlated on the basis of stratigraphy and lithology with tills along the 
valleys of the North and South Ugie Water, which also have strong W–E fabrics (Hall & Connell 
1991). The succeeding East Leys Till Formation is a very dark grey, mud-rich diamicton. Clast 
lithologies are dominated by gneissose quartzite and psammite, with chalk, pelites and reddish 
brown (possibly Devonian) sandstone. Striated shell fragments appear below a near-surface 
Holocene weathering horizon and include specimens of Macoma sp. and Astarte sp. The matrix 
contains reworked Late Jurassic/Early Cretaceous dinoflagellate cysts, Mesozoic and Tertiary pollen, 
and Quaternary foraminifera. Together these organic remains indicate derivation of the matrix from 
Mesozoic mudstone, Palaeogene sediments and Quaternary glacimarine and marine muds in the 
Moray Firth basin. Southward transport by ice from the Moray Firth is supported by the presence of 
chalk clasts and by the transport of dark gneissose rocks comparable to the Inzie Head Gneiss of the 
Fraserburgh area. The East Leys Till represents the final phase of glacial deposition recorded at the 
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site and is succeeded by thin glacifluvial sands and gravels. At Leys, there is evidence of a late phase 
of permafrost conditions from involutions with stone pillars, near-surface concentrations of frost-
heaved clasts, erected and frost-cracked pebbles and associated development of ice-wedge casts 
(Hall & Connell, 1986).  

 The Kirkhill/Leys sequence provides wider insights into the sequence of environmental change in 
Scotland because of its peripheral position in the lowlands of Buchan. In the last glaciation, ice flow 
into this area came via three pathways: the inner Moray Firth, the western North Sea and the 
eastern Grampians. In the two early cycles of the Kirkhill sequence, only the Denend Gravel appears 
to relate to ice blocking the North Sea coast in a manner similar to the ponding of Glacial Lake Ugie 
in the Late Devensian (Merritt et al., 2017). The earlier Leys Till and the later Rottenhill Till were 
deposited by eastern Grampian ice moving eastward toward the North Sea, a pattern of ice flow 
similar to that for the Hythie Till around the maximum of the Late Devensian. Each of these tills sits 
with only weak unconformity on older deposits indicating that, in the last three glacial cycles, 
eastern Grampian ice was effectively non-erosive in this area. The consequent layer cake 
stratigraphy includes evidence for two pre-Holocene interglacial phases in which significant 
weathering and soil development took place. Cold conditions were established in Buchan in at least 
two separate phases before the last interglacial, with ice wedges marking intervals with permafrost 
development (Fig. 16). With the three younger units also formed under periglacial conditions, it is 
clear that periglacial processes operated repeatedly in the lowlands of eastern Scotland through the 
Middle and Late Pleistocene (Connell & Hall, 1987). The Devensian sediments in the Kirkhill and Leys 
area are thin, with older sediments taking up most of the accommodation space within the once 10-
15 m deep channels at these sites. Monitoring of gas pipeline trenches in the 1980s showed that 
Devensian glacial deposits are also thin across much of central Buchan yet still provide evidence of 
multiple events from attenuated stratigraphic units (Merritt et al., 2003). 

6.2 Deposits elsewhere in Scotland that predate MIS 5 
At a few, widely scattered sites across Scotland, organic deposits or weathering horizons dated or 

attributed to MIS 5 are underlain by older sediments (Fig. 15). Till units found low in stratigraphic 

sections have also been assigned to MIS 6 (Saalian) or older glaciations. On the plain of Caithness, 

old glacial deposits sit in lows within glacially streamlined terrain, indicating that bedrock erosion 

largely predates the last glacial cycle (Hall & Riding, 2016). 

 On Shetland, at Fugla Ness, a till lies below a peat layer that probably formed in the last 

interglacial. This till has a strong NW–SE fabric (Hall et al., 2002), a similar direction to movement of 

ice within the Shetland ice cap during the last glaciation (Hall, 2013). In Caithness, tills deposited by 

ice moving out of the inner Moray Firth and the Northern Highlands occur below multiple sequences 

referred to the Late Devensian glaciation (Gordon, 1993d; Hall & Riding, 2016). Amino acid 

racemization ratios for marine shells now incorporated in Late Devensian tills in Caithness and 

Orkney suggest that the oldest included shells date from MIS 7 and 9, respectively (Bowen & Sykes 

1988). These ages imply reworking of shells from former marine or glacimarine sediments in the 

inner Moray Firth that included beds of MIS 6 age or older (Hall & Riding, 2016). 

 On northern Lewis, a raised shore platform is found at 6-12 m O.D. (von Weymarn, 1979; Gordon, 

1993f). Weathered till occurs in pockets on its surface and contains erratic clasts of Torridonian 

sandstone and Cambrian quartzite, indicating ice movement from the Scottish Mainland (Peacock, 

1984) during MIS 6 or earlier. This rock platform and one at a similar elevation on Barra and Vatersay 

(Selby, 1987) are overlain by beach gravels that probably date from MIS 5 high sea levels (Hall, 

1996). In Assynt, a cave at Creag nan Uamh has yielded Uranium-series disequilibrium ages for 
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speleothems of 122 +/-12 ka, 143+13/-16 ka, 181+24/-18 ka and 192+53/-39 ka, indicating the 

establishment of ice-free conditions during the last interglacial and MIS 6 (Lawson, 1993).  

 East of Inverness, organic deposits and palaeosol/weathering horizons of MIS 5 age have been 

described from Allt Odhar and Dalcharn. The weathered, sandstone-rich Dearg Till Formation at 

Dalcharn is older than the Devensian as it underlies an interglacial palaeosol and deeply weathered 

Craig an Daimh Gravel (Walker et al., 1992; Merritt & Auton, 2017).The Moy Peat Bed and 

underlying gravel at the Allt Odhar site also overlie an older sandstone-rich diamict, the Suidheig Till 

Formation. Another weathered, sandstone-rich diamict, the Cassie Till Formation occurs nearby at 

the base of the sequence at Clava. These older tills are presently exposed within several valleys 

draining towards the River Nairn (Fletcher et al., 1996) (Fig. 20). In lower Strath Spey, the podzolic 

Teindland Palaeosol, probably of last interglacial age, is underlain by beds of sand, gravel and till (Fig. 

