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Introduction

A fundamental set of problems in mathematics concerns classifying and
distinguishing objects with a given property under some kind of equivalence
relation. A subclass of such problems arises when we restrict to objects that
are defined through a system of differential equations. In general a system
of differential equations comes “equipped” with a collection of symmetries,
i.e. transformations that act on the space of solutions. This gives an equiva-
lence relation on the solution space, since it is often natural to consider two
solutions to be equivalent if they are related by a symmetry transformation.

This type of equivalence problem appears frequently in pure mathemat-
ics, but also in areas where the practical utility is more obvious. Examples
can be found in such diverse fields as general relativity, fluid dynamics, ther-
modynamics and image recognition, to name a few, and it may come as a
surprise to many that there exists a coherent mathematical theory for such
a big class of problems. In this thesis we will see, with several examples,
how this theory applies to classification and equivalence problems coming
from both mathematics and physics. Our motivation for doing this is split
into three main parts:

• The classification and recognition problems we consider are interesting
in their own right, and they are worth solving. They appear naturally
in relativity, mathematical physics, integrability theory, twistor theory
and so forth.

• We want to investigate, and display, the power of the theory of scalar
differential invariants. This theory has recently experienced an impor-
tant change in fundamental ideas, after the appearance of the global
Lie-Tresse theorem ([6]), and we are investigating the theoretical con-
sequences of this.

• Every example we have looked at gave us some new insight on the
practical implementation of the theory, thereby facilitating the devel-
opment of computational methods.

In a big part of this thesis, our goal will be to recognize/distinguish
and classify solutions of systems of partial differential equations (PDEs),
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under their Lie pseudogroup of symmetries. We will restrict our attention
to smooth solutions, but in a quite general sense. Solutions can be functions
on a manifold, maps from one manifold to another, sections of a bundle or,
more generally, submanifolds of some given manifold. In particular we may
consider the set of all submanifolds of a fixed manifold E (solutions of the
trivial PDE), under a Lie pseudogroup action on E.

The solution spaces for PDEs are in general very complicated. In partic-
ular they are usually far from being finite-dimensional. The same is true for
the Lie pseudogroups, which are also defined as solutions spaces to a system
of PDEs. Thus it may come as a surprise that one of the main tools that
helps us solve the equivalence and classification problems come from classical
geometric invariant theory, where one studies actions of finite-dimensional
algebraic groups acting on finite-dimensional algebraic varieties. The main
purpose of this introduction is to outline, in simple terms, how and why this
works. By doing that, we also get to fix some notation and definitions, in
addition to recalling the main theorems.

In particular we will show how the general equivalence problem, as
described above, induces group actions on an infinite number of finite-
dimensional spaces, called the jet-spaces. Even though there is an infinite
number of these spaces, the task of describing their corresponding orbit
spaces turns out to be a finite process. By describing these orbit spaces
(in terms of their algebra of differential invariants), we solve the original
classification or recognition problem.

1 The geometry of differential equations

We will start by recalling some of the constructions needed in order to
talk about invariant theory on differential equations. For a more detailed
introduction to the geometric theory of PDEs, see for example [5, 8, 4].

1.1 Jets of sections

We fix a fiber bundle π : E → M , and a point x ∈ M . For a section s of
π we define its k-jet [s]kx at the point x ∈ M as the equivalence class of
sections whose graphs are tangent to that of s up to order k at x. Denote
by Jkxπ the space of all k-jets of sections of π at the point x. We define the
space of all k-jets as Jkπ = ∪x∈MJkxπ. These are actually bundles over E,
and we denote the projection Jkπ → E by πk. We also have projections
πk,l : J

kπ → J lπ for k > l defined by πk,l([s]
k
x) = [s]lx. On some occasions

we will use the notation Jk(E) = Jkπ.
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A section s of π is naturally prolonged to a section jks of Jkπ, de-
fined by jks(x) = [s]kx. On the bundle we may choose local coordinates
x1, ..., xn, u1, ..., um, so that a section is given by m functions ui = f i(x).
The choice of coordinates on E uniquely gives a canonical choice of coordi-
nates on Jkπ:

xi, uj , ujσ, i ≤ n, j ≤ m, |σ| ≤ k.

Here σ is a multi-index. The k-jet of s at x is then given by ui = f i(x), uiσ =
∂xσ(f i(x)), with |σ| ≤ k.

Remark 1. General n-dimensional submanifolds of a manifold E corre-
spond to singularities of sections, and can be handled by jet-space the-
ory. However, in this thesis we will mostly work with bundles, so restrict-
ing to bundles already at this point seems natural. Note also that any n-
dimensional submanifold of E, may locally be described as the section of
some bundle.

1.2 Differential equations

A partial differential equation (PDE) of order k is a submanifold Ek ⊂ Jkπ.
Usually it is given by a set of equations

Fq(x
i, uj , ujσ) = 0

where σ is a multi-index, |σ| ≤ k and q = 1, ..., r. We say that a section s
of π is a solution to the PDE if its prolongation jks is contained in Ek.

The relationship between sections of π and solutions of Ek can be de-
scribed geometrically in terms of the Cartan distribution C. It is a distri-
bution on Jkπ which can be defined at a point θk ∈ Jkπ as the span of
tangent planes of all graphs of prolonged sections jks with the property
jks(πk(θk)) = θk. The solutions of the PDE correspond to n-dimensional
integral manifolds of the Cartan distribution projecting diffeomorphically
to M .

Note that if s is a (smooth) solution to Fq = 0, it will also be a solution
to the differentiated equations Dxi(Fq) = 0. So for a differential equation
Ek ⊂ Jkπ of order k, we can construct the differential equation Ek+1 ⊂
Jk+1π, defined as the set of solutions to the equations

Fq = 0, Dxi(Fq) = 0.

We call Ek+1 the prolongation of Ek. On some occasions we will use the

notation E(1)
k to denote this prolongation, and we also define inductively the
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ith prolongation E(i)
k = (E(i−1)

k )(1). Since this PDE is contained in Jk+iπ
we find it most convenient to denote it by Ek+i. Continuing this process,
and using the notation El = πk,l(Ek) for l < k, we end up with a sequence
of projections.

M ← E0 ← · · · ← Ek−1 ← Ek ← Ek+1 ← · · ·

We denote the inductive limit, which is a diffiety ([10]), by E∞. The most
important construction used in this thesis, the algebra of differential invari-
ants, is an algebra of functions on this diffiety. In general we will refer to
the PDE by E if the index is not essential.

1.3 Symmetries of PDEs and Lie pseudogroups

With the above interpretation of a PDE E as a submanifold in Jkπ, we can
use tools and ideas from differential geometry to study PDEs.

One natural question to ask is whether there exist transformations on
Jkπ (or J∞π) preserving Ek. What kind of transformations to allow can be
widely discussed, as done in [10]. One natural choice is to consider fiber-
preserving diffeomorphisms on E, a special class of point transformations.
These transformations can be extended naturally to Jkπ since they act
on sections of π. If the extended transformations preserve the equation
Ek ⊂ Jkπ, i.e. take points in Ek to other points in Ek, we say that they are
symmetries of Ek. The collection of symmetries makes up a Lie pseudogroup.
To define Lie pseudogroups we need some terminology. See [6, 7] for details.

Inside of Jk(E ×E), we have the jet-space for diffeomorphisms Dk con-
sisting of k-jets of sections of the trivial bundle E × E, projecting diffeo-
morphically to both factors. Its stabilizer Dk

a at a ∈ E is an affine algebraic
group and is called the differential group of order k.

Definition 1. A Lie pseudogroup of order l is given by a Lie equation,
which is a collection of subbundles Gj ⊂ Dj , 0 < j ≤ l, such that the
following properties are satisfied:

• For ϕj , ψj ∈ Gj we have ϕj ◦ ψj ∈ Gj whenever defined.

• Gj ⊂ (Gj−1)(1) and ρj,j−1 : Gj → Gj−1 is a bundle for every j ≤ l.
In practice it is often more convenient to work with infinitesimal sym-

metries, rather than with finite ones. If X is a vector field on E, it can be
lifted naturally to a vector field X(k) on Jkπ, via its one-parameter group
of transformations. We say that X is an infinitesimal symmetry of a kth
order PDE Ek if X(k) is tangent to Ek. The infinitesimal symmetries make
up a Lie algebra (or Lie algebra sheaf) of vector fields on E, which may be
of finite or infinite dimension.
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2 Introduction to invariant theory

The main topic of this thesis is symmetry pseudogroups of differential equa-
tions. First and foremost our goal is to understand the quotient of solution
spaces by symmetry pseudogroups. Before we consider pseudogroup ac-
tions on PDEs it will benefit our understanding to discuss group actions on
manifolds and algebraic varieties, and the corresponding quotient spaces.
This also allows us to introduce the theorem of Rosenlicht, which in [6] was
proved to be very useful to the theory of differential invariants. For a more
comprehensive treatment of this theory we refer to [9].

2.1 The problem with orbit spaces

Let G be a Lie group acting on a manifold M . We would like to get some
understanding of the orbit space M/G. As a set, this space is always well-
defined. The group action defines an equivalence relation on M , and M/G is
the set of such equivalence classes. We then have the natural map π : M →
M/G, taking x ∈M to its equivalence class [x] ∈M/G.

There is a natural topology on the set M/G, coming from the topology
on M , called the quotient topology. The set V is open in M/G if the
preimage π−1(V ) is open in M . Hence M/G is not only a set, but also a
topological space. However, it will in general not be a smooth manifold,
even if M and G are. The following example illustrates this.

Example 1. Let M = R2, and let G = R+ = (0,∞) act by scaling the vector
space: (t, (x, y)) 7→ (tx, ty). The orbits are rays emanating from the origin,
together with the point (0, 0). The quotient space is M/G = S1 ∪ {(0, 0)}.
We see that the only open set containing (0, 0) (in the quotient topology) is
the whole space M/G. This shows that, in particular, the quotient space is
non-Hausdorff.

Notice that if we consider the invariant submanifold M0 = M \ {(0, 0)},
then the quotient M0/G = S1 is a manifold.

2.2 Invariants on algebraic varieties

In the case where we have an algebraic group acting algebraically on an
algebraic variety we can always remove a Zariski closed set, so that the
quotient becomes an algebraic variety.

Restricting to algebraic varieties may seem artificial when working in the
field of differential geometry. However, it turns out that for our applications,
namely to symmetries of PDEs, this restriction is completely natural. We
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will come back to this discussion later, after having taken a closer look on
the general theory of rational invariants. The following theorem, first proved
by Rosenlicht, will be essential for us.

Theorem 1 (Rosenlicht). Let G be an algebraic group acting rationally on
an irreducible algebraic variety M . Then there exists a finite set of rational
invariants that separate orbits in general position.

Notice that this theorem does not apply to Example 1. There the field
of rational invariants is generated by I = x/y, which does not separate two
regular orbits lying on the same line in R2. An explanation for this is that
R+ is not Zariski closed. Its closure is R\{0}, and for this group action, the
invariant I does separate orbits in general position. If we allow the invariant
to take the value ∞, it separates all orbits except for {(0, 0)}. Thus, if we
consider the R \ {0}-action on M0 = M \ {(0, 0)} we get M0/G = RP 1,
which is an algebraic variety.

This is a general consequence of Rosenlicht’s theorem. There exists a
Zariski open set M0 ⊂M such that M0/G is an algebraic variety. Note that
for the example above, the invariant I = x/y solves the equivalence and
classification problem on M (or, to be more precise, on M0). Two points
p1, p2 ∈M0 are equivalent if and only if I(p1) = I(p2), and the equivalence
classes are parametrized by the values of I.

Remark 2. In practice we will usually find invariants by solving the PDE
system X(I) = 0 for X ∈ g, where g is the Lie algebra of vector fields on M
corresponding to the action of G. For example, we see above that I satisfies
this equation for X = x∂x + y∂y.

Passing from a Lie group action on a manifold M to its Lie algebra
of vector fields on M , one has to keep in mind that the Lie algebra only
keeps information about the connected component of the Lie group. By
“connected” we should, in the algebraic setting, understand the word in the
context of Zariski topology. Rosenlicht’s theorem guarantees that the field
of rational invariants is finitely generated and separates orbits in general
position. In particular this will hold for the (irreducible) Zariski connected
component, but also for reducible groups containing it.

At first one may think that the above example shows a disadvantage
of restricting to algebraic groups, since we cannot even treat such elemen-
tary Lie groups as R+. First of all, such cases can be handled by additional
non-rational invariants, like sgn(x). Secondly, if the group action under con-
sideration is algebraic, knowing that we need to look for rational invariants
only may significantly simplify computations.
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The last question is then whether the class of algebraic group actions
is rich enough for our purpose. The answer seems to be yes, and the re-
sults of this thesis substantiate this claim. The main topic here is Lie
pseudogroups which are symmetries of differential equations. Most popular
differential equations are polynomial in derivatives, and this implies that
the Lie pseudogroup of symmetries is algebraic in some special way. Thus,
as was realized in [6], Rosenlicht’s theorem is exactly what we need.

3 Invariants on differential equations

Let us now take a closer look at the equivalence and classification prob-
lem on solution spaces of PDEs. The general setting is the following. Let
Ek ∈ Jkπ be a kth order PDE, and let G be a Lie pseudogroup consist-
ing of point symmetries of E . Of main interest is the action of G on the
solution space of E . Ideally we would like to both describe the space of
orbits of solutions, and also to be able to determine whether two given so-
lutions are equivalent. However, for most PDEs we don’t really know what
the solution space looks like, and in general both the solution space and
the Lie pseudogroup will be infinite-dimensional objects. One way to ap-
proach this problem is to describe the G-orbits on Ei ⊂ J iπ for every i.
We do this by finding generators for the algebra of G-invariant functions
on Ei, the so-called differential invariants. It turns out that the algebra of
invariant functions on E∞ is finitely generated, as a differential algebra. In
order to solve the equivalence problem, we need to find some generators
for the algebra of differential invariants. Finding the (differential) syzygies
among these generators solves the classification problem. Essentially they
can be thought of as a system of differential equations whose solutions are
equivalence classes of solutions of E .

We will assume that the fibers of Ei over any point in E are irreducible
algebraic varieties for every positive integer i. Most interesting PDEs are of
this type. Note also that this type of algebraicity is well-defined: applying a
diffeomorphism to E will preserve the algebraicity. We will also assume that
E is formally integrable. The Lie pseudogroup G will be assumed transitive
and algebraic, meaning that for every a ∈ E the subgroups Gja ⊂ Dj

a in the
differential group of order k are algebraic subgroups (recall the notation from
Section 1.3). The full symmetry pseudogroup (of point transformations) of
an algebraic PDE will always be algebraic. If one is interested in a sub-
pseudogroup proper care must be taken. For a more thorough treatment of
these concepts we refer to [6].
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3.1 Differential invariants

Given a PDE E , we can for any k describe the G-orbits on Ek by finding
generators for the algebra of G-invariant functions on Ek. Assuming that
both E and G are fixed, we make the following definition.

Definition 2. A differential invariant of order k is a function on Ek ⊂ Jkπ
which is constant on the orbits of G.

We may sometimes leave out the word “differential”, since we will not
talk about any other type of invariants. With this definition a differential
invariant of order k − 1 is also a differential invariant of order k. Thus we
get a filtered algebra of differential invariants

A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ A = limAk

where Ak is the algebra of differential invariants of order k.
In practice differential invariants of order k can often be found by solving

the first-order Linear system of PDEs

(LX(k)I)|Ek = 0, X ∈ g.

The question about what kind of functions we allow, or require, our
invariants to be (smooth, local, rational, etc.) is an interesting one. For
a long time, the common approach was to look for differential invariants
among functions defined locally on Jkπ (the microlocal approach).

Example 2. For curves in R2 under the action of the Euclidean group
SO(2) oR2, the classical curvature is defined as

κ =
y′′(x)√

(1 + y′(x)2)3
.

However, it is not really invariant. The reflection (or rotation) (x, y) 7→
(−x,−y) takes κ to −κ. Note that the rational invariant κ2 does not have
this problem.

See section 5.3 in [6] for a discussion on square roots in differential
invariants. From a microlocal perspective the existence of local invariants
on Jkπ, or on some PDE Ek ⊂ Jkπ, is guaranteed by Frobenius’ theorem
(on integrable foliations). However, the domain on which the invariants are
defined is not necessarily invariant.

In [6] Kruglikov and Lychagin realized that we can take advantage of the
fact that algebraic geometry appear naturally on the fibers of jet bundles.
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This allows to use Rosenlicht’s theorem on the fibers of Ek. Thus we get
rational differential invariants, which are defined on a G-stable Zariski open
set in Ek, and we may consider Ak to be fields of rational invariants. The
idea is the following:

Since G is assumed to act transitively on E, we may identify the orbit
space on Ek with the orbit space on a fiber of Ek → E. More precisely
(Ek \ Sk)/G is identified with ((Ek \ Sk) ∩ π−1

k (a))/Gka, where Sk ⊂ Ek is
some Zariski closed subset. As in section 2.2 a Zariski closed subset needs
to be removed. Thus we are in the situation where an algebraic group Gka
acts algebraically on an algebraic variety Eka \(Sk∩π−1

k (a)), and there exists
a geometric quotient if Sk is chosen appropriately. More precisely, we have
the following theorem ([6]):

Theorem 2 (Kruglikov-Lychagin). Let G be an algebraic transitive pseu-
dogroup of symmetries on a formally integrable irreducible algebraic dif-
ferential equation E. Then there exists an integer l and a Zariski closed
invariant proper subset Sl ⊂ E l such that Ek \ π−1

k,l (Sl) admits a rational

geometric quotient Y k ' (Ek \ π−1
k,l (Sl))/G

k for every k ≥ l.

3.2 Invariant Derivations and the Lie-Tresse theorem

Since the filtered algebra of rational differential invariants in general con-
tains infinitely many independent functions, finding a generating set may
seem difficult. What helps us here is that A is in fact a differential algebra:
There exist derivations on A.

Definition 3. An invariant derivation is a derivation on the algebra A of
differential invariants which commutes with G.

In coordinates they take the form ∇ = αiDxi , where Dxi are total
derivatives and αi are functions on Ek for some k. We will restrict our
attention to derivations for which αi are rational functions. The functions αi

must satisfy the system of differential equations coming from the condition
[∇, X(∞)] = 0 for every X ∈ g.

It turns out that the algebra A of differential invariants can be generated
by the field Al of rational lth order differential invariants, for some positive
integer l, together with invariant derivations. In fact it is sufficient to con-
sider only polynomials of derivatives of invariants in Al in order to separate
orbits. Thus, we will in general be interested in the algebra of differential
invariants that are rational on fibers of El → E, and polynomial on fibers
of Ek → El, for k > l.
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Thus, given a PDE E with a Lie pseudogroup action G on it, we will by
A mean the filtered differential algebra of rational-polynomial differential
invariants.

The idea that the algebra of differential invariants is finitely generated
dates back to Lie and Tresse, but the precise formulation of the theorem has
evolved during the last century. See [6] for a summary of the history of the
theorem. The most recent development is due to Kruglikov and Lychagin
([6]), where they give the global formulation of the theorem:

Theorem 3 (Kruglikov-Lychagin). Consider an algebraic action of a pseu-
dogroup G on a formally integrable irreducible differential equation E over
E. Suppose G acts transitively on E. Then there exists a number l and a
Zariski closed invariant proper subset S ⊂ El such that the algebra of dif-
ferential invariants separates the regular orbits from E∞ \ π−1

∞,l(S) and is
finitely generated in the following sense.

There exists a finite number of functions I1, ..., It ∈ A and a finite
number of rational invariant derivations ∇1, ...,∇s : A → A such that any
function in A is a polynomial of differential invariants ∇σIi where ∇σ =
∇i11 · · · ∇iss for a multi-index σ = (i1, ..., is), with coefficients being rational
functions of the invariants Ii.

This theorem lies behind most of the results in this thesis.

3.3 Solution of the recognition and classification problem

In order to explain how the differential invariants can be used to solve the
recognition and classification problem, we find it convenient to introduce
some special invariant derivations, called Tresse derivatives (see [7])

Let d̂ denote the horizontal differential. It can be defined as the operator
satisfying (d̂f) ◦ jks = d(f ◦ jks) for any function f on J∞π, where d is the
exterior differential on the base manifold of π. In coordinates it is given
by d̂f = Dxi(f)dxi. Now, pick n differential invariants I1, ..., In satisfying
d̂I1 ∧ · · · ∧ d̂In 6= 0. Then the Tresse derivatives ∂̂i = ∂̂Ii are defined by

∂̂i =
∑
j

(Dxa(fb))
−1
ij Dxj .

The Tresse derivatives are commuting invariant derivations that satisfy d̂f =∑
∂̂i(f)d̂Ii.

By using a finite set of differential invariants together with the Tresse
derivatives constructed from n of them to generate the algebra of differential
invariants it becomes clear how the algebra of rational scalar differential
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invariants lets us solve the equivalence problem of sections of π under the G-
action. Denote the invariants generating the algebra by I1, ..., In,K1, ...,Kq.
For a function f on Jkπ, let us use the notation f(s) = f ◦ jks, for a section
s of π. Then f(s) will be a function on the base of π.

Assuming that (d̂I1 ∧ · · · ∧ d̂In) ◦ jks = d(I1(s)) ∧ · · · ∧ d(In(s)) is
defined and nonzero (this puts minor restrictions on both Ii and s), the
functions Ii(s) can be taken as local coordinates on the base of π. Ex-
pressing K1(s), ...,Kq(s) in terms of these determines the equivalence class,
i.e. two sections s1, s2 are locally equivalent if and only if the functions
Kj(si)(I(si), J(si)) are equal in some neighborhood, for i = 1, 2.

More conveniently we may think of the functions Ii(s),Kj(s) as defining
a n-dimensional surface in Rn+q. Then two sections are locally equivalent if
their corresponding surfaces coincide in some neighborhood. These surfaces
are not arbitrary surfaces, they are constrained by a system of PDEs. This
system is called the quotient equation, and it is of great importance since
its solutions are exactly the equivalence classes of sections of π under the
G-action. It manifests itself as differential syzygies among the generating
set of invariants and invariant derivations. In this way a description of the
generators Ii,Kj and ∂̂i solves the recognition problem, while the solution
of the classification problem is given by the differential syzygies.

There is however one difficulty appearing. It is analogous to what hap-
pens in algebraic invariant theory, as discussed in Section 2, and it is clear
that it will always make trouble for us as long as we try to describe the
quotient by using the algebra of invariant functions. In order to get a good
quotient space (or a good quotient PDE) we need to remove a Zariski closed
set consisting of “singular” orbits.

After choosing the invariants Ii,Kj , the condition d̂I1 ∧ · · · ∧ d̂In 6= 0
determine an algebraic subset in Jkπ, where k depends on the order of the
differential invariants chosen. The invariants let us separate only sections
whose k-jets does not intersect with this singular set.

From one viewpoint this is not a big problem. Since the Zariski closed
set is of measure zero, we are still left with most equivalence classes. Others
may argue that the solutions we remove, for example solutions of constant
curvature, are the most interesting ones.

In any case it is obviously important to understand the space of generic
solutions, and its quotient. And equivalence problems for special, singu-
lar sections can be considered separately by restricting to a sub-PDE and
applying the same methods.
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4 Four simple examples

The main part of this thesis contains many examples showing how to use
the theory above. However, most of these examples are quite complicated.
From one perspective this is a good thing, as it shows the strength of the
theory. On the other hand, for a reader not yet completely comfortable
with the theory it may be more appropriate to start with some simpler and
more transparent examples. We give four such examples in this section. It
is likely that some of the examples may provide new insight even to experts
in the field.

We start by considering a few different Lie group actions on curves in the
plane. Then we proceed to classify solutions of two well-known nonlinear
PDEs.

4.1 Euclidean group on curves in R2

Consider the manifold M = R2 with coordinates x, u, and the Lie algebra
g spanned by ∂x, ∂u, x∂u − u∂x. There are two natural Lie groups actions
with this infinitesimal action: E(2)+ = SO(2) nR2 and E(2) = O(2) nR2.
Both of these are algebraic, so the global Lie-Tresse theorem is applicable.
It is easy to check that the two rational functions

κ =
u2

2

(1 + u2
1)3

, κ1 =
u3

(1 + u2
1)2
− 3

u1u
2
2

(1 + u2
1)3

satisfy X(2)(κ) = 0, X(3)(κ1) = 0 for every X ∈ g. The function κ1 is not
invariant with respect to E(2), since the transformation (x, u) 7→ (−x, u)
changes sign of κ1. The function κ2

1, on the other hand, is invariant under
the E(2)-action. The algebra of rational-polynomial differential invariants
of E(2)+ (respectively E(2)) is generated by κ, κ1 and the Tresse-derivative
∂̂κ (respectively κ, κ2

1, ∂̂κ).

This shows that it is possible, using rational differential invariants, to
separate orbits for unconnected Lie groups, and not only for the Zariski
connected component. The choice of Lie group action shows up already in
the field of second-order differential invariants. The field generated by κ, κ1

is a field extension of degree 2 of the field generated by κ, κ2
1, and the Galois

group of the field extension is E(2)/E(2)+ = Z2.

4.2 Affine group on curves in R2

Consider the same manifold as above, but with the Lie algebra action g
spanned by the vector fields ∂x, ∂u, x∂u, u∂x, x∂x, u∂u. Again we consider
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two natural Lie groups with this infinitesimal action: A(2) = GL(2) n R2

and A(2)+ = GL(2)+ n R2, where GL(2)+ denotes the subgroup of GL(2)
consisting of orientation preserving transformations. It is easy to check that
the two rational functions

κ =
(9u22u5 − 45u2u3u4 + 40u33)2

(3u2u4 − 5u23)3
, κ1 =

9u32u6 − 63u22u3u5 + 105u2u
2
3u4 − 35u43

(3u2u4 − 5u23)2

satisfy X(5)(κ) = 0, X(6)(κ1) = 0 for every X ∈ g. However, these are
invariant also under the action (x, u) 7→ (−x, u) of A(2), so they are not
sufficient for separating A+(2)-orbits. For A(2), the algebra of rational-
polynomial invariants is generated by κ, κ1 and the Tresse-derivative ∂̂κ.

The fact that the global Lie-Tresse theorem doesn’t hold in general for
the topologically connected component of a Lie group may seem like an
inconvenience, but passing to the connected component appears to have
been often a result of (believed) necessity rather than desire.

In fact, if one is really interested in the topologically connected compo-
nent, one can describe the orbits of A+(2) by using additional discrete data,
for example the sign of the relative invariant 9u2

2u5 − 45u2u3u4 + 40u3
3.

4.3 The Hunter-Saxton equation

The Hunter-Saxton equation is defined by

(ut + uux)x =
1

2
u2
x.

It is an integrable PDE that arises in the study of liquid crystals. Its Lie
algebra of symmetries is spanned by

∂t, t∂t + x∂x, x∂x + u∂u, t2∂t + 2tx∂x + 2x∂u, f(t)∂x + f ′(t)∂u

where f runs through all smooth locally defined functions. Note that even
though the f is a general smooth function the pseudogroup is still alge-
braic, as this type of algebraicity is a property only of the vertical action of
stabilizers in the fibers of the jet spaces.

The algebra of differential invariants of the corresponding Zariski con-
nected Lie pseudogroup action is generated by

I =
uxxuxxxx
u2
xxx

, J =
u2
xxuxxxxx
u3
xxx

, H =
u3
xxuxxxxxx
u4
xxx

together with the Tresse-derivatives ∂̂I , ∂̂J . It is not difficult to check that
the quotient PDE is given by

(4I − 7)HI − (11I − 6J + 7)HJ = 8H − 25I − 16J,

13



where we use the simplified notation HI = ∂̂I(H), HJ = ∂̂J(H). This linear
first-order PDE can be solved with the method of characteristics. We end
up with the general solution

H = (4I − 7)2F

(
(22I − 4J − 21)2

(4I − 7)3

)
− 63

4
I + 8J +

217

32
.

Since each solution determines an equivalence class of solutions to the
Hunter-Saxton equation, we see that the quotient of the solution space is
parametrized by the function F . If we fix F and insert the expressions
for I, J,H into the equation above, we get a new equation on J6 which
we may add to the HS equation. Doing this amounts to restricting to one
equivalence class of solutions. For example, in the case F ≡ 0, we get the
ODE

32u3
x2ux6 − 256u2

x2ux3ux5 + 504ux2u
2
x3ux4 − 217u4

x3 = 0.

4.4 Burgers’ equation

We compute the differential invariants and quotient PDE for Burgers’ equa-
tion. In this case the topologically connected component of the symmetry
group is different from the Zariski connected component.

Burgers’ equation is defined by B2 = {uxx = ut + uux} ⊂ J2(R2 × R).
It appears in fields such as fluid mechanics and acoustics. Its symmetry
algebra is spanned by the vector fields

∂x, t∂x + ∂u, ∂t, 2t∂t + x∂x − u∂u, t2∂t + tx∂x + (x− tu)∂u.

Orbits in general position in Bk are five-dimensional for k > 0. The dimen-
sion of Bk is 2k+3, meaning that there are 2(k−1) independent differential
invariants of order k for k > 1. In particular we have the following three
invariants:

I =
(utx + u2x + u(ut + uux))3

(ut + uux)4
,

J =
(utt + 2uutx + (u2 + 4ux)(ut + uux))(uxy + u2x + u(ut + uux))

(ut + uux)3

H =
uttx + 2uutt + 3(u2 + 2ux)utx + ux(uut + 4u2x) + (u3 + 7uux)(ut + uux)

(ut + uux)2

A fourth invariant of order three can be generated from these:

(3J − 4I)HI + (H − 3J + 4 + J2/I)HJ + 2(H − 4)
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The quotient equation is given by

0 = I2(4I − 3J)2HII − 2I(4I − 3J)(IH − 3IJ + J2 + 4I)HIJ

+(IH − 3IJ + J2 + 4I)2HJJ + I(4I2 − 12IJ + 6J2 + 9I)HI

−I(2IH − 2JH + 2J2 − 2I − 11J)HJ + 2I2H − 2I2 − 15IJ.

In [2] Hydon computed the discrete symmetries of Burgers’ equation,
the ones not contained in the topologically connected component. They
are generated by (t, x, u) 7→ (−1/(4t), x/(2t), 2(tu− x)) and form the cyclic
group Z4. It is easy to check that the differential invariants above are
invariant also under these transformations.

The connected component of the symmetry group above is not algebraic.
Its Zariski closure (the Zariski connected component) contains four topo-
logically connected components. The invariants above will not separate the
orbits of the topologically connected component of the symmetry group.

5 The papers of this thesis

The remainder of the thesis consists of 6 papers. They all concern the
classification or recognition problem for some mathematical structure. In
all but one, these problems are solved by finding the algebra of rational
differential invariants. The papers of the thesis are the following.

• E. Schneider, Projectable Lie algebras of vector fields in 3D, Journal
of Geometry and Physics 132, 222-229, (2018).
https://doi.org/10.1016/j.geomphys.2018.05.025

• E. Schneider, Differential invariants of surfaces.
(Close to submission)

• B. Kruglikov, E. Schneider, Differential invariants of self-dual confor-
mal structures, Journal of Geometry and Physics 113, 176-187, (2017).
https://doi.org/10.1016/j.geomphys.2016.05.017

• B. Kruglikov, E. Schneider, Differential invariants of Einstein-Weyl
structures in 3D, Journal of Geometry and Physics 131, 160-169,
(2018). https://doi.org/10.1016/j.geomphys.2018.05.011

• B. Kruglikov, D. McNutt, E. Schneider, Differential invariants of
Kundt waves, arXiv:1901.02635. (Submitted)

• E. Schneider, Differential invariants in thermodynamics.
(Submitted)
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As a collection, the papers display the power of the theory of scalar
differential invariants. They show the versatility of the global Lie-Tresse
theorem and its underlying ideas, and in particular they corroborate the
idea that restricting to rational differential invariants is appropriate in a
very general setting. They also show the utility of computer algebra systems
applied to some particular problems in pure mathematics since we, when
computing differential invariants, rely heavily on Maple and, in particular,
on the pdsolve procedure and Ian Anderson’s DifferentialGeometry package.

