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Cover: Monocyte with tissue factor (TF) expression in blood smear after 2 hours 

stimulation of human whole blood with Escherichia coli, confocal microscopy (630x). 

Tissue factor in green was stained using a FITC labeled anti-TF antibody and DNA was 

stained using DAPI in blue. The picture was obtained by post. doc. Bård Ove Karlsen.  
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Abstract 

The interaction between the complement system as a part of the innate immune system 

and the coagulation system is close. Increased knowledge about the interaction between 

these systems is important to enable development of more efficient medications. Sepsis 

is still a disease with a high mortality despite years of research [1]. Globally, sepsis is the 

cause of death for more than five million individuals annually and the mortality is 26% 

[2]. In Norway the incidence of sepsis is 140 per 100.000 inhabitants per year and the 

overall mortality was 13.5% [3]. Mollnes et al. hypothesized that combined inhibition of 

complement and cluster of differentiation 14 (CD14) blocks the sepsis-induced immune 

response [4]. The complement system and the Toll-like receptor (TLR) interact and work 

synergically and a combined upstream inhibition may reduce the immune responses [5, 

6]. Thus, the focus in this thesis is the effect of the selective and combined complement 

and CD14/TLR inhibition on bacteria-induced coagulation. The human whole blood 

model of inflammation [7] was used to study some of the key components, including 

complement component 3 (C3) and 5 (C5), C1-inhibitor (C1-INH), CD14, TLR4 and 

tissue factor (TF). In paper I, we used the C3 specific inhibitor compstatin alone or 

combined with an anti-CD14 antibody (anti-CD14), an important cofactor for several 

TLRs including TLR4. The combined inhibition significantly reduced the Escherichia 

coli (E. coli)-induced coagulation which was TF dependent. In paper II, we studied the 

effects of increasing amounts of C1-INH on coagulation kinetic and on E. coli-induced 

coagulation as C1-INH was postulated to be procoagulant [8]. High supraphysiological 

doses of C1-INH abolished the E. coli-induced coagulation analyzed using rotational 

thromboelastometry. In paper III we showed that C5 had no effect on the normal 

physiological hemostasis in vitro. In contrast, eculizumab reduced the E. coli-induced TF 

messenger RNA (mRNA) and TF function in microparticles (TF-MP). The combined 

inhibition with eculizumab and anti-CD14 or eritoran most efficiently reduced the E. coli-

induced coagulation. The effect of the combined inhibition on inflammation, 

phagocytosis and leukocyte markers CD11b and CD35 was studied in paper IV. Anti-

CD14 was a better inhibitor than eritoran on the E. coli-induced TF and the combined 

inhibition was even more effective. In conclusion, this thesis discloses new knowledge 

on treatment of sepsis-induced coagulation. 
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1 Background 

1.1 Introduction  

Traditionally, the coagulation and immune systems have been considered two different 

cascade systems with separate functions. However, in the last years crosstalk and multiple 

interactions between the two systems have been found [9]. Some molecules seem to have 

an especially important role and complement C5, TLRs and TF are all involved in these 

interactions. The process involving interaction of both coagulation and immune systems 

in diseases such as sepsis is now called immunothrombosis as a part of the innate 

immunity [10]. This is probably a beneficial local process since it may limit the spread of 

bacteria into the blood stream from a local bacterial infection [10]. Thromboinflammation 

is another term used about the intravascular activation of immune and endothelial cells 

caused by activation of the cascades [11]. However, in a “systemic whole-body 

inflammation” such as severe sepsis with disseminated intravascular coagulation (DIC) 

the immunothrombosis is disadvantageous and does more harm than good [12]. There are 

also strong interactions between the complement system and TLRs [6]. Several studies 

have shown that complement system and TLR act in synergy during inflammation [6]. 

Combined upstream inhibition of both complement and TLRs may thus be necessary to 

inhibit systemic bacteria-induced thromboinflammation [6].  

 

The term acute inflammation was introduced by Celsus about 2000 years ago. The Latin 

word inflammare means “to set on fire”. The five cardinal symptoms of acute 

inflammation are rubor (redness), calor (heat), tumor (swelling), dolor (pain) and 

function laesa (loss of function), illustrated in Fig. 1. The heat and redness is due to 

vasodilation and tumor is due to increased vascular permeability. Pain is due to activation 

of nociceptors. Loss of function is due to pain, reflex muscle inhibition and disruption of 

tissue structure. In more recent definitions of inflammation, clinical signs and enhanced 

levels of inflammatory mediators are often included. Inflammation is now considered to 

be due to activation of complex cascades and repair mechanisms.  
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Fig. 1. Inflammation characterized by five signs: heat, redness, swelling, pain and loss of 

function. 

 

Sepsis is a typical example of acute systemic inflammation from the clinical situation 

with interaction between the complement and coagulation systems [1, 13]. The whole 

blood model developed at Nordland Hospital is an in vitro model of inflammation 

constructed by adding bacteria to fresh human whole blood [7]. The main advantage of 

this model is that the anticoagulant used, namely lepirudin, does not affect complement 

activation, measured as terminal complement complex (TCC) [7]. This thesis brings 

forward new knowledge about the role of innate immune systems in bacteria-induced 

thromboinflammation, focusing on complement, TLRs, coagulation, and the crosstalk 

between them.  

 

 

1.2 Sepsis 

What is sepsis? The answer is complex and has changed over time. Homer used the term 

sepsis around 2700 years ago. The term comes from sepo meaning, “I rot” [14]. 

Hippocrates described sepsis as an undesirable putrefaction that could occur, for example, 

in the colon and induce “dangerous principles” and, furthermore, “auto-intoxication”. 

First in 1991, “a consensus conference group” agreed upon a diagnosis of sepsis, systemic 

inflammatory response syndrome (SIRS), severe sepsis and septic shock [15]. The 

International sepsis definitions conference in 2001 extended the description of signs and 

symptoms [16]. In 2016, the Third International Consensus Definitions for Sepsis and 
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Septic Shock (Sepsis-3) defined sepsis as “a life-threatening organ dysfunction caused by 

a dysregulated host response to infection” [1]. They included a sequential (sepsis-related) 

organ failure assessment (SOFA) score to identify the organ dysfunction. Septic shock is 

a severe situation with hypotension and increased mortality. In septic shock patients 

vasopressors are needed to maintain the mean arterial pressure ≥ 65 mm Hg and the lactate 

concentration in plasma below 2 mmol/L despite fluid resuscitation [1].  

 

Sepsis is a heterogeneous condition, but in general the immune response overreacts 

against pathogens and several systems are disturbed. After some time, the immune system 

is suppressed, and the body has problems maintaining a normal homeostasis [13]. The 

inflammatory response thus varies over time. In fact, the mortality has been shown to be 

higher in the immunosuppressive later phase [17]. Activated immune cells induce 

coagulation activation. The coagulation activation observed during infections is thought 

to be an attempt to inhibit pathogen spreading [18]. However, in sepsis the infection is 

spread via the bloodstream and the microthrombi in the microvasculature is harmful and 

induce organ failure and even death [19].  

Due to the huge coagulation activation with increased consumption of coagulation factors 

and platelets, the production of coagulation factors and inhibitors is reduced and the 

degeneration is increased. That induce an increased risk of bleeding [20]. The 

anticoagulation system and the fibrinolytic system are also reduced during sepsis. Thus, 

the complications of sepsis can be both thrombosis and bleeding [21]. Disseminated 

intravascular coagulation (DIC) is a state with widespread generation of microthrombosis 

[10]. The reduced blood flow can induce organ failure e.g. in the kidneys and brain. [20]. 

The general treatment for septic shock is antibiotics, fluid resuscitation, corticosteroids 

and oxygen administration. This treatment is given to inhibit bacterial growth and 

maintain fluid homeostasis [22]. Escherichia coli (E. coli) and Staphylococcus aureus (S. 

aureus) bacteria are the most common causes of for sepsis [2]. 

 
 

 

1.3 Innate immunity  

The immune system is divided into innate and adaptive immunity. This thesis will focus 

on innate immunity and the complement system. The host has several defenses against 

invading pathogens. Examples are physical, chemical and biological barriers like skin, 



11 

 

 

 

sweat, saliva, gastric acid and gut flora. However, a cellular defense is needed when the 

pathogens cross these barriers. Microbes have molecular patterns named pathogen-

associated molecular patterns (PAMPs) [23]. These foreign molecules are detected by 

receptors on human cells called pattern recognition receptors (PRRs). The danger-

associated molecular patterns (DAMPs) refer to molecules expressed in response to a cell 

injury or cell death [23]. Bacteria and other particles opsonized by antibodies (IgG or 

IgM) are recognized by Fcγ receptors, while complement opsonins like iC3b, C3b or C3d 

are recognized by complement receptor (CR) 3 [24]. CR3 consists of CD11b/CD18, and 

the main ligand is iC3b. Monocytes express CR3 and the expression is increased by 

activation and during differentiation to macrophages [25]. Resting neutrophils hardly 

express CR3, but the expression is increased by cell activation [25]. CR1, also called 

CD35 is another complement receptor that recognize C3b and C4b opsonized particles 

and induces phagocytosis [26]. Macrophages, monocytes and neutrophils ingest 

pathogens by phagocytosis. The first step in this process is recognition of a target particle 

larger than 0.5 µm, followed by activation of the internalization machinery through 

signaling. The generated phagosomes fuse with lysosomes and form phagolysomes. The 

ingested particle is then broken down by enzymes in the phagolysomes [24]. S. aureus-

induced TLR response occurs after phagocytosis [27]. The phagosome maturation 

induces an acid environment which activates important enzymes. These enzymes release 

ligands from the bacteria required for a full immune response [27]. Inhibition of E. coli 

phagocytosis did not inhibit the TLR4 dependent response [27]. Ip et al. conclude that E. 

coli can induce cytokine production from the cell surface in contrast to S. aureus, which 

required degradation in the endosome [27].  

 

 

1.3.1 Cytokines 

Cytokines are small proteins that are released from different cells. They are important 

molecules involved in the communication and interaction between different cells. 

Cytokines can act in several ways, and may have autocrine actions on the cell itself, 

paracrine effects on cells close by or endocrine effects on cells at a distance [28]. Tumor 

necrosis factor (TNF), Interleukin (IL)-1β and IL-6 are mainly proinflammatory 

cytokines [28]. Some cytokines are chemokines that activate and induce migration of 

leukocytes. The chemokine IL-8 also called chemokine (C-X-C motif) ligand 8 (CXCL8) 
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acts on neutrophils and T-cells [28]. IL-10 is one of the anti-inflammatory cytokines [28]. 

Many cytokines are released after binding of PAMPs such as lipopolysaccaharide (LPS) 

to TLR4, leading to activation of intracellular signaling and the transcription factor 

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) [29]. The 

activation of NF-κB leads to upregulation of several cytokine mRNAs [6]. TLR4 can also 

induce signals through another pathway. Translocation of TLR4 to endosomes or 

phagosomes activates a TRAM-TRIF dependent pathway that results in interferon 

regulatory transcription factor (IRF) 3 phosphorylation and IFN-β production [6]. Some 

cytokines like IL-6 induce synthesis of acute phase proteins such as CRP in the liver [30].  

 

 

1.4 The complement system 

1.4.1 Overview 

The complement system (Fig. 2) is an important part of the innate immunity system. 

Everything, i.e. cells or substances, including debris, microorganisms and artificial 

materials, that do not express factor H (FH) is attacked by a complement component. Self 

cells are protected by expressing FH due to the competition between FB and FH, which 

inhibits the further activation of the complement [6]. In addition, complement molecules 

recognize antibodies bound to pathogens or conserved patterns from pathogens. The 

complement system is a cascade system, i.e. the activation of one component activates 

the next and so on [25]. The complement system consists of more than 50 proteins [31] 

and constitutes about 3 g protein per liter plasma [32]. Complement activation leads to 

opsonization, increased phagocytosis and recruitment of inflammatory cells to the site of 

infection [33]. The terminal product, TCC (C5b-9) also induces lysis of certain 

complement-sensitive bacteria or activation of immune competent cells. Soluble TCC in 

plasma is commonly used as a marker of complement activation. Anaphylatoxins, 

including C3a, C4a and C5a are released during the complement activation. They have 

several effects for example activation of myeloid cells, platelets and inducing chemotaxis 

to enhance the immune response [33, 34]. Previously, the complement system was 

thought to be present only extracellularly. However, intracellular stores of both C3 and 

C5 have been detected in human T-cells [35]. Complement inhibitors and regulators in 

cells prevent damage from complement activation [35]. Complement regulators are both 

in the fluid phase and membrane-bound on cell surfaces [36]. An increasing number of 
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diseases are associated with disorders in the complement system, caused by both local 

and systemic activation [37]. Examples of diseases with local complement activation are 

adult macular degeneration, stroke, myocardial infarction and periodontitis [37]. While 

examples of diseases with systemic complement activation are sepsis, trauma, 

paroxysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic syndrome 

(aHUS) and systemic lupus erythematosus [37].  

 

 

Fig. 2. The complement system. The complement system is activated via three pathways the 

classical, lectin and alternative pathway. Surfaces covered by antibodies and pentraxins activate 

the classical pathway. Ficolins, MBL or collectins bound to carbohydrates activate the lectin 

pathway. Foreign or damaged cells activate the alternative pathway through spontaneous 

hydrolysis of C3. The C3 convertases is formed (C4bC2a for classical and lectin pathway and 

C3bBb for the alternative pathway). C3 is cleaved to the anaphylatoxin C3a and C3b which 

activates the cascade further. Then the C5 convertase is formed and C5 is cleaved to the 

anaphylatoxin C5a and C5b which together with C6, C7, C8 and C9 form the MAC or a soluble 

form sC5b9. Inhibitors are yellow in the figure. 

Abbreviations: a = activated, Ab = antibody, Al = anaphylatoxin inhibitor, C = complement 

component, C1-INH = C1-inhibitor, Cl = clustrin, CRP = C-reactive protein, DAF = decay 

accelerating factor, F = factor, I = inactivated, IgM = immunoglobulin M, MAC = membrane 
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attack complex, MASP = MB associated serine protease, MBL = mannose-binding lectin, MCP 

= membrane cofactor protein, PTX3 = long pentraxin 3, R = receptor, SAP = serum amyloid P 

component, TCC = terminal complement complex, Vn = vitronectin. Reprinted with permission 

from T.E. Mollnes. 

 

 

1.4.2 Activation pathways  

The complement system has three main activation pathways (Fig. 2). The classical 

pathway (CP) is activated after contact between immunoglobulin G or M complexes and 

C1q. The binding between antigen and antibody induces a slight configuration change in 

the Fc-domain of the antibody that permits C1q binding [38]. C1q has also other ligands 

such as phosphatidylserine (PS) [39], pentraxins like C-reactive protein (CRP) [40] and 

long-pentraxin 3 (PTX3) [41]. C1q bound to a ligand proteolytically activates C1r and 

C1s, which provide a further activation of the complement cascade [38]. In the lectin 

pathway (LP), conserved pathogen-specific structures in microorganisms and altered self-

antigens are detected by soluble mannose-binding lectin (MBL), collectins (CL-10 and 

CL-11) or ficolins (Ficolin-1, -2 or -3) [42]. CL recognizes sugar patterns [33]. The MBL, 

which is a part of the CL family, has up to six trimeric subunits, is similar to C1q [32] 

and recognizes glucose, mannose and N-acetyl-glucosamine [33]. These molecules are 

expressed in viruses, bacteria and dying cells [33]. Ficolins recognize and bind to acetyl 

groups on bacteria [33]. The binding between receptors in LP and their ligands leads to 

binding and activation of the MBL-associated serine proteases (MASP)-1, and -2 [33]. 

The activation of CP or LP leads to cleavage of C4 and C2. The complex of C4b and C2a, 

C4bC2a formed in CP and LP, is called C3 convertase and cleaves C3 to C3a and C3b 

[33]. The third pathway is the alternative pathway (AP). In contrast to the other pathways, 

this pathway’s activation is spontaneous hydrolysis of C3 to C3 (H2O) [43]. The changed 

C3 structure facilitates binding to factor B (FB). FB is cleaved by factor D to Ba and Bb. 

Bb and C3 (H2O) forms a complex. C3bBb is the alternative pathway C3 convertase [44].  

 

The C3 convertases can cleave C5 only to a small extent. If a C3b molecule binds to the 

C3 convertase, the cleavage of the C5 molecules to C5a and C5b by the CP C5 convertase 

is increased a thousand-fold compared to CP C3 convertase [33]. The CP C5 convertase 

is six to nine time faster than the AP C5 convertase [45]. Properdin stabilizes the AP C5 
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convertases and increases the halftime [33]. Properdin and the AP amplification loop 

gives many C3b molecules making AP C5 convertase to the main contributor of C5b-9 

[33]. Properdin as a pattern recognization molecule in the alternative pathway is 

controversial and the study by Harboe et al. showed that properdin did not have this 

function [46]. C5b interacts with C6, C7, C8 and several C9 molecules to form the C5b-

9 complex, the membrane-attack complex. The MAC induces a pore in the membrane, 

causing calcium flux and lysis of certain complement sensitive bacteria [33]. In addition 

to lysis, the membrane-attack complex  can induce both cellular activation [47] and tissue 

damage [48]. 

 

The terminal pathway with lysis is the major defense against infections with Neisseria 

meningitidis. These bacteria can survive intracellularly, and extracellular lysis is 

necessary to kill them. People that have deficiencies of the terminal complement 

components, such as C5 deficiency, have 7000-10 000-fold higher risk for disease caused 

by meningococcal infections [49]. However, in most cases the disease is limited to 

recurrent meningitis with milder symptoms than in healthy subjects [50]. 

  

 

1.4.3 Anaphylatoxins and their receptors  

The C3 gene is localized to chromosome 19 and glycoprotein is 185 kilodalton (kDa) and 

the matured protein has 1641 amino acids [51, 52]. C3 is cleaved by C3 convertases to a 

small fragment, C3a, and a larger fragment, C3b. C3a is an anaphylatoxin, i.e., an 

inflammatory mediator and C3b is an opsonin [33]. Carboxypeptidase N inactivates C3a 

by removing the C-terminal arginine group and this des-Arginated molecule is called C3a 

des-Arg [53]. C3a, in contrast to C3a des-Arg binds to the C3a receptor (C3aR) [54, 55]. 

Enzyme release from leukocytes is dependent on C3a [56]. C3a des-Arg has only one 

known receptor, which is C5L2 [57]. However, whether this binding is direct is still 

unclear [58]. 

 

C5 is located at chromosome 9 q32-q34 [59]. The protein has 1676 amino acids and its 

molecular weight is 188 kDa. C5 is produced by hepatic cells, but also locally by for 

example macrophages [60]. C5 convertase cleaves C5 into C5a and C5b. C5a is an 

approximately 12–14.5 kDa glycoprotein with 74 amino acids [61]. There are three 
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disulfide linkages that stabilize the protein [61]. Carboxypeptidases remove the C-

terminal arginine from C5a, and C5a des-Arg is formed [53]. C5a des-Arg has 10–100-

fold lower affinity to C5a receptor 1 (C5aR1) [62]. However, the C5L2 receptor has 10-

fold higher affinity to C5a des-Arg [35]. The human C5aR was cloned in 1991 [63, 64], 

and C5L2 was detected in 2000 [65]. C5aR is expressed in different cell types, including 

myeloid cells, T-cells and cells from different organs such as the kidney, liver, brain and 

lung [66]. C5a induces synthesis and release of proinflammatory cytokines, including 

TNF, IL-1β and IL-6 in human monocytes [67]. C5a is a strong chemoattractant for 

neutrophils [68]. In addition, C5a enhances phagocytosis and induces oxidative burst in 

neutrophils [7]. TF expression in endothelial cells is mediated by C5a [69]. Other effects 

of C5a are increased vascular permeability, vasodilation [70] and histamine release from 

mast cells [71].  

 

C4a from CP and LP is an anaphylatoxin produced by cleavage of C4 molecules after 

activation of the CP or LP. Tsuruta et al. showed in 1993 that C4a has an inhibitory effect 

on monocyte chemotaxis [72]. The role of C4a in humans has been debated; some observe 

effects, while others find few or no effects [33, 34]. Contamination with C3a and C5a has 

disrupted several studies and the interpretation of these results is therefore difficult [34]. 

