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ABSTRACT 

OBJECTIVES: To systematically review the impact of antibiotic therapy in the neonatal 

period on changes in the gut microbiota and/or antibiotic resistance development. 

METHODS: Data sources were PubMed, Embase, Medline and the Cochrane Database, 

supplemented by manual searches of reference lists. Randomised controlled trials (RCTs) and 

observational studies were included if they provided data on different categories of antibiotic 

treatment (yes versus no, long versus short duration and/or broad versus narrow spectrum 

regimens) and subsequent changes in the gut microbiota and/or antibiotic resistance 

development. We evaluated risk of bias using the Cochrane Handbook, adapted to include 

observational studies. When appropriate, we used the vote-counting method to perform semi-

quantitative meta-analyses. We applied the Grades of Recommendation, Assessment, 

Development and Evaluation approach to rate the quality of evidence (QoE). 

RESULTS: We included 48 studies; three RCTs and 45 observational studies. Prolonged 

antibiotic treatment was associated with reduced gut microbial diversity in all three studies 

investigating this outcome (very low QoE). Antibiotic treatment was associated with reduced 

colonization rates of protective commensal anaerobic bacteria in four of five studies (very low 

QoE). However, all three categories of antibiotic treatment were associated with an increased 

risk of antibiotic resistance development, in particular multi-drug resistance in Gram-negative 

bacteria, and we graded QoE for these outcomes as moderate. 

CONCLUSIONS: We are moderately confident that antibiotic treatment leads to antibiotic 

resistance development in neonates, and it may also induce potentially disease-promoting gut 

microbiota alterations. Our findings emphasize the need to reduce unnecessary antibiotic 

treatment in neonates.  



 

INTRODUCTION 

Upon birth, infants are suddenly exposed to a wide range of bacteria colonizing 

mucoepithelial surfaces, including the gut.1 The subsequent development of the infant gut 

microbiota is dynamic, non-resilient and shaped by factors like mode of delivery, feeding, diet 

and environment.2-4 A healthy gut microbiota has a crucial role in the development of the 

immune systems, digestive functions and protection against infections.4-6 The commensal 

aerobic and anaerobic bacteria are also essential for colonization resistance; the ability to 

prevent invasion and persistent carriage of pathogenic and antibiotic resistant bacteria.7 

 Antibiotics are the most commonly prescribed medications in the neonatal unit.8 

However, antibiotic overuse in early life disrupts the actively developing gut microbiota 

causing “bacterial dysbiosis”, which is associated with an increased risk of early adverse 

outcome such as necrotizing enterocolitis and fungal infections.9 Early antibiotic exposure has 

also been associated with allergic diseases, obesity, diabetes and inflammatory bowel disease 

later in life.10-14 Overuse of antibiotics, particularly broad-spectrum antibiotics, applies a 

selection pressure which favours antibiotic resistant bacteria and decreases colonization 

resistance.7, 15 The currently observed increase in resistance to aminoglycosides and 

ampicillin among Gram-negative bacteria have begun to threaten this traditional combination 

as empiric treatment for neonatal sepsis.16, 17 Moreover, worldwide the emergence of ESBL-

producing Enterobacteriaceae presents major challenges in managing neonatal sepsis.18 

Globally, an estimated 200 000 neonatal deaths are attributed to resistant organisms each 

year.19 However, the relative impact of different types of antibiotic exposure on the actively 

developing gut microbiota composition and antibiotic resistance development is not fully 

understood.  

 The purpose of the current systematic review is to identify, critically appraise, and 

synthesize evidence from studies reporting different categories of antibiotic therapy in 

neonates and their impact on the gut microbiota and/or antibiotic resistance development. We 



 

included both observational studies and randomised clinical trials (RCTs) in line with 

suggestions from the Cochrane group stating that systematic reviews of adverse effects will 

usually need to include non-randomised studies in addition to RCTs. 

 

METHODS 

This review was reported according to the Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses following a registered protocol and according to the recommendations 

given by the Cochrane Handbook for Systematic Reviews and Interventions.20-22 We recently 

published a systematic review on early clinical adverse effects of neonatal antibiotic treatment 

from the same research protocol.9 For this review, our primary research question was "Are 

different categories of antibiotic treatment in neonates associated with different changes in gut 

microbiota composition and/or differences in antibiotic resistance development?" 

 

Search Strategy 

We developed our search strategy in consultation with an epidemiologist, a librarian, a 

paediatric pharmacologist and a neonatologist. We searched PubMed, Embase, Medline and 

the Cochrane Database using MeSH-Terms and free text searches with no time restrictions 

(last search 22nd of December 2016). The first search was conducted with MeSH terms in 

PubMed, Medline and the Cochrane Database by combining "Infant, Newborn" and "Anti-

Bacterial Agents" with one of two outcome terms: "Drug Resistance, Bacterial" or 

"Microbiota". The Embase database uses its own key words, and we combined "Newborn" 

and "Antibiotic Agent" with either "Antibiotic Resistance" or "Microbiome". The second 

search was conducted using free text in PubMed, Medline and Embase combining the 

keywords: "Infant, low Birth Weight" or "Infant, Postmature" or "Infant, Premature" or 

"Infant, Newborn" with "Anti-Bacterial Agents" or "Antibiotics" and one of the following: 

"Antibiotic Resistance" or "Antibacterial Drug Resistance" or "Microbiota" or "Microbiome" 



 

or "Microbiomes" or "Gut flora". We examined reference lists of included studies and 

relevant reviews to identify additional eligible studies. We then combined all citations and 

excluded duplicates or triplicates. We did not contact authors for supplementary information 

and we did not perform searches in the grey literature. 