At the same time, each of the papers contain results that are impor-
tant and interesting by themselves. Three of the papers revolve around
recognition and classification of special conformal and pseudo-Riemannian
manifolds. One paper concerns recognition of surfaces in three dimensions
under several different Lie group actions. The Lie group actions considered
come from a special class of Lie groups consisting projectable transforma-
tions on the bundle C2 × C → C2. The list of these Lie group actions was
found in another paper of this thesis. We give a summary of the six papers.

Projectable Lie algebras of vector fields in 3D The classification
of Lie group actions on three-dimensional space is of fundamental impor-
tance in differential geometry, as it also gives a classification of homogeneous
spaces. The history of the problem dates back to Lie, who outlined how to
make a complete classification. In this paper we lift the Lie group actions
from C2 to C2 × C, and thereby obtain a complete list of a special type of
Lie group actions on three-dimensional space. We also discuss a connection
between some special lifts and Lie algebra cohomologies.

This first paper stands out in this thesis since it is the only one in
which we do not consider differential invariants. However, it does concern a
classification problem, and the results obtained are important for the next
paper in which we consider the equivalence problem for surfaces in three-
dimensional space.

Differential invariants of surfaces We find differential invariants for
surfaces in three-dimensional space under the Lie group actions found in the
previous paper. Our main motivation is to solve the equivalence problem,
but algebra of differential invariants is also an important source for invariant
differential equations. Geometrically we can think about this as recognizing
surfaces in particular three-dimensional homogeneous spaces, and finding
admissible PDEs for surfaces in these spaces.

In the context of a particular example of a Lie group action we discuss
the notion of algebraic Lie group action, and for one of the algebraic actions
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we compute the differential syzygies. In the end we find an unconnected Lie
group action, and discuss how its algebra of differential invariants is related
to that of the connected component.

Differential invariants of self-dual conformal structures We con-
sider the problem of recognizing and classifying four-dimensional self-dual
conformal structures. These structures play an important role in the theory
of dispersionless integrable systems and in twistor theory. In addition, they
are central in Yang-Mills theory.

First we describe the scalar differential invariants in a coordinate free
way. Then we use a result by Dunajski, Ferapontov and Kruglikov ([1])
in order to write the self-dual conformal structures in Plebański-Robinson
form. We find the Lie pseudogroup preserving this form, and give generators
of its algebra of differential invariants.

Differential invariants of Einstein-Weyl structures We treat the
recognition problem for three-dimensional Einstein-Weyl structures. They
are reductions of self-dual conformal structures, and are important in alter-
native theories of gravity. Using results from [1], the set of Einstein-Weyl
structures are identified with solutions of a modified Manakov-Santini sys-
tem, by bringing their metric and connection to a special form. We show
that the Lie pseudogroup of symmetries to this system corresponds exactly
to the Lie pseudogroup of diffeomorphisms preserving the form of the metric
and connection. We find generators of the algebra of differential invariants.
It can be generated by three invariant derivations and one single differential
invariant. In the end we use the differential invariants to find some particu-
lar solutions to the modified Manakov-Santini system, and thereby produce
some examples of Einstein-Weyl structures.

Differential invariants of Kundt waves Kundt waves are special Lor-
entzian spacetimes with vanishing polynomial scalar curvature invariants,
meaning that they can not be distinguished by the “normal methods”. The
equivalence problem for Ricci-flat Kundt waves was already solved in [3] by
using the Cartan-Karlhede algorithm, and part of our motivation was to
compare that approach to the one used throughout this thesis, making this
a good resource for researchers that are familiar with one of the methods
and would like to understand the other approach.

We start by assuming that the Kundt waves are written down in special
coordinates, so that the metric takes a particularly simple form, depending
on one function of three variables. Then we compute differential invari-
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ants of the Lie pseudogroup preserving this form. The approach taken is
thus similar to the one used for self-dual conformal structures and Einstein-
Weyl structures. However the Lie pseudogroup consists of four (Zariski)
connected components, and it acts intransitively, so extra care needs to be
taken. To our knowledge this is the first time the algebra of differential
invariants for an nonconnected Lie pseudogroup is found.

Differential invariants in thermodynamics In this paper we look at
two Lie group actions appearing in thermodynamics. We compute differ-
ential invariants of the information gain function. They let us distinguish
inequivalent thermodynamic states. In the end we take a closer look at our
differential invariants in the context of ideal and van der Waals gases, and
we show how they can be used to distinguish these gases.
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Projectable Lie algebras of vector fields in 3D

Eivind Schneider

Abstract

Starting with Lie’s classification of finite-dimensional transitive Lie
algebras of vector fields on C2 we construct transitive Lie algebras of
vector fields on the bundle C2 × C by lifting the Lie algebras from
the base. There are essentially three types of transitive lifts and we
compute all of them for the Lie algebras from Lie’s classification. The
simplest type of lift is encoded by Lie algebra cohomology.

1 Introduction

A fundamental question in differential geometry is to determine which tran-
sitive Lie group actions exist on a manifold. Sophus Lie considered this to
be an important problem, in particular due to its applications in the sym-
metry theory of PDEs. In [13] (see also [14]) he gave a local classification of
finite-dimensional transitive Lie algebras of analytic vector fields on C and
C2. Lie never published a complete list of finite-dimensional Lie algebras of
vector fields on C3, but he did classify primitive Lie algebras of vector fields
on C3, those not preserving an invariant foliation, which he considered to
be the most important ones and also some special imprimitive Lie algebras
of vector fields.

Lie algebras of vector fields on C3 preserving a one-dimensional foliation
are locally equivalent to projectable Lie algebras of vector fields on the
total space of the fiber bundle π : C2 × C→ C2. Finding such Lie algebras
amounts to extending Lie algebras of vector fields on the base (where they
have been classified) to the total space. For the primitive Lie algebras of
vector fields on the plane, this was completed by Lie [14]. Amaldi continued
Lie’s work by extending the imprimitive Lie algebras to three-dimensional
space [2, 3] (see also [11]), but his obtained list of Lie algebras is incomplete.
Nonsolvable Lie algebras of vector fields on C3 were recently classified in [5].
It was also showed there that a complete classification of finite-dimensional
solvable Lie algebras of vector fields on C3 is hopeless, since it contains the
subproblem of classifying left ideals of finite codimension in the universal
enveloping algebra U(g) for the two-dimensional Lie algebras g, which is
known to be a hard algebraic problem.
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In this paper we consider Lie algebras of vector fields on the plane from
Lie’s classification, and extend them to the total space C2 × C. In order
to avoid the issues discussed in [5] we only consider extensions that are of
the same dimension as the original Lie algebra. The resulting list of Lie
algebras has intersections with [14], [2, 3] and [5], but it also contains some
additional solvable Lie algebras of vector fields in three-dimensional space
which are missing from [2, 3].

We start in section 2 by reviewing the classification of Lie algebras of
vector fields on C2, which will be our starting point. The lifting procedure
is explained in section 3. We show that transitive lifts can be divided into
three types, depending on how they act on the fibers of π. In section 4 we
give a complete list of the lifted Lie algebras of vector fields, which is the
main result of this paper. The relation between the simplest type of lift and
Lie algebra cohomology is explained in section 5.

2 Classification of Lie algebras of vector fields on C2

Two Lie algebras g1 ⊂ D(M1), g2 ⊂ D(M2) of vector fields on the manifolds
M1 and M2, respectively, are locally equivalent if there exist open subsets
Ui ⊂ Mi and a diffeomorphism f : U1 → U2 with the property df(g1|U1) =
g2|U1 . Recall that g is transitive if g|p = TpM at all points p ∈M .

The classification of Lie algebras of vector fields on C and C2 is due
to Lie [13] (see [1] for English translation). There are up to local equiva-
lence only three finite-dimensional transitive Lie algebras of vector fields on
C and they correspond to the the groups of metric, affine and projective
transformations, respectively:

〈∂u〉, 〈∂u, u∂u〉, 〈∂u, u∂u, u2∂u〉 (1)

On C2 any finite-dimensional transitive Lie algebra of analytic vector fields
is locally equivalent to one of the following:

Primitive

g1 = 〈∂x, ∂y, x∂x, x∂y, y∂x, y∂y, x2∂x + xy∂y, xy∂x + y2∂y〉
g2 = 〈∂x, ∂y, x∂x, x∂y, y∂x, y∂y〉
g3 = 〈∂x, ∂y, x∂y, y∂x, x∂x − y∂y〉
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Imprimitive

g4 = 〈∂x, eαix∂y, xeαix∂y, ..., xmi−1eαix∂y | i = 1, ..., s〉,

where mi ∈ N \ {0}, αi ∈ C,
s∑
i=1

mi + 1 = r ≥ 2

g5 = 〈∂x, y∂y, eαix∂y, xeαix∂y, ..., xmi−1eαix∂y | i = 1, ..., s〉,

where mi ∈ N \ {0}, αi ∈ C,
s∑
i=1

mi + 2 = r ≥ 4

g6 = 〈∂x, ∂y, y∂y, y2∂y〉
g7 = 〈∂x, ∂y, x∂x, x2∂x + x∂y〉
g8 = 〈∂x, ∂y, x∂y, ..., xr−3∂y, x∂x + αy∂y〉, α ∈ C, r ≥ 3

g9 = 〈∂x, ∂y, x∂y, ..., xr−3∂y, x∂x +
(
(r − 2)y + xr−2

)
∂y〉, r ≥ 3

g10 = 〈∂x, ∂y, x∂y, ..., xr−4∂y, x∂x, y∂y〉, r ≥ 4

g11 = 〈∂x, x∂x, ∂y, y∂y, y2∂y〉
g12 = 〈∂x, x∂x, x2∂x, ∂y, y∂y, y

2∂y〉
g13 = 〈∂x, ∂y, x∂y, ..., xr−4∂y, x

2∂x + (r − 4)xy∂y, x∂x + r−4
2 y∂y〉, r ≥ 5

g14 = 〈∂x, ∂y, x∂y, ..., xr−5∂y, y∂y, x∂x, x
2∂x + (r − 5)xy∂y〉, r ≥ 6

g15 = 〈∂x, x∂x + ∂y, x
2∂x + 2x∂y〉

g16 = 〈∂x, x∂x − y∂y, x2∂x + (1− 2xy)∂y〉

In the list above (which is based on the one in [10]), and throughout the
paper, r denotes the dimension of the Lie algebra. Our g16 is by y 7→ 1

y−x
locally equivalent to 〈∂x + ∂y, x∂x + y∂y, x

2∂x + y2∂y〉, which often appears
in these lists of Lie algebras of vector fields on the plane but has a singular
orbit y − x = 0. We also refer to [14, 4, 6, 9] which treat transitive Lie
algebras of vector fields on the plane.

3 Lifts of Lie algebras of vector fields on C2

In this section we describe how we lift the Lie algebras of vector fields from
the base space to the total space of π : C2 × C→ C2.

Definition 4. Let g ⊂ D(C2) be a Lie algebra of vector fields on C2, and
let ĝ ⊂ D(C2 × C) be a projectable Lie algebra satisfying dπ(ĝ) = g. The
Lie algebra ĝ is a lift of g (on the bundle π) if ker(dπ|ĝ) = {0} .
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For practical purposes we reformulate this in coordinates. Throughout
the paper (x, y, u) will be coordinates on C2 × C. If Xi = ai(x, y)∂x +
bi(x, y)∂y form a basis for g ⊂ D(C2), then a lift ĝ of g on the bundle
π is spanned by vector fields of the form X̂i = ai(x, y)∂x + bi(x, y)∂y +
fi(x, y, u)∂u. The functions fi are subject to differential constraints coming
from the commutation relations of g. Finding lifts of g amounts to solving
these differential equations. We consider only transitive lifts.

3.1 Three types of lifts

The fibers of π are one-dimensional and, as is common in these type of
calculations, we will use the classification of Lie algebras of vector fields on
the line to simplify our calculations. Let g be a finite-dimensional transitive
Lie algebra of vector fields on C2 and ĝ a transitive lift. For p ∈ C2×C, let
a = π(p) be the projection of p and let sta ⊂ g be the stabilizer of a ∈ C2.
Denote by ŝta ⊂ ĝ the lift of sta, i.e. dπ(ŝta) = sta. The Lie algebra ŝta
preserves the fiber Fa = π−1(a) over a, and thus induces a Lie algebra of
vector fields on Fa by restriction to the fiber. Denote the corresponding Lie
algebra homomorphism by

ϕa : ŝta → D(Fa).

In general this map will not be injective, and it is clear that as abstract Lie
algebras ϕa(ŝta) is isomorphic to ha = ŝta/ ker(ϕa).

Since ĝ is transitive, the Lie algebra ϕa(ŝta) is a transitive Lie algebra
on the one-dimensional fiber Fa, and therefore it must be locally equivalent
to one of the three Lie algebras (1). Transitivity of ĝ also implies that for
any two points a, b ∈ C2, the Lie algebras ϕa(ŝta), ϕb(ŝtb) of vector fields
are locally equivalent. Since the Lie algebra structure of ha is independent
of the point a, it will be convenient to define h as the abstract Lie algebra
isomorphic to ha. Thus dim h is equal to 1, 2 or 3, which allows us to split
the transitive lifts into three distinct types.

Definition 5. We say that the lift ĝ of g ⊂ D(C2) is metric, affine or
projective if h is of dimension one, two or three, respectively.

Since the properties of the Lie algebras sta and h are closely linked, we
can immediately say something about existence of the different types of lifts.

Theorem 4. If sta is solvable, then there are no projective lifts. If sta is
abelian, then there are no projective or affine lifts.

Proof. The map ϕa : ŝta → ha ' h is a Lie algebra homomorphism, and the
image of a solvable (resp. abelian) Lie algebra is solvable (resp. abelian).
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It follows from Lie’s classification that only the primitive Lie algebras
may have projective lifts.

The main goal of this section is to show that we can choose local coor-
dinates in a neighborhood U ⊂ C2 ×C of any point such that ϕa(ŝta)|U∩Fa
takes one of the three normal forms from (1) for every a ∈ π(U), simultane-
ously. This fact, together with theorem 4, simplifies computations. Before
proving it we make the following observation.

Lemma 1. Let g ⊂ D(C2) be a transitive Lie algebra of vector fields, and
let a ∈ C2 be an arbitrary point. Then there exists a locally transitive
two-dimensional subalgebra h ⊂ g, and a local coordinate chart (U, (x, y))
centered at a such that h = 〈X1, X2〉 where X1 = ∂x and either X2 = ∂y or
X2 = x∂x + ∂y.

Proof. This is apparent from the list in section 2, but we also outline an
independent argument. It is well known that a two-dimensional locally
transitive Lie subalgebra can be brought to one of the above forms, so we
only need to show that such exists.

Let g = s n r be the Levi-decomposition of g. Assume first that r is a
locally transitive Lie subalgebra and let

r ⊃ r1 ⊃ r2 ⊃ · · · ⊃ rk ⊃ rk+1 = {0}.

be its derived series. If rk is locally transitive, it contains an (abelian) two-
dimensional transitive subalgebra and we are done. If rk is not locally tran-
sitive, then we take a vector field Xi ∈ ri for some i < k which is transversal
to those of rk. Since we have [r, rk] ⊂ rk (can be shown by induction on k),
we get a map adXi : rk → rk. Let Xk ∈ rk be an eigenvector of adXi . Then
Xi and Xk span a two-dimensional locally transitive subalgebra of g.

If s is a transitive subalgebra, then s is locally equivalent to the standard
realization on C2 of either sl2, sl2 ⊕ sl2 or sl3, all of which have a locally
transitive two-dimensional Lie subalgebra.

If neither s nor r is locally transitive they both determine transversal one-
dimensional foliations and s ' sl2. Thus it is possible to choose coordinates
such that s = 〈∂x, x∂x, x2∂x〉 while r is spanned by vector fields of the form
bi(x, y)∂y. Since r is finite-dimensional we get (bi)x = 0, by computing Lie
brackets with x2∂x. Therefore g = s⊕ r, and there exists a two-dimensional
abelian locally transitive subalgebra.

Example 3. Let X1 = ∂x and X2 = ∂y be vector fields on C2 and consider
the general lift X̂1 = ∂x + f1(x, y, u)∂u, X̂2 = ∂y + f2(x, y, u)∂u. We may
change coordinates u 7→ A(x, y, u) such that f1 ≡ 0. This amounts to solving
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X̂1(A) = Ax + f1Au = 0 with Au 6= 0, which can be done locally around
any point. The commutation relation [X̂1, X̂2] = (f2)x∂u = 0 implies that
f2 is independent of x. Thus, in the same way as above, we may change
coordinates u 7→ B(y, u) such that f2 ≡ 0. A similar argument works if
X2 = x∂x + ∂y.

The previous example is both simple and useful. Since all our Lie al-
gebras of vector fields on C2 contain these Lie algebras as subalgebras, we
can always transform our lifts to a simpler form by changing coordinates in
this way. This idea is applied in the proof of the following theorem.

Theorem 5. Let g = 〈X1, ..., Xr〉 be a transitive Lie algebra of vector fields
on C2 and let ĝ = 〈X̂1, ..., X̂r〉 be a transitive lift of g on the bundle π, with
X̂i = Xi + fi(x, y, u)∂u.

Then there exist local coordinates in a neighborhood U ⊂ C2 × C of
any point such that fi(x, y, u) = αi(x, y) + βi(x, y)u + γi(x, y)u2 on U and
ϕa(ŝta)|U∩Fa is of the same normal form (1) for every a ∈ π(U).

Proof. Let p ∈ C2×C be an arbitrary point, V an open set containing p, and
(V, (x, y, u)) a coordinate chart centered at p. By lemma 1 we may assume
that X1 = ∂x and either X2 = ∂y or X2 = x∂x + ∂y and by example 3 we
may set f1 ≡ 0 ≡ f2. We choose a basis of g such that st0 = 〈X3, ..., Xr〉.

Since ϕ0(ŝt0) is a transitive action on the line, we may in addition make
a local coordinate change u 7→ A(u) on U ⊂ V containing 0 so that ϕ0(ŝt0)
is of the form 〈∂u〉, 〈∂u, u∂u〉 or 〈∂u, u∂u, u2∂u〉. Then for i = 3, ..., r, the
functions fi have the property

fi(0, 0, u) = α̃i + β̃iu+ γ̃iu
2.

We use the commutation relations of ĝ to show that fi(x, y, u) will take this
form for every (x, y, u) ∈ U .

If [Xj , Xi] = ckjiXk are the commutation relations for g, then the lift of

g obeys the same relations: [X̂j , X̂i] = ckjiX̂
k. Thus

[X̂1, X̂i] = [X1, Xi] +X1(fi)∂u = ck1iXk +X1(fi)∂u

which implies that X1(fi) = ck1ifk. In the same manner we get the equations
X2(fi) = ck2ifk. We can rewrite the equations as

∂x(fi) = ck1ifk, ∂y(fi) = c̃k2i(x)fk.

The coefficients c̃k2i(x) depend on whether 〈X1, X2〉 is abelian or not, but in
any case they are indepedent of u. We differentiate these equations three
times with respect to u (denoted by ′):

∂x(f ′′′i ) = ck1if
′′′
k , ∂y(f

′′′
i ) = c̃k2i(x)f ′′′k
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By the above assumption we have f ′′′i (0, 0, u) = 0, and by the uniqueness
theorem for systems of linear ODEs it follows that we for every (x, y, u) ∈ U
have f ′′′i (x, y, u) = 0, and therefore

fi(x, y, u) = αi(x, y) + βi(x, y)u+ γi(x, y)u2. (2)

Note also that if f ′′i (or f ′i) vanish on (0, 0, u), we may assume γi ≡ 0 (or
γi ≡ 0 and βi ≡ 0) for every i. The last statement of the theorem follows
by the fact that dimϕa(ŝta) is the same for every a ∈ π(U).

3.2 Coordinate transformations

When computing the lift of a Lie algebra we may choose coordinates so that
the lift is of the special form indicated in theorem 5, and we may further
simplify the expression for the lift by using transformations preserving this
form. Thus after we have chosen such special coordinates, we consider
metric lifts up to translations u 7→ u + A(x, y), affine lifts up to affine
transformations u 7→ A(x, y)u+B(x, y) and projective lifts up to projective

transformations u 7→ A(x,y)u+B(x,y)
C(x,y)u+D(x,y) .

A geometric interpretation of theorem 5 is that we may choose a struc-
ture on the fibers, namely metric, affine or projective, and require the lift to
preserve this structure. The following example shows the general procedure
we use for finding lifts.

Example 4. Consider the Lie algebra g6 which is spanned by vector fields

X1 = ∂x, X2 = ∂y, X3 = y∂y, X4 = y2∂y.

Since the stabilizer of 0 is solvable, we may by corollary 4 assume that the
generators of a lift ĝ6 is of the form X̂i = Xi + fi∂u, where fi are affine
functions in u. All lifts are either metric og affine.

By example 3 we may assume that f1 ≡ 0 ≡ f2 after making an affine
change of coordinates (or a translation if we consider metric lifts). The type
of coordinate transformation was not specified in the example, but it is clear
that the PDE in example 3 can be solved within our framework of metric
and affine lifts, respectively.

The commutation relations [X1, X3] = 0, [X2, X3] = X2 imply that f3 is
a function of u alone. The commutation relations [X1, X4] = 0, [X2, X4] =
2X3, [X3, X4] = X4 result in the differential equations

(f4)x = 0, (f4)y = 2f3, y(f4)y + f3(f4)u − f4(f3)u = f4.

The first two equations give f4 = 2yf3(u) + b(u). After inserting this into
the third equation, the equation simplifies to f3bu − b(f3)u = b.
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Since the lift is either metric or affine, we may assume that f3 = A0 +
A1u and b = B0 + B1u. Then the equation above results in B1 = 0 and
B0A1 = −B0. Setting B0 = 0 we get transitive lifts only when A1 = 0:

∂x, ∂y, y∂y +A0∂u, y2∂y + 2A0y∂u.

These are metric lifts. In the case A1 = −1 we get the affine lift spanned by

∂x, ∂y, y∂y − u∂u, y2∂y + (1− 2yu)∂u

where A0 and B0 have been normalized by a translation and scaling, respec-
tively.

Remark 3. The family of metric lifts is also invariant under transforma-
tions of the form u 7→ Cu + A(x, y), where C is constant. However, we
would like to restrict to C = 1. This will make the resulting list of lifts
simpler, and it is always easy to see what a scaling transformation would do
to the normal form. Geometrically this restriction makes sense if we think
about the metric lift as one preserving a metric on the fibers. Another con-
sequence of this choice is that we get a one-to-one correspondence between
metric lifts and Lie algebra cohomology which will be discussed in section
5. The same cohomology spaces are treated in [8] where they are used for
classifying Lie algebras of differential operators on C2.

We also get a correspondence between metric lifts and “linear lifts”,
whose vector fields act as infinitesimal scaling transformations in fibers.
Using the notation above they take the form X̂ = X + f(x, y)u∂u. They
make up an important type of lifts, but we do not consider them here due to
their intransitivity. Since the transformation u 7→ exp(u) takes metric lifts
to linear lifts, the theories of these two types of lifts are analogous (given
that we allow the right coordinate transformations). This makes many of
the results in this paper applicable to linear lifts as well. As an example the
classification of linear lifts under linear transformations (u 7→ uA(x, y)),
will be similar to that of metric lifts under translations (u 7→ u+A(x, y)).

4 List of lifts

This section contains the list of lifts of the Lie algebras from section 2 on
the bundle π : C2 × C → C2. For a Lie algebra g ⊂ D(C2) we will denote
by ĝm, ĝa, ĝp the metric, affine and projective lifts, respectively.

Theorem 6. The following list contains all metric, affine and projective
lifts of the Lie algebras from Lie’s classification in section 2.
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ĝm1 = 〈∂x, ∂y, x∂y, x∂x − y∂y, y∂x, x∂x + y∂y + 2C∂u,

x2∂x + xy∂y + 3Cx∂u, xy∂x + y2∂y + 3Cy∂u〉
ĝp1 = 〈∂x, ∂y, x∂y + ∂u, x∂x − y∂y − 2u∂u, y∂x − u2∂u, x∂x + y∂y,

x2∂x + xy∂y + (y − xu)∂u, xy∂x + y2∂y + u(y − xu)∂u〉
ĝm2 = 〈∂x, ∂y, x∂y, x∂x − y∂y, y∂x, x∂x + y∂y + C∂u〉
ĝp2 = 〈∂x, ∂y, x∂y + ∂u, x∂x − y∂y − 2u∂u, y∂x − u2∂u, x∂x + y∂y〉
ĝp3 = 〈∂x, ∂y, x∂y + ∂u, x∂x − y∂y − 2u∂u, y∂x − u2∂u〉

ĝm4 = 〈∂x, xieαjx∂y + eαjx

(
i∑

k=0

(
i
k

)
Cj,kx

i−k

)
∂u | C1,0 = 0〉

ĝm5 = 〈∂x, y∂y + C∂u, x
ieαjx∂y〉

ĝa5 = 〈∂x, y∂y + u∂u, x
ieαjx∂y + eαjx

(
i∑

k=0

(
i
k

)
Cj,kx

i−k

)
∂u | C1,0 = 0〉

ĝm6 = 〈∂x, ∂y, y∂y + C∂u, y
2∂y + 2Cy∂u〉

ĝa6 = 〈∂x, ∂y, y∂y − u∂u, y2∂y + (1− 2yu)∂u〉
ĝm7 = 〈∂x, ∂y, x∂x + C∂u, x

2∂x + x∂y + 2Cx∂u〉
ĝa7 = 〈∂x, ∂y, x∂x − u∂u, x2∂x + x∂y + (1− 2xu)∂u〉
ĝm8 = 〈∂x, ∂y, x∂x + αy∂y +A∂u, x∂y, ..., x

s−1∂y,

xs+i∂y +
(
s+i
s

)
Bxi∂u | i = 0, ..., r − 3− s〉,

where B = 0 unless α = s

ĝa8 = 〈∂x, ∂y, x∂x + αy∂y + (α− s)u∂u, x∂y, ..., xs−1∂y,

xs+i∂y +
(
s+i
s

)
xi∂u | i = 0, ..., r − 3− s〉, α 6= s

ĝm9 = 〈∂x, ∂y, x∂x + ((r − 2)y + xr−2)∂y + C∂u, x∂y, ..., x
r−3∂y〉

ĝa9 = 〈x∂x + ((r − 2)y + xr−2)∂y +
((
r−2
s

)
xr−s−2 + (r − s− 2)u

)
∂u,

∂x, ∂y, x∂y, ..., x
s−1∂y, x

s+i∂y +
(
s+i
s

)
xi∂u | i = 0, ..., r − 3− s〉

ĝm10 = 〈∂x, ∂y, x∂x +A∂u, y∂y +B∂u, x∂y, ..., x
r−4∂y〉

ĝa10 = 〈∂x, ∂y, x∂x − su∂u, y∂y + u∂u, x∂y, ..., x
s−1∂y,

xs+i∂y +
(
s+i
s

)
xi∂u | i = 0, ..., r − 4− s〉

ĝm11 = 〈∂x, ∂y, x∂x +A∂u, y∂y +B∂u, y
2∂y + 2By∂u〉

ĝa11 = 〈∂x, ∂y, x∂x, y∂y − u∂u, y2∂y + (1− 2yu)∂u〉
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ĝm12 = 〈∂x, ∂y, x∂x +A∂u, y∂y +B∂u, x
2∂x + 2Ax∂u, y

2∂y + 2By∂u〉
ĝa1

12 = 〈∂x, ∂y, x∂x − u∂u, y∂y, x2∂x + (1− 2xu)∂u, y
2∂y〉

ĝa2
12 = 〈∂x, ∂y, x∂x, y∂y − u∂u, x2∂x, y

2∂y + (1− 2yu)∂u〉
ĝm1

13 = 〈∂x, ∂y, x∂x + y∂y +A∂u, x∂y +B∂u, x
2∂y + 2Bx∂u,

x2∂x + 2xy∂y + (2xA+ 2yB)∂u〉
ĝm2

13 = 〈∂x, ∂y, x∂x + r−4
2 y∂y + C∂u, x∂y, ..., x

r−4∂y,

x2∂x + (r − 4)xy∂y + 2Cx∂u〉
ĝa1

13 = 〈∂x, ∂y, x∂x + r−4
2 y∂y − u∂u, x∂y, ..., xr−4∂y,

x2∂x + (r − 4)xy∂y + (1− 2xu)∂u〉
ĝa2

13 = 〈∂x, ∂y, x2∂x + (r − 4)xy∂y + (x(r − 6)u+ (r − 4)y)∂u,

x∂x + r−4
2 y∂y + r−6

2 u∂u, x
i∂y + ixi−1∂u | i = 1, ..., r − 4〉, r 6= 6

ĝm14 = 〈∂x, ∂y, x∂x +A∂u, y∂y +B∂u, x∂y, ..., x
r−5∂y,

x2∂x + (r − 5)xy∂y + (2A+ (r − 5)B)x∂u〉
ĝa1

14 = 〈∂x, ∂y, x∂x − u∂u, y∂y, x∂y, ..., xr−5∂y,

x2∂x + (r − 5)xy∂y + (1− 2xu)∂u〉
ĝa2

14 = 〈∂x, ∂y, x2∂x + (r − 5)xy∂y + ((r − 7)xu+ (r − 5)y)∂u,

x∂x − u∂u, y∂y + u∂u, x
i∂y + ixi−1∂u | i = 1, ..., r − 5〉

ĝm15 = 〈∂x, x∂x + ∂y, x
2∂x + 2x∂y + Cey∂u〉

ĝm16 = 〈∂x, x∂x − y∂y + C∂u, x
2∂x + (1− 2xy)∂y + 2Cx∂u〉

The proof of theorem 4 is a direct computation following the algorithm
described above. The computations are not reproduced here, beyond exam-
ple 4, but they can be found in the appendix of this thesis.

All capital letters in the list denote complex constants. For the metric
lifts, one of the constants can always be set equal to 1 if we allow to rescale
u, as discussed in remark 3. For example, this would let us identify the space
of metric lifts of g12 with CP 1 instead of C2 \ {0}. In the affine lifts ĝa5 one
of the constants must be nonzero in order for the lift to be transitive, and
it can be set equal to 1 by a scaling transformation. Notice also that even
though g15 is not locally equivalent to g16, their lifts are locally equivalent.
In addition the two affine lifts of g12 are locally equivalent.

Most of this list already exist in the literature. The lifts of the three
primitive Lie algebras can be found in [14]. The first attempt to give a
complete list of imprimitive Lie algebras of vector fields on C3 was done by
Amaldi in [2, 3]. Most of the Lie algebras we have found is contained in
Amaldi’s list of Lie algebras of “type A”, but a few are missing. Examples
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of this are ĝm10, ĝ
m
14, ĝ

a1
14 and ĝa8 with general α and B = 0. There is also an

error in the Lie algebra corresponding to ĝa2
14 which was noticed in [11, 12].

The lifts of nonsolvable Lie algebras are contained in [5], and the case of
metric lifts was also considered in [15].

Remark 4. We may endow the total space of π with the contact distribu-
tion defined by the vanishing of the 1-form dy − udx, thereby identifying it
with the space of 1-jets of functions on C. One way to lift a Lie algebra g
of vector fields from the base space of π is to require the lift of g, which we
in this case may call the contactization of g, to preserve this distribution.
The contactization is uniquely defined and is locally equivalent to a lift in
the above list. For example, the projective lifts of the primitive Lie algebras
g1, g2, g3 preserve the contact distribution, and are thus equal to the contac-
tizations of the three Lie algebras. The contactization of g6 is a linear lift
(see remark 3) and is locally equivalent to ĝm6 , through the transformation
u 7→ C log(u).

5 Metric lifts and Lie algebra cohomology

We conclude this treatment by showing that there is a one-to-one correspon-
dence between the space of metric lifts of g ⊂ D(C2) and the Lie algebra
cohomology space H1(g, Cω(C2)). The main result is analogous to [8, The-
orem 2].