21). Erratic clasts in the Red Burn Till below the palaeosol indicate ice movement from the NW (Hall 

et al., 1995). Each of these underlying tills probably relates to MIS 6 glaciation, as does weathered till 

found near Portsoy (Gordon, 1993a; Peacock & Merritt, 2000). These sequences hold an important 

record of Middle and Late Pleistocene environmental change preserved along the southern margin 

of ice streams moving towards and out of the inner Moray Firth (Merritt et al., 2003). 

 

Figure 20 Longitudinal profile of the Allt Carn a’Ghranndaich valley upstream from Clava, E of Inverness, showing multiple, 
buried and locally weathered Middle Pleistocene till and gravel units (after Fletcher et al. 1996). 
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Figure 21 Teindland Quarry in 2000. 1. Teindland Lower Sand, 2. Teindland Buried Soil (MIS 5e). 3. Teindland Upper Sand. 
4. Truncated and glacitectonically sheared units beneath overlying Teindland Till. 

 In the central Grampians, glacilacustrine sediments have been overridden by later ice movements 

and glacitectonically disturbed (Merritt, 2004; Smith et al., 2011). These deposits locally rest on the 

Pattack Till Formation, typically a pale to moderate yellowish brown diamict that includes boulders 

of grey porphyritic granodiorite sourced from the SW (McMillan et al., 2011). When compared to the 

longer sequences found in the Inverness area, where intervening interglacial and interstadial 

deposits have been located, the colour, iron staining and weathered condition of many clasts in the 

Pattack Till suggest that it has been exposed to full interglacial conditions and is pre-Devensian in 

age. The unit is overlain locally by heavily iron-stained, gravelly deposits that were probably laid 

down as moraines and ice-proximal fans during retreat of the penultimate ice sheet. This area is 

transitional between terrains of selective linear glacial erosion, with survival of deep weathering on 

plateaux (Hall & Mellor, 1988), and more extensively ice-moulded topography where fast-ice flow 

was directed along the main straths (Smith et al., 2011). The preservation of pre-MIS 5 glacigenic 

sediments in Glen Pattack on the margin of a zone of ice streaming suggests that older sediments 

may occur in similar situations elsewhere in the Spey catchment. 

 The most widespread occurrences of Middle Pleistocene glacial deposits occur in Buchan (Hall & 

Connell, 1991). Deeply buried tills are recorded in numerous boreholes in the Ellon (Merritt, 1981) 

and Peterhead (McMillan & Aitken, 1981) areas. Around Kirkhill, the distinctive Fernieslack Palaeosol 

and the Rottenhill Till (see above) have been traced over a wide area (Hall et al., 1989a). At two sites 

W of Peterhead, Toddlehills and Savock, complex glacigenic sequences are preserved (Gemmell et 

al., 2007; Connell, 2015). Both sites lie adjacent to the S-N trending Aldie-Laeca and Dens channel 

systems (Merritt et al. 2003, Map 7; Fig. 13) that were covered by eastward advancing ice early 

during the late Middle-Late Devensian glaciation (Merritt et al. 2017). Correlatives of the Rottenhill 
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Till Formation (dated to MIS 6 at the Kirkhill/Leys sites) have been recorded at both sites (Figs. 22 

and 23) and are overlain by fluvial sands at Toddlehills with a mean OSL age of 85 ka (Gemmell et al. 

2007), again consistent with deposition of the till during MIS 6. Later, coastal ice advancing 

northward skirted the area but delivered meltwater northward through the channels into Glacial 

Lake Ugie. The sequences at Toddlehills escaped erosion at that time as it was on the western flank 

of the West Dens channel.  

 

Figure 22 Toddlehills Quarry in 2006, N face. Section ca. 6 m hig. Weathered bedrock (1) is overlain by a till unit (2) 
correlated with the MIS 6  Rottenhill Till Formation at Kirkhill. OSL dated (mean 85 ka) sands are obscured by made ground 
in mid-section (3). Late Devensian Hythie Till Formation can be seen higher in the section beneath vegetated made ground 
(4). 

 

Figure 23 Savock Quarry in 2014. Section ca. 5 m high: 1. Middle Pleistocene sand and gravel channel fill. 2. Brown, possibly 
weathered till correlated with the MIS 6 Rottenhill Till Formation at Toddlehills, Leys and Kirkhill. 3. Upper clast-rich till 
correlated with the MIS 3-2 Hythie Till. 
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 Highly mottled, red mud was exposed in a temporary pit [NGR NK 033409] on the north slope of 

the Moss of Cruden in 1984. A sample from its less weathered base contained palynomorphs typical 

of the Kimmeridge Clay and also Quaternary forms (L. A. Riley, pers. comm. 1984), indicating an early 

phase of glacial transport from the Moray Firth. North of Ellon (Fig. 15), the Pitlurg Till was deposited 

by ice moving S along the present North Sea coast from the Moray Firth. The age of this unit is 

uncertain, but amino acid ratios from included shells indicate that the till cannot be older than MIS 

6. The Bellscamphie Till is the oldest unit identified in the Ellon area. It was deposited by ice moving 

from the NW or W, probably prior to MIS 5 (Hall & Jarvis, 1995). In western Buchan the Crossbrae 

Farm Peat bed of probable MIS 5a or 5c age overlies the Crossbrae Till, likely to be of MIS 6 age 

(Whittington et al., 1998).  

 Further south, old tills may be present at Aberdeen (Hall & Connell, 1991), a grey till probably 

derived from the south (Bremner, 1934) and a weathered brown till derived from the west (Synge, 

1956, 1963). Most of these tills likely date from MIS 6 and indicate a similar interplay of ice masses in 

Buchan as occurred in the last glaciation. At Nigg Bay, immediately south of Aberdeen city, a 

complex glacigenic sequence is exposed in the southern cliffs (Gordon, 1993e). The upper two tills 

are believed to date to ice advances during the Late Devensian. At the base of the exposed 

sequence, gravels and sands (the Ness Sand and Gravel Member) have recently provided an OSL age 

estimate of  ~63 ka (Gemmell et al., 2007), suggesting they relate to outwash deposition during an 

MIS 4 glaciation. Onshore and offshore borehole data indicate that a palaeo-valley form exists 

immediately N of the cliff section that has been eroded down to -30m O.D. (Merritt at al. 2003, 

Figure 46). It is unclear if this palaeo-channel represents a former course of the River Dee cut during 

lowered sea level events or has been partially excavated by subglacial processes. It is also unclear if 

this older valley preserves sediments that pre-date MIS 4. At Ellon, N of Aberdeen, borehole 

evidence also indicates a rock-cut channel of the River Ythan descending to at least -20m O.D. 

