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ABSTRACT
Understanding the statistics of fluctuation driven flows in the boundary layer of magnetically confined plasmas is desired to
accurately model the lifetime of the vacuum vessel components. Mirror Langmuir probes (MLPs) are a novel diagnostic that
uniquely allow us to sample the plasma parameters on a time scale shorter than the characteristic time scale of their fluctuations.
Sudden large-amplitude fluctuations in the plasma degrade the precision and accuracy of the plasma parameters reported by
MLPs for cases in which the probe bias range is of insufficient amplitude. While some data samples can readily be classified as
valid and invalid, we find that such a classification may be ambiguous for up to 40% of data sampled for the plasma parameters
and bias voltages considered in this study. In this contribution, we employ an autoencoder (AE) to learn a low-dimensional
representation of valid data samples. By definition, the coordinates in this space are the features that mostly characterize valid
data. Ambiguous data samples are classified in this space using standard classifiers for vectorial data. In this way, we avoid
defining complicated threshold rules to identify outliers, which require strong assumptions and introduce biases in the analysis.
By removing the outliers that are identified in the latent low-dimensional space of the AE, we find that the average conductive
and convective radial heat fluxes are between approximately 5% and 15% lower as when removing outliers identified by threshold
values. For contributions to the radial heat flux due to triple correlations, the difference is up to 40%.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5049519

I. INTRODUCTION
Tokamaks confine fusion plasmas, a fully ionized hydro-

gen plasma with a core temperature of approximately
100 000 000 K, using strong, donut-shaped magnetic fields
within a vacuum vessel.1 The outer boundary region of the
plasma comprises a region where closed magnetic field lines
wind around toroidal surfaces and a region where open mag-
netic field lines are guided as to intersect material walls,
so-called divertor targets, remote from the central plasma
column. As plasma streams along the open field lines onto
the divertor targets, it cools. These field lines terminate at
divertor structures which facilitate the further removal of the
plasma. Thereby this region defines an exhaust channel for

the plasma. Intermittent, large-amplitude fluctuations of the
plasma parameters, such as the density and the temperature,
are characteristic for the outboard mid-plane open field line
region.2–6 These fluctuations are foot prints of coherent struc-
tures of excess plasma pressure, called blobs, which propagate
radially out over through the open field line region onto the
vacuum vessel walls at the outboard mid-plane.7–11 Depending
on their amplitude, these fluctuations can potentially erode
the vacuum vessel. Impurities released from the wall may fur-
thermore accumulate within the confined plasma column and
negatively impact the confinement properties of the plasma.
Nowadays tokamaks perform experiments on plasma dis-
charges which last for several seconds. Future fusion reactors
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need to operate with long pulses or continuously. In order
to model the life time of the plasma facing components for
such requirements, a precise and accurate description of this
fluctuation driven transport is desired.12,13

Langmuir probes are the workhorse used to diagnose this
boundary region plasma. They are implemented as electrodes
immersed into a plasma. Using electric current and voltage
samples recorded by a Langmuir probe, plasma quantities are
recovered from the relation14

Ipr = Isat

[
1 − exp

(
e

Vpr − Vf

Te

)]
. (1)

Here Ipr is the collected electric current and Vpr is the applied
bias voltage. Te gives the electron temperature of the plasma
measured in electronvolt. The floating potential Vf is defined
as the electric potential assumed by an electrically isolated
object if it were to be immersed into the sampled plasma. The
ion saturation current Isat is the maximal current that can be
drawn by an electrode, which is limited by ion collection of the
electrode.

In order to estimate the particle and heat fluxes driven by
the electric drift, the electron density, the temperature, and
the local electric field need to be recovered from probe mea-
surements. Commonly, these quantities are recovered from
probes by applying a sweeping voltage to the electrode. This
allows us to sample several current-voltage measurements(
Ipr, Vpr

)
during one sweep. From these, Isat, Te, and Vf are

obtained from a fit on Eq. (1). The ion saturation current and
the electron temperature can be used to calculate the electron
density of the plasma as14

ne = 2
Isat

eAp
√

kbTe/mi
. (2)

Here e is the elementary charge, Ap is the current collecting
area of the electrode, kb is the Boltzmann constant, and mi
denotes the ion mass. The electric potential in the plasma can
be estimated as

Vp = Vf + ΛTe, (3)
where Λ ≈ 2–3 for scrape-off layer plasmas.15,16 Potential
measurements from poloidally separated electrodes allow us
to estimate the poloidal electric field, which drives the radial
electric drift.

A characteristic time scale for fluctuations of ne, Te,
and Vp in the boundary plasma is given by approximately
10 µs.6,17–24 Sweeping the voltage with a frequency larger than
approximately 100 kHz however leads to hysteresis effects in
the sampled current-voltage characteristic as the bias voltage
polarizes the flux tube in which the plasma is sampled from
Refs. 25 and 26. Thus, Langmuir probes used in this manner
cannot sample the plasma parameters on a fast enough time
scale to resolve the fluctuations of the boundary layer plasma.

The Mirror Langmuir Probe (MLP) biasing technique
allows us to sample Isat, Te, and Vf on a time scale below
that of the boundary layer plasma fluctuation.27,28 The MLP

diagnostic consists of three main components. The actual mir-
ror Langmuir probe is an electric circuit outputs a current-
voltage (I-V) characteristic with three adjustable parameters
Isat, Te, and Vf, given by Eq. (1). The second main component
is a Langmuir electrode immersed in the plasma. Both compo-
nents are connected to a fast switching biasing waveform, the
third main component of the MLP diagnostic. The bias wave-
form switches between the states (V+, V0, V−) such that the
Langmuir electrode draws approximately ±Isat at the states V±

and zero net current when biased to V0, as shown in Fig. 1 of
Ref. 28. The target bias voltage state is updated every 300 ns.
Once the bias voltage has settled, the current drawn from the
MLP and the Langmuir electrode are sampled. The ion satura-
tion current, the plasma potential, and the electron tempera-
ture are recovered by a fit of Eq. (1) to the data samples from
the Langmuir electrode.