Due to theorem 5 the metric lift of a Lie algebra g ⊂ D(C2) may be
given by a Cω(C2)-valued one-form ψ on g. For vector fields X,Y ∈ g lifted
to X̂ = X + ψX∂u and Ŷ = Y + ψY ∂u we have

[X̂, Ŷ ] = [X + ψX∂u, Y + ψY ∂u] = [X,Y ] + (X(ψY )− Y (ψX))∂u. (3)

Consider the first terms of the Chevalley-Eilenberg complex

0 −→ Cω(C2)
d−→ g∗ ⊗ Cω(C2)

d−→ Λ2g∗ ⊗ Cω(C2)

where the differential d is defined by

df(X) = X(f), f ∈ Cω(C2)

dψ(X,Y ) = X(ψY )− Y (ψX)− ψ[X,Y ], ψ ∈ g∗ ⊗ Cω(C2).

This complex depends not only on the abstract Lie algebra, but also on
its realization as a Lie algebra of vector fields. It is clear from (3) that
ψ ∈ g∗ ⊗ Cω(C2) corresponds to a metric lift if and only if dψ = 0.
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Two metric lifts are equivalent if there exists a biholomorphism

φ : (x, y, u) 7→ (x, y, u− U(x, y))

on C2×C that brings one to the other. A lift of X transforms according to

dφ : X + ψX∂u 7→ X + (ψX − dU(X))∂u

which shows that two lifts are equivalent if the difference between their
defining one-forms is given by dU for some U ∈ Cω(C2). Thus, if we include
the intransitive trivial lift into the space of metric lifts we have the following
theorem, relating the cohomology space

H1(g, Cω(C2)) = {ψ ∈ g∗ ⊗ Cω(C2) | dψ = 0}/{dU | U ∈ Cω(C2)},

to the space of metric lifts.

Theorem 7. There is a one-to-one correspondence between the space of
metric lifts of a Lie algebra g ⊂ D(C2) and the corresponding cohomology
space H1(g, Cω(C2)).

Remark 5. As discussed previously, we have the option of removing a free
constant in the metric lifts by a scaling transformation. If we did this the
space of metric lifts of g would be CPn−1 in the case H1(g, Cω(C2)) = Cn.

The theorem gives a transparent interpretation of metric lifts, while also
showing a way to compute H1(g, Cω(C2)), through example 4. This method
is essentially the one that was used in [8], where the same cohomologies
were found. There the authors extended Lie’s classification of Lie algebras
of vector fields to Lie algebras of first order differential operators on C2, and
part of this work is equivalent to our classification of metric lifts.

Their results coincide with ours, with the exceptions g8 which corre-
sponds to case 5 and 20 in [8] and g16, g15, g7 which correspond to cases 12,
13 and 14, respectively. For g8 it seems like they have not considered the
case corresponding to ker(dπ|ĝ) = 0 which is the only case we consider. The
realizations used in [8] for cases 12, 13 and 14 have singular orbits, while
their cohomologies are computed after restricting to subdomains, avoiding
singular orbits. The cohomology is sensitive to choice of realization as Lie
algebra of vector fields, and will in general change by restricting to a sub-
domain. The following example, based on realizations of sl(2), illustrates
this.

Example 5. The metric lift

ĝm16 = 〈∂x, x∂x − y∂y + C∂u, x
2∂x + (1− 2xy)∂y + 2Cx∂y〉
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is parametrized by a single constant, and thus H1(g16, C
ω(C2)) = C. Simi-

larly, we see that H1(g15, C
ω(C2)) = C.

The Lie algebra g̃16 = 〈∂x, x∂x + y∂y, x
2∂x + y(2x + y)∂y〉 is related to

[8, case 12] by the transformation y 7→ x+ y. It is also is locally equivalent
to g16, but it has a singular one-dimensional orbit, y = 0. Its metric lift is
given by

〈∂x, x∂x + y∂y +A∂u, x
2∂x + y(2x+ y)∂y + (2Ax+By)∂u〉

which implies H1(g̃16, C
ω(C2)) = C2.

The Lie algebra g̃15 = 〈y∂x, x∂y, x∂x − y∂y〉 is the standard representa-
tion on C2. If we split Cω(C2) = ⊕∞k=0S

k(C2)∗ we get H1(g̃15, C
ω(C2)) =

⊕∞k=0H
1(g̃15, S

k(C2)∗). Since Sk(C2)∗ is a finite-dimensional module over
g̃15, the cohomologies H1(g, Sk(C2)∗) vanish by Whitehead’s lemma, and we
get H1(g̃15, C

ω(C2)) = 0. Hence the cohomologies of the locally equivalent
Lie algebras g15 and g̃15 are different. To summarize, we have two pairs of
locally equivalent realizations of sl(2), and their cohomologies are

H1(g16, C
ω(C2)) = C, H1(g̃16, C

ω(C2)) = C2,

H1(g15, C
ω(C2)) = C, H1(g̃15, C

ω(C2)) = 0.

The Lie algebra cohomologies considered in this paper are related to the
relative invariants (and singular orbits) of the corresponding Lie algebras
of vector fields [7]. A consequence of [7, Theorem 5.4] is that a locally
transitive Lie algebra g of vector fields has a scalar relative invariant if it
has a nontrivial metric lift whose orbit-dimension is equal to that of g. The
Lie algebra g̃16 has two-dimensional orbits when A = B. Therefore there
exists an absolute invariant, and it is given by eu/yA. The corresponding
relative invariant of g16 is yA and it defines the singular orbit y = 0.
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Differential Invariants of Self-Dual

conformal structures

Boris Kruglikov, Eivind Schneider

Abstract

We compute the quotient of the self-duality equation for conformal
metrics by the action of the diffeomorphism group. We also determine
Hilbert polynomial, counting the number of independent scalar dif-
ferential invariants depending on the jet-order, and the corresponding
Poincaré function. We describe the field of rational differential in-
variants separating generic orbits of the diffeomorphism pseudogroup
action, resolving the local recognition problem for self-dual conformal
structures.

Introduction

Self-duality is an important phenomenon in four-dimensional differential
geometry that has numerous applications in physics, twistor theory, anal-
ysis, topology and integrability theory. A pseudo-Riemannian metric g on
an oriented four-dimensional manifold M determines the Hodge operator
∗ : Λ2TM → Λ2TM that satisfies the property ∗2 = 1 provided g has the
Riemannian or split signature. In this paper we restrict to these two cases,
ignoring the Lorentzian signature.

The Riemann curvature tensor splits into O(g)-irreducible pieces Rg =
Scg + Ric0 +W , where the last part is the Weyl tensor [2] and O(g) is the
orthogonal group of g. In dimension 4, due to exceptional isomorphisms
so(4) = so(3)⊕so(3), so(2, 2) = so(1, 2)⊕so(1, 2), the last component splits
further W = W+ + W−, where ∗W± = ±W±. Metric g is called self-dual
if ∗W = W , i.e. W− = 0. This property does not depend on conformal
rescalings of the metric g → e2ϕg, and so is the property of the conformal
structure [g].

Since the space ofW− has dimension 5, and the conformal structure has 9
components in 4D, the self-duality equation appears as an underdetermined
system of 5 PDE on 9 functions of 4 arguments. This is however a misleading
count, since the equation is natural, and the diffeomorphism group acts as
the symmetry group of the equation. Since Diff(M) is parametrized by 4
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functions of 4 arguments, we expect to obtain a system of 5 PDE on 5 = 9−4
functions of 4 arguments.

This 5×5 system is determined, but it has never been written explicitly.
There are two approaches to eliminate the gauge freedom.

One way to fix the gauge is to pass to the quotient equation that is
obtained as a system of differential relations (syzygies) on a generating set
of differential invariants. By computing the latter for the self-dual conformal
structures we write the quotient equation as a nonlinear 9× 9 PDE system,
which is determined but complicated to investigate.

Another approach is to get a cross-section or a quasi-section to the orbits
of the pseudogroup G = Diff loc(M) action on the space SD = {[g] : W− =
0} of self-dual conformal metric structures. This was essentially done in the
recent work [5, III.A]: By choosing a convenient ansatz the authors of that
work encoded all self-dual structures via a 3 × 3 PDE system SDE of the
second order (this works for the neutral signature; in the Riemannian case
use doubly biorthogonal coordinates to get self-duality as a 5 × 5 second-
order PDE system [5, III.C] that can be investigated in a similar manner as
the 3× 3 system).

In this way almost all gauge freedom was eliminated, yet a part of sym-
metry remained shuffling the structures. This pseudogroup, denoted by G, is
parametrized by 5 functions of 2 arguments (and so is considerably smaller
than G). We fix this freedom by computing the differential invariants of
G-action on SDE and passing to the quotient equation.

The differential invariants are considered in rational-polynomial form,
as in [12]. This allows to describe the algebra of invariants in Lie-Tresse
approach, and also using the principle of n-invariants of [1]. We count
differential invariants in both approaches and organize the obtained numbers
in the Hilbert polynomial and the Poincaré function.

1 Scalar invariants of self-dual structures

The first approach to compute the quotient of the self-duality equation by
the local diffeomorphisms pseudogroup G action is via differential invariants
of self-dual structures SD. The signature of the metric g or conformal metric
structure [g] is either (2, 2) or (4, 0). In this and the following two sections we
assume that g is a Riemannian metric on M for convenience. Consideration
of the case (2, 2) is analogous.

To distinguish between metrics and conformal structures we will write
SDm for the former and SDc for the latter. Denote the space of k-jets of
such structures by SDkm and SDkc respectively. These clearly form a tower
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of bundles over M with projections πk,l : SDkx → SDlx, πk : SDkx → M ,
where x is either m or c.

1.1 Self-dual metrics: invariants

Consider the bundle S2
+T
∗M of positively definite quadratic forms on TM

and its space of jets Jk(S2
+T
∗M). The equation W− = 0 in 2-jets determines

the submanifold SD2
m ⊂ J2, and its prolongations are SDkm ⊂ Jk for k > 2.

Computation of the stabilizer of the action shows that the submanifolds
SDkm are regular, meaning that generic orbits of the G-action in SDkm have
the same dimension as in Jk(S2

+T
∗M). This is based on a simple observation

that generic self-dual metrics have no symmetry at all. Thus the differen-
tial invariants of the action on SDkm can be obtained from the differential
invariants on the jet space Jk [9, 13].

These invariants can be constructed as follows. There are no invariants
of order ≤ 1 due to existence of geodesic coordinates, the first invariants
arise in order 2 and they are derived from the Riemann curvature tensor
(as this is the only invariant of the 2-jet of g). Traces of the Ricci tensor
Tr(Rici), 1 ≤ i ≤ 4, yield 4 invariants I1, . . . , I4 that in a Zariski open
set of jets of metrics can be considered horizontally independent, meaning
d̂I1 ∧ . . . ∧ d̂I4 6= 0.

To get other invariants of order 2, choose an eigenbasis e1 . . . , e4 of the
Ricci operator (in a Zariski open set it is simple), denote the dual coframe
by {θi} and decompose Rg = Rijklei⊗ θj ⊗ θk ∧ θl. These invariants include
the previous Ii, and the totality of independent second-order invariants for
self-dual metrics is

dim{Rg|W− = 0} − dimO(g) = (20− 5)− 6 = 9.

The invariants Rijkl are however not algebraic, but obtained as algebraic

extensions via the characteristic equation. Then Rijkl (9 independent com-
ponents) and ei generate the algebra of invariants.

Alternatively, compute the basis of Tresse derivatives ∇i = ∂̂Ii and
express the metric in the dual coframe ωj = d̂Ij : g = Gijω

iωj . Then
the functions Ii, Gkl generate the space of invariants by the principle of
n-invariants [1].

Remark . There is a natural almost complex structure Ĵ on the twistor
space of self-dual (M, g), i.e. on the bundle M̂ over M whose fiber at a
consists of the sphere of orthogonal complex structures on TaM inducing the
given orientation. The celebrated theorem of Penrose [15, 2] states that self-
duality is equivalent to integrability of Ĵ . Thus local differential invariants
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of g can be expressed through semi-global invariants of the foliation of the
three-dimensional complex space M̂ by rational curves. Similarly in the split
signature one gets foliation by α-surfaces, and the geometry of this foliation
of M̂ yields the invariants on M .

We explain how to get rid of non-algebraicity in the next subsection.

1.2 Self-dual conformal structures: invariants

Here the invariants of the second order are obtained from the Weyl tensor as
the only conformally invariant part of the Riemann tensor Rg. For general
conformal structures a description of the scalar invariants was given recently
in [10]. In our case W = W+ + W− the second component vanishes, and
so we have only 5-dimensional space of curvature tensors W, namely Weyl
parts of Rg considered as (3, 1) tensors.

Let us fix a representative of the conformal structure g0 ∈ [g] by the
requirement ‖W+‖2g0 = 1, this uniquely determines g0 provided that W+ is
non-vanishing in a neighborhood (in the case of neutral signature we have to
require ‖W+‖2g 6= 0 for some and hence any metric g ∈ [g] and then we can
fix g0 up to ± by the requirement ‖W+‖2g0 = ±1). Use this representative
to convert W+ into a (2, 2)-tensor, considered as a map W+ : Λ2T → Λ2T ,
where T = TaM for a fixed a ∈M .

Recall [2] that the operator W = W+ +W− is block-diagonal in terms of
the Hodge ∗-decomposition Λ2T = Λ2

+T ⊕ Λ2
−T . Thus W+ : Λ2

+T → Λ2
+T

is a map of 3-dimensional spaces and it is traceless of norm 1. For the
spectrum Sp(W+) = {λ1, λ2, λ3} this means

∑
λi = 0, max |λi| = 1. To

conclude, we have only one scalar invariant of order 2, for which we can
take I = Tr(W 2

+).

To obtain more differential invariants we proceed as follows. It is known
that Riemannian conformal structure in 4D is equivalent to a quaternionic
structure (split-quaternionic in the split-signature). In the domain, where
Sp(W+|Λ2

+) is simple we even get a hyper-Hermitian structure (on the bun-
dle TM pulled back to SD2

c , so no integrability conditions for the operators
J1, J2, J3) as follows.

Let σi ∈ Λ2
+ be the eigenbasis of W+ corresponding to eigenvalues λi,

normalized by ‖σi‖2g0 = 1 (this still leaves ± freedom for every σi). These
2-forms are symplectic (= nondegenerate, since again these are forms on a
bundle over SD2

c) and g0-orthogonal, so the operators Ji = g−1
0 σi are anti-

commuting complex operators on the space T , and they are in quaternionic
relations up to the sign. We can fix one sign by requiring J3 = J1J2, but
still have residual freedom Z2 × Z2.
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Now we can fix a canonical (up to above residual symmetry) frame,
depending on the 3-jet of [g], as follows: e1 = g−1

0 d̂I/‖g−1
0 d̂I‖g0 , e2 = J1e1,

e3 = J2e1, e4 = J3e1. The structure functions of this frame ckij (given

by [ei, ej ] = ckijek) together with I constitute the fundamental invariants

of the conformal structure (we can fix, for instance, I1 = I, I2 = c1
12,

I3 = c1
13, I4 = c1

14 to be the basic invariants), and together with the invariant
derivations ∇j = Dej (total derivative along ej) they generate the algebra
of scalar differential invariants micro-locally.

The micro-locality comes from non-algebraicity of the invariants. In-
deed, since we used eigenvalues and eigenvectors in the construction, the
output depends on an algebraic extension via some additional variables y.
Notice though that this involves only 2-jet coordinates, i.e. the y-variables
are in algebraic relations with the fiber variables of the projection J2 → J1,
and with respect to higher jets everything is algebraic. Thus we can elimi-
nate the y-variables, as well as the residual freedom, and obtain the algebra
of global rational invariants Al.

Here l is the order of jet from which only polynomial behavior of the
invariants can be assumed [12]. This yields the Lie-Tresse type description
of the algebra Al.

It is easy to see that the rational expressions occur at most on the level
of 3-jets, so the generators of the rational algebra can be chosen polynomial
in the jets of order > 3. Thus we conclude:

Theorem 15. The algebra A3 of rational-polynomial invariants as well as
the field F of rational differential invariants of self-dual conformal metric
structures are both generated by a finite number of (the indicated) differential
invariants Ii and invariant derivations ∇j, and the invariants from this
algebra/field separate generic orbits in SD∞c .

A similar statement also holds true for metric invariants of SD∞m .

2 Stabilizers of generic jets

Our method to compute the number of independent differential invariants
of order k follows the approach of [13]. We will use the jet-language from
the formal theory of PDE, and refer the reader to [11].

Fix a point a ∈ M . Denote by Dk the Lie group of k-jets of diffeomor-
phisms preserving the point a. This group is obtained from D1 = GL(T ) by
successive extensions according to the exact 3-sequence

0→ ∆k −→ Dk −→ Dk−1 → {e},
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where ∆k = {[ϕ]kx : [ϕ]k−1
x = [id]k−1

x } ' SkT ∗ ⊗ T is Abelian (k > 1).
Denote by Stk ⊂ Dk+1 the stabilizer of a generic point ak ∈ SDkx, and

by St0
k its connected component of unity.

2.1 Self-dual metrics: stabilizers

We refer to [13] for computations of stabilizers and note that even though
the computation there is done for generic metrics, it applies to self-dual
metrics as well. Thus in the metric case the stabilizers are the following:
St0 = St1 = O(g), and St0

k = 0 for k ≥ 2.
Consequently the action of the pseudogroup G on jets of order k ≥ 2 is

almost free, meaning that Dk+1 has a discrete stabilizer on SDkm|a.

2.2 Self-dual conformal structures: stabilizers

The stabilizers for general conformal structures were computed in [10]. In
the self-dual case there is a deviation from the general result. Denote by
CM = S2

+T
∗M/R+ the bundle of conformal metric structures.

Lemma 16. ([10]) The following is a natural isomorphism:

T[g](CM) = Endsym
0 (T ) = {A : T → T | g(Au, v) = g(u,Av),Tr(A) = 0}.

Denote VM = T[g](CM). The differential group Dk+1 acts on SDkc , in
particular ∆k+1 acts on it. The next statement is obtained by a direct
computation of the symbol of Lie derivative.

Lemma 17. The tangent to the orbit ∆k+1(ak) is the image Im(ζk) ⊂ TSDkc
of the map ζk that is equal to the following composition

Sk+1T ∗ ⊗ T δ−→ SkT ∗ ⊗ (T ∗ ⊗ T )
1⊗Π−→ SkT ∗ ⊗ VM .

Here δ is the Spencer operator and Π : T ∗ ⊗ T → VM ⊂ T ∗ ⊗ T is the
projection given by

〈p,Π(B)u〉 = 1
2〈p,Bu〉+ 1

2〈u[, Bp
]〉 − 1

n Tr(B)〈p, u〉,

where u ∈ T, p ∈ T ∗, B ∈ T ∗ ⊗ T are arbitrary, 〈·, ·〉 denotes the pairing
between T ∗ and T , and u[ = g(u, ·), p] = g−1(p, ·) for some representative
g ∈ [g], on which the right-hand side does not depend.

Recall that i-th prolongation of a Lie algebra h ⊂ End(T ) is defined
by the formula h(i) = Si+1T ∗ ⊗ T ∩ SiT ∗ ⊗ h. As is well-known, for the
conformal algebra of [g] it holds: co(g)(1) = T ∗ and co(g)(i) = 0, i > 1.
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Lemma 18. We have Ker(ζk) = 0 for k > 1, and therefore the projectors
ρk+1,k : Dk+1 → Dk induce the injective homomorphisms Stk → Stk−1 and
St0
k → St0

k−1 for k > 1.

Proof. If ζk(Ψ) = 0, then δ(Ψ) ∈ SkT ∗⊗ co(g), where co(g) ⊂ End(T ) is the
conformal algebra. This means that Ψ ∈ co(g)(k+1) = 0, if k > 1. Thus we
conclude injectivity of ζk: ∆k+1 ∩ Stk = {e}, whence the second claim.

The stabilizers of low order (for any n ≥ 3) are the following. For any
a0 ∈ CM its stabilizer is St0 = CO(g) = (Sp(1)×Z2 Sp(1))× R+.

Next, the stabilizer St1 ⊂ D2 of a1 ∈ J1(CM) is the extension (by deriva-

tions) of St0 by co(g)(1) = T ∗
ι
↪→ ∆2, where ι : T ∗ → S2T ∗ ⊗ T is given

by

ι(p)(u, v) = 〈p, u〉v + 〈p, v〉u− 〈u[, v〉p],

for p ∈ T ∗, u, v ∈ T . In other words, we have St1 = CO(g) n T .

Since forG-action on SD2
c there is precisely 1 scalar differential invariant,

we get dim St2 = (16 + 40 + 80) − (9 + 36 + 85 − 1) = 7. This can be also
seen as follows. Since St0

2 ⊂ St1 preserves the hyper-Hermitian structure
determined by generic 2-jet a2 ∈ SD2

c (see Section 1) the R+ factor and one
of the Sp(1) copies in St0 disappears from the stabilizer of 2-jet, and we get
St0

2 ' Sp(1) n T .

Lemma 19. For k ≥ 3 we have: St0
k = {e}.

Proof. In Section 1 we constructed a canonical frame e1, . . . , e4 on T de-
pending on (generic) jet a3. In other words, we constructed a frame on the
bundle π∗3TM over a Zariski open set in SD3

c .

The elements from St0
3 shall preserve this frame, and so the last com-

ponent Sp(1) from St0 is reduced. But also the elements from St0
3 shall

preserve the 1-jet of the hyper-Hermitian structure and the invariant I de-
termined by 2-jets, whence also the factor T is reduced, and St0

3 is trivial
(we take the connected component because of the undetermined signs ±
in the normalizations). Hence the stabilizers St0

k for k ≥ 3 are trivial as
well.

3 The Hilbert and Poincaré function for SD

Now we can compute the number of independent differential invariants.
Since G acts transitively on M the codimension of the orbit of G in SDkx is
equal to the codimension of the orbit of Dk+1 in SDkx|a (where a ∈ M is a
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fixed point and x is either m or c). Denoting the orbit through a generic
k-jet ak by Ok ⊂ SDkx|a we have:

dim(Ok) = dimDk+1 − dim Stk .

Notice that

codim(Ok) = dimSDkx|a − dim(Ok) = trdegFk

is the number of (functionally independent) scalar differential invariants of
order k (here trdegFk is the transcendence degree of the field of rational
differential invariants on SDkx).

The Hilbert function is the number of “pure order” k differential invari-
ants H(k) = trdegFk− trdegFk−1. It is known to be a polynomial for large
k, so we will refer to it as the Hilbert polynomial.

The Poincaré function is the generating function for the Hilbert poly-
nomial, defined by P (z) =

∑∞
k=0H(k)zk. This is a rational function with

the only pole z = 1 of order equal to the minimal number of invariant
derivations in the Lie-Tresse generating set [12].

3.1 Counting differential invariants

The results of Section 2 allow to compute the Hilbert polynomial and the
Poincaré function.

Theorem 20. The Hilbert polynomial for G-action on SDm is

Hm(k) =


0 for k < 2,
9 for k = 2,
1
6(k − 1)(k2 + 25k + 36) for k > 2.

The corresponding Poincaré function is equal to

Pm(z) =
z2(9 + 4z − 30z2 + 24z3 − 6z4)

(1− z)4
.

Notice that Hm(k) ∼ 1
3! k

3, meaning that the moduli of self-dual metric
structures are parametrized by 1 function of 4 arguments. This function is
the unavoidable rescaling factor.

Proof. As for the general metrics, there are no invariants of order < 2. Since
St0

2 = 0, we have:

Hm(2) = dimSD2
m|a − dimD3 = (10 + 40 + 95)− (16 + 40 + 80) = 9.
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Alternatively, the only invariant of the 2-jet of a metric is the Riemann
curvature tensor. Since W− = 0, it has 20−5 = 15 components and is acted
upon effectively by the group O(g) of dimension 6; hence the codimension
of a generic orbit is 15− 6 = 9.

Starting from 2-jet we impose the self-duality constraint that, as dis-
cussed in the introduction, consist of 5 equations and is a determined sys-
tem (mod gauge). In particular, there are no differential syzygies between
these 5 equations, so that in “pure” order k ≥ 2 the number of independent
equations is 5 ·

(
k+1

3

)
. Thus the symbol of the self-duality metric equation

W− = 0 on g, given by

gk = Ker(dπk,k−1 : TSDkm → TSDk−1
m )

has dimension dim(SkT ∗ ⊗ S2T ∗)−#[independent equations].
Since the pseudogroup G acts almost freely on jets of order k ≥ 2 (freely

from some order k), we have:

Hm(k) = dim gk − dim ∆k+1 = 10 ·
(
k + 3

3

)
− 5 ·

(
k + 1

3

)
− 4 ·

(
k + 4

3

)
whence the claim for the Hilbert polynomial. The formula for the Poincaré
function follows.

Theorem 21. The Hilbert polynomial for G-action on SDc is

Hc(k) =


0 for k < 2,
1 for k = 2,
13 for k = 3,
3k2 − 7 for k > 3.

The corresponding Poincaré function is equal to

Pc(z) =
z2(1 + 10z + 5z2 − 17z3 + 7z4)

(1− z)3
.

Notice that Hc(k) ∼ 6 · 1
2! k

2, meaning that the moduli of self-dual con-
formal metric structures are parametrized by 6 function of 3 arguments.
This confirms the count in [6, 5].

Proof. As for the general metrics, there are no invariants of order < 2. We
already counted Hc(2) = 1. Since St0

3 = 0, we have:

Hc(3) = dimSD3
m|a − dimD4 −Hc(2)

= (9 + 36 + 85 + 160)− (16 + 40 + 80 + 140)− 1 = 13.
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Starting from 2-jet we impose the self-duality constraint, and we com-
puted in the previous proof that this yields 5·

(
k+1

3

)
independent equations of

“pure” order k ≥ 2. Thus the symbol of the self-duality conformal equation
W− = 0 on [g], given by

gk = Ker(dπk,k−1 : TSDkc → TSDk−1
c ),

has dimension= dim(SkT ∗ ⊗ (S2T ∗/R+))−#[independent equations].
Since the pseudogroup G acts almost freely on jets of order k ≥ 3 (freely

from some order k), we have:

Hc(k) = dim gk − dim ∆k+1 = 9 ·
(
k + 3

3

)
− 5 ·

(
k + 1

3

)
− 4 ·

(
k + 4

3

)
whence the claim for the Hilbert polynomial. The formula for the Poincaré
function follows.

3.2 The quotient equation

Let I1, . . . , I4 be the basic differential invariants of self-dual conformal struc-
tures. For generic such structures c these invariant evaluated on c are in-
dependent. Thus we can fix the gauge by requiring Ii = xi, i = 1, . . . , 4,
to be the local coordinates on M . This adds 4 differential equations to 5
equations of self-duality on 9 components of c. Consequently, denoting

Σ∞ = {θ ∈ SD∞c : d̂I1 ∧ d̂I2 ∧ d̂I3 ∧ d̂I4 is not defined at θ or vanishes},

the moduli space (SD∞c \ Σ∞)/G is given as 9× 9 PDE system

W− = 0, I1 = x1, . . . , I4 = x4.

4 The self-duality equation

In the second approach we use a 3× 3 PDE system from [5] which encodes
all self-dual conformal structures. It was shown in loc.cit. that any anti-self-
dual conformal structure in neutral signature (2, 2) locally takes the form
[g] where

g = dtdx+ dzdy + p dt2 + 2q dtdz + r dz2. (1)

Here p, q, r are functions of (t, x, y, z) which satisfy the following three
second-order PDEs:

pxx + 2qxy + ryy = 0,

mx + ny = 0,

mz − qmx − rmy + (qx + ry)m = nt − pnx − qny + (px + qy)n,

(2)
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where

m := pz − qt + pqx − qpx + qqy − rpy, n := qz − rt + qry − rqy + prx − qqx.

Conversely, any such conformal structure is anti-self-dual. Therefore
we can, instead of looking at arbitrary self-dual conformal structures, look
at conformal structures [g] where g is a metric of the Plebański-Robinson
form (1) satisfying (2). So from now on we restrict to self-dual conformal
structures in the neutral signature (2, 2).

Remark . These equations are admittedly describing anti-self-dual metrics
(∗W = −W ) instead of self-dual metrics (∗W = W ). However, in order
to define the Hodge operator, one must specify an orientation. Change of
orientation interchanges the equations, so from a local viewpoint self-dual
and anti-self-dual structures are the same.

Conformal structures of the form (1) are parametrized by sections of
the bundle π : CPR

M = M × R3(p, q, r) → M , where M = R4(t, x, y, z). Self-
dual conformal structures must, in addition, satisfy system (2), so they are
described by a second-order PDE

SDE2 = {θ = [(p, q, r)]2x : x ∈M, θ satisfies (2)} ⊂ J2(CPR
M ).

We let SDEk ⊂ Jk = Jk(CPR
M ) denote the prolonged equation. From now

on we will omit specification of the bundle over which the jet spaces are
constructed, because it will always be CPR

M in what follows.

The prolonged equation SDEk is given by 3
(
k+2

4

)
equations in Jk since

the system (2) is determined. By subtracting this from the jet space dimen-
sion dim Jk = 4 + 3

(
k+4

4

)
, we find

dimSDEk = 4 + 3

(
k + 4

4

)
− 3

(
k + 2

4

)
= k3 +

9

2
k2 +

13

2
k + 7.

5 Symmetries of SDE

Self-dual conformal structures locally correspond to sections of CPR
M that

are solutions of SDE . This correspondence is not 1-1 as there is some
residual freedom left: two solutions of SDE can still be equivalent up to
diffeomorphisms. The goal is to remove this freedom by factoring by diffeo-
morphisms that preserve the shape of the conformal structure [g] where g
is in Plebański-Robinson form (1).
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These transformations form the symmetry pseudogroup G of the equa-
tion SDE . We will study its Lie algebra g. By the Lie-Bäcklund theorem
[8] for our equation all symmetries are (prolongations of) point transforma-
tions. It turns out that the Lie algebra of symmetries is the same as the Lie
algebra of vector fields preserving the shape of [g].

5.1 Symmetries of SDE

A vector field X on J0 is a symmetry of SDE if the prolonged vector field
X(2) is tangent to SDE2 ⊂ J2, i.e. if X(2)(Fi) = λjiFj , where F1 = 0, F2 =
0, F3 = 0 are the three equations (2). This gives an overdetermined system
of PDEs that can be solved by the standard technique, and we obtain the
following result:

Theorem 22. The Lie algebra g of symmetries of SDE is generated by the
following five classes of vector fields X1(a), X2(b), X3(c), X4(d), X5(e),
each of which depends on a function of (t, z):

a∂t − xat∂x − xaz∂y + (xatt − 2pat)∂p + (xatz − qat − paz)∂q + (xazz − 2qaz)∂r,

b∂z − ybt∂x − ybz∂y + (ybtt − 2qbt)∂p + (ybtz − qbz − rbt)∂q + (ybzz − 2rbz)∂r,

cx∂x + cy∂y + (cp− xct)∂p + (cq − 1
2
xcz − 1

2
yct)∂q + (cr − ycz)∂r,

d∂x − dt∂p − 1
2
dz∂q,

e∂y − 1
2
et∂q − ez∂r.

The following table shows the commutation relations.

[, ] X1(g) X2(g) X3(g) X4(g) X5(g)

X1(f) X1(fgt − ftg) X2(fgt)−X1(fzg) X3(fgt) X4((fg)t) +X5(fzg) X5(fgt)

X2(f) ∗ X2(fgz − fzg) X3(fgz) X4(fgz) X4(ftg) +X5((fg)z)

X3(f) ∗ ∗ 0 −X4(fg) −X5(fg)

X4(f) ∗ ∗ ∗ 0 0

X5(f) ∗ ∗ ∗ ∗ 0

Notice that the Lie algebra is bi-graded g = ⊕gi,j , meaning that we have
[gi1,j1 , gi2,j2 ] ⊂ gi1+i2,j1+j2 with nontrivial graded pieces

g0,0 = 〈X1, X2〉, g0,1 = 〈X3〉, g1,∞ = 〈X4, X5〉.

5.2 Shape-preserving transformations

We say that a transformation ϕ ∈ Diffloc(M) preserves the PR-shape if
for every [g] ∈ Γ(CPR

M ) we have [ϕ∗g] ∈ Γ(CPR
M ). A vector field X on R4

preserves the PR-shape if its flow does so.

Theorem 23. The Lie algebra of vector fields preserving the PR-shape is
generated by the five classes of vector fields

a∂t − xat∂x − xaz∂y, b∂z − ybt∂x − ybz∂y, cx∂x + cy∂y, d∂x, e∂y.
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where a, b, c, d, e are arbitrary functions of (t, z).

