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14 ABSTRACT

15
16 Storfjorden is a large north-south trending sound located in the southern part of Svalbard in 

17 the northwestern Barents Sea. Presently, several glaciers drain into the northern and western part of 

18 Storfjorden. Our study area covers the southern part of the sound, which is divided by a north-south 

19 striking basement ridge (the ‘Mid-ridge’) into a narrow western trough (‘Little-Storfjorden’) and a 

20 broader eastern trough (‘Storfjorden’). In the latter, three grounding-zone wedges (GZWs) were 

21 discovered in 2005 showing evidence of former grounded ice. Here we confirm the existence and 

22 map the extent of the GZWs and reconstruct the pattern and timing of ice retreat in Storfjorden 

23 during the deglaciation. The study is based on high-resolution seismic and shallow-acoustic profiles 

24 and swath bathymetry, combined with information of lithology and radiocarbon dates from 

25 sediment cores. The results show that the three GZWs stretch across the fjord, and that all three are 

26 located south of higher basement areas that were upstream of the GZWs and which acted as pinning 

27 points during ice retreat. The Mid-ridge imposed a lateral drag to the ice, resulting in an uneven ice 
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28 retreat across the fjord. Outside of the GZWs only a thin cover of glacial deposits was found. The 

29 cores were taken in vicinity of the GZWs and all reached till deposits overlain by glacimarine or 

30 hemipelagic sediments, enabling dating of the GZWs. Altogether we find that the fjord and 

31 basement topography played an important role in the ice retreat. AMS-14C dates show that the 

32 formation of the three GZWs correlate with three well-known atmospheric warming phases (start of 

33 Bølling interstadial, Allerød interstadial and Holocene interglacial, respectively) associated with 

34 inflows of warm Atlantic water, indicating a strong ocean/climate control on the deglaciation of 

35 Storfjorden. 

36

37 Keywords: Storfjorden, Svalbard, deglaciation, high Arctic fjord, Atlantic water, grounding-zone 

38 wedge, recessional ridge, LGM ice dome
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42 1. Introduction

43

44 During the last glacial maximum (LGM) very active ice-streams were present in all the 

45 fjords of Svalbard generating cross-shelf troughs along the western and northern Svalbard margin 

46 (Ottesen et al., 2007). Detailed reconstructions of ice-stream retreat exist for Isfjorden Trough 

47 (Svendsen et al., 1992, 1996), Kongsjorden Trough (e.g., Landvik et al., 2005), and Kveithola 

48 Trough (Rüther et al., 2012; Bjarnadottir et al., 2013). Recently, studies of one of the smaller 

49 tributary fjords into western Storfjorden has been published (Noormets et al., 2016a,b), as were 

50 several studies of glacial seabed features in fjords and sounds from eastern and northern Svalbard 

51 (Dowdeswell et al., 2010; Hogan et al., 2010a,b, 2017; Streuff et al., 2017; Flink et al., 2017). 

52 Detailed studies of ice-streams draining the southeastern Svalbard ice sheet are still lacking in the 

53 literature. Nevertheless, several papers have suggested that an ice-stream passed southwards 

54 through Storfjorden during the LGM and joined the large and composite, west-flowing ice-stream 

55 south of Edgeøya that carved the well-studied Storfjorden Trough (e.g., Laberg and Vorren, 1996; 

56 Dowdeswell and Siegert, 1999; Dowdeswell et al., 2010; Rebesco et al., 2016) (Fig. 1). Based on 

57 glacial sedimentary flow patterns towards east and north, a reconstruction of ice extent over 

58 Svalbard concluded that a major independent ice dome existed due north of Storfjorden over the 

59 northeastern Svalbard at LGM (Dowdeswell et al., 2010; Hogan et al., 2010). Yet, no ice draining 

60 this ice dome towards south was suggested.

61 In 2005, three sedimentary wedges were observed in Storfjorden on a single N-S seismic 

62 line (Plassen et al., 2008). These were suggested to be grounding-zone wedges (GZWs) thus 

63 indicating the former presence of grounded ice in Storfjorden. Here, we present detailed mapping of 

64 these GZWs and reconstructions of the pattern and timing of the ice retreat in Storfjorden using 
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65 high-resolution seismic and shallow-acoustic profiles and swath bathymetry, combined with 

66 lithological information, fossil faunas, radiocarbon dates and stratigraphy of sediment cores.

67

68 2. Physical setting

69

70 Storfjorden is a c. 130-km long, N-S striking, trumpet-shaped sound in the southeastern 

71 Svalbard archipelago, located between 76°30’–78°30’ N and 17°–22°W (Fig. 1). It is bordered to 

72 the west by the island of Spitsbergen and to the east by Edgeøya, Barentsøya and Storfjordbanken 

73 (Fig. 1). It connects northward to the northern Barents Sea via two narrow sounds, and opens to the 

74 E-W striking Storfjorden Trough in the south at c. 76.30°N.  Storfjorden is bounded by wide 

75 shallow shelf areas of about 40 m water depth to the north and east. The present study focuses on 

76 the southern deeper part (Fig. 1). This wider, embayment-like southern part of Storfjorden is 

77 divided by a north-south striking basement ridge (here called the ‘Mid-ridge’) into a narrow western 

78 trough (here called ‘Little-Storfjorden’) and a broader eastern trough (here called ‘Storfjorden’). 

79 The trough of Storfjorden contains three basins separated by transverse, east-west striking 

80 bathymetric highs, here termed the inner, middle and outer high from north to south (Fig. 1). 

81 Warm Atlantic surface water derived from the West Spitsbergen Current flows into 

82 Storfjorden along its eastern margin (Fig. 2). The Atlantic water occasionally crosses the middle 

83 high and enters the two inner basins to the east (Lydersen et al., 2004). Arctic surface water of the 

84 East Spitsbergen Current enters Storfjorden via the two passages in the north flowing southwards 

85 along western Storfjorden  and continues northward along the west Spitsbergen coast as the coastal 

86 current (Fig. 2). Brine formation takes place in Storfjorden behind the middle high. This dense, cold 

87 water eventually overflows the middle high and continues southwards into Storfjorden Trough. 
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88 Depending on its density, the brine may reach deeper waters of the slope off Svalbard (e.g., 

89 Quadfasel et al., 1988; Schauer, 1995).

90 Today, several large glaciers from Spitsbergen drain into Storfjorden with the largest 

91 termini situated in the western and northern part. Storfjorden is ice covered for more than seven 

92 months per year rendering the fjord inaccessible for ships most of the year. In late summer and early 

93 autumn, the fjord is ice free, but the weather is often stormy. Due to the difficult working 

94 conditions, it took several consecutive cruises to the area between 2010 and 2016 to obtain 

95 sufficient seismic and acoustic data and high-quality cores (between 2005 and 2014) for a detailed 

96 mapping and reconstruction of the deglacial history of Storfjorden.

97

98 3. Material and methods

99

100 The study is based on a large database of multibeam bathymetry (MB), acoustic sub-

101 bottom profiles (Chirp), 2D reflection seismic profiles and marine core data. The mapped part 

102 covers the southern, deeper part of Storfjorden (Fig. 1).

103

104 3.1. Cores

105

106 Six gravity cores were taken during four cruises between 2005 and 2014 (Figs. 1, 2; Table 

107 1). Data, AMS-14C dates and stratigraphy of the cores taken before 2012 plus core HH12-1209GC 

108 have been published before in Rasmussen and Thomsen (2009, 2014, 2015), while data from cores 

109 HH12-1212GC and HH14-008GC are new. All core positions were chosen based on acoustic 

110 profiles to ensure that the cores would reach into glacial till, or coarse, unsorted sediment of 
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111 probable glacimarine origin. Sediments near or on top of the three sediment wedges were targeted 

112 (see Section 1).

113 Core HH12-1212GC was handled and analysed similar to HH12-1209GC (see Rasmussen 

114 and Thomsen, 2014). The core was split into two halves, X-rayed and described visually. One core 

115 half was sliced into 1-cm thick slices, samples were weighed and freeze-dried and weighed again. 

116 The percent water content was calculated. Samples taken every four cm down-core were sieved 

117 over sieves with mesh-sizes 63 µm, 100 µm and 1 mm. The residues were dried and weighed and 

118 the weight percentage of grain sizes calculated. Benthic foraminifera were counted in the > 100 µm 

119 size-fraction, and concentration as number per gram dry weight sediment calculated. Ice-rafted 

120 debris (IRD) was counted from the > 1 mm size fraction (all mineral grains per sample counted) and 

121 the concentration per gram dry weight sediment calculated. Core HH14-008GC was also sampled in 

122 a similar way as core HH12-1212GC, but was investigated in lower resolution for lithology and 

123 AMS-14C dates. Note that cores NP05-86GC, JM10-10GC and JM10-12GC were analysed for their 

124 content of IRD in a different size fraction of > 0.5 mm (Rasmussen and Thomsen, 2014).