 

Study Selection and Eligibility Criteria 

A study was eligible for review if it reported different categories of intravenous antibiotic 

treatment in the neonatal period and evaluated their impact on changes in the gut microbiota 

and/or antibiotic resistance development. If infants were born prematurely we defined the 

neonatal period up to 44 weeks postmenstrual age. We compared three different categories of 

antibiotic therapy: (1) Antibiotic treatment yes versus no, (2) antibiotic treatment long versus 

short and (3) antibiotic treatment broad versus narrow spectrum. For category (2), we 

suggested in advance that “prolonged” antibiotic exposure was always ≥ 3 days or the longest 

regimen among two antibiotic regimens compared. For category (3), we always defined 

regimens including third-generation cephalosporins or carbapenems as broad-spectrum 

regimens when compared to regimens containing aminoglycosides for coverage against 

Gram-negative bacteria. This definition was based on previous reports indicating that empiric 

therapy containing a third-generation cephalosporin for Gram-negative coverage induces 

significantly more resistance than a regimen containing an aminoglycoside.15 If two similar 

regimens were compared, the regimen with the broadest spectrum was labelled broad-

spectrum. Both RCTs and observational studies such as cohorts, case-control studies, and 

cross-sectional studies were eligible for inclusion. We included case-control studies reporting 

on the prespecified outcomes if data on antibiotic therapy prior to the outcomes were 

presented as extractable data in cases and controls. We excluded case reports and case series, 

studies with a non-neonatal or non-human population, studies that were written in other 



 

languages than English and studies that investigated antenatal antibiotics, oral antibiotics 

and/or low-dose intravenous vancomycin prophylaxis.  

Screening, Data Extraction, and Management 

Two reviewers (JWF and EE) independently screened search results and assessed each 

potentially eligible study per our predetermined inclusion and exclusion criteria. We only 

excluded studies that we agreed were irrelevant according to our predefined criteria. A third 

researcher (CK) had the decisive vote in case of disagreement. We extracted the following 

information from included studies; author, year, country, study design, study population, 

including gestational age (GA) and birth weight (BW), comparison of outcomes between 

groups with different categories of antibiotic treatment and, if available, risk estimates with 

95% CI for the specific outcome.  

 Gut microbiota analyses were based on faecal samples using both standard culture-

based methods and culture-independent methods relying on DNA amplification and 

sequencing.23 After reviewing the articles presenting data on gut microbiota we decided to 

present data from these studies in three main categories; microbial load, microbial diversity 

and microbial composition, clearly acknowledging some overlap between these categories. 

We defined microbial load as the total number of bacteria in a sample, microbial diversity as 

the number of different bacterial genus or species in a sample and microbial composition as 

the taxonomical composition in a sample. Antibiotic resistance development was based on 

detection of antibiotic susceptibility patterns in bacteria isolated from blood, urine, 

cerebrospinal fluid, faeces, tracheal aspirates and/or the skin surface. We defined MDR 

bacteria as bacteria resistant to ≥ 2 unrelated classes of antibiotics or broad-spectrum 

antibiotics.24-28 Included in this category were ESBL-producing Gram-negative bacteria, 

carbapenem-resistant Acinetobacter baumannii (CRAB) and Gram-negative bacteria resistant 

to third-generation cephalosporins. Antibiotic resistant bacteria that did not meet any of these 

criteria were defined as “other antibiotic resistant bacteria”. 



 

We applied a simple vote-counting method to investigate whether the different 

categories of antibiotic therapy had any effect on the outcomes of interest.22 Studies were 

classified based on whether they showed a reduction in the outcome measure, no effect or an 

increase in the outcome measure following antibiotic treatment. When appropriate, outcomes 

were presented in vote-count figures. 

 

Assessment of Methodological Quality 

Methodological quality was assessed by using the Cochrane Handbook of Systematic 

Reviews of Interventions and recently published suggestions on how to assess risk of bias and 

confounding in observational studies.22, 29 Five domains related to risk of bias were assessed 

for each study included: Selection, Performance, Detection, Reporting and Confounding. 

Risks of bias were judged as low, high or unclear for each domain. The risk of reporting bias 

was considered unclear in studies that did not have a previously published protocol. The risk 

of detection bias was considered high in studies that examined gut microbiota with culture-

based methods, unclear in studies that applied 16S rRNA sequencing techniques and low in 

studies that applied shotgun metagenome sequencing techniques. Two reviewers (JWF and 

EE) assessed the risks of bias for of each study. Disagreements in the categorization process 

were resolved after discussion between JWF, EE and CK.  

  We applied the Grades of Recommendation, Assessment, Development and 

Evaluation Working Group (GRADE) approach to rate the quality of evidence (QoE) for each 

relevant outcome category.30 This approach specifies four levels of quality from high to very 

low, which define the degree to which its' estimates of effects or associations can be trusted.22, 

30 RCTs started as high QoE and observational studies started as low QoE.30 Several factors 

could either downgrade or upgrade the quality rating.  

 



 

RESULTS 

Overview of Included Studies 

From 3380 identified studies, we reviewed 137 potentially eligible full-text articles. Forty-

eight studies met our inclusion criteria: three RCTs published between 2000 and 201315, 31, 32 

and 45 observational studies published between 1974 and 2016 (Figure 1).24-28, 33-73 Two 

articles presented data from the same study population and were defined as one study.34, 35 

Antibiotic treatment was the randomized intervention in two out of three included RCTs.15, 31, 

32 Among the 45 observational studies, there were 22 prospective cohort studies, 12 case-

control studies, seven before-after studies and four retrospective cohort studies. There were 

large variations regarding the categories of antibiotic therapy studied. Tables S1-S2 (available 

as Supplementary data at JAC online) display the main characteristics and primary outcomes 

of interest from the 48 included studies. 