Proof. In order to find the Lie algebra of vector fields preserving the shape
of [g], we let X = f1∂t + f2∂x + f3∂y + f4∂z be a general vector field and
take the Lie derivative LXg. The vector field preserves the PR-shape of [g]
if

LXg = ε · (dtdx+ dzdy) + p̃ dt2 + 2q̃ dtdz + r̃ dz2

for some functions ε, p̃, q̃, r̃. This gives an overdetermined system of 6 PDEs
on 4 unknowns with the solutions parametrized by 5 functions of 2 variables
as indicated.

5.3 Unique lift to J0

The conformal metric (1) can also be considered as a horizontal (degenerate)
symmetric tensor cPR on CPR

M . Namely, cPR ∈ Γ(π∗S2T ∗M/R+) is given at
the point (t, x, y, z, p, q, r) ∈ CPR

M via its representative g by formula (1). The
algebra of vector fields X preserving the shape of [g] is naturally lifted to
CPR
M by the requirement LX̂cPR = 0. This requirement algebraically restores

the vertical components of the vector fields X1, . . . , X5 from Theorem 23
yielding the symmetry fields from Theorem 22. We conclude:

Theorem 24. The Lie algebra of transformations preserving the PR-shape
coincides with the Lie algebra g of point symmetries of SDE.

Thus the conformal structure cPR uniquely restores g = sym(SDE).

5.4 Conformal tensors invariant under g

The goal of this subsection is to show that the simplest conformally invariant
tensor with respect to g is cPR, so that the conformal structure (of PR-
shape) is in turn uniquely determined by g.

We aim to describe the horizontal conformal tensors on CPR
M that are

invariant with respect to g. Since g acts transitively on CPR
M , we consider

the stabilizer St0 ⊂ g of the point given by (t, x, y, z, p, q, r) = (0, 0, 0, 0, 0, 0)
in CPR

M . Denote by Stk0 the subalgebra of g consisting of fields vanishing at
0 to order k, so that St0 = St1

0.
It is easy to see from formulae of Theorem 22 that the space St1

0/St2
0

is 18-dimensional, and 12 of the generators are vertical (they belong to
〈∂p, ∂q, ∂r〉). The complimentary linear fields have the horizontal parts

Y1 = t∂t − x∂x, Y2 = z∂t − x∂y, Y3 = t∂z − y∂x,
Y4 = z∂z − y∂y, Y5 = x∂x + y∂y, Y6 = z∂x − t∂y.

67



They form a 6-dimensional Lie algebra h acting on the horizontal space T =
T0M = T0CPR

M /Ker(dπ). This Lie algebra is a semi-direct product of the
reductive part h0 = 〈Y1, Y2, Y3, Y4, Y5〉 and the nilpotent piece r = 〈Y6〉 (the
nilradical is 2-dimensional). The reductive piece splits in turn h0 = sl2 ⊕ a,
where the semi-simple part is sl2 = 〈Y1 − Y4, Y2, Y3〉 and the Abelian part
is a = 〈Y1 + Y4, Y5〉.

It is easy to see that the space T is h0-reducible. In fact, with respect
to h0 it is decomposable T = Π1 ⊕ Π2 = 〈∂t, ∂z〉 ⊕ 〈∂x, ∂y〉, and Π1,Π2 are
the standard sl2-representations (denoted by Π in what follows). However
r maps Π1 to Π2 and Π2 to 0. This Π2 ⊂ T is an h-invariant subspace, but
it does not have an h-invariant complement.

Moreover, Π2 is the only proper h-invariant subspace, so there are no
conformally invariant vectors (invariant 1-space) and covectors (invariant
3-space). We sumarize this as follows.

Lemma 25. There are no horizontal 1-tensors on CPRM that are conformally
invariant with respect to g.

Now, let’s consider conformally invariant horizontal 2-tensors. Since cPR

is g-invariant, we can lower the indices and consider (0, 2)-tensors. We have
the splitting T∗ ⊗ T∗ = Λ2T∗ ⊕ S2T∗.

The symmetric part further splits S2(Π∗1 ⊕ Π∗2) = S2Π∗1 ⊕ (Π∗1 ⊗ Π∗2) ⊕
S2Π∗2. As an sl2-representation, this is equal to 3 · S2Π⊕ Λ2Π = 3 · ad⊕ 1,
and the only one trivial piece 1 ⊂ Π∗1 ⊗ Π∗2 (which is also h-invariant) is
spanned by cPR. Here Π∗1 = 〈dt, dz〉 and Π∗2 = 〈dx, dy〉. Thus there are no
g-invariant symmetric conformal 2-tensors except cPR.

The skew-symmetric part further splits Λ2(Π∗1⊕Π∗2) = Λ2Π∗1⊕(Π∗1⊗Π∗2)⊕
Λ2Π∗2, and as an sl2-representation, this is equal to S2Π⊕3 ·Λ2Π = ad⊕3 ·1.
Thus there are three sl2-trivial pieces, and they are h0-invariant. However
only one of them is r-invariant, namely Λ2Π∗1 that is spanned by dz ∧ dt.
Thus we have proved the following statement.

Theorem 26. The only conformally invariant symmetric 2-tensor is cPR.
The only conformally invariant skew-symmetric 2-tensor is dz ∧ dt.

Since dz ∧ dt is degenerate and does not define a convenient geometry,
cPR is the simplest g-invariant conformal tensor.

5.5 Algebraicity of g

We say that the Lie algebra g is algebraic if its sheafification is equal to
the Lie algebra sheaf of some algebraic pseudo-group G (see definition of an
algebraic pseudo-group in [12]). Algebraicity of g is important because it
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guarantees, through the global Lie-Tresse theorem [12], existence of rational
differential invariants separating generic orbits (by [16] this yields rational
quotient of the action on every finite jet-level).

Let Dk ⊂ Jk(θ,θ)(C
PR
M , CPR

M ) denote the differential group of order k at

θ ∈ CPR
M . The stabilizer Gθ ⊂ G of θ can be viewed as a collection of

subbundles Gkθ ⊂ Dk. The transitive Lie pseudo-group G is algebraic if Gkθ is
an algebraic subgroup of Dk for every k. This is independent of the choice
of θ since G is transitive, implying that subgroups Gkθ ⊂ Dk are conjugate
for different points θ ∈ CPR

M .

When determining whether g is algebraic, there are essentially two ap-
proaches. One is to try to see it from the stabilizer gθ alone, and the other
is to integrate g in order to investigate the pseudo-group Gθ. It turns out
that the latter is more efficient in our case.

Consider the following pseudo-group G given via its action on CPR
M .

t 7→ T = A, z 7→ Z = B

x 7→ X = C(Bzx−Bty) +D, y 7→ Y = C(Aty −Azx) + E

p 7→ P =
C(B2

zp−2BtBzq+B2
t r)+(CJB,Bz+BzJB,C)x−(CJB,Bt+BtJB,C)y+JB,D

JA,B

r 7→ R =
C(A2

zp−2AtAzq+A2
t r)+(CJA,Az+AzJA,C)x−(CJA,At+AtJA,C)y−JA,E

JA,B

q 7→ Q =
C(−AzBzp+(AtBz+AzBt)q−AtBtr)+(JB,E−JA,D)/2

JA,B

+
((JAz,B−JA,Bz )C−BzJA,C−AzJB,C)x+((JA,Bt−JAt,B)C+AtJB,C+BtJA,C)y

2JA,B

Here we use the notation JF,G = FtGz−FzGt for two functions F,G of (t, z).
The functions A,B,C,D,E are all (locally defined) functions depending on
the variables (t, z). In addition A,B satisfy the requirement that (t, z) 7→
(A(t, z), B(t, z)) is a local diffeomorphism of the plane, and C 6= 0 wherever
it is defined.1

It is easy to check that this is a Lie pseudo-group (one should specify the
differential equations defining G, and they are Tx = 0, . . . , Tr = 0, . . . , Xy +
Zt = 0, . . . ). Moreover it is easy to check that the Lie algebra sheaf of G
coincides with the sheafification of g.

Theorem 27. The Lie pseudo-group G and consequently the Lie algebra g
are algebraic.

Proof. The subgroups Gkθ of Dk are constructed by repeated differentiation
of T, ..., R by t, ..., r and evaluation at θ. The formulas for the group action

1The formulas above are corrections of the ones from the original paper.
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make it clear that Gkθ will always be an algebraic subgroup of Dk (they
provide a rational parametrization of it as a subvariety). Thus G is algebraic.
The statement for g follows.

Let us briefly explain how to read algebraicity from the Lie algebra g.
Consider the Lie subalgebra f ⊂ gl(T0J

0) obtained by linearization of the
isotopy algebra at 0 ∈ J0 = CPR

M . As already noticed in §5.4, this is an
18-dimensional subalgebra admitting the following exact 3-sequence

0→ v −→ f −→ h→ 0,

where v is the vertical part and h – the ”horizontal” (that is the quotient).
The explicit form of these vector fields come from Theorem 22:

v = 〈x∂p, x∂q, x∂r, y∂p, y∂q, y∂r, t∂p, t∂q, t∂r, z∂p, z∂q, z∂r〉,
h = sl2 + a + r, where r = 〈z∂x − t∂y〉,

sl2 = 〈z∂t − x∂y − p∂q − 2q∂r, t∂z − y∂x − 2q∂p − r∂q,
t∂t − z∂z − x∂x + y∂y − 2p∂p + 2r∂r〉,

a = 〈t∂t + z∂z − p∂p − q∂q − r∂r, x∂x + y∂y + p∂p + q∂q + r∂r〉.

By [4] the subalgebra [f, f] ⊂ gl(T0J
0) is algebraic. Since f is obtained from

[f, f] = v+sl2+r by extension by derivations a, and the semi-simple elements
in the latter have no irrational ratio of spectral values, we conclude that
f ⊂ gl(T0J

0) is an algebraic Lie algebra [3]. The claim about algebraicity of
g follows by prolongations.

6 The Hilbert and Poincaré function for SDE
Even though g is just a PR-shape preserving Lie algebra, its prolongation to
the space of 2-jets preserves SDE (this is an unexpected remarkable fact),
and we consider the orbits of g on this equation.

6.1 Dimension of generic orbits

We can compute the dimension of a generic orbit in SDEk or Jk by com-
puting the rank of the system of prolonged symmetry vector fields X(k) at
a point in general position.

By prolonging the generators X1, ..., X5 and with the help of Maple we
observe that the Lie algebra g acts transitively on J1. The dimension of
a generic orbit on the Lie algebra acting on J2 is 44, but the equation
SDE2 ⊂ J2 contains no generic orbits, and if we restrict to SDE2 a generic
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orbit of g is of dimension 42. For higher jet-orders k > 2, the dimension of
a generic orbit is the same on SDEk as on Jk.

We are going to compute dimOk for k ≥ 3 as follows. Since g contains
the translations ∂t, ∂z, all its orbits pass through the subset Sk ⊂ Jk given
by t = 0, z = 0. On Sk we can make the Taylor expansion of parametrizing
functions a, b, c, d, e around (t, z) = (0, 0).

We use X5(e) to show the idea. By varying the coefficients of the Taylor
series e(t, z) = e(0, 0) + et(0, 0)t + ez(0, 0)z + · · · we see that the vector
fields X5(m,n) = zmtn∂y − n

2 z
mtn−1∂q −mzm−1tn∂r are contained in the

symmetry algebra, with the convention that t−1 = z−1 = 0, and any vector
field of the form X5(e) is tangent to a vector field in 〈X5(m,n)〉. The
prolongation of a vector field takes the form

X(k) =
∑
i

aiD(k+1)
i +

∑
|σ|≤k

(Dσ(φp)∂pσ +Dσ(φq)∂qσ +Dσ(φr)∂rσ) (3)

where Dσ is the iterated total derivative, D(k+1)
i the truncated total deriva-

tive (the “restriction” to the space Jk+1, cf. [8, 11]), ai = dxi(X) for
(x1, x2, x3, x4) = (t, x, y, z), and φp, φq, φr are the generating functions for
X, i.e. φp = ωp(X), φq = ωq(X), φr = ωr(X) where

ωp = dp− ptdt− pxdx− pydy − pzdz,
ωq = dq − qtdt− qxdx− qydy − qzdz,
ωr = dr − rtdt− rxdx− rydy − rzdz

In the case of X5(m,n), the generating functions are given by

φp = −pyzmtn, φq = −n
2 z

mtn−1 − qyzmtn, φr = −mzm−1tn − ryzmtn.

We see that the restriction of X5(m,n)(k) to the fiber over 0 ∈ CPR
M is

nonzero only whenm+n ≤ k+1. Hence we can parametrize 〈X5(m,n)〉(k) by
Jk+1

0 (R2(t, z),R(e)), and by extending this argument to the whole symmetry
algebra we get (the vector fields Xk(m,n) for k = 1, . . . , 4, are defined
similarly to the vector field X5(m,n) by simply substituting a = zmtn etc
into the formulae of Theorem 22)

g(k) = 〈X1(m,n), X2(m,n), X4(m,n), X5(m,n)〉(k) ⊕ 〈X3(m,n)〉(k)

= Jk+1
0 (R2(t, z),R4(a, b, d, e))× Jk0 (R2(t, z),R(c)).

Using formula (3) we verify that the Lie algebra g(k) acts freely on SDEk
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for k ≥ 3, whence

dimOk = dim
(
Jk+1

0 (R2,R4)× Jk0 (R2,R)
)

= 4 dim
(
Jk+1

0 (R2,R)
)

+ dim
(
Jk0 (R2,R)

)
= 4

(
k + 3

2

)
+

(
k + 2

2

)
=

(k + 2)(5k + 13)

2
.

6.2 Counting the differential invariants

The number sk of differential invariants of order k (as before, this is trdegFk)
is equal to the codimension of a generic orbit of g on SDEk. For the lowest
orders, we have s0 = s1 = 0 and s2 = dimSDE2 − dimO2 = 46 − 42 = 4.
For higher jet-orders, the number of invariants of order k is given by

sk = codimOk = dimSDEk − dimOk = k3 + 2k2 − 5k − 6, k ≥ 3.

The number of differential invariants of “pure order” k is then given by
H(k) = sk − sk−1. The Poincaré function P (z) =

∑∞
k=0H(k)zk can now

easily be computed, and we conclude:

Theorem 28. The Hilbert polynomial for the action of g on SDE is

H(k) =


0 for k < 2,
4 for k = 2,
20 for k = 3,
3k2 + k − 6 for k > 3.

The corresponding Poincaré function is equal to

P (z) =
2z2(2 + 4z − z2 − 4z3 + 2z4)

(1− z)3
.

Notice that H(k) in this statement has the same leading term as H(k) in
Theorem 21 for k > 3. The following table summarizes the counting results
from the last two subsections for low order k.

k 0 1 2 3 4 5 6 7 . . .

dimSDEk 7 19 46 94 169 277 424 616 . . .

dimOk 7 19 42 70 99 133 172 216 . . .

codimOk 0 0 4 24 70 144 252 400 . . .

H(k) 0 0 4 20 46 74 108 148 . . .
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7 The invariants of SDE and the quotient equation

From the global Lie-Tresse theorem [12] and Theorem 27 it follows that
there exist rational differential invariants of g-action (or G-action) on SDE
that separate generic orbits.

7.1 Invariants of the second order

There are four independent differential invariants of the second order:

I1 =
1

K

(
pyyrxx − pxxryy + 2 pxyqxx + 4 q2

xy + 2 qyyrxy
)

I2 =
1

K3

(
(qxyryy − qyyrxy) pxx + (pyyrxy − pxyryy) qxx

+ (pxyqyy − pyyqxy) rxx
)2

I3 =
1

K3

(
pyy (qxx − rxy)2 + rxx (qyy − pxy)2

− 2 qxy
(
pxyqxx + qyyrxy − pxyrxy − 2 pyyrxx + 2 q2

xy − qxxqyy
) )2

I4 =
1

K2

(
p2
xxr

2
yy + p2

yyr
2
xx − 2 pxxpyyrxxryy + 4 pxxpyyr

2
xy

+ 4 p2
xyrxxryy − 4 qxxqyy (pxxryy − 4 pxyrxy + pyyrxx)

+ 4 pxxqxyryy (pxx + 4 qxy + ryy)− 4 pxyrxy (pxxryy + pyyrxx)

+ 4 pxxrxx
(
q2
yy − pyyqxy

)
+ 4 pyyryy

(
q2
xx − qxyrxx

)
− 8 pxyqxy (qxxryy + qyyrxx)− 8 qxyrxy (pxxqyy + pyyqxx)

)
where

K = pxxryy − 2 pxyrxy + pyyrxx + 2 (q2
xy − qxxqyy)

is a relative differential invariant.

7.2 Singular set

Let Σ′2 ⊂ SDE2 be the set of points θ where 〈X(2)
θ : X ∈ g〉 ⊂ Tθ(SDE2) is

of dimension less than 42. It’s given by

Σ′2 = {θ ∈ SDE2 : rank (A|θ) < 4}
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where

A =



0 −2qxy − 2ryy pxy + qyy 0
0 2pxy − 2qyy 2pyy pyy

4qxy + ryy −rxx −2qxx −2qxx
−pxy + qyy qxx − rxy 0 −qxy
−pyy 2qxy − ryy qyy 0

−2qxx + 2rxy 0 −2rxx −3rxx
−2qxy + ryy rxx −rxy −2rxy
−2qyy 2rxy 0 −ryy


.

This set contains the singular points that can be seen from a local view-
point on SDE2, but there may still be some singular (non-closed) orbits of
dimension 42. We use the differential invariants Ii to filter out these. Let
Σ3 ⊂ SDE3 be the set of points where the 4-form

d̂I1 ∧ d̂I2 ∧ d̂I3 ∧ d̂I4

is not defined or is zero. Here d̂ is the horizontal differential

d̂f = Dt(f)dt+Dx(f)dx+Dy(f)dy +Dz(f)dz.

This defines the singular sets Σk = (πk,3|SDEk)−1(Σ3) ⊂ SDEk and Σ2 =
π3,2(Σ3). The set Σ2 of all singular points in SDE2 contains Σ′2.

By using Maple, we can easily verify that {K = K1 = K2 = K3 = K4 =
0} is contained in Σ′2, where Ki is the numerator of Ii for i = 1, 2, 3, 4.
Notice also that 2-jets of conformally flat metrics are contained in Σ′2.

7.3 Invariants of higher orders

The 1-forms d̂I1, d̂I2, d̂I3, d̂I4 determine an invariant horizontal coframe on
SDE3\Σ3. The basis elements of the dual frame ∂̂I1 , ∂̂I2 , ∂̂I3 , ∂̂I4 are invariant
derivations, the Tresse derivatives. We can rewrite metric (1) in terms of
the invariant coframe:

g =
∑

Gij d̂Iid̂Ij , where Gij = g(∂̂Ii , ∂̂Ij ). (4)

Since the d̂Ii are invariant, and [g] is invariant, the map

Ĝ = [G11 : G12 : G13 : G14 : G22 : G23 : G24 : G33 : G34 : G44] : J3 → RP 9

is invariant. Hence the functions Gij/G44 are rational scalar differential
invariants (of third order). This has been verified in Maple by differentiation
of Gij/G44 along the elements of g. It was also checked that these nine
invariants are independent. By the principle of n-invariants [1], Ii and
Gij/G44 generate all scalar differential invariants.
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Theorem 29. The field of rational differential invariants of g on SDE is
generated by the differential invariants Ik, Gij/G44 and invariant deriva-

tions ∂̂Ik . The differential invariants in this field separate generic orbits in
SDE∞.

7.4 The quotient equation

When restricted to a section g0 of CPR
M , the functions Gij can be considered

as functions of I1, I2, I3, I4. Two such nonsingular sections are equivalent
if they determine the same map Ĝ(I1, I2, I3, I4). The quotient equation
(SDE∞ \ Σ∞)/g is given by

∗Wg = Wg, where g =
∑

Gij(I1, I2, I3, I4)d̂Iid̂Ij .

Here we consider I1, . . . , I4 as coordinates on M . Equivalently, given
local coordinates (x1, . . . , x4) on M the quotient equation is obtained by
adding to SDE the equations Ii = xi, 1 ≤ i ≤ 4.
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Differential invariants of Einstein-Weyl

structures in 3D

Boris Kruglikov, Eivind Schneider

Abstract

Einstein-Weyl structures on a three-dimensional manifold M are
given by a system E of PDEs on sections of a bundle over M . This
system is invariant under the Lie pseudogroup G of local diffeomor-
phisms on M . Two Einstein-Weyl structures are locally equivalent if
there exists a local diffeomorphism taking one to the other. Our goal
is to describe the quotient equation E/G whose solutions correspond
to nonequivalent Einstein-Weyl structures. The approach uses sym-
metries of the Manakov-Santini integrable system and the action of
the corresponding Lie pseudogroup.

Introduction

A Weyl structure is a pair consisting of a conformal metric [g] on a manifold
M and a symmetric linear connection ∇ preserving the conformal structure.
This means

∇g = ω ⊗ g (1)

for some one-form ω on M [25]. The Einstein-Weyl condition says that the
symmetrized Ricci tensor of ∇ belongs to the given conformal class:

Ricsym
∇ = Λg (2)

for some function Λ on M . We call the pair ([g],∇) an Einstein-Weyl
structure if it satisfies this Einstein-Weyl equation.

In this paper we restrict to three-dimensional manifolds. This is the
first non-trivial case, which is simultaneously the most interesting due to
its relation with dispersionless integrable systems [5, 10]. In addition, in
dimension 3 the Einstein equation is trivial, meaning that all Einstein man-
ifolds are space forms, while the Einstein-Weyl equation is quite rich. The
Einstein-Weyl equation has attracted a lot of attention due to its relations
with twistor theory, Lax integrability of PDE and mathematical relativity
[12, 13, 8]. It is worth mentioning that according to [6] the solution spaces
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of a third-order scalar ODE with vanishing Wünschmann and Cartan in-
variants carry a natural Einstein-Weyl structure. We aim to solve the local
equivalence problem for Einstein-Weyl structures in 3D.

The Einstein-Weyl equation is invariant under the Lie pseudogroup of
local diffeomorphisms of M . To construct the quotient of the action of this
pseudogroup on the space of Einstein-Weyl structures we compute the alge-
bra of differential invariants, thus following the approach to the equivalence
problem as presented in [24, 1, 23].

We begin with general coordinate-free considerations in Section 1; this
concerns conformal structures of any signature. Then in Section 2 we spe-
cialize to the normal form of the pair (g, ω) introduced in [7], which expresses
Einstein-Weyl structures locally by solutions of the modified Manakov-
Santini system [22]; this is specific for the Lorentzian signature. It will
be demonstrated in Section 2 that the symmetry algebra of this PDE sys-
tem coincides with the algebra of shape preserving transformations for the
metric in normal form (3). Consequently, the problem is equivalent to com-
puting differential invariants of the modified Manakov-Santini system with
respect to its symmetry pseudogroup.

In both cases we compute generators of the algebra of scalar rational
differential invariants and derive the Poincaré function counting the local
moduli of the problem. Section 1 and Sections 2-3, supporting two different
approaches to the same problem, can be read independently, and the reader
interested in geometry of the Manakov-Santini system can proceed straight-
forwardly to the latter sections. Section 4 provides some particular solutions
of the Manakov-Santini system, yielding several families of non-equivalent
Einstein-Weyl spaces parametrized by one or two functions of one argument.
We stress that these explicit Einstein-Weyl structures are non-homogeneous
and not obtained by any symmetry reduction. Appendix 4 is devoted to the
proof of a general theorem on algebraicity of the symmetry pseudogroup.

1 Invariants of Einstein-Weyl structures

In this section we discuss the general coordinate-free approach to compu-
tation of differential invariants of Einstein-Weyl structures in 3D. The con-
formal structure can be both of Riemannian and Lorentzian signature. We
refer to [23, 16, 17] for the basics of jet-theory, Lie pseudogroups and differ-
ential invariants.
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1.1 Setup of the problem

Let a Lie pseudogroup G act on the space of jets J or a differential equation
considered as a co-filtered submanifold in it (also know as diffiety); we keep
the same notation for the latter in this setup.

A differential invariant of order k is a smooth function I on Jk that is
constant on orbits of the G-action. If the pseudogroup G is topologically
connected (the same as path-connected), then the definition of differential
invariant is equivalent to the constraint LX(k)I = 0 for every X in the Lie
algebra sheaf g corresponding to G, where X(k) denotes the prolongation of
the vector field X to k-jets.

It turns out that in our problem, the pseudogroup G, the space J and
the action are algebraic in the sense of [18] (for the data in this section this
follows from the definition, and for the objects in the following sections it
follows from a general theorem in the appendix). Moreover, the action of
G is transitive on the base and J is irreducible. Under these conditions,
the global Lie-Tresse theorem [18] implies that the space of rational differ-
ential invariants is finitely generated as a differential field, i.e. there exist a
finite number of differential invariants and invariant derivations that alge-
braically generate all other invariants. In addition, the theorem states that
differential invariants separate orbits in general position, thus solving the
local equivalence problem for generic structures.

In our work the pseudogroup G (and later G) will be connected in the
Zariski topology. In this case the condition that a rational function I is a
differential invariant is equivalent to the constraint LX(k)I = 0 for every X
from the Lie algebra sheaf g of G.

Weyl structures are given by triples (g,∇, ω) satisfying relation (1). Let
us note that essentially two of the structures are enough to recover the third
one. Indeed, g and ∇ give ω by (1). Also, g and ω give ∇ = ∇g + ρ(ω),

where 2ρ(ω)(X,Y ) = ω(X)Y + ω(Y )X − g(X,Y )ω]g. In coordinates this
relates the Christoffel symbols of ∇ and the Levi-Civita connection ∇g:

Γkij = γkij + 1
2(ωiδ

k
j + ωjδ

k
i − gijωk).

Finally, the same formula expresses ∇g from ∇ and ω. It is known that if
(M, g) is holonomy irreducible and admits no parallel null distribution, then
∇g determines g up to homothety. This recovers [g] in this generic case.

It is not true though that k-jet of one pair correspond to k-jet of an-
other representative pair, the jets are staggered in this correspondence. In
what follows we will restrict to equivalence classes of pairs (g, ω): when
the representative of [g] is changed g 7→ f2g, the one-form also changes
ω 7→ ω + 2df/f .
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Remark 9. Note that we multiply g by f2 and not by f 6= 0 because we
want to preserve signature of the metric: multiplication by −1 changes the
signature in 3D. Restricting to conformal structures of fixed signature (an
open subset in J0) we thus will be able to separate orbits by algebraic in-
variants (next sections). In [19] we studied self-dual conformal structures.
For split signature (2, 2) a modification of scaling g 7→ f g is required, then
the separation is also guaranteed.

Thus the space of moduli of Weyl structures can be considered as the
space W of pairs (g, ω) modulo the pseudogroup G = Diff loc(M)×C∞6=0(M)
consisting of pairs (ϕ, f) of a local diffeomorphism ϕ and a nonzero function
f . The action is clearly algebraic.

1.2 Weyl structures

The G-action has order 1, i.e. for any point a ∈ M the stabilizer subgroup
in (k + 1)-jets Gka acts on the space Wk

a of k-jets of the structures at a.
For a point ak ∈ Wk

a denote Stk+1
ak

its stabilizer in Gk+1
a . Let also gk =

Ker(dπk,k−1 : TakWk
a → Tak−1

Wk−1
a ) denote the symbol of the space of

Weyl structures. The differential group G has the following co-filtration:

0→ ∆k −→ Gka −→ Gk−1
a → 1,

where ∆k = SkT ∗a ⊗ Ta ⊕ SkT ∗a for k > 1, and we abbreviate Ta = TaM .
For k = 1, G1

a = ∆1 = GL(Ta)⊕ T ∗a ⊕ R×.
The 0-jet a0 is the evaluation (ga, ωa). By G1

a-action the second com-
ponent can be made zero, and the first component rescaled. The action of
GL(Ta) on the conformal class [ga] yields St1

a0 = CO(ga).
The group ∆2 = S2T ∗a ⊗ Ta ⊕ S2T ∗a acts on the symbol g1 = T ∗a ⊗

S2T ∗a ⊕ T ∗a ⊗ T ∗a of W. This action is free and g1/∆2 = Λ2T ∗a . This is
the space where Ricskew

∇ = 3
2dω [13] lives. The stabilizer from the previous

jet-level CO(ga) acts with an open orbit, i.e. there are no scalar invariants.
There are however the following vector and tensor invariants: L1 = Ker(dω),
Π2 = L1

⊥ (generically L1 is non-null and so transversal to Π2) and a complex
structure J = g−1dω on Π, where the representative g is normalized so that
‖dω‖2g = 1. The stabilizer St2

a1 is either SO(2)× Z2 or SO(1, 1)× Z2.

Starting from k ≥ 2 the action of Gk+1
a on a Zariski open subset of Wk

a

is free, i.e. the stabilizer is resolved: Stk+1
ak

= 0 for generic ak ∈ Wk
a . This

can be seen by the exact sequences approach as in [20], and can be verified
directly. The metric g chosen with the above normalization is the unique
conformal representative, then ω is defined uniquely as well, and we can
have the following canonical frame on M , defined by a Zariski generic a2:
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e1 ∈ L1 normalized by ω(e1) = 1, e2 = π(ω]g) with π : Ta → Π2 being the
orthogonal projection along L1, and e3 = Je2. Coefficients of the structure
(g, ω) written in this frame give a complete set of scalar rational differential
invariants.

The count of them is as follows. Let sk be the number of independent
differential invariants of order ≤ k, which coincides with the transcendence
degree of the field of order ≤ k rational differential invariants. Let hk =
sk − sk−1 be the number of “pure” order k invariants. Then h0 = h1 = 0
and h2 = dim g2 − dim ∆3 − dimSO(2) = 54 − 40 − 1 = 13 and hk =
dim gk − dim ∆k+1 = 9

(
k+2

2

)
− 4
(
k+3

2

)
= 1

2(5k2 + 7k − 6) for k > 2. These
numbers are encoded by the Poincaré function

P (z) =
∞∑
k=0

hkz
k =

(13− 9z + z3)z2

(1− z)3
.

1.3 Einstein-Weyl structures

The Einstein-Weyl equation (2) is a set of 5 equations on 8 unknowns, which
looks like an underdetermined system. However its Diff loc(M)-invariance
reduces the number of unknowns to 8-3=5 and makes it a determined system
– formally this follows from the normalization of [7].

Denote this equation by EW. The number of its determining equations
of order k is 5

(
k
2

)
. Let g̃k = Ker(dπk,k−1 : TakEWk

a → Tak−1
EWk−1

a ) be the

symbol of the system. Its dimension is dim g̃k = dim gk − 5
(
k
2

)
.

The action of Gk+1
a on EWk

a is still free starting from k ≥ 2 and this
implies that the number of “pure order” k invariants is: h̄0 = h̄1 = 0,
h̄2 = 13−5 = 8, and h̄k = hk−5

(
k
2

)
= 3(2k−1) for k > 2. The corresponding

Poincaré function is equal to

P̄ (z) =

∞∑
k=0

h̄kz
k =

(8− z − z2)z2

(1− z)2
.

We again have the canonical frame (e1, e2, e3), and this yields all scalar
rational differential invariants of EW.

2 Einstein-Weyl structures via an integrable system

In this section we study the Lie algebra g of point symmetries of the
modified Manakov-Santini system E , defined by (4), which describes three-
dimensional Einstein-Weyl structures of Lorentzian signature. We calculate
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the dimensions of generic orbits of g. The Einstein-Weyl structures corre-
sponding to solutions of E are of special shape (3), and we compute the Lie
algebra h of vector fields preserving this shape (ansatz). It turns out that
the lift of h to the total space E is exactly g, whence h ' g.

2.1 A modified Manakov-Santini equation and its symmetry

By [7] any Lorentzian signature Einstein-Weyl structure is locally of the
form

g = 4dtdx+ 2udtdy − (u2 + 4v)dt2 − dy2

ω = (uux + 2uy + 4vx)dt− uxdy
(3)

where u and v are functions of (t, x, y) satisfying

F1 = (ut + uuy + vux)x − (uy)y = 0,

F2 = (vt + vvx − uvy)x − (vy − 2uvx)y = 0.
(4)

This system, derived in the proof of Theorem 1 in [7], is related to the
Manakov-Santini system [22] by the change of variables (u, v) 7→ (vx, u −
vy) and potentiation. We will refer to it as the modified Manakov-Santini
system.