125 Bivalve shells and/or foraminifera and branched bryozoans were picked for AMS-14C 

126 dating (Fig. 3; Table 2) (see also Rasmussen and Thomsen, 2014). Dating was performed at the 

127 14CHRONO Centre facility at Queen’s University, Belfast, Northern Ireland. The new dates and 

128 dates from previously published cores were calibrated using the Calib7.04, Marine13 program 

129 (Stuiver and Reimer, 1993; Reimer et al., 2013). The global average marine reservoir age correction 

130 of 405 years inherent in the calibration program were used (Reimer et al., 2013). Reservoir age 

131 changes for the deglaciation period are unknown for the Svalbard margin, and expected to be much 

132 larger than the modern ΔR of 7±1114C years (Mangerud et al., 2006; Bondevik et al., 2006). 

133 Therefore, no ΔR values were applied. The age of the mid-point of 1-sigma errors was chosen. 

134 Datings were performed on samples from as close to till sediments and within coarse, unsorted 
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135 sediments of probable glacimarine origin to get as accurate ages as possible for the retreat of ice in 

136 Storfjorden. All marine ages referred to in this study are calibrated ages before present (=1950) (cal 

137 years BP), unless otherwise specified.

138

139 3.2. Acoustics

140

141 The acoustic data were acquired during the 2010 R/V Jan Mayen cruise (JM2010) and the 

142 2012 to 2016 R/V Helmer Hanssen cruises (HH2012 to HH2016).  The same shipboard geophysical 

143 instruments were used during these cruises. Multibeam-bathymetry mapping (MB) was carried out 

144 using a Kongsberg Maritime EM 300 multi-beam echo sounder. Sound-velocity profiles of the 

145 water column for calibrating the equipment were recorded from CTD casts when necessary. Sub-

146 bottom profiles were acquired together with the swath-bathymetry using a hull-mounted EdgeTech 

147 3300-HM (Chirp) instrument. High-resolution reflection seismic data were acquired using a single 

148 Sercel GI mini airgun (45 cubic inches) and Fjord Instruments single-channel streamer (6 m active 

149 section with 20 hydrophones).

150 The Airgun and Chirp data were loaded onto a Petrel workstation for interpretation and 

151 mapping. The MB data were cleaned using the Neptune version 6.6 program. Average seismic 

152 velocities of 1470 m/s and 1500–1600 m/s have been used for depth conversion of the water column 

153 and Quaternary-Holocene deposits, respectively.

154

155 4. Results and interpretations

156

157 4.1. Sediments

158
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159 Core HH12-1209GC and core HH12-1212GC both contain dark-coloured coarse, unsorted 

160 sediments barren of foraminifera at their base (Fig. 3). Cores JM10-10GC and JM10-12GC (both 

161 taken behind the middle high) also reach into dark-coloured generally foraminifera-barren coarse, 

162 unsorted sediments interpreted as glacial diamicton, most likely till (Rasmussen and Thomsen, 

163 2014, 2015). Cores HH12-1212GC, JM10-12GC and JM10-10GC contain a diverse fossil macro-

164 fauna in the upper part or on top of the coarsest sediments consisting of branched and encrusting 

165 bryozoans, pteropods, bivalves, gastropods and ophiurians (not quantified). Benthic foraminifera 

166 are also present and dominated by Elphidium excavatum and Cassidulina reniforme (Rasmussen 

167 and Thomsen, 2015) (Table 2). In core HH12-1212GC, planktic foraminifera are also present (not 

168 shown). 

169 Core NP05-86GC was taken inside the basin north of the middle high and core HH14-

170 008GC was taken on top of the sediment wedge at the mouth of Storfjorden (Figs. 1, 2). The coarse 

171 sediments at the lower part of these latter two cores were barren of micro- and macrofossils 

172 throughout and interpreted as glacial diamicton (till).

173 All cores thus contain glacial sediments at their lowermost parts that are devoid of micro- 

174 and macrofaunas. The basal sediments are similar in all cores and consist of blackish-dark grey 

175 sediments (Munsell colour code; very dark greyish brown 2.5Y-3/2) with high amounts of gravel 

176 and large dropstones (Fig. 3). Above the glacial deposits brownish, silty mud (Munsell colour code; 

177 greyish brown 2.5Y-5/2) with gravel and dropstones occur, with micro- and macrofaunas of low 

178 absolute abundance (Fig. 3). The mid parts of cores generally consist of silty sediments with high 

179 absolute abundances of benthic foraminifera and low concentrations of IRD. In the upper parts of 

180 all cores, dropstones and IRD increase again (Fig. 3).

181

182 4.2. Age models
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183

184 Age models for all cores are independent age models. The age models of four of the cores 

185 (NP05-86GC, JM10-10GC, JM10-12GC and HH12-1209GC) have been presented in Rasmussen 

186 and Thomsen (2014) (Fig. 3). In these records, major events (abrupt start of the Bølling interstadial, 

187 Allerød interstadial and Holocene interglacial) could be easily identified and correlated (see e.g., 

188 Rasmussen et al., 2007; Rasmussen and Thomsen, 2014, 2015). Due to the reservoir age correction 

189 being based on modern values, the ages of the Bølling and Allerød transitions are clearly older than 

190 for the same transitions seen in terrestrial records e.g., Greenland ice cores (Rasmussen et al., 

191 2006). In Storfjorden, the start of the Bølling interstadial dates c. 15,600-15,300 years, and the start 

192 of the Allerød interstadial c. 14,500 years (Rasmussen and Thomsen, 2014), while these events 

193 dates 14,700 and 14,000 years in the NGRIP ice core (based on annual layer counting) (Rasmussen 

194 et al., 2006). The age discrepancies are most likely due to increased reservoir ages during the 

195 deglaciation (Bondevik et al., 2006). The transition to the Holocene in Storfjorden dates c. 11,700 

196 years, the same as in the NGRIP ice core indicating that reservoir ages became close to modern (see 

197 also Bondevik et al., 2006). 

198 Core HH12-1209GC thus dates from the Allerød interstadial (14,250±160 years) above the 

199 till at the bottom, while the first marine sediments in core NP05-86GC dates from the beginning of 

200 the Holocene 11,460±155 years (Rasmussen and Thomsen, 2014) (Fig. 3). The age models of core 

201 HH12-1212GC, and HH14-008GC were constructed in a similar way to the previously published 

202 age models by assuming linear sedimentation rates between dating points (Fig. 3; Table 2). Core 

203 HH12-1212GC from the southernmost position at the mouth of Storfjorden has a date of 15,210±75 

204 years 5 cm above the till. This age is typical for the Bølling interstadial from marine records from 

205 the Svalbard margin, which have also used the modern global average reservoir age corrections (see 

206 e.g., Ślubowska et al., 2005, Ślubowska-Woldengen et al., 2007; Rasmussen et al., 2007). Core 
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207 HH14-008GC has a date of 7810±50 years right above the till (Fig. 3), a date belonging to the 

208 Holocene period.  

209 For all records, the probable minimum ages of the micro- and macrofauna barren 

210 sediments were calculated by extrapolating the sedimentation rate of the nearest two dates above 

211 (Fig. 3). Thus, the top of these deposits have a minimum age of c. 15,300 years in core HH12-

212 1212GC at the mouth of Storfjorden, c. 14,500 years in core HH12-1209GC further north, c. 12,700 

213 in core JM10-12GC, c. 12,600 in core JM10-10GC, and c. 11,600 in NP05-86GC, the three latter 

214 cores taken north of the middle high (Fig. 2). For the records of JM10-12GC and JM10-10GC, the 

215 dates indicate a Younger Dryas age of the deglaciation of the sites. However, the sediments were 

216 most probably of younger age, because of unknown reservoir age correction (see discussion in 

217 Rasmussen and Thomsen, 2014, 2015). Therefore, the age of the top of the till at these two sites are 

218 assumed to be close to the Younger Dryas-Holocene transition between c. 12,000 and 11,700 years 

219 (Fig. 3). 

