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Abstract 
 

The University of Tromsø has carried out multiple studies by master students on unstable rock 

slopes (URS) in Troms County, Northern Norway. This thesis differs from other studies in 

Troms as Skredkallen is located in Pre-Cambrian rocks as part of West Troms Basement 

Complex (WTBC). The rocks of the WTBC have been subjected to multiple phases of 

deformation, and the main structural features from deformation at this field site is from a 

Paleoproterozoic thrust sheet, ‘Skipsfjord Nappe’, from Svecofennian deformation. 

 

Skredkallen is an actively deforming URS located on the steep eastern slope of Laukvikfjellet. 

Previous failure events have occurred in the URS, resulting in rock avalanche deposits of 

varying size below the slope. What is left is multiple detached terraces and a tall column of 

rock ‘Kaillen’, which is still actively deforming. The URS has been identified as moving 

downslope towards NE by means of satellite InSAR. The location of Skredkallen, as well as a 

rock slope failure on a mountain ridge further west, align with a thrust boundary. This suggests 

that there might be a regional pattern between the two instabilities and a possibility of a tectonic 

boundary forming the rupture surface of the URS. Geophysical data indicates a fault being 

present close to Skredkallen, and brittle fault structures have played an important role in the 

origin of the URS. The structural mapping showed four main joint sets; J1(034/82±16.9), 

J2(205/68±9.0), J3(309/68±10.5) and J4(117/83±15.5). J1 and J4 were the most dominant joint 

sets, both near-vertical and dipping towards ESE and SW respectively. The foliation 

(292/14±13.8) dipping towards NNE is oblique to the NE facing slope.  

 

The main failure mechanism is planar sliding along a NE-dipping failure surface, probably 

contributing to a biplanar compound slide made up by J3 and SF, which together have 

developed a step-path geometry effectively working as a listric sliding plane. The rock column 

Kaillen is toppling towards E from the intersection between J1 and J4. The failure on 

Skredkallen can be considered as a possible DSGSD based on the complexity of geometries 

made by the surface morphostructures, and from the inferred brittle fault and fracture 

geometries traced in the bedrock. The two proposed scenarios involve a worst case scenario 

with a minimum mass of 1.1 Mm3 sliding down the steep eastern slope of Laukvikfjellet, and 

the collapse of Kaillen (11,193 m3). However there are no settlements immediately below the 

slope, and a failure only poses a threat to an uninhabited cabin and hiking trails and is therefore 

low risk. 
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1 Introduction 

Catastrophic failure of unstable rock slopes is a serious hazard in mountainous Norway posed 

by both translational sliding of intact rock, and disintegrated rock mass into rock avalanche, 

rockfall and debris flow activity (Braathen et al., 2004, Bunkholt et al., 2011, Schleier et al., 

2015). Landslides from rock slope failure pose a threat to lives, roads, buildings and 

infrastructure, thus understanding and characterising the deforming rock slopes prior to 

catastrophic failure is necessary. Such investigations require a complete geological, structural 

and geomorphological overview of the site, with the goal of understanding the extent, volume 

and kinematics of a potential failure. Of particular importance is the understanding of the bed 

rock structure (Stead and Wolter, 2015) and deformation-induced morphostructures (Agliardi 

et al., 2001).  

More than 100 rock slope instabilities have been mapped in Troms County (Oppikofer et al., 

2015), and multiple landslide types (Varnes, 1978) and mechanisms are observed. The intention 

of this project is a complete characterisation of the unstable rock slope at Skredkallen on 

Vannøya, northern Norway. Multiple studies have been done in the inner Troms region to link 

rock slope failure/unstable slope deformation with bedrock structure, however these unstable 

slopes are comprised of Caledonian rocks (Zwaan, 1988) and associated structures. Findings 

from these studies may not be applicable to the Precambrian West Troms Basement Complex 

(Bergh et al., 2010) geological environment of Skredkallen. This thesis examines the nature of 

the basement complex structures within Skredkallen, and the control they have on the unstable 

rockslope. 

  

1.1 Introduction to unstable rock slopes in Norway 
 

The landscape in Norway is characterised by high topographic relief formed by the carving 

processes of multiple glaciations. Deep U-shaped valleys are common, especially along the 

coastline where the valleys become fjords, some of which are several hundreds of kilometres 

long. These valleys are typically very steep and unstable being ideal for rock deformation. The 

deformation of unstable rock slopes (URS) can be either uniform over the entire slope or 

spatially distributed (Hermanns et al., 2013). When the deformation is spatially distributed, the 

deformation varies between different compartments of the URS, such as blocks, terraces and 

similar features. URS represent one of the most serious natural hazards in Norway, especially 
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when terminating into fjords leading to secondary effects such as displacement waves. 

Compared to rock falls which occur relatively often in Norway, rockslides typically involve 

large number of casualties. During the last 113 years 174 casualties have occurred due to 

displacement waves after a rock slope failure (i e. Loen 1905 and 1936, Tafjord 1934; (Blikra 

et al., 2006)). At the time of writing, NVE (The Norwegian Water Resources and Energy 

Directorate) are monitoring seven ‘high risk’ unstable rock slopes in three different Counties; 

one in Sogn of Fjordane, three in Romsdalen and three in Troms. Compared to snow 

avalanches, URS failures are very unpredictable and thus of special importance to locate. 

Systematic mapping by NGU (Geological Survey of Norway) over the last 14 years has 

detected 300 potential URS in Norway. The distribution of these mapped locations show that 

URS are highest concentrated close to tectonic lineaments, which can be seen as linear features 

in the landscape. These lineaments represent a geological structure such as a fault, typically 

found in connection to fjords.  

Historically documented rock avalanches in Troms County (Map 1), show that rock failures are 

common in areas with steep topographic relief, such as fjords and valleys developed during 

multiple glacial cycles. These historical events mostly date back to the period shortly after 

deglaciation (Blikra et al., 2006). Compared with most other regions, the occurrence of active 

unstable areas in Troms county is high (Oppikofer et al., 2015). The slopes are in various stages 

of development and based on recurrence intervals the probability for large rock slope failure is 

relatively low (Blikra et al., 2006). 

Previous work in the study area are mostly studies on basement-cover relationships (Opheim 

and Andresen, 1989, Bergh et al., 2007, Bergh et al., 2010, Rice, 1990, Zwaan, 1995) and 

geomorphology studies (Corner and Haugane, 1993). The study of (Corner and Haugane, 1993) 

focused on marine-lacustrine stratigraphy of raised coastal basins and postglacial sea-level 

change at Lyngen and Vannøya, to reconstruct the relative sea level change during the Holocene 

and Late Weichselian. Studies on bed rock geology in the area have been conducted to better 

distinguish the lithology and structures of different ages. This has included U-Pb dating of mafic 

dikes and meta-sedimentary rocks, and investigations on folds, cleavage, fault and shear zone 

structures. For example, the Skipsfjord Nappe on Vannøya has long been thought to be of 

Caledonian age, but is now interpreted by (Bergh et al., 2007, Bergh et al., 2010, Pettersen, 

2007) to be of Paleoproterozoic age (from Svecofennian deformation).  
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Map 1 - Distribution of rock avalanche events, gravitational fractures and rock glaciers in Troms County. Modified 
after Blikra et al., (2006). 

1.2 Aims of the study 
 

The main aim of this study is to structurally characterise the unstable rock slope at Skredkallen 

by answering the following questions: 

- What are the main failure mechanisms?  

- What influences does the regional geological history and inherited bedrock structure 

play on the failure mechanisms?  

- Could the failure be described as a Deep Seated Gravitational Slope Deformation 

(DSGSD)?  

- What are the failure scenarios in terms of extent, volume and runout length?  

The datasets used to address these questions include mapping of structural data (joints, foliation 

etc), geomorphology and morphostructures, photogrammetry data from drone sampling, 
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elevation data (either from photogrammetry software based on drone imaginery or ArcticDEM 

obtained from (pgc.umn.edu/data/arcticdem/, 2018). 

The following tasks have been undertaken: 

- Mapping of the slide’s extent, inner structure and geomorphology.  

- Mapping bedrock lithology and structures at the site.  

- Structural, kinematic and rotational analysis using Dips 7.0. 

- Photogrammetry in AgiSoft Photoscan. 

- Construct structural data based on semi-automatically structural recognition software 

(Coltop-3D).  

- Volume estimations. 

- Potential failure scenarios based on delimiting structures and run-out estimate. 

1.3 Available data 
 

- Aerial photos from 2016 (Norgeibilder, 2018). 

- InSAR data (insar.ngu.no). 

- Bedrock maps (Bergh et al., 2007, Bergh et al., 2010, Opheim and Andresen, 1989). 

- Superficial deposits map (NGU, 2018).  

- Helicopter-borne magnetic survey of Vanna (NGU, 2012). 

1.4 Location, background and geological conditions 
 

The island of Vannøya is located in northern Norway, northwestern part of Troms County 

(Figure 1A). Vannøya is characterised by an alpine northern- and southern part with several 

high irregular peaks consisting of basement rocks, such as Vanntinden 1031 m asl. The eastern 

part of the island is more or less a strandflat with very low relief in the landscape. The central 

part consisting of two mountain ridges oriented NNW-SSE, is divided by a U-shaped valley 

Skipsfjorddalen which mouths out into Skipsfjorden. Both mountain ridges are relatively flat 

situated approximately 500-600 m asl, and could potentially represent a paleosurface. The two 

mountrain ridges Laukvikfjellet and Kvalkjeften both consist of gentle slopes along their 

western faces, while the eastern faces are much steeper and some places vertical, on which 

Skredkallen is located (Figure 1B).   
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Figure 1 – A: Vannøya location. Obtained from norgeibilder.no. B: Vannøya seen from S. Obtained from Google 
Earth.  
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1.4.1 Background for mapping 
 

Skredkallen (482 m asl) is an actively deforming URS located on the east-facing slope of 

Laukvikfjellet (Figure 2A). It has been identified as moving downslope (towards NE) by means 

of satellite InSAR (insar.ngu.no). Future events post a threat to hiking trails, an uninhabited 

cabin and a holiday cabin at the base of the URS. A large portion of the mountain side has 

collapsed probably sometime after deglaciation, as evidenced by the talus material below the 

URS. Within the instability there are multiple detached terraces, and a tall column of rock called 

‘Kaillen’ which is still deforming. The main active terrace has subsided c. 20 m. Fresh talus 

deposits can be found underneath the southeastern section of this terrace, meaning that this 

slope is actively deforming. The talus material in the lowermost part of the slope, make up a 

500 m wide area stretching as far out as 1.3 km from the source area at Skredkallen. This area 

is locally termed ‘Skrea’ and consists of blocky avalanche deposits with some vegetation 

(Figure 2B). Anecdotal evidence, in the form of local legends, tells of historic events linked to 

avalanche activity and ongoing creeping movement. One legend tells of a man (Søren 

Andresen, b. 1754) screaming so loudly from the top of Laukvikfjellet that it led to a large rock 

avalanche event, and the deposit of ‘Skrea’. The most recent rock avalanche occured in the 

1950s, as reported by local residents, and resulted from the collapse of a tall column of rock 

called ‘Kvinnen’.  Multiple local residents (‘Slettnes på Vannøya’ facebook group, 2018, pers. 

commun.) have reported that in the past people were able to jump onto the ‘Kaillen’, the tall 

column of rock. The grandmother of Signy Karslen, Mathilde (b. 1880), was able to jump this 

distance as a child. Today the same distance requires a jump of at least 10 m, a generally 

impassable jumping distance.  
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Figure 2 – A: Location of Skredkallen relative to Laukvikfjellet. B: Drone photo. Location of the column Kaillen and 
Skrea. 
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1.4.2 Regional geology 
 

Western and coastal regions of Troms comprises Precambrian basement rocks and Caledonian 

thrust nappes (Andresen and Forslund, 1987). The geology in Norway is dominated by nappes 

of the Caledonian allochthons and their structures in terms of thrusting, folding and faulting. 