Note that normalization of the coefficient of dy2 in g to be −1 gives a
representative of the conformal class [g], reducing the C∞6=0(M)-component
of the pseudogroup G from the previous section.

Let M = R3(t, x, y). We treat the pair (g, ω) as a section of the bundle

π : E = M × R2(u, v)→M.

This is a subbundle of S2T ∗M ⊕ T ∗M , considered in Section 1.

Einstein-Weyl structures correspond to sections of π satisfying (4). Con-
sider the system (4) as a nonlinear subbundle E2 = {F1 = F2 = 0} of the
jet bundle J2π, and denote its prolongation by Ek ⊂ Jkπ. The notation
E0 = J0π = E, E1 = J1π will be used. Let E ⊂ J∞π denote the projective
limit of Ek.

The dimension of Jkπ is 3 + 2
(
k+3

3

)
, while the number of equations

determining Ek is 2
(
k+1

3

)
. The system E is determined, so these equations

are independent, whence

dim Ek = dim Jkπ − 2
(
k+1

3

)
= 3 + 2(k + 1)2, k ≥ 2.

For k = 0, 1 we have dim E0 = 5, dim E1 = 11.
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[ , ] X1(g) X2(g) X3(g) X4(g) X5(g)

X1(f) 0 0 0 X1(−gḟ) X1(2fg)

X2(f) ∗ 0 X1(fg) X2( fġ2 − gḟ) X2(fg) +X3(2fġ)

X3(f) ∗ ∗ 0 X3(−gḟ − fġ
2 ) X3(fg)

X4(f) ∗ ∗ ∗ X4(fġ − gḟ) X5(fġ)

X5(f) ∗ ∗ ∗ ∗ 0

Table 1: The structure of the symmetry Lie algebra g.

A vector field X on E is an (infinitesimal point) symmetry of E if its
prolongation X(2) to J2π is tangent to E2, in other words if it satisfies the
Lie equation

(LX(2)Fi)|E2 = 0 for i = 1, 2.

Decomposing this by the fiber coordinates of E2 → E, we get an overdeter-
mined system of linear PDEs on the coefficients of X. This system can be
explicitly solved, and the result is as follows.

Theorem 30. The Lie algebra g of symmetries of E has the following gen-
erators, involving five arbitrary functions a = a(t), . . . , e = e(t):

X1(a) = a∂x + ȧ∂v

X2(b) = b∂y + ḃ∂u

X3(c) = yc∂x − 2c∂u + (uc+ yċ)∂v

X4(d) = d∂t +
1

2
ḋy∂y +

1

2
(yd̈− uḋ)∂u − ḋv∂v

X5(e) = (y2ė+ 2xe)∂x + ye∂y + (ue− 3yė)∂u + (y2ë+ 2yuė+ 2ve+ 2xė)∂v

Table 1 shows the commutation relations of g.

It follows from the table that g is a perfect Lie algebra: [g, g] = g.
We also see that the splitting g = g0 ⊕ g1 ⊕ g2, with g0 = 〈X4, X5〉, g1 =
〈X2, X3〉, g2 = 〈X1〉, gives a grading of g, i.e. [gi, gj ] ⊂ gi+j (gi = 0 for
i /∈ {0, 1, 2}).

Integration gives the action of the Lie pseudogroup Gtop on E defined
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by

t 7→ D(t),

x 7→ E(t)2x+ E(t)E′(t)y2 + C(t) y +A(t),

y 7→
√
D′(t)E(t) y +B(t),

u 7→ E(t)√
D′(t)

u− y

E(t)2

d

dt

E(t)3√
D′(t)

+
B′(t)

D′(t)
− 2C(t)

E(t)
√
D′(t)

,

v 7→ E(t)2

D′(t)
v +

C(t) + 2E(t)E′(t) y

D′(t)
u+

E(t)E′′(t)− 3E′(t)2

D′(t)
y2

+
E(t)4

D′(t)

d

dt

C(t)

E(t)4
y +

2E(t)E′(t)

D′(t)
x+

E(t)2A′(t)− C(t)2

D′(t)E(t)2
,

where D ∈ Diff+
loc(R) is an orientation-preserving local diffeomorphism of

R and A,B,C,E are smooth functions with the same domain as D and
E(t) > 0 for every t in its domain.

This Lie pseudogroup is topologically connected and has g as its Lie
algebra of vector fields. However Gtop is not algebraic. Since the global Lie-
Tresse theorem holds for algebraic Lie pseudogroups, we consider the Zariski
closure of Gtop, denoted by GZ . The subgroup Gtop is normal in GZ and
GZ/Gtop = Z2 × Z2 is generated by reflections (t, x, y) 7→ (−t,−x,−y) and
(y, u) 7→ (−y,−u). Thus it can be argued, also from a geometric viewpoint,
that it is more natural to consider GZ instead of Gtop. In fact, the Lie
pseudogroup GZ is the full pseudogroup of symmetries, and so we simply
denote it by G.

This pseudogroup G can be also parametrized by five functions of one
variable:

t 7→ D(t),

x 7→ E(t)2

D′(t)
x+

d

dt

E(t)2

D′(t)

y2

2
+ C(t) y +A(t),

y 7→ E(t) y +B(t),

u 7→ E(t)

D′(t)
u− D′(t)

E(t)2

d

dt

E(t)3

D′(t)2
y +

B′(t)

D′(t)
− 2C(t)

E(t)
,

v 7→ E(t)2

D′(t)2
v +

C(t) + d
dt
E(t)2

D′(t) y

D′(t)
u− E(t)4

D′(t)3

d2

dt2
D′(t)

E(t)2

y2

2

+
E(t)4

D′(t)3

d

dt

C(t)D′(t)2

E(t)4
y +

x

D′(t)

d

dt

E(t)2

D′(t)
+
A′(t)

D′(t)
− C(t)2

E(t)2
,

but now D ∈ Diffloc(R), E(t) 6= 0 and A,B,C are arbitrary.
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2.2 Dimension of generic orbits

Denote by Ok a generic orbit of the G-action on Ek. Its topologically-
connected component is an orbit of the prolongation g(k) of g, and so we
consider the action of the latter.

The Lie algebra g acts transitively on J0π and g(1) acts locally transi-
tively on J1π (the hyperplane given by ux = 0 is invariant). A generic orbit
of g(2) on both E2 and J2π has dimension 18. The next theorem describes
the orbit dimensions for every k.

Proposition 31. A generic orbit Ok of the g(k)-action on Ek satisfies:

dimO0 = 5, dimO1 = 11, dimOk = 5k + 8, k ≥ 2.

Proof. Consider the point (t, x, y, u, v) = (0, 0, 0, 0, 0) ∈ E, and denote its
fiber under the projection Ek → E by Sk. Since g acts transitively on E,
every orbit of g(k) in Ek intersects Sk at some point θk ∈ Sk. Denote by Oθk
the g(k)-orbit through θk ∈ Sk. We have TθkOθk = span{X(k)

i (fi)θk : fi ∈
C∞(R), i = 1, ..., 5}. Here and below X

(k)
i (f)θk denotes the prolongation of

the vector field Xi(f) to Jkπ, evaluated at the point θk.
The k-th prolongation of a vector field X has the coordinate form

X(k) =
3∑
i=1

αiD(k+1)
i +

∑
|σ|≤k

(Dσ(φu)∂uσ +Dσ(φv)∂vσ) . (5)

Here σ is a multi-index, Dσ is the iterated total derivative, D(k+1)
i is the

truncated total derivative as a derivation on k-jets1, αi = dxi(X) with the
notation (x1, x2, x3) = (t, x, y), uσ = uxσ , vσ = vxσ , and the functions φu =
ωu(X), φv = ωv(X) are components of the generating section φ = (φu, φv)
for X, where

ωu = du− utdt− uxdx− uydy, ωv = dv − vtdt− vxdx− vydy.

Below we denote by Y k
i (m) = 1

m!X
(k)
i (tm) for i = 1, ..., 5, the vector fields

on Ek. Consider first the vector field X1(a). Its generating section is

φ1 = (−uxa(t), ȧ(t)− vxa(t)).

This together with (5) implies that the vector X
(k)
1 (a)θk depends only on

a(0), ..., a(k+1)(0). Therefore span{X(k)
1 (a)θk : a ∈ C∞(R)} = span{Y k

1 (m)θk :
m = 0, . . . , k + 1}.

1The truncated total derivative is given by D(k+1)
i = ∂xi +

∑
|σ|≤k(uσi∂uσ + vσi∂vσ ).
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Repeating this argument for X2(b), ..., X5(e) we conclude that the sub-
space TθkOθk ⊂ TθkEk is spanned by

Vk = {Y k
1 (m), Y k

2 (m), Y k
3 (n), Y k

4 (m), Y k
5 (n) : m ≤ k + 1, n ≤ k} (6)

evaluated at θk. This gives the upper bound 5k + 8 = |Vk| for dimOk.
(For k = 0, 1 the orbit dimension is bounded even more by dim E0 = 5 and
dim E1 = 11.)

We use induction to show that there exist orbits of dimension 5k + 8
for k ≥ 2. Due to lower semicontinuity of matrix rank, an orbit in general
position will then also have the same dimension. We choose θk to be given
by ux = 1, uxx = 1 and all other jet-variables set to 0. For the induction step
assume that all vectors in the set Vk are independent, and hence dimOθk =
5k + 8. For k = 2 this is easily verified in Maple. The five vectors

Y k+1
1 (k + 2)θk+1

= ∂v
tk+1

, Y k+1
2 (k + 2)θk+1

= ∂u
tk+1

,

Y k+1
3 (k + 1)θk+1

= ∂v
tky
− 2∂u

tk+1
, Y k+1

4 (k + 2)θk+1
=

1

2
∂u

tky
,

Y k+1
5 (k + 1)θk+1

= −3∂u
tky

+ 2∂v
tkx

+ 2∂v
tk−1y2

are independent and tangent to the fiber of Sk+1 over θk ∈ Sk. Therefore
they are independent with the prolonged vector fields from Vk at θk+1. Thus
dimOθk+1

= 5k + 8 + 5 = 5(k + 1) + 8, completing the induction step and
the proof.

2.3 Shape-preserving transformations

The ansatz (3) for Einstein-Weyl structures on M is not invariant under
arbitrary local diffeomorphisms of M , and we want to determine the pseu-
dogroup preserving this shape of (g, ω). Its Lie algebra sheaf is given as
follows.

Theorem 32. The Lie algebra h of vector fields preserving shape (3) of
(g, ω) has the following generators, involving five arbitrary functions a =
a(t), ..., e = e(t):

a∂x, b∂y, yc∂x, d∂t +
1

2
ḋy∂y, (y2ė+ 2xe)∂x + ye∂y. (7)

Proof. Let X = α(t, x, y)∂t + β(t, x, y)∂x + γ(t, x, y)∂y be a vector field on
M preserving the shape of (g, ω), and ϕτ its flow. The pullback of g through
ϕτ has the same shape, up to a conformal factor f τ , so that

ϕ∗τg = f τ (4dtdx+ 2uτdtdy − ((uτ )2 + 4vτ )dt2 − dy2),
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where f τ , uτ , vτ are τ -parametric functions of t, x, y with f0 = 1, u0 =
u, v0 = v. Denote χ = d

dτ

∣∣
τ=0

f τ , µ = d
dτ

∣∣
τ=0

uτ , ν = d
dτ

∣∣
τ=0

vτ . Then the Lie
derivative is

LXg = χg + 2µdtdy − (2uµ+ 4ν)dt2.

Similarly, from ϕ∗τω = ωτ + d log f τ , we obtain the formula

LXω = (uxµ+ uµx + 2µy + 4νx)dt− µxdy + dχ.

These restrictions yield an overdetermined system of differential equa-
tions on α, β and γ whose solutions give exactly the vector fields (7).

The Lie algebra h of vector field on M can be naturally lifted to the Lie
algebra ĥ on the total space E. Let X ∈ h. Its lift X̂ = X+A∂u+B∂v ∈ ĥ is
computed as follows. The pullback of g to E is a horizontal symmetric two-
form ĝ. Then the condition LX̂ ĝ = χĝ uniquely determines the coefficients
A,B.

Applying this to the general vector field X = 2d∂t + (a + yc + 2xe +
y2ė)∂x+(b+yḋ+ye)∂y ∈ h we get χ = 2(e(t)+ ḋ(t)). Moreover for the pull-
back ω̂ of ω and the prolongation of the vector field X̂ we get LX̂(1)ω̂ = dχ.
Comparing the resulting A and B with the vector fields in Theorem 30, we
conclude:

Corollary 1. The lift ĥ of the Lie algebra h of shape-preserving vector fields
is exactly the Lie algebra g of point symmetries of E.

Let us reformulate our lift of the algebra h using integrability of system
(4). Its Lax pair is given by a rank 2 distribution Π̃2 = span{∂y − λ∂x +
n∂λ, ∂t−(λ2−uλ−v)∂x+m∂λ} on P1-bundle M̃ over M , which is Frobenius-
integrable in virtue of (4) (the form of m,n is not essential here, see [7]). The
fiber can be identified with the projectivized null-cone of g. The coordinate
λ along it is called the spectral parameter. The action of h on M induces
the action on M̃ and hence on Π̃2. Since the plane Π̃2

(t,x,y,λ) is projected

to the plane Π2 = Ann(dx+ λdy + (λ2 − uλ− v)dt), this in turn gives the
action on u, v, i.e. the required lift.

3 Differential invariants of E
In this section we determine generators of the field of scalar rational differ-
ential invariants of the equation E with respect to its symmetry pseudogroup
G. We also compute the Poincaré function of the G-action, counting moduli
of the problem, and discuss solution of the equivalence problem for Einstein-
Weyl structures written in form (3).
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3.1 Hilbert polynomial and Poincaré function

The number sk of independent differential invariants of order k is equal to
the codimension of a generic orbit Ok ⊂ Ek. Since, as in Section 1.1, rational
differential invariants of G coincide with those of g(k), we can compute sk
using the results from Section 2.2:

sk = dim Ek − dimOk = 2k2 − k − 3, k ≥ 2

Due to local transitivity s0 = s1 = 0.
The difference hk = sk− sk−1 counts the number of invariants of “pure”

order k. It is given as follows: h0 = h1 = 0, h2 = 3 and hk = 4k − 3 for
k > 2. The Hilbert polynomial is the stable value of hk: H(k) = 4k − 3.

These numbers can be compactified into the Poincaré function:

P (z) =
∞∑
k=0

hkz
k =

(3 + 3z − 2z2)z2

(1− z)2
.

3.2 Invariant derivations and differential invariants

All objects we treat in this section will be written in terms of ambient
coordinates on Jkπ ⊃ Ek.

From the previous section, we know that there exist three independent
rational differential invariants of order two. The second-order invariants are
generated by

I1 =
uxy + vxx

u2
x

, I2 =
u2
xuxy + uxuxxvx + uxxuyy − u2

xy

u4
x

,

I3 =
u2
xvxx − uxuxxvx + uxxvxy − uxyvxx

u4
x

.

In order to generate all differential invariants, we also need invariant deriva-
tions. These are derivations on the algebra of differential invariants com-
muting with G. It is easily checked that

∇1 =
ux
uxx

Dx, ∇2 =
1

ux

(
uxy
uxx

Dx −Dy

)
,

∇3 =
1

u3
x

(
uxxDt + ((vux)x + uyy)Dx + (uux − 2uy)xDy

)
are three independent invariant derivations. Their commutation relations
are given by

[∇1,∇2] = −∇2, [∇1,∇3] = −K3∇1 + (K1 − 2K2)∇2 +K1∇3,

[∇2,∇3] = K4∇1 +K3∇2 +K2∇3,
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where

K1 =
uxuxxx
u2
xx

− 3 = ∇1(log(uxx))− 3,

K2 =
uxyuxxx − uxxuxxy

uxu2
xx

= ∇2(log(uxx)),

K3 = K2

(
1− 2

uxy
u2
x

)
− 2

uxx
u3
x

∇2(uy) +
2

u2
x

∇2(uxy),

K4 =
1

u4
x

(
uxx∇2(2uyy − uxuy)−∇2(uxy/uxx)uxx(2uxy − u2

x)−∇2(u2
xy)
)

are independent differential invariants of the third order.
The nine third-order differential invariants ∇j(Ii) are independent, and

together with I1, I2, I3 they generate all differential invariants of order three.
In particular, K1, . . . ,K4 can be expressed through them.

Moreover, I1, I2, I3 and ∇1,∇2,∇3 generate all rational scalar differen-
tial invariants of the G-action on E .

3.3 EW structure written in invariant coframe

The invariant derivations ∇1,∇2,∇3 constitute a horizontal frame on an
open subset in E2. Let α1, α2, α3 be the dual horizontal coframe. The 1-
forms αi are defined at all points where uxx 6= 0. Since α1 ∧ α2 ∧ α3 =
−u3

xdt ∧ dx ∧ dy, they determine a horizontal coframe outside the singular
set Σ2 = {ux = 0, uxx = 0} ⊂ E2.

In E2 \ Σ2 we can rewrite g and ω in terms of the coframe α1, α2, α3.
Then g = gijα

iαj and ω = ωiα
i, where gij = g(∇i,∇j) and ωi = ω(∇i).

After rescaling the metric by a factor of u2
x, we get the following expression.

g′ = 4α1α3 − α2α2 + 2α2α3 + (4I2 − 1)α3α3,

ω′ = 2α1 + α2 + (4I2 − 1)α3.

Thus, given any Einstein-Weyl structure whose 2-jet is in the comple-
ment of Σ2 we may rewrite it in the form (g′, ω′), and we see that this
expression only depends on α1, α2, α3 and I2. A consequence of these com-
putations is the following theorem.

Theorem 33. The field of rational g-differential invariants on E is gener-
ated by the differential invariant I2 together with the invariant derivations
∇1,∇2,∇3.

The reason that we are able to generate the rest of the second-order
differential invariants from these is that some algebraic combinations of
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the higher-order invariants will be of lower order. In particular, we have the
following identities relating I1, I3 to the invariants Ki from the commutation
relations of the invariant derivations.

I1 = ∇1(I2) +
K2 +K3

2
− I2K1,

I3 = (∇1 −∇2)(I2) +
K2 + 3K3 + 2K4

4
+ I2(K2 −K1 − 1).

3.4 The equivalence-problem of Einstein-Weyl structures

By Theorem 34 from the appendix and the global Lie-Tresse theorem [18] the
field of differential invariants separates generic orbits on Ẽ = E∞ \ π−1

∞,`(S)
for some Zariski closed invariant subset S ⊂ E`. Therefore, the description
of the field of differential invariants is sufficient for describing the quotient
equation Ẽ/G.

In order to finish a description of the field of differential invariants one
must find the (differential) syzygies in the differential field of scalar in-
variants. Since all invariants are rational this can be done by brute force.
Using ∇1,∇2,∇3, I1, I2, I3 as the generating set of the field of invariants, a
simple computation with the DifferentialGeometry package of Maple shows
that the twelve invariants Ik,∇i(Ij) are functionally independent, so there
are no syzygies on this level. There are five polynomial relations between
Ii,∇j(Ii),∇k∇j(Ii). Due to their length the expressions are not reproduced
here, but they can be found in the Maple file ancillary to the arXiv version
of this paper.

There is another way to describe the quotient equation in our case, using
the same approach as [20] and [19]. Take three independent differential
invariants J1, J2, J3 of order k (for instance I1, I2, I3). Their horizontal
differentials d̂J1, d̂J2, d̂J3 determine a horizontal coframe on E` \S for some
Zariski closed subset S ⊂ E`, ` > k. It is then possible, in the same way
as in Section 3.3, to rewrite the Einstein-Weyl structure in terms of this
coframe:

g′ =
∑

Gij d̂Jid̂Jj , ω′ =
∑

Ωid̂Ji.

For one of the nonzero coefficients Gij we may, after rescaling the metric,
assume that Gij = 1. The quotient equation (E∞ \ π−1

∞,`(S))/G is obtained

by adding to the Einstein-Weyl equation on R3(x1, x2, x3) the equations
{Ji = xi}3i=1.

For practical purposes the following approach solves the local equivalence
problem for Einstein-Weyl structures of the form (3), using the idea of a
signature manifold [4]. Let I1, I2, I3 be the basic invariants and Iij = ∇j(Ii)
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their derivations. For a section s ∈ Γ(π) let Ss ⊂ R12(z) be the image of
the map

M 3 x 7→
(
z1 = I1(j2(s))(x), . . . , z4 = I11(j3(s))(x), . . . , z12 = I33(j3(s))(x)

)
.

For generic s the manifold Ss is three-dimensional; it is called the signa-
ture of s. If, in addition, the Einstein-Weyl structure s is given by algebraic
functions, then Ss is an algebraic manifold and it can be defined by poly-
nomial equations.

Let us call a section s I-regular if d̂Ii|s are defined and (d̂I1∧d̂I2∧d̂I3)|s 6=
0. The invariant derivations ∇j can be reconstructed from the twelve in-
variants Ik, Iij , which in turn determine all other differential invariants.
Therefore two I-regular sections s1, s2 of π are equivalent if and only if
their signatures coincide. In the algebraic case this is equivalent to equality
of the corresponding polynomial ideals, and so this can be decided algorith-
mically.

4 Some particular Einstein-Weyl spaces

Symmetries can be used to find invariant solutions of differential equations.
They can be also used to obtain explicit non-symmetric solutions: use a
differential constraint consisting of several differential invariants and solve
the arising overdetermined system. In this setup the solutions come in a
family, invariant under the symmetry group action, so in examples below we
normalize them using G to simplify the expressions. Since use of symmetry
gives a differently looking solution, but an equivalent Einstein-Weyl space,
the generality does not suffer.

1. We begin with the only relative invariant of order 1: ux = 0. This
coupled with equation F1 = 0 gives uyy = 0, so u = a(t)y+b(t). This can be
transformed to u = 0 by our pseudogroup G. Then the second equation F2 =
0 becomes the dispersionless Kadomtsev-Petviashvili (dKP), also known as
the Khokhlov-Zabolotskaya equation in 1+2 dimensions [15, 14]:

vtx + v2
x + vvxx − vyy = 0.

This equation is integrable and has been extensively studied, see e.g. [22, 8].
Note that the orbit in E2 of lowest dimension, given by {ux = 0, utx =

0, uxx = 0, uxy = 0, vxx = 0, vxy = 0}, leads to the solution

u = f1(t) + f2(t)y, v = f3(t) + f4(t)x+ f5(t)y + 1
2 (f4(t)2 + 2f2(t)f4(t) + ḟ4(t))y2

which is G-equivalent to (u, v) ≡ (0, 0).
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2. Consider the special value of the first invariant I1 = 0. The arising
system uxy + vxx = 0 has a solution u = wx, v = −wy. Substitution of this
into the modified Manakov-Santini system reduces it to the prolongation
of the first equation from the universal hierarchy of Mart́ınez Alonso and
Shabat [21]:

wtx + wxwxy − wywxx − wyy = 0. (8)

In fact, the equations F1 = 0 and F2 = 0 are x- and y-derivatives of the
left-hand side F of (8), so we get the PDE F = f(t) and the function f(t)
can be eliminated by a point transformation.

Equation (8) possesses a Lax pair and so is integrable by the inverse scat-
tering transform. Its hierarchy carries an involutive GL(2)-structure [11],
and so is also integrable by twistor methods. The method of hydrodynamic
reductions [9] can be exploited to obtain solutions w involving arbitrary
functions of one argument.

3. Consider a stronger ansatz for the modified Manakov-Santini equa-
tion: I1 = 0, I2 = 0, I3 = 0, in addition to F1 = F2 = 0. This overdeter-
mined system can be analyzed by the rifsimp package of Maple. The main
branch is equivalent to the constraint uxx = 0, uxy = 0, vxx = 0. This can
be explicitly solved.

Modulo the pseudogroup G the general solution to this system is

u = x+ ey, v = f(t) + h(t)e−y.

Degenerations include the solution

u = 0, v = 1
12y

4 + xy + h(t)

which is a partial solution to the dKP.

4. Finally, consider an ansatz obtained by the requirement that all
structure coefficients K1, . . . ,K4 of the frame ∇i on E∞ and the coefficient
I2, arising in the expression of (g, ω), are constants.

By the last formulae in §3.3 this case corresponds to constancy of all
differential invariants obtained from I1, I2, I3 by ∇i-derivations. Also note
that in this case (∇1,∇2,∇3) form a 3-dimensional Lie algebra s.

The obtained system F1 = 0, F2 = 0,K1 = k1,K2 = k2,K3 = k3,K4 =
k4, I2 = c is inconsistent for generic parameters in the right-hand sides. Us-
ing the differential syzygies between the invariants and derivations, we fur-
ther constrain those values. The obtained system can be solved in Maple.

Let us restrict to the case, when the corresponding algebra s = sl(2,R)
(otherwise s is solvable). This corresponds to very particular values of the
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parameters: I1 = − 3
25 , I2 = 21

100 , I3 = −147
500 , K1 = 1, K2 = 0, K3 = 9

50 ,
K4 = − 9

500 .

Modulo the pseudogroup G the general solution to this system is

u = y2/3 − 10
3 xy

−1, v = 2
5xy

−1/3 − 7
3x

2y−2 + 21
25y

4/3 + (f(t)y1/3 + h(t))y2.

A degeneration of this family gives the following family of solutions

u = −10
3 xy

−1, v = −7
3x

2y−2 + (f(t)y1/3 + h(t))y2.

It shall be noted that we have essentially quotiented out the pseudogroup
G (only the translation by t remains in the latter cases) because we inte-
grated g explicitly and have found a convenient cross-section of the action.

In the general case, when we impose an invariant differential constraint,
the family of solutions can keep G-invariance and the separation of generic
solutions can be done using the differential invariants obtained in §3.4.

Appendix: Symmetry of algebraic PDEs

Let E ⊂ J∞π be a differential equation. It is called algebraic if for every
a ∈ E = J0π and every k ∈ N the fiber Eka ⊂ Jkaπ is an algebraic variety
(maybe reducible). Here we use the natural algebraic structure in the fibers
Jkπ → E.

Note that the definition of algebraic pseudogroup in [18] used an as-
sumption that G acts transitively on J0π. For instance, this is the case if
the bundle is trivial π : E = Rn(x) × Rm(u) → Rn(x) and the defining
equations of E do not depend on x, u. It is also the case for the modified
Manakov-Santini system (4). We will not however rely on it in the proof
below.

Theorem 34. The symmetry pseudogroup G of an algebraic differential
equation E is algebraic. This means that the defining Lie equations of G are
algebraic.

In this formulation, by symmetries we mean either point or contact sym-
metries. The statement holds true also for mixed point-contact symmetries,
as the ones appearing in the Bäcklund type theorem in [3], and can be
extended for generalized symmetries as those considered in [2, 16].

Proof. Without loss of generality we can assume E to be formally integrable,
because addition of compatibility conditions does not change the symmetry.
The differential ideal IE of the equation E is filtered by ideals IiE of functions
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on J iπ, and it is completely determined by IkE for some k. By the assumption
there exist generators F1, . . . , Fr of IkE that are algebraic in jet-variables uσ,
|σ| > 0, over any point a = (x, u) ∈ E, and from now on we restrict to a
single point a ∈ E.

Let ϕ : E → E be a local diffeomorphism (point transformation) with
ϕ(a) = a. It is a symmetry if ϕ∗Fi ∈ IkE for every i = 1, . . . , r, where we
tacitly omitted the notation for prolongation. For each i, the membership
problem is algorithmically solvable by the Gröbner basis method, and the
condition for membership is a set of algebraic relations. Unite those by
i. Decompose each relation by all jet-variables uσ, |σ| > 0 and collect the
coefficients. This gives a finite number of algebraic differential equations on
the components of ϕ. Their orders do not exceed the maximal order of Fi,
because of the prolongations of ϕ involved. This is the set of Lie equations
defining G, and the claim follows.

In the case of a contact diffeomorphism ϕ : J1π → J1π, when u is one-
dimensional, the decomposition has to be done with respect to uσ, |σ| > 1.
The rest of arguments is the same.

Remark 10. The algebraic property involves only behavior with respect
to the jet-variables and shall not be confused with total algebraicity. For
instance, the linear equation y′′(x) = y(x) has only one algebraic solution
y = 0. The symmetry group is 8-dimensional and it contains shifts by
solutions y 7→ y + a e−x + b ex that are not algebraic in x. The symmetry
pseudogroup G = {x 7→ A(x, y), y 7→ B(x, y)} has the following defining
equations for G2

o at o = (0, 0), which are manifestly algebraic:

AxBxx −BxAxx = A3
xB, AyBxx + 2AxBxy −ByAxx − 2BxAxy = 3A2

xAyB,

AyByy −ByAyy = A3
yB, 2AyBxy +AxByy − 2ByAxy −BxAyy = 3AxA

2
yB.

Similar situation is also with other algebraic differential equations, like
Painlevé transcendents, hypergeometric equation etc. In fact, according to
a theorem of Sophus Lie, all linear second order ODEs are locally equiva-
lent, in particular, they have an 8-dimensional point symmetry algebra. For
the hyper-geometric equation, the generators of this algebra express by the
solutions of the equation, yet the defining equation is algebraic.
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Differential invariants of Kundt waves

Boris Kruglikov, David McNutt, Eivind Schneider

Abstract

Kundt waves belong to the class of spacetimes which are not dis-
tinguished by their scalar curvature invariants. We address the equiv-
alence problem for the metrics in this class via scalar differential in-
variants with respect to the equivalence pseudo-group of the problem.
We compute and finitely represent the algebra of those on the generic
stratum and also specify the behavior for vacuum Kundt waves. The
results are then compared to the invariants computed by the Cartan-
Karlhede algorithm.

Introduction

The Kundt waves can be written in local coordinates as follows

g = dx2 + dy2 − du
(
dv − 2v

x dx+
(
8xh− v2

4x2

)
du
)
, (1)

where h = h(x, y, u) is an arbitrary function. In order for g to be vacuum, h
must be harmonic in x, y. These metrics were originally defined by Kundt [1]
in 1961, as a special class of pure radiation spacetimes of Petrov type III or
higher, admitting a non-twisting, non-expanding shear-free null congruence
` [2]: g(`, `) = 0, Trg(∇`) = 0, ‖∇`‖2g = 0.

All Weyl curvature invariants [3], i.e. scalars constructed from tensor
products of covariant derivatives of the Riemann curvature tensor by com-
plete contractions, vanish for these spacetimes. Thus, these plane-fronted
metrics belong to the collection of VSI spacetimes, where all polynomial
scalar curvature invariants vanish [4]. These spaces have been extensively
explored in the literature [5, 6].

Since it is impossible to distinguish Kundt waves from Minkowski space-
time by Weyl curvature invariants, other methods have been applied. In [7]
Cartan invariants have been computed for vacuum Kundt waves and the
maximum iteration steps in Cartan-Karlhede algorithm was determined.
Cartan invariants allow to distinguish all metrics, but initially they are func-
tions on the Cartan bundle, also known as the orthonormal frame bundle,
not on the original spacetime.
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Cartan invariants are polynomials in structure functions of the canonical
frame (Cartan connection) and their derivatives along the frame [8]. Thus
they are obtained from the components of the Riemann curvature tensor and
its covariant derivatives without complete contractions. Absolute invariants
are chosen among those that are invariant with respect to the structure
group of the Cartan bundle. This is usually achieved by a normalization of
the group parameters [8, 9].

When the frame is fixed (the structure group becomes trivial) the Cartan
invariants descend to the base of the Cartan bundle, i.e. the spacetime (in
some cases, which we do not consider, the frame cannot be completely fixed
but then the form of the curvature tensor and its covariant derivatives are
unaffected by the frame freedom). The Cartan-Karlhede algorithm [10, 2]
specifies when the normalization terminates and how many derivatives of
the curvature along the frame are involved in the final list of invariants.

In this paper we propose another approach, which originates from the
works of Sophus Lie. Namely we distinguish spacetimes by scalar differential
invariants of their metrics. The setup is different: we first determine the
equivalence group of the problem that is the group preserving the class of
metrics under consideration. It is indeed infinite-dimensional and local, so
it is more proper to talk of a Lie pseudogroup, or its Lie algebra sheaf.
Then we compute invariants of this pseudogroup and its prolonged action.
The invariants live on the base of the Cartan bundle, i.e. the spacetime,
but they are allowed to be rational rather than polynomial in jet-variables
(derivatives of the metric components). We recall the setup in Section 1.