(Merritt, 1981) and again it is possible that this deep channel preserves pre-Devensian sediments.  

 South of Stonehaven, near Inverbervie, the Benholm Clay Formation is another old glacigenic 

sediment, laid down before peat formation in MIS 5 (Fig. 24) (Auton et al., 2000). The Benholm Clay 

includes striated and polished marine shell fragments, Carboniferous, Early and Late Cretaceous and 

Palaeogene microfossils, and clasts of limestone, coal, chalk and flint derived from offshore in the 

North Sea basin (Auton et al., 2000). It was laid down by ice that moved onshore during a post-

Anglian and pre-Devensian glacial episode. Amino acid (D/L) ratios of ca. 0.34 have been obtained 

from fragments of the marine mollusc Arctica islandica, which indicate that they are of MIS 9 age, or 

older (Auton et al., 2000). The clay was possibly derived from overridden sediments at the base of 

the Coal Pit Formation, or might represent the onshore feather edge of a till occurring in the Fisher 

Formation, generally considered to be of Saalian (MIS 6 – 10) age (Gatliff et al., 1994). 

 

Comment [AH3]: High res version now 
available. 
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Figure 24 Sheared lens of the Burn of Benholm Peat Bed within olive grey shelly clay and diamicton (Benholm Clay 
Formation) at Burn of Benholm. The shelly deposits are overlain by red-brown diamicton of the Late Devensian Mill of 
Forest Till Formation. 

In the lower Clyde and the upper Forth lowlands, the Geological Memoirs refer to borehole records 

that show thicknesses of Pleistocene sediment that locally exceed 100 m (Clough et al., 1925; Francis 

et al., 1970; Paterson et al., 1990; Forsyth et al., 1996; Hall et al., 1998). Only the upper part of these 

sediment accumulations is of Late Devensian age (Browne & McMillan, 1989). Tills of likely MIS 4 

age, the Ballieston Till Formation in the Clyde basin, and the Littlestone Till Formation in Ayrshire, 

occur widely (Finlayson et al., 2010) but the stratigraphy and age of older sediments below these tills 

remain poorly known (Sutherland, 1984).  

6.3 Significance of the Middle Pleistocene terrestrial stratigraphic record 
The Pleistocene stratigraphical record in Scotland includes glacigenic deposits and periglacial 

features that represent cold stages back at least to MIS 8, together with terrestrial sediments with a 

floral, faunal or pedological record of interstadial and interglacial conditions. Whilst Middle 

Pleistocene sediments are sparse or absent across wide areas of Scotland and are poorly dated 

generally, the stratigraphic record is important for the direct information it can provide on the 

pattern and sequence of environmental change on the land area. The increasingly detailed and 

nuanced interpretations of palaeoenvironmental proxies for the modern, post-glacial and late glacial 

periods in Scotland  can be applied also to the fragmentary evidence of earlier periods. Periglacial 

sediments also provide a wealth of data on palaeo-temperatures and palaeo–precipitation 

(Ballantyne & Harris, 1994) and constrain former ice extent and thickness (Fabel et al., 2012). Marine 

sediments and landforms from MIS 5 and perhaps earlier periods indicate former sea levels and 

wave environments  (Smith et al., 2018). 

 Glacial deposits older than MIS 5 allow constraints to be placed on former ice extent, dynamics 

and flow paths that can be compared with those of the last glacial cycle. The basal sediments of the 

Kirkhill sequence represent an interglacial-cold interstadial- stadial cycle that probably predates MIS 

7. The sequence includes glacial and glacifluvial deposits that derive both from inland and from the 

North Sea coast. Patterns of ice flow in eastern Buchan were similar to those in later phases in MIS 6 

and MISs 3-2 (Merritt et al., 2017). In MIS 6, ice in northern Shetland was moving towards the NW, 

as in the Shetland ice cap in MIS 3-2 (Hall, 2013). Cnoc-and-lochain terrain had already formed on 

the Lewisian gneisses (Chapelhowe, 1965). In Caithness, till units record movements of inland and 

Moray Firth ice. The tills sit in bedrock depressions that are part of the streamlined bedrock terrain 

of the plain of Caithness and indicate that streamlining of bedrock was present before MIS 5 (Hall, 

2013). In NW Lewis, the presence of Torridonian and Cambrian clasts in a weathered till indicate the 

operation of the Minch Ice Stream in MIS 6. Carry of these and other erratics further S may indicate 

that the mainland ice sheet crossed parts of the Outer Hebrides in MIS 6 (Flinn, 1978a). Across 

Moray and into lower Strath Spey, till fabrics and erratics for likely MIS 6 tills indicate similar pattern 

of ice flow as for MIS 3-2 (Merritt et al., 2000) In Buchan, MIS 6 tills appear to have all been derived 

from inland. Extensive W-E flow is indicated that is consistent with granitic, schistose, basic igneous 

and red sandstone clast assemblages found in a Saalian till in the Fladen area derived from NE 

Scotland (Sejrup et al., 1987). Combined evidence from blockfields and tors and glacial sediments 

indicates that the configuration, thermal regime and ice flow during MIS 6 were broadly comparable 

to those of the last ice sheet. 
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7. Conclusions and Next Steps 
The Early and Middle Pleistocene periods in Scotland have received little previous specific attention 

despite a combined duration that far exceeds that of the last glacial cycle. Yet the 25 years since the 

publication of the Quaternary of Scotland Geological Conservation Review (GCR) volume (Gordon & 

Sutherland 1993b) have seen substantial advances in understanding the changing environments, 

developing landforms and terrestrial stratigraphy for this period in Scotland and on other glaciated 

passive margins. 