220 From the age models it has also become apparent that core HH12-1209GC contains a 

221 hiatus/or that sedimentation rates were very low in the mid to late Holocene at that location, and the 

222 same appears to be true for the early-mid Holocene section of core JM10-10GC (Fig. 3) 

223 (Rasmussen and Thomsen, 2014, 2015). The young age of sediments (Holocene) right above the till 

224 in core HH14-008GC taken near core HH12-1212GC on top of the outer GZW also indicates 

225 presence of a hiatus (Fig. 3). Core HH12-1212GC shows very low sedimentation rates between the 

226 ages of 13,815 years (Allerød interstadial) and 8870 years (early to mid-Holocene) (Fig. 3).

227

228 4.3. Seismic and Chirp mapping

229



11

230 Three seismic horizons were mapped throughout the study area, bounding two seismic units. 

231 Based on their seismic character and the results from the sediment cores described above, the 

232 seismic horizons are named  ‘Top Pre-Quaternary’ (TPQ), ‘Top Glacial’ (TG) and ‘Seabed’, and the 

233 seismic units  informally termed ‘glacial deposits’(GD) and ‘deglacial to Holocene deposits’ 

234 (DHD). The character of the bounding horizons and the two seismic units are illustrated by the 

235 seismic line crossing N-S over the central study area (Fig. 4a,b). The morphology of horizon TPQ 

236 and the total thickness of the overlying seismic units are illustrated by time-structure and time-

237 isochore maps, respectively (Fig. 5a,b) and the thickness of units GD and DHD are shown by the 

238 time-isochore maps (Fig. 5c,d).  The different units and maps are described in more details in the 

239 following.

240  

241 4.3.1. The TPQ surface and pre-Quaternary section

242 The TPQ horizon is the deepest, relatively continuous reflection seen on the 2D seismic data 

243 in the present study. The seismic reflection pattern of the underlying section shows stratified and 

244 faulted strata (Figs. 4, 6). The age of these strata is unknown, however, they are likely of Mesozoic 

245 or older age (Faleide et al., 1984). In the following, this pre-Quaternary section will be referred to 

246 as ‘the basement’. The overall morphology of the TPQ horizon mimics that of the present seabed 

247 with ridges and lows (Fig. 5a). The depth to this horizon within the study area varies from more 

248 than 300 ms two-way time (TWT) (~220 m) below the sea-surface (bss) in the south to less than 50 

249 ms TWT (~35–40 m) bss towards northeast near Edgeøya, where it crops out at the seabed (Fig. 

250 5a,b).  In the southwest, at the eastern flank of the Mid-ridge, the TPQ lies around 120 ms TWT 

251 (~90–100 m) bss, and further to the east, it constitutes the core of the Mid-ridge (Fig. 6d). In the 

252 central part of the study area, the TPQ forms an E-W striking structure that rises to almost 180 ms 

253 TWT (~130 m) bss, constituting the middle high. North of the ridge, the TPQ surface forms a basin 
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254 that reaches a depth of more than 250 ms TWT (~195 m) bss, while the horizon south of the ridge 

255 dips gently southwards reaching a depth of c. 275 ms TWT (~200 m) bss before plunging into 

256 Storfjorden Trough. Here a relatively flat E-W striking ridge constitutes the outer high (see also 

257 Figs. 4, 6e). To the north, TPQ forms a SW-NE striking narrow and discontinuous ridge that rises to 

258 about 160 ms TWT (~ 115 m) bss (Fig. 5a). To the south of this narrow ridge lies a broad, slightly 

259 elevated area striking SW-NE that constitutes the inner high (see also Figs. 4a, 6a). To the north of 

260 the narrow ridge lies a basin, that reaches a depth of more than 250 ms TWT (~195 m) bss.  Further 

261 north, the TPQ rises higher than 75 ms TWT (~55 m) bss.  

262

263 4.3.2. The Quaternary-Holocene sediment thickness and the GD unit

264 The distribution of the total sediment thickness (Fig. 5b) reveals three depo-centres up to 50 

265 ms TWT thick (~ 35–40 m), all striking in a southwest-northeasterly direction. When compared to 

266 the thickness of unit GD (Fig. 5c) it is seen that these depo-centres are mainly built-up by sediments 

267 belonging to this unit. Thickness distribution combined with their overall wedge-shaped geometry 

268 and transparent to weakly progradational internal reflection patterns (Figs. 4, 6), these depo-centres 

269 are interpreted to be GZWs deposited by a line-sourced delivery of sediments (e.g. Batchelor and 

270 Dowdeswell, 2015). The three GZWs are named after their relative position within the fjord and 

271 thus called inner, middle and outer GZW. The middle GZW stands out as the shallowest area 

272 compared to the surrounding present-day seabed, and as a result the seaward slopes of the inner and 

273 outer GZWs appear less prominent (Figs. 4, 7a). All three GZWs span the study area, are 10–12 km 

274 wide in N-S direction, strike SW-NE and are c. 25 km long, and have relatively steep seaward 

275 slopes (Figs. 6, 7a). We note that whilst the thickest part of the inner GZW lies close to the mid-

276 ridge towards the west (Fig. 5c) and its thickness is more evenly distributed across the width of the 

277 wedge, the thickest parts of the middle and outer GZW are their southeastern sides (Fig. 5c). 
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278 The thickness of unit GD outside the GZWs is generally less than 10 ms TWT (~ 7.5–8 m), 

279 being thinnest (0–5 ms TWT; ~ < 4 m) between the middle and outer GZW and thickest (c. 12 ms 

280 TWT; ~10 m) in the basin between the middle and inner GZW (Fig. 5c).

281

282 4.3.3. The DHD unit

283 The DHD unit generally drapes and fills basinal structures of the TPQ horizon (Figs. 4 and 

284 5d).  The unit is absent or very thin (0–4 ms TWT; ~ 0–1.5 m) on the southeastern flank of the Mid-

285 ridge and on top of the outer and middle GZWs. The western part of the inner GZW is covered by 

286 up to 4 ms TWT (~1.5 m) thick layer of DHD deposits, which thickens to almost 10 ms TWT (~7.5 

287 m) on the northeastern part of the inner GZW. The thickest parts of unit DHD (15–20 ms TWT; ~ 

288 11–15 m) are found in the two basins of the TPQ horizon, i.e. between the middle and inner GZW 

289 and north of the inner GZW (Fig. 5a,d). Less prominent DHD depositions (6–8 ms TWT; ~4.5–6 m) 

290 are seen towards east between the middle and outer GZW, and south of the outer GZW. 

291

292 4.3.4. Grounding-zone wedges 

293 Whilst the three GZWs are found in a similar setting on the southern, down-flow side of 

294 higher-lying basement areas, their morphology and seismic style differ (Figs. 4, 5). 

295 The inner GZW is characterized by a slightly southeastwards dipping surface and a gentle 

296 ice-distal slope (Fig. 6a,b), and has an arcuate shape facing southeast (Fig. 5c).  The internal 

297 reflection pattern is mostly transparent to chaotic, yet a clear prograding sub-unit is seen in the 

298 lower part immediately down-flow of the inner high (Fig. 6a,b). This sub-unit is found only in the 

299 central section of the inner GZW indicating a restricted, point-sourced sediment delivery as 

300 compared to the larger, line-sourced sediment delivery of the inner GZW. It is therefore interpreted 

301 to be an ice-proximal fan (Batchelor and Dowdeswell, 2015 and references therein) deposited in 
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302 front of an ice margin cliff by a sub-marine meltwater stream.  Another sub-unit was observed 

303 below the ice-distal slope of the inner GZW (Fig. 6a). It has a ridge-like form and a chaotic internal 

304 reflection pattern, and could be followed outside the GZW as an E-W striking ridge. (e.g., 

305 Dowdeswell et al. 2016). As part of the ridge is covered by the inner GZW, its formation evidently 

306 pre-dates the deposition of the inner GZW.  Similar ridges are also observed to the south (see 

307 Section 4.3.5.). 

308 The middle GZW is characterized by a ramp-like morphology with a steep south-facing 

309 slope (Fig. 5c).Its overall shape in plan view is curved, but with some bulging parts indicating 

310 different lobes (Figs. 5c, 7c,d).  The internal reflections show a chaotic to weak, low-amplitude 

311 progradational pattern, but are clearly blurred by the diffraction noise from a heavily chopped 

312 seabed reflector (Fig. 6c,d). The latter is the result of iceberg keels having ploughed the seafloor on 

313 top of the GZW after its formation (see also Fig. 8c).  