 

Risk of Bias and Quality of Evidence (QoE) 

Figure S1a-b (available as Supplementary data at JAC online) display risk of bias assessments 

for each included study. Outcomes adjusted for differences in populations were reported in 

16/45 (36%) observational studies.25, 26, 28, 39, 44, 46, 50, 52, 55, 57, 63, 64, 67, 69-71 Five of these studies 

used stratification or multivariate analysis to adjust for antenatal antibiotic treatment as a 

potentially confounding variable. None of the RCTs were included in public registries.  

 We graded the QoE as very low for the outcomes microbial load and microbial 

diversity in relation to the three different categories of antibiotic treatment due to inclusion of 

observational studies with serious risk of bias and inconsistent results. We graded the QoE as 

very low for the outcomes relating to microbial composition after antibiotic treatment (Figure 

2a-d). We graded the QoE as moderate for the outcomes relating to antibiotic resistance 

development due to inclusion of observational studies that either had large effect sizes (yes 



 

versus no and broad versus narrow) or a dose-response effect (long versus narrow) after 

antibiotic treatment (Figure 3a-c).  

 

Gut Microbiota Composition 

Nineteen studies reported on antibiotic exposure and impact on the gut microbiota 

composition (Table SI). There were two RCTs31, 32 and 17 observational studies.33-49, 73 Three 

studies reported outcome data from both antibiotic treatment yes versus no and broad versus 

narrow spectrum,34, 37, 47 and one study reported outcome after antibiotic treatment yes versus 

no and long versus short.42 The remaining 15 studies reported outcome data from one 

category of antibiotic treatment. To examine gut microbiota composition, nine studies used 

16S rRNA gene-sequence analysis,33, 38-40, 42, 44-46, 49 one used fluorescent in situ hybridisation 

techniques,32 one used deep shotgun metagenome sequence analysis48 and eight used standard 

culture-based methods.31, 34-37, 41, 43, 47, 73 The included studies reported primarily taxonomic 

data with different hierarchical details on i) Enterobaceriaceae, ii) obligate commensals 

anaerobic bacteria (e.g. bacteroides, lactobacilli and bifidobacteria etc.), iii) clostridia and/or 

iv) Gram-positive cocci. 

 

Microbial Load 

Three studies (296 neonates) compared the impact of antibiotic treatment (yes versus no) on 

microbial loads.32, 34, 40 One study (165 neonates) found increased microbial loads,34 one RCT 

(113 preterm neonates) found decreased microbial loads,32 while one study (18 term neonates) 

found no significant differences in microbial loads following antibiotic treatment.40 A small 

study of extremely low birth-weight neonates found an inverse correlation between the 

duration of antibiotic therapy and the microbial load on day 30 of life.41 

 



 

Microbial Diversity 

Four studies (159 neonates) compared microbial diversity after antibiotic treatment (yes 

versus no).40, 42, 44, 49 Two studies (112 preterm neonates) reported decreased diversity among 

antibiotic treated neonates42, 49 and two studies (47 neonates) reported no significant 

differences.40, 44 Three studies (224 preterm neonates) examined the impact of antibiotic 

therapy duration (long versus short) on microbial diversity, and all three found decreased 

diversity following prolonged therapy.41, 44, 48 

 

Microbial Composition 

Figure 2 displays the results of studies reporting the impact of antibiotic treatment (yes versus 

no) on microbial composition. Nine studies focused on Enterobacteriaceae; four reported an 

increase and five studies reported unchanged composition after antibiotic treatment, mainly 

ampicillin plus an aminoglycoside (Figure 2a).33, 34, 36, 37, 40, 42, 43, 46, 47 Five studies focused on 

different commensal obligate anaerobes showing a clear trend towards reduced colonization 

rates following treatment (Figure 2b).35, 36, 38, 40, 43 In the five studies focusing on clostridia, 

there were equivocal results (Figure 2c).36, 39, 40, 45, 46 Finally, four studies focused on Gram-

positive cocci, and these studies showed either unchanged or higher colonization rates after 

antibiotic treatment (Figure 2d).33, 36, 37, 40    

 Two studies (n=983) reported Enterobacteriaceae colonization rates after treatment 

with broad versus narrow spectrum antibiotics.37, 47 Both studies found lower colonization 

rates following third-generation cephalosporin treatment. One study of preterm infants (n=76) 

reported lower colonization rates of clostridia in those who received ≥ 10 days of antibiotic 

therapy compared with shorter duration.39 Another study with preterm infants (n=74) reported 

higher colonization rates of staphylococci in those who received ≥ 5 days of antibiotic 

treatment compared with shorter duration therapy.42 Finally, two studies (n=104) compared 



 

the impact of antibiotic therapy (broad versus narrow) on abundance and/or colonization rates 

with staphylococci, but neither found any significant differences.37, 42  

 

Antibiotic Resistance Development 

Thirty-one studies, two RCTs15, 31 and 29 observational studies,24-28, 37, 50-72 evaluated the risk 

of antibiotic resistance development after antibiotic exposure (Table S2). Five studies 

reported outcome after antibiotic treatment yes versus no and broad versus narrow 

spectrum.27, 37, 53, 55, 67 Two studies reported outcome after antibiotic treatment long versus 

short duration and broad versus narrow spectrum.26, 64 Two studies reported outcome after 

antibiotic treatment yes versus no and long versus short duration.25, 57 The remaining 23 

studies assessed only one category of antibiotic therapy.  