 The topography of Scotland retains landscapes – mountain blocks and peripheral lowlands - and 

large landforms – hills, basins and straths - that are of Neogene and older origin. This antecedent 

topography was modified and, in places, transformed by Pleistocene glacial and non-glacial 

processes. Glaciers were the dominant agents, made manifest by the frequency and size of glacial 

valleys and corries and by the extent of glacially dissected, roughened and streamlined terrain. Large 

areas of terrain, mainly in eastern areas and at higher elevations, lack well-developed glacial 

bedforms and were regarded previously as relict, pre-Pleistocene surfaces. Initial results from 

cosmogenic isotope inventories indicate, however, widespread non-glacial erosion on these surfaces 

through the Pleistocene. Mountain-top detritus and small landforms, such as tors, are dynamic 

features, maintained through the Middle and Late Pleistocene by weathering and erosion. Two 

research challenges are apparent: (i) to better constrain the landforms and tectonic, weathering and 

denudation history of Neogene landscapes; and (ii) to identify the spatial and temporal variability of 

erosion rates between and within zones of glacial erosion through the Pleistocene. 

 The Early Pleistocene was dominated by alternating 40 ka cycles of stadial conditions, with 

mountain ice cap and permafrost development to low elevations, and interstadial/interglacial 

conditions, without large glaciers and with cool to temperate conditions in the Scottish lowlands. 

After 1.2 Ma, a transition to 100 ka cycles led to the first advances of large ice sheets into the North 

Sea and onto the North Atlantic shelf. The sedimentary record from the shelves around Scotland is 

now yielding increasingly detailed information about the timing and extent of ice sheets before the 

last glacial cycle (Stewart et al. 2018). Glacial deposits and landforms in the North Sea and East 

Anglia can be correlated with ice advances in most of the main cold stages of the Middle Pleistocene 

but only the latest 4 to 5 Middle to Late Pleistocene advances are yet apparent from the terrestrial 

stratigraphic record in Scotland. 

 The British-Irish Ice Sheet was highly dynamic due to a position on the North Atlantic margin with 

high snowfall and air temperatures close to freezing point. Extension on to shallow shelves around 

Scotland made successive ice sheets vulnerable to rapid retreat under rising sea levels (Clark et al., 

2012). Two modes of ice sheet behaviour, with development of mountain ice caps and full ice 

sheets, are apparent in ice sheet models (Golledge et al., 2008; Hubbard et al., 2009) but should be 

explored for a wider range of climate scenarios to match the likely range of conditions earlier in the 

Pleistocene. The distributions of glacially roughened and streamlined terrain, over-deepened valleys 

and thick tills are consistent with bimodal ice extent and dynamics.  

 The impact of glaciers in modifying the pre-glacial topography of Scotland varied in space and 

time. Glacier basal thermal regimes, influenced strongly by W-E climatic gradients and also by varied 

substrates and topography, exerted a fundamental control over erosion patterns. Beneath mountain 

ice caps in western Scotland, warm-based, fast ice flow discharged via narrow and steep-sided glens 

with high-gradient floors and led to valley over-deepening and to advanced dissection of relief. 

Similar conditions may have prevailed under these and other ice sheet source areas during short 

phases of ice drawdown. During the slow build-up of ice sheets, however, the ice remained mainly 
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cold-based and non-erosive. In the eastern lowlands, of which Buchan is the type area, and at higher 

elevations, glacier ice remained cold-based throughout multiple glacial cycles, allowing the 

preservation of delicate non-glacial landforms and materials. In extensive intermediate terrain, the 

impact of glacial erosion was limited by the short duration of warm-based conditions. Next steps 

involve further mapping and dating of the complex mosaics of Early and Middle Pleistocene 

landforms and landscapes found across Scotland. Recent advances in reconstructing the pattern of 

the last deglaciation across Scotland have demonstrated the potential of digital elevation models for 

comprehensive mapping of glacial bedforms (Hughes et al., 2010; Hughes et al., 2014), an approach 

that can be extended to include older glacial landscapes and landforms. Zones of glacial erosion also 

can be reassessed using LIDAR and other remote sensing data to map landforms, relief and terrain 

roughness (Grohmann et al., 2011; Krabbendam & Bradwell, 2013) and to link morphometry to rock 

type, fracturing (Krabbendam & Bradwell, 2011) and glacial sediment distribution. Recognition of 

reference surfaces or landforms with little or no glacial erosion allows estimation of glacial erosion 

depths in neighbouring terrain using space-time transformations (Ebert et al., 2015). Depths of 

erosion can be converted to long-term average rates of erosion using the duration of non-glacial and 

glacial conditions indicated by regional temperature proxies (Hall et al., 2013a). Estimates of rock 

removal from different zones of glacial erosion across Scotland through the Pleistocene provide 

opportunities for calculating source to sink budgets using sediment volumes offshore for locations 

such as the Sula Sgeir Fan, where source and sink are well-defined (Stoker & Bradwell, 2005) and for 

examining the potential contribution of Pleistocene erosion to isostasy and uplift (Nielsen et al., 

2009).  

 There is great potential to use cosmogenic nuclides to explore long-term erosion rates for both 

glacial and non-glacial landforms found within different zones of glacial erosion (Stroeven et al., 

2002). 10Be and 26Al cosmogenic nuclide inventories inherited from exposure before MIS 3-2 

glaciation are widely reported from glacially eroded bedrock surfaces in Fennoscandia (Stroeven et 

al., 2016) and known to be present in Scotland (Stone et al., 1998; Stone & Ballantyne, 2006; Phillips 

et al., 2008; Fame et al., 2018). This approach offers the prospect of testing the widespread 

assumption that rock landforms, such as roches moutonnées (Hall, 2013), streamlined ridges (Salt & 

Evans, 2004; Bradwell et al., 2008a) and large meltwater channels (Greenwood et al., 2007) are 

mainly products of erosion beneath the last ice sheet. Long-term average rates of erosion also may 

be derived from studies of muogenic nuclide inventories at depths below ~2.5 m in bedrock (Briner 

et al., 2016) and from inherited 10Be and 26Al in deeply buried tills (Ebert et al., 2012; Fame et al., 

2018). 