314 The outer GZW shows a flat morphology with a smooth and rounded southern slope (Fig. 

315 6e,f), and a curved overall outline in plan view similar to the inner and middle GZWs (Fig. 5c). The 

316 internal reflection pattern is transparent to chaotic, though disturbed by diffraction noise from the 

317 iceberg ploughed seabed (Figs. 6e,f, 7d).

318

319 4.3.5. Recessional ridges

320 Small ridges similar to the ridge buried under the inner GZW (Fig. 6a,b) are also observed in 

321 the areas between the three GZWs. They all overlie the PQ basement and have a chaotic to 

322 transparent internal reflection pattern suggesting till deposits (Fig. 7). The ridges are here 

323 interpreted to be recessional ridges formed during temporary halts in the ice retreat in front of an ice 

324 cliff (e.g., Dowdeswell et al., 2016 and references herein). The majority of the ridges are 

325 symmetrical in cross-section and are on average not more than 5 ms TWT (~ 4 m) high (Fig. 7).  
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326 However, two ridges are up to 10–12 ms TWT (8–9 m) high and are asymmetric in cross-section 

327 with a steeper flank facing north (Fig. 7). This could indicate some push to the formation of these 

328 two larger ridges, e.g., by a slight advance of the ice front. It should, however, be noted that these 

329 two ridges are found in an area prone to earthquakes (Pirli et al., 2013; Junek et al., 2014), and thus 

330 some elements of structural displacement and/or sediment mobilisation in connection with 

331 earthquake activity may have altered the ridges. 

332 The recessional ridges are primarily observed in the western Storfjorden and are all covered 

333 by unit DHD sediments. The cover over the ridges found south of the middle GZW is relatively thin 

334 (Fig. 5b) and are seen in the seabed morphology (Fig. 8c; Section 4.2.4.).  In contrast, the ridges 

335 found between the inner and middle GZWs are completely covered by a much thicker layer of unit 

336 DHD sediments (Fig. 5b), and are therefore not visible on the present seabed (Fig. 8c; Section 

337 4.2.4.). However, some of the ridges in this area can be seen on the thickness (time-isochore) map 

338 of the glacial deposits as small elongations of slightly thicker deposits (Fig. 5c).

339

340 4.2.4. Multibeam bathymetry mapping

341 The overall seabed morphology seen on the multibeam bathymetry (MB) map (Fig. 8a) 

342 confirms the ridge and basin structures previously reported from Storfjorden (Plassen et al., 2008).

343 Furthest to the north the seabed displays a hummocky terrain, which changes southwards into an 

344 area characterized by a succession of depressions and ridges (Fig. 8b). A series of parallel, 

345 southeastwards curving lineations are located on the southern flank of the ridge structure. The 

346 seismic and chirp data reveal that both the hummocky terrain and the depression-ridge morphology 

347 are underlain by the basement that, apart from the highest peaks, are lightly draped and partly 

348 infilled by the deglacial-Holocene sediments of acoustic unit DHD. This suite of seabed landforms 

349 are interpreted as subglacial, and include an ice-moulded basement surface to the north  that 
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350 continues into an eroded and glacitectonically deformed high-lying basement area, forming 

351 depressions and ridges with stoss- and lee-sides. The lineations observed on the lee-sides of the 

352 ridges likely formed later as grounded ice continued to flow southwards over the ridges (cf. Bennett 

353 et al., 2016); and their curved outline is most likely caused by a slight deflection of the ice flow due 

354 to the drag imposed by the basement high obstructions. South of the depression-ridge basement 

355 area, the seabed shows an iceberg-scoured terrain that terminates with a south-facing slope (Fig. 

356 8b). The seismic and Chirp data show that this seabed morphology is controlled by the inner GZW 

357 (see Section 4.3.). The seabed south of the inner GZW is rather featureless due to smoothing by the 

358 thicker unit DHD cover in that area (Fig. 5b).

359 Fig. 8c illustrates the seabed morphology of the central study area and shows the intensely 

360 iceberg scoured surface of the middle GZW and its curved ice-distal slope. South of the wedge, a 

361 series of prominent seabed ridges extend eastwards from the Storfjorden Mid-ridge. Further east, 

362 more subtle E-W striking ridges are also visible (Fig. 8c). These features are the seabed expression 

363 of the recessional ridges (Fig. 7; Section 4.3.5.). Whilst the less prominent, but longest ridges are 

364 spaced fairly regularly with a c. 850 m distance between ridges, the two more prominent 

365 discontinuous ridges extending out from the Storfjorden Mid-ridge lie c. 500 m apart. These are the 

366 larger asymmetric ridges discussed above (Fig. 7; Section 4.3.5.). 

367 The seabed morphology in the outer study area is illustrated in Fig. 8d and shows the 

368 relatively flat top of the outer GZW with iceberg scours. The most striking features in this area are 

369 several large, N-S striking linear scours that disappear underneath the front of the outer GZW, and 

370 some of which extend outside our data coverage (Fig. 7d). The displayed parts of the scours are up 

371 to 0.5 km wide and more than 5.5 km long. However, their full length and shape cannot be 

372 determined due to the partial burial and data limitation. The shape and size of the displayed part of 

373 the scours resemble parts of mega-scale glacial lineations (MSGLs) described from other fjords and 
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374 shelves around Svalbard and elsewhere in the Arctic (e.g. Ottesen et al., 2005; Dowdeswell et al., 

375 2008, 2010). Alternatively, these large linear features may result from scouring by large, multi-

376 keeled icebergs calved when the ice margin was at the outer high and prior to the formation of the 

377 outer GZW. Considering the number of the scours and their uniform and parallel directions, 

378 together with their large size and partial burial by the outer GZW, we suggest they are MSGLs. 

379 Lifting-off of the ice that formed the MSGLs due to deepening water or truncation by the ice in 

380 Storfjorden Trough, may explain the termination of the two central MSGLs at the mouth of 

381 Storfjorden. As seen in Fig. 8d, the MSGLs are cross-cut by several iceberg ploughmarks that 

382 evidently must post-date the formation of the MSGLs.  

383

384 5. Discussion

385

386 During the LGM at c. 24,000 years, the Svalbard-Barents Sea Ice Sheet reached to the 

387 shelf edge (e.g., Elverhøi et al., 1995; Landvik et al., 1998; Jessen et al., 2010). The ice began 

388 retreating from the western shelf edge before 20,000 years BP (e.g., Jessen et al., 2010; Hormes et 

389 al., 2013) and by the start of the Holocene, the ice had retreated into the inner parts of fjords 

390 (Svendsen et al., 1992, 1996; Elverhøi et al., 1995; Hogan et al., 2017). 

391

392 5.1. Deglaciation history and ice retreat patterns in Storfjorden

393

394 5.1.1. Start of Bølling interstadial c. 15,300 years 

395 For core HH12-1212GC from the mouth of Storfjorden in front of the outer GZW, the 

396 minimum age of 15,300 years for the top of the till indicates the ice had retreated from the core 

397 location in the early Bølling interstadial (Figs. 3, 9a, 10). The overriding of the MSGLs at the 
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398 mouth of Storfjorden by the outer GZW (Fig. 8d) confirms to that these subglacial lineations were 

399 formed prior to deposition of the wedge, i.e. before the start of the Bølling interstadial.

400 For core HH12-1212GC, the coarse sediments and high concentration of IRD and 

401 dropstones together with presence of numerous specimens of the benthic foraminiferal species 

402 Elphidium excavatum (Table 2) indicate an ice-proximal glacimarine environment and that the 

403 coring site was near the grounding-zone of the outer GZW at the start of the Bølling interstadial 

404 (Fig. 3; Table 2). The diamictic sediments are interpreted as a till probably deposited from below a 

405 floating ice shelf (cf. Kilfeather et al., 2011). This is supported by the presence of benthic and 

406 planktic foraminifera and ostracods together with a diverse (but of few individuals) assemblage of 

407 invertebrates such as both branched and encrusting bryozoans, pteropods, ophiurians, bivalves and 

408 gastropods. The presence of planktic faunas (foraminifera and pteropods) indicates a fairly strong 

409 intrusion of marine water to the site following the retreat of the grounded ice. The presence of 

410 benthic micro- and macrofaunas (including suspension feeders) and planktic foraminifera and 

411 pteropods has recently been recorded below floating ice shelves in Antarctica (Riddle et al., 2007; 

412 Post et al., 2007; Sugiyama et al., 2014; Rose et al., 2015). The bryozoans indicate water movement 

413 and sufficient supply of food to the community. The low concentration of specimens and extremely 

414 good preservation also indicate low productivity typical of sub-ice environments (Riddle et al., 

415 2007). The outer GZW lies close to the mouth of Storfjorden in an area where water depth begin to 

