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Bakgrunn  

Smart Arctic Building er et prosjekt med fokus på bærekraft, energi og smarte løsninger i arktisk 

klima. Prosjektet er et samarbeid mellom Ofoten Midt-Troms Boligbyggerlag og UiT. Målet er å 

utvikle løsninger for boligbyggelag slik at energibruken reduseres med fornybare og smarte 

tiltak. Prosjektet ser på oppgradering av boligblokker i Narvik. 

 
I dag brukes 40 % av netto sluttforbruk av energi i bygningsmassen i Norge. Ved å gjennomføre 

tiltak i bygningsmassen kan vi erstatte annen forurensende energi, med fornybare energikilder 

som bidrar til å redusere klimagassutslippene og har lavt klimafotavtrykk. 

 
Energieffektivisering av bygg er et viktig bidrag til at Norge kan utvikle et bærekraftig 

energisystem som møter våre internasjonale forpliktelser med hensyn til klimagassutslipp 

de neste tiårene. Satsingen på innovasjon og bruk at ny energi- og klimateknologi er for mange 

en naturlig vei å gå. 

 
Oppgaven går ut på å kartlegge potensialet for bruk av solen som energikilde i arktiske 

områder, og hvordan eldre boligblokker i prosjektet Smart Arctic Building kan nyttiggjøre seg 

av solens energi. 

 
Målet vil være å se etter de mest innovative løsningene som optimaliserer produksjonen på 

en kostnadseffektiv måte. 

 
Videre skal det gjøres vurdering av lønnsomheten ved utnyttelse av solenergi, utarbeide energi- 

og effektbudsjett, og økonomisk analyse for de ulike solenergikonseptene sett opp mot 

ulike bygningsmessige standarder. 

 
Lønnsomheten vil også vurderes med bruk av ulike lagringsmuligheter for energi hvor man blant 

annet ser på kommersielle lagringsalternativer og skalering av disse i forhold til kostnader. 

 
Fokuset skal være å finne løsninger for utnyttelse av solens energi i arktiske strøk som er 

realistiske både økonomisk for byggeier/forbruker, og at det er praktisk mulig å installere på 

eksisterende bygg. 
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Abstract 

 

This thesis investigates a solar thermal system and a solar photovoltaic system which produces 

local energy by incoming solar radiation to meet the energy consumption demand of a 

residential building in the arctic region. An existing building block in Narvik, within the sub-

arctic region, was taken as study case to analyze the potential of solar energy.  

For this purpose, the performance and function of both the systems were studied. This was 

achieved by calculation and simulation model of the solar thermal system and the solar PV 

system separately. The solar systems met the energy demand during summer due to availability 

of sun for longer hours. However, in winter, especially in December and January, the energy 

output production was zero due to snow accumulation and minimum sunlight. In rest of the 

seasons, energy output production from both the systems satisfied the energy demand only 

partly. Furthermore, a study on various parameters which influence design and operation of the 

systems were investigated. The studied parameters included orientation, inclination angle, solar 

irradiation, solar hours and collector area for both the systems. For the solar thermal collector, 

energy storage accumulator tank and the size of the tank were discussed. Similarly, for the PV 

system, utility grid, battery as energy storage for grid-connected PV system, solar cell 

technologies, plus-customers and relevant scheme for plus-customers were investigated.   

The simulation results showed that the solar thermal collector produced about 14314 kWh 

throughout a year, whereas, the PV system of 26 KW size generated annual energy output of 

18639 kWh. The price for the solar thermal collector is 1674 NOK/m2 with a payback period 

of 15 years. While, the price for a fully assembled PV system is 16 NOK/Wp (p=peak) which 

has a payback period of 22 years. Thus, it can be concluded that the potential of solar utilization 

is considerable, however the investment cost for both the solar systems are still expensive in 

today’s market.  
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Sammendrag 

 

Denne oppgaven undersøker et solvarmeanlegg og et solcelleanlegg som produserer lokal 

energi ved innkommende solstråling for å møte etterspørselen etter energiforbruk i en 

boligbygging i den arktiske regionen. En eksisterende bygning i Narvik, innenfor den 

subarktiske regionen, ble tatt som casestudie for å analysere potensialet for solenergi. 

For dette formål ble ytelsen og funksjonen til begge systemene studert. Dette ble oppnådd ved 

beregning og simuleringsmodell av solvarmesystemet og solcellesystemet separat. 

Solsystemene møtte energibehovet på sommeren på grunn av tilgjengeligheten av sol i lengre 

timer. Men om vinteren, spesielt i desember og januar, var produksjonen av energiproduksjon 

null på grunn av snøakkumulering og minimum sollys. I resten av årstider, energiproduksjon 

fra begge systemene tilfredsenergibehovet bare delvis. Videre ble det gjennomført en 

undersøkelse av ulike parametere som påvirker design og drift av systemene. De undersøkte 

parameterne inkluderer orientering, helningsvinkel, solstråling, soltimer og solfanger/ 

solcellemoduler arealer for begge systemene. Energilagringsakkumulatortank og tankens 

størrelse på solfangeren ble diskutert. På samme måte ble grid, batteri som energilagring, 

solcelleteknologi, pluss-kunder og relevante ordninger for pluss-kunder undersøkt. 

Simuleringsresultatene viste at solfangeren produserte ca. 14314 kWh gjennom et år, mens 

solcelleanlegget med 26 KW-størrelse genererte årlig energiproduksjon på 18639 kWh. Prisen 

til solfanger er 1674 NOK / m2 med en tilbakebetalingstid på 15 år. Prisen på et fullt montert 

solcelleanlegget er imidlertid 16 NOK / Wp (p = peak) som har en tilbakebetalingstid på 22 år. 

Dermed kan det konkluderes med at potensialet for solenergi utnyttelse er betydelig, men 

investeringskostnadene for begge solsystemene fortsatt er dyre i dagens marked. 
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1 INTRODUCTION 

1.1 Background 

Ever-increasing energy consumption and greenhouse gas emissions from energy production 

have led to the need for measures that can reduce emissions. The Renewable Energy Directive 

is a measure of the European Union (EU), with goals for reducing emissions, increasing energy 

efficiency and increasing the integration of renewable energy production into the power system 

within 2020 (EU, 2019). Norway has a total consumption of 122.20 billion kWh of electric 

energy per year with about 40% of the total energy consumption in households and buildings 

(Worlddata, 2018). The high-energy consumption is an increasingly discussed topic, especially 

in old residential building, which needs to be limited to some extent with focus on energy 

efficiency, building standards and increased integration of renewable energy production. Local 

production of electricity through solar power is an indispensable part of a passive house or low 

energy house for them to be self-sufficient in electrical power. Both passive and low-energy 

house strategies focus on energy efficiency, comfort and affordability. Though for self-

sufficiency, passive house depends upon natural ventilation, thermal mass and solar heat, 

whereas low energy house targets low energy consumption of heating and electricity 

(Audenaert, et al., 2010).   

Cumulative focus on the integration of renewable production and energy efficiency of buildings 

implies that an increasing number of buildings will install local power supply from a solar 

system. The Smart Arctic Building project which focuses on sustainability, energy and smart 

solutions in the arctic region encourages local production of solar energy on existing buildings 

with automated smart meters to control and be up to date with building energy system. Most of 

the existing buildings in Norway have been constructed before 2010 as shown in figure 1 below, 

for example, in the city of Narvik in Northern Norway, a drastic increase in construction of 

residential buildings started around 1945 after world war II, which means that the prime 

locations within the core city are already occupied. This shows the need to restore existing 

buildings rather than demolish them. So, in this work, the possible utilization of solar energy 

for an existing residential building will be further investigated.  
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Figure 1. Number of residential units (apartment blocks, houses) in Narvik, Norway (SSB, Statistics 

Norway, 2019) 

 

1.2 Solar technologies and building energy needs 

In a global scenario, the exploitation of solar power and modern energy retrieving technologies 

have surpassed all expectations in the last decade with the increased production of solar energy. 

50% more solar power was installed globally in 2016 than the year before (Teknologirådet, 

2017). Whereas in Norway, hydropower is currently the most common energy source, 

nevertheless, the growth of solar systems is rapid regarding innovation of technology, 

availability and price which makes it viable for residential buildings connected to the grid.   