The main task of the MLP circuit is to set and maintain
the optimal range of the bias voltages such that a complete
I–V characteristic can be reconstructed from current sam-
ples drawn by the Langmuir electrode at the three bias voltage
states. In order to account for varying plasma conditions, the
MLP dynamically updates the voltage states V+ and V− rela-
tive to the running average of the electron temperature sam-
ples over a 2 ms window such that 4V < 4Te,2ms holds. Here,
∆V = V+ − V− and Te,2ms denotes this running average of the
electron temperature.

On the other hand, large amplitude fluctuations of the
boundary layer plasma have a characteristic time scale of
approximately 10 µs. During such transient events, the elec-
tron temperature may significantly exceed the running aver-
age, Te > Te,2ms, such that the adjusted biasing voltage range
may be insufficient to guarantee a precise fit on the true I–V
characteristic of a hypothetical Langmuir probe. However
events such as probe arcing may result in unphysical fit values.

A large body of experimental measurements suggest that
the fluctuation statistics of the boundary plasma depend
on the global parameters of the plasma discharge, such as
line-averaged core plasma density and the magnetic geome-
try.18,23,29–32 Since the MLP biasing drive is agnostic to these
circumstances, the accuracy and precision of data samples
reported by the MLP may vary, depending on the plasma it
samples. In order to accurately calculate lower order statisti-
cal moments of MLP data time series or distributions such as
the probability distribution function or power spectral den-
sity, low-accuracy data samples should be discarded. How-
ever, if too many samples are discarded, these moments or
distribution functions cannot be estimated with high statis-
tical significance, due to the scarcity of the available data
points.

One way of pruning MLP data time series is to define
valid ranges for the MLP parameters. Within these thresholds,
samples are kept and out of bound samples are to be dis-
carded. A sensible boundary, or thresholds, needs to be low
enough in order to reject samples with unphysically large fluc-
tuation values. On the other hand, the threshold value needs
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to be large enough so that the accepted data points cor-
rectly capture the properties of the plasma fluctuations of the
interrogated plasma. While measurements with a sufficient or
insufficient biasing voltage range are readily identifiable, such
a decision is ambiguous for a large fraction of other samples.
In practice, it is often the case that several nearby Lang-
muir electrodes sample the plasma. Given that MLP samples
may be quite heterogeneous when operating on a small bias-
ing voltage range, a threshold based method requires domain
expertise and inevitably introduces biases.

A. Proposed approach
The approach proposed here adopts simple thresholds to

identify all good and bad measurements as a primer. This iden-
tification will be non-exhaustive and will leave a large number
of samples unclassified. From this, all uncertainty in the qual-
ity of the measurements will be treated with machine learning
techniques which exploit statistical properties and regulari-
ties in the data. This approach allows us to label unclassified
data by making inference, as opposed to labelling them using
a complicated set of rules.

Specifically, we present an outlier classification frame-
work based on an autoencoder (AE), a type of neural network
that can be used to learn low-dimensional representations of
arbitrary datasets. AEs will be trained using only good mea-
surement samples so that they learn how to map them into
low dimensional representations. Each dimension of the space
induced by the AE mapping corresponds to a combination
of features which best characterize the important features
of good measurements. Those features are identified without
making any a priori assumption, but are automatically selected
by the AE as the ones that are, on average, the most informa-
tive to describe the training samples. As a consequence, the
numerical values of features in training samples will be similar
and are mapped into a compact cluster in that low dimensional
space.

AEs learn a representation of good measurements that are
more powerful, due to the regularization constraints of the
dimensionality reduction, and generalize better the samples.
Evaluating similarities among samples represented in this new
space is arguably more meaningful and reliable.

Once an AE is trained and the mapping to such a low
dimensional space is learned, the unclassified samples will be
processed. Bad measurements lack the characteristic features
of good measurements and are expected to map onto vectors
with a large distance to the cluster composed of good samples.

In order to identify a boundary between the representa-
tions of good and bad measurements, classifiers for vectorial
data will be trained in this new space. Unclassified data sam-
ples are assigned a label based on which side of the decision
boundary they fall.

The rest of this article is structured as follows: Sec. II
describes the measurements of plasma fluctuations by MLPs
and discusses the structure of valid and invalid data at hand.
Section III introduces AEs and describes their application for

outlier detection in large datasets. The proposed classifica-
tion method and its application to MLP data are described in
Sec. IV. Section V discusses the performance of the proposed
framework, and Sec. VI gives a conclusion.

II. MEASUREMENTS OF PLASMA FLUCTUATIONS
Dedicated experiments with the goal to describe the

statistics of fluctuation driven flows in the boundary plasma
have been performed in the Alcator C-Mod tokamak.33–36 In
these experiments, the boundary layer of an ohmically heated,
lower single-null plasma discharge with a toroidal magnetic
field strength of BT = 5.4 T was interrogated by four MLPs,
connected to the electrodes of a Mach probe head, as shown
in Fig. 1. The probe head was mounted on a linear servomo-
tor probe drive system37 and dwelled flush with plasma facing
components at the outboard mid-plane location, as shown in
Fig. 2. Extraordinarily long data time series of 1 s duration were
sampled in stationary plasma discharge conditions with the
goal to calculate the fluctuation statistics for the plasma with
unprecedented accuracy.

The line-averaged core plasma density of the investigated
discharge is ne/nG ' 0.6, where nG denotes the Greenwald
density.30 For such high line-averaged core plasma densities,
the average electron temperature in the far scrape-off layer
plasma is below 10 eV. For lower ne/nG, the scrape-off layer
is commonly warmer.29 On the other hand, the MLPs register
order unity fluctuations of the electron temperature. That is,
for such high ne/nG and accompanying temperatures in the
scrape-off layer, the MLP biasing drive operates at the limits
of its design.