Recombinant C4a has shown to inhibit C5a-induced neointima formation [73]. C4a has 

protective effects in arterial injuries [73]. A specific receptor for C4a, like C3aR or 

C5aR1, has not yet been detected. However, C4a has antimicrobial effects [34]. Recently, 

Wang et al. published a study indicating that C4a is probably a ligand for protease-

activated receptor (PAR) 1 and PAR4 [74]. 

 

 

1.4.4 Complement regulators 

The complement system is tightly regulated by both membrane-bound CR1, decay-

accelerating factor (DAF) and membrane cofactor protein (MCP), in addition to plasmatic 

inhibitory proteins [36]. Factor H (FH) is an important regulator for the alternative 

pathway as well as a membrane-bound and plasmatic inhibitor [36]. Host cells have sialic 

acid-capped glycans and proteoglycans with glycosaminoglycan (GAG) chains as 

markers of self. FH binds to these surfaces and inhibits complement activation on host 

cells [75]. The interaction between FH and “self marker” increases the affinity for C3b 
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binding in competition with FB [75]. The stability of the alternative pathway C3 

convertase (C3bBb) is reduced by FH by the increased dissociation of C3b and Bb. FH is 

also one of the cofactors for factor I (FI). FI inactivates C3b to iC3b and C3f by 

proteolysis; however, FI needs a cofactor [76, 77]. iC3b does not bind to FB [78]. iC3b 

is further cleaved to C3c and C3dg by FI, and to C3g and C3d by other proteases [77]. 

iC3b, C3b and C3d opsonize microbes. They are ligands for complement receptors, 

including CR1 and CR3, involved in phagocytosis [77]. If C4b-binding protein (C4BP) 

acts as a cofactor for FI, FI is able to cleave C4b from C4bC2a, which is a C3-convertase 

[76]. C4BP increase the natural decay of the C3 convertase. C4BP also has a role in the 

alternative pathway acting as cofactor for FI and cleaving the C3b molecules in the fluid 

phase [79]. C1-INH is described in more detail below. CR1, also named CD35, is a 

membrane bound regulator. CR1 on erythrocytes remove C3b and C4b-opsonized 

immune complexes and pathogens from the circulation by delivering them to the liver 

and spleen [76]. CR1 also inactivates C3b and C4b by acting as cofactor for FI [33]. 

CD55, also called DAF, acts on the AP C3 convertase and the CP and LP C3 convertase. 

CD55 decreases the stability of all C3 convertases [76]. MCP, also known as CD46, is a 

cofactor for FI and inactivates both C3b and C4b [33].  

 

 

1.4.5 C1-inhibitor (C1-INH) 

C1-INH was first described by Ratnoff in 1957 [80]. C1-INH was earlier called C1-

esterase inhibitor. It belongs to the serpin family which inhibits serine proteases. The gene 

for C1-INH is located at chromosome 11, p11.2-q13 [81]. The protein is 105 kDa and 

consists of a protease recognition domain and a glycosylated amino terminal domain. In 

human plasma, the concentration is approximately 0.25 g/L [82]. Citrated plasma from a 

healthy person contains 1 unit (U)/ milliliter (mL) of C1-INH. Hepatocytes, monocytes, 

macrophages, fibroblasts, endothelial cells, microglia cells and amnionic epithelial cells 

produce C1-INH [83]. The production is increased by cytokines like IFN-γ, TNF and IL-

6 [84]. Alpha granula in platelets contain C1-INH, and activation of platelets can locally 

increase the C1-INH concentration several times [85, 86]. 
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1.4.6 C1-INH is a serpin 

Serpins inhibit serine proteases by a two-step process. The serpin mimics the target for 

the protease and the binding between protease and serpin induces a cleavage, for C1-INH 

of Arg444-Thr445 [87]. The following molecular rearrangement induces an irreversible 

covalent binding between the active seat in the protease and the serpin. The protease is 

now inactivated [88, 89]. Some of the serpins are affected by the glycosaminoglycan 

(GAG). GAG increases the inhibitory effect C1-INH has on C1s and FXIa [83]. However, 

the inhibition on kallikrein and FXIIa is not affected by GAG [83]. The complex of C1-

INH and protease binds to serpin-enzyme receptors on monocytes and hepatocytes and is 

then removed from the circulation [90]. C1-INH inactivates several proteases (Fig. 3), in 

the complement, coagulation and fibrinolytic systems [91]. C1-INH is also an important 

protease inhibitor in the kallikrein-kinin system, see below [91].  

 

 

 

Fig. 3. An overview of the effects of C1-inhibitor on the fibrinolysis, kallikrein-kinin, 

coagulation and complement system. The orange boxes indicate that C1-inhibitor inhibits these 
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proteases. The effect of Factor VII activating protease and the direct activation of FVII via FXIIa 

are not included in the figure. Abbreviations: a = activated, C = complement component, F = 

factor, HMWK = high-molecular-weight kininogen, KK = kallikrein, MASP = MB associated 

serine protease, MBL = mannose-binding lectin, PK = prekallikrein, t-PA = tissue plasminogen 

activator.  

 

 

1.4.7 C1-INH and the complement system 

In the CP, C1-INH binds and inactivates C1r and C1s, and they form the complex C1rC1s 

(C1-INH)2 [92]. The inactivation by C1-INH inhibits the autoactivation of C4 and C2. 

C1-INH stabilizes the C1 complex without covalent binding [93]. In the LP, C1-INH 

forms stabile complexes with both MASP-1 and MASP-2 [94]. C1-INH inhibits the 

alternative pathway by a non-covalent binding to C3b and consequently inhibiting factor 

B binding to C3b [95]. A comparison between the effects of C1-INH on the three 

complement activation pathway showed that C1-INH in supraphysiological doses 

inhibited both CP and LP, however the inhibition in LP was more pronounced in low 

doses. Only the fluid AP activation was inhibited by C1-INH [96].  

 

 

1.4.8 C1-INH and hemostasis 

C1-INH is the main inhibitor of the FVII activating protease [83]. C1-INH also inhibits 

FXI [97, 98], plasmin [99] and tissue plasminogen activator (t-PA) [91]. In addition, C1-

INH inhibits FXII that activate FVII. HAE patients have a increased level of FVIIa 

compare to their siblings [100]. Horstick et al. reported that C1-INH in high doses induced 

a procoagulant situation [101]. 

 

 

1.4.9 Hereditary angioedema (HAE) and the kallikrein-kinin system 

Landerman et al. were the first to show that plasma from patients with hereditary 

angioedema (HAE) lacked an inhibitor of kallikrein and FXII [102]. Donaldson et al. 

reported that HAE patients had reduced activity of C1-INH [103]. Several years later C1-

INH was shown to be the major inhibitor of kallikrein [104] and FXII [97]. There are 

several types of HAE: Both type I and type II have one mutated gene from one of the 
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parents. In type I HAE, the mutated gene produces no C1-INH, or a type which is not 

detected by antigenic measurements. In type II HAE, the mutated allele produce a 

C1-INH without function, but it can be measured antigenically. In type I and II HAE the 

one normal gene makes a protein with normal function and normal antigenic-value. It will 

be consumed rapidly, however, because 50% production (only from one gene) is not 

sufficient to hinder autoactivation of all proteases C1-INH should have kept in check. 

This explains why the C1-INH function in both HAE type I and II patients is 

approximately 10–20% of the normal level [105]. In addition, Haslund et al. have shown 

that normal C1-INH and the mutated C1-INH generate aggregates that also can explain 

why the functional activity is lower than 50% [106]. HAE type II patients have normal to 

supranormal antigenic values since the abnormal C1-INH-product from the mutated gene 

in type II is not consumed. The third HAE type includes several subtypes with normal 

C1-INH concentration and function. In a Danish review the four subgroups are caused by 

mostly gain of function mutations in the FXII gene, plasminogen gene, angiopoitin or an 

unknown mutation group [107]. HAE-patients suffer from edema in the skin and in 

mucosa of airways, gastrointestinal tract and genitourinary region [108].  Low activity of 

C1-INH allows for increased activity of the contact system and increased concentration 

of bradykinin [105]. Bradykinin increase vascular permeability and edema follows [105]. 

During HAE attacks, coagulation is very modestly activated as shown by increased FVIIa 

and thrombin levels [109, 110]. Nielsen et al. also found increased TCC levels during 

HAE attacks, indicating a very small complement activation beyond C4 and C2 [109]. 

The first-line treatment of HAE attacks is plasma-derived or recombinant C1-INH 

concentrate, inhibition of kallikrein or a blocker of bradykinin [111]. Prophylactic 

treatment with low doses androgens or anti-fibrinolytics has been given successfully for 

many years [112, 113]. 

 

 

1.4.10 Other anti-inflammatory effects of C1-INH 

It was claimed that C1-INH binds to the extracellular matrix by binding to type IV 

collagen, laminin and entactin [114]. These bindings are non-covalent bindings and 

mediate a locally increased concentration of C1-INH in extravascular sites of 

inflammation, probably to increase the regulation of the complement and contact system 

[115]. C1-INH binds to E- and P-selectin in endothelial cells to inhibit leukocytes rolling 
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and transmigration [116]. Cai and Davis claimed that C1-INH expresses a sialyl Lewisx-

related tetrasaccharide on the N-glycans on the N-terminal domain [116]. A sialyl Lewisx-

related tetrasaccharide is a fucose-containing tetrasaccharide that is expressed in several 

plasma and cell surface proteins [115]. All selectins recognize these saccharides and the 

binding between selectins and these moieties in C1-INH are assumed to cause the 

inhibition of leucocytes rolling and transmigration [116]. Liu et al. showed that the amino-

terminal domain of C1-INH interacts with lipopolysaccharides [117]. C1-INH may also 

bind directly to several bacteria [118]. However, a recent study claimed that C1-INH does 

not have these sialyl Lewisx-related tetrasaccharides and that earlier findings were caused 

by contamination from antichymotrypsin in the C1-INH preparations [119]. Does this 

contamination also explain the mechanisms behind several of the protease independent 

effects of C1-INH? This question remains to be resolved. 

 

 

1.5 Toll-like receptors (TLRs) 

TLRs are one of the most studied families of PRRs (Fig. 4). The TLRs consists of an N-

terminal ligand recognition domain with repeating leucine-rich repeats (LRRs), a single 

transmembrane domain and a cytoplasmic tail with a toll-interleukin-1 receptor domain 

that recruit adapter molecules and start the signaling process [120]. In humans, 10 

different TLRs have been found [121]. Some of them are placed in the plasma membrane, 

as TLR2 and TLR4, and some are placed intracellularly, such as TLR7 and 8 (Fig. 4 and 

Table 1). Most TLRs form homodimers, except TLR 2, which forms heterodimers with 

TLR1 or 6 [122].  

 

LPS on Gram-negative bacteria is recognized by TLR4 [123]. The binding of myeloid 

differentiation protein 2 (MD2) to the extracellular domain is necessary for activation of 

intracellular signaling [124]. MD2 also helps TLR4 with recognition of LPS and 

localization in the cell [125]. CD14 is important in the transferring of LPS to MD2 [126]. 

TLR4 has other ligands, including PAMPs such as viral glycoproteins and taxol and 

DAMPs such as high mobility group box protein (HMGB1), fibronectin and fibrinogen 

[127]. The ligands for TLR2 are, for example, peptidoglycans, lipoteichoic acid, zymosan 

and lipoprotein [121]. However, TLR2 may also bind several DAMPs, including high 

mobility group box 1 (HMGB1), heat shock protein (Hsp 70) and hyalinuronic acid [127].  
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Binding to TLR4 activates the signaling both through NF-κB  and the IRF family [121]. 

The signaling through NF-κB is a MyD88-dependent pathway and induces 

proinflammatory cytokines [6]. Internalized TLR4 activates IRF via Toll-interleukin 

receptor domain-containing adapter-inducing interferon-β- (TRIF) related adaptor 

molecule (TRAM) and TRIF in the endosome [122]. IRF initiates the production of 

interferon-β [128]. 

 

 

 

Fig. 4. An overview of the Toll-like receptors (TLRs) and their ligands. TLRs are localized both 

extra-and intracellular. The intracellular TLRs in endosomes recognize ligand after endocytosis 

or phagocytosis. The binding induce intracellular signaling and transcription factors activate the 

transcription of genes. CD14 has been described as a coreceptor for murine TLR3, -7 and -9. 

Abbreviations: Ab = antibody, C = complement component, CD = cluster of differentiation, 

HMGB1 = high mobility group box 1, HSP = heat shock protein, IFN = interferon, IKK ε= 

inhibitor of nuclear factor kappa-B kinase subunit epsilon, IRF = interferon regulatory factor, 

IRAK = Interleukin-1 receptor (IL-1R)-associated kinases, LPS = lipopolysaccharide, MAL = 

MyD88 adapter-like, MBL = mannose-binding lectin, MD2 = myeloid differentiation protein 2, 
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MyD88 = myeloid differentiation primary response gene 88, TBK1 = TRAF associated NFκB 

activator (TANK)-binding kinase 1, NFκB = nuclear factor kappa-light-chain-enhancer of 

activated B cells, ss = single stranded, TLR = toll-like receptor, TRAF6 = TNF receptor-

associated factor 6, TRIF = Toll-interleukin receptor (TIR)-domain-containing adapter-inducing 

interferon-β, TRAM = TRIF-related adaptor molecule. Reprinted with permission from T.E. 

Mollnes. 

 

 

Several PAMPs activate both the TLR and complement system [129]. Studies have shown 

that there is a synergic effect between complement and TLRs [6, 129]. TLRs regulate the 

expression of complement factors and the expression or activation of complement 

receptors and in this way enhance or inhibit TLR-dependent responses [129].  

 

CD14 is commonly used as a cell marker of monocytes. The glycoprotein is 55 kDa and 

expressed in myelomonocytic cells [130]. Membrane bound CD14 is a 

glycosylphosphatidylinositol (GPI)-anchored receptor but exist also in a soluble form 

(sCD14) [130]. Together with MD2 and TLR4 CD14 recognize LPS and a further 

intracellular signaling via NF-κB is mediated as described earlier and illustrated in Fig. 4 

[130]. However, CD14 did also promote TLR4 endocytosis, activation of TRAM-TRIF 

pathway and IFN production [130]. CD14 is coreceptor also for TLR2 and 9 [6, 131]. 

 

Table 1. TLRs and their ligands 

 

TLR Ligands Signaling adapter 

Extracellular   

TLR1 Lipoprotein MyD88 
TLR2 LPS, Lipoprotein, HMGB MyD88 
TLR4 LPS, HMGB MyD88, TRIF 
TLR5 Flagelin MyD88 
TLR6 Zymosan, Protozoa MyD88 
TLR10* Lipoprotein, HMGB MyD88 

Intracellular   

TLR3 Viral dsRNA TRIF 
TLR7 Viral ssRNA MyD88 
TLR8 Viral ssRNA MyD88 
TLR9 Unmethylated CpG bacterial 

DNA 
MyD88 

*Forms a heterodimer with TLR2 [132]. 
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1.6 Hemostasis and coagulation 

The blood has many functions in the body; nourishing, removing waste, gas exchange, 

defense against microbes, maintaining blood pressure and liquid balance and so on. These 

functions are dependent on a continuous stream of blood without hindrance or leaks. 

Hemostasis stops bleeding to prevent blood loss and maintain the circulation to organs 

[133]. This system has to be in balance to prevent undesirable thrombosis or bleeding. 

The hemostasis process has several steps, with many cellular and soluble factors involved. 

The first step to stop bleeding after an injury, i.e. to the skin, is vasoconstriction, which 

reduces the bloodstream to decrease blood loss. Blood vessel, platelets, coagulation 

factors, coagulation inhibitors and the fibrinolytic system are involved in the hemostasis. 

Platelets are activated during primary hemostasis by contact to the subendothelium that 

contain von Willebrand factor (vWF), collagen and TF, and the thrombin formed locally 

induce platelet to aggregation in the vicinity and adhere to the place of injury forming the 

platelet plug [11]. Secondary hemostasis refers to coagulation which results in deposition 

of fibrin at the platelet plug. The fibrin network gives the platelet plug more stability and 

strength. Tertiary hemostasis consists of the fibrinolytic system that breaks down fibrin 

clots. 

 

1.6.1 Primary hemostasis  

Primary hemostais is activated after vessel injury when blood is exposed to subendothelial 

collagen or TF-bearing cells. Platelets are 2-5 µm and without nuclei [134]. They live in 

the circulation for 7–10 days after formation and separation from the megakaryocytes in 

the bone marrow [135]. The youngest platelets are the largest and become smaller over 

time. Neutrophils and macrophages remove the old and fully activated platelets by 

transporting them to the spleen. The primary role of platelets is to maintain hemostasis 

and blood flow by preventing bleeding. The platelets adhere to the subendothelial 

extracellular matrix in case of injury or a vascular insult. The receptor GP1b/V/IX 

complex on the platelet surface binds to the vWF in the exposed subendothelial matrix. 

In addition, the GPVI and αIIβ receptors in platelets binds to collagen [136]. This binding 

induces a collagen-mediated platelet activation [137]. TF exposed in the subendothelial 

matrix and expressed in blood monocytes or endothelial cells further enhances the 

generation of thrombin and activates platelets through PAR4 [137]. The platelets have 
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several surface receptors and are involved in coagulation, complement activation, 

inflammation and angiogenesis [138]. There are three types of granula in the platelets. 

Each platelet contains 4-6 dense granula containing more than 200 small molecules such 

as calcium, ADP and polyphosphates which are released during platelet activation [135]. 

Many of these small molecules can induce signaling through receptors on the platelet 

surface. There are 60-80 alpha granula in one platelet, containing larger proteins, for 

example P-selectin, cytokines, chemokines and growth factors [135]. P-selectin tethers 

platelets to other cells [136]. Lysomal granula released during platelet activation release 

glycohydrolases involved in the degradation of glycoprotein, glycosaminoglycans and 

glycolipids [135]. Platelets have rough endoplasmatic retiliculum and ribosomes and are 

able to synthesize protein from mRNA [139]. 

 

 

1.6.2 Secondary hemostasis 

The endothelium in the blood vessels has an anticoagulant effect that ensures the blood 

flow. When an injury occurs, the subendothelial cells, including TF exposing adventitial 

cells and matrix are available to plasma and activate several steps in the hemostasis. The 

coagulation cascade consists of serine proteases, which largely and normally circulate as 

inactive zymogens in plasma [140]. The activity of activated proteins is low, but binding 

to cofactors can increase the activity by five times or more. In addition, the cofactors 

circulate as inactive and have to be activated by proteolysis [140]. All the coagulation 

factors, except the vWF, TF, FIV (Ca2+) and FVIII, are produced by the liver [141]. The 

coagulation system was previously and traditionally divided into the extrinsic, intrinsic 

and common pathway [142]. Serine protease FVIIa and the cell surface cofactor protein 

TF initiate the extrinsic pathway. The extrinsic tenase complex TF-FVIIa activates small 

amount of FIX and FX to FIXa and FXa [141]. The current model is the cell-based model 

of coagulation [143]. This model describes the activation of coagulation factors and the 

formation of the end product, fibrin (Fig. 5).  

 

 

1.6.3 The cell-based model of coagulation 

In 1992, Mann introduced a new theory of the coagulation cascade, later known as the 

cell-based model [142, 143]. There are three phases in this model (Fig. 5), including  the 
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initiation, amplification  and propagation phases [143]. When healthy blood vessels are 

injured, TF is exposed in TF bearing extravascular cells in arteries and veins. FVII binds 

to TF exposing cells [144]. Small amounts of FVIIa circulate in plasma in healthy 

individuals. The initiation phase starts when the TF-FVIIa complex is formed and 

activates small amount of FIX and FX to FIXa and FXa, and a small amount of thrombin 

is generated on the TF-bearing cells. FXa interacts with its cofactor FVa and this 

prothrombinase complex generates small amounts of thrombin on the TF exposing cells. 

FXa that dissociates from the TF-exposing cells to the fluid phase is rapidly inhibited by 

antithrombin and tissue factor pathway inhibitor (TFPI) localizing FXa activity to the TF 

bearing cell. In the amplification phase, thrombin is spread and activates the platelets in 

the vicinity, leading to platelet aggregation. In addition, the small amounts of thrombin 

activate FV, activate and dissociate FVIII from vWF and activate FXI. Platelets bind to 

collagen and vWF at the site of the vessel injury. The activated platelets get a 

procoagulant outer membrane and release granula creating a surface for assembling 

coagulation factors, including FXII and FXI for the propagation phase [145]. In the 

propagation phase, most of the thrombin needed to the local clot formation is formed. 