 Nine studies reported on both infections and colonization with antibiotic-resistant 

bacteria,24, 51, 57, 58, 60, 62, 65, 67, 68 while 15 studies only reported on colonization,15, 25-27, 31, 37, 53-56, 

59, 61, 66, 69, 72 and seven studies only reported on infections.28, 50, 52, 63, 64, 70, 71 MDR bacteria 

were varyingly defined as bacteria resistant to both third-generation cephalosporins and 

aminoglycosides55, 58 or bacteria resistant to ≥ 2 or ≥ 3 unrelated classes of antibiotics.24-28 

Thirty of 31 studies focused solely on antibiotic resistance development in Gram-negative 

bacteria. Among these, 20 studies focused on MDR Gram-negative bacteria. 

 

MDR Gram-negative bacteria 

Figure 3 displays the results of the 20 studies reporting the impact of antibiotic exposure on 

rates of infection and/or colonization with MDR Gram-negative bacteria. Nine studies 

reported data after antibiotic treatment yes versus no, and the majority reported increased 

rates of MDR Gram-negative bacteria following treatment (Figure 3a).25, 27, 55, 57, 59, 63, 67, 69, 70 

Five studies reported data after long versus shorter duration of treatment, and the majority 

found significantly more MDR Gram-negative bacteria after prolonged treatment (Figure 



 

3b).25, 26, 56, 57, 64 Thirteen studies reported data after treatment with broad spectrum versus 

narrow spectrum antibiotics, and the overwhelming majority reported higher rates of MDR 

Gram-negative bacteria following treatment with broad spectrum antibiotics (Figure 3c).15, 24, 

26-28, 50, 51, 55, 58, 64, 65, 67, 71 

 

Other antibiotic resistant bacteria 

Four studies (n=1825) compared the impact of antibiotic treatment (yes versus no) on 

antibiotic resistant bacteria that were not MDR according to our definition.37, 52, 53, 66 One 

study (n=584) found a higher rate of prior antibiotic treatment in neonates colonized with 

antibiotic resistant Escherichia coli and/or Klebsiella pneumonia.66 One study (n=953) found 

an increased incidence of TEM-1 genes in E. coli strains in neonates following antibiotic 

therapy.53 Two studies (n=288) found no statistically significant associations between 

antibiotic treatment (yes versus no) and subsequent antibiotic resistance development.37, 52 

Two studies compared the impact of antibiotic therapy duration;61, 72 one of them (n=1180) 

found significantly longer prior antibiotic treatment among neonates colonized with antibiotic 

resistant Gram-negative bacteria,72 while the other (unknown number of neonates) found no 

correlation between the duration of treatment and gentamicin-resistant Gram-negative 

bacteria.61 

 Eight studies (n=3029) compared the impact of broad- versus narrow-spectrum 

antibiotic treatment.31, 37, 53, 54, 60, 62, 68, 72 One RCT (n=276) found higher colonization rates 

with ampicillin-resistant Acinetobacter baumannii following treatment with penicillin and 

gentamicin compared with ampicillin and gentamicin.31 One study (n=440) found a higher 

rate of both ampicillin and cefuroxime resistance in Gram-negative bacteria following 

treatment with ampicillin compared with cefuroxime.62 One study (n=118) found a higher rate 

of gentamicin resistance among Gram-negative bacteria following treatment with gentamicin 

compared with amikacin.68 The remaining five studies (n=2195) did not formally test for 



 

statistically significant differences when comparing broad versus narrow spectrum 

regimens,37, 53, 54, 60, 72 but 3/5 studies (n=1258) reported increased rates of antibiotic resistance 

following broad-spectrum therapy.54, 60, 72 

 

DISCUSSION 

Key Findings  

To our knowledge, this is the first systematic review to examine antibiotic therapy in neonates 

and its impact on gut microbiota and/or antibiotic resistance development. The primary 

findings were the lack of RCTs and large high-quality observational studies and the 

heterogeneity regarding methodology and outcomes among the included studies. Despite this, 

there were several salient features in this review.  

 First, prolonged antibiotic therapy was associated with reduced gut microbial 

diversity.41, 44, 48 Decreased gut microbial diversity has been associated with early adverse 

outcomes such as NEC, and may have potential long lasting consequences through increased 

likelihood of obesity and inflammatory diseases.10, 49, 74-77 Combined, these findings imply 

that prolonged exposure to antibiotic treatment in the neonatal period may increase the 

likelihood of disease, either in the neonatal period or later in life. However, QoE for this 

outcome was graded as very low. It is possible that neonatal antibiotic therapy, regardless of 

treatment length, leads to decreased microbial diversity, but the included studies in this 

category were small and two out of four studies did not detect a significant difference.40, 42, 44, 

49 Second, four out of nine studies reported increased abundance and/or colonization 

rates of Enterobacteriaceae following neonatal antibiotic treatment, while none of the studies 

reported reduced abundance.33, 34, 36, 37, 40, 42, 43, 46, 47 In the majority of these studies, the 

empiric regimens consisted of ampicillin and gentamicin. We speculate that intravenous 

ampicillin also has an impact on Gram-positive gut bacteria despite being mainly secreted 

through the kidneys,78 while intravenous gentamicin mainly covering Gram-negative bacteria 