Solar energy can deliver the energy needs of any building through space heating, cooling, 

electricity, lighting and domestic hot water (DHW) depending on its active or passive form as 

shown in the figure 2 below (Andren, 2003). An active solar system has mechanisms such as 

solar collector and photovoltaic cells that contribute to energy conversion by capturing, storing 

and then converting solar energy to heat or electricity. In contrast, a passive solar system 

operates by utilizing direct sunlight for heating and cooling purposes. Generally, large south 

facing windows and thermal mass are established so that solar radiation can be absorbed, stored 

and redistributed within the building (Audenaert, et al., 2010). Solar thermal collectors can 

produce DHW using active solar thermal collectors. Space heating can be provided by direct 

solar gain through windows creating a greenhouse effect or indirectly by waterborne floor 

heating. The floor acts as a radiator that transfers heated fluid within a closed loop and 
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recirculates it between solar collector’s accumulator tank and floor (Andren, 2003). 

Photovoltaic modules provide electricity for lighting and other appliances. 

 

Figure 2. Solar technologies according to building needs (Fraunhofer et al., 2019). 

The world needs an energy revolution that requires major investments in new solutions and 

infrastructure. A building with installed solar PV modules and solar thermal collector indicates 

innovation and environmental awareness. It helps in satisfying the requirements of energy 

efficiency with the following advantages (Shaikh, et al., 2017). 

• Reduction in carbon emissions. 

• Reduction in expenses related to electricity bill and grid rent. 

• Enhancement in resilience and reliability of the electricity supply. 

• Achievement of high energy class, which in turn increases the value of the 

property. 
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1.3 Thesis problem formulation 

Basically, this thesis attempts to provide a solution for the following question; 

Can installation of a solar system in an existing residential building be profitable in the arctic 

region? 

Regarding this, an existing study case, which is building block in the sub-arctic region, provided 

by OMTBBL, is considered for the calculation of local energy production by incoming solar 

radiation through convenient solar installations, in this case, solar thermal collectors and PV 

modules. Various factors need to be considered for the design of the system where energy 

storage plays a vital role. There is a great demand for energy storage in buildings to prolong 

stored heat and electrical energy consumption. An accumulator tank is used for the solar thermal 

system, whereas, a battery bank is used for the PV system. There are several energy storage 

types found in the market, and their prices decreases year after year. So, preferable components 

for the solar system are discussed and recommended along with energy storage alternatives, 

since they affect the efficiency and cost of the system. Finally, the feasibility of both systems 

for the building block under consideration is analyzed to acquire the investment and payback 

period of the systems.  
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1.4 Research methodology 

 

This thesis is based on a literature study, participation in a workshop about Smart Arctic 

Building, dialogue with experts on solar system and quantitative analysis. The quantitative 

method was utilized to collect and analyze data required for designing and dimensioning of 

both solar systems: PV system and solar thermal collector system. Along with that, an economic 

analysis was carried out to understand the profitability of the investment of both systems.  

Solar information about the case building location, in Narvik was retrieved from various 

sources. Temperature and climate data were collected from the Norwegian Meteorological 

Institute, solar hours and peak sun hours were acquired from Suncurves AS and solar path and 

solar radiation per month were simulated using PVsyst V6.77 software. The optimal inclination 

angle and optimal azimuth angle for solar collector was simulated from PVGIS software. 

Besides, condition assessment reports and drawings of the case building – Beisfjordveien 88 

were provided by OMTBBL.  

Simulation of energy output by solar thermal collectors were executed in the solar calculator 

provided by Catch Solar which follows Bird and Hulstroms model and Ryan and Stolzenbach’s 

model (Solar, 2019). The area of the solar collector was calculated by simple calculation 

techniques using the tables provided in the book Vannbaserte oppvarmings og kjølesystemer 

(Zijdemans, 2012), and the procedure for calculation and selection of products were 

recommended based on “Solenergi for varmeformål” report (NVE and KanEnergi, 2008). In 

the case of PV system, the area of the PV modules was determined with respect to 

architecturally suitable area for installation of the PV modules. For further calculation of the 

energy output by the system, SIMIEN program was used. The existing SIMIEN file was 

provided by Lars Kimo Jørgensen, Enerconsult AS which follows TEK17. Finally, for the 

economic analysis, prices were retrieved from Catch solar and STS solar technologies 

Scandinavia for the solar thermal collector system and the PV system respectively. The payback 

period and profitability of both solar systems were calculated using the net present value 

formula.  
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1.5 Limitations 

The limitations of this work are stated below: 

• The data availability for detailed solar information required for the location of the case 

building is limited due to scarcity of measurements of sun hours with respect to clouds 

and rains in meteorological weather stations.  

• There is scarcity of space to install the required number of solar collectors/panels, since 

the installation is limited to the case building itself. 

• There is minimum production throughout the year since the elongated part of the 

building faces east and west, rather than south, which is the best orientation for solar 

collectors. Also, in winter due to snow accumulation and less availability of sunshine, 

the production is next to zero. 

• The battery bank is not included in the calculation of the payback period of the PV 

system. 

• The investment cost of solar systems and batteries are quite high resulting in high 

investment cost. 

 

1.6 Thesis outline 

 

This thesis comprises of 6 chapters and chapter 1 explains the necessity and advantages of solar 

energy in today’s world, along with an overview of the types of energy demand in households 

and information about the existing building study case in Narvik. Furthermore, the problem and 

methodology of this thesis are explained. Chapter 2 presents a theoretical background about the 

solar energy and its potential in the arctic region. Whereas, Chapter 3 comprises a literature 

study of both the thermal and the PV solar systems along with their components. Plus-customer 

and support scheme for plus-customers is further discussed in this chapter along with price and 

market of solar installations and relevant Norwegian standards. Dimensioning and simulation 

result of a solar thermal collector system and a PV system for the case building – Beisfjordveien 

88 along with economic analysis are discussed in chapter 4 and discussion, conclusion and 

further work of this thesis are presented in chapter 5 and 6 respectively.   
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2 Solar energy potential in The Arctic region 

Sun is the source of pure energy which is received by our earth surface directly through solar 

radiation and indirectly through wind, hydro, biomass, ocean and other forms. The energy 

radiated by the sun is a consequence of the thermonuclear fusions taking place at the surface of 

the sun, where hydrogen is transformed into helium (Andren, 2003). This transformation 

involves a loss of mass, which is converted into energy. Earth receives 15 000 times more 

energy from the sun than the earth's population spends in a whole year. And the total energy 

that earth’s atmosphere, land and sea absorb is around 3.85 * 1026 Watt per year (Mertens, et 

al., 2014). Only a fraction of this hits earth’s surface, and only 0.4% to 13% of this fraction of 

raw solar energy can be utilized with respect to insulation, cloud cover and land covered by 

humans. Even in Norway, the sun provides 1500 times more energy than the population can 

utilize. Depending on the location of the earth, the solar energy potential differs from 700 to 

over 2500 kWh/m2 per year (Halvorsen, et al., 2011). 

 

Figure 3. World map of solar energy potential (NASA, 2016).  

The arctic region is located at the northernmost part of the Earth with latitude above 

66°33′47.5″ N. Weather conditions and varying solar availability throughout the year in the 

arctic region is low compared to other regions. However, low temperatures and snow are 

considered beneficial for PV solar systems, as the solar cells operate efficiently at lower 

temperature than in higher temperatures, which as a result minimizes heat loss and wearing of 
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the system. The standard test condition for determining efficiency of solar cells is 25˚C. Hence, 

at lower temperatures, the efficiency of the solar cell increases by 0.2% - 0.5% per degree (Jha, 

2009). This theoretically shows that conditions in the arctic region are favorable for solar 

energy. Besides that, the reflection of the solar radiation due to snow contributes to the 

production of energy through high ground reflected radiation. Due to high albedo, which is the 

ability of surfaces to reflect light, snow reflects about 90% of the incoming shortwave radiation 

(Kahl, et al., 2019).  

 

2.1 Solar irradiance  

Solar irradiance (SI) is the intensity of incoming solar radiation (insolation) per unit area. SI 

outside earth has an average power of around 1366 W/m2, which is measured by satellites and 

known as the solar constant (Andren, 2003). When solar radiation reaches earth’s surface, either 

the energy is reflected or absorbed by water vapor, ozone and carbon dioxide in the atmosphere. 

Therefore, there are two types of solar radiation that reach the surface of the earth: Direct 

radiation and diffuse radiation. Direct radiation is the radiation that travels on a straight line 

from the sun down to the ground whereas diffuse radiation is the sunlight that has been scattered 

by molecules and particles in the atmosphere.  