 Much further work is needed to link non-glacial landforms to rock properties and processes 

(Hopkinson & Ballantyne, 2014). The rates at which non-glacial processes operated over the Early 

and Middle Pleistocene in Scotland are also poorly known. More attention can be given to the 

subsurface where reactions between minerals and oxidising and reducing groundwater in saprolites 

and fracture zones have produced indicator secondary minerals. Emerging techniques that allow 

dating of minerals formed above and below the redox front allow the residence times of the 

minerals and the depth of post-formational erosion to be estimated. For example, age estimates can 

be derived from meteoric 10Be inventories in saprolites (Ebert et al., 2012; Duxbury et al., 2015), K-Ar 

dating of authigenic illite soil clays (Fredin et al., 2017) and Mn oxides (Dill et al., 2010b) and high-

resolution mass spectrometry of U phosphates and silicates (Dill et al., 2010a). In zones of low glacial 

erosion, cosmogenic nuclide inventories from depth profiles in quarries and tor interiors (Bierman & 

Caffee, 2002), on quartz veins in MTD (Portenga et al., 2013) and on dissected, till-covered shore 

platforms (Saillard et al., 2009) also have potential for establishing erosion rates across a variety of 

geomorphological settings.  
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 The search for new Middle Pleistocene sedimentary records on land in Scotland has slowed in 

recent decades but stratotype sequences, such as at Kirkhill, Dalcharn and in the Assynt caves, 

illustrate the potential value of these environmental archives. Pitting and drilling surveys are needed 

where complex sequences of Pleistocene sediments, including organic materials, are known to occur 

in the near-surface and at depth (Sutherland, 1984). Continuing efforts are needed to link offshore 

and terrestrial sedimentary records by improved stratigraphic control and dating, provenance 

studies (Busfield et al., 2015), palynology (Lee et al., 2002; Mudie & McCarthy, 2006) and new amino 

acid analyses of marine molluscs (Reinardy et al., 2017). In dating, a major challenge ahead lies in 

extending the timeframe of the BRITICE Glacial Mapping Project beyond the last MIS 3-2 glaciation 

(Clark et al., 2018) to examine earlier events. A major difficulty lies, however, in the limited 

constraints on the ages of sediments beyond the range of radiocarbon dating. Tephrochronology is 

increasingly important in dating post-glacial sediments (Lowe, 2016) but checks for the presence of 

tephra in older sediments are not routine. For glacigenic sediment sequences, there is a pressing 

need to revisit and extend earlier luminescence dating of sandy sediments intercalated with tills 

(Duller et al., 1995; Gemmell et al., 2007). This would require clear objectives and the need to 

experiment with potentially new luminescence techniques to provide robust chronologies in order 

to match, for example, those available for the Middle and Late Pleistocene sequences in northern 

Germany (Roskosch et al., 2014) and Finland (Pitkäranta, 2009). Deeply buried old tills and 

palaeosols can also be dated using multiple cosmogenic nuclides (Balco et al., 2005b; Balco et al., 

2005c). The complex relationships that exist between the deposition of multiple till units and ice 

flow phases can be further examined by detailed analysis of till mineralogy and clast content 

(McMartin & McClenaghan, 2001). Where transport distances for till constituents are short, glacial 

erosion is likely to be limited in depth (Salonen, 1986) or restricted in its duration. 

 Improved control over the ages of sediments, soils and saprolites and on long-term rates of 

weathering and erosion, combined with information on palaeoenvironments, ice extent and sea 

level, will allow future testing and calibration of new mathematical models of Early and Middle 

Pleistocene ice dynamics, isostasy, sea-level change, permafrost and non-glacial process impacts. A 

shift of focus away from the chronology and pattern of the last glaciation in Scotland is overdue. 

Emerging dating techniques applied to a wider range of materials and landforms have potential to 

greatly improve our understanding of weathering, erosion and landscape development over 0.1-10 

Ma timescales in Scotland. 
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Figure 1 The δ18O record for benthic foraminifera from marine core DSDP 607 (Ruddiman et al., 

1989) interpreted as a proxy for glacier extent in Scotland. The cut-off value of >3.7‰ δ18O indicates 

when conditions were equivalent to the Younger Dryas event (Small & Fabel, 2016) when mountain 

ice caps, valley and corrie glaciers formed in Scotland (Clapperton 1997). The cut off value of >4.2‰ 

δ18O is that at 37.5 ka in DSDP 607, a time when the last ice sheet started to build up in Scotland 

(Hubbard et al. 2009). IG - interglacial; IS - interstadial; MIC - mountain ice cap; MPT - Mid-

Pleistocene Transition. Marine isotope stages (MIS) marked are equivalent to the following British 

and NW European stages: MIS 16 (676-621 ka; Happisburgh-Donian), MIS 12 (478-424 Ma; Anglian-

Elsterian), MIS 6 (186-130 ka) (Wolstonian-Saalian) and 2 (29-14 ka; Late Devensian-Late 

Weichselian). ........................................................................................................................................... 5 

Figure 2 Main features of the Pleistocene glaciation of Scotland. Major and minor centres of ice 

sheet growth are shaded in blue. Note the belt of ribbon lakes in the western Highlands and the 

associated basins of the inner sea lochs of the west coast that define a zone of glacial over-

deepening beneath former mountain ice caps. FG: Fladen Ground. ..................................................... 7 

Figure 3 Non-glacial landforms and regolith in the northern Scottish Highlands. Submerged platforms 

in western Scotland after Le Coeur (1988). Other non-glacial landforms from Godard (1965) and Hall 

(1991). Plateau surfaces with no or weak development of glacial erosion forms mapped from 

NextMap imagery. Blockfield distribution in the NW and W Highlands from Ballantyne and others 

(see text below for references). Saprolites and tors from field mapping and literature reports. 

Coastal rock features from Smith et al. (2018). ...................................................................................... 8 

Figure 4 Landscape of selective linear glacial erosion at Lochnagar in the eastern Grampians. The 

glacial trough now occupied by Loch Muick is cut into the Mounth plateau, a fragment of an 

extensive planation surface now at 800 m a.s.l. A 200-300 m high scarp rises to the domed granite 

summits of Lochnagar. ............................................................................................................................ 9 

Figure 5 Mountain scenery in the SW Grampians shaped by multiple episodes of fluvial, glacial, 

periglacial and paraglacial activity. Late Caledonian Etive igneous complex rocks dominate the area 

shown, with the fault-guided course of Glen Etive in the foreground. The forested hills in the middle 

ground probably represent remnants of a precursor valley floor of a broad strath, now standing at 

310-390 m a.s.l. The glacial trough occupied by Loch Etive descends to 145 m below sea level in rock 

basins (Audsley et al., 2016). The high summits show glacially roughened rock surfaces and were 

overwhelmed by warm-based glacier ice beneath the last and earlier ice sheets. During the Loch 

Lomond Stadial (12.9-11.7 ka), an outlet glacier drained from Rannoch Moor through Glen Etive. 