416 shallow in the fjord. It is thus likely that when the ice retreated from the deeper Storfjorden Trough 

417 (200–300 m present-day water depth) and into Storfjorden, the shallower (100–200 m) seabed and 

418 shallow fjord flanks (< 100 m) acted to stabilise the retreating ice (cf. Jamison et al., 2014), giving 

419 rise to deposition of the outer GZW. The flat morphology of the outer GZW likely reflects a 

420 relatively restricted vertical accommodation space under the floating ice margin. Core JM09-020GC 

421 from south of Storfjorden in the southern part of Storfjorden Trough (Fig. 2) has a basal date of c. 
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422 14,000 years for ice retreat (Lącka et al., 2015), more than a thousand years later than at the site of 

423 core HH12-1212GC. This indicates that the ice located on Spitsbergenbanken and/or further to the 

424 east in Storfjorden Trough probably reached into the southeastern part of Storfjorden Trough, while 

425 it had retreated from the northern part into the mouth of Storfjorden at the start of the Bølling 

426 interstadial (Fig. 2). The inner part of Kveithola Trough, which incises the western part of 

427 Spitsbergenbanken just south of the area shown in Fig. 2, deglaciated before 14,700 years and 

428 probably even earlier for the outer part (Rüther et al., 2012; Bjarnadottir et al., 2013). In inner 

429 Kongsfjorden Trough at 79°N, marine sediments above till date between 16,300 and 14,650 years 

430 also indicating a Bølling age (Landvik et al., 2005) (calibrated by Calib7.04, Marine 13, -405 years 

431 reservoir correction; see Methods Section 3). Marine dates from outer parts of the northern Svalbard 

432 shelf in Hinlopen Trough, 80°N gave an age of c. 16,550 for ice retreat (Ślubowska et al., 2005) 

433 supported by dates from north of Nordaustlandet further east (Chauhan et al., 2016; Hogan et al., 

434 2017) and the western shelf of Svalbard (Bellsund Hola, 77°N; Ślubowska-Woldengen et al., 2007). 

435 Dates from the southwestern shelf (Storfjorden Trough; 76°N; Rasmussen et al., 2007) indicate 

436 early retreat of the ice margin from about 20,000 years. It appears the outer parts of cross-shelf 

437 troughs deglaciated well before the Bølling interstadial, while the inner parts deglaciated at the start 

438 of the Bølling interstadial in accordance with modelling results of ice retreat from the western 

439 Svalbard margin (Patton et al., 2016) (see also review and references in Hormes et al., 2013 and 

440 Hogan et al., 2017).

441  In Storfjorden, this large step of retreat of the grounding-zone into the fjord at the start of 

442 the Bølling interstadial correlates in time with the first massive (mainly subsurface) inflow of 

443 Atlantic Water as seen in other records from Storfjorden Trough (e.g., Rasmussen et al., 2007), 

444 from the Svalbard shelf (Ślubowska et al., 2005; Ślubowska-Woldengen et al., 2007) and the 

445 Barents Sea (e.g., Lubinski et al., 2001; Aagaard-Sørensen et al., 2010; Kristensen et al., 2013). The 
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446 retreat phase is also close in time to the first abrupt atmospheric deglacial warming as recorded in 

447 Greenland ice cores (Rasmussen et al., 2006). The high concentration of coarse IRD > 1 mm in core 

448 HH12-1212GC (Fig. 3) indicates strong melting or increased calving of icebergs over the core site 

449 at the time, probably as a result of the oceanic and atmospheric warming.

450

451 5.1.2. Start of Allerød interstadial c. 14,500 years and Younger Dryas cold period c. 13,000–11,700 

452 years 

453 Core site HH12-1209GC in front of the middle GZW deglaciated at the start of the Allerød 

454 interstadial (Rasmussen and Thomsen, 2014) (Figs. 1–3, 9b, 10). This phase of ice retreat in 

455 Storfjorden also correlates with strong (sub)surface inflow of Atlantic water to Storfjorden, the 

456 Svalbard shelf and Barents Sea recorded by increases in planktic and benthic foraminifera and 

457 warmer surface water conditions (e.g., Polyak and Solhein, 1994; Polyak and Mikhailov, 1996; 

458 Lubinski et a., 2001; Ślubowska et al., 2005; Ślubowska-Woldengen et al., 2007; Rasmussen et al., 

459 2007; Aagaard-Sørensen et al., 2010; Rasmussen and Thomsen, 2015) (Fig. 3). 

460 North of the middle high (Fig. 1) at core sites JM10-12GC and JM10-10GC ice retreated at 

461 the Younger Dryas-Holocene transition around 12,000–11,700 years (Figs. 9d, 10). This may 

462 suggest that the grounding-zone could have stayed on the middle high for almost 3000 years (c. 

463 14,500–12,000/11,700 years) depositing the middle GZW. During this long period, the middle 

464 GZW would have prograded seawards and started in-filling the increasing accommodation space 

465 that arose as the ice shelf became thinner away from the ice front, explaining the ram-like 

466 morphology of the middle GZW. However, given that the time interval includes the cold Younger 

467 Dryas stadial (dating 12,900–11,700 in ice cores (Rasmussen et al., 2006)), it is also possible that 

468 the ice was grounded on the middle high for the duration of the Younger Dryas (c. 1200 years) 

469 depositing the middle GZW. If the grounding-zone was at the middle GZW during the Younger 
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470 Dryas, it could explain the high deposition rates of coarse material in core HH12-1209GC during 

471 this time interval compared to the site of HH12-1212GC further away from the grounding-zone 

472 (Fig. 3). It is, however also possible the ice even advanced beyond the middle high during the 

473 Younger Dryas, and destroyed any GZW it may have been deposited during the Allerød interstadial. 

474 An alternative scenario could be that the ice retreated across the middle high and farther into the 

475 fjord during the Allerød interstadial, perhaps as far as to the inner high (Fig. 1). Here it could have 

476 formed an ice margin cliff and deposited the ice-proximal fan found buried under the inner GZW 

477 (Fig. 6a,b). Subsequently, during the cold Younger Dryas stadial the ice re-advanced to the middle 

478 high where it grounded and deposited the middle GZW (Figs. 4, 9c, 10). This scenario 

479 accommodates both the observations at the coring sites of lithology and dates, the presence of the 

480 ice-proximal fan underneath the inner GZW and deposition of the middle GZW (Figs. 4, 6c). 

481 Survival of the ice-proximal fan during the re-advance would though, imply that the ice was cold-

482 based and non-erosive during the early ice advance at the onset of the Younger Dryas cooling, at 

483 least around the inner high area. However, the fan may also have been deposited during the same 

484 period as the inner GZW as suggested for similar examples of ice margin deposits observed in 

485 Kveithola (Bjarnadöttir et al., 2013). 

486 Although the grounding of the ice at the inner high is speculative, we favour the scenario 

487 where the ice retreated across the middle high and farther into Storfjorden (Figs. 9b,c, 10) as this 

488 seems to best fit the core results. 

489

490 5.1.3. Younger Dryas-Holocene transition c. 12,000–11,700 years

491 The dates from JM10-12GC taken in the basin behind the middle high and JM10-10GC 

492 from same basin (Fig. 2) show that ice persisted here until close to the start of the Holocene (see 

493 Section 5.1.2.). The sediments with numerous coarse mineral grains at the bottom of cores JM10-
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494 12GC and JM10-10GC contain similar benthic and planktic macro- and microfaunas dominated by 

495 E. excavatum as found in HH12-1212GC indicating an ice-proximal environment (Rasmussen and 

496 Thomsen, 2014). The ice probably had retreated sometime during the Younger Dryas-Holocene 

497 transition and sediments were deposited under an ice shelf at these sites. As in HH12-1212GC, the 

498 faunas were extremely well-preserved indicating low productivity of the environment (and probably 

499 no reworking) (see Section 5.1.1.). In core NP05-86GC, the first marine sediment dates to 11,600 

500 years shortly after the start of the Holocene interglacial (Fig. 3). The lowermost coarse, unsorted 

501 sediments are devoid of macro- and microfaunas indicating that the sediments were deposited close 

502 to the grounding-zone, and that the site of NP05-86GC only became free of ice at the very start of 

503 the Holocene (Rasmussen and Thomsen, 2014) and slightly later than the two other sites JM10-

504 12GC and JM10-10GC, which were free of the ice at the Younger Dryas-Holocene transition (see 

505 Section 5.1.2.). The location of the inner GZW at the northern end of the basin also indicates that 

506 this part deglaciated later than the sites of JM10-10GC and JM10-12GC to the northeast and south, 

507 respectively (Figs. 1, 2, 4, 10). This suggests that the grounding-zone retreated faster and farther 

508 north on the eastern part of Storfjorden than on the western and northern parts, as also indicated by 

509 the seismic and acoustic data (see below). The time correlates with intrusion of subsurface Atlantic 

510 water to Storfjorden probably inflowing at the eastern margin toward Edgeøya as today (e.g., 

511 Rasmussen and Thomsen, 2015) (Fig. 2). Terrestrial and marine dates from Edgeøya also show that 

512 ice had retreated from the coast at the Younger Dryas-Holocene transition at 12,000–11,200 years 

513 (Landvik et al., 1995 and references therein; Hansen and Knudsen, 1995; Bondevik et al., 1995). 