 

Figure 4. Solar irradiation on a horizontal surface in Norway for winter and summer. (Hagos, et al., 2014) 

Summer Winter 
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The potential for solar radiation utilization for production of usable energy is lower in the arctic 

region and varies with latitude, clouds, humidity, day and season. The solar radiation passes 

through a thick atmosphere in northern latitudes and hit the surface of the earth at a low angle. 

For maximum utilization, the receiving surface must be installed at an optimum angle facing 

southwards. In Northern Norway, the solar radiation on a horizontal surface spans from 700 

kWh/ m2 per year to 900 kWh/ m2 per year. On a clear day in summer, direct radiation is about 

85% of the total insolation striking the surface and diffuse radiation is only about 15%. Though, 

when the sun is at a lower angle (e.g. 10˚) especially in winter, the diffuse radiation increases 

to about 40%.  In the context of the northern parts of Norway that lie above the arctic circle, 

global horizontal irradiation (GHI) varies from 1460 kWh/ m2 per year to 1640 kWh/ m2 per 

year in summer and ≤ 20 kWh/ m2 per year in winter (Hagos, et al., 2014).  

In comparison, a new building that follows TEK17 has an energy requirement of 95 - 225 

kWh/m2 of heated utility area per year. This suggests that a normally shade-free Norwegian 

building receives far more energy in the form of solar radiation than the building uses for a 

whole year. The possible utilization of solar energy in buildings is harnessed by three main 

types of technology: passive solar energy, solar thermal energy collector and photovoltaics (PV) 

system.  

1. Passive solar energy:  utilization of solar energy for heating purposes of building via 

solar heat gains through large windows and thermal walls.  

2. Solar thermal collector: directly converts radiation from the sun to thermal energy or 

convert that thermal energy to electricity through a device.  

3. PV system: directly convert photons from the sunlight into electricity using a 

semiconductor device. 
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2.2 Factors affecting utilization of solar radiation 

The amount of solar radiation reaching the surface of the earth is dependent upon solar hours, 

peak sun hours, solar path, local solar irradiation and orientation of the solar collector.  

2.2.1 Annual solar hours 

Solar hours are the number of hours with sunshine during a day which varies throughout the 

year. The solar hours are affected by cloudy and rainy days. Table 1 below shows the 

approximate average monthly variation of solar hours in Narvik (Suncurves, 2019). 

Table 1. Average monthly and annual number of solar hours in Narvik.  

 Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Annual 

Solar 

Hours 
0 12 217 362 444 446 454 407 285 70 0 0 2697 

 

2.2.2 Peak sun hours 

Peak sun hours are the number of hours per day when solar irradiance is 1000 W/m2 at average. 

Narvik has approximately 4.2 sun peak hours which means that the energy received during total 

sunlight hours is equal to the energy received, that is the solar irradiance of 1000 W/m2 

(Suncurves, 2019). 

Table 2. Total sun peak hours in Narvik. 

 Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Annual 

Solar 

Hours 
0 0.78 4.35 6.3 7.09 9.9 9.4 6.2 4.76 1.47 0.2 0 4.2 

 

2.2.3 Local solar irradiation 

The total solar irradiation from the sun, also known as global horizontal irradiance (GHI) for a 

given surface can be measured by the summation of direct horizontal solar irradiance (DHI) 

and diffuse horizontal solar irradiation (DNI) at angle of inclination (β).  

𝐺𝐻𝐼 = DHI + 𝐷𝑁𝐼 ∙ cos β      (1) 
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Values for the annual direct horizontal solar irradiation and diffuse horizontal irradiation have 

been obtained using PVSYST v.6.77 as follows: DHI is approximately 790 kWh/m2, whereas 

DNI is approximately 400 kWh/m2. Figure 5 below shows the monthly global and diffuse solar 

irradiation per square meter during a year in Narvik.  

 

Figure 5. Monthly solar irradiation per m2 surface area, directed towards south (PYSYST v.6.77). 

 

2.2.4 Sun path diagram 

Sun path diagram is the position of the sun in terms of sun height (γs) and solar azimuth (αs) at 

a specific time at a given location, which is useful for considering shading on a collector surface. 

The sun height is the angular height of the sun in the sky measured from the ground. At sunrise, 

the elevation is 0˚ and 90˚ while the sun is directly overhead. The solar azimuth angle is the 

angle between the projection of suns center towards the horizontal plane and due south 

direction. The figure 6 below shows the sun path diagram for selected days during the year for 

Narvik. 
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Figure 6. Sun path diagram for Narvik drawn by PVSYST v6.77. 

 

2.2.5 Orientation and inclination angle of the receiving surface 

The orientation of the solar receiving surface should be such that it collects most of the solar 

radiation. With respect to the horizontal plane, the orientation refers to two angles: azimuth 

angle (α) and inclination angle of collector (β), as shown in figure 7 below. Whereas inclination 

angle is the angle between the horizontal plane and the solar panel. A receiving surface which 

faces the south directly is the most ideal azimuth angle of 0˚. The clear sky daily radiation 

increases with elevation and varies according to inclination angle. The increases are maximum 

in winter, when the sun is at lowest angle (Page, 2012). So, in the arctic region, vertically 

standing solar collectors have more efficiency in producing energy. A solar collector must be 

tilted at an optimum angle to obtain maximum radiation yield. PVGIS software was used for 

calculation of average optimal angles at Narvik. The optimal inclination angle of the solar 

collector is 47˚ and optimal azimuth angle is 12˚. 

 

Figure 7 . Angles used in solar technology. (Jha, 2009) 
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3 Literature study 

The possible utilization of solar energy in buildings is harnessed by two main types of 

technology: solar thermal system and PV system.  

 

3.1 Solar thermal system 

Solar thermal heating system transforms the energy from the sun to usable heat, which can be 

used for heating rooms and domestic hot water. This system consists of thermal solar collectors, 

a distribution system, an accumulator tank for heat storage and a control system as shown in 

figure 8 below. Basically, there are two types of solar collectors: concentrating and non-

concentrating. A concentrating collector has a concave reflecting surface which captures and 

focuses the solar radiation to a smaller receiving area. On the contrary, a non-concentrating 

collector has the same definite area for absorbing and capturing solar radiation. They can be 

designed as stationary or mobile to track solar radiation, there are two types of tracking systems: 

single axis tracking and two-axis tracking (Kalogirou, et al., 2004). Only stationary collector 

will be considered for this project as the addition of a tracking system will incur additional cost 

and complexity to the planned installation. Most common types of stationary thermal solar 

collectors are flat solar collectors and vacuum tube collectors, which will be discussed further 

in the following paragraphs. 

 

Figure 8. Principle diagram of solar thermal collector in a building. (Halvorsen, et al., 2011) 
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3.1.1 Flat plate collector  

The flat plate collector consists of a transparent front cover, channels and the absorber as shown 

in figure 9 below. The collector can be either glazed or unglazed. Glazed collectors are sealed 

in a tight insulated container with a glazed front in order to prevent thermal losses by 

convection, while the unglazed collectors are exposed to the surrounding environment and are 

prone to lose thermal energy due to convection (Kalogirou, et al., 2004). The absorber can be 

made of copper or aluminium. Whereas unglazed collectors are made of plastic polymers and 

preferable in warmer climates due to their reduced cost. According to Newtons law of cooling, 

heat transfer depends on the temperature gradient, so this gradient is reduced due to convection 

when the temperature of the absorbing medium is increased. Then, the heat losses to the 

surrounding increases, similarly, the heating medium circulates through the channels in a flat 

absorber under the absorber surface. 

 

Figure 9. Flat plate collector (Halvorsen, et al., 2011) 

 

3.1.2 Evacuated tube collector 

In the case of evacuated tube collector, the absorber is placed within a vacuum-sealed glass 

tube, as in figure 10 below, so that heat loss from the absorber through convection and 

conduction is reduced than in flat plate collector. The working mechanism is similar to the heat 

transfer as explained in the section 3.1.1. In this case, a small quantity of liquid which has a 
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very low boiling point in a copper pipe is heated up by the sun. This liquid then begins to 

evaporate, and the vapor rises to the top which is cooled down by the manifold, where the cold 

solar circuit liquid circulates. Then, the vapor condenses and flows back to the bottom of the 

pipe. As vapor needs more space than liquid, the pressure within the pipes increase, resulting 

in the phase change from gas into liquid. This process keeps on circulating in a loop. The 

evacuated tube collectors should be mounted at an inclination angle, particularly from 20˚ to 

70˚ for the internal heating medium to maintain circulation (Zijdemans, 2012). 