Thrombin activates FXI and FV to FXIa and FVa. Furthermore, FVIII is cleaved from 

the vWF and activated to generate FVIIIa [146]. The cofactors FVIIIa and FVa rapidly 

bind to the surface of activated platelets. FIXa generated by the TF exposing cells binds 

to the cofactor FVIIIa on the surface of activated platelets. In the propagation phase, the 

“intrinsic tenase” complex is generated, consisting of FIXa, FVIIIa and calcium [145]. 

This complex activates FX to FXa on the surface of activated platelets. The 

prothrombinase complex is a complex of FXa, FVa, phospholipids and calcium. The 

prothrombinase complex generates thrombin from prothrombin [147]. Thrombin has 

many functions; one is cleavage of fibrinogen to fibrin [147]. Thrombin removes two 

small peptides fibrinopeptides A and B from fibrinogen. Then, the fibrin can oligomerize 

to a fibrin network [148]. 
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Fig. 5. The cell-based model of coagulation. The cell-based model with three steps the initiation, 

amplification and propagation phase leading to fibrin formation. Initiation after contact with 

fibroblasts that expressed tissue factor (TF), the small amount of thrombin is spread to platelets 

that became activated in the amplification phase. In the propagation phase tenase complex is 

formed and activate FX to FXa. Then the prothrombinase complex generates thrombin from 

prothrombin, and fibrin is produced by cleavage of fibrinogen by thrombin. Abbreviations: FIX 

= coagulation factor IX, FXa = coagulation factor X activated, TF = tissue factor. Reproduced 

from Anaesthesia and Intensive Care with the kind permission of the Australian Society of 

Anaesthetists [142] .  

 

 

1.6.4 Contact activation pathway 

The contact activation system, previously called the intrinsic pathway, consists of FXII, 

FXI, prekallikrein and high molecular-weight kininogen (HK) [149]. Activation of the 

contact pathway induces activation of the intrinsic pathway and the kallikrein-kinin 

system [149]. The contact pathway factors are activated in blood when they encounter 

non-physiological negatively-charged surfaces such as kaolin, ellagic acid or glass 

surfaces of test tubes [149]. Other molecules and surfaces, including polyphosphates from 

bacteria and platelets, RNA, misfolded proteins, NETs and bacteria, can activate the 

contact activation system [149, 150].  
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FXII binds to the surface and the binding induce a conformational change in FXII causing 

a non-proteolytic autoactivation to αFXIIa. αFXIIa can activate soluble FXII to β-FXIIa, 

which activates prekallikrein to kallikrein and FXI to FXIa. HK acts as a cofactor in both 

enzymatic cleavages [151]. Kallikrein increases its generation by activation of FXII to β-

FXIIa. It can also cleave HK to bradykinin [151]. Bradykinin is a peptide with nine amino 

acids. Its half time in plasma is approximately 15 s [152]. The bradykinin 2 receptor 

(B2R) and bradykinin 1 receptor (B1R) both bind bradykinin. The bradykinin receptors 

are expressed by several cells; monocytes, machrophages, neutrophils, dendritic cells, 

lymphocytes, microglia, smooth muscle cells, endothelial cells, fibroblasts and several 

tumor cells [153]. B2R is continuously expressed, in contrast to B1R, which is only 

expressed in inflammatory conditions [154]. Binding to B2R induces vasodilation, and 

increases vascular permeability as well as pain and neutrophil chemotaxis [140]. The G-

protein on the seven-transmembrane G-protein coupled receptor is involved in the release 

of several molecules, including nitric oxide, prostaglandin I2 and superoxide [155].  

 

The coagulation pathway was classically divided into three pathways, the extrinsic, 

intrinsic and final common pathway. The activation of FXII initiates the intrinsic pathway 

of the coagulation, which activates FXI to FXIa [156]. Furthermore, FXIa activates FIX 

to FIXa [11]. This step starts the common pathway, where the extrinsic and intrinsic 

pathways run together. 

 

The prothrombinase complex consists of FXa and FVa, calcium, negatively charged 

phospholipids – mainly PS from tissue – and platelets, which cleave prothrombin to 

thrombin [141]. Thrombin cleaves fibrinogen to fibrin. However, thrombin also activates 

FXIII and provides a stable clot with covalent crosslinked fibrin polymers [141]. 

 

 

1.6.5 The fibrinolytic system  

The fibrinolytic system prevents blood clotting in healthy vessels and dissolves clots 

during wound healing [133]. The protease tissue-type plasminogen activator (tPA) and 

urokinase-type plasminogen activator (uPA) activate the zymogen plasminogen to 
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plasmin [133]. Plasmin cleaves fibrin. Plasminogen activator inhibitor 1 and 2 (PAI-1 

and -2) inhibit both tPA and uPA, while alfa-2-antiplasmin inhibits plasmin [133].  

 

 

1.6.6 Regulators of the coagulation cascade 

The coagulation cascade is kept under control by multiple regulators. Thrombin binds to 

thrombomodulin (TM), a membrane-bound protein in the endothelium [157]. TM then 

activates protein C, which is bound to an endothelial protein C receptor (EPCR) [158]. 

Protein S works as a cofactor [159] and, in addition to vitamin K, the activated protein C 

(APC) is an activate anticoagulant that inhibits both FV and FVIII [160]. Antithrombin 

inhibits thrombin, FXa, FIXa and FXIa [133]. Protease inhibitors such as alpha-1-

antitrypsin and α-macroglobulin also inhibit coagulation. TFPI inhibits the activity of 

FXa and the TF-FVIIa complex [140]. Plasmin is generated by cleavage of plasminogen 

and cleaves fibrin into fibrin degradation products [141]. 

 

 

1.6.7 Anticoagulants 

EDTA, citrate, heparin and hirudin are commonly used anticoagulants to prevent clotting 

after blood sampling for diagnostic purposes [161]. Both EDTA and citrate inhibits 

coagulation through calcium binding [7]. The recombinant hirudin analogue lepirudin is 

a direct thrombin inhibitor and has no adverse effects on complement activation [7]. The 

antithrombin activity is increased approximately a thousand-fold by heparin [162]. Non-

vitamin K antagonist or novel oral anticoagulants also named NOACs are a relative new 

drug group used to treat deep venous thrombosis (DVT) and pulmonary embolisms (PE) 

[163]. These drugs inhibit thrombin or FXa [163]. These drugs are more stable compared 

to warfarin which has a narrow therapeutic window, interacts with a lot of components 

and the patients therefore need a regular monitoring of the INR level, whereas monitoring 

of NOACs are generally not needed [164].  Inhibitors of platelet aggregation e.g. aspirin 

and clopidogrel are used to treat transient ischemic attacks, peripheral arterial disease and 

to prevent stroke [165]. 

 

 



30 

 

 

 

1.7 Tissue factor (TF) 

1.7.1 TF structure and function 

TF is also called factor 3, CD142 or thromboplastin [140]. TF is an important key 

component in both coagulation and inflammation. The gene for TF is localized at 

chromosome 1 and consist of six exons [166]. The protein is a 47 kDa transmembran 

glycoprotein, and is composed of 219 amino acids in the extracellular domain, 23 amino 

acids in the transmembrane domain and 21 amino acids in the intracellular domain. 

Disulfide bridges between cysteine amino acids stabilize the protein [167]. TF belongs to 

the class 2 cytokine receptor family [168].  

 

TF is largely expressed in the brain, lung, heart, kidney, uterus, placenta and testis [144, 

168]. Cells that are in contact with blood do normally not express TF, in contrast to 

perivascular cells, including fibroblasts and adventitial pericytes that express TF [168]. 

TF activates coagulation if the endothelial barrier breaks and, therefore, ensures a 

hemostatic envelope around blood vessels [169]. Carmeliet et al. showed that TF 

knockout mice died at the embryo stadium because of extravasations of blood cells and 

abnormal blood circulation [170]. Thus, the main function of TF is to sustain hemostasis 

and vessel integrity. However, TF  also has a function in apoptosis, wound healing, 

angiogenesis and proliferation [168]. 

 

TF is both a cofactor and receptor for FVII [171]. FVII is produced by the liver and is the 

only coagulation factor that also circulates in its activate form FVIIa, consisting of 

approximately 1% of the total FVII level [172]. TF becomes available for FVII in 

connection with a vessel injury. The complex between TF and FVII can activate FVII to 

FVIIa. The TF-FVIIa complex also activates FIX and FX to FIXa and FXa [173]. The 

prothrombinase complex, consisting of FXa and FVa activates the inactive prothrombin 

(FII) to FIIa (thrombin) and coagulation is activated. The end product of coagulation 

activation is fibrin formation from fibrinogen and the injury is healed [141].  

 

TF is not normally expressed in blood cells, but may be expressed on blood monocytes 

during sepsis and some other inflammatory diseases [140]. Most of the intravascular TF 

is inactivated or encrypted and has to be activated or decrypted by mechanisms that are 

still partly unknown. There have been different theories to explain the TF activation 
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switch. The intracellular concentration of calcium and the extracellular surface expression 

of PS in the cell membrane are decisive for activation of functional TF activity [174, 175]. 

The plasma membrane normally has an asymmetric structure of phospholipids with 

negatively-charged phospholipids like PS in the inner leaf and neutral phospholipids, in 

the outer leaf. Cell activation changes this distribution, mediated by phospholipid 

scramblase that transfers the negatively-charged phospholipids, including PS and 

phosphatidylethanolamine to the outer leaf [176]. The redox-driven disulphide bonding 

between Cys186 and Cys 209 changes the decrypted TF to encrypted TF [177]. Protein 

disulfide isomerase is assumed to catalyze this reaction; however, this reaction has to be 

performed before the FVII binding to TF [176].  

 

In 2003, an alternative spliced TF (asTF) was described [178]. This isoform of TF lacks 

the transmembrane domain, is soluble and circulates in the blood. The mRNA for asTF 

lacks exon 5; therefore, exon 4 is connected directly to exon 6 [178]. The role of asTF in 

coagulation has been a matter of discussion; however, asTF’s affinity for FVIIa is low. 

Nonetheless, asTF induces pro-angiogenic stimulus through activation of the integrins 

α6β1 and αVβ3 [179]. Cell survival, cell proliferation, metastasis and migration are other 

effects induced by asTF [168]. 

 

 

1.7.2 TF and inflammation 

TF is normally not available for FVII that circulates in the blood [169]. However, there 

are several cells that can express TF upon stimulation [176]. Inflammation activates 

monocytes to express TF [168]. However, the production and expression of TF by other 

cells, including platelets, neutrophils and eosinophils, is controversial [140]. LPS, TNF 

and IL-1β may induce TF expression on endothelial cells and monocytes in vitro [180-

182]. However, the TF expression on endothelial cells is debated [183]. High LPS 

concentrations induce both TF expression and activity; however, the increased TF activity 

may be due to simultaneously increased PS surface expression on apotopic and necrotic 

cells [184]. In addition, C-reactive protein has been reported to induce TF expression in 

monocytes [185]. The E. coli-induced TF expression in monocytes is C5a dependent 

[186]. An earlier study showed that C5a-induced TF expression in endothelial cells [69]. 

Shear stress induces TF and asTF on endothelial cells in vitro [178, 187]. It is debated 
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whether platelets possess TF protein or acquire TF from monocytes [188-191]. Several 

studies conclude that TF-positive microparticles released from platelets originates from 

activated monocytes [183, 188]. Müller et al. detected TF protein located in the open 

canalicular system and in the alpha granula of nonactivated platelets using electron 

microscopy [192]. However, there was no TF in the megakaryocytes, indicating that the 

TF is acquired from other cells [192]. Another study using laser-assisted microdissection 

and manipulation to avoid contamination from leucocytes could not find platelet specific 

TF mRNA [193]. Others claim that platelets have TF mRNA [194] as well as de novo 

production of TF [190, 195]. It took around five minutes from pre-mRNA to observation 

of TF protein dependent on Cdc2-like kinase in response to platelet activation [195]. A 

live E. coli strain, O111, induced TF expression on platelets mediated by TLR4 [196]. 

Activated platelets bind to neutrophils and monocytes through P-selectin [197]. This 

interaction induced NF-κB and enhanced TF expression on monocytes [197]. 

 

 

1.7.3 Other effects of TF 

The TF-FVIIa complex can activate the G-protein coupled seven helix receptor protease-

activated receptor (PAR) 2 [179] (Fig. 6). The following Mitogen-activated protein 

(MAP) kinase, Phosphoinositide 3- (PI3) kinase and Rho-like GTPases activation induce 

cytoskeletal rearrangements, increased cytokines production (e.g. IL-8 and vascular 

endothelial growth factor (VEGF), gene transcription and cell survival [179]. 
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Fig. 6. Intracellular signaling induced by the Tissue factor (TF)-Factor (F)VIIa complex. The 

complex of TF and FVIIa is bound to the G-protein coupled PAR2. The integrins α3β1 and α6β1 

is necessary for intracellular signaling. asTF ligates these integrins and induce intracellular 

signaling through FAK. Abbreviations: asTF = alternatively spliced tissue factor, CXCL-1 = 

chemokine ligand-1, F = coagulation factor, FAK= focal adhesion kinase, flTF = full length TF, 

MAP = mitogen-activated protein, PAR = protease activated receptor, PI3 = 

phosphatidylinositol-3, Rho = Ras homologous, VEGF = vascular endothelial growth factor. 

Reproduced with permission of American Society of Hematology: van den Berg et al. [179]. 

 

 

1.7.4 TF positive microparticles 

Østerud and Bjørklid showed that monocytes were the only cells in the circulation that 

express TF, and that TF positive microparticles from activated monocytes can be 

transferred to other cells [183]. Øvstebø showed that LPS is necessary to induce TF 

activity by comparing Neisseria meningiditis with and without LPS [175]. The monocyte 

and monocyte derivated tissue positive microparticles expression were not dependent on 

LPS [175]. Over 90% of the TF activity in a human atherosclerotic plaques come from 

microparticles originating from monocytes and lymphocytes [198]. TF-MP level is 

increased by several types of cancer and in some of them the high level is associated with 

high risk of thrombosis [176]. 
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Fig. 7. Immunothrombosis. The PRR on monocytes recognize DAMPs or PAMPs and activate 

the cells. TF is expressed on monocytes and microparticles are shedded. TF activate the 

coagulation. Neutrophils release NETs which also promote the immunothrombosis by histones 

and DNA. Enzymes in NETs cleave anticoagulants and the contact pathway is activated by 

activation of FXII. Platelet and endothelial cells derivated PDI promote fibrin generation, 

probably through TF activation; however, this mechanism is controversial. 

Abbreviations: DAMP = damage-associated molecular pattern, H = histone, NETs = neutrophil 

extracellular traps, PAMP = pathogen-associated molecular pattern, PDI = protein disulphide 

isomerase, PRR = pattern recognition receptor; TFPI = tissue factor pathway inhibitor; VWF = 

von Willebrand factor. From Engelmann and Massberg [10] with permission to reprint from 

Springer.  

 

 

1.8 Thromboinflammation 

1.8.1 Terms 

The crosstalk between the complement, coagulation and other cascades is important to 

understand the mechanisms behind several diseases, and this interaction has been 

described in several terms. “Immunothrombosis” (Fig. 7) is a new term introduced by 

Engelmann and Massberg in 2013 [10]. The term describes the close connection between 

the coagulation and immune systems to detect and protect the host against pathogens in 

the vasculature [10]. Dysregulation of immunothrombosis is involved in the 

pathophysiology of many diseases, including myocardial infarction, pulmonary 

embolism and DIC [10]. Van der Poll et al. used and described the term 
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“immunothrombosis” as a thrombosis initiated by the immune system to provide  local 

protection against an infection [13]. However, a dysregulated immunothrombosis can 

induce detrimental effects [10]. Thromboinflammation is defined as the results of 

cascades activation that mediate an activation of immune and endothelial cells in the 

vessels [11]. Activation of cells involved in innate immunity can induce pathological 

coagulation and thrombosis or chronic inflammation [11]. Thromboinflammation can 

also be activated as a result of contact with foreign surfaces, including biomaterials and 

drug delivery devices [151]. 

 

 

1.8.2 Platelets  

Platelets are also able to interact directly with microbes since they have PPRs [10]. 

Platelets bind bacteria through receptors such as complement C1q receptor (gC1qR), 

which binds to bacteria coated with C1q [199]. Other receptors like glycoprotein 1b 

alpha polypeptide (GPIbα) and TLRs also mediate the interaction between platelets and 

bacteria [199]. In 2004, Shiraki et al. showed that platelets expressed TLR1 and TLR6 

[200]. Cognasse et al. found that platelets also expressed TLR2, -4 and -9 [201]. During 

sepsis, the platelets are activated at a metabolic level, but the TLR expression on 

platelets is unchanged [202]. LPS stimulation does not induce granula release or 

phosphatidyle serine (PS) exposure [202]. Platelets, in contrast to monocytes, do not 

express CD14 [203], but TLR4 [204]. The platelets probably acquire sCD14 from 

plasma, and only high concentrations of LPS induce platelet responses [205]. The 

anucleate platelets contain all the proteins in the MyD88-dependent pathway for 

intracellular signaling following TLR4 activation [205]. The suggested results of this 

platelet activation are aggregation, granula secretion and cytokine production [205]. 

 

 

Platelets that bind and aggregate on leukocytes, forming leukocyte-platelet aggregates, 

play an important role in releasing NETs from neutrophils [18]. These aggregates and 

thrombocytopenia are often found in septic patients [18]. Leukocyte-platelet aggregates 

make platforms for thrombin production and a high level is associated with increased 

mortality [18]. Furthermore, platelets can modify the activity of different leukocytes 

[206].When platelets are activated, the contents of alpha and dense granula, including 
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platelet factor 4 (PF4) are released [207]. Lishko et al. showed that PF4 upregulates CR3 

which is the receptor for PF4. Human neutrophils and monocytes express CR3 and PF4 

binding increases the migration response mediated by CR3. PF4 also enhance the 

macrophages phagocytosis of E. coli in a CR3 dependent manner [208]. 

 

The microthrombi recognize and capture pathogens [10]. Thus, they inhibit pathogens 

from invading the tissue [209] and concentrate the antimicrobial peptides produced 

during the coagulation activation or released from platelets [10, 210]. 

 

 

1.8.3 Neutrophil extracellular traps 

Activated neutrophils may release neutrophil extracellular traps (NETs) that consist of 

histones and DNA, as well as antibacterial components such as myeloperoxidase, 

lactoferrin, pentraxin and neutrophil elastase [10]. NETs also promote coagulation by 

stimulation and provide a scaffold for thrombus formation [211]. NETs have a negatively 

charged surface and activate FXII in the contact activation pathway [212], and binds 

vWF, which recruits platelets [213]. Furthermore, the binding of histones 3 and 4 to the 

NETs will promote platelet aggregation [211]. Furthermore, platelet activation is partly 

induced through TLR2 and TLR4 activation [214]. The NETs also contain enzymes 

including neutrophil elastase, which – together with extracellular nucleosomes from 

NETs or damaged endothelial cells – inactivate TFPI and promote- coagulation [209]. 

Neutrophil elastase was recently shown to decrease the inflammatory response through 

cleavage of cytokines, chemokines and TLRs [215].  

 

 

1.8.4 Endothelial cells 

TF expression on endothelial cells is induced by inflammatory cytokines such as TNF 

and IL-1 [180, 181]. LPS also induces TF expression in endothelial cells [216] and 

monocytes [217]. DAMPs, such as PS and protein disulphide isomerase (PDI)expressed 

on the cell surfaces or released from damaged host cells, can induce TF activation  due to 

decryption of TF at the surface [10]. TF expression will activate FVII and promote 

coagulation activation as described earlier in the thesis [142]. The endothelial cells are 

covered by a 0.2-1 µm tick glycocalyx that maintains a normal permeability in addition 
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to an anti-inflammatory and anti-coagulative vessel wall [218]. Several conditions may 

disturb this protective layer, including cytokines, oxidants and bacterial endotoxins [219]. 

The complement-activation products C3a, C5a and C5b activate the endothelial cells to 

secrete vWF and increase expression of P-selectin [213]. Ultralarge vWF multimers 

promote platelet aggregation [206] and TF expression activated endothelial cells in the 

circulation mediate a procoagulant situation [168]. The shedding of the glycocalyx, that 

cover the endothelial cells, induce E-selectin and adhesion molecule 1 production and 

expression, that again recruite leucocytes [206]. The shedding of glycocalyx leads to 

edema due to enhanced vascular leakage and contributes to complications in sepsis, such 

as organ failure [219].  

