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Abstract. In the homogenization theory, there are many examples where the effective conductivities
of composite structures are power means of the local conductivities. The main aim of this paper is to
initiate research concerning geometric construction of some power means of three or more variables.
We contribute by giving methods for the geometric construction of the harmonic mean P−1 and the
arithmetic mean P1 of three variables a,b and c

1 Introduction

As it is well known, homogenization theory, as well as PDEs, plays pretty important roles in the
study of many applied problems, see [7]. The use of power means is of certain interest in homog-
enization theory. This is natural since the this theory is mainly handling differential equations with
rapidly oscillating coefficients. These equations can be replaced with a homogenized equation where
the coefficients can be interpreted as special means. Therefore many research papers are devoted to
development of methods, say, tools for such theories. Sometimes just a simple inequality or correctly
discovered relation between some parameters can be extremely useful for solving problems, where it
was unclear how one can find an appropriate approach.

For instance, in the study of a scale of two-component composite structures of equal proportions
with infinitely many micro-levels, it was found that their effective conductivities are power means of
the local conductivities, see [8] and [9].

As regarding to such a basic concept as power means and its relation with important Jensen’s
inequality, we refer e.g. to the new book [10], see also references therein.

Power means have fascinated mathematicians during many centuries. In the simplest form they
can be described as follows: For n positive numbers, (a1,a2, .....,an), the power mean Pn

k of order k
with equal weights is defined as:
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Pn
k =

[
ak

1 +ak
2 + ...+ak

n

n

] 1
k

, if k 6= 0,

and
Pn

0 = [a1a2....an]
1
n , if k = 0.

There is a substantial literature on the subject of power means, see e.g. [1], [3], [4], [11] and
[12]. The close connection between convexity and power means is described e.g. in the book [10]. In
particular, it is well known that Pn

k < Pn
l if k < l if all the ai are not identical, and that Pn

k converges
towards (ai)max when k→+∞ and towards (ai)min when k→−∞. The most commonly used power
means are the arithmetic mean A = Pn

1 , the geometric mean G = Pn
0 and the harmonic mean H = Pn

−1.
These three means for two variables were explored by the classic Greek mathematicians because of
their importance in the study of geometry and music. They are today called Pythagorean means. The
Greek mathematicians constructed the Pythagorean means for two variable lengths a and b as shown
in Figure 1 , see e.g. [14]. The quadratic mean Q = P2(a,b), also known as the Root Mean Square, is
also included in the figure.

Fig. 1 Classic Greek construction of Pythagorean means of two variables a, b. A is the arithmetic mean, Q is the quadratic
mean, H is the harmonic mean and G is the geometric mean.

Power means have throughout history mostly been analyzed and calculated on the basis of numeric
variables. R. Høibakk and D. Lukkassen have studied the properties of certain power means based
on geometric variables, and have shown that P−2, P−1, P− 1

2
, P0, P1

2
, P1 and P2 for two variables

can be constructed in a basic geometric structure different from the one employed by the Greek
mathematicians [5]. Also other papers (e.g. [2] and [13]) considered geometric construction of power
means of two variables.

Remark 1.1. The classic Greek method of constructing the Pythagorean means, as shown in Figure
1, may also be extended to construct P−2, P−1, P− 1

2
, P0, P1

2
, P1 and P2 for two variables, as shown
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in Figure 1. To accomplish this, we use the facts shown in [5]: P1
2
(a,b) = P1(P0(a,b),P1(a,b)),

P− 1
2
(a,b) = P−1(P0(a,b),P−1(a,b)) and P2(a,b)× P−2(a,b) = ab. The construction methods are

demonstrated in Figure 1.

Fig. 2 Geometric construction of P−2, P−1, P− 1
2
, P0, P1

2
, P1 and P2 of two variables.

The basic two-dimensional structure which was used by R. Høibakk and D. Lukkassen [5] for
the geometric construction of P−2, P−1, P− 1

2
, P0, P1

2
, P1 and P2 for two variables, a and b, is shown

in Figure 1. The source for this structure can be found in another work by the same authors, [6]. In
the trapezoid ABCD, in Figure 1, the variables a = AD and b = BC are constructed vertical to the
”floor” AB. Independent of the width of the ”floor” AB, the length of the vertical line EF through
the intersection of the diagonals is equal to the harmonic power mean of the two variables a and b,
i.e., EF = P−1(a,b) = 2ab

a+b . The arithmetic mean can be found by bisecting the ”floor” AB and draw
the corresponding vertical line from the ”floor” to the ”roof” DC. If, in addition, (d1,d2) = (a,b), the
”roof” DC equals the double of the root mean square, i.e., DC = 2P2(a,b), see Figure 1.