In order to assess the accuracy of fit parameters reported
by the MLPs, they were compared among the four MLPs. Since

FIG. 1. The Mach probe head with four Langmuir electrodes, labelled “NE,” “SE,”
“SW,” and “SE,” protruding from its top. The blue arrow denotes the direction of
the local magnetic field.
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FIG. 2. The poloidal cross section of the Alcator C-Mod tokamak. The blue dot
marks the location where the MLPs sample the plasma. Green lines denote the
open magnetic field lines, and cyan lines denote the closed magnetic field lines.
The red line separates the open field line region from the closed field line region.
Material structures are shown in gray.

the electrodes on the probe head are separated by approxi-
mately 2 mm, smaller than the characteristic size of the struc-
tures in the boundary layer,11 it is expected that all four MLPs
report similar fit parameters. Indeed, Isat, Te, and Vf fit param-
eters reported from the four MLPs are of comparable magni-
tude when the range of the biasing voltage states are large,
∆V > 4Te. For the case where ∆V . 4Te, the reported Te fit
parameters may show significant deviations. Operating with
small bias voltage ranges, the relative fit error of the electron
temperature, σTe/Te, is furthermore on average larger than
that for the case ∆V > 4Te. The relative error on Isat and Te

reported by the fit routine are correlated with a Pearson sam-
ple correlation coefficient of approximately one. The relative
error on the floating potential is uncorrelated with the relative
error of both Isat and Te. While both Isat and Te are positive
definite quantities, Vf may assume both positive and nega-
tive values. Thus, the relative error on the floating potential,
σVf/Vf, assumes large absolute values for small absolute values
of Vf. This quantity is therefore not suitable to identify poor
fits. Poor fits are identified by a large Te value, a large relative
fit error σTe/Te, and a small fit domain ∆V/Te.

Figure 3 shows data time series reported by the north-
east and south-west MLP. The upper panel shows the
electron temperature, the middle panel shows the relative
error on Te, and the lower panel shows the biasing voltage
range. A large fraction of the samples feature small to mod-
erate Te values, together with small error proxies, that is, a
relative error σTe/Te . 0.1 and a large biasing voltage range.
Within these ranges, the fit parameters reported by the dif-
ferent MLPs are similar to one another, indicating that they
are both accurate and precise.

Large-amplitude fluctuations of the electron temperature
appear intermittently in both time series. While the MLPs reg-
ister them simultaneously, they report dissimilar Te values,
varying by up to 100%. Large amplitude fluctuations are fur-
thermore associated with a large relative error σTe/Te and
a small biasing voltage range. Comparing the appearance of
large amplitude peaks sampled by the two MLPs, they may
be grouped into several categories. One category are large
amplitude peaks recorded by multiple MLPs but with dis-
parate Te values, for example, at 45.1 ms, at 45.4 ms, or at
45.9 ms. The other category are peaks where the MLPs report
similar Te values, for example, at 45.25 ms or at 46.6 ms.
Judging by the fit parameters reported by a single MLP, such
peaks should be discarded. However, in the case where multi-
ple MLPs report similar peaks, such samples may be retained.
For the data at hand, electrode-averaged values may be used in
combination with threshold values to identify samples which
should be certainly kept or discarded. But for a majority of the
data, such a simple classification may be ambiguous.

This broad range of variations under which large ampli-
tude peaks are observed suggest that it is impractical to

FIG. 3. Time series of the electron temperature (upper panel), the relative error on
Te (middle panel), and the range of the biasing voltages (lower panel), reported
by the north-east (blue lines) and south-west (orange lines) MLP. Time series from
the latter MLP are delayed by 20 µs for better visibility.
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TABLE I. Threshold values used for a priori partitioning of the data. The first number
gives the threshold for a poor fit, and the second number gives the threshold for a
good fit. The lowest row lists the fraction of data labeled as uncertain and bad.

Quantity Relaxed Mid Strict

Te/eV 45/50 40/45 35/40
σTe/Te 0.75/1.0 0.5/0.75 0.25/0.5
∆V/Te 2.5/1.5 3.0/2.0 3.5/2.5
Uncertain/bad 20.3%/0.1% 30.0%/0.1% 40.2%/0.2%

develop a comprehensive set of rules based on which to accept
or reject reported peak amplitudes. In the following, we dis-
cuss how statistical inference can be used to derive such rules
based from a priming sample of good or accepted data.

A. Dataset description and threshold definition
Data time series of Te, σTe/Te, and 4V , sampled by

all four MLPs, are combined into a single dataset X
=

{
Te,p,σTe,p/Te,p, 4V/Te,p | p ∈ {NE, SE, SW, NW}

}
. Each sam-

ple is a vector in R12 corresponding to the individual measure-
ments at a given time. We apply a simple threshold mechanism
to label only a fraction of the original dataset. In particular, we
identify good and bad samples, X g and X b, while the remaining
samples are left unlabelled and referred as uncertain X u.

A fit reported by a single MLP is considered valid if Te
and σTe/Te are below a threshold value and if ∆V/Te exceeds
a threshold value. If the opposite conditions are true, the fit
is considered invalid. If at least two MLPs report a valid fit,
the vector is labelled good and assigned to X g. If at least
two MLPs report an invalid fit, the vector is labelled bad and
assigned to X b.

Table I lists three different sets of threshold values that
are used for an a priori partitioning of the dataset X. Depend-
ing on the threshold values used, the fraction of data points
classified as good, uncertain, and bad varies. For example, the
category relaxed denotes the partitioning that excludes the
least amount of data from being categorized. Fits that report
electron temperatures of up to 45 eV with a relative error of
0.75 over a range of 4V/Te ≥ 2.5 are considered as valid. The
fraction of bad and uncertain samples is listed in bottom row
of Table I. Using relaxed thresholds, approximately 20% of the
data is unclassified, while approximately 40% of the data is
labeled uncertain when using strict thresholds.

In the following, we describe an approach where an AE is
facilitated to identify data, which cannot be classified reliably
by applying a threshold method.