  

 

1.8.5 Other crosstalk between complement and coagulation   

Multiple interactions between the complement and coagulation systems are known, but 

in this thesis only a few are described. C3a and C3a des-Arg induce platelet activation 

and aggregation [220]. Several coagulation factors, including FIX, FX, FXI and plasmin 

may cleave both C3 and C5 [221]. One study reported that thrombin may cleave C5 in a 

pure buffer system [222]. However, a recent study from our group indicates that thrombin 

may cleave C5 only at acidic pH (Nilsson et al. unpublished data). Eculizumab inhibits 

only the cleavage of C5 to C5a and C5b by C5 convertase [223]. The C5a and C5b-9 

complex can induce TF expression on endothelial cells [224]. C5a may also induce TF 

expression on leukocytes [224]. Activated monocytes express TF that activates the 

coagulation system [225]. Activation of PAR2 by TF-FVIIa complex or FXa increased 

the IL-6, IL-8 and IL-1β generation in macrophages and neutrophils [226]. Fibrinogen 

and fibrin will recruit immune cells to the site of thromboinflammation supporting the 

fight against pathogens [227]. Activated protein C reduce LPS-induced TNF, IL-1β, IL-

6 and IL-8 levels [197]. 

 

  

1.8.6 Inflammasomes and interaction with TF and complement 

PPRs such as TLRs, Nod-like receptors (NLRs) and retinoic acid inducible gene 1 (RIG-

I) can induce activation of inflammasomes by ligand binding [228]. The inflammasome 

is an intracellular multiprotein platform that activates caspase-1, inducing inflammation 
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or cell death [229]. Activated caspase-1 induces maturation of proinflammatory cytokines 

IL-1β and IL-18 [229]. This process requires a  minimum of two signals: a priming signal 

from a receptor that initiates gene transcription of Nucleotide-binding oligomerization 

domain, leucine-rich repeat and pyrine domain-containing 3 (NLRP3) inflammasome and 

IL-1β via NF-κB, and an exogenous signal such as products from bacteria and virus-like 

toxins and glycans, environmental polluters and disease-associated accumulation of 

altered protein complex [228]. The second signal can also be endogenous, such as reactive 

oxygen species [228]. The C5a is an important signal 1 for NLRP3 activation in 

monocytes. Furthermore, the C5a-induced generation of reactive oxygen species 

regulates NLRP3 activity [228]. Rothmeier et al. found that ATP stimulation through the 

macrophage P2X7 induced a caspase-1 dependent actin remodeling. The result of this 

remodeling was procoagulant TF positive microparticles [230].  

 

 

1.8.7 Long-pentraxin 3 (PTX3)  and interaction with TF and complement  

PTX3 is an acute phase protein that belongs to the pentraxin family [231]. C-reactive 

protein (CRP) and serum amyloid P component (SAP) are short pentraxins; while PTX3 

is a long pentraxin [232]. The gene is localized at chromosome 3, q24-q26 [231]. The 

carboxy terminal domain has structural homogeneity with the short pentraxins, however, 

the amino terminal domain has no homogeneity with other known proteins [231, 233]. 

PTX3 is a 45 kDa glycoprotein, bound together with disulfide bindings [41]. Several cells, 

like monocytes, macrophages, alveolar epithelial cells, dendritic cells and fibroblasts, can 

express PTX3 [234]. The PTX3 expression is increased by stimuli such as IL-1β, TNF, 

LPS or microorganisms [234]. Neutrophils do not produce PTX3, but the granula contain 

monomers of PTX3 that form multimer PTX3 in the extracellular environment [235].  

Normally, the PTX3 concentration is below 2 ng/mL, but increases to 200 –800 ng/mL 

due to infection, inflammation, sepsis or septic shock [233]. Several studies have shown 

correlations between the PTX3-levels and the severity of critically ill patients with sepsis, 

SIRS or septic shock [236-238]. Lee et al. performed a metastudy of 16 publications and 

found that the PTX3 level was significantly higher in patients with severe sepsis 

compared to patients with less severe sepsis and in non-survivors compared to survivors 

[239].  
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PTX3 opsonization of fungi, virus and some bacteria types increase phagocytosis activity 

[233]. However, PTX3 delays the inflammatory endocytosis of late apoptotic cells and, 

in this way, inhibits antigen presentation of self protein to protect against autoimmunity 

disease [240]. Genetic polymorphisms of PTX3 in humans are associated with 

susceptibility to tuberculosis, fungal infections and E. coli-induced urinary tract 

infections [241].  

PTX3 interacts with C1q in the classical complement pathway [242]. In the lectin 

complement pathways, PTX3 interacts with MBL [243] and ficolin-M, ficolin-1 and 

ficolin-2 [241]. Endothelial cells that were stimulated with PTX3 and other stimuli such 

as LPS, IL-1β, or TNF increased the expression of TF [244]. LPS- and PTX3 increased 

the phosphorylation of IκBx in monocytes and the transcription of TF [182].  

 

 

1.9 Aims of the study 

The overall aims of the study were to examine some of the interactions between three 

important systems in the body, the complement, CD14/TLRs and their effect on bacteria-

induced coagulation and inflammation. These systems are involved in many diseases, for 

example sepsis. We need new knowledge to understand and develop new therapeutic 

principles to treat sepsis. 

 

The aim of the first study was to investigate how the selective or combined inhibition of 

complement C3 and CD14 affects the LPS- and E. coli-induced TF mRNA, TF surface 

expression on monocytes, TF-MP and coagulation. Blood from healthy donors was added 

selective inhibitors of complement C3 and CD14 alone or in combination and stimulated 

with E. coli ultrapurified LPS or E. coli bacteria and the effects on TF mRNA, TF surface 

expression, TF-MP and coagulation was measured.  

 

The aim of the next study was to study the effect of supraphysiological doses of C1-INH 

on coagulation kinetics and fibrinolysis in fresh human whole blood using ROTEM®. 

Blood from healthy donors was added increasing concentrations of C1-INH and 

coagulation kinetics were analyzed using ROTEM®. We also aimed to analyse the effect 

of C1-INH on the E. coli-induced coagulation kinetics. 
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The aims of the third study were to examine the role of complement C5 both in normal 

coagulation kinetics using ROTEM® and the role in E. coli-induced TF upregulation and 

coagulation activation. We used blood from both a C5 deficient individual (C5D) and 

healthy donors, and added purified complement C5 to the C5D blood or the specific C5 

inhibitor eculizumab to the healthy controls. In addition, we aimed to examine the effect 

of selective and combined inhibition of complement C5, CD14 and TLR4 on the E. coli-

induced TF surface expression, TF-MP and coagulation activation.   

 

The aim of the last study was to compare the effects of a specific TLR4-MD2 inhibitor 

(eritoran) and anti-CD14 (clone r18D11) on ultrapurified E. coli LPS, S. aureus and E. 

coli.-induced cytokine release, phagocytosis and CD35 expression. The blocking anti-

CD14 antibody was used since we aimed to inhibit CD14, a coreceptor of several extra- 

and intracellular TLRs. The selective CD14, TLR4 inhibitors were used alone and in 

combination with the specific C3 inhibitor compstatin using the whole blood model of 

inflammation. 
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Fig. 8. Illustration of the combined inhibition of complement and TLR. The “bottle neck” 

targets are C3, C5 and CD14. An inhibition of the complement and TLR can reduce the 

inflammatory responses and may be an additional treatment in many diseases.  

Abbreviations: Ab = antibody, C = complement component, CD = cluster of differentiation, MBL 

= mannose-binding lectin, NFκb = nuclear factor kappa-light-chain-enhancer of activated B 

cells, TLR = toll-like receptor. 

Reprinted with permission from T.E. Mollnes. 

 

 

1.10 Hypothesis 

In 2008, Mollnes et al. published that the combined inhibition of the complement and 

TLR system by anti-CD14 (Fig. 8) could be a successful strategy to avoid a dangerous 

overactivation of the immune system [4]. The Norwegian complement group has worked 

with different aspects of this main hypothesis [5, 245-251]. In this thesis, the effects of 

selective and combined inhibition of complement and CD14/TLRs on the bacteria-

induced coagulation activation and inflammation were studied.  

 

 

Paper 1: 

H0: Selective and combined inhibition of complement C3 and CD14 has no effect on 

bacteria-induced coagulation and upregulation of TF. 

HA: Selective and combined inhibition of complement C3 and CD14 has effect on 

bacteria-induced coagulation and upregulation of TF. 

 

Paper 2: 

H0: C1-INH has no effect on coagulation kinetic in the absence or presence of E. coli 

bacteria. 

HA: C1-INH has effect on coagulation kinetic in the absence or presence of E. coli 

bacteria. 

 

Paper 3: 

H0: Complement component C5 has no effect on normal hemostasis and coagulation 

kinetics in fresh human whole blood. 
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HA: Complement component C5 has effect on normal hemostasis and coagulation 

kinetics in fresh human whole blood. 

 

H0: Complement component C5 has no effect on E. coli-induced TF mRNA, TF surface 

expression on monocytes, TF-MP and coagulation. 

HA: Complement component C5 has effect on E. coli-induced TF mRNA, TF surface 

expression on monocytes, TF-MP and coagulation. 

 

Paper 4: 

H0: Selective and combined inhibition of CD14 or TLR4/MD2 and complement C3 has 

no effect on the bacteria-induced inflammatory response. 

HA: Selective and combined inhibition of CD14 or TLR4/MD2 and complement C3 has 

effects on the bacteria-induced inflammatory response. 
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2 Methods 

2.1 Whole blood model of inflammation 

2.1.1 Ethics 

The project was approved by the regional ethics committee of the Northern Norway 

Regional Health Authority (PREK NORD 32_2004, PREK NORD 1141_2010, PREK 

NORD 1801_2013). The blood donors provided written informed consent. In the third 

paper we used blood from a C5D individual. There are only a few known cases of this 

defect, about 40 in the world [50]. Therefore, it is difficult to increase the number of 

observations from several C5D individuals. However, the experiments were done on two 

different days to avoid random results. Furthermore, control experiments using 

eculizumab added to blood from healthy donors were used to confirm the results.  

 

 

2.1.2 Whole blood model of inflammation  

The whole blood model of inflammation was developed in our research group [7] to allow 

us to study the interaction between several cascade systems, including complement and 

coagulation in blood, without affecting complement activation. However, the coagulation 

must be inhibited to avoid clotting, and lepirudin was chosen as an anticoagulant since it 

did not affect complement activation [7]. Lepirudin, a hirudin analogue, specifically 

inhibits thrombin. The lepirudin passed its expiry date in the last experiments, but it was 

stored as a powder and as recommended by the producer. As a control, the anticoagulant 

effect of lepirudin was examined. Blood samples anticoagulated with citrate and added 

lepirudin did not coagulate in the ROTEM® instrument using NATEM reagents and 

recalcification using CaCl2. Furthermore, no clot was detected after 120 minutes 

incubation of lepirudin anticoagulated whole blood on the bench. The purity of lepirudin 

was also analyzed using HPLC-MS/MS and the result was one major peak corresponding 

to the expected molecular mass of lepirudin. Therefore, we concluded that the lepirudin 

was functional and stable. The traditional anticoagulants, such as EDTA and citrate, bind 

Ca2+ and inhibited complement activation and other mechanisms in blood [7]. Heparin in 

low concentration [252] enhanced complement activation, and high concentrations 

inhibited complement activation [7, 253]. Fresh human whole blood was distributed into 

several tubes containing PBS or inhibitors and was incubated for a few minutes, before 

adding activators. The tubes were incubated at 37°C in 2 hours or for longer time periods 



44 

 

 

 

in a rotator. The time point 2 hours was chosen after initial dose-response and time course 

experiments with ultrapurified E. coli LPS and E. coli bacteria. After incubation, EDTA 

or citrate was added to the tubes to stop further complement activation. The further 

processing of the tubes was dependent on the analyte of interest.  

 

 

2.1.3 Whole blood model and human umbilical endothelial cells (HUVEC)  

Nymo et al. has developed a modified version of the whole blood model, with endothelial 

cells to examine the effects of cholesterol crystals in these cells [254]. HUVEC were 

seeded in 48-wells plates with 7.5% fetal calf serum and growth supplements. The cells 

were used in passage 2–5. Prior to the experiments the monolayer of HUVEC were 

washed before adding lepirudin blood from healthy donors. Inhibitors were added in the 

blood and were pre-incubated five minutes before the activators or phosphate-buffered 

saline (PBS) was added as a negative control. The plate was incubates at 37°C for 4 hours 

with 5% CO2 and shaking. After incubation the blood was removed, centrifuged and the 

plasma stored in a freezer at -80°C. The cells were washed and stained before trypsin 

detachment and flowcytometric analyzing.  

 

 

2.1.4 Inhibitors and antibodies  

In the first paper we used a commercial antibody, a F(ab´)2 fragments of an blocking anti-

CD14 antibody from Diatec. In the other papers, we used an antibody produced in-house 

against CD14, as described by Lau et al. [255]. This anti-CD14 blocking antibody is 

recombinant and consists of an IgG2/IgG4 hybrid Fc region, such as eculizumab. This 

structure induces a minimal complement activation (IgG4) and does not bind to the Fcγ 

receptor (IgG2) [256]. Anti-CD14 blocking mAbs inhibits the binding between LPS and 

the lipopolysaccharide binding protein (LBP) complex and CD14. In this way the signal 

pathway through TLR4 and other extra- and intracellular TLRs using CD14 as a 

coreceptor is inhibited [257]. In vivo studies with piglets have shown that anti-CD14 

reduced the proinflammatory cytokine levels and abolished the E. coli-induced 

procoagulant situation [258]. One meta-study showed that soluble CD14, also named 

presepsin, has a prognostic value for sepsis [259]. The non-survivors had higher presepsin 

values on the first day during sepsis than the survivors [259]. 
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We used a plasma-derived C1-INH from Berinert (Berinert® P C1 esterase inhibitor from 

ZLB Behring GmbH Marburg, Germany). The supply of this medication is limited and 

there is a small risk of infections as compared to the recombinant C1-INH [260]. 

However, the halftime of the plasma derived C1-INH is longer due to the glycosylation 

[260]. 

 

Eritoran is a synthetic analogue of lipid A, which inhibits lipid A from binding to MD2; 

the signaling through TLR4 is inhibited [261]. The TLR4 inhibitor eritoran was suggested 

to be a candidate for sepsis treatment, however, the phase III study showed that there was 

no significant difference between the eritoran and placebo groups [261]. The effect of 

eritoran is useful for research purposes to differentiate between the effects of TLR4 and 

CD14. CD14 collaborates with several TLRs, such as TLR2 and is not specific for TLR4 

[6].  

 

Eculizumab, also named Soliris®, binds to C5 and inhibits cleavage to C5a and C5b [37]. 

It was approved by the U.S. Food and Drug Administration and European Medicines 

Agency for PNH in 2011 [223] and aHUS in 2007 [262]. Eculizumab treatment has 

recently been recommended for Myasthenia gravis [263]. Eculizumab inhibits only the 

C5 convertase-mediated C5 cleavage [223]. However, C5 cleavage can possibly be 

mediated by other proteins, including thrombin, plasmin and FXa, at least in purified 

buffer systems [221].  

 

PMX53 (AcF-[OPdChaWR]) is a specific C5aR1 antagonist that inhibit the C5a binding 

to CaR1 and was used in paper III. PMX53 was synthesized as described [264], and 

purified by reverse phase high-performance liquid chromatography.  

 

Compstatin has a high specificity for C3 and protects it from the C3 convertase [37]. The 

peptide was found by a screening of clones from a phage-displayed library of C3b binding 

peptides and consists of 13 amino acids [265]. Compstatin is under constant development 

to provide better properties [266]. In this work, we have used two different batches of 

compstatin, i.e. Cp20 in paper I and Cp40 in paper IV. Compstatin inhibits C3 in the 

complement cascade and thus inhibits all the three pathways at the level of C3 [37]. 
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Furthermore, the complement opsonization is inhibited with decreased C3b and enhanced 

C4b opsonization which is an important mechanism in immunity defense [5]. Little is 

known about the effects of long-term use of compstatin, including susceptibility to 

pyrogenic infections, which is observed in primary C3-deficient individuals [267]. 

Compstatin is a promising therapeutic option for several clinical conditions with 

persistent opsonization on host surfaces or complement dysregulation such as PNH, age-

related macular degeneration (AMD), renal disease and organ transplantation [267]. 

  

In the third study we used eculizumab in blood from healthy donors, and blood from a 

C5-deficient individual. To examine the role of C5 in hemostasis and E. coli-induced 

coagulation, the blood from the C5D was analyzed before and after reconstitution with 

purified human C5 (Complement Technology, Tyler, TX).  

 

The blocking antibody against human TF was a murine IgG1 monoclonal antibody 

(Sekisui 4509 from American Diagnostica Inc, Stamford, CT) and was used to inhibit the 

effect of TF and, thus, identify the quantitative role of TF in the E. coli-induced 

coagulation activation (Paper I). 

 

 

2.1.5 Controls 

The human serum albumin was used as a control for C1-INH. Albumin was used as 

control and was added in the same molar concentrations as C1-INH and had no apparent 

effects compared with those of C1-INH. 

 

A control antibody, NHDL, produced in our laboratory, was used as control for 

eculizumab and aCD14 (Lau et al. unpublished). It has the same molecular design as these 

antibodies. In paper III, the control antibody was used in a high concentration. However, 

the control antibody produced some unexpected results. NHDL significantly increased 

the E. coli-induced TF-MP level. Monocyte surface expression of TF and prothrombin 

fragment F 1 + 2 (PTF1.2) was also visibly increased, but this increase was not 

statistically significant. This effect is probably associated with the Fc-domain and is 

abolished by C5 inhibition. NHDL is an IG2/4 antibody that does not bind C1q or most 

Fc gamma receptors [255].The glycosylation profile may explain the ability to activate 
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complement, Fc gamma receptors or coagulation (Lau et al., unpublished). However, the 

control antibody NHDL had no inhibitory effects like eculizumab and, therefore, we 

accepted this result. Nevertheless, in the statistical tests, we compared the results of 

inhibitors with the samples with added PBS and activator. 

 

 

 

2.1.6 Activators 

LPS is the major component of the outer membrane of Gram- negative bacteria [268]. 

LPS consists of three different domains that are covalent-bound to each other: a glycan 

or O-antigen in the outer layer, a core oligosaccharide and a glycolipid called lipid A in 

the inner layer [269]. Lipid A is the biologically active part of LPS [270]. Lipid A is also 

responsible for LPS-induced TF activity [217]. LPS is differentiated into smooth or rough 

according to the colony surface of the corresponding bacteria [130]. Smooth LPS contains 

the whole LPS, while rough LPS is a mutant form that lacks the O-specific chain [269]. 

Huber et al. showed that rough LPS induced TNF expression in a CD14-independent way 

in mast cells in contrast to smooth LPS which is CD14-dependent [271]. LBP binds LPS 

[272]. LBP is suggested to split LPS to monomeric molecules [273]. CD14 transports 

LPS from LBP to MD2 [124] and TLR4 [123]. This initiates an intracellular signal 

pathway via MyD88 and NF-κB that induces expression of pro-inflammatory cytokines 

and TRIF and IRF3 leading to IFN release [121]. We used ultrapurified E. coli LPS as a 

control stimulus in some experiments in the human whole blood model of inflammation. 

Purified E. coli LPS alone did not activate complement measured as sTCC in 

concentrations below approximately 1 µg/mL [5]. 

 

In this project we used the heat-inactivated E. coli strain LE392, i.e. a Gram-negative 

bacterium with smooth LPS (ATCC33572). This strain is complement sensitive and is 

killed in lepirudin plasma. E. coli activates both the alternative and classical pathways 

[7]. Furthermore, E. coli may activate the extrinsic pathway through TF upregulation 

[274] and contact pathway due to bacterial polyphosphates [275] or FXII binding to the 

negatively charged surfaces [268]. The bacteria were grown in a lactose agar at 37°C 

overnight. Then, some colonies were transferred to a growth medium (LB-medium) and 

incubated at 37°C overnight. The bacteria were heat-inactivated by incubating at 60°C in 

60 minutes. To remove most of the free LPS in the bacterial preparations, the bacteria 
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were washed nine times in PBS without Ca2+ and Mg2+ [245]. They were counted by 

flowcytometric analysis [5], distributed in tubes with 7 x 109 bacteria/mL and stored at 

4°C. E. coli and Pseudomonas are the most common Gram-negative bacteria that cause 

sepsis [2]. The concentration of E. coli used was mostly 1 x 107/mL. However, in the 

ROTEM® analysis, the E. coli was used at a concentration of 1 x 108/mL. These 

concentrations were high, but pathophysiologically relevant [7]. E. coli (and also S. 

aureus) is immobilizated in clots in vivo by FXIII [268].  