The main purpose of this paper is to initiate the study of geometric construction of some power
means of three or more variables. Guided by the discussion above we also contribute by presenting
the construction of the arithmetic and the harmonic power means of three variables, P−1(a,b,c) and
P1(a,b,c), see Sections 2 and 3 below. (Note that the geometric mean of three variables a,b,and c,
P0 =

3
√

abc cannot be constructed geometrically.)

2 3-D Construction of the harmonic mean P−1(a,b,c)
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Fig. 3 Geometric construction of the harmonic mean of two variables a and b.

Fig. 4 An arbitrary triangle ABC and the triangular roof, DEF . The vertical lines are formed by the variables a,b and c.

Consider first Figure 2, which is constructed by drawing an arbitrary triangle ABC and raising the
three variables a,b and c as vertical lines from each of the three corners. The top end of the vertical
lines form a triangular ”roof”, DEF .

Fig. 5 The diagonals in the trapezoidal walls, ABED, ADFC and BEFC, are drawn.
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In Figure 2 the diagonals in the trapezoidal walls, ABED, ADFC and BEFC, are drawn. The
vertical lines through the intersection points of these diagonals touch the ”floor” and the ”roof” at H
and K, at G and J and at M and L, respectively.

Fig. 6 The lines connecting the points H, G, and M and K, L, and J are drawn. The lines intersect at P and Q.

The lines connecting the points H, G, and M and K, L, and J with the opposite corners in the
”floor” triangle ABC and the ”roof” triangle DEF cross at P (”floor”) and Q (”roof”), respectively,
are shown in Figure 2.

Fig. 7 The connecting line, PQ is drawn.

Theorem 2.1. The connecting line PQ in Figure 2, will, since it is the intersection line between three
vertical planes, be vertical, and equal to the harmonic power mean of a, b and c, i.e.,

PQ = P−1(a,b,c) =
3abc

ab+ac+bc

We first prove two lemmas of independent interest.

Lemma 2.1. (a) In Figure 1 the angles between the ”floor” AB and the variables a and b, are right-
angled. For the construction of the arithmetic and the harmonic mean for two variables, this is a
convenience, not a requirement. The only requirement is that the variables are parallel.
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(b) In Figure 2 the variables a = AD and b = BC are parallel but not vertical to the ”floor” AB or
to the ”roof” DC. The ”floor” AB can be of an arbitrary length. The line EF through the intersection
of the diagonals is parallel to the variables. The intersection of the diagonals split EF in two parts c1
and c2. The line EF separates AB in two parts, d1 and d2 and DC in d3 and d4. The line GH through
the intersection of the diagonals is drawn parallel to the ”floor” AB.

Proof. From similar triangles in Figure 2 we have that :

Fig. 8 Geometric construction of the harmonic mean of a and b where the variables are parallel, but not vertical to the floor
or roof.

d2

c1
=

d1

a− c1
and

d2

b− c1
=

d1

c1
,

giving that

c1 =
ab

a+b
.

By drawing a line through the intersection of the diagonals that is parallel to DC and using the corre-
sponding similar triangles we also find that

c2 =
ab

a+b
,

i.e.,
c1 = c2,

and that
EF = c1 + c2 =

2ab
a+b

= P−1(a,b).

Hence, both statements (a) and (b) in Lemma 3 follows.

Remark 2.1. From similar triangles in Figure 2 we also have that

d2

c1
=

d1 +d2

a
and

d1

c1
=

d1 +d2

b
,

resulting in

d1 =
a(d1 +d2)

a+b
=

aAB
a+b

,
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and

d2 =
b(d1 +d2)

a+b
=

bAB
a+b

.

Correspondingly, we also find that

d3 =
a(d3 +d4)

a+b
=

aDC
a+b

,

and

d4 =
b(d3 +d4)

a+b
=

bDC
a+b

.

We also need the following result:

Lemma 2.2. The three lines in the ”floor” BG, CH and AM in Figure 2 intersect in a single point P
within the triangle ABC. Clearly, then also the lines DL, EJ and FK intersect in a single point Q in
the ”roof” triangle DEF.

Proof. The bottom triangle, ABC, is placed in a coordinate system, as shown in Figure 2.

Fig. 9 The bottom triangle from Figure 2 placed in a coordinate system.

Vertical above the points A,B and C (i.e. in the z-direction), although not visible in Figure 2, stand
the three variables a,b and c, see Figure 2. Their existence is used in the calculation of AH,AG and
BM. According to Lemma 2.1 and Remark 2.1 we have that

AH =
da

a+b
,

BM =
eb

b+ c
,

and
AG =

f a
a+ c

,

where d = AB, e = BC and f = AC. The coordinates of A, B and C are (0,0), (d,0) and (p,q),
respectively. From these formulas and from similar triangles in Figure 2 we can determine the other
set of coordinates (see Figure 2):
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Hx =
da

a+b
,

Hy = 0,

Gx =
pa

a+ c
, (2.1)

Gy =
qa

a+ c

Mx =
pb+ cd
b+ c

,

and
My =

qb
b+ c

.