514 The last retreat phase in Storfjorden at the Younger Dryas-Holocene transition and the 

515 beginning of the Holocene occurred at a time of abrupt atmospheric warming known from 

516 Greenland ice cores (e.g., Rasmussen et al., 2006).  It is also a phase marked by a massive intrusion 
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517 of (sub)surface Atlantic Water to the western Svalbard margin and the Barents Sea (e.g., Skirbekk 

518 et al., 2010; Risebrobakken et al., 2010; Berben et al., 2014; Rasmussen et al., 2014).

519 Although the cores indicate the presence of an ice shelf in the eastern Storfjorden, the 

520 western part may have lacked an ice shelf as suggested by the occurrence of recessional ridges 

521 between the middle and inner GZW, which demonstrate that the retreat of grounded ice over this 

522 part of Storfjorden was punctuated by short still stands. The partial burial of the northernmost 

523 recessional ridge by the inner GZW and the burial of ridges by seismic unit DHD (Figs. 6, 7), 

524 indicate that these ridges were formed as the ice retreated from the middle high onto the inner high, 

525 where it eventually stayed grounded for a period long enough to deposit the inner GZW. 

526 The fact that the recessional ridges increase in size towards west and connect to the eastern 

527 flank of the Mid-ridge suggests that the Mid-ridge may have enforced a lateral drag on the 

528 retreating ice by acting as a pinning point for the ice sheet. Thus, while the retreating ice in the 

529 western Storfjorden this way experienced short, temporary halts due to the lateral drag from the 

530 Mid-ridge, the grounded ice in eastern Storfjorden was more prone to flotation due to inflow of 

531 subsurface Atlantic water to the east (Fig. 10), and eventually an ice shelf developed in the 

532 easternmost Storfjorden as indicated by the core studies. The recessional ridges found between the 

533 outer and middle GZWs show that the a lateral drag forced by the Mid-ridge also acted during the 

534 previous (post-LGM) ice retreat events in Storfjorden, which may explain the observed overall SW-

535 NE trend of all three GZWs.

536 The rather short duration of the Younger Dryas-Holocene transition period (c. 300 years) 

537 indicates that the retreat of the ice from the middle high to the inner high must have occurred 

538 relatively fast. A fast retreat of the ice over the ice-proximal fan could explain how the fan could 

539 survive the over-running of the ice that eventually grounded on the inner high north of the fan, and 

540 subsequently deposited the inner GZW on top of the fan. 
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541 After deposition of the inner GZW, ice retreat continued further into Storfjorden, and at the 

542 very onset of the earliest Holocene the ice might have reached the basement area characterized by 

543 series of depressions and ridges (Fig. 8b) in inner Storfjorden (Fig. 9e). This scenario is supported 

544 by the results of core NP05-86GC, which indicated that the core site was ice free, but located in an 

545 ice proximal position around 11,600 years (see Section 5.1.4.). The depression and ridge area, 

546 however, likely existed prior to the glaciation of Storfjorden as a high-lying, structurally deformed 

547 basement area characterized by ridges and basins. As the glaciation of Storfjorden progressed from 

548 the north, the area was overridden and likely altered by the ice several times.

549

550 5.1.4. Earliest Holocene c. 11,700–10,000 years and Holocene 10,000–0 years

551 The earliest Holocene in all cores is characterised by high concentration of IRD deposited 

552 between c. 11,700 and 10,000 years (Fig. 3) indicating further retreat and break-up of the ice 

553 stream. After 10,000 years, IRD decreases in several of the records. This general decrease in ice 

554 rafting is also recorded north and west of Svalbard also dating around 10,000 years indicating that 

555 the ice now was situated inland (Ślubowska et al., 2005, Ślubowska-Woldengen et al., 2007; 

556 Forwick and Vorren, 2009). Ice rafting thereafter became very low over the Svalbard-Barents Sea 

557 margin. This pattern is also evident in Storfjorden as coarse IRD becomes almost absent after 

558 10,000 years BP in all records with low or no deposition of IRD in the mid-Holocene and increased 

559 ice-rafting in the late Holocene (see also Rasmussen and Thomsen, 2015) (Fig. 3). The patterns also 

560 resemble patterns seen elsewhere on the shelf west and north of Svalbard (Ślubowska et al., 2005, 

561 Ślubowska-Woldengen et al., 2007, Skirbekk et al., 2010; Groot et al., 2014), in Svalbard fjords 

562 (Forwick and Vorren, 2009) and to some extent also east of Svalbard (Kristensen et al., 2013). The 

563 content of IRD also increases during the late Holocene in many published records from the 

564 Svalbard margin. This is taken as an indication that the glaciers again reached into marine waters; 
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565 also termed the neoglaciation (e.g., Hald et al., 2004; Ślubowska et al., 2005, Ślubowska-

566 Woldengen et al., 2007; Forwick and Vorren, 2009; Skirbekk et al., 2010; Jessen et al., 2010).

567

568 5.4. Ice retreat and forcing

569

570 The different phases of deglaciation in Storfjorden (at the start of the Bølling interstadial, 

571 Allerød interstadial and Holocene interglacial) apparently correlate closely in time to abrupt 

572 warming phases and intrusions of (sub)surface Atlantic water. From paleorecords, it has previously 

573 been suggested that sea surface warming probably caused retreat and break-up of Northern 

574 Hemisphere ice shelves (e.g., Rasmussen et al., 1996; Schaffer et al., 2004; Marcott et al., 2011). 

575 Modern data from both the Greenland margin (e.g., Howat et al., 2005; Holland et al., 2008) and 

576 Antarctica (e.g., Jeong et al., 2016 and references therein) have shown that incursions of subsurface 

577 warm water underneath ice shelves and outlet glaciers cause accelerated melting and calving. The 

578 evidence from Storfjorden of ice retreat in step with atmospheric and ocean warming indicates a 

579 strong forcing from the ocean and atmosphere on the timing of the retreat. However, our 

580 reconstruction of the Storfjorden deglaciation also demonstrates that the ice-retreat pattern was 

581 linked to the bed topography of the fjord as all three GZWs are found down-flow of higher lying 

582 basement areas, where the ice likely have been grounded for a longer period. This is in accordance 

583 with other studies and modelling of e.g. Stokes et al. (2007), Jamieson et al. (2014) and Favier et al. 

584 (2016), who suggested that the temporal and spatial variability of an ice flow is intimately linked to 

585 the distribution of sticky points at its base. 

586 An ice flow out of Storfjorden has often been suggested or inferred, but here we have 

587 demonstrated the existence of this ice flow by reconstruction of the deglaciation of Storfjorden. An 

588 earlier reconstruction of ice extent over Svalbard suggested the presence of an ice dome over 
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589 northeastern Svalbard during the LGM, which drained only towards north, east and west 

590 (Dowdeswell et al., 2010; Hogan et al., 2010b). Based on our results we now suggest that this ice 

591 dome also drained southwards through Storfjorden. We envision that the dome, in order to have had 

592 ice enough to also accommodate a southward ice flow, must have been larger than previously 

593 assumed and that it extended further south covering the narrow strait between the islands of 

594 Spitsbergen and Barentsøya (Fig. 1).

595

596 6. Conclusions
597
598
599 By integrating seismic, Chirp and multibeam bathymetry data with information from cores 

600 on sediment, IRD, fossil faunas and dates, the pattern and timing of the ice sheet retreat after the 

601 Last Glacial Maximum in Storfjorden, southern Svalbard have been reconstructed in detail and 

602 conceptually illustrated in Figs. 9 and 10: 

603 a) During Bølling interstadial, c. 15,300 years, the ice front was located in the outer Storfjorden 

604 and formed the outer grounding-zone wedge (GZW). A large floating shelf reached at least to 