III. AUTOENCODERS
AEs38 are a particular class of neural networks, which

received increasing interest in recent years.39–41 AEs can be
used to learn unsupervised compressed, or lossy, represen-
tations of data, by training the network to map the input in
a lower dimensional space through a bottleneck layer and
then reconstruct the original input. In this way, the AE learns

how to compress inputs, by retaining only the most impor-
tant information necessary to yield a reconstruction that is
as much accurate as possible.42 Indeed, training AEs by mini-
mizing a reconstruction error corresponds to maximizing the
lower bound of the mutual information between the input and
the learned representation.43

The bottleneck enforces a strong regularization that pro-
vides noise filtering, prevents the AE from learning trivial
identity mappings (i.e., the identity function), and guarantees
robustness to small changes in the inputs.44 Further regu-
larization can be used to prevent overfitting on the training
data and enhance the generalization properties of the rep-
resentations. The most common regularizations are applying
a `2 norm penalty to the weights learned network and using
dropout45 to randomly drop connections between neurons
at each iteration in the training phase. Dropout hinders cou-
plings among neurons and therefore encourages to diversify
the behavior of neurons.

In the training phase, an AE learns two functions at the
same time. The first one is called encoder and provides a map-
ping from an input domain, X, to a code domain, Z, i.e., the
latent representation space. Specifically, an input x is repre-
sented as the output z of the innermost layer in the AE. The
second function, called decoder, implements a mapping from
Z back to X. Figure 4 depicts a standard AE architecture with
a bottleneck.

The encoding function E(·) : X → Z and the decod-
ing function D(·) : Z → X of the AE define the following
deterministic posteriors:

z = E(x) = p(z |x; θE),

x̃ = D(z) = q(x̃ |z; θD),
(4)

where θE and θD are the trainable parameters of the two func-
tions, x is the original input, z is the code representation, and
x̃ is the reconstruction of the input. The encoding and decod-
ing functions are usually implemented as two feed-forward

FIG. 4. Schematic representation of the AE architecture with a bottleneck. The
encoder generates a low dimensional representation z of the input x. The AE is
trained by minimizing the discrepancy (quantified by the loss Lr ) between x and its
reconstruction x̃ yielded by the decoder.
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neural networks, which are constrained to be symmetric. Each
network consists of a stack of layers that can be dense, con-
volutional,46 or recurrent.47 Here, we focus only on dense
layers that are implemented by an affine transformation fol-
lowed by a non-linear activation function applied component-
wise. Common activation functions are the sigmoid (logistic
function, tanh), the maxout,48 and the rectified linear unit
(ReLU).

Each layer contains a different number of processing
units (neurons), which affects the capability of approximating
a generic function. While a large number of layers and neurons
per layer can provide more powerful modeling capabilities,
the number of parameters increases with a consequent risk
of overfit and a greater demand of computational resources.
Therefore, an optimal configuration of the network should
account for those contrasting properties.

The configuration of an AE with K layers in the encoder
and decoder, respectively, can be suitably expressed as

C = {e0, . . . , eK, z, d0, . . . , dK }, (5)

where ei and di define the number of neurons in the ith layer
of the encoder and the decoder. The size of the innermost
layer is denoted by z and defines the dimension of the rep-
resentation z. As previously stated, we implement a symmet-
ric encoder/decoder architecture by enforcing the following
constraint: ei = dK−i.

In order to minimize the discrepancy between the input
and its reconstruction, the parameters θE and θD are adjusted
by minimizing the following reconstruction loss through
stochastic gradient descent:

L = Lr + λL2 = Ex∼X
[
‖x − x̃‖2

]
+ λ

(
‖θE ‖

2 + ‖θD ‖
2
)

. (6)

The term Lr minimizes the mean squared error between orig-
inal inputs and their reconstructions, while L2 penalizes large
model weights. The hyperparameter λ controls the latter
contribution to the total loss.

Besides the regularization parameter λ and the network
configuration C, other hyper-parameters that must be chosen
by the user, or optimized by means of a validation procedure,
are the following: the probability pdrop to drop neural connec-
tions during the training, the learning rate η used in stochastic
gradient descent, and the type of activation function imple-
menting the non-linearities within each layer of the AE. We
refer to the whole set of hyper-parameters as Γae.

A. Outlier detection with autoencoders
Outlier detection (also referred to as anomaly detection)

is an important area of study in machine learning and is
applied to several case-studies where non-nominal samples
are scarce, noisy, and not always available during training. The
objective of outlier detection procedures is to identify anoma-
lous patterns, the outliers, in data that do not conform to an
expected behavior.49

Dimensionality reduction procedures, such as Principal
Component Analysis (PCA), AEs, and energy based models50,51

identify a subspace defined by the directions with largest vari-
ation among the nominal samples. While PCA can only cap-
ture variations that emerge from linear relationships in the
data, more sophisticated models such as AEs also account for
non-linear relationships. Therefore, AEs can identify a sub-
space defined by features that better characterize the nominal
samples.

Anomaly detection methods based on dimensionality
reduction rely on the assumption that anomalous samples do
not belong to the subspace, learned during training, that con-
tains nominal data. Indeed, the representations generated for
samples of a new, unseen class will arguably fail to retain
important characteristics, since the latent low-dimensional
space induced by the AE does not span the most relevant fea-
tures of the anomalous data. As direct consequences, the AE
would yield large reconstruction errors for those samples and
their low-dimensional representations would be significantly
different and more scattered than for samples from the nom-
inal class. This effect can be exploited to obtain an implicit
separation between the classes in the code space, which can
facilitate the separations of the two classes by a subsequent
classifier.

Similar assumptions are reasonable for the MLP dataset
at hand. As shown in Fig. 3, a large fraction of the MLP sam-
ples feature similar Te fit values, together with σTe/Te and 4V
values which indicate a reliable fit. These samples are consid-
ered as inliers and are used to train an AE. Having learned the
important characteristics of inlier samples, hitherto unclassi-
fied samples will be mapped into the code space of the AE.
Samples which do not share the important characteristics of
the inlier samples should then be readily identifiable. In the
following, we describe a classification framework that exploits
this property of the data at hand to identify and separate
outliers.