 

in the blood stream,79 has a very low penetration into the gut. Combined, this may give undue 

benefits to the Gram-negative Enterobacteriaceae. In contrast, third-generation cephalosporin 

therapy may lead to a relatively lower abundance of Enterobacteriaceae as both Gram-

negative and Gram-positive bacteria are within their spectrum of activity.79 However, QoE for 

this outcome was again graded as very low, and even though overgrowth of 

Enterobacteriaceae in the human gut has previously been associated with NEC, inflammatory 

bowel disease and chronic fatigue syndrome there is no strong evidence of any causal 

relationship.74, 76, 80-82 

 Third, antibiotic treatment in the neonatal period was strongly associated with reduced 

abundance of protective commensal anaerobic bacteria such as bifidobacteria, lactobacilli 

and/or bacteriodes.35, 40, 43 These bacteria provide colonization resistance against antibiotic 

resistant bacteria and potentially pathogenic bacteria such as Enterobacteriaceae and 

Clostridium difficile.7 Moreover, it is well known that bifidobacteria may reduce expression 

of inflammatory response genes and stimulates genes promoting the integrity of the mucosal 

barrier. The QoE for this outcome was graded as very low, but our results are in line with 

findings in adult populations showing decreased diversity, reduced colonization rates of 

obligate anaerobes and increased colonization rates of Proteobacteria following antibiotic 

exposure.83-85 Furthermore, our findings are biologically plausible as reduced numbers of 

bifidobacteria and lactobacilli seem to increase the risk of necrotising enterocolitis in preterm 

infants with an exaggerated inflammatory response.82, 86-90 In adults some studies have found 

larger changes in the gut microbiota than oral microbiota following antibiotic treatment, with 

larger resilience in the oral communities. 84,85 However, we believe that the gut microbiota is 

of highest clinical relevance, both as the largest reservoir for antibiotic resistant bacteria and   

because the gut is characterised as the motor of multiple organ dysfunction syndrome. 

 Fourth, all three categories of neonatal antibiotic treatment investigated in this review 

were clearly associated with an increased risk of antibiotic resistance development, in 



 

particular ESBL-producing Gram-negative bacteria and other MDR bacteria. These findings 

were based on moderate QoE. Antibiotic resistance genes exist even in the absence of 

antimicrobial drugs.91, 92 Moreover, overuse of antibiotics may lead to increased antibiotic 

resistance through several mechanisms.91, 93 Antibiotics apply a direct selection pressure that 

gives significant advantages to bacteria expressing resistance genes.94 Antibiotic treatment 

also contributes to changes in the human gut-associated resistome, which comprise numerous 

functional antibiotic resistance genes in the gut microbiota.95 Gibson and colleagues recently 

found that only a fraction of antibiotic resistance genes that are enriched after a specific 

antibiotic therapy are unique to the particular antibiotic given.96 Finally, antibiotic treatment 

appears to reduce colonization resistance against antibiotic resistant bacteria through the 

collateral destruction of obligate anaerobic bacteria.7, 97 An increase in the gut resistome and a 

decrease in colonization resistance could theoretically increase horizontal transfer of 

antibiotic resistance genes from commensals to potential pathogens.98 Although in vivo 

horizontal transfer between commensals and pathogens in the gut microbiota remains to be 

shown, there is evidence of exchange of antibiotic resistant genes between environmental 

bacteria and human pathogens.99  

 

Strengths and Limitations 

The primary strength of this study is our rigorous and sensitive search strategy based on a 

previously registered search protocol. Additionally, the adverse impact of the developing 

infant gut microbiota is of great clinical and scientific interest. The main limitations were the 

lack of RCTs and the diverse studied outcomes which made meta-analysis impossible to 

perform. Instead, we applied a semi-quantitative vote-counting method to assess the effect of 

neonatal antibiotic treatment on relevant outcomes. This method has limitation as it usually 

fails to take account of the population sizes and methodological quality of pooled studies. 

Still, vote counting may be an effective method to assess ranking of outcomes.100 Moreover, 



 

we attempted to improve the method by presenting the differential weight of each study with 

squares corresponding to sample size.  

 The majority of studies included were small and there was a large heterogeneity in 

study designs, outcomes, categories of antibiotic treatment and methodological quality. 

Observational studies are prone to biases and confounding, and only a third of the included 

studies attempted to adjust for confounding through multivariable regression analysis. 

Evidence from observational studies is usually considered to be of low quality. However, well 

designed observational studies have been shown to provide similar results to RCTs and they 

can therefore be useful for detecting rare adverse outcomes by allowing larger sample sizes 

and longer lengths of follow up than RCTs for lower costs.101 We used the GRADE approach 

to assess QoE. Overall, we graded QoE as very low for all outcomes presented in the gut 

microbiota category. In contrast, we considered the QoE as moderate in the antibiotic 

resistance category due to large effect sizes and a dose-response effect. Based on current 

evidence we are therefore moderately confident that all types of antibiotic treatment lead to 

increased rates of antibiotic resistance. 

 All included studies published prior to 2007 used culture-based techniques to examine 

the gut microbiota composition. It has been estimated that < 20% of environmental bacteria 

can be grown in defined growth media. This increases the risk of detection bias in older 

studies.102 Sequencing-based techniques also have limitations. Studies relying on 16S rRNA 

analysis allow only a coarse sorting of bacteria mainly at phylae level. Deep shotgun 

metagenom sequencing allows for finer distinction at genus or species level, but it is of 

crucial importance to standardize sampling and temperature control during the pipeline up to 

DNA extraction in order to obtain valid results.103 Moreover bioinformatic presentations are 

often challenging to understand and interpret.  