Precambrian rocks typically outcrops in erosion windows, such as in the coastal areas of Troms 

(Zwaan, 1995, Bergh et al., 2010).  

The island of Vannøya is a part of a basement horst, the West Troms Basement Complex 

(WTBC), which consists of Neoarchean tonalitic and granitoid gneisses, and Palaeoproterozoic 

mafic, igneous and volcano-sedimentary cover rocks (Zwaan, 1988). WTBC is a part of the 

Fennoscandian shield (Map 2), which has been subjected to a long and complex growth history. 

WTBC has have been subjected to Neoarchean deformation (2.69 – 2.56 Ga), rifting and mafic 

dyke intrusion (2.4 – 1.98 Ga), volcanic activity and clastic sedimentation (c. 2.85 – 1.97 Ga), 

arc magmatism and Svecofennian crustal deformation and reworking (1.8 – 1.76 Ga) (Bergh et 

al., 2010).  

 

Map 2 - Location of the WTBC. Modified after Nordgulen and Andresen 2008.  
 

The Neoarchean basement gneisses on Vannøya are overlain by a sedimentary unit; Vanna 

Group meta-sandstones and mudstones (Binns et al., 1981, Johansen, 1987) which underwent 

Svecofennian (1.8-1.75 Ga) orogenic fold-thrust belt deformation (Bergh et al., 2007). The 

Skipsfjord nappe, located in the central parts of Vannøya, is thought to be a correlative to the 

Vanna group (Opheim and Andresen, 1989). This nappe was previously interpreted as a down-

faulted Caledonian nappe by the Vannareid Burøysund Fault, but is now considered to be a 

down-faulted Paleoproterozoic thrust sheet from Svecofennian deformation (Bergh et al., 

2007). Of simplified reasons this study differentiates between a ‘Lower Nappe’ and ‘Upper 
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Nappe’ (Map 3), the latter being ‘mylonitized tonalite with mafic sheets’ as mapped by 

(Opheim and Andresen, 1989). The majority of structural features in the WTBC can be 

associated with Svecofennian deformation (Bergh et al., 2010). 

 

Map 3 - Geological map of Vannøya, modified after Opheim and Andresen (1989). Based on data from Binns et al. 
(1981), Johansen (1987) and authors work. Profile section showing possible basement cover relationship. Note the 
Nappe boundaries and the Vannareid Burøysund Fault.  
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1.4.3 Neoarchean and Svecofennian structures  
 

The long and complex history of the WTBC is presented in a schematic evolution model (Figure 

3) by Bergh et al (2010). Three main deformations are presented; D1, D2 and D3.  

The northeastern parts of the WTBC (Ringvassøya Greenstone Belt and Skipsfjord Nappe) is 

thought to be less deformed by D1+D2 deformation than the southwestern parts (Senja Shear 

Belt) where the latter displays upright macro-folds with steep limbs (Bergh et al., 2010). 

Sinistral strike-slip reactivation of steep macro-fold limbs creating semi-ductile shear zones can 

be found in the southwest with decreasing size towards northeast. Less deformation in the 

northeast and therefore more flat-lying macro-fold hinges lead to the Skipsfjord Nappe being 

formed by progressive NW-SE directed shortening and subsequent transpression in an orogeny-

parallel fold and thrust belt (Bergh et al., 2007).  

 

Figure 3 – Modified after Bergh et al (2010). Sn = Skipsfjord Nappe. Vg = Vanna Group. D3: Formation of the 
Skipsfjord Nappe.  
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1.4.4 Post-Caledonian structures 
 

The continental margin off Central/Mid Norway was subjected to multiple rift events in the 

Paleozoic through to Early Cenozoic times as part of the break-up of the North Atlantic Ocean 

(Doré, 1991, Faleide et al., 1993, Blystad, 1995, Doré and Lundin, 1996, Brekke et al., 2001, 

Mosar et al., 2002, Faleide et al., 2008). Onshore brittle faults along the West Troms margin 

are mostly NNE-SSW and ENE-WSW-trending normal faults which are constrained to WTBC. 

WTBC is flanked in the south by major normal faults (Blystad, 1995, Bergh et al., 2007) and 

in the north to the SE-dipping Vestfjorden Vanna Fault Complex (VVFC; Figure 4). There is 

also a subsidiary NW-SE trending fracture system present, best developed in Lofoten.  

 

Figure 4 – Modified after Indrevær et al., (2013). Schematic proposed profile of present situation at the Barents 
Sea margin and WTBC, involving erosion of thin Caledonian nappes, exposing the WTBC. Note the steep SE 
dipping normal faults of VVFC.  
 

The VVFC in western Troms make a zigzag-shaped pattern which can be traced northwards to 

Vannøya, outlined bv several smaller-scale fault segments (Andresen and Forslund, 1987, 

Forslund, 1988, Opheim and Andresen, 1989, Roberts et al., 1997). The fault zones within the 

VVFC show down to SE normal displacement, up to 3 km based on the offset of Caledonian 

nappes with known thickness (Forslund, 1988, Opheim and Andresen, 1989, Roberts et al., 

1997). Dating results and methods have been interpreted to indicate that faulting in western 

Troms largely occurred during the Permian to Early Triassic rifting phase.  

One of two major fault zones found in the interior parts of WTBC is the Vannareid Burøysund 

fault (Map 4), striking ENE-WSW and c. 60° dip towards S. This fault zone has downdropped 

the presumed Paleoproterozoic Skipsfjord Nappe by at least 3 km (Opheim and Andresen, 

1989). The fault zone can be seen as a valley trending ENE-WSW in the northern parts of 

Vannøya and show an at least 20 m wide cataclastic zone of rocks.  
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The western fault zones of the WTBC are characterised by NE-SW to N-S trending fault 

segments that commonly show red staining of host-rock granites, with normal to oblique-

normal, down towards SE fault movement (Indrevær et al., 2013). Indrevær et al (2013) 

suggests that the fault zones may link up as en-echelon, right-stepping, fault segments that run 

parallel to the VVFC. This zone is thought to be a transfer zone that runs NW-SE from the 

mainland near Nord-Fugløya (Indrevær et al., 2013), just northeast of Vannøya.   

 

Map 4 - Simplified tectonic map. Modified after Indrevær et al., (2013). NNE-SSW and ENE-WSW-trending fault 
complexes onshore and offshore. Note the Fugløya transfer zone located just east of Vannøya and the Vannareid 
Burøysund Fault. 
 

1.4.5 Quaternary geology and geomorphology 
 

Glacial cycles in Scandinavia have been occurring for the last 2-3 Ma whereas the last major 

deglaciation occurred c. 25 000 years ago (Dahl and Sveian, 2004). Within the Quaternary, 

frequent and dramatic climatic changes has led to 40 glacial advances at the latitudes of 

Vannøya (70°N) (Dahl and Sveian, 2004). Despite being just a small fraction of the earth’s 

geological history, the glacial cycles have made a great impact on today’s landscape. Slopes 
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have been heavily eroded, especially along old river valleys, lithological boundaries, fault zones 

and easily erodible rocks.   

The retreat and position in time of the ice-cap in Troms has been interpreted (Stokes et al., 

2014) by interpolating ice-front positions based on oxygen isotopes from sediment cores 

(Rørvik et al., 2013). A transect line from the inner parts of Lyngen fjord out through 

Fugløysundet, indicates that the last time the ice-front covered the central parts of Vannøya was 

between 15.5 – 16.1 ka.  

The isostatic lift in Troms following glacial retreat varies from c. 80 m in the inner parts of 

Troms (Lyngen), to c. 20 m in central Vannøya (Marthinussen, 1960). Two raised shorelines 

can be found along the coastlines in Troms today; The Main Shoreline of Younger Dryas age 

(12 700 – 11 700 ka) and Tapes-shoreline (8500 ka) (Dahl and Sveian, 2004).  

The coastline of Vannøya is characterised by marine deposits up to The Main Shoreline c. 20 

m asl. There are hardly any trees on Vannøya and most of the vegetation is made up of either 

bog or weathered soil. Moraine material is present in valleys such as Skipsfjorddalen in the 

central parts of the island (Corner and Haugane, 1993). The slopes on Vannøya are 

predominantly showing landslide processes such as avalanche deposits or solifluction soil. 

Mountain ridges are covered with weathered rocks from the glacial cycles (Map 5).   

 

Map 5 - Superficial map modified after ngu.no. 
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1.4.6 Climate and weather 
 

The climate in Troms is sub-arctic and characterised by long winters and short summers. Troms 

experiences midnight-sun from mid-May to mid-July and polar-night from late-November to 

mid-January. The average yearly temperature on Vannøya (Fakken observation station) is c. 

4°C. The coldest month is January with average temperature c. -1°C and the warmest July c. 

12°C (yr.no). There is great regional differences in terms of precipitation rates and wind. 

Vannøya is highly exposed to rough weather conditions as it is located on the outer coast of 

Troms close to the Norwegian Sea.  

Since the Norwegian coast is warmed by the North Atlantic Jet Stream, temperatures on 

latitudes of northern Norway are higher than further inland towards E (i.e. The Siberian 

Tundra). Thus the lower limit of permafrost is situated relatively high up in the landscape in 

Troms (800–900 m asl) and a bit lower in the coastal areas (600–700 m asl) (Christiansen et 

al., 2010) such as on Skredkallen (482 m asl). Measurements the past years show an increase 

in thickness of the active layer in the permafrost as well as a temperature increase (Christiansen 

et al., 2010).  

Snow can some places be found all year around on Skredkallen, as in the trench along the lateral 

backscarp.  
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2 Theory 

2.1 Landslides and large rock slope instabilities 
 

Landslides are a gravitational movement downslope of rock, soil or vegetation, both on land 

and in water (Hermanns, 2016). This thesis focuses on large rock slope instabilities, thus the 

following chapters describe landslide types including rock material. A rock slope instability has 

been defined as rock slopes with signs of gravitational deformation which may form the soruces 

of potential future rock slope failures (Böhme, 2014). Rock slope instabilities vary in size, and 

therefore complexity (Figure 5). 