Extensive talus accumulations occur at the foot of slopes. .................................................................. 10 

Figure 6 Glacial landscapes and landforms in the northern Scottish Highlands. Glacially eroded 

depressions from Sutherland & Gordon (1993). Corries from (Barr et al., 2017). Glacial streamlining 

and roughening mapped from NextMap imagery. ............................................................................... 12 

Figure 7 Cumulative time that the bed for the last (MIS 3-2) British-Irish Ice Sheet was at pressure 

melting point (PMP) expressed as a percentage of the total simulation time in experiment E102b2 

(Hubbard et al., 2009). Persistent frozen basal conditions are indicated by black shading (%PMP < 

2.5%). Assuming that similar basal temperatures developed beneath Early and Middle Pleistocene 

ice sheets, comparison with Figs 3 and 6 indicates close correlations between: (i) distributions of 

areas with persistent cold-based ice and non-glacial landforms; and (ii) areas of more frequent 

warm-based conditions and landscapes of glacial roughening and streamlining. ............................... 12 

Figure 8 Cnoc-and-lochain terrain developed in Caledonian granite, Fionnphort, Ross of Mull. 1. Cnoc 

developed in massive granite. 2. Rock basin excavated in fractured granite. 3. Major fracture 

transverse to ice-flow. 4. Granite monoliths, with >10 m vertical fracture spacing, acting as resistant, 

stoss-side bastions. ............................................................................................................................... 14 
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Figure 9 Uneven impact of glacial erosion in the upper Forth valley. Smooth, tapered interfluves 

(Linton, 1962) and benches are developed in sandstones of mainly Devonian age (brown dashed 

lines). Carboniferous lava plateaux, marked by red dashed lines, have been lowered, roughened and 

weakly streamlined by glacial erosion. The intervening valleys have been over-deepened and thick 

sediments infill rock basins below the Carse of Stirling (CS) that reach depths of >100 m (Sissons, 

1967). GH Gargunnock Hills. MH Menteith Hills. OH Ochil Hills. General direction of ice flow is 

indicated by arrows............................................................................................................................... 15 

Figure 10 View N up Helmsdale towards Griam Mor and Griam Beag in Sutherland, isolated hill 

masses developed on Devonian conglomerate. Extensive low-relief surfaces have been only weakly 

dissected by fluvial and glacial erosion during the Pleistocene............................................................ 18 

Figure 11 Gruss pocket at Cairngall Quarry, Mintlaw, Buchan, developed in medium-grained biotite 

granite below a thin till cover. Gruss weathering profiles in this area reach known depths of >60 m 

(Hall, 1985). ........................................................................................................................................... 19 

Figure 12 Mountain top detritus on the Red Cuillin, Skye. Fine- to medium-grained granite is broken 

into a thin cover of MTD with many small, angular clasts in a granular sand matrix. The summit was 

probably over-topped by the last ice sheet but exposed as a nunatak in the Loch Lomond Stadial 

(Small et al., 2012). Estimated erosion rates of 30-40 mm/ka are based on 10Be cosmogenic 

inventories (Fame et al., 2018) ............................................................................................................. 21 

Figure 13 Tors developed in the Northern Arran Granite emplaced at ~60 Ma (Dickin et al., 1981). 

Note the truncation of inclined, sub-parallel joints by the glacial slopes of Glen Sannox, the 

exposures of thin granular regolith and the weathering pits on granite surfaces. .............................. 22 

Figure 14 Glacially-transported tor block, eastern Ben Avon in the eastern Cairngorms.. The tor in 

the background has lost superstructure to glacial entrainment. Extensive spreads of sandy MTD, with 

small blocks, are developed on the Cairngorm Granite. ...................................................................... 23 

Figure 15 Sites with MIS 5 and older sediments in Scotland. 1. Fugla Ness (Hall et al., 2002). 2. Sel 

Ayre (Hall et al., 2002). 3. NW Lewis (Sutherland & Walker, 1984). 4. Inchnadamph (Lawson & 

Atkinson, 1995). 5. Caithness (Hall & Riding, 2016). 6. Dalcharn (Walker et al., 1992). 7. Allt Odhar 

(Walker et al., 1992). 8. Teindland (Hall et al., 1995). 9. Kirkhill (Connell et al., 1982). 10. Camp Fauld 

(Whittington et al., 1993). 11. Toddlehills (Gemmell et al., 2007) and Savock Quarry (Connell, 2015). 

12. Pitlurg (Hall & Jarvis, 1995). 13. Nigg Bay (Gordon, 1993e). 14. Inverbervie (Auton et al., 2000). 

15. Pattack (Merritt et al., 2013). 16. Balglass (Brown et al., 2006). 17. Lower Clyde (Rolfe, 1966; 

Finlayson et al., 2010). 18. Ayrshire (Jardine et al., 1988; Finlayson et al., 2010). ............................... 26 

Figure 16 Kirkhill and Leys schematic Middle to Late Pleistocene stratigraphy (after (Merritt et al., 

2003).  ................................................................................................................................................... 27 

Figure 17 SW face of Leys Quarry in the 1990s showing high-angle,glacideltaic foreset gravels of the 

?MIS 8 Denend Gravel Formation. Flow of water was towards the W and SW. Note extensive Fe and 

Mn staining and local cementation of the sediments. Excavations below this gravel unit exposed the 

Leys Till resting on bedrock. .................................................................................................................. 28 

Figure 18 South Face 1 of Kirkhill Quarry in the late1970s. 1. Floor of meltwater channel cut in a 

felsite dyke. 2. Pitscow Sand and Gravel Formation. 3. Kirkhill Palaeosol Bed. 4. Camphill Gelifluctate 

Bed 5. Rottenhill Till. 6. Corsend Gelifluctate Bed. 7. Hythie Till. ......................................................... 29 

Figure 19 Kirkhill Quarry North Face in the 1980s. 1. Podzolic Kirkhill Palaeosol Bed. 2. 