 We also acknowledge that our definition of broad-spectrum and narrow-spectrum 

antibiotics is somewhat arbitrary as most of the narrow-spectrum regimens covered both 



 

Gram-negative and Gram-positive bacteria. However, our study confirms previous findings 

clearly suggesting that antibiotic regimens containing third-generation cephalosporins or 

carbapenems are more frequently associated with antibiotic resistance development than 

regimens with aminoglycosides for Gram-negative coverage.15, 24, 26, 28, 50, 55, 64, 65, 67, 71 Finally, 

we decided to exclude studies that only examined antenatal antibiotic treatment, despite the 

frequent use of intrapartum antibiotic prophylaxis for prevention of neonatal infections and its 

reported effects on the infant gut microbiota and carriage of antibiotic resistance genes.104 The 

focus of this review was on neonatal antibiotic treatment given for suspected neonatal 

infection, and the isolated effects of antenatal antibiotics, given to infants that did not receive 

antibiotics after birth, were beyond the scope of this study. 

 

Implications and Conclusion 

This systematic review highlights the profound impact on the gut microbiota and antibiotic 

resistance development exerted by antibiotic treatment in neonates. Antibiotic exposure in the 

neonatal period appears to induce varying potentially disease-promoting alterations in the gut 

microbiota, but quality of evidence was very low for outcomes investigated in this review. 

However, we are moderately confident, based on data from this review, that antibiotic 

treatment leads to antibiotic resistance development, in particular in Gram-negative bacteria. 

This clearly threatens current empiric antibiotic regimens and is a finding of great concern.  

 In conclusion, the findings from this systematic review, along with the findings from 

our recent systematic review on early adverse outcome of neonatal antibiotic therapy9, 

strongly emphasize the need to reduce unnecessary antibiotic treatment in neonates. Important 

steps to reduce the burden of neonatal antibiotic therapy include improving preventive 

measures such as hand hygiene, stopping antibiotic therapy after 36-48 hours if only vaguely 

suspected infection and no growth in the blood culture and restricting the empiric use of 

broad-spectrum antibiotic treatment.105, 106 
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 

Flow diagram 

 

 

 

  



 

 

Figure 2. Vote count on gut microbial composition after antibiotic exposure – compared to no antibiotic exposure.  

The sizes of squares are proportional to study populations. * symbolizes a lack of testing for statistical significance. 
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b) Commensal obligate anaerobes (5 studies; 304 neonates) 
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c) Clostridium species (5 studies; 248 neonates) 
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d) Gram-positive cocci (4 studies; 116 neonates) 
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Figure 3. Vote count on infection and/or colonization with MDR Gram-negative bacteria following antibiotic exposure. The sizes of 

squares are proportional to study populations. † symbolizes multivariate regression analysis. NDA; no data available. 
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b) Antibiotic exposure - long duration compared to shorter duration (5 studies; 4281 neonates) 
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Figure S1. Risk of bias graph: review of authors' judgements about each risk of bias item for 1 

each included study and the two outcomes. (a) studies reporting on changes in gut microbiota 2 

(n=20). (b) studies reporting on changes in antibacterial resistance development (n=31). 3 
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Table S1. Studies reporting previous antibiotic exposures and the effect on gut microbiota: Summary of main characteristics and results 

 

Study Design N GA and BW Empiric regimen Categories of antibiotic exposure and changes in gut microbiota 
Arboleya et al., 

2015 (Spain) 

Prospective 

cohort 

40 All GAs EOS: AMP + GEN, LOS: 

VAN + AMK 
Yes vs. no: Composition:  Staphylococcus spp. & Comamonadaceae 

Bennet et al., 1986 

& 1987 (Sweden) 

Prospective 

cohort 

164 All GAs NDA Yes vs. no: Load: ; Composition:  Klebsiella/Enterobacter spp., 

 Anaerobes, Bifidobacterium spp., Lactobacillus spp., Bacteriodes spp. 

Broad vs. narrow: Composition:  Enterococcus spp.,  S. faecalis 

Blakey et al., 1982 

(Australia) 

Prospective 

cohort 

28  GA ≤ 36 weeks EOS: PEN + GEN Yes vs. no: Composition: No difference* 

Bonnemaison et al., 

2003 (France)* 

Prospective 

cohort 

30 All GAs EOS: AMX + NET ± CTX Yes vs. no: Composition: No difference Broad vs. narrow: Composition: No 

difference* 

Butel et al., 2007 

(France) 

Prospective 

case-control 

52 GA 30 - 35 weeks NDA Yes vs. no: Composition: No significant difference 

Ferraris et al., 2012 

(France) 

Retrospective 

cohort 

76 GA < 36 weeks NDA Yes vs. no: Composition:  C. butyricum Long vs. short: Composition:  

Clostridium spp. 

Fouhy et al., 2012 

(Ireland) 

Prospective 

cohort 

18 GA ≥ 37 weeks AMP + GEN Yes vs. no: Composition:  Enterobacteriaceae, Gammaproteobacteriae,  

Peptostreptococcaceae,  Enterococcus spp.,  Clostridium spp., 

 Lactobacillus spp.,  Bifidobacterium spp.,  Bacteriodetes 

Gewolb et al., 1999 

(USA) 

Prospective 

cohort 

29 BW < 1000 g EOS: AMP + GEN, LOS: 

VAN + CTX 
Long vs. short: Load: ; Diversity:  

Goldmann et al., 

1978 (USA) 

Prospective 

cohort 

63 All GAs NDA Long vs. short: Composition:  Klebsiella spp.,  Enterobacter spp., and/or 

 Citrobacter spp. 