 

Figure 10. Section through a direct flow vacuum tube solar collector. (Halvorsen, et al., 2011) 

 

3.1.3 Collectors performance and efficiency 

The solar collector’s efficiency is defined as the ratio of usable heat production, Q from the 

collector to the amount of solar radiation, I received by the collector (Rabl, 1985).  

𝜂𝑠𝑐 =
𝑄

𝐼
       (2) 

In other words, the solar collector’s efficiency is the ability of the solar collector to utilize 

incoming radiation. According to (Zijdemans, 2012), the efficiency of a solar collector, 𝜂Sc, can 

be calculated using the following equation:  

𝜂𝑠𝑐 = 𝜂0 − 𝑎1 ∙
(𝑇𝐿−𝑇𝐴 )

𝐺
− 𝑎2 ∙

(𝑇𝐿−𝑇𝐴 )2

𝐺
     (3) 
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Where, 𝜂0 is the efficiency of the collector without convection and radiation losses known as 

the optical efficiency, a1 is the heat loss coefficient as a result of convection and conduction 

measured in W/m2K, a2 is the heat loss coefficient as a result of radiation measured in W/m2K, 

G is the solar irradiance of the location [W/m2], TL is the average liquid temperature within the 

solar collector [K] and TA is the ambient air temperature [K]. 

 

Figure 11. Typical efficiency characteristic curves for different solar collectors. (Halvorsen, et al., 2011) 

 

Typical efficiency characteristic curves and temperature level of different application area for 

evacuated tube collector, flat plate collector and low-temperature collector are shown in the 

figure 11 above. For the flat solar collector, the temperature of water needs to be about 30 – 80 

˚C, whereas, for vacuum tube, the water temperature needs to be about 50 – 150 ˚C (Halvorsen, 

et al., 2011). 

In Norway, a proper system for residential buildings can produce up to 300 – 700 kWh/ m2 

(Halvorsen, et al., 2011).  This assumes that all heat energy produced in summer can be utilized. 

The solar system should be sized appropriately such that all the solar radiation received during 

summer is fully utilized. This helps in adequate energy production per m2 and low heat loss in 

the accumulator tank.  
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3.1.4 Solar collector area 

According to (Zijdemans, 2012), a simple calculation method for estimation of the required 

solar collector area is given by following equation 4. 

𝐴𝑎𝑏𝑠 =
𝑄𝑑𝑒𝑚𝑎𝑛𝑑 ∙𝑆𝐹

𝑄
  [m2]     (4) 

Where, Aabs is the absorber area dependent upon total heat demand (Qdemand), desired solar 

fraction (SF) and collector yield (Q). 

However, a simplified estimation of the required solar collector area can also be found out 

based on the following table 3. The area is determined by type of heating facility provided to 

the building by solar collector either by number of residents or the number of dwellings 

(Zijdemans, 2012).  

Table 3. Estimation of solar collector area (Zijdemans, 2012).   
 

DHW heating DHW and space heating 

Per person in a multi-dwelling building 1 – 1.5 m2 1.5 – 2 m2 

Per 100 m2 dwelling in a multi-dwelling 

building 

3 - 4 m2 4- 5 m2 

 
 

3.1.5 Accumulator tank for heat storage 

The storage of heat is necessary for the solar collector system since the amount of energy 

generated does not match the heat demand of the building and varies according to season and 

weather condition. There are different types of heat storage available, however, the most 

common means to store heat is liquid. In a household, the types of heat storage systems used 

are short-term and long-term systems. The short-term heat storage system is required to store 

heat in hot accumulator tanks with heat exchanger linked to the solar collector over a period of 

few days. Whereas the long-term heat storage systems can compensate with seasonal 

fluctuations for storing heat until use. Such systems are usually relevant for large solar heating 

system with connection to district heating. A high and slim accumulator tank will be beneficial 
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for the system under consideration, as it has good insulation layer in the tank. The size of the 

tank can be determined by heat demand, type of collector and heating requirement of the 

building. The following table 4 provides a simplified estimation for the size of storage tank 

volume in a solar thermal heating system for multi-family dwelling (Zijdemans, 2012). 

Table 4. Storage tank volume (Zijdemans, 2012). 

Storage tank volume DHW heating  DHW and space heating  

Per dwelling in a multi-dwelling-building 200 – 300 liters 300 – 500 liters 

Per 100 m2 dwelling in a multi-dwelling-

building 

600 – 500 liters 600 – 800 liters 
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3.2 Photovoltaic (PV) solar systems 

The photovoltaic (PV) system converts solar energy to electricity by means photovoltaics, 

where photo means light and voltaic means voltage. This system consists of several components 

including PV array and balance of system components. PV array is an ensemble of PV modules 

that operate as a single electricity generating component. Whereas balance of system signifies 

all the components except for the PV modules, such as solar inverter, mounting, wiring, 

instrumentation and control systems to assemble a functioning system (Andrews, et al., 2013).  

PV systems range from small building-integrated systems to large-scale power stations. There 

are generally two types of solar PV system preferable for dwellings: Stand-alone PV system 

and grid-connected PV system. Stand-alone systems are often used in places without access to 

the electrical grid, for example, cabins in Norway, remote areas or rural areas in developing 

countries for basic household electrical usage. In such systems, there must be a battery for 

energy storage to provide stored power at the time of necessity. In the case of grid-connected 

systems, these are commonly used in residential units. Though only about 1.5% of the solar 

panels are connected to the grid in Norway (Yang, et al., 2010). There are two types of grid-

connected PV systems available, one with battery storage and the other without battery storage 

facility. In this thesis, a PV system with batteries as energy storage will be focused since the 

battery stabilizes the electrical fluctuations that occur in a household and improves the overall 

performance of the solar system. 

 

3.2.1 Grid-Connected solar PV system 

The grid-connected PV systems are composed of various components with specific purposes 

such as utility grid, solar modules/ panels, inverter, battery bank and loads (Yang, et al., 2010). 

The principle mechanism of PV system connected to the grid is such that PV cells produce DC 

when they react to solar radiation. The DC-AC inverter changes the received electric current 

from DC to AC, where AC current can be utilized by the building load/ appliances or fed into 

the utility grid. This system is regulated under what is known as feed-in tariff.  
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During a sunny day, PV modules generate a higher amount of electricity which is utilized by 

the building and the excess energy is sold to the grid. The customers who sell surplus energy 

back to the grid, that is below 100 kW at any time, are known as plus-customers and are further 

discussed in section 3.4. And when there is no sun, the electricity is taken either from the utility 

grid or from the battery. The battery system stores electrical power which is later used when 

sunlight is not available to meet the energy demand of the building. 

  

Figure 12. Standard grid-connected solar system (Humphreys, 2019). 

 

3.2.2 Utility grid 

A utility grid is a combined network of distribution systems that transmits electric power to the 

consumers. Today’s power system has large production facilities and transmission of electricity 

over long distances to the consumers. In Norway, the transmission grid is divided into three 

voltage levels: main grid, regional grid and distribution network. The main grid has a voltage 

level of 132 – 420 kV that transports electricity from large-scale power production to the 

regional network. The regional grid is a link between the main grid and the distribution network 

with a voltage level of 33 – 132 kV. The distribution network distributes electricity to customers 

such as households, businesses and smaller industries and has a voltage level of 0.23 to 22 kV 

(OED., Kraftnett, 2019).  
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3.2.3 PV panel 

The PV panel includes one or more PV modules that are assembled, and these PV modules 

consist of PV cell circuits sealed in a protective laminate. These photovoltaic cells, also known 

as solar cells, convert solar radiation to electricity. A p-n junction fabricated in a layer of a 

semiconductor forms a photovoltaic cell as shown in figure 13 below. When an incoming 

photon has energy equal or larger than the band gap of the solar cell material, the photon may 

be absorbed in the material. This generates an electron-hole-pair, where the electron signify as 

a negative charge and hole signifies a positive charge. Then the electron flows through the 

external circuit by connecting an external circuit to the cell and combine with the hole on the 

p-side creating an electric current (Jha, 2009).  