 

Figure 5 - Flowchart illustrating three levels of landslide analysis and the modes of translational/rotational failure 
they apply to. Modified after Stead et al., (2006). 
 

2.1.1 Landslide classification and terminology 
 

The Varnes classification of landslides (Varnes, 1978) distinguishes different landslide types 

based on movement type and material involved. Slide-type landslides are specified by relative 

motion between stable ground and moving ground in which the vectors of relative motion are 

parallel to the surface of separation or rupture (Varnes, 1978). Hungr et al., (2014) presents an 

updated version of the Varnes classification, with modifications primarily to accommodate for 

accepted geological and geotechnical terminology of rock and soil. This classification includes 

changes related to the six different movement mechanisms (Table 1). A Complex type 

landslide, as characterised by Varnes (1978) as landslide involving a combination of more than 
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one movement type, is removed in the update by Hungr et al., (2014), and instead ‘slope 

deformation’ is added. The definition of slope deformation is markedly similar to that of a Deep 

Seated Gravitational Slope Deformation (DSGSD; Agliardi et al., (2001)): a deep-seated slow 

deformation of a valley or hillslope.  

Table 1 - Varnes classification system (Varnes, 1978), modified by (Hungr et al., 2014) with movement type (only 
involving rock material) and failure mechanism. 

Type of movement Rock 

Fall Rock fall 

Topple Rock block topple 

Rock flexural topple 

Slide Rock rotational slide 

Rock planar slide  

Rock wedge slide 

Rock compound slide 

Rock irregular slide 

Spread Rock slope spread 

Flow Rock creep 

Slope deformation  Mountain slope deformation 

Rock slope deformation 

 

Table 2 - Description of different rock slide types in rock. 

Rock fall 

In falls, a mass is detached from a steep 

slope or cliff, along a surface on which 

little or no shear displacement takes 

place, and descends mostly through the 

air by free fall, leaping, bounding, or 

rolling.  

 

 
(Cruden and Varnes, 1996) 
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Rock topple 

Toppling movement consists of the 

forward rotation of a unit or units about 

some pivot point, below or low in the 

unit, under the action of gravity and 

forces exerted by adjacent units or by 

fluids in cracks.  

 

 
(Wyllie and Mah, 2004) 

Rock rotational slide 

Sliding of a weak rockmass on a curved 

rupture surface, which is generally not 

structurally-controlled. A common 

example of a rotational slide is little-

deformed slump. 

 

 
(Wyllie and Mah, 2004) 

Rock planar slide / translational slide 

In translational sliding the mass 

progresses out or down and out along a 

more or less planar or gently undulating 

surface. 

 

 
(Wyllie and Mah, 2004) 

Rock wedge slide 

Sliding of rock mass on a rupture 

surface made up by two different planes, 

forming an intersection oriented 

downslope.  

 

 
(Wyllie and Mah, 2004) 
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Rock compound slide 

Sliding of rock mass on rupture surface 

consisting of several planes, or surface 

of uneven curvature. Motion is only 

kinematically possible by high internal 

distortion of the moving mass. Horst-

graben features at head and many 

secondary shear surfaces are common.  

 
(Hermanns and Longva, 2012) 

Rock slope spread 

In spreads, the dominant mode of 

movement is lateral extension 

accommodated by shear or tensile 

fractures. 

 

 

(Hungr et al., 2014) 

Rock creep 

Flow movements in bedrock include 

deformations that are distributed among 

many large or small fractures, generally 

extremely slow, that could result in 

folding, bending, bulging, or other 

manifestations of plastic behaviour. 

 

 
(Cruden and Varnes, 1996) 

Rock slope deformation  

Large-scale gravitational deformation of 

mountain slopes, exhibiting 

morphostructure such as scarps, 

benches, cracks, trenches and bulges, 

and lacking a fully defined rupture 

surface. 

 

 
(Stead et al., 2006) 
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2.1.2 Controlling factors for large rock slope instabilities 
 

Geological structures play an important role for large rock slope instabilities and catastrophic 

failures (Hermanns and Strecker, 1999, Agliardi et al., 2001). Structural elements in the 

instabilities may lead to secondary effects affecting the slope stability (Figure 6), such as ground 

water inflow in cracks or seismic activity triggering failure plane development. Rock slope 

instabilities in Norway at high latitudes, may be controlled by additional external factors such 

as freeze-thaw cycles and precipitation – snowmelt events increasing ground water pressure. 

Glacial erosion oversteepening rock slopes and/or glacial debruttressing (the process by which 

support of the rockwalls by glacier ice is removed during deglaciation; (Ballantyne, 2001)) 

could also be an important conditioning factor for the stability of rock slopes.  

With time controlling factors will play a critical role in landslide development. Fatigue of the 

rock slope, and the gradual accumulation of long term damage will continue until a “critical 

slope damage threshold” is reached (Eberhardt and Stead, 2013).   

 

Figure 6 - The influence of structure on rock slope stability and failure mechanisms. Modified after Stead et al., 
(2015)  
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2.1.3 Deep seated gravitational slope deformation (DSGSD) 
 

DSGSD are large scale gravitational slope movements in high relief mountain slopes, 

displaying geomorphological features (Figure 7) such as doubled ridges, ridge top depressions, 

scarps and counterscarps, trenches, open tension cracks (Agliardi et al., 2001). DSGSD 

occurrence is closely related to specific geologic and structural features, such as bedding, 

foliation, joints, and faults, and to certain topographic situations (Crosta and Zanchi, 2000, 

Agliardi et al., 2009, Ambrosi and Crosta, 2011). The distribution of this slope movement can 

be related to glacial debuttressing and the size of a DSGSD is comparable to the slope (Agliardi 

et al., 2001). Many DSGSD observed by authors in the Alps are characterised by a basal sliding 

surface, sometimes partially coincident to a pre-existing tectonic surface (Agliardi et al., 2001). 

Linkage between active faults and the genesis of this phenomenon have been proposed by 

(Forcella and Orombelli, 1984). Post-glacial isostatic lift have also been mentioned as a factor 

(Nemcok and Pasek, 1969). In general, DSGSDs are geologically and structurally complex, 

which make them hard to understand. One example of a DSGSD is located in the Bregaglia 

Valley in the central Alps, Italy, as seen on Figure 8.  

 

Figure 7 - Morphostructural features diagnostic of DSGSDs phenomena, related kinematic significance, and typical 
associations. From Clague (2012).  Modified after Agliardi et al., (2001). 
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Figure 8 - DSGSD in the central Alps. Figure from Mariotto and Tibaldi (2015). 

  



 

Page 22 of 99 

3 Methods 

This chapter presents the methods used in this thesis. As the goal of this thesis predominantly 

is to understand the geometry of the URS, the study is mostly based on 

geomorphological/morphostructural mapping and structural measurements to produce maps 

and structural profiles, as well as rotational- and kinematic analysis. InSAR satellite based data, 

and drone data for analysis in photogrammetry- and structural recognition software, were used 

to further compare with the field data. 

3.1 Geological mapping 
 

Skredkallen was investigated for two weeks in august 2018 focusing on detailed structural 

mapping of discontinuities as well as geomorphological- and geological mapping. The 

structural measurements were obtained by using the FieldMove Clino application (2018) on a 

LG G4 android phone. The compass was calibrated and controlled for possible inaccuracy by 

comparing it to conventional compass measurements obtained with a Silva compass. The 

accuracy can vary a lot depending on phone type and operative system and must be used with 

caution. The LG G4 did not show any observable deviation from the manual measurements. 

This made it easier to obtain good measurements especially in areas which were hard to access. 

Every tenth measurement was obtained with a conventional compass to detect possible 

inaccuracy in the application. 

A total of 436 foliation measurements and 704 joint measurements were obtained during the 

field campaign, both in the unstable parts of the mountain and in-situ. The field work were 

mostly confined to the upper part of the URS and along the lateral backscarp. Elsewhere the 

slopes were too steep or too dangerous to access. The measurements from in-situ rocks were 

obtained at eleven different localities along the backscarp. At each locality, measurements were 

typically distributed over a 10 m horizontal distance. The measurements in the unstable parts 

were obtained on specific blocks, terraces or columns.  

If possible, joint measurements were obtained on different aspects at each locality to preserve 

good representation for further structural analysis, typically on two different aspects. Each 

locality was given a GPS point using a Garmin Etrex 30x. The most dominant joint sets and 

foliation were given a description based on spacing, persistence and shape/roughness according 

to the ‘Field description of soil and rock – field sheet’ from New Zealand Geotechnical Society 

(NZGS, 2005).   
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3.2 Mapping with UAV 
 

A DJI Inspire drone (Unmanned Aerial Vehicle – UAV) was used to map the area from air, 

with particular focus on the inaccessible parts of the URS. Drone photos were processed into 

3D models using photogrammetry software (Agisoft Photoscan), analyzed in semi-automatic 

structural recognition software (Coltop-3D) and kinematically in Dips 7.0. 

A total of 1449 photos and nine videos of the area were obtained with a 12 megapixel Zenmuse 

Z3 camera mounted on the drone. Two flight missions for photogrammetry were performed; 

396 photos (ISO800, low flight speed c. 5 km/h) of the lateral backscarp for structural analysis 

and 610 photos (ISO400, high flight speed c. 50 km/h) covering the whole area for a complete 

3D/DEM model. Both missions were carried out in manual flight mode during light cloud cover 

and between 2 and 4 pm to avoid noise in the photos from the sun-shade effect. This affected 

the resolution of the photos because the ISO had to be adjusted up to either 400 or 800 to 

compensate for the low lighting.  

To georeference a 3D model based on UAV photos in photogrammetry software, Ground 

Control Points (GCP) had to be placed within the photographed area before the flight missions. 

A total of 24 GCP’s were distributed over the entire area at different altitudes. Every GCP 

location was marked with red spray on easily recognisable objects and given a GPS point with 

the GPS. A total of seventeen GCPs proved to be visible enough to be used in Agisoft 

Photoscan. 

A Garmin Etrex 30x handheld GPS only provides up to five m horizontal and vertical accuracy, 

which is not considered adequate for photogrammetry purposes as it can lead to distortion in 

the model. However, the points were found to be generally within 0.5 m when comparing 

waypoints and the orthophoto in ArcGIS software. Some GCP’s were excluded from the 

processing as the offset was deemed to be too large, typically in the deeper parts of the trench 

where the GPS signal was poor.  

3.3 Photogrammetry in Agisoft Photoscan 
 

Agisoft Photoscan is a software product that performs photogrammetric processing of digital 

images and generates 3D spatial data to be used with Geographical Information System (GIS) 

and other applications. In this study the software was used to make two dense point clouds; one 
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of the lateral backscarp to perform structural analysis in Coltop-3D, and one of the whole URS 

to create a high resolution DEM of the area as well as a 3D model for other purposes (Map 6).  