 

S. aureus Cowan strain 1 (ATCC 12598) was used in paper IV. S. aureus is the most 

frequent Gram-positive bacteria causing sepsis [2]. The bacteria were grown on blood 

agar petri dishes, and some colonies were transferred to DMEM F-12 (Gibco, Thermo 

Fisher Scientific, NY, US). After incubation overnight the bacteria were washed and 

counted similar to the E. coli bacteria [5, 246]. S. aureus has a great number of virulence 

factors and two of the most important are the staphylocoagulase which activates 

coagulation and von Willebrand factor binding protein that inhibit coagulation [276]. 

These protects the bacteria against the immune system and allows them to grow 

unhindered in blood [276].  

 

 

2.2 Enzyme-linked immunosorbent assays (ELISA) 

ELISA is a commonly used method for detecting the level of antigen or antibody. In a 

sandwich ELISA, the antibody is attached to, for example, the microtiter well. To prevent 

unspecific binding, a blocking step is often necessary before the sample is added. The 

specific antigen binds to the attached antibody and the unbound specimen is washed 

away. A secondary enzyme-tagged antibody is added, and a sandwich is made consisting 

of antibody-antigen-antibody. The unbound specimen is again washed away. The enzyme 

cleaves an added substrate to a measurable signal that is proportional with the antigen in 

the sample. In competing analysis, the antigen level is reverse proportional to the signal, 

which can be measured by spectrophotometric-, fluorescence- or luminescence methods. 

The concentration of the specific analyte is found by using a standard curve. Several 

samples with known concentrations are analysed to obtain the standard curve. In this 

project, we used commercial ELISA kits for PTF1.2, PTX3 and TF-MP detection. TCC 

in plasma was analyzed using an antibody against a specific C9 neoepitope in the TCC 
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complex. The ELISA method was developed and modified by our laboratory [277, 278]. 

Cytokines were analyzed using multiplex technology. Magnetic beads with a size of 6.5 

micron were coated with different antibodies against cytokines and 27 cytokines were 

detected and quantified at the same time. The beads were analyzed by flow cytometry and 

identified by unique infrared dye and unique red dye concentrations. Each cytokine had 

one specific bead. A biotynilated-secondary antibody was used to quantify the cytokines. 

An added standard enables quantification of each cytokine. 

 

 

 

2.3 Quantitatative polymerase chain reaction (qPCR) 

The analytic process changed from the first to the third paper. In the first paper, the mRNA 

was isolated from PAXgene® tubes by a half automatic procedure using AB6100 Nucleic 

Acid Prep (Applied Biosystems, Warrington, UK), and reverse transcriptase was used to 

make complementary deoxyribonucleic acid (cDNA). Further, the cDNA was used for 

qPCR. In the third paper, the isolation process was changed to TempusTM tubes and the 

RNA was isolated by magnetic beads and MagMaxTM for Stabilized Blood Tubes RNA 

isolation kit (Thermo Fisher Scientific, Vilnius, Lithuania). The qPCR of TF mRNA in 

whole blood was done using a commercial kit, where reverse transcription and 

amplification is done in one step. The probe is an oligonucleotide that is labeled with a 

fluorescent reporter dye at the 5’end and a quencher at the 3’end. The quencher prevents 

the fluorescence signal as long as the probe is intact. The probe and the target-specific 

primers will be attached to the target sequence if it is present. The 5’nuclease activity of 

Taq DNA polymerase will cleave the probe during the primer extension which increases 

the signal from the fluorescence reporter dye. A high number of the target sequence gives 

a high fluorescence signal. The signal is compared to the signal from the endogen control 

and the TF mRNA results were calculated by the delta-delta Ct-method. The endogen 

control human beta-2-microglobulin was stably expressed over time in the whole blood 

model [250]. The TF mRNA measurement includes all the blood cells, in contrast, the 

flowcytometric analysis of TF is given as monocyte surface expression due to gating of 

these cells. 
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2.4 Flow cytometric analysis 

The extra cellular expression of TF, CD11b and CD35 were analyzed using flow 

cytometry (Paper I, III, IV). Monocytes and granulocytes were localized in different 

places in the plot with forward scatter (FSC) at the X-axis and side scatter (SSC) at the 

Y-axis. FSC separates the cells by size, and SSC in regards to the complexity or 

granularity. In addition, fluorochrome-labeled antibodies were used to separate cells, the 

antibody against CD45 to stain the leukocytes and anti-CD14 to label the monocytes (Fig. 

9). The fluorescent antibodies were also used to quantify the amount of different markers 

of interest. The fluorochrome was excited when the light from a laser met the labeled 

antibody. When the excited molecule returned to the base, the energy was emitted as light, 

and this is called fluorescence. Fluorescein isothiocyanate (FITC) absorbs blue light at 

488 nm and emits green light at 530 nm. Phycoerythrin (PE) emits a yellow light at 575 

nm. Peridinin chlorophyll protein complex (PerCP) emits at a wavelength of 675 nm.  

 
Fig. 9. One example of gating strategy in flow cytometric analysis. Whole blood leukocytes are 

stained with Peridinin chlorophyll protein complex (PerCP)-labeled anti-CD45 which 

differentiated leukocytes from noise and debris (left panel). Monocytes are gated using 

Phycoerythrin (PE)-labeled anti-CD14 (middle panel). The histogram (right panel) shows 

monocyte tissue factor (TF)-expression using a Fluorescein isothiocyanate (FITC)-labeled anti-

TF (red curve) and the isotype control in green color of a whole blood sample stimulated 2 hours 

with Escherichia coli bacteria (1 x 107/mL). 

 

 

FITC-labeled anti-human TF antibody (product number 4508CJ, clone VD8; American 

Diagnostica, Inc., Stamford, CT) was used to analyze the TF surface expression on 

monocytes (Paper I, III). This antibody and three others against TF were tested, 

considering their ability to detect and block TF [279]. Basavara et al. found that the clone 

VD8 were able to detect TF with high specificity [279]. The TF median fluorescence 
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(MFI) results were adjusted against a gamma isotype control antibody, to correct for 

unspecific binding and the autofluorescence from monocytes due to the weak signal from 

TF. All this to ensure that the TF increase is real.  

CD11b expression was analyzed using a PE-labeled anti-CD11b antibody (Becton 

Dickinson, San Jose, CA) (Paper III, IV). In paper IV, a FITC-labeled anti-CD35 (clone 

E11, Becton, Dickinson and Company, San Jose, CA) and a PE-labeled anti-CD11b 

antibody (clone D12, Becton, Dickinson) were used, in addition to anti-CD45-PerCP 

(clone 2D1) and anti-CD14-PerCP and anti-CD14-PE (clone MP9). Phagocytosis was 

also quantified by flow cytometry (Paper IV). The results were given in MFI. In the 

phagocytosis analysis the bacteria were stained with Alexa Fluor 488. All the results were 

compensated to avoid overlap from the different fluorochrome signals. During the 

incubation at 37ºC, the number of monocytes decreased for unknown reasons. Perhaps 

they attached to the wall of the plastic tubes or were destroyed after activation. 

Furthermore, the activation changes the cells and may make the gating more difficult. 

Therefore, the incubation time was no longer than 120 minutes in most experiments to 

ensure a sufficient number of monocytes in the flow cytometric analysis. However, this 

time probably reflected a longer time in vivo, because the cells were not replaced with 

new cells, which is what happens in real life. 

 

 

 

2.5 TF functional activity in plasma microparticles  

In paper I, the TF-MP analysis was performed in Tromsø at prof. Bjarne Østerud’s 

research laboratory. The method was earlier described by Engstad et al. [280]. TF 

functional activity was measured in platelet-free plasma using a two stage amidolytic 

assay. The basic principle in this test is the ability of TF-FVIIa complex to activate FX. 

FXa activates further prothrombin to generate thrombin [280]. In paper III, the TF-MP 

was measured by a commercial kit, Zymuphen MP-TF kit (Aniara Diagnostica, West 

Chester, OH). The plasma sample was added to a microplate coated with murine 

monoclonal antibody against human TF. FVIIa and FX were added and TF was the 

limiting factor. A substrate for FXa was added and the following yellow substrate was 

measured by an MRX microplate reader (Dynex Technologies, Denkendorf, Germany). 

Both methods measured the functional activity of TF in plasma microparticles.  
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2.6 Thromboelastometry 

 

Fig. 10. Illustration of the ROTEM® instrument (Tem Innovations GmbH, Munich, Germany). 

 

The first thromboelastography instrument was described by H. Hartert in 1948 [281]. The 

instrument examines the viscoelastic properties of coagulation and coagulation kinetics 

in human whole blood [282]. The analysis is conducted at a low shear pressure (0.1/s) 

similar to the bloodstream in the vena cava [283]. The blood is added to a preheated cup 

(37○C). In a similar method named thromboelastography the cup rotate and the pin is 

stationary [282]. 

 

Rotational thromboelastometry (ROTEM®) (Fig. 10) is a modification of the original 

TEG technology [283]. In ROTEM®, the pin rotates back and forth at an angle of 4.75. 

It is connected to a sensor that registers movement and reflects coagulation development. 

The resistance increases with increasing clot size [283]. ROTEM® is more stable and less 

sensitive to vibrations than thromboelastography instruments. Futhermore, ROTEM® has 

an automatic pipette. The results are presented as both graph and numbers and ROTEM 

parameters are described below (Fig. 11 and Table 2). ROTEM® has four channels and 

several different reagents for different analysis. In comparison, thromboelastography 

instruments have only two channels [283].  
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Fig. 11. ROTEM® parameters placed in the graphic illustration.  

 

 

 

 

Table 2. Description of various parameters of the ROTEM®. 

 

ROTEM®  

parameter  

Description of each parameter  

CT  Coagulation time. Time from activator is added to the amplitude 

reach 2 mm, given in seconds.  

CFT  Clot formation time. Time from 2–20 mm amplitude, given in 

seconds. 

α  Alpha angle. Coagulation kinetics indicating the initial speed of clot 

formation, given in degrees. 

MCF  Maximum clot formation. Indicate the strength of the clot, the 

maximum amplitude given in mm.  

LY60 Clot lysis 60 minutes after CT. LY60 is given in relation to the 

amplitude of the MCF. 

 

 

In this project we have used three different ROTEM® reagents, including non-activated 

thromboelastometry (NATEM), extrinsic thromboelastometry (EXTEM) and intrinsic 

thromboelastometry (INTEM). The venous blood samples were anticoagulated with 

citrate and were recalcified before analyzing clot kinetics. In NATEM the only addition 
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was the start reagent containing CaCl2 used for recalcification. In EXTEM, the extrinsic 

pathway was activated by adding TF. In the INTEM test, the intrinsic pathway was 

activated by adding in-tem reagents containing phospholipids from rabbit brains and 

ellagic acid [283].  

 

The NATEM test is more suitable for analyzing the possible effect of activators such as 

bacteria and several inhibitors than the INTEM and EXTEM, which contain commercial 

activators of the intrinsic and extrinsic pathways. However, control experiments showed 

that the NATEM clotting time (CT) was reduced over time. Samples for EXTEM or 

INTEM analysis were durable for 4 hours, according to the producer. A study of stability 

and reproducibility of samples analyzed by ROTEM®  concluded that the samples were 

stable over 120 minutes regarding these tests [284]. However, samples for NATEM 

analysis had a much lower durability [285]. Therefore, we decided to standardize the time 

from venipuncture to analyzing NATEM CT, etc. In this way, reduction in CT results 

caused by different time points for NATEM analysis was avoided. All samples were 

stored in a heatblock at 37ºC, since temperature affects the results [286]. The instrument 

was controlled in regard to the stability of the device temperature and the quality of the 

analytical system, by measuring the electronic CCD (charge coupled device) chip values, 

which were the detector [283]. ROTEM® is less sensitive to external vibration then TEG 

[287]; however, we were careful to place the ROTEM® in a location without centrifuges 

or other disturbing conditions.  

 

 

2.7 Platelet function analyzer 

The platelet function analyser Siemens PFA200 was used [288]. The blood was drawn 

from a reservoir with a constant vacuum through a capillary and a hole in the test 

membrane [288]. This membrane contains platelet agonist and the high shear rates 

induced platelet attachment, activation, aggregation and a clot that stopped the flow 

through the hole [288]. Prolonged clotting time and comparison of different PFA200 tests 

can indicate hemostatic disorders or drug-mediated effects, although the instrument has 

some limitations [288]. However, some conditions such as low hematocrites, low platelet 

numbers and pregnancy [288], affects the results. We used collagen/ADP cassettes where 

the membrane is coated with the agonist collagen and ADP (Paper III).  
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2.8 Statistical methods 

Statistical tests were used to determine whether the null hypothesis was to be retained or 

rejected. The null hypothesis (H0) states that there is no effect or difference between the 

groups. The alternative hypothesis (HA) states the opposite; that there is an effect or 

difference between the groups.  

 

In this project, the sample size (n) never exceeded six. However, a calculation of sample 

power showed that this number of observations was enough to find statistically significant 

differences between the activated sample and the samples that were added inhibitor(s). 

For example using IBM® SPSS® Sample Power®3 n = 3 was enough to identify a 

significant increase in NATEM CT from 789 ± 97s in PBS sample to 2025 ± 264 s in 

samples added C1-INH (47.6 µM) with a power of 96 % and an alpha = 0.05 using a 

paired Student’s t-test. If you cause great effects, you only need a small n, in contrast to 

small differences or effects that need a large n. 

 

Before the statistical data analyses, the data was tested to see if the results were normally 

distributed or not. The most suitable test for a low number of specimens is the Shapiro-

Wiik test. The normal distributed test results were analyzed by parametric tests. The 

results that also failed in the normality test after logarithm transformation were analyzed 

using non-parametric tests. 

 

The result of the statistical analysis is a p-value. This value is the probability to do a type 

1 error when the H0 hypothesis is correct. In other words, the probability to conclude that 

there is an effect or difference which does not exist. Alternatively, the p-value is the 

probability for that your results are due to a random case and not a due to a real difference 

between the groups. The borderline for accepting a type I error is the α-value and it is 

often set to 0.05 [289]. A p-value lower than 0.05, indicate that it is improbable that the 

H0 hypothesis is the case. H0 was rejected and HA was probably applicable [290]. In this 

case, the result is statistically significantly different. Type II errors occur if you keep the 

H0 hypothesis and conclude with no effects while the opposite is true – there is an effect 

(Table 3). The risk of type I errors increases with an increased threshold, and the risk for 
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type II errors increases with a reduced threshold. A significance level of 0.05 provides a 

balance between these risks. 

 

Table 3. Different outcomes of statististic decisions 

 H0 true H0 False 

Reject H0 Type I error 

False positive 

Correct 

Fail to reject H0 Correct Type II error 

False negative 

 

 

In this project, several statistical tests were used. A paired Student’s t-test was used to 

compare two groups with normally distributed numbers. In comparison, a Wilcoxon 

matched-pair signed rank test was used for results not distributed normally. To compare 

several groups against one control group, a one-way repeated measures analysis of 

variance (ANOVA) was used with Dunnett’s multiple comparisons test as a post-hoc test 

for parametric distributions, and a Friedman test with Dunn’s multiple comparisons test 

as a post-hoc test for nonparametric results. The post-hoc test identifies which groups are 

significantly different from the control group. A two-ways ANOVA and Sidak’s multiple 

comparisons test were used to compare the effects over time. A correlation analysis was 

performed using the Pearson correlation on normally distributed data.  

 

 
 

2.9 The candidate’s role in the study 

The experiments were planned together with the supervisors. The candidate performed 

many of the experiments using the whole blood model. However, sometimes the 

experiments were performed together with many colleagues due to a heavy work-load. 

The candidate performed all ROTEM® and PFA200 analysis. In addition, mRNA 

isolation and TF mRNA quantification by qPCR were done by the candidate. 

Flowcytometric analysis of the samples was done mostly by the candidate. The candidate 

did some of the ELISA analysis, but most were conducted by the candidate’s colleagues. 

The days with venipuncture and analysis of the C5-deficient individual were busy, and 

the experiments were performed with the help of the candidate’s colleagues. The 
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candidate analyzed the data and did all the statistical tests. The first draft of the papers 

was written by the candidate and reviewed by all the coauthors. The candidate changed 

the manuscripts in line with the feedback and submitted the manuscripts. The candidate 

is the second author of the last manuscript and contributed to the flowcytometric analysis. 

The candidate read and commented on the manuscript before submission. 
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3 Summary of main results 

In the first paper we showed that the combined inhibition of complement and CD14 

reduced ultrapurified E. coli LPS- and E. coli-induced coagulation in human whole blood. 

Coagulation was measured as plasma PTF1.2. In addition, qPCR was used to analyse TF 

mRNA levels, TF surface expression on monocytes was analysed by flow cytometry and 

TF function in plasma MPs was analysed using a two-stage amidolytic assay [280]. TF 

mRNA, TF-MP and TF expression on monocytes were largely dependent on both 

complement and CD14. We found that a TF-blocking antibody nearly abolished the LPS 

and E. coli-induced PTF1.2, indicating that TF is responsible for both the LPS and E. 

coli-induced coagulation. The study gave important information about the interaction of 

complement and CD14 and useful information for further experiments to find a potential 

new therapy for sepsis-induced coagulation activation.  

 

In the second paper we studied the effects of C1-INH on coagulation kinetics in human 

whole blood. C1-INH is a serine protease that inhibits or interacts with both the 

complement and coagulation systems. Previous studies indicated that C1-INH may have 

procoagulant effects [101, 291]. In paper II, supraphysiological concentrations of C1-INH 

were added to blood from healthy donors. The samples were analysed using ROTEM® 

and NATEM, EXTEM and INTEM reagents. The results indicated that C1-INH had an 

anticoagulant effect at very high and supraphysiological concentrations. C1-INH at a very 

high concentration also abolished the E. coli-induced reduction in NATEM CT. Another 

interesting result was the effect of C1-INH on fibrinolysis. C1-INH at a very high 

concentration also delayed the fibrinolysis measured as lysis index 60 by ROTEM®. The 

sum of effects of C1-INH on coagulation in vivo has to be further investigated.  

 

In the third paper, the role of C5 in hemostasis in vitro and E. coli-induced coagulation 

was examined in human whole blood. C5 had no role in the normal coagulation kinetic 

in human whole blood. In contrast, the E. coli-induced TF mRNA and TF-MP levels were 

partially C5-dependent. We used fresh blood from a C5 deficient individual and healthy 

donors. C5 was added to the blood samples from the C5D individual and eculizumab was 

added to blood from the healthy control, and we compared the effects of coagulation. The 

combined inhibition by eculizumab and anti-CD14 or eritoran most efficiently reduced 

the monocyte TF surface expression, TF-MP and PTF1.2 levels. Then, we wanted to study 
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if C5a could induce TF surface expression on monocytes alone. We used recombinant 

C5a as an activator, but this was not sufficient to induce TF surface expression on 

monocytes alone. However, C5a addition induced CD11b expression on monocytes, 

which was inhibited by the specific C5aR1 inhibitor PMX53, indicating that the C5a-

induced CD11b expression is dependent on C5aR1.  

 

In the last paper IV, the effect of eritoran, anti-CD14 and the C3 inhibitor compstatin 

(Cp40) was compared in the E. coli, LPS-, E. coli- or S. aureus- induced inflammation. 