605 the mouth of the fjord (Figs. 9a, 10)

606 b) During the Allerød interstadial, c. 14,500 years, ice retreated into Storfjorden, maybe as far as 

607 the position of the present inner GZW. Here, it could have formed an ice cliff and deposited an 

608 ice-proximal fan (Figs. 9b, 10)

609 c) We suggest that a re-advance occurred during the Younger Dryas stadial. At c. 13,000 years, 

610 the ice front stood c. 50 km inside the fjord and formed the middle GZW. Apparently, the ice 

611 shelf was not very extensive at that time (Figs. 9c, 10)

612 d) During the transition from Younger Dryas to Holocene, c. 12,000–11,700 years, a large 

613 floating ice shelf had developed and the ice was grounded around the inner GZW (Figs. 9d, 

614 10). The ice retreat was slowed down toward west, while open water was present to the east
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615 e) The ice continued the retreat in the early Holocene, and at c. 11,600 years the ice was likely 

616 grounded in the high-lying, rough basement area north of the inner GZW (Figs. 9e, 10)

617 f) At 10,000 years, large armadas of icebergs marked the final retreat of the marine based ice in 

618 Storfjorden and ice rafting ceased or became very low thereafter. During the last c. 3000 years 

619 in the late Holocene ice rafting increased, a sign that glaciers again reached Storfjorden (Fig. 

620 9f)

621

622 The timing of the various stages of ice retreat recorded in Storfjorden correlates closely with 

623 abrupt atmospheric warmings of the start of the Bølling and Allerød interstadials, at the Holocene 

624 interglacial and intrusions of Atlantic water to the shelf and fjords. Basement highs acted as pinning 

625 points causing longer still-stand periods during the ice retreat and giving rise to deposition of the 

626 three GZWs. The N-S striking Mid-ridge that flanks the western side of Storfjorden (Fig. 1) 

627 imposed a lateral drag to the western ice margin during the retreat, resulting in formation of 

628 recessional ridges in western Storfjorden and a slight deflection of the grounding-zones (Fig. 10). 

629 This angling of the ice retreat probably further accelerated by incursions of warm Atlantic water 

630 along the east coast. 

631 Our results demonstrate the linkage of climate and oceanographic changes with the bed 

632 topography on the timing and pattern of an ice retreating from an Arctic fjord setting. Further, we 

633 have confirmed the existence of a so far only assumed ice flow out of Storfjorden, and suggest that 

634 this ice flow may have emanated from a larger version of the previously proposed LGM ice dome 

635 over northern Svalbard.
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951 Figures: 
952
953 Fig. 1. a) The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0 

954 (Jakobsson et al. 2012) with location of the study area presented in panel b marked with red square. 

955 b) Zoom on the IBCAO map of Storfjorden, southern Svalbard with outline of the mapped area 

956 (blue line) and the seismic line shown in Fig. 4 (red line). c)  Locations of seismic lines (red), Chirp 

957 lines (light grey), outline of multibeam bathymetry mapping (blue line) and gravity cores (green 

958 dots) from this study. 

959

960 Fig. 2. Map of southern Svalbard showing locations of studied cores (red circles) and nearby 

961 published record referred to in the text (black circle). Abbreviations: 10= JM10-10GC; 86=NP05-

962 86GC; 12=JM10-12GC; 1209=HH12-1209GC; 1212=HH12-1212GC; 008=HH14-008GC; 

963 020=JM09-020GC; WSC=West Spitsbergen Current; ESC=East Spitsbergen Current; CC=Coastal 

964 Current. Map modified after Rasmussen and Thomsen (2015).

965

966 Fig. 3. Lithological logs, concentration of ice-rafted debris (IRD), concentration of benthic 

967 foraminiferal specimens, and age-depth plots marked with calibrated ages (cal years BP) for each 

968 record. For core HH14-008GC only lithological log, dates and age-depth plot are shown. Age 

969 models are shown for each core. Abbreviations: LH; late Holocene, MH; mid Holocene, EH; early 

970 Holocene, YD-H; Younger Dryas-Holocene transition, YD; Younger Dryas, AL; Allerød 

971 interstadial, BØ; Bølling interstadial. Grey bars represent sediments interpreted as till.

972

973 Fig. 4. a) North-south directed seismic line illustrating the overall seismic structure of the study area 

974 and position of coring sites. For location see Fig. 1a,c (red line). b) Seismic interpretation of the 

975 line.
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976

977 Fig. 5. a) Time-structure map of the Top Pre-Quaternary (TPQ) horizon that marks the top of the 

978 Mesozoic or older basement in the study area. b) Time-isochore map of the total sediment thickness 

979 overlaying the TPQ (basement). c–d)  Time-isochore map of the glacial till deposits (unit GD) and 

980 the Deglacial-Holocene deposits (unit DHD) respectively.

981  

982 Fig. 6. Seismic lines showing cross-sections parallel (N-S) and perpendicular (E-W) to the ice flow. 

983 a–b) Inner GZW; c–d) Middle GZW; e–f) Outer GZW. Location of the lines is shown in the inset 

984 map.

985

986 Fig. 7. a) Sub-bottom Chirp profile showing recessional ridges of various sizes found between the 

987 middle and outer GZW. b) Interpretation of the profile. Note, that the ridges are underlain by PQ 

988 basement and covered by a thin layer of DHD sediments. Also note that while the smaller ridges are 

989 symmetric in cross-section, the two large ridges are asymmetric with a steeper flank facing north. 

990 The un-even seabed reflector is a heave artefact caused by rough sea conditions during acquisition. 

991

992 Fig. 8. a) Complete multibeam bathymetry map. b–d) Zoom on the northern, central and southern 

993 study area, respectively, with marking of seabed features mentioned in the text. 

994

995 Fig. 9. Interpreted ice margin positions and extent superimposed on the seismic line shown in Fig. 4 

996 to illustrate the deglaciation history of Storfjorden – see Section 6 (Conclusion) for details. a) 

997 Bølling interstadial. b) Allerød interstadial. c) Younger Dryas stadial. d) Younger Dryas to 

998 Holocene transition. e) Early Holocene.

999
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1000 Fig. 10. Map showing reconstructed ice retreat in Storfjorden indicating locations of grounding-

1001 zones and timing (c. 15,300 years = start of Bølling interstadial; c. 14,500 years = start of Allerød 

1002 interstadial; c. 13,000–12,000 years = Younger Dryas stadial; c. 12,000–11,700 years = Younger 

1003 Dryas-Holocene transition; 11,600 years = start of Holocene interglacial). Solid lines are based on 

1004 seismic data in combination with calibrated AMS-14C dates from core records, hatched lines are 

1005 suggested positions. Northward pointing arrow indicates a possible retreat during Allerød 

1006 interstadial, southward pointing indicates a possible advance during the Younger Dryas.  Red 

1007 arrows indicate inflow of sub surface warm Atlantic water.

1008

1009 Tables:

1010 Table 1. Locations of studied cores

1011 Table 2.  AMS 14C dates and calibrated ages for cores HH14-008GC and HH12-1212GC

1012



-

-
-
-

-

Barentsøya

Edgeøya

1
0
0

2
0
0

300

1
0
0

1
0
0100

1
0
0

10
0

20
0

1
0
0

1
0
0

24°E

20°E

20°E

16°E

16°E

7
8

°N

7
8
°N

7
7

°N

7
7
°N

7
6

°N

7
6
°N

2
4
°E

50km

Spitsbergen

M
id

-rid
g
e

Storfjord Trough 

Storfjordbankenr

Spitsbergen

b a

c

1
0
0

outer high

hgih elddim

1
5
3

inner high

Storfjorden

1
5
3

153

100

200

L
ittle

-S
to

rfjo
rd

e
n

Storfjorden

M
B

 o
ut

lin
e

F
ig

. 4

JM10-12GC

NP05-86GC

HH14-008GC

HH12-1209GC

HH12-1212GC

JM10-10GC

seismic
chirp



Spitsbergen

Barents-
øya

Edgeøya

ESC

020

12

100

Spits-
bergen-
banken

Storfjord-
banken

86
10

22  E 14  E 

Storfjorden 
Trough

Stor-
fjorden

1209

1212

Isf
jord

en

Hopen

Warm Atlantic water
Cold polar water
Core sites (this study)

008

300

2000

1500

1000

400

WSC

100

CC

200

200

100 km

76

N

N

Core from other study

78



HH12-1209GC

1590

7750

10,645

11,865

14,040

14,250

0 0 010 100200

No. benthic

10000

F./g
No. IRD

>0.5 mm/g
Cal age

BP

HH12-1212GC

905

3925

8360

13,815

0 20 20040 4000

No. benthic

10000

F./g
No. IRD

>0.5 mm/g
Cal age

BP

15,205

JM10-10GC

1030

475

2770

4280

4805

6480

10,680

6400

0 10 20

No. benthic
F./g

No. IRD
>0.5 mm/g

0 0100 200

0

100

200

300

YD-H

YD-H

EH

EH

AL

AL

BØ

YD

YD?