 

Map 6 - Projects in AgiSoft Photoscan 

Workflow of both projects: 

- Alignment of the photos to orient them spatially by creating a sparse cloud.  

- Optimization the point cloud and alignment of the photos to delete points that have a 

low likelihood of being in the correct place, by using the gradual selection tool.  

- Georeferencing of the model by importing the GCP’s and place markers in each photo 

where a GCP was visible.  

- Building of a mesh with a face count of 4,535,343 for the backscarp project (with 

vegetation removed to prevent false structural measurements later), and 841,240 for the 

overview area.  

- Building of a DEM for the overview project.   

To meet the computer capacity requirements, the backscarp project had to be divided into 

chunks to create a complete dense point cloud. Each chunk were made using the batch process 
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tool, with high quality and aggressive depth filtering. The dense point clouds were then merged 

into one model using a Python script provided by AgiSoft customer service.  

The outputs of the Agisoft processing was a 1.25 cm/pixel resolution dense point cloud of the 

backscarp, and a 7.51 cm/pixel resolution DEM of the overview area. Survey data, camera 

calibration and processing parameters for both projects are attached in the appendix. 

3.4 Structural analysis 
 

The structural analysis was carried out using Dips 7.0 (Rocscience, 2018) using stereographic 

projection (lower hemisphere, equal area, fisher distribution). In this study the orientation data 

is presented in Strike/Dip (right hand rule). The joint and foliation sets were defined by using 

one standard deviation variability cone.  

Structural analysis was performed on two datasets¸ manual field measurements and structural 

data from a dense point cloud made in AgiSoft Photoscan (backscarp project) (Figure 9). The 

structural data from the point cloud were obtained using Coltop-3D software.  

 

Figure 9 - Drone photo. Location of structural measurements for structural analysis. 
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3.4.1 Analysis in Coltop-3D 
 

Coltop-3D is a semi-automatic structural recognition software which makes it possible to derive 

multiple structural measurements from a surface based on a dense point cloud, in this study 

based on a 3D point cloud made in AgiSoft Photoscan. The program sets different colours to 

the varying dip angles and dip directions of the surfaces using the HSI wheel (Figure 10).  

 

Figure 10 - The dip direction of the square DEM grids are represented by the hue (H) of the wheel from 0 – 360° 
and the dip of the pole using the saturation (S). The intensity can be changed for representation purposes. 
Modified after Jaboyedoff et al., (2007).  
 

The dense point cloud from AgiSoft Photoscan contains x-, y-, z- and intensity values and was 

imported to Coltop-3D with pyramid levels 0.5-1 m, search radius 2 m and minimum/maximum 

number of points of 6 and 15. After the dense point cloud was imported it was evident which 

structural planes were repeatedly making up the rock face of the backscarp, based on their 

display colors. The planes of particular interest were then chosen using the polygon tool. When 

a polygon was set to a structural plane in the point cloud, it was given a median and mean dip 

and dip direction. Using the ‘direction and dip with tolerance’ tool, based on the mean dip and 

dip direction from the polygon, all planes within a specific tolerance of the mean plane were 

displayed on the dense point cloud. In this project the tolerance cone was set to be 20°. Five 

polygons with five different colors were made. Since the dense point cloud contains points in 

the number of millions and because of computer/software limitations, a selection of 1000 points 

out of 3,083,632 were imported to Dips 7.0 for structural analysis. The number of points 

exported from each polygon was based on their percentage of total number of structural data, 

to best represent the density concentrations in the Dips 7.0 stereonet- for example J1 represented 

38.5% of surfaces over the entire model, and therefore 38.5% of the 1000 measurements 

extracted from Coltop-3D were taken from polygons of J1 planes.  
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3.4.2 Rotational analysis 
 

The rotational analysis in this thesis was performed in a stereonet by using Dips 7.0 based on 

foliation measurements. By using the ‘rotate data’ tool, in situ foliaton planes were rotated to 

horizontal by X°. The foliation measurements from the unstable area were also rotated by X°. 

Then the rotation of the plane from the unstable area could be measured by using the ‘arrow’ 

tool to obtain trend/plunge. One rotational analysis were performed in this thesis, based on 

foliation data from the lowermost part of the URS and in-situ measurements.  

3.4.3 Kinematic analysis 
 

Kinematic analysis is used to identify possible slope failure modes, such as planar, wedge or 

toppling failures described in the theory chapter. Structural data is imported and tested for 

relevant slope dip angle and dip direction. The analysis includes parameters such as lateral 

limits and friction angles, which depend on the site and the rock properties. Lateral limits define 

how much oblique to the slope dip direction a failure is feasible, whereas friction angle 

generally is based on the rock type (Figure 11).   

Based on the output results from the kinematic analysis, presented in stereonets (Figure 12), it 

is possible to see which joint sets that contributes to a feasible failure. If the location of a pole 

or a great circle lies within or cross-cut red, green or yellow colored fields, the joints they 

represent contributes to failure. The results in Dips 7.0 also includes tables with percentage on 

number of critical and total number of feasible failures, which is used to decide which joint sets 

that contribute the most to failures.    

Planar sliding occurs along a joint plane dipping downslope, whereas wedge sliding occurs on 

a surface made up by two joints, forming an intersection dipping downslope. Additionally, 

kinematic analysis on flexural toppling and direct toppling was undertaken. Both failure types 

needs steep discontinuities. Direct toppling occurs in strong rock with orthogonal joints, and 

flexural toppling occurs in weaker rocks such as in shale (Wyllie and Mah, 2004).  

Kinematic analysis on planar- and wedge sliding, and direct toppling was performed in Dips 

7.0. The analysis were given a slope dip direction of 72° and a slope dip of 50° based on the 

DEM from ArcticDEM. The analysis were carried out with lateral tolerance of 30° and friction 

angle of 20° due to the conservative recommendations for all rock types stated in Hermanns, et 

al. (2012). The stereonets were edited in CorelDraw to create a better presentation of the results. 
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In addition the results from each kinematic analysis were described, focusing on which joint 

sets contributing to the most feasible failures.  

 

Figure 11 - From Wyllie and Mah 2004. 
 

 

Figure 12 - Kinematic analysis on A: direct toppling, B: flexural toppling, C: planar sliding and D: wedge sliding. 
Figures modified after Rocscience (2018). 
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3.5 Volume calculations using AgiSoft Photoscan 
 

Volume calculations were performed by following the tutorial on ‘Volume Measurements with 

AgiSoft Photoscan Pro 1.1’ (agisoft.com). AgiSoft Photoscan calculates the volume from a 

mesh which is built on the basis of a point cloud. The points outside the area of interest were 

cropped out before generating the mesh. In this way two areas were highlighted for volume 

calculations: the overall unstable area and the unstable column. Both 3D models were enclosed 

for volume calculation using ‘Close holes’ command. This tool closes an open mesh/3D surface 

to form a convex hull. The volume is then calculated based on the geometry of the hull.  

3.6 InSAR data 
 

Interferometric synthetic aperture radar (InSAR) is data used to measure relative displacement 

between two images. The data can be captured using both ground-based and satellite-based 

radar. The interferometry derived from satellite is measured as a phase shift between stacked 

images within the line of sight (LOS) of the satellite for a specified area. Satellite SAR 

instruments LOS depends on the azimuth-, track- and incidence angle of the equipment.  

Satellite-based InSAR from Sentinel-1 and Sentinel-2 imagery was acquired from InSAR 

Norge (insar.ngu.no). The satellite has a repeat cycle of c. one week, and two ascending and 

descending tracks have been used as the polar location of Troms, which means that satellite’s 

paths overlap. The datasets cover the summer months between July 2016 and September 2018, 

making it a valuable tool for monitoring of current day movement rates. For this study the 

ascending lines are used, as they have a LOS down towards ENE (Trend/plunge: Ascending 1-

076/37. Ascending 2-078/41), which aligns with the expected movement vector of Skredkallen. 

The data are presented in InSAR Norge in point format. The steep nature of the ridgeline at 

Skredkallen means that it is generally in the satellite shadow, and therefore there are limited 

data points in the unstable area (c. 50 points).  

The InSAR data was collected by using the ‘Compute Average’ tool. Two polygons were made, 

one for each area of interest: rock column Kaillen and on the central part of the URS. The 

average displacement rate for each polygon were obtained from both Ascending 1 and 

Ascending 2 datasets.  
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4 Results 

This chapter presents the results of this thesis, beginning with the main findings from the 

fieldwork campaign, followed by analysis using desktop methods. The datasets presented are:  

- Regional lineaments 

- Geophysical data 

- Lithology 

- Geological structures (foliation and joint sets) 

- Structural analysis from Coltop-3D 

- Geomorphological map of the area 

- Morphostructures 

- Rotational analysis 

- Kinematic analysis 

- Volume estimations and run-out estimate 

- InSAR data 

4.1 Regional lineaments 
 

Lineaments best seen on a regional scale, can be found on the mountain ridges on Laukvikfjellet 

and Kvalkjeften, displaying a wide range of orientations and geometries (Figure 13A). The 

lineaments on the western face of Laukvikfjellet are displayed in (Figure 13B). In particular 

two sets of lineaments are repeating: NE-SW (orange) or E-W (blue). These can be found in 

areas were the relatively flat mountain ridges of Laukvikfjellet and Kvalkjeften show great 

changes in surface topography, either in steep slopes such as northwest of Skredkallen, along 

streams or even small canyons located south on Laukvikfjellet. In addition there are two sets 

oriented NNW-SSE (green) and E-W (light blue) which both display a distinctive curved 

geometry. These can be recognized either as depressions along streams or small steps in the 

surface topography. 
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Figure 13 – A: Lineaments on Laukvikfjellet and Kvalkjeften. B: Drone photo. Lineaments on the western face of 
Laukvikfjellet. Note the change in surface topography just NW of Skredkallen.  



 

Page 32 of 99 

4.2 Geophysical data 
 

The tilt derivative map of helicopter-borne magnetic data based on magnetic anomalies 

provided by (NGU) is presented in Map 7. Based on magnetic anomaly data, first and second 

vertical derivative maps are commonly used to sharpen the edges of magnetic anomalies and 

enhance shallow features (Telford et al., 1990). This data can be used to better understand 

regional geological structures. Magnetically dislocations of structures is a basic tool for 

determination of steep faults and fault zones (Henkel, 1991). 

Two dominant lineaments are interpreted from the data, one striking ENE-WSW through 

Skredkallen and one parallel major lineament 7.5 km further NW representing the Vannareid 

Burøysund Fault.  