Eritoran blocked the LPS-induced cytokines to a greater extent than anti-CD14; however, 

the differences between the inhibitors were significant only for IL-8. CD14 showed a 

broader effect on whole bacteria-induced inflammation probably explained by its co-

receptor function of several TLRs [6]. In comparison, eritoran only inhibits LPS binding 

to MD2 and blocks the signaling through TLR4 [292]. In addition, the combined 

inhibition of eritoran and anti-CD14 with compstatin (Cp40) was studied. Both for the E. 

coli- and S. aureus-induced CD11b and CD35 expression on monocytes, combined 

inhibition with Cp40 and anti-CD14 was most effective. There were no differences 

between the combined inhibition of Cp40 and anti-CD14 and Cp40 and eritoran on the E. 

coli-induced granulocyte expression of CD11b and CD35. The phagocytosis in both 

monocytes and granulocytes of E. coli and S. aureus was inhibited to the same extent as 

anti-CD14 and eritoran in combination with Cp40. This study confirms earlier studies 

indicating that combined inhibition of CD14, TLR4 and complement may be a new 

therapeutic treatment for sepsis-induced inflammation. 
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4 General discussion 

The studies in this thesis examined the interactions between the complement system, 

CD14 and TLRs on coagulation in human whole blood. Complement and coagulation is 

closely connected. However, the TLRs are also involved in the crosstalk between these 

systems. We used different specific inhibitors to block keypoints in the complement, 

CD14, TLRs and coagulation cascades and used our whole blood model of inflammation 

[7]. The discussion is structured as a combined discussion of all four papers in view of 

the different inhibition strategies.  

 

 

4.1 Whole blood model of inflammation 

The main advantage of the model is the use of the anticoagulant lepirudin which has no 

adverse effects on complement activation [7]. In contrast to heparin, citrate and EDTA, 

lepirudin did not affect the complement cascade [7]. Lepirudin is a hirudin analogue and 

a specific thrombin inhibitor. It is therefore not possible to evaluate the effect of thrombin 

in this whole blood model. Thrombin is activated by FXa, and activates FX in a positive 

feedback mechanism. It also activates FXI and the cofactors FV and FVIII [293] and 

cleaves fibrinogen to fibrin [19]. However, thrombin has also several effects in the 

immune system [19]. It activates platelets through the protease-activated receptor (PAR) 

1 and 2 [294]. Thrombin-induced PAR1 activation mediates increased cytokine release 

in addition to increased expression of selectins (E- and P-), ICAM-1 and VCAM-1 on 

endothelial cells [295]. PAR1 signaling can also induce apoptosis in endothelial cells 

through activation of caspases. By vascular injury, PAR1 activation contributes to rapid 

platelet aggregation [295]. PAR4 requires a higher concentration of thrombin to induce 

proinflammatory response in endothelial cells compared to PAR1 [295]. The C-terminal 

peptides in thrombin belong to the host defense peptides (HDPs). The HDPs have anti-

inflammatory properties and are bactericidal [296]. Thrombin cleaves fibrinogen to 

fibrin; however, this process also generate fibrinopeptide A and B, both of which are 

chemoattractants [268]. Thrombin also plays a role in anticoagulation by binding to 

thrombomodulin and activation of protein C [297]. Huber-Lang et al. has shown that 

thrombin is able to cleave C5 in a pure buffer [222]. However, a new study by our group 

indicates that thrombin was not able to cleave C5 in plasma at a physiological pH, but 
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cleavage was possible at an acidic pH (Nilsson et al. 2018 submitted). In conclusion, 

results from experiments with whole blood models are still relevant. 

 

In this model we always add the inhibitors before the activators [7]. In real life, this is 

impossible in sepsis patients. However, the combined inhibition of complement and 

CD14 or TLRs is a potential new therapeutic treatment for patients with a high risk of 

developing sepsis after surgical procedures or after large traumas as prophylaxis. In vitro 

experiments have indicated that there is a therapeutic window after exposure to the 

bacteria [298]. Compstatin added to blood after bacteria stopped further complement 

activation and combined inhibition with compstatin and anti-CD14 was most efficient. 

This may indicate that combined inhibition could also be administered in a short period 

of time after sepsis onset and still reduce sepsis-induced inflammation [298].  

 

The whole blood model allows all cells to interact in contrast to other models using 

isolated cells [7]. However, endothelial cells are not included, and the movement and 

shear stress of the blood is not the same as in vivo. Under physiological conditions there 

is a flow that brings new platelets, cells, coagulation factors and other important 

contributors to the site of inflammation. In our whole blood model, the blood tubes are in 

continuous movement, but the cells and other “players” are not replaced. Thus, the lack 

of shear stress and normal blood flow are limitations in the whole blood model. Therefore, 

incubation of the whole blood for more than two hours is normally not recommended, 

due to a reduction in the number of leukocytes. The blood cells are activated over time, 

and this may induce a change in shape and possibly the death of some cells. To get reliable 

results in flow cytometry analysis, it is advantageous to analyze many cellular events, 

which may be reduced by increasing incubation times. The gating is more difficult and 

leukocyte number is reduced due to several reasons.  

 

 

4.2 Effect of C1-inhibitor on coagulation kinetics  

C1-INH is a multifunctional protease inhibitor, which is involved in complement, 

coagulation and contact activation systems [91]. In addition, the C1-INH has anti-

inflammatory effect which makes C1-INH a promising treatment option for several 

diseases [118]. Cai and Davis showed that C1-INH has siayl Lewisx tetrasaccharide, and 
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they assumed that this could explain the interaction between C1-INH and E- or P-selectins 

[116]. In paper II, C1-INH in a supraphysiological concentration, abolished the E. coli-

induced reduction in NATEM CT. In the discussion, we referred to the anti-inflammatory 

effect of C1-INH. However, a recent study claimed that C1-INH did not express Lewisx 

tetrasaccharide as shown earlier. The C1-INH reagent was shown to be contaminated with 

α1-antichymotrypsin which expresses this Lewisx tetrasaccharide [119]. Therefore, the 

anti-inflammatory effects of C1-INH are unclear; and it is possible that they originate 

from the α1-antichymotrypsin? The C1-INH ability to bind LPS is dependent on 

glycosylations in the N-terminal domain [118]. We also used C1-INH from Berinert like 

Cai et al., therefore, the results of our experiments also have to be taken with reservations 

regarding contamination of the C1-INH reagent. New studies will have to be conducted 

with recombinant C1-INH preparations to answer this question. However, there are 

several studies showing that C1-INH may have valuable characteristics. One study from 

Russia shows promising results with C1-INH as treatment in sepsis patients [299]. C1-

INH reduced the ischemi/reperfusion (I/R) injury compared to controls after limbs 

amputation and replantation in pigs [300].  

 

We showed that C1-INH at supraphysiological doses had a moderate anticoagulant effect 

in vitro (Paper II). Earlier studies have concluded that C1-INH was a procoagulant and 

infusion increased the risk for thrombotic events [101]. We found that the C1-INH dose-

dependently delayed the coagulation kinetics (Paper II). However, the mechanism for this 

is not known. In an earlier study, we showed that C1-INH inhibited E. coli-induced TF 

mRNA generation [274]. TF is the starter of the extrinsic coagulation pathway [141, 171]. 

C1-INH is a known inhibitor of FXII. FXII is important in the contact activation pathway 

and, in this study; FXIIa is one of the possible initiators of coagulation activation by the 

plastic cup on the ROTEM® instrument [151]. Incubation of citrated blood for 60, 120 or 

180 minutes at 37C with the specific FXIIa inhibitor infestin, showed no effect on 

NATEM CT, CFT and alpha angle (unpublished data). This indicates that FXIIa probably 

not activate coagulation on the ROTEM® instrument. We found that C1-INH abolished 

E. coli-induced coagulation. Furthermore, infestin had no effect on the E. coli-induced 

reduction in NATEM CT indicating that FXIIa is not involved. These results indicate that 

C1-INH inhibition of FXIIa probably not explains the effects on ROTEM®. However, the 

doses of C1-INH used were supraphysiological and the physiolological relevance of these 
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doses are unclear. The platelet release C1-INH from their granula and induce an increased 

local C1-INH concentration upto 100 µM [85, 86]. This indicates a possible relevance for 

also the high C1-INH doses. 

 

We used thromboelastometry on ROTEM® to examinate the effect of C1-INH on 

coagulation kinetics (Paper II). The advantage of studying coagulation and fibrinolysis in 

a global system by ROTEM® is that all blood cells, coagulation factors and inhibitors are 

present [283]. However, real life is more complex, and several factors differ from this 

instrument in the in vivo situation. Results from the ROTEM® analysis thus have to be 

confirmed in the in vivo situation. In vitro testing of coagulation activation in whole blood 

must be performed using anticoagulants, and citrate is the recommended anticoagulant in 

ROTEM®. Citrate reduce complement activation due to the Ca2+ and Mg2+ binding [301]. 

In addition, the blood flow is different and low in the cup, and endothelial cells are not 

included. In contrast to traditional coagulation tests that only measure the functional 

activity or antigen concentration of one coagulation factor, thromboelastometry gives a 

more composed picture of the total hemostasis and coagulation kinetics in whole blood.  

 

 

4.3 Complement inhibition 

The complement system is involved and activated locally or systemically in many 

diseases [37]. The complement system can be inhibited at different levels of the cascades 

by specific complement inhibitors [37]. At present, only the anti-C5 mAb eculizumab is 

available to inhibit complement activation in vivo and at a high cost [37].  

 

Compstatin was used as a specific C3 inhibitor in paper I and IV. Selective inhibition of 

C3 reduced the E. coli-induced TF mRNA levels, TF surface expression on monocytes 

and coagulation activation (paper I). In comparison, selective C3 inhibition had no effects 

on the E. coli-induced CD11b and CD35 upregulation on monocytes, while the CD11b 

and CD35 upregulation on granulocytes were reduced (paper IV). The S. aureus-induced 

cytokine release was more complement dependent than the E. coli-induced cytokine 

release (paper IV), in line with other studies [245, 246]. Inhibition at the level of C3 

inhibits further activation of complement, including the formation of C3a and TCC 

formation [37]. Individuals with C3 deficiency have an increased risk for infections [302]. 
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Compstatin did not only reduce the C3b opsonization of microbes but increased the C4b 

opsonization which protects humans against infections [5, 303]. In some conditions, the 

need for treatment is time-limited and antibiotics can be given as prophylaxis. However, 

C3 inhibition over a long time may potentially increase the bacterial growth and thus 

increase the risk of infections-induced inflammation [6]. However, unpublished results 

from studies in monkeys receiving Cp20, a compstatin analogue, for one month indicate 

that there was no increased risk of infections [52]. They also claimed that a person with 

a fully developed immune system does not have any increased risk of infections by Cp20 

treatment, but vaccinations will be given as prophylaxis [37]. Cp40 has shown promising 

results for conditions such as PNH, hemorrhagic shock, sepsis-associated organ damage 

and other disease models involving complement activation [52]. Furthermore, compstatin 

significantly reduced coagulation activation and organ damage in an E. coli sepsis model 

in baboons [304]. 

 

Another currently used complement inhibitor in the clinic is C5 inhibition by eculizumab 

[37]. C5 is a key component in the interaction between complement and coagulation as 

described earlier [9]. C5 inhibition is, therefore, a potential new therapeutic option for the 

treatment of sepsis [305]. There are several possible ways to inhibit at the level of C5 

[37]. One advantage of C5 inhibition is that opsonization by C3b is preserved and this is 

probably more appropriate for long-term treatment [6]. However, the choice of treatment 

is also dependent on the disease mechanism [37]. Eculizumab inhibits the cleavage of C5, 

including the formation of C5a and C5b-9 [256]. RA101295 is another inhibitor of C5 

cleavage that has given successful results in E. coli-induced sepsis in baboons with 

reduced organ damage and mortality [306]. C5aR1 antagonists inhibits the binding of C5a 

to C5aR1 and preserve the terminal complement complex pathway [307]. In paper III, 

eculizumab was used to examine the effect of C5 in normal physiological hemostasis and 

in E. coli-induced coagulation in human whole blood. Eculizumab significantly reduced 

TF mRNA and TF-MP levels, but did not completely abolish the E. coli-induced increase 

(Paper III). In comparison, C5 inhibition combined with anti-CD14 or TLR4 inhibitor 

eritoran completely inhibited the E. coli-induced monocyte TF, TF-MP and plasma 

PTF1.2. These results indicate that eculizumab reduces the bacteria-induced coagulation 

and inflammatory response and may be an additional advantage for individuals under 

treatment with eculizumab [308].  
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In our study, we also included an individual with C5 deficiency. Individuals with 

complement deficiencies are natural knockouts that are of great value for research 

purposes [56]. The role of a specific complement component becomes visible. However, 

deficiencies of complement C5 are extremely rare [50]. The only symptoms our C5D 

individual had was repeated Neisseria meningococci infections [50]. The C5D individual 

included in our paper has been vaccinated with a meningococcal oligosaccharide vaccine 

[50]. However, there are an increasing number of functional C5-defect individuals due to 

increasing use of eculizmab. Furthermore, several cases of meningococcal infections are 

reported in those using eculizumab despite vaccination. The cause may be that 

eculizumab inhibits C5aR activation and following CR3 expression on monocytes and 

granulocytes, which reduce the opsonization, phagocytosis and oxidative burst [309]. In 

contrast to our results, a recent study on anti-phospholipid syndrome showed that the 

procoagulant state induced by TF activation and anti-phospholipid antibodies induced 

thrombosis was C3 dependent and C5 independent [310].  

 

Keshari et al. showed that blocking of C5 can reduce the level of free LPS in the plasma 

due to reduced lysis of the bacteria [306]. We used only heat-inactivated bacteria in our 

studies and therefore we could not examine the effect of eculizumab on their viability and 

lysis. However, these possible effects of inhibiting C5a and TCC generation on LPS 

release support the tight connections between the complement and the TLR system.  

 

 

4.4 Inhibition of CD14 and TLR4 

CD14 is a coreceptor of several human TLRs, including TLR2,-4 and -9 [6]. Anti-CD14 

efficiently reduced the LPS-induced TF surface expression on monocytes, PTX3 and 

PTF1.2, but not TF mRNA upregulation and TF-MP (Paper I). In comparison, specific 

inhibition of TLR4 using eritoran significantly reduced the LPS-induced TF on 

monocytes, TF-MP and PTF1.2 (Paper III). However, the different results using anti-

CD14 and selective TLR4 inhibition on LPS-induced TF-MP may be due to a high 

biological variation of the TF-MP results in paper 1. However, the E. coli-induced TF 

expression on monocytes, TF-MP and PTF1.2 were not significantly reduced by specific 

TLR4 inhibition or anti-CD14 (Paper III). This indicate that other molecules than LPS, 
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CD14 and MD2/TLR4 are probably involved in the E. coli-induced coagulation. This is 

in line with the findings by Øvstebø et al. that a LPS deficient Neisseria meningitidis 

induced TF surface expression on monocytes [175]. The LPS-induced increase of 

inflammatory parameters; TNF, IL-1β, IL-6, IL-8, CD11b and CD35 on monocytes were 

significantly reduced by both anti-CD14 and the specific TLR4 inhibitor eritoran (Paper 

IV).  This indicate that the LPS-induced inflammatory cytokines, CD11b and CD35 

upregulation are mainly mediated by CD14 and MD2/TLR4 activation. Furthermore, 

selective inhibition of CD14 and TLR4 reduced the cytokine release induced by whole 

whole bacteria (Paper IV). In comparison, anti-CD14 reduced the E. coli-induced 

leukocyte activation markers CD11b and CD35 on monocytes while eritoran had no 

effect, indicating a broader effect of blocking CD14 (Paper IV). Eritoran was suggested 

to be a new treatment for sepsis, but eritoran did not improve the survival in a phase III 

study [261]. The inhibition of CD14 has been shown to be more efficient than selective 

MD2 inhibition of E. coli-induced inflammation using the in vitro whole blood model, 

possibly due to inhibition of several TLRs using CD14 as coreceptor [311]. However, 

anti-CD14 alone reduced both inflammatory parameters and reversed the procoagulant 

state in a porcine model of E. coli sepsis [258]. In paper I, we showed that the combined 

inhibition of CD14 and complement C3 reduced the E. coli-induced TF surface 

expression on monocytes, TF-MP and PTF1.2 significantly more than the selective 

inhibition. These findings support the main hypothesis that combined upstream inhibition 

of complement and CD14/TLRs is necessary to inhibit bacteria-induced coagulation. 

 

The early cytokine response and antibacterial defense were highly dependent on TLR4, 

but the survival of TLR4 knockout mice were not increased in an E. coli sepsis model 

[312]. This support that single inhibition of MD2/TLR4 is not sufficient to inhibit whole 

bacteria-induced responses. TLRs activation are involved in several disease, e.g. TLR2 is 

associated with systemic lupus erythematosus (SLE) and sepsis [313]. TLR2 knockout 

mice showed reduced autoantibody level, and increased survival during bacterial 

inflammation, respectively [313]. However, there is no TLR inhibitors in clinical use. A 

possible explaination is that several TLRs interact with the same ligand and that a specific 

TLR inhibitor did not provide satisfactory results [313]. 
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4.5 Coagulation inhibition  

Sepsis is a complex and heterogeneous condition with, in some cases, enhanced risk of 

microvascular thrombosis and bleeding [314]. TF is responsible for sepsis mediated DIC 

[315]. Several studies have been performed to recreate the balance by using anti-TF and 

recombinant anticoagulants to inhibit the overactivation of coagulation and limit organ 

damage [19]. We found that the E. coli-induced coagulation was TF dependent (Paper I). 

TF inhibition in sepsis has been successful in animals to reduce the coagulopathy 

measured as fibrinogen, the cardiovascular collapse measured as mean systemic arterial 

pressure (MSAP) and cell injury measured as creatine [316]. TF expression is vital as 

indicated by the finding that TF-/- knockout mice did not survive [170]. A phase I study 

using recombinant FVIIa to inhibit the complex between TF and FVII was terminated due 

to increased bleeding and tendency to increased mortality compared with the control 

group [317]; therefore, a state with no or little TF expression is probably associated with 

increased risk of bleeding. Perhaps it is better to inhibit further upstream in the cascades 

to inhibit bacteria- and inflammation-induced TF. Therefore, we checked whether the 

combined inhibition also inhibited the TF expression on the level of TF mRNA, TF 

protein surface expression on monocytes or TF functional activity in microparticles 

(Paper I, III). However, we directly inhibited TF by a blocking anti-TF mAb to examine 

the TF-dependent coagulation. Anti-TF reduced LPS- and E. coli-induced PTF1.2 by 76–

81 % (Paper I). These results indicate that TF is the major contributor for LPS- and E. 

coli-induced coagulation. The correlation between PTF1.2 and TF-MP also confirmed 

that TF is an important key for inflammatory-induced coagulation in paper III.  

 

Tissue factor pathway inhibitor (TFPI) is a natural inhibitor to TF-FVIIa complex in an 

FXa-dependent way and inhibits FXa directly [318]. In a septic state, the anticoagulant is 

reduced due to reduced production and increased consumption [19]. Recombinant TFPI 

(rTFPI) was given to patients with severe sepsis in a single-blind randomized controlled 

trial [319]. The study showed a trend toward reduced mortality, but a larger study could 

not confirm these results and showed no reduction in mortality and increased events of 

bleeding [320].  

 

The anticoagulant-activated protein C (APC) is reduced in sepsis patients, and a low level 

is associated with increased mortality [321]. APC reduced endotoxin-induced TNF, IL-
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1β, IL-6 and IL-8 [321]. Yuksel et al. showed that the reduction of LPS-induced TNF was 

due to APC-induced blocking of NF-κB [322]. In a large multicenter randomized study, 

recombinant APC, called drotrecogin alpha activated (commercially known as Xigris), 

was given to sepsis patients [323]. Xigris reduced mortality, but mediated a possible 

increased risk of serious bleeding [323]. However, the promising results shown by 

Bernard et al. were not confirmed since the mortality at 28 days was not significantly 

different between the placebo and Xigris groups in an unpublished study called 

PROWESS-SHOCK [324]. Due to these findings, Xigris was removed from the market 

[324].  

 

Thrombomodulin (TM) is reduced under a sepsis state and recombinant TM may be a 

component for sepsis treatment. TM binds thrombin and, in this way, reduces the 

thrombin level. The protein C is activated to APC by TM. APC has both anticoagulant 

and anti-inflammatory effects. Thrombin bound to TM deactivates the thrombin 

activatable fibrinolysis inhibitor (TAFI), which reduces both the complement activation 

and bradykinin [325]. A meta-study concluded that recombinant TM therapy for sepsis 

patients can reduce mortality and there was no difference between the control group and 

recombinant TM group considering bleeding events. However, the results have to be 

confirmed with studies including a larger number of patients [326]. 