IV. PROPOSED CLASSIFICATION FRAMEWORK
AND SELECTION OF MODEL PARAMETERS

The critical components of the proposed classification
framework are the AE and the classifier used in the latent
code space of the AE to discriminate between good and bad
samples. Beside the trainable parameters, both components
depend on a set of hyper-parameters whose tuning may affect
the behavior of the whole framework. In the following, we
discuss how the choice of a classifier and hyper-parameters
for both the AE and the classifier results in different statis-
tics of the inlier Te data. In Sec. III, we discuss how the choice
results in different statistics of the fluctuation driven heat flux.
Since there is no ground truth available, that is, the real elec-
tron temperature of the plasma is unknown, no quantitative
evaluation of the classification framework’s performance can
be formulated. Instead, the design choices will be guided by
the inferred biases of the filtered datasets for any given set of
hyperparameters of the classification framework.

As discussed in Sec. III, the AE depends on several hyper-
parameters ΓAE. In the following, we discuss the sensitivity of
the mapping induced by the AE on them. Figure 5 shows the
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FIG. 5. Pipeline of the procedure to train the AE and select the optimal hyperpa-
rameters. AE denotes a trained AE and C∗ denotes an optimal layout of the AE,
i.e., the one defined by the hyperparameters configuration that is optimal for the
specific task at hand.

pipeline used for this task. For the sake of simplicity, we fur-
thermore consider only the network layout C∗ = {12, 2, 12} at
this point.

5000 random elements from X g are used to train the
AE. During training, we observe little sensitivity to the hyper-
parameters pdrop, η, and λ. In the following, we select
pdrop = 10−1, η = 10−2, and λ = 10−3 as hyperparameters.

In feed-forward neural networks, each neuron computes
the sum y =

∑
ixiwi + b, where xi denotes the input from the

previous layer, wi denotes a weight, and b denotes a bias. The
weights and the bias are determined during the training phase.
The output of each neuron is f(y), which is called the activation
function. The activation functions considered here are

sigmoid: f(y) =
1

1 + e−y ,

tanh: f(y) =
1 − e−2y

1 + e−2y
,

ReLU: f(y) = max(0, y),

Maxout: f(y) = max
r=1,. . .,R

(wry + br).

(7)

Maxout is a non-parametric activation function which com-
putes the output as the maximum of R different products of
the input y with R separate weight vectors w1, . . ., wR and
biases b1, . . ., bR.48 Those weights and biases are trained along
with the other parameters of the network. In the experiments,
R has been set to 5.

Figure 6 shows 1000 data points of the sets X g and X b

each, mapped into the latent code space of AEs with these
activation functions. The resulting sets Zg and Zb are colored
in blue and orange, respectively. A large fraction of the good
data points are mapped into an ellipsoid-shaped cluster by the
tanh activation function, whereas using sigmoids maps them
into a hyperbola-shaped cluster. Data from Zg however show
significant scatter around their respective clusters. Bad data
are mapped onto band-like structures at the boundary of the
image domain of the respective activation functions. Despite
it is easy to separate the good and bad data in the embed-
ding space, due to the saturation effect of the sigmoid and
tanh activations, all the representations Zb are squashed onto
a very small manifold that cannot capture the variability of the
data. This is of course detrimental since the bad data are the

FIG. 6. Good (blue dots) and bad data
(orange dots) in code space of AEs
with C = {12, 2, 12} and different acti-
vation functions. (a) tanh, (b) sigmoid,
(c) maxout, and (d) ReLU.
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ones characterized by a greater variability that, however, can-
not be modeled well in the current representation. Since the
purpose of our analysis is to derive meaningful statistics about
the uncertain data, a model that explores in detail only the
region where the good data lie and treats equally everything
outside this (small and less interesting) space is not useful for
our analysis.

When using Maxout or ReLU activation functions instead,
the AE maps good data points into a narrow cluster and scat-
ters bad data points along band-like structures. The image
domain of these activation functions has no upper bound, and
the separation of the good and bad data is larger for Maxout
and ReLU activation functions than it is for tanh and sigmoids.
Most importantly, the good data are mapped in a small and
dense region of the embedding space, while representations of
the bad data Zb are more scattered around. This kind of rep-
resentation in agreement with our expectation that good data
are similar and characterized by a lower variance allows us to
explore in detail the space where the bad data are mapped and
to draw decision boundaries that allow us to retrieve accurate
and meaningful statistics. The ReLU activation function can be
considered as a special case of the Maxout function. Since the
results obtained by those two activation functions are qual-
itatively comparable and since Maxout introduces additional
parameters, in the following, we only consider AEs using ReLU
activation functions.

Codes produced by AEs with different layouts are qualita-
tively similar to those shown in Fig. 6. For AEs with z = 3, the
data points usually feature only little variance along one of the
three dimensions. That is, they cluster in a similar manner as
they do for AEs with z = 2. Introducing an additional bottleneck
layer in the AE, i.e., choosing C = {12, 5, 2, 5, 12}, we observe a
similar clustering of the data as is the case for C = {12, 2, 12}.
Postponing the effect produced by different configurations of
C on the resulting statistics of the inlier Te data, we continue
by discussing the choice of a vector classifier in the code space
Z of the AE.

Once an AE is trained, it defines a mapping from the
input domain X into a unique, latent code space Z. A classi-
fier is trained on Zg and Zb and subsequently used to assign
each x ∈ X u a label ` ∈ {good, bad}. The set of all labels for
the elements of X is denoted as L. A label ` ∈ L denotes
whether a sample will be considered as an inlier or outlier,
respectively. Such a classification introduces a bias, but with
a validation procedure it is possible to evaluate how well it
generalizes to unseen data and select the most suitable model
accordingly.

Here we consider three standard classifiers for vecto-
rial data: a support vector machine classifier (SVC), a nearest
prototype classifier (PROT), and a so-called least-squares clas-
sifier (LSQ). The details of these classifiers and the settings of
their hyperparameters in the experiments are discussed in the
Appendix.

To train a classifier, data are partitioned into a train-
ing and a validation set, Ztr and Zval. These sets contain

FIG. 7. Pipeline of the classifier training. The classifier CL trained on Ztr is
validated on Zval to test its generalization capability and choose the hyper-
parameters (such as C and σ in the SVM case). The model of the classifier
M ∈ {SVC, LS, PROT} is assumed to be given at this stage.

only labelled samples: Ztr = {Z g
tr ∪ Zb

tr } and Zval = {Z g
val ∪

Zb
val }. The good training and validation datasets contain 1000

random data points each and the bad training and valida-
tion datasets contain approximately half the bad data each.
Ztr is used to train the classifier, and Zval is used to eval-
uate the generalization capability of the classifier. Figure 7
provides a schematic depiction of the pipeline to train the
classifier.