Greenwood et al., 

2014 (USA) 

Prospective 

cohort 

74 GA ≤ 32 weeks EOS: AMP + GEN Yes vs. no: Diversity: ; Composition:  Enterobacter spp. Long vs. short: 

Composition:  Enterobacter spp.,  Staphylococcus spp. 

Hall et al., 1990 

(UK) 

Prospective 

cohort 

42 GA ≤ 33 weeks NDA Broad vs. narrow: Composition:  Lactobacillus spp. 

Jacquot et al., 2011 

(France) 

Prospective 

cohort 

29 GA ≤ 30 weeks EOS: AMK + (1) PEN or (2) 

AMP or (3) CTX, LOS: VAN 

+ AMK 

Yes vs. no: Diversity: No significant effect Long vs. short: Diversity:  

Jenke et al., 2013 

(Germany) 

Prospective 

cohort 

68 GA < 27 weeks NDA Yes vs. no: Composition:  C. difficile 

La Rosa et al., 2014 

(USA) 

Prospective 

cohort 

58 BW ≤ 1500 g NDA Yes vs. no: Composition:  Gammaproteobacteria (GA ≥ 26 weeks), 

 Clostridium spp. (GA ≤ 28 weeks) 

Parm et al., 2010 

(Estonia) 

RCT 276 All GAs EOS: (1) PEN + GEN or (2) 

AMP + GEN 
Broad vs. narrow: Composition:  S. haemolyticus,  S. hominis, 

 K. pneumonia,  Enterococcus spp.  S. aureus 
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Tullus et al., 1988 

(Sweden) 

Retrospective 

cohort 

953 All GAs AMP + GEN Yes vs. no: Composition:  E. coli Broad vs. narrow: Composition: No 

significant difference 

Ward et al., 2016 

(USA) 

Case-control 166 All GAs EOS: AMP + GEN Long vs. short: Diversity:  

Westerbeek et al., 

2013 (Netherlands) 

RCT 113 GA < 32 weeks 

± BW < 1500 g 

NDA Yes vs. no: Load:  

Zhou et al., 2015 

(USA) 

Case-control 38 GA < 32 weeks NDA Yes vs. no: Diversity:  

 

Outcomes: Load; the total number of bacteria in a sample, Diversity; the number of bacterial genus or species in a sample, and Composition; the taxonomical composition in a 

sample. Categories: Yes vs. no compares neonates exposed to antibiotics with non-exposed neonates, Long vs. short compares long and short treatment durations, Broad vs. 

narrow compares broad spectrum antibiotic treatment to narrow spectrum treatment. *; did not test for statistical significance, RCT; randomized controlled trial, GA; 

gestational age, PNA; post-natal age, BW; birth weight, g; gram, EOS; early onset sepsis, AMP; ampicillin, GEN; gentamicin, LOS; late onset sepsis, VAN; vancomycin, 

AMK; amikacin, NDA; no data available, PEN; penicillin, AMX; amoxicillin, NET; netilmicin, CTX; cefotaxime 
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Table S2. Studies reporting on previous antibiotic exposures and the risk of antibacterial resistance: Summary of main characteristics 

and results 

 

Study Design N Empiric regimen Categories of antibiotic exposure and changes in antibacterial 

resistance 
Abdel-Hady et al., 

2008 (Egypt) 

Prospective 

cohort 

380 NDA Broad vs. narrow:  ESBL producing K. pneumoniae infection 

Acolet et al., 1994 

(UK) 

Case-control 60 EOS: AMX + CTX, LOS: CTX Broad vs. narrow:  CREC colonization 

Bergin et al., 2015 

(USA) 

Case-control 258 NDA Broad vs. narrow: No significant difference 

Bonnemaison et al, 

2003 (France) 

Prospective 

cohorts 

30 EOS: AMX + NET ± CTX Yes vs. no: Did not assess significance Broad vs. narrow: Did not assess 

significance 

Burman et al., 1992 

(Sweden) 

Retrospective 

cohort 

953 EOS: (1) AMP + GEN or (2) CTX Yes vs. no:  TEM-1 in E. coli Broad vs. narrow: No significant difference 

Burman et al., 1993 

(Sweden) 

Retrospective 

cohort 

46 EOS: (1) AMP + GEN or (2) CTX Yes vs. no: E. cloacae:  MIC to ampicillin, cephalotin, cephalexin 

Calil et al., 2001 

(Brazil) 

Prospective 

cohort 

342 EOS: AMX + (1) GEN or (2) CRO, LOS: 

OXA + (1) GEN or (2) CRO 
Yes vs. no:  MDR E. cloacae colonization Broad vs. narrow:  MDR E. 

cloacae colonization 

Cantey et al., 2016 

(USA) 

Before-after 

study 

2502 EOS: AMX + GEN, LOS: OXA + GEN Long vs. short: No significant difference 

Crivaro et al., 2007 

(Italy) 

Case-control 167 AMP + GEN Yes vs. no:  ESBL-producing S. marcescens and K. pneumoniae Long vs. 

short:  ESBL-producing S. marcescens and K. pneumoniae 

De Araujo et al., 

2007 (Brazil) 

Before-after 

study 

995 PEN & GEN Broad vs. narrow:  MDR GNB 

De Champs et al., 

1994 (France) 

Before-after 

study 

636 (1) AMP + GEN or (2) AMP + AMK Broad vs. narrow:  Gentamicin-resistant, cephalosporin-resistant, and   MDR 

E. cloacae,  Amikacin-resistant P. aerunginosa;  Gentamicin & amikacin-

resistant GNB, MRSE 

De Man et al., 2000 

(Netherlands) 

RCT 436 EOS: (1) PEN + TOB or (2) AMX + CTX, 

LOS: FLU + (1) TOB or (2) CTX 
Broad vs. narrow:  Colonization with cefotaxime-resistant Enterobacter spp. 