Recently [12] it was established that the whole infinite-dimensional al-
gebra of invariants can be finitely generated in Lie-Tresse sense. This opens
up an algebraic approach to the classification, and that is what we imple-
ment here. We compute explicitly the generating differential invariants and
invariant derivations, organize their count in Poincaré series, and resolve
the equivalence problem for generic metrics within the class. We also spec-
ify how this restricts to vacuum Kundt waves. This is done in Sections
2-3. More singular spaces can be treated in a manner analogous to our
computations.

Since vacuum Kundt waves have already been investigated via the Car-
tan method [7], we include a discussion on the correspondence of the in-
variants in this case. This correspondence does not preserve the order of
invariants, because the approaches differ, and we include a general compar-
ison of the two methods. This is done in Section 4.
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1 Setup of the problem: actions and invariants

Metrics of the form (1) are defined on an open subset of the manifold M =
(R\{0})×R3 ⊂ R4. Thus a metric g can be identified as a (local) section of
the bundle π : M ×R→M with the coordinates x, y, u, v, h. We denote the
total space of the bundle by E. The Kundt waves then satisfy the condition
hv = 0. This partial differential equation (PDE) determines a hypersurface
E1 in J1π.

Here Jkπ denotes the k-th order jet bundle. This space is diffeomorphic
to M × RN , where N =

(
k+4

4

)
, and we will use the standard coordinates

h, hx, hy, ..., huvk−1 , hvk on RN . Function h = h(x, y, u, v) determines the
section jkh of Jkπ in which those standard coordinates are the usual partial
derivatives of h.

The space Jkπ comes equipped with a distribution (a sub-bundle of
the tangent bundle), called the Cartan distribution. A PDE of order k is
considered as a submanifold of Jkπ, and its solutions correspond to maximal
integral manifolds of the Cartan distribution restricted to the PDE. For a
detailed review of jets, we refer to [9, 11]. The prolongation Ek ⊂ Jkπ is the
locus of differential corollaries of the defining equation of E1 up to order k.
We also let E0 = J0π = E.

The vanishing of the Ricci tensor is equivalent to the condition hxx +
hyy = 0. This yields a sub-equation R2 ⊂ E2 ⊂ J2π, whose prolongations
we denote by Rk ⊂ Jkπ. Since this case of vacuum Kundt waves was
considered thoroughly in [7] we will focus here mostly on general Kundt
waves. However, after finding the differential invariants in the general case
it is not difficult to describe the differential invariants in the vacuum case.
This will be done in Section 3.

1.1 Lie pseudogroup

The Lie pseudogroup of transformations preserving the shape (i.e. form of
the metric) can be found by pulling back g from (1) through a general trans-
formation (x̃, ỹ, ũ, ṽ) 7→ (x, y, u, v), and then requiring that the obtained
metric is of the same shape:

dx̃2 + dỹ2 − dũ
(
dṽ − 2ṽ

x̃ dx̃+
(
8x̃h̃− ṽ2

4x̃2

)
dũ
)
.

This requirement can be given in terms of differential equations on x, y, u, v
as functions of x̃, ỹ, ũ, ṽ, with the (invertible) solutions described below. The
obtained differential equations are independent of whether the Kundt wave
is Ricci-flat or not, so the shape-preserving Lie pseudogroup is the same for
both general and Ricci-flat Kundt waves.
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A pseudogroup preserving shape (1) contains transformations of the
form (we also indicate their lift to J0π = E)

x 7→ x, y 7→ y + C, u 7→ F (u), v 7→ v

F ′(u)
− 2

F ′′(u)

F ′(u)2
x2, (2)

h 7→ h

F ′(u)2
+

2F ′′′(u)F ′(u)− 3F ′′(u)2

8F ′(u)4
x, (3)

where F is a local diffeomorphism of the real line, i.e. F ′(u) 6= 0. This Lie
pseudogroup was already described in [4], formula (A.37).

Transformations (2)-(3) form the Zariski connected component G0 of the
entire Lie pseudogroup G of shape-preserving transformations. (Note that
G0 differs from the topologically connected component of unity given by
F ′(u) > 0.) The pseudogroup G is generated, in addition to transformations
(2)-(3), by the maps y 7→ −y and (x, h) 7→ (−x,−h) preserving shape (1).
Note that G/G0 = Z2 × Z2.

The Lie algebra sheaf g of vector fields corresponding to G (and G0) is
spanned by the vector fields

X = ∂y, Y (f) = 4f∂u − (4vf ′ + 8x2f ′′)∂v + (xf ′′′ − 8hf ′)∂h (4)

where f = f(u) ∈ C∞loc(R) is an arbitrary function.

When looking for differential invariants, it is important to distinguish
between G and G0. Firstly, differential G0-invariants need not be G-invariant.
Secondly, a set of differential invariants that separates G-orbits as a rule will
not separate G0-orbits. We will restrict our attention to the G-action while
outlining the changes needed to be made for the other choices of the Lie
pseudogroup.

1.2 Differential invariants and the global Lie-Tresse theorem

A differential invariant of order k is a function on Ek which is constant on
orbits of G. In accordance with [12] we consider only invariants that are
rational in the fibers of πk : Ek → E for every k.

The global Lie-Tresse theorem states that for algebraic transitive Lie
pseudogroups, rational differential invariants separate orbits in general po-
sition in E∞ (i.e. orbits in the complement of a Zariski-closed subset), and
the field of rational differential invariants is generated by a finite number
of differential invariants and invariant derivations. In fact it suffices to con-
sider the (sub)algebra of invariants that are rational on fibers of π` : E` → E
and polynomial on fibers of πk,` : Ek → E` for some `. In the case of Kundt
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waves we will show that ` = 2. For simplicity we will mostly discuss the
field of rational invariants in what follows.

We refer to [12] for the details of the theory which holds for transitive
Lie pseudogroups. The Lie pseudogroup we consider is not transitive: the
G-orbit foliation of E is {x = const}. Let us justify validity of a version of
the Lie-Tresse theorem for our Lie pseudogroup action.

For every a ∈ E the action of the stabilizer of a in G0 is algebraic on
the fiber π−1

∞,0(a), and so for every k and a we have an algebraic action of

a Lie group on the algebraic manifold of π−1
k,0(a). By Rosenlicht’s theorem

rational invariants separate orbits in general position. It is important that
the dependence of the action on a is algebraic.

From the description of the G0 action on E it is clear that orbits in gen-
eral position intersect with the fiber over a(x) = (x, 0, 0, 0, 1) for a unique
x ∈ R \ {0}. A G-orbit in E∞ intersecting with the fiber of a(x) intersects
a(−x) as well. Thus we can separate orbits with scalar differential invari-
ants, in addition to the invariant x or x2, for G0 or G respectively. It is
not difficult to see, following [12], that in our case the field of differential
invariants is still finitely generated. We skip the details because this will be
apparent from our explicit description of the generators of this field in what
follows.

1.3 The Hilbert and Poincaré functions

The transcendence degree of the field of rational differential invariants of
order k (that is the minimal number of generators of this field, possibly
up to algebraic extensions) is equal to the codimension of the g-orbits in
general position in Ek. The results in this section are valid for both G0 and
G and all intermediate Lie pseudogroups (there are three of them since the
quotient G/G0 is the Klein four-group).

For k ≥ 0, the dimension of Jkπ is given by

dim Jkπ = 4 +

(
k + 4

4

)
.

The number of independent equations defining Ek is
(
k+3

4

)
which yields

dim Ek = dim Jkπ −
(
k + 3

4

)
= 4 +

(
k + 3

3

)
, k ≥ 0.

For small k, the dimension of a g-orbit in Jkπ in general position may
be found by computing the dimension of the span of g|θk ⊂ TθkJ

kπ for a
general point θk ∈ Jkπ. It turns out that the equation Ek intersects with
regular orbits, so we get the same results by choosing θk ∈ Ek.
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Theorem 35. The dimension of a g-orbit in general position in Ek is 4 for
k = 0 and it is equal to k + 5 for k > 0.

Proof. We need to compute the dimension of the span of X(k) and Y (f)(k)

at a point in general position in Ek. The k-th prolongation of the vector
field Y (f) is given by

Y (f)(k) = 4f D(k+1)
u −(4vf ′ + 8x2f ′′)D(k+1)

v +
∑
|σ|≤k

Dσ(φ)∂hσ (5)

where σ = (i1, . . . , it) is a multi-index of length |σ| = t (ij corresponds to
one of the base coordinates x, y, u, v), Dσ = Di1 · · · Dit is the iterated total
derivative, Dk+1

i is the truncated total derivative as a derivation on Jkπ,
and

φ =Y (f)y (dh− hxdx− hydy − hudu− hvdv)

=xf ′′′ − 8hf ′ − 4f hu + (4vf ′ + 8x2f ′′)hv

is the generating function for Y (f); we refer to Section 1.5 in [11]. We see
that the k-th prolongation depends on f, f ′, ..., f (k+3).

We can without loss of generality assume that the u-coordinate of our
point in general position is 0, since ∂u is contained in g. At u = 0 the vector
field Y (f)(k) depends only on the (k + 3)-degree Taylor polynomial of f at
u = 0, which implies that there are at most k + 4 independent vector fields
among these. Adding the vector field X(k) to them gives k + 5 as an upper
bound of the dimension of an orbit.

Let θk ∈ Ek be the point defined by x = 1, h = 1, with all other jet-
variables set to 0 and let Zm = Y (um). It is clear from (5) that the k-th
prolongations ofX,Z0, ..., Zk+3 span a (k+5)-dimensional subspace of TθkEk,
implying that k + 5 is also a lower bound for the dimension of an orbit in
general position and verifying the claim of the theorem.

Let sEk denote the codimension of an orbit in general position inside of
Ek, i.e. the number of independent differential invariants of order k. It is
given by

sE0 = 1 and sEk =
k

6
(k + 5)(k + 1) for k ≥ 1.

The Hilbert function HEk = sEk − sEk−1 is given by

HE0 = HE1 = 1 and HEk =
k(k + 3)

2
for k ≥ 2.
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This counts the number of independent differential invariants of “pure”
order k. For small k the results are summed up in the following table.

k 0 1 2 3 4 5 6

dim Jkπ 5 9 19 39 74 130 214
dim Ek 5 8 14 24 39 60 88
dimOk 4 6 7 8 9 10 11
sEk 1 2 7 16 30 50 77
HEk 1 1 5 9 14 20 27

The corresponding Poincaré function PE(z) =
∑∞

k=0H
E
k z

k is given by

PE(z) =
1− 2z + 5z2 − 4z3 + z4

(1− z)3
.

2 Differential invariants of Kundt waves

We give a complete description of the field of rational differential invariants.
We will focus on the action of the entire Lie pseudogroup G (with four Zariski
connected components), while also describing what to do if one wants to
consider only one (or two) connected components.

2.1 Generators

The second order differential invariants of the G-action are generated by the
following seven functions

I0 = x2, I1 =
(xhx − h)2

h2
y

, I2a =
hxx

xhx − h
,

I2b =
xhxy
hy

, I2c =
hyy

xhx − h
, I2d =

(x2hyu − vhy)2

x(xhx − h)3
,

I2e =
(x3hxu − vxhx − x2hu + vh)(xhx − h)

(x2hyu − vhy)hy

and these invariants separate orbits of general position in E2. They are in-
dependent as functions on E2, and one verifies that the number of invariants
agrees with the Hilbert function HEk for k = 0, 1, 2.

Note that
√
I0 = x and

√
I1 = xhx−h

hy
are not invariant under the discrete

transformations (x, h) 7→ (−x,−h) and y 7→ −y. They are however invari-
ant under the Zariski connected pseudogroup G0 and should be used for
generating the field of differential G0-invariants, since the invariants above
do not separate G0-orbits on E2.
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Remark 11. If A2 denotes the field of second order differential G-invariants
and B2 the field of second order differential G0-invariants, then B2 is an
algebraic field extension of A2 of degree 4 and its Galois group is G/G0 =
Z2 × Z2. Intermediate pseudogroups lying between G0 and G are in one-to-
one correspondence with subgroups of Z2 × Z2 that, by Galois theory, are
in one-to-one correspondence with algebraic field extensions of A2 that are
contained in B2.

Including B2 there are four such nontrivial algebraic extensions of A2,
and they are the splitting fields of the polynomials t2 − I0, t2 − I1, t2 − I0I1

and (t2 − I0)(t2 − I1) over A2, respectively.

Higher-order invariants are generated by second-order invariants and
invariant derivations, so the field of all differential invariants depends solely
on the chosen field extension of A2.

In order to generate higher-order differential invariants we use invariant
derivations, i.e. derivations on E∞ commuting with the G-action. It is not
difficult to check that the following derivations are invariant.

∇1 = xDx + 2vDv, ∇2 =
xhx − h
hy

Dy, ∇4 =
x2hyu − vhy

hy
Dv,

∇3 =
hy

x2hyu − vhy

(
Du −

(
8x2hx −

v2

4x2

)
Dv

)
.

Theorem 36. The field of rational scalar differential invariants of G is
generated by the second-order invariants I0, I1, I2a, I2b, I2c, I2d, I2e together
with the invariant derivations ∇1,∇2,∇3,∇4.

The algebra of rational differential invariants, which are polynomial
starting from the jet-level ` = 2, over A2, B2 or an intermediate field,
depending on the choice of Lie pseudogroup, is generated by the above seven
second-order invariants (with possible passage from I0 to

√
I0 and from I1

to
√
I1) and the above four invariant derivations.

Proof. We shall prove that the field generated by the indicated differential
invariants and invariant derivations for every k > 2 contains HEk = k(k+3)

2
functionally independent invariants, and moreover that their symbols are
quasilinear and independent. This together with the fact that the indi-
cated invariants generate all differential invariants of order ≤ 2 implies the
statement of the theorem.

We demonstrate by induction in k a more general claim that there are
HEk quasilinear differential invariants of order k with the symbols at generic
θk−1 ∈ Jk−1π proportional to hxiyjul , where i+j+ l = k and 0 ≤ l < k. The
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number of such k-jets is indeed equal to the value of the Hilbert function
HEk .

The base k = 3 follows by direct computation of the symbols of

∇1I2a,∇1I2b,∇1I2c,∇1I2d,∇1I2e,∇2I2c,∇2I2d,∇3I2d,∇3I2e.

Assuming the k-th claim, application of ∇1 gives k(k + 3)/2 differential
invariants of order k + 1, and ∇2 adds k additional differential invariants,
covering the symbols hxiyjul with i+ j + l = k + 1 and 0 ≤ l < k. Further
application of ∇3 gives 2 more differential invariants with symbols hxuk ,
hyuk . Thus the invariants are independent and the calculation

k(k + 3)

2
+ k + 2 =

(k + 1)(k + 4)

2

completes the induction step.
For the algebra of invariants it is enough to note that our generating set

produces invariants that are quasi-linear in jets of order ` = 2 or higher, and
so any differential invariant can be modified by elimination to an element
in the base field A2, B2 or an intermediate field.

Remark 12. As follows from the proof it suffices to have only derivations
∇1,∇2,∇3. Yet ∇4 is obtained from those by commutators.

It is possible to give a more concise description of the field/algebra of
differential invariants than that of Theorem 36. Let αi denote the horizontal
coframe dual to the derivations ∇i, i.e.

α1 =
1

x
dx, α2 =

hy
xhx − h

dy, α3 =
x2hyu − vhy

hy
du,

α4 =
hy

x2hyu − vhy

(
dv − 2v

x
dx+

(
8x2hx −

v2

4x2

)
du

)
.

Then we have:

α1 ∧ α2 ∧ α3 ∧ α4 = (I0I1)−1/2dx ∧ dy ∧ du ∧ dv.

Metric (1) written in terms of this coframe has coefficients gij = g(∇i,∇j)
and therefore has the form

g = I0α
2
1 + I1α

2
2 + 8(I1I2d)

−1α2
3 − α3α4.

This suggests that ∇i and I0, I1, I2d generate the field of differential invari-
ants. This is indeed true, and can be demonstrated as follows.
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The differential invariants appearing as nonzero coefficients in the com-
mutation relations [∇i,∇j ] = Kk

ij∇k are given by

K2
12 = (I0I2a − I2b), K

3
13 = −(I0∇3(I2b) + 2), K4

13 = −8I0I2a

I1I2d
,

K2
23 = −∇3(I1)

2I1
, K3

23 = I2c(I1 − I2e)− I0I1∇3(I2c) = −K4
24, K

3
34 = −1,

K4
14 = I0∇3(I2b), K

4
23 = − 8I2b

I1I2d
, K4

34 =
I2e

2I0I1
− I1I2d

2
∇3

( 1

I1I2d

)
.

In particular we can get the differential invariants I2a, I2b, I2c, I2e from K4
13,

∇1(I1), ∇2(I1), ∇3(I1) thereby verifying that I0, I1, I2d are in fact sufficient
to be a generating set of differential invariants.

Remark 13. For the G0-action, the invariant derivations Dx + 2v
x Dv and

Dy should be used instead of ∇1,∇2 (they are not invariant under the re-
flections). In this case only one coefficient of g is nonconstant, suggesting
that one differential invariant and four invariant derivations are sufficient
for generating the field of differential invariants.

2.2 Syzygies

Differential relations among the generators of the algebra of differential
invariants are called differential syzygies. They enter the quotient equation,
describing the equivalence classes E∞/G.

To simplify notations let us rename the generators a = I0, b = I1, c =
I1I2d and use the iterated derivatives fi1...ir = (∇ir ◦ · · · ◦ ∇i1)(f) for f =
a, b, c. We can generate all differential invariants of order k by using only
these and ∇k−2

1 (K4
13). The syzygies coming from the commutation relations

of ∇i have been described in the previous section. Thus it is sufficient to
only consider iterated derivatives that satisfy i1 ≤ · · · ≤ ir.

These are generated by some simple syzygies

a1 = 2a, a2 = 0, a3 = 0, a4 = 0, b4 = 0, c4 = −2c

and by two more complicated syzygies that involve differentiation of b, c
with respect to ∇1, ∇2, ∇3 up to order three:

0 =2a2c2(2b2b3b233 − 2b2b23b33 − 3bb23b23 + 3b2b
3
3)− ab(4b2b3cc13

−4b2b3cc23 − 4b2b3c1c3 + 4b2b3c2c3 + 8b2b33c
2 − 4b2b33cc1

+4b2b33cc2 − 2bb1b33c
2 − 4bb23c

2 + 2bb23cc1 − 4bb23cc2 + 2bb3b13c
2

+2bb3b23c
2 − b1b23c2 − 3b2b

2
3c

2)− b2b3c(4bc− 2bc1 + 2bc2 − b1c),
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0 =8ab2c2(b3b123 − b3b223 − b13b23 + b223)

+4abc2(b2b3b13 − b2b3b23 − 2b23b12 + 4b23b22)

+ac2(4b1b2b
2
3 − 12b22b

2
3) + 16b3c2(b23 − b13 − b3)

+8b3c((2c1 − 2c2 − c11 + 2c12 − c22)b3 + (b13 − b23)(c1 − c2))

+b3(4b3c
2
1 − 8b3c1c2 + 4b3c

2
2) + bc2(b21b3 + 2b1b2b3)

+b2c2(16b1b3 + 4b1b13 − 4b1b23 − 24b2b3 − 4b3b11 + 4b3b12)

+b2c(−8b1b3c1 + 12b1b3c2 + 12b2b3c1 − 12b2b3c2).

2.3 Comparing Kundt waves

In order to compare two Kundt waves of the form (1) choose four inde-
pendent differential invariants J1, ..., J4 of order k such that d̂J1 ∧ d̂J2 ∧
d̂J3 ∧ d̂J4 6= 0, where d̂ is the horizontal differential defined by (d̂f) ◦ jkh =
d(f ◦ jkh) for a function f on Ek. Then rewrite the metric in terms of the
obtained invariant coframe, similar to what we did in Section 2.1:

g = Gij d̂Jid̂Jj

where Gij are differential invariants of order k+ 1. For a given Kundt wave
metric g the ten invariants Gij , expressed as functions of Ji, determine its
equivalence class.

In practice one can proceed as follows. Let ∂̂i be the horizontal frame
dual to the coframe d̂Jj . These are commuting invariant derivations, called

Tresse derivatives. In terms of them Gij = g(∂̂i, ∂̂j). Together the 14
functions (Ja, Gij) determine a map σg : M4 → R14 (for a Zariski dense set
of g) whose image, called the signature manifold, is the complete invariant
of a generic Kundt wave g.

In particular, we can take the four second-order differential invariants
I0, I1, I2d, I2e that are independent for generic Kundt waves. Then Gij are
differential invariants of third order, implying that third order differential
invariants are sufficient for classifying generic Kundt waves.

Remark 14. The four-dimensional submanifold σg(M
4) ⊂ R14 is not ar-

bitrary. Indeed, the differential syzygies of the generators (Ja, Gij) can be
interpreted as a system of PDE (the quotient equation) with independent
Ja and dependent Gij. The signature manifolds, encoding the equivalence
classes of Kundt waves, are solutions to this system.
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2.4 Example

Consider the class of Kundt waves parametrized by two functions of two
variables:

h = E(u)− 1
4 S
(
F (u)

)
x+ F ′′(u)2(x3 ± y), (6)

where S(F ) = F ′′′

F ′ −
3
2

(
F ′′

F ′

)2
is the Schwartz derivative. This class is G-

invariant and using the action (2)-(3) the pseudogroup is almost fully nor-
malized in passing from this class to

h(x, y, u) = A(u) + x3 + y. (7)

The metric g corresponding to this h was found by Skea in [15] as an ex-
ample of class of spacetimes whose invariant classification requires the fifth
covariant derivative of the Riemann tensor (so up to order seven in the met-
ric coefficients gij equivalently given by j7h). However with our approach
they can be classified via third order differential invariants, and we will
demonstrate how to do it for this simple example.

The transformations from G0 preserving (7) form the two-dimensional
non-connected group G′0: (x, y, u,A) 7→ (x, y+ c,±u+ b, A− c), and those of
G form the group G′ extending G′0 by the map (x, y, u,A) 7→ (−x,−y, u,−A).
Distinguishing the Kundt waves given by (6) with respect to pseudogroup
G (or G0) is equivalent to distinguishing the Kundt waves given by (7) with
respect to group G′ (or G′0).

The differential invariants from Section 2.1 can be used for this purpose.
However the normalization of (6) to (7) allows for a reduction from 4-
dimensional signature manifolds to signature curves as follows. The metrics
with Auu ≡ 0 are easy to classify, so assume Auu 6= 0.

The invariants
√
I0 = x,

√
I1 = xhx−h

hy
, I2d, I2e are basic for the action

of G0, and their combination gives simpler invariants J1 = x, J2 = A + y,

J3 = v2, J4 = Au/v with d̂J1∧d̂J2∧d̂J3∧d̂J4
dx∧dy∧du∧dv = −2Auu. The nonzero coefficients

Gij are given by

G11 = 1 = G22, G13 =
J4

2J1Auu
, G14 =

J3

J1Auu
, G23 = − J2

4

2Auu
,

G33 = −J4(32J6
1J4 − 4J2

1J3J
3
4 + 32J3

1J2J4 + 4J2
1Auu − J3J4)

16J3A2
uuJ

2
1

,

G34 =
−32J6

1J4 − 32J4J2J
3
1 + (4J3J

3
4 − 2Auu)J2

1 + J4J3

8A2
uuJ

2
1

,

G24 = −J3J4

Auu
, G44 =

−32J6
1J3 + 4J2

1J
2
3J

2
4 − 32J3

1J2J3 + J2
3

4A2
uuJ

2
1

.
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There are five functionally independent invariants, and they are expressed
by J1, J2, J3, J4, Auu. Restricted to the specific Kundt wave (7), only four
of them are independent yielding one dependence. This can be interpreted
as a relation between the invariants A2

u and Auu, giving a curve in the plane
due to constraints Ax = Ay = Av = 0, and completely determining the
equivalence class. In addition, A+ y is a G0-invariant of order 0.

Consequently, two Skea metrics given by (7) are G0-equivalent if their
signatures {(Au(u)2, Auu(u))} ⊂ R2 coincide as unparametrized curves. In-
deed, let Auu = f(A2

u) be a signature curve (no restrictions but, for simplic-
ity, we consider the one that projects injectively to the first components).
Viewed as an ODE on A = A(u) it has a solution uniquely given by the ini-
tial data (A(0), Au(0)). This can be arbitrarily changed using the freedom
(u, y) 7→ (u+b, y+c) of G′0 whence the data encoding g is restored uniquely.

For the G-action, we combine the invariants I0, I1I2a, I2d, I2e to con-
struct a simpler base J1 = x2, J2 = (A + y)x, J3 = v2, J4 = xAu/v of

invariants. In this case we again get d̂J1∧d̂J2∧d̂J3∧d̂J4
dx∧dy∧du∧dv = −4x3Auu 6= 0, and

basic order 0, 1 and 2 differential invariants for the dimension reduction are
(A+y)2, A2

u, Auu/(A+y). Proceeding as before we obtain a signature curve
{(Au(u)2, Auu(u)2)} ⊂ R2 that, as an unparametrized curve, is a complete
G-invariant of the Kundt waves of Skea type (7).

3 Specification to the vacuum case

It was argued in Section 1.1 that the Lie pseudogroup preserving vacuum
Kundt waves of the form (1) is the same as the one preserving general Kundt
waves of the same form. The PDE Rk = {hxx + hyy = 0}(k−2) ∪ Ek defining
vacuum Kundt waves contains some orbits in Ek of maximal dimension.
This follows from the proof of Theorem 35, since the point θk ∈ Ek chosen
there belongs also to Rk.

This implies that orbits in general position in Rk are also orbits in
general position in Ek. Generic vacuum Kundt waves are separated by the
invariants found in Section 2, and all previous results are easily adapted to
the vacuum case.

3.1 Hilbert and Poincaré function

For vacuum Kundt waves we have additional
(
k+1

3

)
independent differential

equations of order k defining Rk ⊂ Ek, so the dimension of Rk is 4+(k+1)2

for k ≥ 0. The codimension of orbits in general position in Rk is thus given
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by

sR0 = 1 and sRk = k(k + 1) for k ≥ 1.

Consequently the Hilbert function HRk = sRk − sRk−1 is given by

HR0 = HR1 = 1 and HRk = 2k for k ≥ 2.

The corresponding Poincaré function PR(z) =
∑∞

k=0H
R
k z

k is equal to

PR(z) =
1− z + 3z2 − z3

(1− z)2
.

3.2 Differential invariants

The differential invariants of second order from Section 2.1 are still differ-
ential invariants in the vacuum case. The only difference is that two second
order invariants I2a, I2c become dependent since the vacuum condition im-
plies I2a + I2c = 0; in higher order we add differential corollaries of this
relation. It follows that we can generate all G-invariants of higher order
by using the differential invariants I0, I1, I2d and invariant derivations ∇i
above.

The differential syzygies found in Section 2.2 will still hold, but we get
some new ones obtained by ∇i differentiations of the Ricci-flat condition
I2a + I2c = 0. In terms of the differential invariants a, b, c,K4

13 from Section
2.2, the syzygy on R2 takes the form

K4
13bc(a+ b) + 4a(2b+ b1 + b2) = 0.

The case of G0-invariants is treated similarly.

3.3 Comparing vacuum Kundt waves

For the basis of differential invariants we can take the same second-order
invariants as for the general Kundt waves: I0, I1, I2d, I2e. Then we express
the metric coefficients Gij in terms of this basis of invariants.

The corresponding four-dimensional signature manifold σg(M
4) is re-

stricted by differential syzygies of the general case plus the vacuum con-
straint. Considered as an unparametrized submanifold in R14 it completely
classifies the metric g.
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4 The Cartan-Karlhede algorithm

Next, we would like to compare the Lie-Tresse approach to differential invari-
ants with Cartan’s equivalence method. We outline the Cartan-Karlhede
algorithm for finding differential invariants. The general description of the
algorithm can be found in [10]. Its application to vacuum Kundt waves has
been recently treated in [7].

4.1 The algorithm for vacuum Kundt waves

Consider the null-coframe

` = du, n =
1

2
dv − v

x
dx+

(
4xh− v2

8x2

)
du,

m = 1√
2
(dx+ idy),

m̄ = 1√
2
(dx− idy),

in which the metric (1) has the form g = 2m�m̄−2`�n (as before we have
hv = 0 = hxx + hyy). Let ∆, D, δ, δ̄ be the frame dual to coframe `, n,m, m̄:

∆ = ∂u −
(

8xh− v2

4x2

)
∂v, D = 2∂v,

δ = 1√
2
(∂x − i∂y) + v

√
2

x ∂v,

δ̄ = 1√
2
(∂x + i∂y) + v

√
2

x ∂v.

There is a freedom in choosing the (co)frame, encoded as the Cartan
bundle. The general orthonormal frame bundle ρ̃ : P̃ → M is a principal
bundle with the structure group O(1, 3). For Kundt waves the non-twisting
non-expanding shear-free null congruence ` is up to scale unique, and this
reduces the structure group to the stabilizer H ⊂ O(1, 3) of the line direction
R · `, yielding the reduced frame bundle ρ : P → M , which is a principal
H-subbundle of P̃.

This so-called parabolic subgroup H has dimension four and the H-
action on our null (co)frame is given by boosts (`, n) 7→ (B`,B−1n), spins
m 7→ eiθm and null rotations (n,m) 7→ (n+ cm+ c̄m̄+ |c|2`,m+ c̄`) about
`, where parameters B, θ are real and the parameter c is complex.

Let ∇ denote the Levi-Civita connection of g, and let R be the Riemann
curvature tensor. Written in terms of the frame, the components of R
and its covariant derivatives are invariant functions on P, but they are not
invariants on M . The structure group H acts on them and their H-invariant
combinations are absolute differential invariants.

In practice H is used to set as many components of ∇kR as possible to
constants, as this is a coordinate independent condition for the parameters
of H. In the Newman-Penrose formalism [14], the Ricci (Φ) and Weyl (Ψ)
spinors for the Kundt waves are given by

Φ22 = 2x(hxx + hyy), Ψ4 = 2x(hxx − hyy − 2ihxy).
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A boost and spin transform Ψ4 to B−2e−2iθΨ4. Thus if Ψ4 6= 0 it can be

made equal to 1 by choosing B2 = 4x
√
h2
xx + h2

xy and e2iθ =
hxx−ihxy√
h2xx+h2xy

.

This reduces the frame bundle and the new structure group H is two-
dimensional. In the next step of the Cartan-Karlhede algorithm we use the
null-rotations to normalize components of the first covariant derivative of
the Weyl spinor. The benefit of setting Ψ4 = 1 is that components of the
Weyl spinor and its covariant derivatives can be written in terms of the spin-
coefficients and their derivatives. For example, the nonzero components of
the first derivative of the Weyl spinor are

(DΨ)50 = 4α, (DΨ)51 = 4γ, (DΨ)41 = τ.

The null-rotations, with complex parameter c, sends γ to γ+ cα+ 5
4 c̄τ , but

leaves α and τ unchanged. Assuming that |α| 6= 5
4 |τ | it is possible to set γ =

0, and this fixes the frame. In this case there will be four Cartan invariants
of first order in curvature components, namely the real and imaginary parts
of α and τ . They can be expressed in terms of differential invariants as
follows:

α =
−
√

2i

8
√
I0

J
1/4
−

J
5/4
+

(
i
√
I0I1(2I0I

2
2a − I2a + 2∇1I2a) + 2I2

2b − 3I2b + 2∇1I2b

)
τ =

1√
2iI0

J
1/4
+

J
1/4
−

, where J± = I2b ± i
√
I0I1I2a.

These give four independent invariant functions on R∞, but when re-
stricted to a vacuum Kundt wave metric (to the section j∞Mg ⊂ R∞) at
most three of them are independent:

d̂(α+ ᾱ) ∧ d̂(α− ᾱ) ∧ d̂(τ + τ̄) ∧ d̂(τ − τ̄) = 0.

The generic stratum of this case corresponds to the invariant branch (0,3,4,4)
of the Cartan-Karlhede algorithm in [7].