 

Figure 13. Generation of electric current in a solar cell (Halvorsen, et al., 2011). 

 

Usually, solar modules have several solar cells interconnected in series or parallel, to meet the 

demand requirements in terms of power output, current and voltage.  A single solar cell can 

generate an electric voltage in the range of 0.3 to 0.6 volts.  By connecting solar cells serially 

in a solar module, voltage contributions from each solar cell are summed to a higher voltage, 

whereas in parallel connection, the current output of the module increases and in both cases the 

power output of the solar module increases. The power output and current output against 

module voltage of a solar module which demonstrates possible maximum power output (PMPP), 

as a function of current and voltage, and indicates how current and voltage are changed by 

variation in solar radiation.  
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The current and voltage are reduced by reduced solar radiation, which means that possible 

power production is also reduced. The values in figure 14 are based on a temperature of 25⁰C, 

where the higher temperature will reduce the maximum effect (Jha, 2009). 

 

Figure 14. Power curves and characteristics of solar cell (Jha, 2009). 

 

The point maximum power point (PMPP) specifies the point where the possible power output is 

highest. The possible power generation depends on solar radiation, temperature, latitude, and 

maximum power generation. The standard test conditions (STC) indicates the efficiency of 

solar cell modules and are specified by irradiation of 1000 W/m2, an air mass (AM) 1.5 

spectrum and cell temperature of 25˚C. Watt peak (Wp) or nominal power is the most used term 

to rate the performance of solar cells and is the maximum power output produced by the PV 

module under STC. The efficiency of the solar cell is the ratio of power emitted from the solar 

cell and the effect of the incident light measured under standard conditions (Jha, 2009). In terms 

of MPP voltage and current, the efficiency can be expressed as:  

𝜂 =
𝑃𝑚𝑎𝑥

𝑃𝑖𝑛
 =  

𝑉𝑚𝑝𝑝∙ 𝐼𝑚𝑝𝑝 

𝑃𝑖𝑛
     (5) 
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The performance of a solar system can be measured by the electrical energy can be expressed 

as follows: 

𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 [𝐾𝑊ℎ] = 𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 [𝐾𝑊] ∗ 𝑡𝑖𝑚𝑒 [ℎ]    (6) 

 

3.2.4 The inverter 

The main purpose of the inverter is to convert DC power produced by the solar PV to AC current, 

in order to match the power requirements of the load such that electricity is utilized by appliances 

within the building or fed into the grid. Other benefits of an inverter are adjusting the frequency of 

the output AC power, performing maximum power point tracking (MPPT) to take full advantage of 

the energy generation from the PV system and controlling the effective value of the output voltage. 

Most common types of inverters are string inverter, central inverter, microinverter and battery-

based inverter. String inverters are connected to a couple of strings of PV modules and ensures 

minimum risk to the PV system. This is because when one inverter disconnects or stops, the PV 

system can still supply power from the rest of the string inverters. A string inverter is preferable for 

residential or small commercial buildings since they have capacities that range from 1 kW to 8 kW. 

This inverter operates approximately at the MPP of the PV system, and the efficiencies vary from 

90% to 96% at full load. For the size of the inverters, the efficiency and the ability to withstand the 

overload condition must be considered. 

 
Net metering 

Net metering, also known as net billing, refers to both purchase and sale of electricity according 

to electricity usage and production from the solar system. Installation of a smart power meter 

is necessary which can show hour by hour energy consumption along with peak power usage. 

This aids in getting actual data about electrical production and demand. The customer must pay 

only for the consumption. When excess electricity is sold back to the grid by a plus-customer, 

either there may be positive payment or reduction in monthly electricity bill, but this may vary 

according to suppliers.  
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3.2.5 Battery for energy storage 

Most relevant energy storage alternative in a grid-connected PV system to save surplus 

electricity in a household is a battery and can be used as a backup when there is power 

interruption in the utility grid. When the price of the grid electricity is too high, the battery is 

used since batteries can store power output in low demand period and deliver power in high 

demand to the household. The battery energy storage depends upon various factors such as 

depth of discharge (DoD), efficiency, capacity and power which determines the effectiveness 

of the battery. And in a grid-connected system, charging and discharging of the battery occurs 

frequently and rechargeable lithium-ion (Li-ion) batteries are the best option among other 

battery types for the grid-connected system (Dogger, et al., 2011).  

Apart from Li-ion batteries there are lead-acid batteries and saltwater batteries which are 

popular in the market today. Lead acid batteries are mostly used in stand-alone systems since 

the battery has lower DoD, a shorter life span and are least expensive than other battery types. 

Whereas, the saltwater battery is new energy storage which does not contain heavy metals but 

depends on saltwater electrolytes. These batteries can be easily recycled and are safe for the 

environment because of their non-toxic, non-corrosive and non-flammable qualities. However, 

saltwater batteries have been used in only a few projects in Norway (Røine, 2019).  

Li-ion battery, on the other hand, is light and compact rechargeable battery with long cycle life, 

high energy density, deep recycling characteristics, higher efficiency and safe use (Dogger, et 

al., 2011). Today, Li-ion batteries are mostly used for portable electronic devices and electric 

vehicles (EV). Since the introduction of the first EV, the topic of battery reuse has been 

discussed regularly. With the enhancement in EV every year, some of the older generation or 

initially produced EVs are at a disposable stage but can be given a second life. These second 

life batteries can be an alternative to energy storage solutions which avoid installation of new 

systems, resulting in economically and environmentally profitable batteries (Marinez-Laserna, 

et al., 2016). When the capacity of an EV battery reduces to below 80% of the rated capacity, 

the battery reaches end-of-life and can be recycled and reutilized as a solar PV energy storage. 

The research on second-life battery pack of 10 kWh for a household with grid-connected PV 
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system of 2.16 kW size was executed in 2017, and the result showed the battery system was 

able to accomplish 64% to 100% decrease of grid consumption. (Tong, et al., 2017).  

Manufacturers of EV such as Nissan and Tesla have introduced battery banks as energy storage 

systems. Tesla Powerwall battery bank has a capacity of 6.4 kWh and 13.5 kWh whereas, 

Xstorage of Nissan has three models of lower capacity: 4.2 kWh, 6 kWh and 10.8 kWh. These 

recycled batteries aid households by storing electricity in the battery when the power is cheap, 

balancing energy consumption peaks and delivering a uniform load to the utility grid. 

In the case of plus-customers, the payment is done for excess energy per kW per hour either as 

fixed price or spot price. Though the challenge is that battery banks are expensive and, in the 

future, if the prices decrease along with tariffs, the possibility of storing energy is beneficial for 

plus-customers. 

 

3.2.6 Solar cell technologies today 

The solar cell technologies that lead the market today are monocrystalline silicon (mono-Si), 

multicrystalline silicon (multi-Si) and several types of thin-film cells. In 2017 the global 

production of PV production was 97.5 GWp where about 32.2 GWp of these were mono-Si 

cells, 60.8 GWp were multi-Si cells and about 4.5 GWp were thin- film cells as shown in figure 

15 below. (Fraunhofer ISE, 2019). The most predominant of solar cell technologies are wafer-

based silicon solar cells. The production of crystalline silicon cells is either single crystal 

(mono-Si) or polycrystalline (multi-Si) cells. Multi-Si cells comprises of numerous crystal 

gains which require less energy to produce, resulting in less efficient cells. In mono-Si cells, 

the silicon has only one continuous crystal lattice with the least defects and impurities, thus 

providing comparatively high efficiencies. Due to the advanced production process, the price 

of mono-Si is relatively higher than other solar cells in the market. 
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Figure 15. Annual PV production in 2017. (Fraunhofer ISE, 2019) 

Minimal use of thin layers of photovoltaic materials are used in thin-film cells. The thickness 

of these films is about 1 µm, so much less material than of silicon wafers of 200 – 400 µm 

thickness.  There are numerous types of thin film cells in the market today: gallium arsenide 

(GaAs), copper indium gallium selenide (CIGS), cadmium telluride (CdTe) and amorphous 

silicon (a-Si). Thin film cells are less efficient and hence use more roof space, but they perform 

better in low light conditions. Though only small area GaAs cells have been made since it is 

expensive, resulting in use in space applications (Green, at el., 2018).  