& GNB 

Duman et al., 2005 

(Turkey) 

Prospective 

cohort 

118 NDA Yes vs. no:  ESBL-producing Enterobacteriaceae colonization 

Gaynes et al., 1984 

(USA) 

Case-control 32 (1) PEN or (2) AMP + (1) GEN or (2) 

KAN 
Yes vs. no:  Aminoglycoside-resistant E. coli 

Giuffrè et al., 2016 

(Italy) 

Prospective 

cohort 

1152 SAM + GEN Yes vs. no:  MDR GNB colonization Long vs. short:  MDR & ESBL-

producing GNB colonization 
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Isaacs et al., 1988 

(UK) 

Before-after 

study 

NDA EOS: PEN + (1) NET or (2) GEN, LOS: 

FLU + (1) NET or (2) GEN 

Long vs. short: No significant difference 

Kalenic et al., 1993 

(Croatia) 

Before-after 

study 

440 (1) AMP + GEN or (2) CXM + GEN Broad vs. narrow:  Ampicillin-resistant GNB, cefuroxime-resistant GNB & 

cefuroxime-resistant K. pneumoniae 

Kumar et al., 2014 

(India) 

Case-control 65 NDA Yes vs. no:  CRAB blood stream infections 

Le et al., 2008 

(USA) 

Before-after 

study 

250 EOS: AMP + GEN, LOS: VAN + (1) CTX 

or (2) TOB 
Long vs. short:  ESBL-producing Enterobacteriaceae infection Broad vs. 

narrow:  ESBL-producing Enterobacteriaceae infection 

Linkin et al., 2004 

(USA) 

Case-control 10 NDA Yes vs. no:  ESBL-producing Enterobacteriaceae 

Mammina et al., 

2007 (Italy) 

Prospective 

cohort 

210 EOS: SAM + GEN Long vs. short:  MDR GNB colonization Broad vs. narrow:  MDR GNB 

colonization 

Millar et al., 2008 

(UK) 

Prospective 

cohort 

124 EOS: PEN + GEN, LOS: (1) TZP + VAN 

or (2) FLU + GEN 
Yes vs. no: No significant difference Broad vs. narrow:  MDR 

Enterobacteriaceae colonization 

Noy et al., 1974 

(UK) 

Prospective 

cohort 

584 NDA Yes vs. no:  Antibiotic-resistant E. coli & Klebsiella spp. colonization 

Parm et al., 2010 

(Estonia) 

RCT 276 EOS: (1) PEN + GEN or (2) AMP + GEN Broad vs. narrow:  Ampicillin-resistant Acinetobacter spp. colonization  

Pessoa-Silva et al., 

2003 (Brazil) 

Prospective 

cohort 

379 EOS: AMP + GEN, LOS: Varying 

antibiotics 
Yes vs. no:  ESBL-producing K. pneumoniae colonization 

Raz et al., 1987 

(Israel) 

Before-after 

study 

118 (1) AMP + GEN or (2) AMP + AMK Broad vs. narrow:  Gentamicin-resistant GNB and E. cloacae 

Rettedal et al., 2013 

(Norway) 

Case-control 99 NDA Yes vs. no:  ESBL-producing K. pneumoniae colonization 

Sehgal et al., 2007 

(India) 

Case-control 63 EOS: AMP + GEN, LOS: 

3rd gen. cephalosporin + AMK 
Yes vs. no:  ESBL-producing GNB blood stream infection 

Thatrimontrichai et 

al., 2013 (Thailand) 

Case-control 96 EOS: AMP + GEN, LOS: 3rd gen. 

cephalosporin + AMK 
Broad vs. narrow:  CRAB blood stream infection 

Thatrimontrichai et 

al., 2016 (Thailand) 

Case-control 101 EOS: AMP + GEN, LOS: varying 

antibiotics 
Broad vs. narrow:  odds of CRAB ventilator associated pneumonia 

Toltzis et al., 2001 

(USA) 

Prospective 

cohort 

1180 NDA Long vs. short:  antibiotic resistant GNB colonization 

 

Categories: Yes vs. no; compares neonates exposed to antibiotics with non-exposed neonates, Long vs. short; compares long and short treatment durations, and Broad vs. 

narrow; compares broad spectrum antibiotic treatment to narrow spectrum treatment. RCT; randomized controlled trial, NDA; no data available, EOS; early onset sepsis, 

AMX; amoxicillin, CTX; cefotaxime, LOS; late onset sepsis, NET; netilmicin, AMP; ampicillin, GEN; gentamicin, CRO; ceftriaxone, OXA; oxacillin, TOB; tobramycin, 

FLU; flucloxacillin, KAN; kanamycin, SAM; ampicillin/sulbactam, CXM; cefuroxime, TZP; piperacillin/tazobactam, CREC; cephalosporin-resistant Enterobacter cloacae, 

GNB; Gram-negative bacteria, CRAB; carbapenem-resistant Acinetobacter baumannii 
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