At the next step of this algorithm the derivatives of the three Car-
tan invariants from the last step are computed, resulting in the invariants
∆|τ |, δ̄α, µ, ν (the latter again complex-valued). One more derivative gives
the invariant ∆(∆|τ |) as a component of the third covariant derivative of
the curvature tensor. Further invariants (when restricted to j∞Mg) will de-
pend on those already constructed, so only 12 real-valued Cartan invariants
are required to classify vacuum Kundt waves.

Remark 15. In Section 2.3 it was stated that 14 differential invariants
(Ja, Gij) are sufficient for classifying Kundt waves, but choosing J1 = I0,
J2 = I1, J3 = I2d, J4 = I2e it turns out that we get precisely 12 functionally
independent differential invariants among them.
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4.2 Cartan invariants vs. absolute differential invariants

Let us take a closer look at the relationship between the Cartan invariants
and the differential invariants from Section 2.

Differential invariants are functions on J∞π, or on a PDE therein, which
are constant on orbits of the Lie pseudogroup G. Cartan invariants, on
the other hand, are components of the curvature tensor and its covariant
derivatives. These components are dependent on the point in M and the
frame.

If we normalize the group parameters and hence fix the frame, i.e. a
section of the Cartan bundle, then the Cartan invariants restricted to this
section are invariant functions on J∞π. The following commutative diagram
explains the situation.

Initially the Cartan invariants are functions on

π∗∞P = {(ω, g∞) ∈ P × E∞ | ρ(ω) = π∞(g∞)}

and they suffice to solve the equivalence problem because P is equipped with
an absolute parallelism Ω (Cartan connection) whose structure functions
generate all invariants on the Cartan bundle. Indeed, an equivalence of
two Lorentzian spaces (M1, g1) and (M2, g2) lifts to an equivalence between
(P1,Ω1) and (P2,Ω2) and vise versa the equivalence upstairs projects to an
equivalence downstairs.

Projecting the algebra of invariants on the Cartan bundle to the base we
obtain the algebra of absolute differential invariants consisting of G-invariant
functions on E∞. This is achieved by invariantization of the invariants on
P with respect to the structure group.

This is done in steps by normalizing the group parameters, effecting in
further reduction of the structure group. When the frame is fully normalized
(or normalized to a group acting trivially on invariants) the Cartan bundle
is reduced to a section of P, restriction to which of the ∇kR components
gives scalar differential invariants on M . Often these functions and their
algebraic combinations that are absolute differential invariants, evaluated
on the metric, are called Cartan invariants.
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4.3 A comparison of the two methods

The definite advantage of Cartan’s invariants is their universality. A ba-
sic set of invariants can be chosen for almost the entire class of metrics
simultaneously. The syzygies are also fully determined by the commutator
relations, the Bianchi and Ricci identities in the Newman-Penrose formal-
ism [14]. Yet this basic set is large and algebraically dependent invariants
should be removed, resulting in splitting of the class into different branches
of the Cartan-Karlhede algorithm. See the invariant-count tree for the class
of vacuum Kundt waves in [7].

The normalization of group parameters however usually introduces alge-
braic extensions into the algebra of invariants. The underlying assumption
at the first normalization step in Section 4.1 is that Ψ4 is nonzero. This
means that also for Cartan invariants we must restrict to the complement
of a Zariski-closed set in Ek.

Setting Ψ4 to 1 introduces radicals into the expressions of Cartan invari-
ants. A sufficient care with this is to be taken in the real domain, because
the square root is not everywhere defined and is multi-valued. At this stage
it is the choice of the ± sign, but the multi-valuedness becomes more re-
strictive with further invariants. For instance, the expressions for α and τ
contain radicals of J± depending on

√
I0I1.

Recall that even though the invariant I0 and I1 are squares, the extrac-
tion of the square root cannot be made G-equivariantly and is related to a
choice of domain for the pseudogroup G0. Changing the sign of

√
I0I1 re-

sults in interchange J− ↔ J+ modifying the formula for α and τ (which, as
presented, is also subject to some sign choices). The complex radicals carry
more multi-valued issues: choosing branch-cuts and restricting to simply
connected domains.

Thus Cartan’s invariants computed via the normalization technique are
only locally defined. In addition, the domains where they are defined are
not Zariski open, in particular they are not dense.

In contrast, elements of the algebra of rational-polynomial differential
invariants described in Section 2 are defined almost everywhere, on a Zariski-
open dense set. The above radicals are avoidable because we know from
Section 1.2 that generic Kundt waves, as well as vacuum Kundt waves, can
be separated by rational invariants.

Another aspects of comparison is coordinate independence. The class of
metrics (1) is given in specific Kundt coordinates, from which we derived the
pseudogroup G. Changing the coordinates does not change the pseudogroup,
but only its coordinate expression. In other words, this is equivalent to a
conjugation of G in the pseudogroup Diff loc(M).
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The Cartan-Karlhede algorithm is manifestly coordinate independent,
i.e. the invariants are computed independently of the form in which a Kundt
wave is written. However a normalization of parameters is required to get a
canonical frame. It is a simple integration to derive from this Kundt coordi-
nates. It is also possible to skip integration with the differential invariants
approach as abstractly jets are coordinate independent objects. This would
give an equivalent output.

5 Conclusion

In this paper we discussed Kundt waves, a class of metrics that are not
distinguished by Weyl’s scalar curvature invariants. We computed the al-
gebra of scalar differential invariants that separate generic metrics in the
class and showed that this algebra is finitely generated in Lie-Tresse sense
globally. These invariants also separate the important sub-class of vacuum
Kundt waves.

The latter class of metrics was previously investigated via Cartan’s cur-
vature invariants in [7] and we compared the two approaches. In particular,
we pointed out that normalization in the Cartan-Karlhede algorithm leads
to multi-valuedness of invariants. Moreover, the obtained Cartan’s invari-
ants are local even in jets-variables (derivatives of the metric components).
This leads to restriction of domains of definitions, which in general may not
be even invariant with respect to the equivalence group, see [12].

With the differential invariant approach the signature manifold can be
reduced in dimension, as we saw in Section 2.4. For the general class of
Kundt waves where hv = 0, the v-variable can be removed from consider-
ation and furthermore it is not difficult to remove the y-variable too. This
dimension reduction leads to a much simpler setup and the classification al-
gorithm. We left additional independent variables to match the traditional
approach via curvature invariants.

The two considered approaches are not in direct correspondence and
each method has its own specifications. For instance, the invariant-count
tree in the Cartan-Karlhede algorithm ideologically has a counter-part in
the Poincaré function for the Lie-Tresse approach. However orders of the
invariants in the two methods are not related, obstructing to align the fil-
trations on the algebras of invariants.

For simplicity in this paper we restricted to generic metrics in the class
of Kundt waves. This manifests in a choice of four functionally independent
differential invariants, which is not always possible. For instance, metrics
admitting a Killing vector never admit four independent invariants. With
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the Cartan-Karlhede approach this corresponds to invariant branches like
(0,1,3,3) ending not with 4, and for the vacuum case all such possibilities
were classified in [7].

With the differential invariants approach we treated metrics specified by
explicit inequalities: hy 6= 0, I0I1 6= 0, . . . , such that the basic invariants
and derivations are defined. It is possible to restrict to the singular strata,
and find the algebra of differential invariants with respect to the restricted
pseudogroup. Thus differential invariants also allow to distinguish more
special metrics in the class of Kundt waves.

To summarize, the classical Lie-Tresse method of differential invariants
is a powerful alternative to the Cartan equivalence method traditionally
used in relativity applications.
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Differential invariants in thermodynamics

Eivind Schneider

Abstract

Due to the first and second law of thermodynamics the state of a
thermodynamic system is described by a Legendrian manifold. This
Legendrian manifold is locally determined by the information gain
function. We describe the algebra of rational differential invariants
of the information gain function under the action of two different Lie
groups appearing naturally as a result of measuring random vectors,
and we discuss our results in the context of ideal and van der Waals
gases.

1 Introduction

The fundamental thermodynamic relation can be formulated as dE−(TdS−∑n
i=2 pidq

i) = 0, where E is the internal energy, S the entropy and T the
temperature while qiand pi are additional extensive and intensive variables,
respectively. In terms of information gain I which is up to an additive
constant equal to −S, it can be written as dE + TdI +

∑
pidq

i = 0. Ge-
ometrically we should interpret this to mean that a thermodynamic state
is a Legendrian manifold, integral to a contact distribution. Let V be a
vector space. We consider the contact one-form given by du −

∑n
i=1 λidx

i

on V × R × V ∗ (with coordinates xi, u, λi). By taking λ1 = −T−1, x1 =
E, λi = −T−1pi, x

i = qi we can relate this to the one-form above, which
means that the Legendrian manifold is given locally over a neighborhood
D ⊂ V by

{u = I(x), λi = ∂xiI(x) | x ∈ D} ⊂ V × R× V ∗.

In Section 3 we describe two Lie group actions that appear naturally
on the space V × R × V ∗. They arise from the fact that we may change
basis in V and change units of information. After that, in Section 4, we
approach the equivalence problem of thermodynamic states under these Lie
group actions by computing differential invariants of the information gain
function. In section 5 we discuss our results in the context of gases. But first
we outline how these Legendrian manifolds naturally appear in the context
of measuring random vectors (following [5]), as this will help us find the
natural Lie group actions acting on them.
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2 The geometry of thermodynamics

The process of measuring random vectors in a vector space V can be thought
about as a map X : (Ω,A, q)→ V from a probability space to V . This will
depend on the probability measure q. By changing the measure, we get
a different expectation. Assume that the expected value in V is 0, i.e.
E(X) =

∫
ΩXdq = 0. We restrict to finite-dimensional vector spaces here,

even though the Bochner integral lets us treat more general Banach spaces
(see [5]). Note however that the linear structure on V is important, and
this will play a role later when we consider Lie group actions on V .

If we want to measure a vector x ∈ V , we choose a measure p different
from q, but equivalent to it. Applying the Radon-Nikodym theorem tells us
that there is a function ρ such that dp = ρdq and∫

Ω
ρdq = 1,

∫
Ω
ρXdq = x.

These conditions do not determine ρ uniquely. We define the information
gain I(p, q) =

∫
Ω ρ ln ρdq, and add the requirement that ρ minimizes I(p, q).

This is the principle of minimal information gain.
As a result (see [5]) we get ρ = 1

Z(λ)e
〈λ,X〉 with λ ∈ V ∗ where Z(λ) =∫

Ω e
〈λ,X〉dq is called the partition function. Due to

∫
Ω ρXdq = x we get

dλZ = Z(λ)x. Thus, if we define H(λ) = − lnZ(λ) we end up with
x = −dλH. And we also get I(p, q) = H(λ) − 〈λ, dλH〉 = H(λ) + 〈λ, x〉.
Assuming that x = −dλH has a unique solution λ(x), we may write I =
I(x) = H(λ(x)) + 〈λ(x), x〉. Then we get dxI = λ, where the functions H
and I are related by H = I + 〈λ, x〉.

Now let xi be coordinates on the vector space V and and λi be the dual
coordinates on V ∗. On the space V × V ∗ we have the natural symplectic
form ω =

∑n
i=1 dλi ∧ dxi. The function H(λ) determines a submanifold

LH = {xi = − ∂H
∂λi
} ⊂ V × V ∗ which is Lagrangian with respect to ω,

meaning that ω|LH = 0.
The Lagrangian manifold LH ⊂ V × V ∗ can be extended to a manifold

L̃H ⊂ V × R × V ∗. Let u be the coordinate on R. Then we get a sub-
manifold in V ×R× V ∗ which is locally described by the function I over a
neighbourhood D ⊂ V :

L̃H = {u = I(x), λi = ∂xiI(x) | x ∈ D} ∈ V × R× V ∗.

Thus the principle of minimal information gain leads to a submanifold in
V × R × V ∗ which is Legendrian with respect to the one-form θ = du −∑
λidx

i.
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Conversely, one can ask whether it is possible to reconstruct I, H and
Z from any Legendrian manifold L̃ ⊂ V × R × V ∗. This is the case if the
symmetric 2-form (

∑
dλidx

i)|L̃ is positive definite. By starting with such

a Legendrian manifold L̃, one can recover the functions

I = u|L̃, H = I − 〈λ, x〉|L̃, Z = e−H .

If L̃ is given by I as above, the symmetric form can be written as∑ ∂2I

∂xi∂xj
dxidxj .

3 Equivalence of thermodynamical systems

We start by describing two different Lie group actions arising naturally
from the set-up above, and thereby defining what it could mean for two
thermodynamic states to be equivalent.

Affine action Since the choice of basis on V is arbitrary, we consider
the Legendrian manifold L̃ up to linear transformations on V × V ∗. In the
treatment above we started by assuming E(X) = 0 with respect to the
initial measure. This was done because of convenience, not necessity, so we
add translations to GL(V ) and obtain the affine group Aff(V ) = V oGL(V )
on V . After choosing a basis, the affine action on V × R × V ∗ is given by
(xi, u, λk) 7→ (

∑
aijx

j + ci, u,
∑
blkλl) where the matrix (bij) is the transpose

of (aij)
−1. The corresponding Lie algebra of vector fields is spanned by

xi∂xj − λj∂λi and ∂xi . Notice that this action does not alter the value of I
(or H) at a point.

Scaling In addition to changing basis, we may change the unit of infor-
mation. The unit of information appears as the base of the logarithm we
use, which in Section 2 was chosen to be e. Let Za(λa), Ha(λa), Ia(xa) be
defined in a way similar to Z(λ), H(λ), I(x) above but with a as the base of
the logarithm instead of e, and let a = eb. The functions in the new units
are related to the old ones in the following way.

Za(λa) =
∫

Ω a
〈λa,v〉dq =

∫
Ω e
〈bλa,v〉dq = Z(bλa)

Ha(λa) = − loga Za(λa) = − loga Z(bλa) = − lnZ(bλa)/b = H(bλa)
b

Ia(xa) = Ha(λa) + 〈λa, xa〉 = H(bλa)+〈bλa,xa〉
b = I(xa)

b

In other words, we have the scaling transformation (x, u, λ) 7→ (x, bu, bλ)
on V × R× V ∗. Denote by G0 the Lie group of such transformations. The
corresponding infinitesimal action is given by

∑
λi∂λi + u∂u.
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Remark 16. A natural question is where we allow b to take its values. We
could restrict to b > 0, or to b 6= 0. We will discuss this in more detail when
we compute the differential invariants of these Lie group actions.

4 Differential invariants

The Legendrian manifold L̃ (the thermodynamic state) is locally determined
by the information gain function I on V . We will compute differential
invariants for I under the two Lie group actions Aff(V ) and G0 × Aff(V ).
We consider I as local a section of the trivial bundle V × R on which we
continue to use coordinates x1, ..., xn, u. In order to study the orbit space of
such sections under the action of these Lie groups, we look at their prolonged
action on the jet bundles Jk(V )→ V ×R = J0(V ) (we will use the simplified
notation Jk).

Let xi, uσ be canonical coordinates on Jk where 0 ≤ |σ| ≤ k for the
multi-index σ = (i1, ..., in), ij ≥ 0. For example, when n = 2 we have
coordinates xi, uij on J2, with 0 ≤ i + j ≤ 2 and i, j > 0. For |σ| = 0,
we will also use the notation uσ = u. The section u = I(x) on V × R
prolongs to a section on Jk given by u = I(x), uσ = ∂|σ|

∂xσ I(x). We denote
this prolongation by jk(I). Since diffeomorphisms on V × R transform
sections of V ×R, they lift naturally to Jk. Thus we can consider the action
of the aforementioned Lie groups on Jk. In fact we already described their
action on J1 since J1 can be naturally identified with V × R× V ∗.

Differential invariants are functions on Jk that are constant on the orbits
of the Lie group actions. For transitive and algebraic Lie group actions
the global Lie-Tresse theorem [4] guarantees that the algebra of rational
differential invariants separates orbits in general position in J∞, and that
it is finitely generated. Since Aff(V ) acts transitively on the base V , and
not at all along the fiber, it is clear that we also in this intransitive case can
separate orbits by rational invariants (the algebra of differential invariants
for the Aff(V )-action can be gotten from that of G0×Aff(V ) by adding the
G0×Aff(V )-invariant u). For more thorough treatments of jet bundles and
differential invariants we refer to [2, 3, 6].

For the Lie groups Aff(V ) and G0×Aff(V ) we give a complete description
of their algebras of rational differential invariants.

4.1 Differential invariants under Aff(V )

In order to describe the field of differential invariants we follow [1], where
differential invariants under the GL(V )-action are found.
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Theorem 37. The horizontal symmetric forms αk =
∑
|σ|=k

uσ
σ! dx

σ are
Aff(V )-invariant, for k ≥ 0.

From these symmetric forms we may construct (rational) scalar differ-
ential invariants in the following way. First, α0 = u is a scalar differential
invariant. The symmetric two-form α2 is nondegenerate for points in general
position in J2, so we may use it to construct the vector v1 = α−1

2 (α1). By
using this vector, we may construct a new symmetric two-form α1,3 = iv1α3.
We can use α2 to turn α1,3 into an operator A : T → T . For a point in J3

in general position, the vectors vk = Ak−1(v1) for k = 1, ..., n are indepen-
dent and thus define a frame. Expressing αk in terms of vk gives us scalar
differential invariants from their coefficients. In other words, the functions
αk(vi1 , ..., vik) are differential invariants. Remark that all these differen-
tial invariants will be rational functions on Jk, and affine on the fibers of
Jk → J3. In particular we get only two independent differential invariants
on J2, given by α0 and α1(v1).

This way of generating differential invariants may not be the most con-
venient one. Another way to generate the field is to use invariant derivations
and a finite number of differential invariants, in accordance with the Lie-
Tresse theorem. As invariant derivations we can take v1, ..., vn. They are of
the form

∑
αiDxi , where Dxi are total derivatives and αi are functions on

J3 (and on J2 for v1).

Theorem 38. The field of differential invariants are generated by the in-
variant derivations v1, ..., vn together with the first-order invariant α0 = u,
the second-order invariant α1(v1), the third-order invariants α3(vi1 , vi2 , vi3)
and the fourth order invariants α4(vi1 , vi2 , vi3 , vi4).

It is not difficult to see that this set of invariants is sufficient for generat-
ing all differential invariants of higher order. However, we do not necessarily
need all of them.

Example 7 (The two-dimensional case). We take a closer look at the case
when V is two-dimensional, as they are particular important when we will
consider gases. We have the first-order invariant α0 = u and the second-
order invariant

α1(v1) =
u2

10u02 − 2u10u01u11 + u2
01u20

(u20u02 − u2
11)

.
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The invariant derivations are given by

v1 = 1
u20u02−u211

((u10u02 − u01u11)Dx1 + (u01u20 − u10u11)Dx2) ,

v2 = 1
(u20u02−u211)3

(
(

−(u10u02 − u01u11)(3u10u11u02 − 2u01u20u02 − u01u
2
11)u21

+(u10u11 − u01u20)(3u10u11u02 − u01u20u02 − 2u01u
2
11)u12

+u02(u10u02 − u01u11)2u30 − u11(u10u11 − u01u20)2u03)Dx1

+((u10u02 − u01u11)(u10u20u02 + 2u10u
2
11 − 3u01u20u11)u21

−(u10u11 − u01u20)(2u10u20u02 + u10u
2
11 − 3u01u20u11)u12

−u11(u10u02 − u01u11)2u30 + u20(u10u11 − u01u20)2u03)Dx2
)
.

In this case the four third-order differential invariants α3(vi1 , vi2 , vi3) are
independent, and together with v1, v2 and α1(v1) they generate the algebra
of differential invariants.

Note that when L̃ is the Legendrian manifold corresponding to the in-
formation gain function I we have, in coordinates,(∑

dλidx
i
)∣∣∣
L̃

=
∑

Ixixjdx
idxj = α2|I .

In particular, since we require α2 to be a definite symmetric two-form, we
may find differential invariants from the curvature tensor of this two-form.
For example, the Ricci scalar is a third order differential invariant. Such
invariants are, however, invariant under much more general transformations,
so they don’t generate all Aff(V )-invariants. What’s more, they will not be
invariant under G0 ×Aff(V ).

4.2 Differential invariants under G0 ×Aff(V )

Now we consider the action by the Lie group G0×Aff(V ). It acts on V ×R
by (b, A) ·(x, u) 7→ (Ax, bu). We mentioned previously that we have a choice
for the G0-parameter b, since we may take it from either R \ {0} or (0,∞).
This corresponds to a = eb in (0,∞) \ {1} or (1,∞), respectively. Here we
will stick to the first choice R \ {0}, with the main reason that this gives
the Zariski-closure of the other option. The theorems we have for existence
of rational invariants separating orbits hold for algebraic (Zariski-closed)
groups. However the structure of both orbit spaces on Jk should be clear
as soon as we understand one of them. Also, the obtained orbit space will
be the same of that of positive I’s under the action of the topologically
connected component of the Lie group (not containing u 7→ −u).

In order to describe the field of differential invariants we reuse ideas from
the previous section. The symmetric forms αk are scaled by the R∗-action.
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If we modify them to βk = αk/α0, for k ≥ 1, we obtain G0×Aff(V )-invariant
symmetric forms. By using these instead of αk we can generate the algebra
of differential invariants in exactly the same way as we did in the previous
section. Invariant vectors can be constructed from βk in exactly the same
way as above (from αk), and they will in fact be the exact same vectors vi
as before.

Theorem 39. The field of differential invariants are generated by the in-
variant derivations v1, ..., vn together with the second-order invariant β1(v1),
the third-order invariants β3(vi1 , vi2 , vi3) and the fourth order invariants
β4(vi1 , vi2 , vi3 , vi4).

Example 8 (The two-dimensional case). When V is two-dimensional we
have the second-order invariant

β1(v1) =
u2

10u02 − 2u10u01u11 + u2
01u20

(u20u02 − u2
11)u

.

The invariant derivations from the previous section are still invariant un-
der the current Lie group action. We have the relations β3(vi1 , vi2 , vi3) =
α3(vi1 , vi2 , vi3)/α0. These four invariants are thus also independent, and
together with v1, v2 and β1(v1) they generate the algebra of differential in-
variants.

5 Application to gases

We explain how we can use differential invariants in order to distinguish
gases under the Lie group actions considered above. We use the ideal gas,
and the van der Waals gases as examples. In order to keep this chapter
concise, we do not go into the detailed physics but instead refer to [5] for
more details about gases.

The simplest gases can be described as Legendrian manifolds of the
contact form θ = du − (−T−1)dε − (−pT−1)dv where T is temperature,
p is pressure, v is specific volume and ε is specific energy. We consider
this as a contact form on V × R× V ∗ where V is a two-dimensional vector
space. In order to relate it to our formulas above we let x1 = ε, x2 = v (and
λ1 = −T−1, λ2 = −pT−1).

5.1 Distinguishing gases

Integral manifolds of θ are locally determined by the information gain func-
tion I. We can use the differential invariants from above to determine when
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two different Legendrian manifolds of this type are equivalent under the
groups Aff(V ) and G0 ×Aff(V ), respectively.

We outline first how to do it for the Aff(V )-action. For a function f
on Jk, we denote by f |I the restriction of f to the section u = I(x), i.e.
f |I = f ◦ jk(I). For a point in general position in J3, the differential
invariants ξ = α1(v1) and η = α3(v1, v1, v1) will be horizontally indepen-
dent, meaning that d̂ξ ∧ d̂η 6= 0. Here d̂ denotes the horizontal differential,
which can be defined in coordinates by d̂f = Dx1(f)dx1 + Dx2(f)dx2, so
that (d̂f)|I = d(f |I). Thus for generic I we have d(ξ|I) ∧ d(η|I) 6= 0, so
ξ|I and η|I can be taken as local coordinates on V . The four invariants
hij = α3(vi, vj , v2) and h0 = α0 may also be restricted to I, and the func-
tions h0|I , hij |I on V may be written in terms of ξ|I and η|I . The four
functions h0|I(ξ|I , η|I), hij |I(ξ|I , η|I) determine the equivalence class of the
Legendrian manifold given by I.

To check equivalence under the G0×Aff(V )-action we use the invariants
ξ̃ = ξ/h0, η̃ = η/h0, h̃ij = hij/h0 instead, and the equivalence class of I is
determined by the three functions h̃ij |I(ξ̃|I , η̃|I).

Remark 17. The functions h̃ij |I(ξ̃|I , η̃|I) are not arbitrary functions. They
must satisfy a system of differential equations defined by the differential
syzygies in the algebra of differential invariants.

5.2 Ideal gas

As our first example we take the ideal gas, which is defined by the state
equations pv = RT and ε = n

2RT where n counts the degrees of freedom.
As shown in [5] they give the following information gain function:

I = −R ln
(

ln(v) +
n

2
ln(ε)

)
+ C = −R ln

(
ln(x2) +

n

2
ln(x1)

)
+ C

where C is some constant. We look at the differential invariants found
above, restricted to the section u = I.

We first consider the Aff(V )-invariants. We have ξ|I = R(n+2)/2, η|I =
R(n+2). These are constant, so the ideal gas lies in fibers over the singular
set in J3 determined by the equation d̂ξ ∧ d̂η = 0. The functions hij |I are
also constant multiples of R(n + 2). The derivations v1 and v2 are both
constant multiples of x1∂x1 + x2∂x2 on the ideal gas. The only nonconstant
function we get from the invariants is h0|I .

If we consider G0×Aff(V )-invariants instead we still have (d̂ξ̃∧d̂η̃)|I = 0,
even though ξ̃|I , η̃|I are not constant. Thus the ideal gas is a singular
Legendrian manifold, also with respect to this Lie group action.
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5.3 Van der Waals gas

The state equations for van der Waals gases are
(
p+ a

v2

)
(v − b) = RT and

ε = n
2RT −

a
v , and their information gain function is given by

I = −R
(

(v − b)
(a
v

+ ε
)n/2)

+ C = −R
(

(x2 − b)
( a
x2

+ x1
)n/2)

+ C.

For van der Waals gases we have (d̂ξ∧ d̂η)|I 6= 0, so we can use the differen-
tial invariants above to distinguish them, and it is not difficult to find the
functions hij |I(ξ|I , η|I) and h0|I(ξ|I , η|I):

h11 = 1
4R3n(Rn−2 ξ)

(
n2 (2− n) (nξ − 2 ξ + 4 η)R4

+8n
(((

n2 − n− 1
)
ξ + 2nη

)
ξ − (ξ − η)

2
)
R3

−8
((

3n2 + 2n+ 2
)
ξ + 2nη

)
ξ2R2 + 32 ξ4 (n+ 1)R− 16 ξ5

)
h12 = 1

4nR4(Rn−2 ξ)2

((
30n3ξ3 − 20n2 (2 ξ − η) ξ2

−8n
(
4 ξ2 − ξη + 4 η2

)
ξ − 16 ξ3 + 24 ξ2η − 32 ξη2 + 8 η3

)
R4

+
(
−160n3ξ4 + 32n

(
2 ξ2 + ξη + 2 η2

)
ξ2 + 64 ξ3η

)
R3

+16
(
15 ξn2 + 5 (2 ξ − η)n+ 4 ξ − 8 η

)
ξ4R2

−64
(
3nξ6 + 2 ξ6 − ξ5η

)
R+ 64 ξ7

)
h22 = 1

16n2R5(Rn−2 ξ)3

(
(2− n)

3
n5 (3nξ − 6 ξ + 8 η)R8

+24 (n− 2)n4
(
2n3ξ2 − n2 (7 ξ − 3 η) ξ + n (2 ξ + η) (2 ξ − 3 η)

+4 ξ2 − 4 ξη + 2 η2
)
R7 − 16n3

(
21n4ξ3 − n3 (73 ξ − 12 η) ξ2

+n2
(
42 ξ3 − 18 ξ2η − 33 ξη2

)
+
(
36 ξ3 + 12 ξη2 + 12 η3

)
n

+8 ξ3 − 24 ξ2η + 36 ξη2 − 8 η3
)
R6

+32n2
(
42n4ξ4 − n3 (81 ξ + 5 η) ξ3 + n2

(
−18 ξ4 − 12 ξ3η − 42 ξ2η2

)
+12n (2 η + ξ) ξ

(
2 ξ2 − 2 ξη + η2

)
+ 40 ξ3η − 36 ξ2η2 + 24 ξη3 − 4 η4

)
R5

−96n
(
35n4ξ3 − 10n3 (3 ξ + 2 η) ξ2 − 4n2

(
7 ξ2 + 8 ξη + 3 η2

)
ξ

−8 (ξ + η) (2 ξ − η) ηn+ 8 ξ (ξ − η)
2 )
ξ2R4

+128 ξ4
(
42n4ξ2 − 11 ξ (ξ + 3 η)n3 − 3n2

(
10 ξ2 + 18 ξη − η2

)
−12n

(
ξ2 + 3 ξη − η2

)
− 8 ξ2

)
R3

−256 ξ5
(
21n3ξ2 − n2 (3 ξ + 16 η) ξ − 3n

(
6 ξ2 + 6 ξη − η2

)
− 12 ξ2

)
R2

+1536
(
2 ξn2 − n (ξ + η)− 2 ξ

)
ξ7R− 256 (−4 + 3n) ξ9

)
h0 = −R

(
n
2 ln

(
nF 2G

(Rn−2ξ)5((n+2)R−2ξ)4

)
+ ln

(
F
G

)
+ ln

(
an/2

bn/2−1

)
+ (n+ 1) ln(2)− 3 ln(3)

2 n
)

+ C

where

F = n(n + 3n+ 2)R3 − (6 ξn2 + 12nξ + 12 ξ − 4 η)R2 + 12 (n+ 1)ξ2R− 8 ξ3,
G = n(n2 − 4)R3 − (6n2ξ − 24 ξ + 8 η)R2 + 12nξ2R− 8 ξ3.

We suppressed the notation signifying restriction to I in order to simplify
the equations. The functions hij |I(ξ|I , η|I) are rational functions, and we
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notice that they do not depend on the constants a, b, C. The expression for
h0|I(ξ|I , η|I) shows that changing a and b will only affect the constant C
under the Aff(V )-action.

The G0×Aff(V )-invariants are more difficult to handle. In order to find
the functions h̃ij |I(ξ̃|I , η̃|I) we can in theory make the substitutions

ξ|I = ξ̃|I · h0|I , η|I = η̃|I · h0|I , hij |I = h̃ij |I · h0|I

and eliminate h0|I in order to get three equations determining h̃ij |I(ξ|I , η|I).
However, this seems unmanageable in practice. The first three equations
are polynomial in h0|I , but with degrees up to 18, while the fourth equation
is not even algebraic.

It is well known that we can use G0×Aff(V ) to normalize the constants
a, b, R. In the “critical variables”, in which the critical point is given by
(p, v, T ) = (1, 1, 1), the constants are normalized to a = 3, b = 1/3, R = 8/3.
Thus every van der Waals gas is, under the G0 × Aff(V )-action, equivalent
to the one given by the equations(

p+
3

v2

)(
v − 1

3

)
=

8

3
T, ε =

4n

3
T − 3

v

and the information gain function

I = −8

3
ln

((
v − 1

3

)(
3

v
+ ε

)n/2)
+ C.

Notice that normalizing a, b, R in this way will affect the value of C.
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Appendix

Lifts of Lie algebras of vector fields in the plane

Introduction

These notes contain the computations resulting in [2, Theorem 2]. We go
through all Lie algebras of vector fields on C2 that are listed in Section 2
of that paper, and lift them to to C2 × C. Combined with the results in
Section 3, the computations are cumbersome but straightforward. For every
Lie algebra of vector fields the first step will be to rectify the subalgebra
spanned by ∂x, ∂y or ∂x, x∂x + ∂y. Since this is similar for all cases, we will
usually start the computations here with the assumption that the lifts of
these vector fields are already straightened out. See examples 1 and 2 in
[2] for details. Throughout, greek and capital letters will in general denote
complex constants, while lowercase letters will denote functions.

1 Lifts of the primitive Lie algebras

We will find the lifts of the primitive Lie algebras. These computations
were done in [1], but we redo them here for completeness. Since we have
the inclusions g3 ⊂ g2 ⊂ g1 it will be convenient to start with the smallest
one.

The following example will be useful.