FIG. 8. Decision boundaries for a nearest prototype classifier (red line), a
support vector machine classifier (purple line), and a least-square classifier
(brown line). The red and green circles denote the class prototypes given
by Eq. (A8). The blue dots denote data from Zg

tr , and the orange dots

denote data from Zb
tr . The green and red circles denote the prototypes given

by Eq. (A8).
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The generalization capability of the classifier is quantified
by the so-called F1 score. It is defined as the harmonic mean of
precision and recall, as calculated for the validation data, and
assumes a value between zero and one. Precision is defined as
the ratio of correctly classified outliers and all correctly clas-
sified data points. Recall is defined as the ratio of correctly
classified outliers and the number of all data points classified
as outliers. An F1 score of zero describes a perfectly inaccurate
classifier, and an F1 score of one describes a perfectly accurate
classifier.

Figure 8 shows the decision boundaries learned by the
three different classifiers as full lines. The training data used to
learn the decision boundariesZtr are indicated by the blue and
orange dots. The SVC classifier, indicated by the purple line,
draws a tight and curved decision boundary around Zg

tr, and
the least-square classifier, the full brown line, draws a tight,
linear boundary around Zb

tr. The decision boundary identified
by the nearest prototype classifier, the red line, puts the deci-
sion boundary approximately half way between the class pro-
totype. The F1-score of the classifiers are, respectively, given
by 1.0, 1.0, and 0.97 for the shown data. This suggests that
all three classifiers correctly label unseen data as either good
or bad, that is, all three classifiers generalize equally well to
unseen data.

Figure 9 shows an example of the classification pro-
cess using the nearest prototype classifier. The leftmost panel
shows the codes Zg

tr in blue dots and the codes Zb
tr in orange

dots. The codes are clearly linearly separable, and there is a
large leeway for placing the decision boundary. A nearest pro-
totype classifier is fitted on Ztr, and the prototypes µg and µb,
as defined in Eq. (A8), are depicted by a green and red dot,

respectively in the left panel. This classifier is subsequently
used to assign class labels to the validation data Zg

val and Zb
val,

shown in the same color coding in the middle panel. Only
few codes are mislabelled by the classifier, and its F1 score is
approximately one. The rightmost panel shows the count of
uncertain data codes Zu with assigned class labels.

Returning to the optimal configuration of the AE, we
continue by discussing the statistics of all inlier samples
X ′g = X g

∪ {X u
|Lu
= good} and outlier samples X ′b = X b

∪

{X u
|Lu

= bad}, as identified by the proposed framework
using the nearest prototype classifier. Figures 10(a)–10(d) show
the average electron temperature and the relative error on
the electron temperature for different a priori partitioning
and different AE layouts. The numerals in the x-axis labels
denote the AE layout C and staggered plot markers refer to
data from the individual MLPs “NE,” “SE,” “SW,” and “NW.”
The error bars denote the sample standard variation. For the
inlier samples, Te varies between 8 and 10 eV. This average
shows little sensitivity to the used AE layout and the parti-
tion thresholds. There also appears a systematic difference
in Te as reported by the different probe heads. This may be
due to shadowing of plasma flows, caused by the protrud-
ing probe head geometry. The plasma that is ballooned out at
the outboard mid-plane will stream along the magnetic field
lines. Following the field lines, it impinges first on the west
electrodes. On the other hand, this discrepancy may also be
due to a systematic error in the voltage measurements among
electrodes due to slightly untuned capacitor bridges in the
electronics.

The root-mean-square values of the Te data are negligible
for most X g, except for the C = {12, 2, 12} layout using relaxed

FIG. 9. Representation of the MLP data
in code space of an AE with a single hid-
den layer of size z = 2. Blue denotes the
valid data points, and orange denotes
the invalid data points. The left and the
middle panels, respectively, show train-
ing data Ztr and validation data Zval
for the classifier [Eq. (A8)]. The right
panel shows the count of data samples
classified as either good (blue) or bad
(orange).
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FIG. 10. Average electron temperature
and relative error on the electron temper-
ature for the inlier and outlier samples,
as identified using different configura-
tions of the AE and partition thresholds.
(a) Average electron temperature using
X ′g, grouped by hyperparameters of the
AE and MLP. (b) Average relative fit error
on the electron temperature using X ′g,
grouped by hyperparameters of the AE
and MLP. (c) Average electron tempera-
ture using X ′b, grouped by hyperparam-
eters of the AE and MLP. (d) Average rel-
ative fit error on the electron temperature
using X ′b, grouped by hyperparameters
of the AE and MLP.

partition thresholds and the C = {12, 5, 2, 5, 12} layout using mid
partition thresholds. This effect is due to randomness in the
used input data for the AE training. For these cases, significant
root mean square values in X ′g are seen. Data points classified
as outliers, X ′b, show average electron temperatures between
approximately 30 and 50 eV. The relative error on these sam-
ples is given by approximately one. Again, the standard devi-
ation of these samples is negligible in almost any AE config-
uration. This analysis suggests that the choice of a specific
AE layout does not yield significantly different sample statis-
tics of X ′g. Therefore, we opt for the simplest configuration
C = {12, 2, 12}.

V. PERFORMANCE EVALUATION
In order to evaluate the performance of the proposed

classification scheme, we continue by comparing the statistics
of the final inlier dataset as well as the lower order statisti-
cal moments of the heat flux, as computed from these data.
The final inlier datasets are denoted by X ′g and are iden-
tified using an SVC classifier, X ′gSVC, a least squares classi-
fier, X ′glsq, and a nearest prototype classifier, X ′gpro. We eval-
uate their performance by comparing the resulting statistics
to those obtained from the entire dataset X, the data with-
out a priori outliers, X \ X b, and the dataset of only a pri-
ori inliers, X g. Figure 11 illustrates the processing pipeline
used to obtain these datasets. For the results presented here,
an AE with ReLU activation functions and C = {12, 2, 12} is
used.