 

 

4.6 Combined inhibition of complement and TLRs in thromboinflammation 

In the previous section, the challenges in inhibiting of coagulation were described 

regarding treatment of sepsis. We argue for another approach. In 2008, Mollnes et al. 

published a hypothesis paper about the combined upstream inhibition of complement and 

TLR systems [4]. The immune system is complex and several reports have indicated a 

synergic effect between the complement and TLR systems [6, 129]. Both systems must 

be inhibited to efficiently block the huge activation seen in sepsis [247]. Eritoran is one 

example of single inhibition that did not work in humans with several sepsis [261]. 

Combined inhibition has been successfully used in different combinations, i.e. inhibition 

of complement at the level of C3 or C5 in combination with anti-CD14 or TLR 

antagonists [6]. In 2007, Brekke et al. showed that monocyte activation measured as 

CD11b upregulation, phagocytosis and oxidative burst was mostly CD14 dependent in 
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contrast to the activation of granulocytes, which was mostly complement-dependent. 

However, the combined inhibition of complement and CD14 inhibition completely 

blocked E. coli induced activation in both cells [5]. The combined inhibition has blocked 

the inflammatory response measured as cytokines, complement activations products and 

TF, in studies using in vitro whole blood models  [245, 327] and in animal models in vivo 

[246, 248, 249]. Combined inhibition of C3 and CD14 reversed the transcription of 70% 

of 2335 genes changed by E. coli incubation in human whole blood [250]. Furthermore, 

the combined inhibition with C3 and CD14 or TLR4 inhibition efficiently reduced the E. 

coli-induced phagocytosis, and CD11b and CD35 upregulation (paper IV). In comparison 

the selective inhibition of C3 and CD14 was much less efficient indicating crosstalk 

between complement and TLRs/CD14 [250]. Such experiments using combined 

complement and CD14/TLR inhibition have been performed in different porcine and 

mice models, with promising results on survival [6, 247, 251]. Inhibition of C5 and CD14 

in a meconium-induced inflammation model with piglets reduced local and systematic 

inflammation. The treatment reduced MPO level in bronchoalveolavar lavage (BAL) 

fluid and IL-1β in plasma [328]. 

 

In this thesis, we have used this combined inhibition to examine the effect of selective 

complement and CD14/TLR inhibition and combined inhibition on E. coli-induced 

coagulation activation, leukocyte activation and cytokine release (Paper I, III, IV). The 

results indicate that combined inhibition of both complement at the level of C3 or C5, and 

inhibition of CD14/TLR4 is more efficient to inhibit E. coli-induced TF and coagulation 

compared to selective inhibition of complement or CD14/TLR4. Inflammation induced 

by E. coli and S. aureus bacteria was inhibited more efficiently by anti-CD14 than TLR4 

inhibition, especially when combined with C3 inhibition. Furthermore, phagocytosis of 

E. coli and S. aureus by both monocytes and granulocytes was significantly reduced by 

the combined inhibition described in paper IV. Phagocytosis involves several TLRs due 

to intracellular degradation of the bacteria and contact with intracellular TLRs [29]. 

 

The combined inhibition efficiently reduced all TF read-outs, PTF1.2 levels in plasma 

(Paper I, III), leukocyte activation markers and cytokine release (Paper IV). PTF1.2 is 

released at the last step of the coagulation cascade and before thrombin inhibition by the 

anticoagulant used, namely lepirudin. The combined inhibition of complement and TLR 
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seems to be a good approach to inhibit LPS and E. coli-induced coagulation and, in this 

way, improve the prognosis of sepsis and other inflammatory states. 

 

 

4.7 Future perspectives 

Several in vitro studies have shown promising results for the combined inhibition of 

complement and TLR [6]. Furthermore, in vivo studies in porcine and mice models have 

been published [6]. However, there are still questions that need to be answered before the 

combined inhibition of complement and CD14/TLRs may be a part of the treatment of 

patients with sepsis. First of all, we need more knowledge about how this selective and 

combined treatment of complement and CD14/TLRs affects bacterial growth using live 

bacteria. Next, we need more studies on the combined inhibition of complement and 

CD14/TLRs as adjunct treatment in combination with antibiotics and other commonly 

used supportive therapies in sepsis.   

 

Platelets interact with leukocytes and are an active part of the immunity system with 

several functions as earlier described [43]. The effect of the combined inhibition of 

complement and TLRs on platelet activation remains to be studied both ex vivo in the 

whole blood models and in vivo in relevant animal models. The results may give 

important information about the crosstalk between complement, TLRs and coagulation 

activation since platelets are involved. Platelets ability to generate TF is controversial 

[329] and hopefully a question that could be answered in the near future. Platelets have 

C1-INH in their alpha granula, and platelet activation with granula release increases the 

local C1-INH concentration greatly. The effect of C1-INH and other contact activation 

inhibitors on platelet activation should be studied.  

 

In addition, further development of the whole blood model of inflammation is needed. 

The use of anticoagulants that do not inhibit thrombin, i.e. specific fibrinogen inhibitors 

should be examined. This will make it possible to study the role of complement, TLRs 

and thrombin in platelet and coagulation activation. Furthermore, the role of complement 

activation and TLRs in the activation of coagulation and inflammatory response can be 

studied with thrombin fully active. Finally, the inclusion of endothelial cells in such a 
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model would be interesting, allowing the study of interaction between endothelial cells, 

blood cells and platelets in complement and coagulation cascades.    
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5 Conclusions 

The immunity and hemostatic systems are closely connected. Knowledge about the 

connection between the different systems is necessary to design an optimal treatment to 

reduce the mortality of sepsis and other diseases. The complement and TLR systems work 

synergically and several studies have shown that a combined inhibition of these is needed 

to inhibit bacteria-induced inflammation and TF upregulation. This study indicates a role 

of complement, CD14 and TLRs in bacteria-induced TF upregulation. Furthermore, it 

suggests that the combined inhibition of complement and CD14/TLRs may reduce the 

bacteria-induced expression of TF mRNA, TF protein surface on monocytes and 

microparticles. The combined inhibition may thus reduces the bacteria-induced immune 

response and coagulation, but has to be used together with traditional sepsis treatment, 

including antibiotics, intravenous fluid, vasopressor medications and oxygen supply 

[330]. Several studies in animal models etc. are thus needed to determine if this combined 

treatment of complement and CD14/TLRs may be a potentially adjuvant therapy for 

human sepsis in the future.  
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Introduction: C1-inhibitor (C1-INH), a serine protease inhibitor in plasma plays a central role in the cross-talk
among the complement, coagulation, fibrinolytic and kallikrein-kinin systems. However, previous reports
indicate thrombotic risks in children following supraphysiological dosing with C1-INH. Objective: To investigate
the role of supraphysiological C1-INH concentrations in clot development with and without addition of
Escherichia coli (E. coli) in fresh human whole blood using thromboelastometry.
Materials and methods: Blood was collected in citrate tubes, and C1-INH (3.0 to 47.6 μM) or human serum
albumin (HSA)was added as a control. Activated partial thromboplastin time (aPTT)was analysed in the plasma.
The analyses non-activated thromboelastometry (NATEM), extrinsic (EXTEM) or intrinsic thromboelastometry
(INTEM) were performed using rotational thromboelastometry.
Results: C1-INH increased aPTT 1.8-fold (p b 0.05), whereas HSA had no effect. C1-INH increased NATEM clotting
time (CT) from 789 s to 2025 s (p b 0.05) in a dose-dependent manner. C1-INH reduced the NATEM alpha angle
from 47 to 28° (p b 0.05) and increased the NATEM clot formation time from 261 s to 595 s (p b 0.05). E. coli
significantly reduced the NATEM CT after 120 min of incubation. C1-INH prevented E. coli-induced activation
(p b 0.05). C1-INH significantly increased the INTEM CT (p b 0.05), but had no effect on EXTEM CT. C1-INH
(47.6 μM) significantly reduced fibrinolysis measured as NATEM and EXTEM lysis indices LI60.
Conclusions: Supraphysiological C1-INH concentrations have dose-dependent anticoagulant effects in human
whole blood in vitro. At very high levels C1-INH also inhibits fibrinolysis.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

C1-inhibitor (C1-INH) is a serine protease inhibitor in the comple-
ment, coagulation, fibrinolytic and kallikrein-kinin systems. The C1-INH
gene is localized on chromosome 11 (p11.2-q13) [1], and the protein
has a molecular weight of 105 kDa [2]. The carboxy-terminal of C1-INH
in time; C1-INH, C1-inhibitor;
lastometry; HAE, hereditary
insic thromboelastometry; LI,
oelastometry; PBS, phosphate
tPA, tissue plasminogen activa-

dland Hospital, N-8092 Bodø,
contains a protease recognition site that forms covalent complexes
with proteases. Under normal conditions, the plasma concentration of
C1-INH is approximately 0.25 g/l (2.38 μM) [3]. C1-INH efficiently in-
hibits contact activationby complexingwith activated coagulation Factor
XII (FXIIa), kallikrein [4] and FXIa in the intrinsic coagulation pathway
[5]. C1-INH inhibits thrombin and the presence of endothelial cells
increases this inhibition [6,7]. In the fibrinolytic system, C1-INH inhibits
plasmin and tissue plasminogen activator (tPA) [5]. Supraphysiological
C1-INH concentrations efficiently inhibit the up-regulation of Escherichia
coli (E. coli)-induced tissue factor (TF)which activates the extrinsic coag-
ulation system [8]. C1-INH can also bind Gram-negative bacteria and LPS
via non-covalent binding to its heavily glycosylated amino-terminal end
[9,10]. C1-INH regulates both the classic pathway by inhibiting C1r and
C1s and the lectin pathway of the complement system [5]. Interestingly,
C1-INHwas recently reported to have beneficial effects on the survival of
patients with sepsis [11].
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C1-INH deficiency increases vascular permeability, and hereditary
angioedema (HAE) patients have reduced functional C1-INH concentra-
tions [12]. C1-INH deficiency increases the ability of kallikrein to sepa-
rate bradykinin from the high molecular weight kininogen. Previous
studies have shown that FVIIa and thrombin levels are increased during
HAE attacks, indicating activation of coagulation [13–15]. During these
attacks, HAE-patients develop oedema of the skin and mucosa, which
can typically be reversed by an infusion of 20 Units/kg of C1-INH. One
Unit (U) is the activity of C1-INH in 1 ml of citrated plasma, which cor-
responds to 0.25mg (2.38 nmol) C1-INH. To our knowledge, the precise
relationship between infused C1-INH per kg of body weight and the
resulting increase in plasma concentration of C1-INH has not been pub-
lished. If one assumes a 20% body weight distribution volume of C1-INH
into both the plasma and the extra-cellular fluids, 20 U/kg of C1-INH
corresponds to 0.24 μmol/l of C1-INH. If only distributed in plasma, a
dose of 20 U/kg C1-INH corresponds to approximately 1.13 μmol/l. In
the latter case a 20 U/kg dose should theoretically increase the normal
plasma concentration of C1-INH by 50% from 2.38 μM.

When newborns with serious hearts defects were given a large dose
of 500 U/kg C1-INH to prevent capillary leakage after cardiopulmonary
bypass, they also had thrombosis [16]. An intravenous dose of purified
human C1-INH 40 U/kg reduced myocardial infarctions in pigs without
side effects, but 200 U/kg resulted in thrombosis [17], suggesting a bell-
shaped side effect curve. These observations suggested that C1-INH has
prothrombotic effects. However, Lucca et al. showed that 250 U/kg
recombinant human C1-INH was well tolerated and prevented
haemorrhage-induced inflammation in pigs to a greater extent than
100 U/kg [18]. Thus, the dose-effect in humans remains unclear.

Rotational thromboelastometry provides a comprehensive analysis
of the coagulation kinetics in human whole blood. Thrombelastometry
provides important data on clot strength and fibrinolysis [19,20].
Thromboelastometry is increasingly used in emergency departments
and intensive care units to guide treatment [21]. Recently, a study in
rabbits indicated that infusion of up to 800 U/kg C1-INH significantly
reduced coagulation analysed by thromboelastometry [22]. Thus,
to add additional information the aim of this study was to use
thromboelastometry to examine the effect of supraphysiological doses
of C1-INH on clot development in native human whole blood and
after addition of E. coli in vitro.

2. Materials and methods

2.1. Reagents and bacteria

Purified human C1-INH (Berinert® P) was obtained from ZLB
Behring GmbH, Germany. Human serum albumin (HSA) (Albuminativ,
Octapharma, Stockholm, Sweden) was used as a negative control.
E. coli (strain LE392, ATCC33572, American Type Culture Collection,
Manassas, VA) was grown and counted and inactivated by incubation
at 60 °C for 60 min.

2.2. Blood sampling and whole blood experiments

This study was approved by the regional ethics committee of the
Northern Norway Regional Health Authority. The blood donors provid-
ed written informed consent. The donors were both females and males
males with ages ranging from 34 to 61 years. They had not taken any
drugs. Fresh venous blood was collected using Vacuette tubes with
3.2% citrate (Greiner Bio-One GmbH, Kremensmünster, Austria). Blood
(5 parts) was added to the C1-INH in Dulbecco's Phosphate buffered
saline with CaCl2 and MgCl2 (PBS, Sigma-Aldrich, St. Louis, MO), or
HSA (1 part) in polypropylene tubes (Nunc, Roskilde, Denmark). After
5 min at 37 °C, the activator, PBS control, E. coli or silica based clot
activator in Vacuette rapid coagulating tubes (1 part) was added as
previously described [23]. Thromboelastometry analyses were then
performed immediately. In the time course experiments with E. coli,
thromboelastometry analyses were performed after 0, 120 and
240min of incubation. In some experiments, the tubeswere centrifuged
at 3000 ×g for 15 min at 4 °C, and PT-INR and activated partial throm-
boplastin time (aPTT) were analysed immediately in the plasma. The
remaining plasma was stored at−80 °C for subsequent analysis.

2.3. Coagulation analyses

All donorswere tested for disorders in the coagulation system. PT-INR
and aPTT were analysed in citrated plasma using STA-R Evolution
(Diagnostica Stago, Asniéres, France). The reagents used for clot detection
were STA® -SPA+ for PT-INR and STA®-PPT for aPTT. Protein C and
antithrombin were assayed colorimetrically using STACHROM®Protein
C and STACHROM®ATIII kits from Diagnostica Stago. Protein S and acti-
vated protein C resistance were analysed in clotting assays using the
STACLOT®Protein S kit from Diagnostica Stago and the COATEST®APC™
Resistance V kit (Chromogenix, Bedford, MA, USA), respectively.

2.4. Thromboelastometry

ROTEM® delta (Tem Innovations GmbH, Munich, Germany) was
used to analyse the kinetics and properties of clot formation. This
analysis was performed according to the instruction manual. The
samples were analysed within 15 min after blood sampling. For the
non-activated thromboelastometry (NATEM) analyses, only the re-
calcification reagent star-tem® containing CaCl2 (Tem Innovations
GmbH) was used. Star-tem® (20 μl), followed by 300 μl of citrated
humanwhole blood,was added to a preheated plastic cupwith an auto-
matic pipette [19,21]. Intrinsic thromboelastometry (INTEM) analysis
was used to assess the intrinsic pathway and in-tem® reagent contain-
ing ellagic acid was added (Tem Innovations GmbH). Extrinsic
thromboelastometry (EXTEM) analysis was used to analyse the
extrinsic pathway. The ROTEM tests were run from 1 h and 15 min
(INTEM and EXTEM) to 8 h (NATEM).

2.5. Platelet function

Fresh citrated human whole blood (3.2% sodium citrate from
Vacuette, Greiner Bio-One GmbH) was obtained from healthy blood
donors and stored for at least ten min at room temperature. PBS, HSA
or increasing C1-INH concentrations in 44 μl of PBS were added to the
citrated blood (831 μl) before analysis. Platelet function was analysed
on an INNOVANCE® PFA-200 system (Siemens Healthcare Diagnostics
Products GmbH, Marburg, Germany) using a Dade PFA Collagen/ADP
Test Cartridge from Siemens. Haematocrit and platelet counts were
analysed in all blood donors because abnormal values may affect the
PFA-200 results [19,24]. Donors with an enhanced closure time were
excluded from the study. One of the donors for platelet function later
proved to have a heterozygous Leiden mutation. The results were as
expected and were therefore included in our results.

2.6. Statistical analyses

The Shapiro-Wiik test in IBM SPSS Statistics for Windows, version
22.0 (IBMCorp., Armonk, NY, USA)was used for verifying normal distri-
bution. GraphPad Prism version 6.0 (GraphPad Software, San Diego, CA,
USA) was used for the statistical analysis. Skewed results were either
log-transformed to a normal distribution if possible or analysed using
non parametric tests. Normally distributed data were analysed using a
one-way repeated measurements analysis of variance (ANOVA), and a
Dunnett's multiple comparisons test was conducted using PBS as a
control. The HSA results were compared with an equimolar concentra-
tion of C1-INH using paired Student's t-test. Two-way repeated
measurements ANOVA and Sidak's multiple comparisons test were
used to compare samples to which PBS or E.coli were added at several
time points. If log-transformation of skewed data failed to reach



Fig. 2. The effect of C1-inhibitor (C1-INH) on coagulation was analysed using
thromboelastometry and non-activated thromboelastometry (NATEM). C1-INH (●) was
added to fresh citrated human whole blood to for final concentrations of 0, 3.0, 6.0, 11.9,
23.8 and 47.6 μM. HSA was used as a control (○). The samples were re-calcified and
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normality, data were instead analysed using the non-parametric
Friedman test followed by Dunn's multiple comparisons test. Wilcoxon
matched-pairs signed rank test was used to compare the HSA results to
an equimolar concentration of C1-INH. Statistical significance was
defined as P-values b 0.05. To identify a significant increase in NATEM
CT from 789 ± 97 s (mean ± SD) after the addition of PBS to 2025 ±
264 s after the addition of C1-INH (47.6 μM), this would require 3
blood donors with a power of 96% and an alpha = 0.05 using a paired
Student's t-test according to power analysis using IBM®SPSS® Sample
Power® 3 (SPSS Inc., Chicago, Il, USA).

3. Results

3.1. C1-INH increased aPTT, wereas PT-INR was unaffected

C1-INH significantly and dose-dependently increased aPTT from44 s
in the control to 79 s at the highest C1-INH concentration (47.6 μM)
(Fig. 1a) (p b 0.05). The highest C1-INH concentration (47.6 μM) signif-
icantly increased the aPTT compared with 47.6 μM HSA (p = 0.0002).
With the exception of the highest C1-INH concentration where a slight
increase was observed, C1-INH had no effects on PT-INR (Fig. 1b).