EHEH

LH
LH

LH LH
LH

LH

MH

MH

MH

MH

MH

MH

Cal age

10000

BP

D
e
p
th

 c
m

**

12,530
**

**

*Legend:
and macrofaunas

HH14-008GC

0

Cal age

5000

BP

435

445

3520

6560

7810

JM10-12GC

825

3400

10,800

12,660

200100 000 4020

No. benthic

10000

F./g
No. IRD

>0.5 mm/g
Cal age

BP

NP05-86GC

0 050 100 200 400 0

No. benthic

10000

F./g
No. IRD

>0.5 mm/g
Cal age
BP

745

10,580

8875

4820

3240

11,460

Silty mud Coarse, unsorted sediments, Gravel >1 mm Well-preserved micro-
barren of micro- and macrofaunas

EH



a

b

180

280

180

280

TWT
ms

N S

NP05-86GC JM10-12GC HH12-1209GC HH14-008GC HH12-1212GC

180

280

180

280

TWT
ms

N S

NP05-86GC JM10-12GC HH12-1209GC HH14-008GC HH12-1212GC

5 km

5 km

multiple

narrow TPQ ridge

PQ (basement) GD DHD TPQ TG Seabed



Spitsbergen

Edgeøya

8
6

0
0

0
0

0
8

5
6

0
0

0
0

8
5

2
0

0
0

0

600000 640000560000 600000 640000560000

8
6

0
0

0
0

0
8

5
6

0
0

0
0

8
5

2
0

0
0

0
8

6
0
0
0

0
0

8
5
6
0
0
0
0

8
5
2
0
0
0
0
8
6
0
0
0
0
0

8
5
6
0
0
0
0

8
5
2
0
0
0
0

600000 640000560000 600000 640000560000

TWT in ms TWT in ms

TWT in ms TWT in ms

Time-structure: top pre-Quaternary Time-isochore: total sediment

Time-isochore: deglacial & HoloceneTime-isochore: glacial sediments

a b

c d

narrow ridge

inner h
igh

middle high

outer h
igh

M
id

-r
id

g
e

basin

b
a

si
n

Storfjorden Trough

elongated
ridges

inner GZW

middle G
ZW

outer G
ZW

Spitsbergen

Edgeøya

Spitsbergen

Edgeøya

Spitsbergen

Edgeøya

Spitsbergen

Edgeøya

basin fill

basin fill



-125

-150

-175

-200

-225

-250 2 km
N S

c

150

200

250

TWT
ms

Storfjorden / Svalbard / Tove Nielsen
M:\blandet_2016\Tove_Nielsen\Storfjorden_Blue_Ocean.mxd

GEUS / ww / 2016-12-01

20°E

20°E

7
7

°N

7
7

°N

50km

a
b

c
d

e
f

-125

-150

-175

-200

-225

-250

-275

-300

W E
2 km

150

200

250

300

-150

-175

-200

-225

-250

-275
2 km

150

200

250

N S

TWT
ms

a

b

-150

-175

-200

-225

-250

-275

-300

-325 ENE2 km

f

WSW

200

250

300

-125

-150

-175

-200

-225

-250

-275

0 250 500 750 1000 1250m

1:300002 kmWSW ENE

d

150

200

250

-150

-175

-200

-225

-250

-275

-300 2 km S

e

200

250

300 N

TWT
ms

chaoticstratified

chaotic stratified

pegleg pegled

chaotic stratified

chaotic

pegled

ice flow direction

ice flow direction

ice flow direction

crossing of b 

crossing of a 

crossing of d 

crossing of c 

crossing of f 

crossing of e 

sub-unit (fan)

sub-unit

sub-unit (ridge)

iceberg ploughed seabed

iceberg ploughed seabed

iceberg ploughed seabed

iceberg ploughed seabed

Mid-ridge



S

TWT
ms

TWT
ms

190

200

210
1 km

190

200

210

NS

ridge

ridge
ridge

asymetric ridges
middle
GZW

PQ (basement) GD DHDS N



middle GZW front

artefact

rid
ge

s

c

rid
ge depression

p
lo

u
g
h
 -

 m
a
rk

s

b

artefacts

sedim
ent tails

77
°N

20°E19°E

20°E19°E

77
°N

ab

c

d

5 km

1
0

 k
m

d

p
lo

u
g
h
m

a
rk

s

outer GZW front

MSGL

MSGL

215 35 m

h
u
m

m
o
ck

y
 t
e
rr

a
in

F
ig

. 8

ri
d
g
e
 d

e
p
re

s
s
io

n

sedim
ent

tails

inner GZW front

n
u
m

e
ro

u
s 

p
lo

u
g
h
m

a
rk

s

ploughmarks

ploughmarks



Start Bølling interstadial c. 15,300 cal years BP 

Start Allerød interstadial, c. 14,500 cal years BP 

Younger Dryas stadial, c. 13,000-12,000 cal years BP 

Younger Dryas-Holocene transition, c. 12,000-11,700 cal years BP 

Early Holocene, 11,600-10,000 cal years BP 

Start Holocene interglacial, 11,600 cal years BP 

Silty mud

Diamicton

JM10-10GC
(Offset ~25km east)

NP05-86GC JM10-12GC HH12-1209GC HH14-008GC

Gravel <1mm

Top Pre-Quaternary

100

200

300

400

0

100

200

D
e
p
th

 c
m

0

100

200

300

0

100

200

300

0

100

200

0

100

200

a

b

c

d

f

inner GZW middle GZW outer GZW

HH12-1212GC

300

e



-

-
-
-

-

Barentsøya

Edgeøya

1
0
0

2
0
0

300

1
0
0

1
0
0100

1
0
0

10
0

20
0

1
0
0

1
0
0

24°E

20°E

20°E

16°E

16°E

7
8

°N

7
8
°N

7
7

°N

7
7
°N

7
6

°N

7
6
°N

2
4
°E

Spitsbergen

m
id

-rid
g
e

Trough 

Storfjordbanken

Spitsbergen

12,000-11,700 14,500?

11,600

13,000-12,000

15,300

50km

Storfjord 



Table 1. Positions and water depth of studied cores
Core Latitude Longitude Water depth (m) Cruise References

NP05-86GC: 77°21.60' 019°18.46' 141 RV Lance , 2005 Plassen et al., 2008
JM10-10GC: 77°24.812’ 020°05.972’ 123 RV Jan Mayen , 2010 Rasmussen and Thomsen, 2014
JM10-12GC: 77°07.358' 019°24.459' 146 RV Jan Mayen , 2010 Rasmussen and Thomsen, 2014
HH12-1209GC 76°54.178' 019°26.068 151 RV Helmer Hanssen , 2012 Rasmussen and Thomsen, 2014
HH14-008GC 76°42.675' 019°35.834' 159 RV Helmer Hanssen , 2014 This study
HH12-1212GC 76°37.011' 019°32.906' 178 RV Helmer Hanssen , 2014 This study



Core Depth cm 14
C -age

a Calender age Lab. Code Species

HH14-008GC 28.5 783±31 435±37 UB-27266 Astarte  sp.

72.0 791±27 445±30 UB-27267 Astarte  sp.

92.5 3625±29 3520±45 UB-27268 Astarte  sp.

113-115 6129±41 6560±58 UB-27269 Astarte  sp.

140-143 7348±34 7810±50 UB-27853 Bivalves

HH12-1212GC 41.5 1352±25 905±33 UB24648 Portlandia arctica

132.5 3944±28 3925±49 UB24649 Nucula  sp.

196.5 7899±38 8360±35 UB24651 Portlandia  fragment

241.5 Failed UB-24652 N. labradorica

245.0 12,340±57 13,815±82 UB-25132 Bryozoans

300.5 Failed UB-25611 Elphidium excavatum

299-303 13,171±49 15,205±74 UB-28381 Micro- and macrofossils*

*E. excavatum , C. reniforme , small remains of bryozoans, molluscs and ophiurians 

Table 1. AMS
14

C dates and calibrated ages for cores HH14-008GC and HH12-1212GC