Example 9. Let X = A(u− u1)(u− u2)∂u. The coordinate transformation
U = 1

u−u2 takes X to A((u1 − u2)U − 1)∂U , which can be brought to the
form C∂U or CU∂U , depending on whether u1 = u2 or not, for a constant
C. Thus any vector field of the form (a + bu + cu2)∂u, can be transformed
to either C∂u or a Cu∂u by a projective transformation.

1.1 g3

The lift of the smallest primitive Lie algebra is spanned by vector fields
of the form X1 = ∂x, X2 = ∂y, X3 = x∂y + a(x, y, u)∂u, X4 = y∂x +
b(x, y, u)∂u, X5 = x∂x − y∂y + c(x, y, u)∂u. The six commutation relations
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resulting from taking commutators of X1, X2 with X3, X4, X5 imply that
a, b, c are functions of u only, and we may assume them to be polynomials
of (at most) second order.

The commutation relations

[X3, X4] = X5, [X3, X5] = −2X3, [X4, X5] = 2X4

are equivalent to the equations

ab′ − ba′ = c, ac′ − ca′ = −2a, bc′ − cb′ = 2b,

respectively.
Following example 9 it is possible to change coordinates so that a(u) ≡ A

or a(u) = Au. The latter option is inconsistent with the second equation
when A 6= 0 (and when A = 0 we get only the trivial, intransitive, lift). If
we assume that a ≡ A, the equations have solutions c = −2(u − C), b =
−(u− C)2/A. The constants may be removed by an affine transformation,
leaving us with only one transitive lift.

∂x, ∂y, x∂y + ∂u, x∂x − y∂y − 2u∂u, y∂x − u2∂u. (1)

1.2 g2

This Lie algebra contains g3 as a subalgebra. In addition to X1, ..., X5 from
above, we now have X6 = x∂x + y∂y + d(x, y, u)∂u.

The computations here are simplified by using the results from the sec-
tion above, but we can not necessarily assume that the Lie subalgebra g3 is
transitive. There are two cases to consider.

The subalgebra g3 lifts nontrivially

For the same reasons as in the previous section, we may assume that a =
1, b = −u2, c = −2u. The commutation relations [Xi, X6] = Xi for i = 1, 2
imply that d is a function of u only. The commutation relation [X3, X6] = 0
implies that d is constant, and this constant vanishes due to [X4, X6] = 0.
The result is a projective lift.

∂x, ∂y, x∂y + ∂u, x∂x − y∂y − 2u∂u, y∂x − u2∂u, x∂x + y∂y. (2)

The subalgebra g3 lifts trivially

Now a = b = c = 0. Then the commutation relations put no restrictions
on d, but since the lift should be transitive, d is constant. This results in a
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metric lift.

∂x, ∂y, x∂y, x∂x − y∂y, y∂x, x∂x + y∂y + C∂u. (3)

1.3 g1

The Lie algebra g1 contain both g2 and g3 as subalgebras. In addition to
the elements of g2, we have X7 = x2∂x + xy∂y + e(x, y, u)∂u and X8 =
xy∂x + y2∂y + f(x, y, u)∂u. Again, there are two cases.

The subalgebra g3 lifts nontrivially

The arguments used for g2 still hold, and thus a = 1, b = −u2, c = −2u, d =
0. It is a simple exercise to check that the commutation relations involving
X7, X8 yield e = y − ux and f = u(y − xu).

∂x, ∂y, x∂y + ∂u, x∂x − y∂y − 2u∂u, y∂x − u2∂u,

x∂x + y∂y, x2∂x + xy∂y + (y − xu)∂u, xy∂x + y2∂y + u(y − xu)∂u.
(4)

The subalgebra g3 lifts trivially

Now a = b = c = 0, and d = C or d = Cu after a change of coordinates, in
accordance with example 9.

When d = C commutation relations between X1, X2 and X7, X8 imply
that e and f are functions of u alone. Using the remaining commutation
relations, we end up with a metric lift.

∂x, ∂y, x∂y, x∂x − y∂y, y∂x, x∂x + y∂y + 2C∂u,

x2∂x + xy∂y + 3Cx∂u, xy∂x + y2∂y + 3Cy∂u.
(5)

The other option, d = Cu, only results in a intransitive (linear) lift.

2 Lifts of the imprimitive Lie algebras

2.1 The Lie algebra r = 〈∂x, ∂y, x∂y, ..., xr∂y〉

Let us consider the Lie algebra r = 〈∂x, ∂y, x∂y, ..., xr∂y〉. This is a subalge-
bra of several of the Lie algebras of vector fields on C2 from Lie’s classifica-
tion, and is therefore useful to consider on its own. It is also a special case
of g4.
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After a coordinate change, the lifted basis elements will take the form

X1 = ∂x, X2 = ∂y, Yi = xi∂y + ci(x, y, u)∂u

and since the stabilizer of 0 is abelian, we may assume that ci(x, y, u) =
(α+βu+γu2)bi(x, y), where the greek constants are independent of the index
i.1 The functions ci (and thus also bi) are restricted by the commutation
relations of the Lie algebra.

[X2, Yi] = (ci)y∂u = 0 ⇒ (ci)y = 0 (6)

[X1, Yi] = ixi−1∂y + (ci)x∂u =

{
X2, i = 1

iYi−1, i = 2, 3, ...

This implies
(c1)x = 0, (ci)x = ici−1. (7)

Equation (6) implies that bi(x, y) is a function of x only.

Theorem 40. The coefficients bk are of the following form:

bk =
k∑
i=1

(
k

k − i

)
Cix

k−i

Proof. We need to solve the equations (bk)y = 0, (b1)x = 0, (bk)x = kbk−1.
It is clear that the above functions are solutions, and since we have k linear
first-order ODEs (wrt. x) with constant coefficients (with one-dimensional
solution space), they must be all solutions.

The general lift is spanned by

X1 = ∂x, X2 = ∂y, Yk = xk∂y + (α+ βu+ γu2)

(
k∑
i=1

(
k
k−i
)
Cix

k−i

)
∂u, (8)

where k = 0, 1, ..., r − 2.

Remark 18. If this was the Lie algebra we wanted to lift, we could also
assume that α = 1, β = γ = 0 in order to get no singular points. Since this
is usually just a subalgebra of a transitive Lie algebra, we should not make
this assumption yet. However, all the Lie algebras from Lie’s classification
that contains this Lie algebra as a subalgebra has a solvable stabilizer of 0,
so we can assume that γ = 0 wherever it appears above.

1This can also be seen from the commutation relations [Yi, Yj ] = 0.
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Note that if bi = 0 for i < s and we relabel the constants so that bs = D0,
we get

Yk = xk∂y + (α+ βu+ γu2)

(
k∑
i=s

(
s+ k

s+ k − i

)
Di−sx

s+k−i

)
∂u (9)

which can also be written as

Ys+k = xs+k∂y + (α+ βu+ γu2)

 k∑
j=0

(
s+ k

j

)
Dk−jx

j

 ∂u (10)

which may be useful later.

2.2 g4

For g4, the stabilizer of the 0-fiber is abelian, so we need only look for metric
lifts. The lift of g4 is spanned by ∂x and Xj,i = xieαjx∂y + bj,i(x, y)∂u after
a coordinate change. We may also set b1,0 ≡ 0.

The commutation relations

[X1,0, Xj,i] = eαjx(bj,i)y∂u = 0

imply that bj,i are independent of y. The relations

[∂x, Xj,i] = (ixi−1eαjx + αjx
ieαjx)∂y + (bj,i)x∂u = iXj,i−1 + αjXj,i

imply (bj,i)x = ibj,i−1 + αjbj,i. It is easily verified that the solutions are
given by

bj,i = eαjx
i∑

k=0

(
i

k

)
Bj,kx

i−k

with B1,0 = 0. The general lift is thus spanned by

∂x, xieαjx∂y + eαjx

(
i∑

k=0

(
i

k

)
Bj,kx

i−k

)
∂u, with B1,0 = 0. (11)

2.3 g5

Since g5 ⊃ g4, we may use the results from the previous section. We add
Y = y∂y + a∂u to the lifted basis (11), with one difference in that the
constants Bj,k now are affine functions in u (since we cannot assume that
the lift of the subalgebra is transitive), and they are all proportional to each
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other as functions of u. The relations [∂x, Y ] = 0 and [X1,0, Y ] = X1,0 imply
that a is independent of x and y, respectively. If Bj,i ≡ 0 for every i and j,
we may assume that a is constant, and we get a metric lift.

∂x, xieαjx∂y, y∂y + C∂u (12)

Assume that Bj,i 6= 0 while Bj,k ≡ 0 for k < i (or i = 0 and Bj,0 6= 0).
Then bj,i = eαjxBj,i, and the commutation relation

[Xj,i, Y ] = Xj,i

implies that Bj,i is constant. It also gives au = 1, so that a = u + A. A
translation in u-direction lets us set A = 0. The rest of the commutation
relations give no new restrictions. Observe that we may use a scaling in u
in order to normalize one of the constants Bj,k, so we get the affine lift

(11), y∂y + u∂u, Bj,k = 1 for some (j, k). (13)

2.4 g6

This computation is done in detail in [2, Example 2], so we do not repeat
it here. There is a metric lift and an affine lift.

∂x, ∂y, y∂y + C∂u, y2∂y + 2Cy∂u (14)

∂x, ∂y, y∂y − u∂u, y2∂y + (1− 2yu)∂u (15)

2.5 g7

The lift of g7 is spanned by X1 = ∂x, X2 = ∂y, X3 = x∂x + a∂u, X4 =
x2∂x + x∂y + b∂u. The function a must be independent of x and y due to
the commutation relations [X1, X3] = X1 and [X2, X3] = 0.

[X1, X4] = 2x∂x + ∂y + bx∂u = 2X3 +X2 ⇒ bx = 2a

[X2, X4] = by∂y = 0 ⇒ by = 0

[X3, X4] = x2∂x + x∂y + (xbx + abu − bau) = X4 ⇒ xbx + abu − bau = b

The equations are the same as for g6 (after switching x, y-coordinates), so
the lifts can be found in exactly the same way.

∂x, ∂y, x∂x + C∂u, x2∂x + x∂y + 2Cx∂u (16)

∂x, ∂y, x∂x − u∂u, x2∂x + x∂y + (1− 2xu)∂u (17)
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2.6 g8

The lift of g8 is spanned by vector fields of the form

X1 = ∂x, X2 = ∂y, X3 = x∂x + λy∂y + a3∂u, Yi = xi∂y + bi∂u,

for i = 1, ..., r− 3. Since the stabilizer of 0 is solvable, we may assume that
a3, bi are affine functions in u. The commutation relations [X1, X3] = X1

and [X2, X3] = λX2 imply that a3 = A+Bu, with A,B ∈ C. From section
2.1 we have

bk = (α+ βu)
k∑
i=1

(
k

k − i

)
Cix

k−i.

In the case β 6= 0 we may by a u-translation set α = 0, and we can
without loss of generality assume β = 1. Let bi = Diu be the first nonzero
coefficient. Then

(i− λ)Yi = [X3, Yi] = (i− λ)xi∂y +ADi∂u

which can be consistent only if A = 0 or if the dimension is 3. In the first
case the lift is intransitive (u = 0 is a singular orbit). The lift of the three
dimensional Lie algebra will be considered later.

The other option is that α = 1 and β = 0. The commutation relation
[X3, Yi] = (i − λ)Yi implies x(bi)x = (i − λ + B)bi which gives xibi−1 =
(i − λ + B)bi when combined with (bi)x = ibi−1 (from [X1, Yi] = iYi−1).
Assume first that B = λ−k for some k ∈ {1, ..., r−3}. Then bk is constant,
bi = 0 for i < k, and bk+l =

(
k+l
l

)
bkx

l.
If B 6= 0, we may remove A by a translation, and set bk = 1 by a scaling

transformation, to get the affine lift spanned by

∂x, ∂y, x∂x + λy∂y + (λ− k)u∂u, xi∂y + bi∂u, k ∈ {1, ..., r − 3} (18)

with bi ≡ 0 for i = 1, ..., k − 1 and bk+l =
(
k+l
l

)
xl for l = 0, ..., r − 3− k.

If B = 0, then λ = k, and we have the metric lift

∂x, ∂y, x∂x + ky∂y +A∂u, xi∂y + bi∂u, k ∈ {1, ..., r − 3} (19)

with bi ≡ 0 for i = 1, ..., k − 1 and bk+l =
(
k+l
l

)
Cxl for l = 0, ..., r − 3− k.

Now assume that B 6= λ − k for every k ∈ {1, ..., r − 3}. Then bi =
xi

i−λ+B bi−1. Either bi ≡ 0 for every i or r ≤ 4 or b2 = 2x
2−λ+B b1. The last

case is inconsistent with (bi)x = ibi−1 for i = 2 with the current assumptions
on B.
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In the first case, we must have B = 0 in order for the lift to be transitive,
and we get a metric lift.

∂x, ∂y, x∂x + λy∂y +A∂u, xi∂y. (20)

This is also the lift we get when r = 3. When r = 4 we have 0 = x(b1)x =
(1 − λ + B)b1 which yields b1 = 0, resulting in the metric lift already
considered.

2.7 g9

A lift of g9 is spanned by X1 = ∂x, X2 = ∂y, X3 = x∂x+((r−2)y+xr−2)∂y+
b(x, y, u)∂u and Yi = xi∂y + ci∂u for i = 1, ..., r − 3. The subalgebra r
from section 2.1 is of the form (8). The commutation relations [X1, X3] =
X1 + (r − 2)Yr−3 and [X2, X3] = (r − 2)X2 give

bx = (r − 2)cr−3, by = 0. (21)

There are two cases to consider.

The subalgebra r lifts trivially

If r lifts trivially (or r = 3), then bx = by = 0, and hence b = b(u). We may
assume that the lift is metric so we get

∂x, ∂y, x∂x + ((r − 2)y + xr−2)∂y + C∂u, x∂y, ..., xr−3∂y. (22)

The subalgebra r lifts nontrivially

From section 2.1 we know that if s is the lowest integer such that Ys lifts
nontrivially, then

Ys+k = xs+k∂y + (α+ βu)

 k∑
j=0

(
s+ k

j

)
Ck−jx

j

 ∂u

for k ≥ 0 with C0 6= 0. From bx = (r − 2)cr−3 we get that

b = (α+ βu)

r−3∑
j=0

(
r − 2

j + 1

)
Cr−s−j−3x

j+1 +A0 +A1u.

The commutation relation [Ys, X3] = (r−2−s)Yi is only consistent if β = 0
(and we assume without loss of generality that α = 1), and it also implies

138



that A1 = r − s− 2. A u-translation lets us set A0 = 0. The commutation
relations [Ys+k, X3] = (r − 2 − s − k)Ys+k imply that x(cs+k)x = kcs+k, so
that cs+k =

(
s+k
k

)
C0x

k. A scaling transformation lets us set C0 = 1.

Thus the general lift is spanned by

∂x, ∂y, xi∂y + ci∂u,

x∂x + ((r − 2)y + xr−2)∂y +

((
r − 2

s

)
xr−s−2 + (r − s− 2)u

)
∂u,

(23)

where ci = 0 for i < s and cs+k =
(
s+k
s

)
xk for k = 0, ..., r − 3− s.

2.8 g10

A general lift is spanned by the vector fields X1 = ∂x, X2 = ∂y, X3 = x∂x +
b1(x, y, u)∂u, X4 = y∂y + b2(x, y, u)∂u, Yi = xi∂y + ci∂u. The commutation
relations

[X1, X3] = X1, [X2, X3] = 0, [X1, X4] = 0, [X2, X4] = X2

imply that b1 and b2 are functions of u only. The relation

[X3, X4] = (b1(b2)u − b2(b1)u)∂u = 0

tells us that b1 is proportional to b2.

The subalgebra r is lifted nontrivially

For some s we have Ys = xs∂y + (α+ βu)D0∂u. Assuming the lift is affine,
the commutation relation [Ys, X3] = −sYs implies that β = 0, and we can
assume that α = 1. We get the following conditions on b1, b2:

[Ys, X3] = −sxs∂y + (b1)u∂u = −sYs ⇒ (b1)u = −s (24)

[Ys, X4] = xs∂y + (b2)u∂u = Ys ⇒ (b2)u = 1 (25)

Hence b1 = −su + B1 and b2 = u + B2. Since b1 must be proportional
to b2 we get B1 = −sB2. A translation in u-direction lets us remove the
constants so that b1 = −su, b2 = u.

We use the rest of the commutation relations:

[x∂x − su∂u, xs+i∂y + cs+i∂u] = (s+ i)xs+i∂y + (x(cs+i)x + scs+i)∂u

= (s+ i)(xs+i∂y + cs+i∂u)
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This gives x(cs+i)x = ics+i which implies that cs+i = Cix
i. The equation

(cs+i)x = (s+ i)cs+i−1 (coming from commutator of ∂x and Ys+i) gives the

relation iCi = (s+i)Ci−1. Thus Ci = s+i
i Ci−1 = (s+i)(s+i−1)

i(i−1) Ci−2 =
(
s+i
i

)
C0.

We get an affine lift, and may remove the constant by rescaling.

∂x, ∂y, x∂x − su∂u, y∂y + u∂u, x∂y, ..., xs−1∂y,

xs+i∂y +

(
s+ i

i

)
xi∂y, i = 0, ..., r − 4− s.

(26)

The subalgebra r is lifted trivially

Now Yi = xi∂y for every i. The commutation relations [Yi, X3] = −iYi and
[Yi, X4] = Yi give nothing new. But we may assume that the lift is metric,
so it’s spanned by

∂x, ∂y, x∂x +A∂u, y∂y +B∂u, xi∂y. (27)

This is also the lift we get for r = 4.

2.9 g11

A lift of g11 is spanned by vector fields of the form X1 = ∂x, X2 = ∂y, X3 =
x∂x+(C0 +C1u)∂u, X4 = y∂y +(A0 +A1u)∂u, X5 = y2∂y +(2y(A0 +A1u)+
B0 +B1u)∂u. We have used some computations from g6 (the example in the
paper) and the relations [X1, X3] = X1, [X2, X3] = 0. The constants satisfy
B1 = 0, B0(A1 + 1) = 0 and A0C1 −A1C0 = 0, B0C1 = 0.

If C1 = 0, then either A1 = 0 and B0 = 0, and we get a metric lift

∂x, ∂y, x∂x +A∂u, y∂y +B∂u, y2∂y + 2By∂u (28)

or C0 = 0. In the latter case we have either B0 = 0, in which case A1 = 0
(which is already considered), or A1 = −1 which means that we can set
A0 = 0 by a translation, and B0 = 1 by a scaling transformation.

∂x, ∂y, x∂x, y∂y − u∂u, y2∂y + (1− 2yu)∂u. (29)

If B0 = 0, assume first that A1 is nonzero. A u-translation lets us set
A0 = 0, implying that C0 = 0. This gives an intransitive lift. Let now
B0 = A1 = 0. Either C1 = 0 (which results in the metric lift already
considered) or A0 = 0, and C1 = 0 for the lift to be transitive. This lift is
already given in (28).
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2.10 g12

A lift of g12 is spanned by vector fields of the form X1 = ∂x, X2 = ∂y, X3 =
x∂x + a(u)∂u, X4 = y∂y + b(u)∂u, X6 = x2∂x + d(x, y, u)∂u, X5 = y2∂y +
c(x, y, u)∂u where all functions can be assumed to be affine in u.

We still have the same equations as for g11. In addition the commutation
relations give

dy = 0, dx = 2a, bdu − dbu = 0, xdx + adu − dau = d

and

[X6, X5] = (x2cx − y2dy + dcu − cdu)∂u = (dcu − cdu)∂u = 0.

Now b and c are proportional to both a and d, as functions of u.

Assume first that a = A and b = B are constants (one or both may
be zero). Then we see from the equations that c = 2By + e(u) and d =
2Ax+ f(u). The equation xdx + adu− dau = d implies that Afu = f which
implies f = 0 since f is an affine function. In the same way we see that
e = 0. We then get the metric lift

∂x, ∂y, x∂x +A∂u, y∂y +B∂u, y2∂y + 2By∂u, x2∂x + 2Ax∂u. (30)

Now assume that a = Au and b = Bu (the constant parts may be
removed by a u-translation). Then we see from the equations that c =
2Byu + e(u) and d = 2Axu + f(u). The equation xdx + adu − dau = d
implies that Auf ′ = f(1 + A), so that f = 0 or A = −1 and f = F is
constant. In the same way, e = 0 or B = −1 while e = E is constant. If
both f and e vanish, we have a singular lift, so assume that A = −1 and
that f = F is nonzero.

The equation dbu − bdu = 0 implies that FB = 0. This means that
B = 0, and thus c = e(u). Then the equation dcu − cdu = 0 implies that
(F − 2xu)eu + 2xe = 0. Thus Feu = 0 and e − ueu = 0. These equations
imply that e = 0, so we get

∂x, ∂y, x∂x − u∂u, y∂y, y2∂y, x2∂x + (1− 2xu)∂u. (31)

If we assume that B = −1 and e = E we get the lift

∂x, ∂y, x∂x, y∂y − u∂u, y2∂y + (1− 2yu)∂u, x2∂x. (32)

They are locally equivalent.
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2.11 g13

We consider a lift spanned by X1 = ∂x, X2 = ∂y, X3 = x2∂x + (r− 4)xy∂y +
a∂u, X4 = x∂x + r−4

2 y∂y + b∂u, Yi = xi∂y + ci∂u where r > 4. Since the
stabilizer of 0 is solvable, we need only consider affine lifts. We assume that
the subalgebra r is lifted as in (8).

We have the commutation relations

[X1, X3] = 2x∂x + (r − 4)y∂y + ax∂u = 2X4 ⇒ ax = 2b

[X2, X3] = (r − 4)x∂y + ay∂u = (r − 4)Y1 ⇒ ay = (r − 4)c1

[X1, X4] = ∂x + bx∂u = X1 ⇒ bx = 0

[X2, X4] =
r − 4

2
∂y + by∂u =

r − 4

2
X2 ⇒ by = 0

so b is a function of u only. The first equation implies a = 2xb(u) + d(y, u),
while the second one gives d = (r − 4)yc1(u) + e(u), so that a(x, y, u) =
2xb(u) + (r − 4)yc1(u) + e(u). Since the lift is metric or affine, we may
assume that b = B1 + B2u, c1 = (α + βu)C1, e = E1 + E2u. Now, the
commutation relation [X3, X4] = −X3 gives

E2 = 0, C1β(r − 4)(r − 6) = 0, E1(1 +B2) = 0

C1((r − 6)α+ 2B1β − 2B2α)(r − 4) = 0

Let Ys = xs∂y + (α+βu)Cs∂u be the first element of r that lifts nontrivially
(if such exists, if else Cs = 0). The commutation relation [Ys, X4] = (r/2−
s− 2)Ys gives

βCs(r − 2s− 4) = 0, Cs((r − 2s− 4)α+ 2B1β − 2B2α) = 0

The commutation relation [Yr−4, X3] = 0 gives the equations

0 = (C1(r − 4)xr−4 − x2c′r−4(x))β,

0 = α(C1(r − 4)xr−4 − x2c′r−4(x))

+ 2((B2x+ E2/2)α− (B1x+ E1/2)β)cr−4(x).

The subalgebra r lifts trivially

If Cs = 0, then r lifts trivially. Then the only restrictions we have are

E2 = 0, E1(1 +B2) = 0.

If B2 = −1, we can set B1 = 0 by using a translation. We end up with the
following lift after scaling u so that E1 = 1.
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∂x, ∂y, x
2∂x + (r − 4)xy∂y + (1− 2xu)∂u, x∂x +

r − 4

2
y∂y − u∂u, xi∂y (33)

If E1 = 0, the constants B1 and B2 are free, but if B2 6= 0, the equation
B1 +B2u = 0 determines a singular orbit, which we do not allow. Thus we
get a metric lift.

∂x, ∂y, x
2∂x + (r − 4)xy∂y + 2B1x∂u, x∂x +

r − 4

2
y∂y +B1∂u, x

i∂y (34)

The subalgebra r lifts nontrivially

Now Cs 6= 0. We can change coordinates (by translation) so that either
α = 0 or β = 0, but not both. We may also assume that the other one is
equal to 1, since the constants Ci preserve this freedom.

α = 0 and β = 1: We see thatB1 = E2 = 0 and that s = (r−4)/2, so r ≥ 6
is even. The last commutation relation above implies that B1 = E1 = 0
since r lifts nontrivially (and therefore cr−4 6= 0). The final condition we
get is that either C1 = 0 or r = 6. But since B1 = E1 = α = 0, all possible
lifts will have a singular orbit given by u = 0.

α = 1 and β = 0: We have E2 = 0 and B2 = r/2 − s − 2. Now, either
C1 = 0 or s = 1.

If C1 = 0, then cr−4 = Fxr−2s−4, which means that cr−5 =
c′r−4

r−4 and

cr−6 =
c′′r−4

(r−4)(r−5) ,..., and

cr−4−(r−2s−4) = c2s =
c
(r−4−2s)
r−4

(r − 4)(r − 5) · · · 2s
=

(r − 4− 2s)!(2s)!

(r − 4)!
F = F/

(
r − 4

2s

)
.

But cs is the first (constant) nonzero term, so c2s can not be constant.
C1 = 0 is not possible.

Then we must have s = 1. This implies that E1 = 0, and that cr−4 =
(C1(r−4)x+D)xr−6. The relation [X4, Yr−4] = r−4

2 Yr−4 implies that D = 0.
Thus we get the lift

∂x, ∂y, x∂x +
r − 4

2
y∂y + (B1 + (r/2− 3)u)∂u, x

i∂y + iC1x
i−1∂u,

x2∂x + (r − 4)xy∂y + (2x(B1 + (r/2− 3)u) + (r − 4)yC1)∂u.
(35)
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As long as r 6= 6 we may set B1 = 0 by a translation and C1 = 1 by a
scaling transformation. If r = 6, we get a metric lift.

∂x, ∂y, x2∂x + 2xy∂y + (2xB1 + 2yC1)∂u,

x∂x + y∂y +B1∂u, x∂y + C1∂u, x2∂y + 2C1x∂u
(36)

2.12 g14

The lift is of the form X1 = ∂x, X2 = ∂y, X3 = x∂x + Af(u)∂u, X4 = y∂y +
Bf(u)∂u, X5 = x2∂x+(r−5)xy∂y+b(x, y, u)∂u, Yi = xi∂y+ci(x)(α+βu)∂u.

The subalgebra r lifts trivially

The commutation relation [X2, X5] = (r − 5)Y1 implies that by = 0. The
relation [X1, X5] = 2X3 + (r− 5)X4 implies that b(x, u) = f(u)((r− 5)B +
2A)x+ g(u). If we let f(u) = F1 + F2u and g(u) = G1 +G2u, we get from
[X3, X5] = X5 and [X4, X5] = 0 that

G2 = 0, BF2G1 = 0, G1(AF2 + 1) = 0.

There are two possibilities: either G1 = 0 or both B = 0 and AF2 + 1 = 0.
If G1 = 0, we may assume (after a translation) that either F2 = 0 or

F1 = 0. If F1 = 0 we get a singular lift. If F2 = 0 we may without loss of
generality assume that F1 = 1 (the constant is absorbed by A and B). We
get a metric lift

∂x, ∂y, x∂x +A∂u, y∂y +B∂u,

x2∂x + (r − 5)xy∂y + ((r − 5)B + 2A)x∂u, xi∂y.
(37)

If G1 6= 0 then B = 0, A 6= 0 and F2 = −1/A and F1 = 0 after a
translation. A scaling transformation (u 7→ u/G1) lets us set G1 = 1.

∂x, ∂y, x∂x − u∂u, y∂y,

x2∂x + (r − 5)xy∂y + (1− 2ux)∂u, xi∂y.
(38)

The subalgebra r lifts nontrivially

Let Ys = xs∂y + (α + βu)Cs∂u be the lift of the first basis element of
the subalgebra r which lifts nontrivially and let f(u) = F1 + F2u. The
commutation relation [Ys, X3] = −sYs implies that β = 0 and A = −s/F2.
In order for r to lift nontrivially we must have α 6= 0 and we may set α = 1.
The relation [Ys, X4] = Ys implies that B = 1/F2.
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To sum up what we got so far, Af(u) = A(F1 + F2u) = A1 − su and
Bf(u) = B(F1 + F2u) = B1 + u where A1 = −sB1.

x∂x − s(B1 + u)∂u, y∂y + (B1 + u)∂u

A translation lets us set B1 = 0.

The commutation relations [X2, X5] = (r − 5)Y1 and [X1, X5] = 2X3 +
(r−5)X4 imply that b(x, y, u) = g(u)+(r−5−2s)xu+(r−5)yC1, where C1

is the constant in Y1 = x∂y + C1∂u. Then [X4, X5] = 0 implies g(u) = Gu.
And [X3, X5] = X5 implies G = 0. So we get

X5 = x2∂x + (r − 5)xy∂y + ((r − 5− 2s)xu+ (r − 5)C1y)∂u.

Here we have that s = 1 and C1 6= 0, or alternatively that s > 1 and C1 = 0.

Assume that s = 1. The commutation relation given by [X5, x
r−5∂y +

cr−5(x)∂u] = 0 implies that

cr−5(x) = C1(r − 5)xr−6 +Dxr−7.

The commutation relation [X3, Yr−5] = (r− 5)Yr−5 implies that D = 0 and
we get the following lift.

∂x, ∂y, x∂x − u∂u, y∂y + u∂u,

x2∂x + (r − 5)xy∂y + ((r − 7)xu+ (r − 5)y)∂u, xi∂y + ixi−1∂u.
(39)

Now assume that s > 1. Then C1 = 0. The commutation [X3, Yr−5] =
(r − 5)Yr−5 implies that r must lift trivially.

2.13 g15

Let X1 = ∂x, X2 = x∂x + ∂y, X3 = x2∂x + 2x∂y + a(x, y, u)∂u. The commu-
tation relations are

[X1, X3] = 2x∂x + 2∂x + ax∂u = 2X2 + 2X1 ⇒ ax = 0

[X2, X3] = x2∂x + 2x∂x + (xax + ay)∂u = X3 ⇒ xax + ay = a

Hence a(x, y, u) = b(u)ey. In order to get a nonsingular lift we may assume
that b is constant. The nontrivial lift thus becomes

∂x, x∂x + ∂y, x2∂x + 2x∂y + Cey∂u. (40)
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2.14 g16

Since the dimension is 3, we may assume that the lift is metric. Let X1 =
∂x, X2 = x∂x − y∂y + b(x, y)∂u, X3 = x2∂x + (1 − 2xy)∂y + c(x, y)∂u. Two
of the commutation relations give bx = 0, cx = 2b. Thus b = b(y) and
c = 2b(y)x + f(y). The last commutation relation gives b(y) = A − yf(y),
so that c = 2xA+ f(y)(1− 2xy).

After applying the transformation u 7→ u −
∫
f(y)dy, the lifted vector

fields take the form

∂x, x∂x − y∂y +A∂u, x2∂x + (1− 2xy)∂y + 2Ax∂u. (41)

Alternatively we can take a singular version of g16 (which we use in the
example in section 5) and look for metric lifts. Let X1 = ∂x, X2 = x∂x +
y∂y + b(x, y)∂u, X3 = x2∂x + y(2x+ y)∂y + c(x, y)∂u. This is 〈∂x +∂y, x∂x +
y∂y, x

2∂x + y2∂y〉 after transformation Y = y − x.

[X1, X2] = ∂x + bx∂u ⇒ bx = 0

Let b(y) = b0 + yf(y). The transformation u 7→ u−
∫
f(y)dy turns X2 into

x∂x + y∂y + b0∂u

[X1, X3] = 2x∂x + 2y∂y + cx∂u ⇒ cx = 2b0

[X2, X3] = x2∂x + y(2x+ y)∂y + (xcx + ycy)∂u ⇒ xcx + ycy = c

We end up with the lift

∂x, x∂x + y∂y +A∂u, x2∂x + y(2x+ y)∂y + (2Ax+By)∂u. (42)

The transformation (x, y) 7→ (−x, 1/y) takes this lift to

∂x, x∂x − y∂y +A∂u, x2∂x + (1− 2xy)∂y + (2Ax−B/y)∂u (43)

so we see that B = 0 gives the first metric lift.
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