Figure 12 shows the joint probability distribution func-
tion of the electron temperature and the relative error on the
electron temperature as computed for these datasets. Here,
Te and σTe/Te denote the average value reported by all four
MLPs. The entire dataset X, shown in Fig. 12(a), features many
samples with small to medium Te, associated with small to

medium σTe/Te. A non-negligible fraction of the samples how-
ever features large Te values with σTe/Te & 1. Considering
only the good data, X g, shown in Fig. 12(b), all samples fea-
ture small Te values and a negligible relative error. The joint
probability distribution function (PDF) of the set X\X b is sim-
ilar to that of the set X, but samples with Te & 40 eV are almost
absent. This is due to the strict threshold values applied when
removing X b.

Pruning the MLP data using an SVC classifier, X ′gSVC,
shown in Fig. 12(d), the joint PDF appears similar in shape
to the one for X g [Fig. 12(b)]. Only samples with Te . 15 eV,
associated with σTe/Te . 0.3, are present. Removing the out-
liers identified by the nearest prototype classifier,X ′gpro, shown
in Fig. 12(e), several samples with Te & 50 eV are present.
However, all samples feature relative errors less than approx-
imately 0.75. Qualitatively, this joint PDF is similar to the
joint PDF for X \ X b [Fig. 12(c)], except that samples with
large σTe/Te are missing. Employing a least squares classifier,
X ′glsq, shown in Fig. 12(f), the resulting joint PDF is approxi-
mately aligned along an equi-probability contour of the joint
PDF for X [Fig. 12(a)]. There are no samples with Te & 35 eV
and samples with σTe/Te & 1 are also absent. Notably, sam-
ples Te & 20 eV with small σTe/Te are absent, while the

FIG. 11. Uncertain data Xu are processed by AE and CL, trained as described
in Sec. IV. To evaluate the classification model M, we compare statistics on the
classification results X ′g.
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FIG. 12. Joint probability distribution function of the average
electron temperature and the average relative error on the
electron temperature after outliers have been removed by
different methods. (a) All data, X; (b) only good data, X g;
(c) no bad data, X \ X b; (d) X ′gSVC; (e) X ′gpro; and (f) X ′glsq.

dataset still includes samples with Te & 20 eV and large values
of σTe/Te.

Figure 13 shows the mapping of the labels Lte, as identi-
fied by the nearest prototype classifier into the time domain.
The black lines and the red dots denote X g and X b, respec-
tively. Blue dots mark samples from Zu labelled ` = good,
and orange dots mark samples from Zu labelled ` = bad. The
large amplitude fluctuations at 45.1 ms, at 45.9 ms, and at
46.6 ms are mostly classified as good data points. Notably, the
peak at 46.2 ms is classified as good, even though the rela-
tive error and the range of the biasing voltage of this MLP
are similar to the conditions of the preceding peak at 45.9 ms.
This is due to the requirement that at least two MLPs need

FIG. 13. Data time series of the north-east MLP (cf. blue lines in Fig. 3), overlaid
with labels indicating classification of the data. Blue dots denote good samples,
X ′gpro, orange dots denote bad samples, X ′bpro, and red crosses denote invalid

samples X b, as classified by the prototype classifier using strict thresholds.

to report an invalid fit in order for a data point to be
rejected.

A unique capability of mirror Langmuir probes is that they
allow us to study the fluctuation statistics of plasma flows
driven by the electric drift. The heat flux impinging on plasma
facing components is of special interest. It is composed of a
conduction driven part, Γ̂T,cond = ŨT̃e〈ne〉mv/ne,mrms, a convec-
tion driven part Γ̂T,conv = Ũñe〈Te〉mv/Te,mrms, and contributions
from triple correlations Γ̂T,tcor = ŨñeT̃e. Here ·̃ denotes a quan-
tity re-scaled by subtracting its moving average, 〈·〉mv, and by
dividing its moving root-mean-square ·mrms. In the following,
we use a window length of 16 384 elements for these filters.36

Figure 14 shows the sample average and standard devia-
tion for the three contributions of the radial heat flux, com-
puted using different datasets and relative to the statisti-
cal moments computed ignoring a priori outliers X \ X b.
The average heat fluxes and the standard deviations are
largest when using the entire dataset X. Using only good
data, X g, yields averages and standard deviations less than
25% of the values calculated using X \ X b. Notably, for
these data, the average radial heat flux due to triple corre-
lations vanishes. Computing the moments using X ′gSVC, the
average conductive and convective heat fluxes are approx-
imately 50% and 60% of the reference values, while the
average value of the contributions from triple correlations is
approximately 20%.

Removing outlier data as identified by the nearest proto-
type classifier,X ′gpro, the average and root-mean-square values
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FIG. 14. Radial heat flux due to conduction (triangle left), convection (triangle
right), and triple correlations (cross), as computed from the various datasets
and relative to the reference values computed using X \ X b. The upper panel
shows the sample average, and the lower panel shows the sample standard
deviation.

of the heat fluxes are approximately 85%–95% of the reference
value. Finally, using the least squares classifier results in sta-
tistical moments of the heat flux comparable to those using
the reference case X \X b.

The difference in the sample averages and standard devi-
ations of the various heat flux contributions can be related to
the shape of the joint PDFs shown in Fig. 12. For this, we note
that the heat flux is computed from Te, ne, and Vp samples.
The relative error on ne is given by the geometric mean of the
relative errors on Isat and Te. As discussed in Sec. II, σTe/Te
and σIsat/Isat are strongly correlated. That is, a larger relative
error on σTe/Te implies a large relative error on the electron
density.

Comparing the joint PDFs in Fig. 12, it is obvious that
employing the different classifiers to remove outliers intro-
duces slightly different biases into the inlier dataset.