Emerging solar cells include perovskite cells, solar PV glass and dye-sensitized cells and 

organic cells. Although the production process has given a variable result, due to low 

production costs and increasing cell efficiencies, these solar cells have a bright future. Extensive 

research has been conducted to improve the conversion efficiency of solar cells. However, it 

should be considered that the conversion efficiency of a solar cell is usually higher than the 

efficiency of the solar panel. Table 5 below shows the solar cell efficiencies in the laboratory. 

Table 5. Solar cell efficiencies. (Green, at el., 2018) 

Solar Cells Record of lab cell efficiency Module efficiency 

Mono-Si 25% 22.7% 

Multi-Si 22.3% 16.5% 

CIS/CIGS 22.9% 14% 

CdTe 21% 10% 
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3.3 Factors affecting the solar system on the building 

3.3.1 Shading 

The risk of shading must be considered while planning a system that utilizes solar energy. 

Shadow from the horizon affects only direct radiation whereas shadow from the objects nearby 

has great influence, especially shadow casted by nearby modules can make a huge difference 

in the output from the system (Andren, 2003). 

 

3.3.2 Ventilation 

Ventilation gap between the building and the panels must be considered for improving the 

efficiency of the panel. There may be condensation or some water at the back of the module in 

the future, hence a small gap between roof and PV installation will be appropriate (Andren, 

2003).  

 

3.3.3 Derating due to snow and dirt 

The output of the PV module can be reduced because of dirt and snow on the surface of the 

module. The actual value of derating is dependent upon location. There are several new 

solutions provided each year for improvement in removing snow and dirt over the panels. In 

case of vertical facades, the snow will not accumulate on the modules, however on inclined 

roofs, snow may either fall off or must be removed as it can damage the system (Andren, 2003).  

 

3.3.4 Format of solar modules 

Standard solar modules are approximately 1 x 1.7 m2 which will not fit properly in between 

window openings. Customization of the solar modules can be done but only similar modules 

can be connected electrically, resulting in the placement of solar modules unpleasing visually.  

 



 

 

28 

 

3.3.5 BAPV 

Building applied photovoltaic system (BAPV) are regular solar PV system that is installed on 

a completed existing building whereas building Integrated photovoltaic (BIPV) system are solar 

modules integrated into the building elements such as roof tiles, glass facades, sun shading, 

atriums, etc. In the case building, BAPV system will be utilized for assembly of a complete 

solar PV system with PV modules laid to minimize cable lengths and electrical losses. BAPV 

should be introduced earlier in the planning process with experts for assuring good and 

optimum integration.  

 

3.4 Plus-costumer scheme 

Norwegian Water Resources and Energy Directorate (NVE) defines “a plus customer as an end 

user with consumption and production behind the connection point, where the input power at 

the connection point does not exceed at any time beyond 100 kW.” A plus customer can always 

have maximum input of 100 kW in the network. Grid companies check the input power through 

measurement data to verify whether the limit is not exceeded. The customer will no longer be 

a plus customer if the input fed to the grid is over 100 kW, and then must pay tariffs for feed 

(NVE., Pluskunder, 2019). 

NVE have introduced plus-customer scheme so that plus-customers are excused from the 

regulations for power producing units. The scheme needs plus-customers to have an agreement 

with grid company to sell their surplus production, where plus-customer agreement is between 

grid company and consumption consumer, who have installed a production source (solar system 

installations). The grid company purchases the power fed into the grid hour by hour, which can 

compensate for the losses in the network. Besides that, the plus-customer is required to have 

smart feeding system or smart power meter that handles input and output measurements, so that 

power company only charges the customer for power fed into the network, and only the tariffs 

for the power that plus-customers deduct from the grid line (NVE., Pluskunder, 2019). Here it 

is worth noting that NVE has stated that it will introduce requirements for power tariffs. This 

means in practice that the plus customers will have to expect to get a network rental tariff for 
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withdrawals from the network that can vary over the year and over the day. The factors that 

will promote the development towards a smarter network and own electricity production are 

given below. 

 

3.4.1 Smart power meters (AMS) 

Smart power meters will contribute to more accurate settlement of power consumption for 

private customers, as plus-customers will be charged for their actual electricity consumption. 

AMS will give the customers exact information about their consumption and ensures that cheap 

local energy can be used when prices of purchased energy are at their highest. Smart electricity 

meters will be installed in all Norwegian households within 2019 (AMS, 2019). 

 

3.4.2 Elhub 

Elhub is a national data hub that contains all measurement data of electricity consumption per 

consumer in Norway, and has access to consumers, network companies and power companies. 

Elhub is being developed by Statnett with the aim of ensuring efficient exchange of 

measurement values. The registered electricity consumption in the smart meter is transferred to 

Elhub which will be available for monitoring to the grid company and consumer in all 

Norwegian households by 2019 (NVE., 2018). Until Elhub is fully in operation, grid companies 

will purchase surplus power. When the Elhub is in operation, same power supplier must be 

chosen for both purchase of electricity and sale of the excess production. 
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3.4.3 Plus-customer support scheme 

Today, there are two support schemes relevant for plus-customers who produce renewable solar 

energy: investment support scheme from Enova and electricity certificate scheme. 

Enova supports customers who produce their own electrical and thermal renewable energy. The 

owner of a local production unit can receive grants for the installation of solar systems. In case 

of thermal collectors, a consumer can receive support of 15,000 NOK plus 5000 NOK if the 

accumulator tank is also installed.  Also, 10,000 NOK is granted when waterborne floor heating 

is introduced to the building. Besides that, installation of PV modules for production of 

electricity can receive grants up to a maximum of 28,750 NOK for consumers who produce 

their own energy (ENOVA, 2016). Enova’s support scheme may vary between individual 

consumers and real-estate companies as such businesses are covered under electricity certificate 

scheme. However, such support scheme is a motivation to increase the number of buildings 

with their own energy production. 

The electricity certificate scheme is a collaboration on a Norwegian-Swedish support scheme 

where NVE administrates the Norwegian portion of the scheme. Solar power with entire 

production of every MWh produced by preapproved power system receives an electricity 

certificate. A registration fee of 15,000 NOK for systems that produce below 100 kW is required 

to participate in this scheme. This scheme is feasible for companies rather than small individual 

plus-customers (OED, 2014). 
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3.5 Price and market of solar installations 

The price for electricity plays a vital role in profitability of the system. The average price of 

electricity for Norwegian households in 2019, excluding taxes and grid rent is 54.8 øre per 

kWh. The overall average price of electricity including grid rent and taxes amounted to 123.4 

øre per kWh (SSB, Statistics Norway, 2019). However, the prices largely vary depending upon 

the grid company and location of the building. Household customers in Northern Norway are 

exempted from VAT, while companies and companies need to pay the VAT. In case of prices 

for surplus electricity fed back to the grid, power companies, such as Smart Energi and Otovo 

have offered 75 øre/ kWh and 1 NOK/ kWh for surplus flow respectively (Barstad, 2017). 

However, prices could more less rely upon the company that the customers have chosen and, 

also on network losses due to power production increment or reduction.  

The prices of a fully installed solar system vary widely. STS solar technologies Scandinavia 

has made an estimation of 14 – 18 NOK/ Wp (p= peak) for a small scaled solar system. Whereas 

the price provided by Catch solar for solar collector is NOK 1674 per m2. Though according to 

NVE, the cost of solar cell installation is 1.7 NOK/ kWh and solar collector is about 0.55 

NOK/kWh (Sidelnikova, et al., 2015). Nevertheless, the cost of the PV modules continues to 

decline year after year. And within 2025, the costs of the PV modules are expected to reduce 

up to 20-35% (Thorud, et al., 2015).  

In order to calculate the feasibility of investing in solar thermal collectors or PV systems, it is 

imperative to estimate the pay-pack period, on the basis of the net present value. The net present 

value method, as the name indicates, is used for calculating the profitability of the installations 

based on the present value of future discounted cash flows (SINTEF et al., 2018). The discount 

rate is individual, determined mainly by the investor and depends on the projects risk and the 

investors expectation of financial dividend. The formula for present value is as follows. 

𝑁𝑃𝑉 = −𝐼 + ∑ (
𝐹𝑉

(1+𝑟)𝑡)
𝑛

𝑡=1
     (6) 

Where, I = Investment cost, FV = Future value, r = rate of return, t = number of years.  
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3.6 Norwegian Standards 

3.6.1 NS3031:2014 

The Norwegian standard NS3031:2014 is the standard for calculating energy requirements in 

buildings. The net energy demand is defined as the total energy demand for all the energy 

services, such as lighting, DHW, space heating, ventilation fans, water pumps and cooling in a 

building. The average energy use in households was 47.6 TWh in 2016, with the largest portion 

of the overall energy consumption used in DHW as shown in table 6 below. Electricity 

generates 70 – 80% of the energy used to heat buildings, depending on various factors including 

prices (OED., Energifakta Norge, 2019).  