Unconformable, sub-horizontal, base of the brown Rottenhill Till (within which the Fernieslacks 

Palaeosol Bed, developed). 3. The black Corse Diamicton (incorporating glacitectonically deformed 

pale coloured sand) overlies the Rottenhill Till. 4. Hythie Till. The section is approximately 15 m high.

 .............................................................................................................................................................. 30 
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Figure 20 Longitudinal profile of the Allt Carn a’Ghranndaich valley upstream from Clava, E of 

Inverness, showing multiple, buried and locally weathered Middle Pleistocene till and gravel units 

(after Fletcher et al. 1996). ................................................................................................................... 33 

Figure 21 Teindland Quarry in 2000. 1. Teindland Lower Sand, 2. Teindland Buried Soil (MIS 5e). 3. 

Teindland Upper Sand. 4. Truncated and glacitectonically sheared units beneath overlying Teindland 

Till. ......................................................................................................................................................... 33 

Figure 22 Toddlehills Quarry in 2006, N face. Section ca. 6 m hig. Weathered bedrock (1) is overlain 

by a till unit (2) correlated with the MIS 6  Rottenhill Till Formation at Kirkhill. OSL dated (mean 85 

ka) sands are obscured by made ground in mid-section (3). Late Devensian Hythie Till Formation can 

be seen higher in the section beneath vegetated made ground (4). ................................................... 35 

Figure 23 Savock Quarry in 2014. Section ca. 5 m high: 1. Middle Pleistocene sand and gravel channel 

fill. 2. Brown, possibly weathered till correlated with the MIS 6 Rottenhill Till Formation at 

Toddlehills, Leys and Kirkhill. 3. Upper clast-rich till correlated with the MIS 3-2 Hythie Till. ............. 35 

Figure 24 Sheared lens of the Burn of Benholm Peat Bed within olive grey shelly clay and diamicton 

(Benholm Clay Formation) at Burn of Benholm. The shelly deposits are overlain by red-brown 

diamicton of the Late Devensian Mill of Forest Till Formation. ........................................................... 36 
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Fig. 1 Pleistocene timescale  
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Figure 2. Main features of the Pleistocene glaciation of Scotland. Major and minor centres of ice sheet 
growth are shaded in blue. Note the ribbon lakes in the western Highlands and the associated rock basins of 
the inner sea lochs of the west coast that together define a belt of glacial over-deepening beneath former 

mountain ice caps. IS ice stream. FG Fladen Ground. IS Ice Stream.  
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Figure 3. Non-glacial landforms and regolith in the northern Scottish Highlands. Submerged platforms in 
western Scotland after Le Coeur (1988). Other non-glacial landforms from Godard (1965) and Hall (1991). 
Plateau surfaces with no or weak development of glacial erosion forms were mapped from NextMap imagery. 

Blockfield distribution in the NW and W Highlands from Ballantyne and others (see text below for 
references). Saprolites and tors based on field mapping and literature reports. Coastal rock features from 

Smith et al. (2018).  
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Figure 4. Landscape of selective linear glacial erosion at Lochnagar, eastern Grampians. The glacial trough 
now occupied by Glen Muick is cut into the Mounth plateau, a fragment of an extensive planation surface 

now at 800 m a.s.l. A 200-300 m high scarp rises to the domed granite summits of Lochnagar.  
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Figure 5. Mountain scenery in the SW Grampians shaped by multiple episodes of fluvial, glacial, periglacial 
and paraglacial activity. Late Caledonian Etive igneous complex rocks dominate the area shown, with the 
fault-guided course of Glen Etive in the foreground. The forested hills in the middle ground probably 

represent remnants of a precursor valley floor of a broad strath, now standing at 310-390 m a.s.l. The 
glacial trough occupied by Loch Etive descends to 145 m below sea level in rock basins (Audsley et al., 
2016). The high summits show glacially-abraded rock surfaces and were overwhelmed by warm-based 

glacier ice beneath the last and earlier ice sheets. During the Loch Lomond Stadial (12.9-11.7 ka), an outlet 
glacier drained from Rannoch Moor through Glen Etive. Extensive talus accumulations occur at the foot of 

slopes.  
 

132x99mm (220 x 220 DPI)  

 

 

Page 64 of 83

Cambridge University Press

Earth and Environmental Science Transactions of the Royal Society of Edinburgh



For Peer Review

  

 

 

Figure 6. Glacial landscapes and landforms in the northern Scottish Highlands. Glacially-eroded depressions 
from Sutherland & Gordon (1993). Corries from Barr et al. (2017). Glacial streamlining and roughening 

mapped from NextMap imagery.  
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Figure 7. Cumulative time that the bed for the last (MIS 3-2) British-Irish Ice Sheet was at pressure melting 
point (PMP) expressed as a percentage of the total simulation time in experiment E102b2 (from Hubbard et 
al., 2009). Persistent frozen basal conditions given by black shading (%PMP < 2.5%). Assuming that similar 

basal temperatures developed beneath Early and Middle Pleistocene ice sheets, comparison with Figures 3 
and 6 indicates close correlations between (i) distributions of areas with persistent cold-based ice and non-

glacial landforms and (ii) areas of more frequent warm-based conditions and landscapes of glacial 
roughening and streamlining.  
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Figure 8. Cnoc-and-lochain terrain developed in Caledonian granite, Fionnphort, Ross of Mull. 1. Cnoc 
developed in massive granite. 2. Rock basin excavated in fracture granite. 3. Major fracture transverse to 

ice-flow. 4. Granite monoliths, with >10 m vertical fracture spacing, acting as resistant, stoss-side bastions. 
 