3.2. C1-INH reduced native clot development

C1-INHdose-dependently increased theNATEMCT from789 s in the
PBS control to 2015 s (p b 0.05) at the highest concentration (Fig. 2a),
indicating delayed coagulation. The highest C1-INH concentration
(47.6 μM) significantly increased the NATEM CT compared with HSA
(p b 0.0001). C1-INH dose-dependently reduced the NATEM alpha
angle, reflecting the velocity of clot development, from 47° in the
control to 28° (p b 0.05) at the highest C1-INH concentration (Fig. 2b).
C1-INH (47.6 μM) also significantly reduced the alpha angle compared
with HSA (p = 0.0313). C1-INH dose-dependently increased the
NATEMCFT from 261 s to 595 s (p b 0.05) at the highest C1-INH concen-
tration (Fig. 2c). C1-INH (47.6 μM) significantly increased the NATEM
CFT comparedwithHSA (p=0.0313). TheNATEMMCFwas only slight-
ly, but significantly increased (p b 0.05) by C1-INH (Fig. 2d). C1-INH
Fig. 1. The effect of C1-inhibitor (C1-INH) on (a) activated prothrombin time (aPTT) and
(b) prothrombin time international normalized ratio (PT-INR). C1-INH (●) was added
to fresh citrated human whole blood for final concentrations of 0, 3.0, 6.0, 11.9, 23.8 and
47.6 μM. Human serum albumin (HSA) (47.6 μM) was used as a control (○). The
samples were centrifuged, and aPTT and PT-INR were analysed in plasma using STA-R
Evolution. The aPTT results are given in seconds (s). The PT-INR results are given as a
ratio between the donors' prothrombin time and the control plasma. Values are given
as means ± standard deviation (SDs) from single experiments with 6 different donors.
⁎p b 0.05 compared with the samples without C1-INH using a one-way, repeated
measurements ANOVA. #p = 0.0002 when C1-INH (47.6 μM) was compared with the
samples to which HSA was added using paired Student's t-test.

immediately analysed. (a) The effect of C1-INH on NATEM coagulation time (CT) is
given in seconds (s), and (b) the NATEM alpha angle is given in degrees. (c) The effect
of C1-INH on NATEM clot formation time (CFT) is given in seconds, and (d) the effect of
C1-INH on NATEM maximal clot firmness is given in millimetres (mm). Data are given
as means ± SDs from single experiments with 6 different blood donors. ⁎p b 0.05
compared with the samples without C1-INH using a one-way, repeated measurements
ANOVA. Friedman test and Dunn's multiple comparisons test were used for skewed
data. #C1-INH (47.6 μM) was compared with the samples to which HSA was added
using paired Student's t-test or Wilcoxon matched-pairs signed rank test for skewed
data: in panel a) p b 0.0001, b) p = 0.0313, c) p = 0.0313 and d) p b 0.0001.
(47.6 μM) significantly increased NATEM MCF compared with HSA
(p b 0.0001).
3.3. C1-INH delayed clot development following activation of the intrinsic
coagulation pathway

C1-INHdose-dependently increased the INTEMCT from191 s to 309 s
(p b 0.05) at the highest C1-INH concentration (Fig. 3a) and dose-
dependently reduced the INTEMalpha angle comparedwith the PBS con-
trol (p b 0.05), indicating that the velocity of clot formationwas reduced.
C1-INH (47.6 μM) also significantly increased the INTEM CT compared
with HSA (p b 0.0001). The highest C1-INH concentration (47.6 μM)
reduced the alpha angle from 73° with HSA to 62° (p b 0.0001)
(Fig. 3b). C1-INH dose-dependently increased the INTEM CFT from 98 s
in the PBS control to 152 s (p b 0.05). C1-INH (47.6 μM) also significantly
increased the INTEM CFT compared with HSA (p b 0.0001). C1-INH had
no effect on the INTEMMCF (Fig. 3d).



Fig. 3. The effect of the C1-inhibitor (C1-INH) on the intrinsic coagulation pathway was
analysed using thromboelastometry and intrinsic thromboelastometry (INTEM)
analyses. C1-INH (●) was added to fresh citrated human whole blood for final
concentrations of 23.8 and 47.6 μM. HSA was used as a control (○). The samples were
re-calcified and immediately analysed by INTEM analyses with phospholipids and
ellagic acid. (a) The effect of C1-INH on INTEM coagulation time (CT) is given in seconds
(s). (b) The effect of C1-INH on INTEM alpha angle or coagulation kinetics is given in
degrees. (c) The effect of C1-INH on INTEM clot formation time (CFT) is given in
seconds. (d) The effect of C1-INH on INTEM maximal clot firmness (MCF) is given in
millimetres (mm). Values are given as means ± SDs from single experiments with 6
different donors. ⁎p b 0.05 compared with the samples without C1-INH using a one-way,
repeated measurements ANOVA. #C1-INH (47.6 μM) was compared with samples added
HSA using a paired Student's t-test, for panel a) p b 0.0001, b) p b 0. 0001, c) p b

0.0001 and d) p = 0.0624.

Fig. 4. Effect of C1-inhibitor (C1-INH) on the extrinsic coagulation pathway was analysed
using thromboelastometry and extrinsic thromboelastometry (EXTEM). C1-INH (●) was
added to fresh citrated human whole blood for final concentrations of 23.8 and 47.6 μM.
HSA was used as a control (○). The samples were re-calcified and immediately analysed
using EXTEM with activated tissue factor (TF). (a) The effect of C1-INH on the EXTEM
coagulation time (CT) is given in seconds (s). (b) The effect of C1-INH on the EXTEM
alpha angle is given in degrees. (c) The effect of C1-INH on the EXTEM clot formation
time (CFT) is given in seconds. (d) The effect of C1-INH on the EXTEM maximal clot
firmness (MCF) is given in millimetres (mm). The values are given as means ± SDs
from single experiments with 6 different donors. ⁎p b 0.05 compared with the samples
without C1-INH using a one-way, repeated measurements ANOVA. #C1-INH (47.6 μM)
was compared with samples to which HSA was added using paired Student's t-test, in
panel b) p= 0.0030, c) p b 0.0001.
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3.4. C1-INH reduced the EXTEM alpha angle and increased the CFT

The EXTEM CT was not affected by the addition of C1-INH (Fig. 4a).
However, C1-INH dose-dependently decreased the EXTEM alpha angle
from 69 degrees in the PBS control to 55° (p b 0.05) at the highest C1-
INH concentration. C1-INH dose-dependently increased the EXTEM
CFT from 114 s to 222 s (p b 0.05) (Fig. 4c), whereas it had no effect
on EXTEM MCF (Fig. 4d). C1-INH (47.6 μM) also significantly reduced
the EXTEM alpha angle (p = 0.003), and increased the EXTEM CFT
(p b 0.0001) compared with the HSA control.
3.5. Suphraphysiological doses of C1-INH reduced fibrinolysis

The highest C1-INH concentration (47.6 μM) significantly reduced
fibrinolysis, as measured with lysis indices 60 (LI60) in the analyses
NATEM EXTEM compared with the sample to which HSA was added
(Table 1).
3.6. E. coli bacteria increased the native clot formation, as measured by the
NATEM CT and alpha angle

E. coli (1 × 108/ml) reduced the NATEM CT from 622 s in the PBS
control to 120 s (p b 0.05) after 240min of incubation (Fig. 5a). In com-
parison, the clot activator (positive control) reduced the NATEM CT
from 873 s to 500 s (p = 0.0192) (Fig. 5a), indicating that E. coli was a
highly potent activator of coagulation. E. coli increased the NATEM
alpha angle from 44° in the PBS control to 66° after a 240min of incuba-
tion (p b 0.05), indicating that coagulation kinetics was increased
(Fig. 5b). E. coli also significantly decreased the NATEM CFT (p b 0.05)
and increased the NATEM MCF (p b 0.05) compared with the PBS
control after 240 min of incubation (Fig. 5c, d).
3.7. C1-INH abolished E. coli-induced coagulation and the reduction in
NATEM CT

E. coli decreased theNATEMCT from805 s to 330 s (p=0.0088), but,
at the highest concentration (47.6 μM), C1-INH completely reversed this



Table 1
Effects of C1-inhibitor on fibrinolysis.

Test Addition Concentration NATEM p-Value INTEM p-Value EXTEM p-Value

LI45 PBS 97.6 (±1.0) 96.0 (±1.7) 95.7 (±1.2)
HSA 47.6 μM 97.2 (±1.2) 95.3 (±1.5) 94.8 (±1.7)
C1-INH 23.8 μM 98.3 (±1.2) N0.05a 96.5 (±1.2) N0.05b 97.2 (±1.2) N0.05a

C1-INH 47.6 μM 100 (±0) N0.05a 97.2 (±0.8) N0.05b 99.8 (±0.4) b0.05a

0.06c 0.02d 0.03c

LI60 PBS 95.7 (±2.2) 93.2 (±1.5) 91.7 (±1.9)
HSA 47.6 μM 94.0 (±2.4) 92.5 (±2.0) 90.5 (±1.9)
C1-INH 23.8 μM 96.7 (±2.3) N0.05a 93.7 (±1.4) N0.05a 93.2 (±1.6) N0.05a

C1-INH 47.6 μM 99.5 (±0.8) b0.05a 94.0 (±0.9) N0.05a 97.5 (±0.5) b0.05a

0.03c 0.13c 0.03c

Results are given in percentage, mean (±standard deviations) (n = 6).
Abbreviations: C1-INH; C1-inhibitor, EXTEM; extrinsic thromboelastometry, HSA; human serum albumin, INTEM; intrinsic thromboelastometry, LI; lysis index, NATEM; non-activated
thromboelastometry, PBS; phosphate buffered saline.
p-Values in bold indicate p b 0.05.

a Friedman test and Dunn's multiple comparisons test between C1-INH and PBS.
b One-way repeated measurement ANOVA and Dunnett's multiple comparisons test between C1-INH and PBS.
c Wilcoxon matched-pairs signed rank test between HSA and C1-INH 47.6 μM.
d Paired Student's t-test between HSA and C1-INH 47.6 μM.
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reduction in NATEM CT (Fig. 6). The highest C1-INH concentration did
not significantly change the NATEM alpha angle, CFT or MCF after the
addition of E. coli (data not shown).

3.8. C1-INH reduced the platelet function as measured by closure time

C1-INH dose-dependently and significantly (p b 0.05) increased the
closure time by 63% compared with the PBS control (Fig. 7). However,
the increase was not significant (p = 0.064) when the highest C1-INH
concentration (23.8 μM) was compared with the HSA control.

4. Discussion

In this study, we show for the first time that supraphysiological
doses of C1-INH significantly and dose-dependently delayed coagula-
tion in nearly all the parameters examined using thromboelastometry
in fresh human whole blood. The effects were observed during normal
coagulation and in the E. coli-enhanced coagulation,whichwas virtually
abolished by C1-INH. The highest C1-INH doses also inhibited
fibrinolysis.

C1-INH dose-dependently increased aPTT values in accordance with
a study in rabbits [22]. The most important mechanism underlying the
enhancement of aPTT values by C1-INHmost likely involves the binding
of C1-INH to FXIIa [25]. The slightly increased baseline aPTT values are
most likely due to the dilution of whole blood with PBS. The sizeable
effects on aPTT values observed in our study are most likely due to the
supraphysiological dose of C1-INH. Consistent with these findings, a
previous report on HAE patients treated with C1-INH infusion showed
moderately increased aPTT values compared to the baseline values
[26]. Themoremoderate effects on the aPTT values in C1-INH substitut-
ed HAE patients is probably explained by a lower total C1-INH level.
Even if 20U/kg of C1-INH is administered itwould not bring theHAEpa-
tients' plasma concentration of C1-INH fromunder 20% to above normal
levels. Interestingly, HAE patients display increased levels of both
thrombin-antithrombin and plasmin-antiplasmin complexes under
attacks but do not suffer from thrombosis nor bleeding [13]. The in-
crease in the NATEM CT due to C1-INH indicates an anticoagulant effect
on the native coagulation. At supraphysiological concentrations, C1-INH
also dose-dependently inhibited clot development after intrinsic path-
way activation, most likely due to the binding of FXII. Thus, part of the
anticoagulant effect of C1-INH observed in this study may be due to
the inhibition of contact activation induced by plastic surfaces in the
cups used for thromboelastometry. This effect can also be explained
by the inhibitory effects of C1-INH on thrombin [6]. However, C1-INH
has a minor role in inhibition of thrombin under physiological condi-
tions. Cassia et al. discussed in their paper that the inhibitory effects of
C1-INH on thrombin could be relevant in severe infection and inflam-
mation when other anticoagulant pathways are reduced and when
C1-INH is increased [7]. This could possibly also be the case in our
study since high C1-INH doses were used.

C1-INH had no effects on EXTEM CT, indicating that the TF-induced
coagulation time was not affected. Schürmann et al. also found that
C1-INH has no effect on EXTEM CT and MCF in rabbits [22]. This is
consistent with the minimal effect we found of C1-INH on PT-INR
levels. The surface of activated platelets may induce FXII-dependent
contact activation [27], which in turn could be reduced by high doses
of C1-INH. In normal plasma, without extra C1-INH, antithrombin is
more important [27]. C1-INH effects on FXIa may also at least partially
explain the results because C1-INH inhibits FXIa both directly and
indirectly via thrombin [5,6], and because thrombin activates FXI [28].

NATEM MCF reflects the stability of the clot formed in the whole
blood. C1-INH slightly increased NATEM MCF, but had no effects on
INTEM or EXTEM MCF. This is in contrast to the findings obtained by
Levy et al. who noted a slight reduction in INTEM MCF at lower C1-
INH doses up to 7 U/ml [29]. This finding corresponds to approximately
seven times the physiological concentration, i.e., a concentration similar
to one of the lower concentrations used in our study. MCF is generally
affected by fibrinogen concentration, FXIII and platelet numbers and
function. Of these factors, only the platelet function may potentially be
influenced by C1-INH [20,30]. The presence of a minimal, but bell
shaped effect of a large C1-INH dose on clot firmness is unexpected
and its significance must be confirmed. As C1-INH in large doses also
reduced the clot formation, vide infra, the significance may be small.

To our knowledge, this is the first report showing that high
levels of C1-INH significantly reduced fibrinolysis as measured by
thromboelastometry. Our results suggest that the effect of C1-INH on
fibrinolysis is slightly more pronounced after activation of the extrinsic
pathway. C1-INH affects the fibrinolytic system through the inhibition
of FXIIa, plasmin and tPA [5], potentially causing a thrombotic
effect. Relan et al. found no change in the thrombin-antithrombin
complex, d-dimer and plasmin alpha-2 antiplasmin complex levels
after recombinant C1-INH infusion to HAE-patients but the resulting
amount of C1-INH was low [26]. Alpha-2 antiplasmin and plasminogen
activator inhibitor-1 are the main inhibitors of plasmin and t-PA, re-
spectively, whereas C1-INHplays aminor role in this process. According
to the inhibition rate constants, even a ten-fold increase in the C1-INH
concentration would increase plasmin inhibition by only a few percent
[26]. Crowther et al. recently reviewed the prothrombotic effects of up
to 100 U/kg of C1-INH and described them as rare complications [31].
However, limited animal and clinical data suggested that C1-INH,
particularly at high doses of up to 500 U/kg may be prothrombotic
[31]. Although the calculation is not precise, one may administer as



Fig. 5. Effect of E. coli (1 × 108/ml, ▲) on the coagulation kinetics in fresh human whole
blood was analysed using non-activated thromboelastometry (NATEM). The tubes were
incubated for 0, 120 or 240 min with E. coli or Phosphate buffered saline (PBS) before
analysis. PBS was used as a negative control (○) and the clot activator at time zero as
the positive control (■). (a) The effect of E. coli, clot activator and PBS control on NATEM
coagulation time (CT) is given in seconds (s). (b) The effect of E. coli, clot activator and
PBS control on coagulation kinetics evaluated as the alpha angle is given in degrees.
(c) The effect of E. coli, clot activator and PBS control on clot formation time (CFT) is
given in seconds. (d) The effect of E. coli, clot activator and PBS control on maximal clot
firmness (MCF) is given in millimetres. The data are given as means ± SDs from single
experiments using five different blood donors. ⁎Samples to which E.coli was added
compared with the PBS control using two-way repeated measurements ANOVA: panel
a) T120 p b 0.05, T240 p b 0.05, b) T120 p b 0.05, T240 p b 0.05, c) T120 p b 0.05, T240
p b 0.05 and d) T120 p b 0.05, T240 p b 0.05. #p b 0.05 compared with the negative PBS
control using paired Student's t-test or Wilcoxon matched-pairs signed rank test for
non-normally distributed data.

Fig. 6. Effect of C1-inhibitor (C1-INH) on E. coli-induced non-activated thromboelastometry
(NATEM) coagulation time (CT) was analysed in fresh human whole blood using
thromboelastometry. Before incubation, HSA or C1-INH was added to the samples. E. coli
(1 × 108/ml) or HSA was incubated for 120 min. The NATEM CT values are given in
seconds (s). The results are given as means ± SDs from single experiments with 3
different blood donors. #p= 0.0088 compared with the HSA control using paired Student's
t-test.

Fig. 7. Effect of C1-inhibitor (C1-INH) on platelet function in fresh human whole blood.
Increasing concentrations of C1-INH (●) were added to fresh citrated human whole
blood. The final C1-INH concentrations were 3.0, 6.0, 11.9 and 23.8 μM. PBS and human
serum albumin (HSA) (○) were used as controls. The results were expressed as
the closure time and are given in seconds (s). The results are given as means ± SDs
from single experiments with six different donors, with the exception of HSA (n = 3).
⁎p b 0.05 compared with the samples without C1-INH using a one-way, repeated
measurements ANOVA. No significant difference was found when C1-INH (23.8 μM)
was compared with HSA using a paired Student's t-test.
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much as 1000 U/kg C1-INH to obtain the levels used in this study. In
addition, as both coagulation and fibrinolysis can be influenced at
high C1-INH levels, we do not know the sum of these effects.

The anticoagulant effect of C1-INH was further confirmed by the
observation that C1-INH inhibited the coagulation activation induced
by E. coli in fresh human whole blood. The rationale for the E. coli
experimentswas thatwe aimed to study the effect of C1-INH on clot de-
velopment after coagulation activationwith bacteriawhich is a stimulus
related to Gram-negative sepsis. Interestingly, C1-INH abolished the
E. coli-induced decrease in NATEM CT. In the time course study of the
effect of E.coli bacteria on NATEM CT we analysed the samples after 0,
60, 120 and 240 min. The stability of NATEM analysis is short and
Meesters et al. showed that NATEM CT decrease from 1226 s to 903 s
after 90 min storage [32]. Therefore, we included a PBS control and
compared the decrease in samples added E.coli with the samples
added PBS only. We have previously reported that C1-INH efficiently
reduced E. coli-induced coagulation as measured by prothrombin
F1.2 levels in the plasma [8]. By binding to both LPS and bacteria,
independently of the protease inhibitor domain, C1-INH also has several
anti-inflammatory effects [33,34]. C1-INH may inhibit E. coli-induced
coagulation by interfering with the interaction between endotoxin
and its receptor complex on macrophages [33,34]. We have previously
also shown that C1-INH efficiently inhibited E. coli-induced TF mRNA
and TF surface up regulation on monocytes [8]. The study by Jansen
et al. in baboons supported that C1-INH may improve the outcome of
E.coli sepsis, possibly by reducing prekallikrein and FXII consumption
[35]. Interestingly, C1-INH infusion increased the C1-INH levels two to
three times the physiological C1-INH concentration and reduced
human mortality during sepsis [11]. It is tempting to speculate that
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the anticoagulant effect of C1-INH attenuated the sepsis-induced intra-
vascular coagulation in these patients.

The finding that C1-INH dose-dependently reduced the platelet plug
formation further confirmed the anticoagulant effect of C1-INH. This re-
sult confirms earlier studies performed with other platelet function
analysers [30,36]. C1-INH from the alpha-granules in platelets can be re-
leased upon platelet activation, and the local concentrations of C1-INH
may increase in the range 20 to 100 μM [37,38]. HAE patients released
a lower amount of platelet C1-INH than healthy controls and have an
increased platelet aggregation [36,37]. C1-INH infusion normalized
platelet function in HAE patients [30]. This finding suggests that C1-
INH inhibits platelet function in vivo.

Thewhole bloodmodel used in this study has some limitations. First,
it does not include endothelial cells. Second, the contact activation
induced by the plastic surfaces in the sample tubes and ROTEM cups
may have affected the results. The relatively long time that elapsed
between drawing the blood and performing the NATEM CT analysis in
the time course experiments with E. coli may also have affected the re-
sults. Third, in this study we examined only the effect of C1-INH in vitro.
The in vivo condition is more complex than our in vitro model. The
ROTEManalysismay not reflect the clinical situation for several reasons.
In the ROTEM chamber the blood flow is only induced by the rotation of
the pin. In addition, the same blood cells are present for a long time in
the ROTEM chamber in contrast to the in vivo situation. Furthermore,
the ROTEM cuvette is probably not tight because the pin needs room
to move, so there may be some space in between so air can get inside.
However,we did not get anywarnings from the instrument that leakage
of air was a problem in our study. Furthermore, there is not always
accordance between in vivo conditions and in vitro coagulation results.
One example involves individuals with lupus anticoagulant who have
prolonged aPTT but have increased thrombotic risk [39]. However, the
whole blood model also has several advantages concerning the interac-
tion between different cells including platelets, leukocytes and plasma
factors participating in clot development [23]. The anticoagulant effect
of therapeutic C1-INH concentrations should be confirmed in studies
in humans in vivo.

In conclusion, native C1-INH in concentrations that are sometimes
administered as an experimental therapy can delay clot development
and have anticoagulant effects in fresh human whole blood in vitro.
Furthermore C1-INH abolished E. coli-induced coagulation, indicating
that the use of C1-INH as a supplementary adjuvant treatment for sepsis
in humans merits further exploration. This effect have to be confirmed
in an in vivo model, due to several limitations with this in vitro model.
At high doses, C1-INH inhibits both clot development and fibrinolysis
and the sum of these effects should be clarified in future studies.
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