Table 6. Standard values for annual demand from NS3031:2014. 

Building 

Category 

Lighting Household appliances Hot water  

W/m2 kWh/ (m2 year) W/m2 kWh/(m2year) W/m2 kWh/(m2year) 

Building 

block 
1.95 11.4 3 17.5 5.1 29.8 

 

3.6.2 TEK 17 energy requirements 

TEK 17 is the building engineering regulations that specify the minimum requirements for 

construction works. The energy requirements in TEK 17 is relevant for the use of solar energy 

states as follows. In the second paragraph of § 14 -4: Requirements for solutions for energy 

supply, it is stated that building with over 100 m2 heated usable floor area should have energy-

flexible heating systems and be improved for use of low temperature heating solutions. This 

can be a good solution for smaller buildings to utilize low temperature renewable heating 

solutions.  
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3.6.3 NEK 400 for building installations 

NEK 400: 2018 is the standard for design and execution of electrical low voltage installations. 

In the normative supplement 712C, the impact of the solar installations installed on the roof are 

stated. Roof area where placement of solar modules are considered, the PV modules should be 

mounted at a distance of ≥ 1.0 m from the outer edge of the roof and ≥ 1.25 m from the fire 

separator protruding above the roof surface.  

 

3.6.4 Energy labeling of buildings 

Energy labeling schemes are based on regulations on energy labeling of buildings and energy 

assessment of technical facilities. The scheme consists of energy and heating character and 

provides a good indication of energy standard of a home which describes what type of energy 

and how much energy is delivered to the building (Energimerkeordningen, 2015). The energy 

rating is dependent upon energy delivered for the household. A good character is achieved at 

low energy requirements and installation of energy systems that contribute to higher efficiency, 

such as PV panels. The heating grade is affected by the source of heat produced. Households 

that use fossil fuels or electrical energy for heating have a low character. Installation of solar 

thermal collector can improve the heating grade and the best grade is achieved when a 

maximum of 70% is covered by renewable energy. 
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4 Case – Beisfjordveien 88, Narvik 

4.1 Characteristics of the building 

The study case building of this thesis is Beisfjordveien 88, which is an apartment block 

considered for renovation and upgradation by OMTBBL in Narvik, which will follow the latest 

building engineering regulation standard TEK17. The incorporation of solar thermal collector 

and PV system in the building will be thoroughly discussed in this section. 

 

Figure 16. The case study building - Beisfjordveien 88 

The building is located at Øra on the outskirts of Narvik and was originally erected in 1961 

(Leiros, 2018). It is a wooden structure except the basement which is casted in concrete. Three 

out of four walls are cladded with steel plates while the remaining wall is cladded with eternite 

plates. There are two types of windows with two-layered glass and PVC frame, and doors are 

made of aluminum. It has three floors among which the lower floor is basement (partly below 

ground) and upper floors are above ground.  The block comprises of 10 apartments with two 

staircases, four apartments on each upper floor and two apartments on the basement. The 

basement also includes facility rooms such as hobby room, storage units for each apartment and 

laundry. The built-up area of the building is 312 m2.  The table 7 shows the areas of apartments 

on the building along with an estimated number of residents according to the number of 

bedrooms available. 
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Table 7. Area of apartments and estimated number of residents in the case study building. (Leiros, 2018) 

Apartments 
Number of 

apartments 

Number of 

residents 

Primary 

apartment area 

[m2] 

Total area 

[m2] 

A Apartments 4 16 71.9 287.6 

B Apartments 4 12 58.2 232.8 

Basement 

Apartments 
2 4 46.3 92.6 

Total Area 10 32  613 

 

4.1.1 Placement of the solar collectors 

The narrow side of the building faces north and south direction, with only possibility to place 

the system to east and west sides of the roof which is 27˚ inclined. Regarding façade of the 

building, south and west facades are considered for PV installations. West façade is selected 

since there is an open space at the west direction, and maximum solar radiation is received at 

west facades due to low angle of the sun as discussed in section 2.2.4 (Page, 2012). The building 

is not shaded by any nearby building or hill but the shadow from nearby collectors and chimney 

shafts can make a difference in the output from the system.  

 

 

Figure 17. Roof view 
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4.2 Energy demand of the building 

According to measurement data provided for the case building by OMTBBL, the energy 

demand of the building is 216 kWh/ m2 year. Though this value is for the building before it has 

satisfied the building standard TEK17.  

 

Figure 18. Result of electricity load data for Beisfjordveien 88. (Leiros, 2018) 

 

The following table 8 shows the energy simulation, total energy demand and specific energy 

demand per year in SIMIEN, which follows TEK 17. The total net energy demand of building 

is 98.8 kWh/ m2 year.  

Table 8. Energy budget of the building simulated in SIMIEN. 

Energy budget real values 

Energy post Energy needs 

(kWh) 

Specific energy needs 

(kWh/m2) 

1a Room heating 19239 26.9 

1b Ventilation heat 5394 7.6 

2 Hot water (Tap water) 21264 29.8 

3a Ventilators 2769 3.9 

3b Pumps 601 0.8 

4 Lighting 8758 12.3 

5 Technical equipment 12509 17.5 

Total net energy needs sum 1-5 70534 98.8 

 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

[K
W

h
/m

2
]

Months

Energy consumption 



 

 

37 

 

4.3 Solar thermal system 

4.3.1 Dimensioning and simulation result of solar thermal collector 

 

Figure 19. Working mechanism of thermal solar collector. (Andresen, 2008) 

The flat collector is preferable for the building because it has good insulation property, a larger 

area of absorption and aesthetic appearance. However, the drawbacks could be its relatively 

high heat losses and a higher degree of reflection (Zijdemans, 2012). Zijdemans simplified 

calculation given in table 3 in section 3.1.4 is used for area calculation of the solar collector 

which provides for DHW and space heating in the building. The required daily DHW is taken 

50 liters per person. The water inlet temperature and outlet temperature in the system are 

considered as 5˚C and 50˚C respectively. As shown in table 9, the total solar thermal collector 

area is 64 m2 with respect to utilization of DHW and space heating of 2 m2 for 32 residents.  

Table 9. Area of solar thermal collector. 

No. of residents DHW and space heating in a multi-

dwelling 

Area of solar thermal 

system [m2] 

32  2 m2  64 m2 
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The amount of energy demand that solar heat can cover depends upon the temperature level on 

the transport medium. Waterborne floor heating and low temperature radiators provide better 

utilization of solar energy than traditional radiator systems. The absorber area, orientation and 

angle of solar collector also affects the degree of coverage of energy demand. 

The solar collector is placed on the roof with an inclination of 27˚ facing west direction. Here, 

the calculation of energy output by the solar thermal system is executed by solar calculator 

which is based upon Bird and Hulstrom’s model, and Ryan and Stolzenbach’s model (R. Bird 

and R. Hulstrom, 1981). The required DHW of the building is 21264 kWh and space heating 

demand is 19239 kWh as shown in table 8.  

 

4.3.2 Solar thermal collector’s energy production 

The table 10 and figure 20 below shows the total energy production from the proposed solar 

collector at roof inclination of 27˚ facing towards west direction. Also, the total energy 

production of hypothetical solar collector at façade inclination of 90˚ facing west direction is 

simulated to better understand production increase with respect to placement and inclination of 

the building integrated solar collector. The total output produced from the solar collector is 

14314 kWh on the roof. Though, according to the calculation, façade placement provides a 

slightly better result with total output production of 15618 kWh.  

 

Figure 20. Solar thermal energy production with respect to energy demand of the case study building. 
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The accumulator tank size normally increases with respect to the solar collector area. A size of 

1.5-day heat consumption is used for sizing of heat accumulator tank. According to Zijdemans 

simplified calculation of storage tank volume in table 4, section 3.1.5, DHW and space heating 

of 500 liters per dwelling in building block is recommended, which is about 5000 liters.  

The solar system should be properly sized with respect to energy demand in summer to avoid 

wastage of energy generated. Therefore, the area of the solar thermal collector is dimensioned 

such that it satisfies energy demand in summer as shown in figure 20 above, resulting in no 

wastage in energy generation and reduced investment cost. 