 

Map 7 - Tilt derivative from magnetic anomalies. Skredkallen location and lineaments are displayed. Data from 
NGU (2012). 
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4.3 Lithology 
 

The lithology of Skredkallen is predominantly consisting of tonalitic gneisses with mylonitic 

foliation cross-cut by numerous mafic sills (Bergh et al., 2007). The tonalitic gneisses are very 

homogenous and show little variations both in color and texture, although variations in 

plagioclase and quartz content can vary locally. The rocks are very strong and require numerous 

hammer strikes to break apart. The mafic sills are parallel to an older generation of foliation, 

which in some places are crosscut by zones that display a phyllitic to mylonitic structure in a 

grey/brownish matrix. These zones are parallel to the later-stage dominant foliation, dipping 

gently towards NNE and can be up to 0.5 m thick, but on average c. 10 cm (Figure 14). These 

zones are often located in the upper part of the mafic sills. In some places these zones are 

heavily weathered (Figure 15), and could easily be broken by a hammer strike. It is likely these 

zones represent ‘internal shear zones’ related to thrusting of the Skipsfjord Nappe. 

 

Figure 14 - Station 7. From the lateral backscarp on Skredkallen. Mafic sill in tonalitic gneiss. Red stippled line 
displaying the lower boundary of an ‘internal shear zone’. 
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Figure 15 – Station 10. ‘Internal shear zone’. Phyllitic (upper) and mylonitic (lower) separated by the red stippled 
line. Note the symmetric sigmoid porphyroblast indicating pure sense of shear. 

4.4 Geological structures 
 

This chapter describes the geological structures (Table 3) based on field observations which 

have been analysed in Dips 7.0. Other features within the geological structures, such as folds, 

stretching lineations and slickenlines/slickenslides, are also included. All structural 

measurements and observations from the field were collected from field stations indexed on 

Map 8.     

Table 3 - Geological structures. 

Geological structure Strike/dip  

Foliation (SF) 292/14±13.8 

J1 034/82±16.9  

J2 205/68±9.0 

J3 309/68±10.5  

J4 117/83±15.5 
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Map 8 - 57 field localities 
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4.4.1 Foliation (SF) 
 

The foliation along the backscarp is dipping gently towards NNE (292/14±13.8), with dip angle 

variations up to 13°. The foliation is thickly layered, well developed and displays mica-rich 

surfaces. Slickenslided surfaces with sense of shear trending NW-SE can be found along the 

foliation. Stretching lineations (ductile structure) visible from the intersection between joint 

sets and foliation or cleavage and foliation dipping gently towards NW, are very abundant. The 

foliation in and around Skredkallen appeared planar, or unfolded. Two km south of Skredkallen, 

on top of Laukvikfjellet, there was a 0.5 m wide fold with a gently NW-dipping axial plane 

(Trend/plunge - 304/34). A folded foliation was also observed along the backscarp (Figure 16, 

station 2), dipping steeply towards SE and terminating against a planar bedrock structure with 

very low roughness, probably a small scale inherited fault (Figure 16). However, these 

observations are outside the defined instability area. The main parts of the URS show a foliation 

orientation which is very similar to the foliation mapped in the backscarp, but slightly tilted in 

varying directions. Smaller parts of blocks are generally tilted either towards NE or SW, as seen 

by the foliation which often strikes NW-SE (Map 9).  

 

Figure 16 – Station 2. Right: foliation folded steeply towards SE. Left – planar foliation. Orange stippled line: bedrock 
structure/small fault. Inset: smooth stained surface of the ‘fault’. 
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Map 9 - Foliation measurements. Note that the foliation usually strikes either NW-SE. 
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4.4.2 Joint sets 
 

The joint sets were defined on the basis of field observations and measurements along the 

backscarp using Dips 7.0 with 1σ standard deviation variability cone (Figure 17). Most 

measurements were obtained along the lateral backscarp because it was the most accessible. 

Structural measurements obtained from photogrammetry will be presented later. 

Four joint sets and foliation were identified in Dips (Table 4). The most dominant joint set on 

Skredkallen is Joint set 1 (J1) striking NNE-SSW and dipping steeply towards ESE. Joint set 2 

(J2), striking NNE-SSW and dipping moderately towards NNW, were observed only 

occasionally. Joint set 3 (J3) striking NW-SE and dipping moderately towards NE, was difficult 

to measure in the field, although many observations of its occurrence were made. J3 would 

likely show a much greater pole concentration if the main backscarp striking NW-SE was more 

exposed. Most measurements were taken from outcrop slopes which were oriented so that J3 

and foliation (SF) did not daylight. Joint set 4 (J4) striking NW-SE and dipping steeply towards 

SW, is the second most prominent joint set on Skredkallen.  

There are great variations within all joint sets in terms of strike/dip, and there is a possibility 

that more than four joint sets are present, most likely a near-vertical joint set striking N-S and 

dipping towards E, as seen from the cluster concentrations (Figure 17). This joint set might be 

a subsidiary set to J1. However as the sets were difficult to differentiate from each other, four 

sets that were clearly observed in the field were chosen. Joint set characteristics (spacing, 

persistence, shape and roughness) were mainly obtained from station 11 (Figure 18) south of 

the unstable area.  
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Figure 17 - Stereographic analysis from Dips 7.0.  
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Table 4: Joint sets and foliation, and their properties. Note that spacing and persistence have been obtained from 
different slope aspects, as indicated (NZGS, 2005).  

Joint 

set 

Spacing Persistence Shape Roug 

-hness 

Comment 

NE/S

W 

SE/N

W 

NE/SW SE/NW 

J1 

034/82 

± 16.9 

 

- 0.5 – 2 

m 

- 10 – 25 

m 

Planar. 

Occasionally 

listric. 

 

Smooth to 

very 

smooth 

Often orange 

coating or more 

seldom pink 

staining.  

J2 

205/68 

± 9.0 

- 0.2 - 1 

m 

- 0.5 – 1 

m. 

Planar Smooth Often orange 

coating 

J3 

309/68 

± 10.5 

0.2 – 

0.5 m 

- Mostly 

0.1 - 

0.5 m. 

Max. 

25 m 

- Both planar 

and 

undulating.   

Rough Slope parallel 

J4 

117/83 

± 15.5 

0.5 - 1 

m 

- 0.5 – 20 

m.  

- Planar Rough - 

SF 

292/14 

± 13.8 

 0.05 – 

0.5 m 

- 

 

0.1 – 2 

m 

 

- Planar.  Rough Some places 

hard to differ 

from J3 
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Figure 18 - Station 11. Joint set presentation. In-situ rocks 0.5 km south of Skredkallen. ESE facing aspect. Note 
the great variations within joint set 1 in terms of strike. NB: upwards perspective creates distortion so that J3 and 
J4 appear similar when in fact they are conjugate. 

4.4.2.1 Joint set 1  
 

J1 (034/82±16.9) joints are very well distributed along the whole backscarp with high 

persistence and smooth to very smooth planar planes, and in some places become listric with 

depth. Some planes display slickenslided surfaces with slickenlines indicating pure-dip slip 

down towards SSE (Figure 20A-B). The joints displaying a listric geometry are consistent in 

terms of strike orientation, disguisable from the general J1 set as they strike further to the east 

(up to 056 °; Figure 20D). Similar structures were observed to control parts of the unstable area 

(Figure 20E).  

4.4.2.2 Joint set 2 
 

J2 (205/68±9.0) dipping towards NNW, was much less observed as seen from the low cluster 

concentration in the structural analysis. The set could be observed as being part of a conjugate 

set, either as small fissures or planes displaying orange coating (Figure 19C). 
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Figure 19 - A + B: Slickenlines (station 6). C: Conjugate set with orange coating (station 1). D and E: Joints with 
listric geometry (station 8). 

4.4.2.3 Joint set 3  
 

J3 (309/68±10.5) dipping towards NE being slope parallel, has low persistence and frequency. 

J3 some places displays a very distinctive undulating geometry as it tends to refract along 

foliation (Figure 20A). This geometry can be seen both in small- and large scale on similar 

slope aspect along the whole backscarp; step-path failure on small scale and steep undulating 

walls on large scale.  

4.4.2.4 Joint set 4 
 

J4 (117/83±15.5) dipping towards SW some places show calcite slickenlines indicating dextral 

strike-slip movement (Figure 19B). This joint set appears both as fissures with low persistence 

(Figure 20C) and highly persistent near-vertical walls along the backscarp.  
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Figure 20 - A: J3 undulating geometry (station 9). B: Slickenlines along J4 (station 10). C: J4 as fissures (station 
53). 

 

4.5 Structural analysis from Coltop-3D 
 

The structural data from Coltop-3D are presented in Table 5 and visually with the point cloud 

in Figure 21. The structural analysis on the dataset in Dips 7.0 (Figure 22) aligns well with field 

measurements (comparison in Table 6). The strikes of the sets are very similar; however the 

dip of two sets is measured to be shallower in the point cloud.  

The most dominant joint set found in the field, J1 is also the most frequently sampled in the 

point cloud. J2 was also dominant in the point cloud, and J3 and 4 were much less frequent. 

Foliation was sampled the least. 
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The point cloud visualisation from Coltop-3D (Figure 21), presents well how J3 and 4 interact 

with stretching lineations, where the intersection between J3 (green) and J4 (purple) is shown 

as alternating color bands.  

Table 5 – Structural data from Coltop-3D. Joint set distribution verifying the dominance of NE-SW striking 
discontinuities.  

Joint set Mean 

strike/dip in 

Coltop-3D 

Number of structural 

planes from the point cloud 

% of total number of 

structural data 

J1 037/71 3,629,337 38.5 % 

J2 149/52 3,470,634 36.9 % 

J3 314/51 772,660 8.2 % 

J4 201/71 960,333 10.2 % 

SF 283/21 583,237 6.2 % 

 

 

Figure 21 – The two listric joints presented in Figure 19D are in the center of A and B. A: Coltop-3D presentation 
B: Photo from the same perspective. C: HSI wheel.  
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Figure 22 - Joint sets based on structural data from Coltop-3D. 

Table 6 – Comparison of joint sets from the field measurements and point cloud, both defined with 1σ standard 
deviation variability cones. 

Joint set J1 J2 J3 J4 SF 

Field 

measurements 

034/82±16.9 205/68±9.0 309/68±10.5 117/83±15.5 292/14±13.8 

Point Cloud  035/88±13.7 184/67±5.2 310/48±13.6 149/51±15.8

  

261/22±12.25 
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4.6 Geomorphological map of the area 
 

This chapter gives an overview of the area focusing on the geomorphology of deposits (Map 

10).  

 

Map 10 – Geomorphology map of deposits. 

The defined instability area sits between 460 and 240 m asl, and consists of vertical cliff faces 

on the southeastern section, whereas the northeastern section follows the gentle slope made up 

by talus cover or soil/vegetation. The URS does not display a distinct toe, likely because the 

lowermost part is masked by talus material. Multiple failure events have occurred at the site, 

evidenced by extensive talus cover at the foot of Skredkallen (Figure 23A). Within the talus, 

numerous fan shapes can be found. The talus clearly differs in age as some (e.g. under the 

southeastern section of the unstable area) has no vegetation cover. Older deposits form what is 

likely to be avalanche deposits, and thick talus can be found as far out from the base of the 

unstable area as 1.2 km (Figure 23B). Block sizes within the thick talus typically are c. 10 m3, 

and up to a maximum of c. 1000 m3. The fresh talus along the southeastern section of the URS 

is likely supplied by ongoing rockfalls from the steep cliffs above. 
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Figure 23 – A: Drone photo. Blue: Active rockfall source area. Yellow: Talus cover. Orange: Thick talus. B: Picture 
c. 1.2 km from the backscarp looking onto Skredkallen and ‘Skrea’. 
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4.7 Morphostructures 
 

This chapter presents the morphostructes within the defined instability area (Map 11). 