Next, we formulate the equations for the intersecting lines in Figure 2 using the coordinates above:

BG : y =− qa
d(a+ c)− pa

x+
qad

d(a+ c)− pa
,

and

CH : y =
q(a+b)

p(a+b)−ad
x− qad

p(a+b)−ad
.

The intersection point P = (Px1 ,Px2) between BG and CH is decided by

Px1 =
acd + pab

ab+ac+bc
, (2.2)

and
Py1 =

qab
ab+ac+bc

.

The line through A and M is

AM : y =
qb

pb+ cd
x.

The intersecting point (Px2 ,Py2) between BG and AM is defined by:

Px2 =
acd + pab

ab+ac+bc
,

and
Py2 =

qab
ab+ac+bc

.

Hence, the pair of coordinates, (Px1 ,Py1) and (Px2 ,Py2) are identical. This means that the three lines

intersect in a single point. This completes the proof.
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Proof (Proof of Theorem 2). From similar triangles in Figure 2 we find that

PG
Px−Gx

=
BP

d−Px
,

i.e.,
PG
BP

=
Px−Gx

d−Px
.

We insert the values for Px and Gx from (2.2) and (2.1), which give that

PG
BP

=
ac

b(a+ c)

i.e.
PG = kac, (2.3)

and
BP = kb(a+ c) . (2.4)

Hence,
BG = PG+BP = k(ab+ac+bc), (2.5)

where k is an undetermined constant.
We consider the trapezoid GBEJ from Figure 2:

Fig. 10 The trapezoid GBEJ from Figure 2.

From similar triangles in Figure 2 we see that

PT = GJ
BP
BG

(2.6)

and
T Q = b

PG
BG

. (2.7)
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Moreover, from Figure 2, Lemma 2.1 and Remark 2.1 we know that

GJ =
2ac

a+ c
. (2.8)

We insert the values from (2.8), (2.3), (2.4) and (2.5) in (2.6) and in (2.7), which give that

PT =
2abc

ab+ac+bc

and
T Q =

abc
ab+ac+bc

.

We then find
PQ = PT +T Q =

3abc
ab+ac+bc

.

Hence, we can conclude that

P−1(a,b,c) = PQ =
3abc

ab+ac+bc
.

The proof is complete.

3 3-D Construction of the arithmetic mean, P1(a,b,c)

First we note that the construction of the arithmetic mean of three variables

P1(a,b,c) =
a+b+ c

3

can easily be done by constructing a line of the length a+b+c and trisecting it with standard method.
In this paper we want to show that it also can be constructed using the three-dimensional structure
described above.

Fig. 11 Construction of an arbitrary triangle ABC with the variables a, b and c as vertical lines in the triangle corners.

Figure 2 is, as before, constructed by drawing an arbitrary triangle ABC and raising the three
variables a,b and c as vertical lines from each of the three corners. The top end of the vertical lines
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form a triangular ”roof”, DEF . We draw the lines from the corners of the ”floor” triangle ABC and the
”roof” triangle DEF to the mid point of the opposite triangle sides. The lines in the ”floor” triangle,
BO, CM and AU, intersect at S, and the corresponding lines in the ”roof” triangle, EP, FN and DT,
intersect at R. The trapezoids ADTU, BEPO and CFNM are all vertical to the ground ”floor”. The
intersecting line RS is therefore also vertical to the ”floor” triangle.

Our main result in this section reads:

Theorem 3.1. The line RS is equal to the arithmetic mean of the lengths a,b,c in Figure 2, i.e.,

P1(a,b,c) = RS =
a+b+ c

3
.

Proof. It is a well established fact that the lines from the corners in an arbitrary triangle to the mid
point of the opposite side intersect in a single point, and that the intersection point divides each such
line in two segments in proportion 2 : 1, see e.g. [15].

Since O and P are at the mid point of AC and DF, respectively, the line OP is the arithmetic mean
of a and c, i.e., OP = a+c

2 . Correspondingly we also have that MN = a+b
2 and UT = b+c

2 .
We consider the trapezoid BEPO in Figure 2, which can be seen in detail in Figure 2.

Fig. 12 The trapezoid BEPO from Figure 2.

We know that
OP =

a+ c
2

(3.1)

and that
SO
BS

=
1
2
.

From similar triangles in Figure 2 we find that

T R
b

=
SO
BO

=
1
3
,

i.e.,

T R =
b
3

and
ST
OP

=
BS
BO

=
2
3
. (3.2)
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We insert OP from (3.1) into (3.2) and obtain that

ST =
a+ c

3
.

Therefore, we have that

RS = ST +T R =
a+b+ c

3
,

i.e.,
P1(a,b,c) = RS.

The proof is complete.
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