VI. CONCLUSION
In conclusion, we propose a framework to classify outlier

data in data time series sampled by a group of mirror Langmuir
probes in scrape-off layer plasmas. An autoencoder is trained
to identify a low-dimensional representation of good fit data
from this group of probes. In this space, each dimension cor-
responds to a combination of features which best character-
izes the measurements. These are determined by the AE from
the training data and without making any a priori assumption
about the dataset at hand. Outlier data, which do not share
the characteristics of good data, appear in a separable cluster
in the space of the AE. Several classifiers are trained to sepa-
rate outlier data in this space. With no ground truth available,
the performance of the classifiers is evaluated by comparing
the lower order statistical moments of the radial electron heat
flux.

Using either a least squares or a nearest prototype clas-
sifier results in similar statistics of the radial heat flux as
obtained when using a threshold classifier to identify outliers.
Average contributions of the conductive and convective radial

heat flux obtained by these classifiers fall approximately 3%
and 14% below the values obtained by applying a threshold.
On the other hand, the contribution due to triple correlations
falls up to 40% below the value obtained from the thresholding
method. These differences result from the different charac-
teristics of the data points which are identified as outliers.
While the least squares classifier places the decision boundary
close to the outlier data cluster, the nearest prototype classi-
fier places the decision boundary approximately equidistant to
both clusters. That is, the least squares classifier gives a more
relaxed outlier removal, while the nearest prototype classi-
fier has a lower threshold. The support vector machine (SVM)
classifier puts the separating hyperplane in an area charac-
terized by a high concentration of data samples. However, it
is well known that when a classifier puts its decision bound-
ary in an area of high density, it achieves low generalization
capabilities on unseen data and is more prone to classification
error.52 In our case, an undesired behaviour is evident from
the reported statistics in Figs. 12 and 14. This also explains why
the SVM classifier results in fluxes that are only marginally
larger than the fluxes obtained when only considering good
data.

While neither the least squares nor the nearest prototype
method can be identified as the correct method to remove
outliers from the dataset, this study implies that not employ-
ing outlier removal may lead to heat fluxes, over-estimated by
a significant amount.

The framework proposed here may also be adapted
to other types of sensors than MLPs. The requirements
for applying the method described here are as follows:
First, any single sensor reports a physical quantity together
with an uncertainty of that measurement. Second, any
sensor in the group needs to sample roughly the same
environment.
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APPENDIX: CLASSIFIERS
Classifiers are algorithms that assign a class label ` to

new data, on the basis of previously seen training data with
known class labels. For the case of two distinct classes,
we assign ` = ±1 to inliers and outliers, respectively. In
the following, we describe how labels `i for new data
{xi }, xi ∈ Rd are retrieved using the classifiers used in this
paper.
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1. Support vector machine
A Support Vector Machine (SVM) learns a linear classifier

in a kernel space53

`i = g(xi) = sign(φ(w) · φ(xi) + b), (A1)

induced by a usually non-linear kernel φ(w) ·φ(x) = K(w, x). A
typical choice for K is the radial basis function, defined as

K(xi, xj) = exp*
,
−
‖xi − xj ‖

2

2σ2
+
-
,

where σ is called the bandwidth of the kernel.

In order to train a SVM, the cost function

φ∗(w) = arg min
φ(w)

1
2



φ(w)

2

is minimized under the constraint that yi(φ(w) ·φ(xi) + b) ≥ 1.
That is, the training data are taken to be only inlier data with
`i = +1.

The constraints can be included in the previous quadratic
cost by using the Lagrangian multipliers

L(φ(w), b,α) =
1
2
| |φ(w) | |2 −

∑
i

αi(yi(φ(w) · φ(xi) + b) − 1). (A2)

It follows that the weight vectors become a linear combi-
nation of the data points

φ(w) =
∑

i

yiαiφ(xi), (A3)

and the classifier can be expressed as

g(x) = sign
(∑

i

yiαiφ(xi) · φ(x) + b
)

= sign
(∑

i

yiαiK(xi, x) + b
)
. (A4)

If we substitute (A4) into (A2), we obtain the following dual
cost function:

W(α) =
∑

i

αi −
1
2

∑
i,j

yiyjαiαjφ(xi) · φ(xj)

=
∑

i

αi −
1
2

∑
i,j

yiyjαiαjK(xi, xj), (A5)

and the optimization now reads

α̂ = arg max
α

W(α)

such that αi ≥ 0.
(A6)

Once the training is complete, new points are classified
directly by applying (A4).

The most important hyperparameter in the SVC classifier
is the kernel width σ. A commonly used approach is to set σ
heuristically according to Silverman’s rule, which reads

σ =

(
4σ̂5

3n

) 1
5

, (A7)

where σ̂ is the empirical standard deviation of the samples’
features and n is the number of samples in the training data.

2. Prototype classifier
Classification by means of simple a nearest prototype

classifier operates as follows. For each class c, a prototype is
computed as54

µc =
1
| {xi } |

∑
i

xi. (A8)

The class label ` of an uncategorized data sample z is assigned
as

` = arg min
c

‖z − µc ‖
2. (A9)

This classifier does not depend on any hyperparame-
ter and requires to maintain only the representative of each
cluster to classify out-of-sample data. Due to its simplicity,
this classifier cannot identify complex decision boundaries to
separate samples of different classes.

3. Least squares classifier
A classification function f is learned by minimizing the

following quadratic cost:

min
1
N

N∑
i=1

‖`i − f(xi)‖2 + λ‖f ‖2, (A10)

where the first term represents the discrepancy between the
output class of the function and the known class of the training
data. The second cost term instead encourages smoothness in
the target function and is useful to prevent overfitting.

In the analysis presented here, we choose f to be a linear
function

f(x) =Wx + b
whose parameters W and b are optimized according to (A10).

A more flexible choice consists in using a kernel function
to define f

f(x) =
N∑

i=1

ciK(x, xi).

In this case, the objective of the optimization is to find the
parameters ci. This is done by modifying the quadratic loss in
(A10), which becomes

min
c

1
N

N∑
i=1

‖yi −

N∑
j=1

cjK(x, xj)‖2 + λ‖cTKc‖2. (A11)

The parameter λ has been set to 1 in the experiments.
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