 

Map 11 - Morpho-structural map 
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The URS on Skredkallen is delimited by a main backscarp striking NW-SE and a lateral 

backscarp striking NNE-SSW. The backscarp is characterised by a zig-zag-shaped pattern made 

up of NW-SE and NE-SW-striking near vertical cliffs and subsidiary NNE-SSW striking cliffs 

further north (Map 12). The NW-SE striking segment follows J3 and J4, and the NE-SW to 

NNE-SSW striking segment follows J1 and J2.  

Opening along the NNE-SSW segment of the backscarp has created a trench and exposed the 

backscarp vertically for c. 100 m due to the tilt downwards towards SE of the adjacent block 

(Figure 24A). Conversely only c. 2 m of the the NW-SE-striking section of the backscarp is 

exposed. However, it looks to be very steeply dipping towards NE based on field observations. 

Snow can be found in the trench all year round, especially at the north end, where ice was 

mapped in the shadows of the backscarp during the summer months.  

The NE-SW striking backscarp contains a delineation at the northern end where the strike 

changes from NNE-SSW to NE-SW. This small section is a very distinct structure which 

contains smooth planes with slickenlines/slickenslides, and likely has the effect of segmenting 

the unstable area from the stable (see Map 11, Figure 24B).  

The unstable mass is comprised of a system of moving blocks, terraces and fractured rock 

material. Blocks are distinguished from terraces by the lack of vegetation, small size and 

random orientation; whereas terraces are horizontal surfaces actively moving, but not 

disaggregated. The central terrace of the URS is subsided relative to the outermost terrace, 

forming a graben/horst complex (partly consisting of half-grabens) defined by NW-SE striking 

scarps and counter-scarps (Figure 24C). The graben terrace is at 454 m asl, whereas the 

outermost horst is 5-10 meters higher. The surfaces of terraces show signs of deformation by 

networks of open cracks creating morphological depressions in the vegetation cover. A 

morphological depression can be found in the stable part of Laukvikfjellet where it lines 

perfectly up with the backscarp.  

The cracks are predominantly striking NE-SW or NW-SE, reflecting the same zig-zag pattern 

as the backscarp. Nine sinkholes were mapped in the graben, typically c. 0.5 m wide, c. 0.25 m 

deep and located on cross-cuts between cracks. Several large blocks can be found in between 

the terraces and along the backscarp. The blocks are often rectangular-shaped from orthogonal 

joint sets, rhombus- and trapezoid shaped from oblique sets (Figure 24D).  
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Map 12 - Orientation data on vertical cliffs along the backscarp. Note: Roseplot is based on data along the entire 
backscarp, c. 1 km distance. 
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Figure 24 - A: Trench filled with fractured rock material (station 16). B: Drone photo displaying backscarp 
(orange/green) and delination of the backscarp / defined instability area (white). C: Graben and horst surrounded 
by blocks. D: Block with trapezoid shape collapsed from the main backscarp (station 22). 

 

The URS is dominated by orthogonal subscarps, counterscarps and cracks striking NW-SE 

(parallel to J3 and 4) and NNE-SSW (parallel to J1 and 2) which delineates the URS into 

terraces and blocks (Figure 25A). The majority of these scarps are steep counter-scarps. Wide 

NNE-SSW-striking cracks can be traced down through the URS, as seen in Figure 25B, 

indicating a high persistence.  

Scarps were observed to be vertical or near vertical. Those striking NW-SE generally follow a 

singular joint plane surface, J4. Scarps striking NNE-SSW follow a zigzag pattern alternating 

between a combination of mainly J1 and J4 or 3. A prominent zigzag shaped crack, parallel to 

the NNE-SSW striking backscarp cuts through the centre of the unstable mass (Figure 25C). 

This crack has effectively divided the unstable mass into two parts. Some scarps were observed 

to be made up of a stepwise combination of J3 and SF and formed an effective listric sliding 

plane for the block (Figure 25D).  
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Figure 25 - A: Drone photo displaying counter-scarps (blue), sub-scarps (orange) and cracks (black). B: Drone 
photo displaying wide cracks. C: Major crack SE of the graben. D: Block c. 300 m SSE of Skredkallen with step 
path failure. 
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4.8 Rotational analysis 
 

Rotational analysis was performed comparing foliation measurements from in-situ and from 

the lower part of the URS (station 54). The purpose of the analysis is to find out if the foliation 

has rotated, which gives an idea of the rockslide movement.  

The rotational analysis shows that the foliation in the lower part of the URS has rotated into the 

slope, Trend/plunge - 222/20 (Figure 26). This assumes that the foliaton along the backscarp is 

continuously dipping gentle towards NNE. Conversely the foliation is folded thus leading to a 

false result.  

The foliation measurements in the upper part of the URS, consisting of terraces and blocks, 

show that these parts often have tilted either towards NE or SW. Kaillen on the other hand, with 

a foliation dipping 23° towards NE (318/23), indicate a tilt movement more towards S.  

 

 

 

Figure 26 - Rotational analysis based on foliation data. (pole to SF In-situ rotated up to horizontal). 

 

 

 

 



 

Page 54 of 99 

4.9 Kinematic analysis 
 

This chapter presents kinematic analysis of joint sets mapped in the field. The critical area for 

daylighting has been defined by a slope dipping 50° towards ENE (072°), friction angle of 20°, 

and a lateral tolerance of 30° (after Hermanns et al, 2012;). Kinematic analysis results on the 

feasibility of flexural-, direct toppling, planar- and wedge-sliding failure for the Laukvikfjellet 

slope are given in Table 7. 

Table 7 - Kinematic analysis results. 

Slope aspect Slope dip Lateral tolerance 

 

Friciton angle 

 

072° 50° 30° 20° 

 

 

Flexural toppling: Total of 25 intersections 

critical. Flexural toppling is possible along 

uncertainties of J2 (22.22 %) and J4.  

 

 

Direct toppling: Total of 908 intersections 

critical. Direct toppling is possible along 

uncertainties of SF (64.71 %), and 

intersections with J2 and J4. Oblique toppling 

is possible along uncertainties of SF, and 

intersections with J1, J2 and J4.  
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Planar sliding: Total of 12 critical. Planar 

sliding is possible along uncertainties of SF 

(14.71 %).  

 

 

Wedge sliding: Total 2040 intersections 

critical (12.2 %). Wedge sliding is mainly 

possible at the intersection between J1 and J2, 

and partly between J2 and J4.  

 

 

4.10 Volume estimations 
 

The volume of the defined unstable area and the column Kaillen were obtained from the volume 

estimation tool in AgiSoft Photoscan. The unstable area representing a worst-case failure 

scenario, covers a 179,666 m2 surface and has a volume of 1,112,200 m3. The volume of the 

column Kaillen was determined to be 11,193 m3. It should be noted that the reconstuction 

method of enclosing the DEM surface to make a convex hull does not take into account the 
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basal failure surface geometry (see apendix). Thus the volume estimation should be seen as a 

minimum volume estimate (Figure 27).   

 

Figure 27 – Orthomosaic 3D model from AgiSoft Photoscan. 
 

4.10.1 Run-out estimate 
 

Volume numbers were used to estimate a possible runout length of a rock avalanche, if the 

defined unstable area were to fail catastrophically. The volume of the failure, 1,112,200 m3, 

corresponds to an angle of reach of 25°, and c. 900 m runout length on the Scheidegger curve 

(Scheidegger, 1973).  

The avalanche event is a worst case scenario, and the runout would not exceed the runout of 

the previous/prehistoric avalanche event. Since the Scheidegger curve method is a crude 

empirical reconstruction and does not consider topography, the run-out length might be shorter 

in reality. The majority of deposits from an event might not exceed the first crest in the 

topography (see Figure 28). The distance of the inhabited cabin would be exceeded, but not the 

holiday cabin furthermost down.  
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Figure 28 - Run-out distance based on the Scheidegger curve. Diagram from NGU.  
 

4.11 InSAR data 
 

The InSAR data show that the displacement rates are significantly different from stable parts 

on Laukvikfjellet (Figure 29A). Large parts of the URS is in the satellites shadow, thus data 

could be obtained only from the very upper part of the URS and the talus below. According to 

the data there is a relative difference in yearly displacement rates within the unstable area, in 

which the northern part (Kaillen) is more active than the central part of the URS (Figure 29B).  

Dataset Ascending 1 and 2 indicate that Skredkallen in average moves between 2.73 to 12.35 

mm per year in the satellite’s LOS. Based on the different graphs on average displacement rates 

(see appendix), a rough interpretation suggests that Skredkallen moves fastest in June and 

September. Asc. 1 show a very similar displacement rate between Kaillen and the whole URS, 

whereas Asc. 2 indicate that Kaillen is moving much more than the rest of the URS (Table 8). 

Sporadic increase in movement in the rock talus, as seen from red dots in both datasets, indicate 

active rockfall processes.  

 

 



 

Page 58 of 99 

Table 8 - Results from InSAR data. 

Dataset LOS  

(Trend/plunge) 

Avg. displacement rate mm/year 

Kaillen URS 

Ascending 1 076/37 3.87 2.73 

Ascending 2 078/41 12.35 4.53 

 

 

Figure 29 – A: InSAR satellite data, dataset: Ascending 1 and 2. A: Overview with inset of URS. B: URS displaying 
the two polygons to obtain avg. displacement rate.  
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5 Discussion 

The main aim of this study was to structurally characterise the unstable rock slope at 

Skredkallen by answering the following questions: 

- What are the main failure mechanisms?  

- What influences does the regional geological history and inherited bedrock structure 

play on the failure mechanisms?  

- Could the failure be described as a DSGSD?  

- What are the failure scenarios?  

This chapter discusses the following topics:  

- Relationship between regional geological structures and location of the URS. 

- Bedrock composition, geological structures and structural data validation.  

- Relationship between morphostructures and bedrock structures. 

- Conceptual model (with structural profiles). 

- Possible failure scenarios and controlling factors. 

As WTBC has undergone a much longer and complex growth history than the Caledonian rocks 

further inland, it is of particular interest to discuss how Pre-Caledonian regional geological 

history and inherited bed rock structures may define both the location and structural controls of 

the URS. At Skredkallen this mainly involves the thrusting of the Skipsfjord Nappe. 

5.1 Relationship between regional geological structures and 
location of the URS 

 

This chapter discusses how results from mapped lineaments and geophysical data could affect 

the location of the URS. Additionally this chapter compares Kvalkjeften and Skredkallen, and 

discusses their tectonic similarities, relating them to the rock avalanches that may have occurred 

at both sites. 