269x126mm (300 x 300 DPI)  

 
 

Page 67 of 83

Cambridge University Press

Earth and Environmental Science Transactions of the Royal Society of Edinburgh



For Peer Review

  

 

 

Figure 9. Uneven impact of glacial erosion in the upper Forth valley. Smooth, tapered interfluves (Linton, 
1962) and benches developed in sandstones of mainly Devonian age (brown dashed lines). Carboniferous 
lava plateaux, marked by red dashed lines, have been lowered, roughened and weakly streamlined by 
glacial erosion. The intervening valleys have been over-deepened and thick sediments infill rock basins 
below the Carse of Stirling (CS) that reach depths of >100 m (Sissons, 1967). GH Gargunnock Hills. MH 

Menteith Hills. OH Ochil Hills. General direction of ice flow indicated by arrows.  
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Figure 10. Looking N up Helmsdale towards Griam Mor and Griam Beag, isolated hill masses developed on 
Devonian conglomerate. Extensive low-relief surfaces have been only weakly dissected by fluvial and glacial 

erosion during the Pleistocene.  
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Figure 11. Gruss pocket at Cairngall Quarry, Mintlaw, Buchan, developed in medium-grained biotite granite 
below a thin till cover. Grus weathering profiles in this area reach known depths of >60 m (Hall, 1985).  
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Figure 12. Mountain-top detritus on the Red Cuillin, Skye. Fine- to medium-grained granite broken into a 
thin cover of MTD with many small, angular clasts in a granular sand matrix. The summit was probably 

over-topped by the last ice sheet but exposed as a nunatak in the Loch Lomond Stadial (Small et al., 2012). 
Estimated erosion rates of 30-40 mm/ka based on 10Be cosmogenic inventories (Fame et al., 2018).  
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Figure 13. Tors developed in the Northern Arran Granite emplaced at ~60 Ma (Dickin et al., 1981). Note the 
inclined, sub-parallel joints truncated by the glacial slopes of Glen Sannox, the exposures of thin granular 

regolith and the weathering pits on granite surfaces.  
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Figure 14. Glacially-transported tor block, eastern Ben Avon, Cairngorms. The tor in the background has lost 
superstructure to glacial entrainment. Extensive spreads of sandy MTD, with small blocks, developed on the 

Cairngorm Granite.  
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Figure 15. Sites with MIS 5 and older sediments in Scotland. 1. Fugla Ness (Hall et al., 2002). 2. Sel Ayre 
(Hall et al., 2002). 3. NW Lewis (Sutherland & Walker, 1984). 4. Inchnadamph (Lawson & Atkinson, 1995). 
5. Caithness (Hall & Riding, 2016). 6. Dalcharn (Walker et al., 1992). 7. Allt Odhar (Walker et al., 1992). 8. 

Teindland (Hall et al., 1995). 9. Kirkhill (Connell et al., 1982). 10. Camp Fauld (Whittington et al., 1993). 
11. Toddlehills (Gemmell et al., 2007) and Savock Quarry (Connell, 2015). 12. Pitlurg (Hall & Jarvis, 1995). 
13. Nigg Bay (Gordon, 1993e). 14. Inverbervie (Auton et al., 2000). 15. Pattack (Merritt et al., 2013). 16. 
Balglass (Brown et al., 2006). 17. Lower Clyde (Rolfe, 1966; Finlayson et al., 2010). 18. Ayrshire (Jardine et 

al., 1988; Finlayson et al., 2010).  
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Figure 16. Kirkhill and Leys schematic Middle to Late Pleistocene stratigraphy (after Merritt et al., 2003). 1. 
Leys Till Formation. 2. Denend Gravel Formation. 3. Kirkton Gelifluctate Bed. 4. Pitscow Sand and Gravel 

Formation. 5. Kirkhill Palaeosol Bed. 6. Swineden Sand Bed 7. Camphill Gelifluctate Bed. 8. West Leys Sand 
and Gravel Formation. 9. Rottenhill Till Formation. 10. Fernieslack Palaeosol Bed. 11. Corsend Gelifluctate 
Bed. 12. Corse Diamicton Bed. 13. Hythie Till Formation. 14. East Leys Till Formation. 15. Kirkhill Church 

Sand Formation. 16. Manse Gelifluctate Bed.  
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Figure 17. SW face of Leys Quarry 1990s. High-angle glacideltaic foreset gravels of the ?MIS 8 Denend 
Gravel Formation. Flow towards the W and SW. Note extensive Fe and Mn staining and local cementation of 

the sediments. Excavations below this gravel unit exposed the Leys Till resting on bedrock.  
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Figure 18. South Face 1 of Kirkhill Quarry in the late1970s. 1. Floor of meltwater channel cut in a felsite 
dyke. 2. Pitscow Sand and Gravel Formation. 3. Kirkhill Palaeosol Bed. 4. Camphill Gelifluctate Bed 5. 

Rottenhill Till. 6. Corsend Gelifluctate Bed. 7. Hythie Till.  
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Figure 19. Kirkhill Quarry North Face in the 1980s. 1. Podzolic Kirkhill Palaeosol Bed. 2. Unconformable, sub-
horizontal, base of the brown Rottenhill Till (within which the Fernieslacks Palaeosol Bed developed). 3. The 
black Corse Diamicton (incorporating glacitectonically-deformed pale coloured sand) overlies the Rottenhill 

Till. 4. Hythie Till. The section is approximately 15 m high.  
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Figure 20. Longitudinal profile of the Allt Carn a’Ghranndaich valley upstream from Clava, showing multiple, 
buried and locally weathered Middle Pleistocene till and gravel units (after Fletcher et al. 1996).  
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Figure 21. Teindland Quarry in 2000. 1. Teindland Lower Sand, 2. Teindland Buried Soil (MIS 5e). 3. 

Teindland Upper Sand. 4. Truncated and glacitectonically-sheared units beneath overlying Teindland Till.  
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Figure 22. Toddlehills Quarry, N face. Weathered bedrock (1) is overlain by a till unit (2) correlated with the 
MIS 6 (191-123 ka) Rottenhill Till Formation at Kirkhill. OSL dated (mean 85 ka) sands are obscured by 
made ground in mid-section (3). Late Devensian Hythie Till Formation can be seen higher in the section 

beneath vegetated made ground (4).  
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Figure 23. Savock Quarry in 2014. Section ~5m high. 1. Middle Pleistocene sand and gravel channel fill. 2. 
Brown, possibly weathered till correlated with the MIS 6 Rottenhill Till Formation at Toddlehills, Leys and 

Kirkhill. 3. Upper clast-rich till correlated with the MIS 3-2 Hythie Till.  
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Fig 24 Benholm (high res)  
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