5.1.1 Lineaments 
 

Lineaments on Laukvikfjellet and Kvalkjeften show similarities to regional geological 

structures such as NE-SW trending faults and thrust nappes from Svecofennian deformaton. 

The NNW-SSE oriented lineaments are foliation-parallel, and likely represent ‘thrusts’ from 

emplacement of the nearby Skipsfjord Nappe. The ‘thrust’ structures can also be traced along 
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Kvalkjeften mountain, on the other side of Skipsfjorden, west of Laukvikfjellet (Figure 30A-

B).  

 

Figure 30 – A: Lineaments (green) as part of ‘thrusts’. B: Photo displaying ‘thrusts’ along Kvalkjeften mountain. 
Supplied by Steffen Bergh.  
 

According to local residents, the Kvalkjeften mountain also show signs of instability, such as 

cracks observed to have widened over time. Bouldery rock material on the seabed below this 

assumed instability, known as Skipsfjordbåan (Figure 31A) probably represent avalanche 

deposits from Kvalkjeften. Skredkallen and Kvalkjeften are both on a NE slope aspect, show 

signs of past rock avalanche events and located close to what in this thesis is called ‘Upper 

Nappe’ as mapped by Opheim and Andresen (1989).  
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The deformation of the surrounding rock from thrusting may have weakened the rocks, playing 

a role in conditioning the slope for instability and controlling the location of both sites. It might 

also be the case that the ‘Upper Nappe’ lower boundary could have formed the rupture surface 

of the URS (Figure 31B). However a more detailed bedrock study and subsurface information 

is needed to explore this idea.  

 

Figure 31 – A: Rock avalanche deposits beneath both Skredkallen and Kvalkjeften. B: Location of the 'Upper Nappe' 
and the 'Lower Nappe' lower boundaries based on (Map 3) Opheim and Andresen (1989). 
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5.1.2 Geophysical data 
 

Fault related features such as slickenslides and pink staining indicating fluid flow on NE-SW 

striking discontinuities, may be related to a distinctive NE-SW oriented lineament in the 

geophysical data interpreted to be a fault, and which is traced through Skredkallen (Map 7). 

Although the lineament appears very similar in both length and orientation to the major 

Vannareid Burøysund Fault 7.5 km northwest, no wide cataclazite zones was found at 

Skredkallen. However, the fault morphology is convincing and can not be dismissed (Figure 

32). Parts of Laukvikfjellet seem to have been down-faulted. The URS may been influenced by 

the occurrence of brittle faulting, in such a way that fault structures could weakened the rocks. 

This is supported by Abele (1974) which describes intense fracturing of the rock mass adjacent 

to faults as ideal conditions to slope failure.  

 

 

Figure 32 - 3D presentation from norgeibilder.no. Possibly faulting. Orange stippled line represents possible offset 
unit. 
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5.2 Bedrock composition and geological structures 
 

This chapter discusses the lithology, foliation and joints, and their relevance to the URS.   

5.2.1 Lithology  
 

Skredkallen, differs from many other URS in Troms County, of which the majority are located 

in Caledonian Nappes (Zwaan, 1988). In terms of rock material strength properties, the gneisses 

at Skredkallen could only be chipped with a geological hammer, corresponding to an intact 

strength (unconfined compressive strength) of  >250 MPa (NZGS, 2005). It would likely have 

a higher friction angle (as defined by Wyllie and Mah (2004)) like the commonly mica-rich 

schists found in Caledonian Nappes in eastern Troms (such as the instability at Jettan, Blikra et 

al., 2015). The weakest parts of the lithology, the phyllitic to mylonitic ‘internal shear zones’ 

appeared very weak (corresponding of 1-5 MPa in the hammer test; (NZGS, 2005)). They also 

weather differentially, indicating their soft nature. These zones could act as sliding surfaces 

based on their mechanical weakness, because: 

- Low strength indicates possible low shear strength of the phyllite surfaces; 

- They are mica-rich, which will weather to clay, further decreasing the shear strength of 

the surfaces; 

- They provide a boundary for the flow of groundwater, along which pore pressures can 

act to decrease the shear strength of the surfaces. 

- It is kinematically feasible for sliding along these surfaces, as they are parallel with the 

foliation dipping towards NNE. 

The presence of the ‘internal shear zones’ can be linked to the emplacement of the Skipsfjord 

Nappe, as they are aligned with the foliation formed during this process. The Nappe thrusting 

and the proximity of the Nappe boundary indicates that larger shear zones may be present at 

depth.   

5.2.2 Foliation 
 

The foliation is dipping gently towards NNE (292/14±13.8) and the majority of the SF set is 

within the critical zone making it feasible for planar sliding. Weak zones within the lithology 

are foliation parallel and could define the potential failure surfaces. Foliation planes probably 

make up a proportion of failure surfaces forming the basal rupture surface of the unstable area.   
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The foliation is more or less planar without folding, however is possible that the gneisses locally 

show folds in some parts of the URS based on the proximity to larger folds mapped in the area. 

As the field data collection was mainly restricted to the upper part of the URS, the possibility 

of fold structures being present in the deeper parts of the URS can not be excluded.  

5.2.3 Structural data validation 
 

This section discusses the two different methods of structural analysis in this thesis and their 

results in comparison with each other. It is important to validate the data from both data sets 

since sources of error can occur.  

5.2.3.1 Structural analysis of manual field measurements 
 

Field measurements in stereonet show clear clusters, which have been assigned to four joint 

sets that were observed with confidence in field. However, clusters of poles are still visible 

outside of the 1σ variability cone, most significantly around the J1 and J4 quadrants. These 

concentrations could indicate great variability within/around both the J1 and 4 joint sets. 

Literature also indicates large variability in strike on regional geological structures, especially 

structures that align with J1 and 2, striking NE-SW to NNE-SSW (Indrevær et al., 2013). There 

is some crossover between steep foliation and gentle planes from J3, striking NW-SE, as they 

have very similar dip angles. This is likely because J3 was observed to refract along the 

foliation, so that it appears both steep and gentle.  

The great variability within and outside of the cones might indicate that more than four joint 

sets are present. This increases the structural complexity of the URS, and means that not all 

failure mechanisms are accurately accounted for in the kinematic analysis.   

5.2.3.2 Structural analysis based on point cloud  
 

Semi-automatic structural recognition allows for data capture in areas of low accessibility, and 

increases the accuracy of structural analysis by covering areas where traditional measurements 

can not be obtained.  

The photogrammetry point cloud only covered the NNE-SSW-striking backscarp. The 

structural analysis shows high concentrations of J1 and 2, striking NNE-SSW aligning with the 

backscarp. Ideally the NW-SE-striking backscarp would also have been mapped to capture 

daylighting structures that are more apparent in this orientation. The concentration of J1 and 2 
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in the Coltop-3D dataset may therefore be artificial, and the Coltop-3D data should be used for 

analytical purposes with caution. Other scarps were obscured by blocks or vegetation and 

therefore drone surveying was not possible. 

J1 is well-developed in the model, showing smooth and highly persistent planes dipping 

towards SE, just as in the field. The analysis also shows J3 and J4, and displays the interaction 

between J3, J4 and SF seen as altered color bands on the point cloud. Foliation measurements 

display the lowest concentration. This is likely because foliation planes dip in the strike 

direction of the surveyed backscarp, so that the planes are daylighting obliquely in the face and 

were not very prominent.  

Distortion of the point cloud caused by placing GCPs from handheld GPS measurements is the 

biggest uncertainty in this project. Ideally, the GCPs would have been obtained with a high-

accuracy GPS. Sources of error could also be related to the mesh that is created on the basis of 

a point cloud. The mesh surface can average out points in the point cloud, which can lead to the 

structural planes appear gentler or steeper in Coltop-3D (Figure 33).  

  

 

Figure 33 – Mesh surface missing structural planes (J3 and SF). 

 

5.2.4 Comparing structural analysis based on manual field 
measurements and the point cloud 

 

It is important to compare the field and Coltop-3D datasets because there are uncertainties 

which exist in the digital data meaning that it cannot be used as a standalone dataset. 

Additionally, comparison is a useful way to confirm the occurrence of the joints sets (Table 9). 
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Table 9 - Structural analysis results based on manual field measurements and point cloud. 
 

Joint set J1 J2 J3 J4 SF 

Field 

measurements 

034/82±16.9 205/68±9.0 309/68±10.5 117/83±15.5 292/14±13.8 

Point Cloud  035/88±13.7 184/67±5.2 310/48±13.6 149/51±15.8

  

261/22±12.25 

 

The results from the different structural analyses were quite similar in terms of joint strike 

orientation, with J1 and 3 only differing by 1°. The biggest differences are seen in J4 which is 

considerable different both in strike and dip angle. The foliation measured in the point cloud 

strikes more to the south, meaning that the dip is towards N rather than NNE based on manual 

field measurements - a significant deviation in terms of kinematic feasibility for planar sliding. 

J3 shows a similar strike in the two datasets, with a 20° gentler dip in the point cloud. J2 is 

similar in dip angle and strikes more to the south in the point cloud.  

The differences in results is thought to be a combination of possible distortion of the point cloud 

and possible inaccuracy in the mesh surface.  

5.3 Relationship between morphostructures and bedrock 
structures  

 

This chapter discusses the main findings from mapping the morphostructures and their 

relationship to bedrock structures (Map 11). It is important to understand which joint sets the 

morphostructures relate to when connecting kinematic analysis results to the structural controls 

of the URS. 

The linkage between morphostructures and bedrock structures on Skredkallen are very 

prominent. The orientation of cracks and scarps (NW-SE and NE-SW to NNE-SSW), is 

strongly related to near-vertical joints from J1 and 4, which are the most dominant bedrock 

structures on Skredkallen. The same applies for the trench which is oriented NW-SE and NNE-

SSW. The majority of blocks are rectangular shaped from the orthogonal set made by J1 and 4. 

Additionally a morphological depression in the stable part of Laukvikfjellet striking NE-SW, 
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perfectly lines up with parts of the backscarp (Figure 34), verifying the great presence of J1 

related structures (Figure 34). 

 

Figure 34 – Station 56. Drone photo. Morphological depression lines perfectly up with the backscarp. 
 

5.4 Conceptual model 
 

This chapter conceptualizes the main structural features and their influence on the deformation. 

The interpretation on structural controls on the different parts of the URS (Map 13), will be 

presented within three structural profiles (Figure 35, Figure 36, Figure 37). The profiles are 

based on a DEM from drone photogrammetry with 7.51 cm/pixel ground resolution. This 

chapter also presents a schematic 3D model based on an orthomosaic from AgiSoft Photoscan, 

showing the main features on Skredkallen.  
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Map 13 - Location of the three structural profiles presented below. 
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5.4.1 URS overview 
  

 

Figure 35 - Profile A-A'. 

The URS is mainly controlled by J3 and SF. The failure is likely a biplanar compound slide 

(Hermanns and Longva, 2012, Glastonbury and Fell, 2008), made up by a combination of J3 

and SF, which develop a step-path geometry. This is supported by the kinematic analysis 

indicating that planar sliding is feasible along steeper parts of SF. The step-path geometry leads 

to internal shear in parts of the URS which could have intensified the development of scarps 

and cracks. Interestingly the profile surface formed by previous rock slope failure(s) is also 

stepped. The path will follow mostly J3 at the rear (as shown by the backscarps) and following 

more of the foliation with depth and effectively working as a listric sliding plane. Since the 

foliation is gentle and the kinematics operate with 20° friction angle, the failure surface needs 

to be biplanar to achieve movement on such low angle surface. ‘Upper Nappe’ lower boundary 

could have formed the rupture surface of the URS.   

The outermost part of the unstable mass is thought to be a complex of half-grabens. Based on 

observations from distance, these half-grabens looked to be controlled by J3 surfaces, however 
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due to the lack of information, and similar strike between J3 and 4, the bounding surfaces could 

also follow J4.  

The foliation was mapped at the base of the unstable mass as dipping to SW. If the foliation is 

continuous, i.e. not folded, the URS has been subjected to a 20° tilt towards SW (Trend/plunge 

- 222/20 based on the rotational analysis).   

5.4.2 Kaillen 
 

 

 

Figure 36 - Profile B-B'. 

Kaillen is separated from the central part of the URS by J1 (not visible on the profile since it 

strikes parallel to the profile line, check scarp orientation in Map 11). Kaillen topples towards 

E from intersection between J1 and 4. This is supported by the kinematics, which show oblique 

toppling being feasible from intersection with J1 and 4. Kaillen lies at the same elevation as the 

horst surface, and it is likely that prior to multiple rock falls they were joined. Due to a rock 

avalanche event (seen by the deposits below the URS), Kaillen has been debutressed and is now 

metastable, tilting downwards towards E.  
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5.4.3 Central part of the URS 
  

 

Figure 37 - Profile C-C'. 

The southeastern section of the URS is separated from the rest of the unstable area by a major 

crack from J1 and 2 joints. The crack delineates the whole unstable area, and the material south 

of the crack show a toppling failure mechanism towards SE. The area is dominated by rock fall 

processes, probably direct toppling failure along SF and intersections with J1 and J4 (Figure 

38). Stories from locals indicate that a rockfall event occurred here in the 1950s, involving the 

collapse of a tall column called ‘Kvinnen’. The tilt movement of this terrace leading to direct 

toppling and the steep nature of this section, are probably the main reasons why rockfalls seem 

to occur frequently here.  



 

Page 72 of 99 

 

Figure 38 - Direct toppling failure. Figure to the right modified after Wyllie and Mah 2004. 
 

5.4.4 Schematic 3D model 
 

 

Figure 39 - Schematic 3D model presenting the main features of the URS.  
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5.5 The URS’s similarities to a DSGSD 
 

Morphostructural features typically related to DSGSD, as described by Agliardi et al., (2001), 

such as trenches, counterscarps, open tension cracks, grabens and half-grabens are present on 

Skredkallen (Figure 40). The most prominent features are the wide trench, the graben and the 

horst. Additionally the URS might be defined as a DSGSD as they commonly occur in 

metamorphosed foliated rock (Agliardi et al., 2012) such as in the tonalittic gneisses on 

Skredkallen. In addition the genesis of Skredkallen could be linked to active faults as proposed 

by Forcella and Orombelli (1984) and a basal sliding surface coincident to a pre-existing 

tectonic surface (Agliardi et al., 2001) i.e. ‘Upper Nappe’, which have been related to DSGSD. 

The glacial cycles in Scandinavia have probably played a role in developing this unstable area, 

as the distribution of DSGSD are commonly related to glacial debuttressing (Agliardi et al., 

2001) and also post-glacial isostatic lift (Nemcok and Pasek, 1969). However the volume of 

Skredkallen (1.1 Mm3) is much lower than what is common for a DSGSD (>500 Mm3) 

(Agliardi et al., 2012). They also tend to show poor lateral boundaries, which is very unlike the 

geometry at Skredkallen.   

 

Figure 40 - Morphostructural features diagnostic of DSGSDs phenomena, related kinematic significance, and typical 
associations. From Clague (2012).  Modified after Agliardi et al (2001). 
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5.6 Possible scenarios  
 

Possible failure scenarios are presented in Figure 41.   

 

Figure 41 - Possible failure scenarios. 

Based on InSAR satellite data, which shows greatest displacement rates in the northern part of 

the URS, the collapse of Kaillen (Scenario 1) seems most likely to occur. The column is tilting 

dramatically towards E (Figure 42).  

Scenario 2 involves at least 1.1 Mm3 of material failing. No run-out modelling was performed 

in this thesis, however based on the volume an empirical estimate on angle of reach from 

volume was used (Scheidegger, 1973). This suggests an angle of reach of c. 25° (Figure 43). 

The run-out distance then would be c. 900 m, further than the uninhabited cabin and almost 

reaching the holiday cabin beneath the URS. This estimate is probably not conservative, since 

the volume calculation in AgiSoft Photoscan misses parts of the mass, but conversely rock 

avalanches in Norway generally show a lower angle of reach than what is predicted using the 

Scheidegger method (Blikra et al., 2006).  
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Figure 42 - Drone picture showing the dramatic tilt of Kaillen towards E. 
 

 

Figure 43 - Run-out distance based on the Scheidegger curve. Diagram from NGU. 
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5.7 Controlling factors 
 

This chapter presents factors which may condition the rock slope for failure, and/or trigger 

failure in the future, as well as factors which control the ongoing displacement.  

5.7.1 Permafrost and water 
 

Factors such as downflow of dense cold air into the deep trench and very little 

incomingsunlight, decreases the temperature locally. Thus the local environment on 

Skredkallen could favour sporadic permafrost, as supported by the snow and ice found in the 

trench. After a short visit to the field site in March 2019 and observing the large overhanging 

cornices along the whole backscarp, it is thought that the collapse of snow-cornices in spring 

time could be a great source of ice to the trench.  

Since the URS is located along the coast of Troms, precipitation rates can be very high in 

rainfall periods. During periods with increasing temperature and rainfall, and following 

increase in water pressure and melting permafrost, the URS can experience an increase in 

deformation. Such periods could be in late spring (June) and early autumn (September) times, 

based on InSAR data. Water infiltrating sliding surfaces could increase the water pressure and 

decrease the shear strength, and play a significant control on the URS. This also applies to 

mechanical weathering from freeze-thaw cycles leading to a gradual fracturing of the rock 

masses. 

The very weak ‘internal shear zones’ are probably the surfaces most prone to weathering on 

Skredkallen, which means that these zones may play an extra role in defining main sliding 

surfaces.   

5.7.2 Glacial processes and rebound 
 

Debuttressing of the slopes from glacial retreat could have played a role in the past events on 

Skredkallen and why this is an URS today. Glacial oversteeping of the rock slope during 

glaciations might also be an external factor. The stress release from debuttressing may have 

resulted in propagation of the internal network of joints, and loss of cohesion in pre-existing 

discontinuities.  

Isostatic adjustment following glacial retreat can lead to earthquakes triggering failures in the 

URS. Keefer (1984) writes that the Magnitude of an earthquake must exceed 6.0 to trigger a 
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rock slide. Earthquakes in Norway seldom exceed Magnitude 5.5 (Dehls et al., 2000), but this 

do not exclude the possibility that episodes could have occurred in pre-historic times (Braathen 

et al., 2004).  
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6 Conclusions and further investigations 

 

Skredkallen is an actively deforming URS located on the steep eastern slope of Laukvikfjellet 

The main goal of this thesis has been to structurally characterise the unstable rock slope at 

Skredkallen to better understand past and potential future events. The structural mapping 

showed five different geological structures:  

Geological 

structure 

SF J1 J2 J3 J4 

Strike/dip 292/14±13.8 034/82±16.9 205/68±9.0 309/68±10.5 117/83±15.5 

 

The main failure mechanism on Skredkallen is planar sliding, probably contributing to a 

biplanar compound slide made up by J3 and SF, which displays a step-path geometry and 

effectively working as a listric sliding plane. The rock column Kaillen is toppling towards E 

along the intersection between J1 and 4. J1 is the most dominant structure in the URS, and has 

segmented the URS into different parts along a large open crack.  

The regional geological history special to this field site is the thrusting of the Skipsfjord Nappe. 

The deformation of the surrounding rock from thrusting weakening the rocks, may have 

conditioned the slope for instability. The URS location is probably influenced by Post-

Caledonian brittle fault structures striking NNE-SSW, NE-SW and NW-SE, in that such 

structures may have developed ideal conditions to slope failure. Since the regional lineaments 

and faults align with the joints controlling the URS, the regional geological history plays a huge 

role on the failure mechanisms.  

The failure on Skredkallen can be considered as a possible DSGSD based on the complexity of 

geometries made by the surface morphostructures, and from the inferred brittle fault and 

fracture geometries traced in the bedrock. The presence of a tectonic surface from the Skipsfjord 

Nappe thrust (i.e ‘Upper Nappe’) defining the rupture surface of the URS, can be compared to 

a DSGSD, but further studies are needed to prove this. The largest difference is the volume of 

Skredkallen which is only a fraction of what is common for a DSGSD. 

The two proposed failure scenarios involve a worst case scenario with a minimum mass of 1.1 

Mm3 sliding down the steep eastern slope of Laukvikfjellet. A catastrophic failure will depend 

on the gradual accumulation of long-term damage along failure surfaces until a ‘critical slope 
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damage threshold’ is reached. Such failure surfaces prone to damage could be the ‘internal 

thrust zones’ which appeared very weak. Based on the Scheidegger curve assessment of the 

largest failure scenario, the 900 m run-out length would pass the uninhabited cabin and the 

hiking trails below the URS, but not the lowermost holiday cabin.  

Because this study was done in a poorly studied area, future work will be necessary to fully 

understand the URS. This includes more measurements in the less studied areas of the URS, 

for instance in the lower part to perform a good rotational analysis including joint set data. As 

large parts of the URS are located in very steep and active rockfall areas which are hard to 

access by foot, more drone mapping would be of particular interest. A detailed bedrock study 

in and around the site would also be beneficial to better explain how lithological differences 

and regional geological structures could affect the URS, especially since there might be a 

regional pattern between Kvalkjeften on the other side of Skipsfjorden and Skredkallen. 
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8 Appendix 

 

A: Average displacement rates on Kaillen based on InSAR satellite data from insar.ngu.no.  
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B: Average displacement rates on URS based on InSAR satellite data from insar.ngu.no. 
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C: Best fit plane made in AgiSoft for volume calculations.
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D: Agisoft Photoscan project whole URS 
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E: Agisoft Photoscan project backscarp
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F: Coltop-3D. Location of defined polygons and respective poles for each polygon / joint set. 
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Appendix G: AppendixField description of soil and rock - field sheet 
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