Table 10. Total solar thermal system production output at an inclination of 27˚ and 90˚. 

Solar collector’s energy production 

Month Solar 

hours 

Average kWh/m2 

Ø @ 27˚ 

Average kWh/m2 

Ø @ 90˚ 

Total kWh  

@ 27˚ 

Total kWh 

 @ 90˚ 

Jan 0 0 0 0 0 

Feb 12 16 17 7 8 

Mar 217 54 60 451 503 

Apr 362 111 123 1540 1712 

May 444 166 181 2827 3082 

Jun 446 200 215 3418 3679 

Jul 454 184 199 3203 3463 

Aug 407 130 144 2039 2252 

Sept 285 70 78 764 851 

Oct 70 24 25 64 68 

Nov 0 2 2 0 0 

Dec 0 0 0 0 0 

Annual 2697  373 407 14314 15618 
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4.3.3 Economic analysis of the solar thermal collector 

The typical costs for the solar thermal system were retrieved from Catch solar. Table 11 below 

consists of a total estimated price for components of the thermal system along with labor cost 

where the hourly rate is around NOK 800 and price for solar collectors are estimated to be 1674 

NOK/m2 (R. Bird and R. Hulstrom, 1981). The current subsidy given by Enova is 15,000 NOK 

for the solar thermal collector.   

Table 11. Total investment cost for solar collector. 

Types 
Area 

[m2] 

Price 

[NOK] 

Quantity 

[liter] 
Cost [NOK] 

Solar collectors 64 1,674  107,136 

Heat storage   5,000 22,917 

Circulation pumps    1,333 

Vacuum system    4,347 

System Controller    934 

Pipes and fittings    3,200 

Labor    50,000 

VAT 25%    34,967 

Total Investment 

Sum 
   224,834 

Enova grant    -15,000 

Total Sum    209,834 

 

The expected lifetime of the solar thermal systems is 20 years, while supplementary equipment, 

such as pumps, steering and tanks can have a lifetime of around 10-20 years. After investing in 

the solar thermal collector, it is desirable to determine payback period. The net present value 

(NPV) method was used to perform the economic analysis.  
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The economic analysis is presented in figure 21 below, where the total sum investment for the 

solar thermal collector is 224,834 NOK. The investment is paid at an interest rate of 2% per 

year. The conventional energy is the output heat production from the solar collector, which is 

retrieved from table 10. The energy cost is considered to be 1 NOK/kWh (Solar, 2019), which 

increases at an interest rate of 4% per year. The net gain is the amount of cost saved with thermal 

energy production per year in the building. This system is profitable due to the reduction in the 

monthly bills with a payback period of 15 years and doubled initial investment in about 24 

years. 

 

Figure 21.Graphical representation of payback period of solar thermal collector investment. 
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4.4 PV system 

 

4.4.1 Dimensioning and simulation result of PV system 

The calculation of the PV system is executed for the study case building with an area of 613 m2 

for 10 apartments. The total energy demand of the building is 98.8 kWh/m2/year, which was 

retrieved from SIMIEN as presented in table 8. As shown in table 12 below, a solar system size 

of 4 kW per apartment is calculated with respect to the total energy demand and peak sun hours 

(Andren, 2003). The nominal power of the system is 51.6 kWp. The number of solar panels is 

determined by solar system size along with 86 % efficiency (14% loss) consideration and solar 

crystalline module with nominal nameplate power of 300 Watt. 152 numbers of solar panels 

are required for the building, resulting in a solar system area of 258.4 m2, where area of the 

panel is 1.7 m2.  

Table 12. Calculation of solar system size and number of panels. 

Energy 

demand 

[kWh/m2/year] 

Peak sun 

hours 

Solar 

system size 

[kW] 

No. of solar 

panels 

Area of PV 

panels [m2] 

Nominal 

power  

[kWp] 

98.8 4.2 40 152 258.4 51.6 

 

However, architectural suitability must be taken into consideration since is affected by 

limitations in construction, shading and historical conditions of the building. Estimation of 

architecturally suitable areas for the solar installation is taken with respect to the floor area of 

the building which is retrieved from a simplified method developed by IEA-PVPS Task 7 

(Good, et al., 2016). According to the method, generalized utilization factors for roofs are 0.4 

and facades are 0.15 per m2 built-up area. So, the area relevant through architectural suitability 

is considered for the case building. With respect to the architectural suitability, table 13 below 

shows that the total area of PV panels are172 m2. 

Table 13. Estimated area for solar installations in the building. 

 
Built-up area  

[m2] 

Suitable roof 

area [m2] 

Suitable facade 

area [m2] 

Total suitable 

area [m2] 

Building block 312 125 47 172 
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For the planning of the PV system in a building, first and foremost the type of solar cell must 

be determined. Both polycrystalline and monocrystalline cells are preferable to the building 

according to the characteristics of the cells. However, monocrystalline panels are recommended 

as panels have higher efficiency for diffused radiation, which will be an advantage in the arctic 

region where the period of direct radiation is shorter (Fraunhofer ISE, 2019). Monocrystalline 

panels often have a STC value of 200-320 Wp. String inverters are recommended for the PV 

system since they have capacities that range from 1 kW to 8 kW and efficiency above 90%.  

The following table 14 shows the number of PV modules, nominal power and total annual 

energy produced by the system. The nominal power is calculated by multiplying PV area by 

efficiency of the Mono-Si cell. Here, the efficiency of Mono-Si is considered to be 20% (Green, 

at el., 2018). The module size of 1.7 m2 is considered which are attached to respective building 

elements.  

Table 14. PV system area and nominal power. 

Placement PV Area [m2] No. of modules Nominal power [kWp] 

Roof – west orientation 125 74 20 

South facade 27 16 5.4 

West facade 20 12 4 

Total Sum 172 102 34.4 

 

Figure 22. Working mechanism of grid-connected PV system. (Martinez, et al., 2013) 
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4.4.2 Solar PV modules energy production 

The total energy production from the PV modules at roof inclination of 27˚ and vertical façades 

of 90˚, which was simulated from SIMIEN and presented below in table 15. The panels are 

oriented to west direction since there is no shading and open space is available at the western 

side of the building. The PV modules placed at south harness more solar radiation than in west. 

Proposed 102 numbers of PV modules generate the total output production of 18639 kWh, 

where around 65% of the production satisfies the demand of the building and rest is fed back 

to the grid.  

Table 15. Total solar PV system production output at an inclination of 27˚ and 90˚. 

Solar modules energy production 

Month kWh @ 

27˚ roof 

kWh @ 

90˚ - west 

facade 

kWh @ 

90˚ - south 

facade 

kWh 

Sum 

Produced 

kWh 

Utilized by 

the building 

kWh 

Exported 

to the grid 

Jan 0 0 0 0 0 0 

Feb 354 20 106 480 466 15 

Mar 958 74 194 1227 1065 162 

Apr 2155 180 350 2685 1797 889 

May 2597 233 322 3152 2021 1128 

Jun 2803 242 327 3373 1939 1434 

Jul 2481 216 296 2993 1870 1123 

Aug 2164 179 306 2649 1672 977 

Sep 1095 87 193 1376 1095 281 

Oct 504 31 114 649 615 34 

Nov 43 2 11 55 55 0 

Dec 0 0 0 0 0 0 

Annual 15155 1265 2219 18639 12598 6042 

 

A comparison of total energy production from the PV system and the total energy demand of 

the building is presented below in figure 23. The variation of solar radiation leads to over-

production of electricity at summer time, and lack of production to satisfy the energy demand 

in winter time. Due to minimum hours of sunlight and accumulation of snow, in winter, the 
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solar panels produce no energy in December and January but in November little energy is 

produced through the vertical PV panels. The maximum energy production is during May, June 

and July. As a result, there is transmission of energy back to the grid when the demand is met. 

It can be seen in April and August that the electricity is sent back to the grid even though the 

demand is not achieved. Here, an energy storage technology would play a significant role in 

increasing the reliability of the solar PV system and maximizing solar PV energy usage. In 

SIMIEN, energy storage batteries are not taken into consideration, such that electricity is fed to 

the grid rather than be utilized later in need. 

 

Figure 23. Energy production from PV panels drawn by SIMIEN. 

Careful planning and dimensioning of the batteries are required to determine the right size and 

configuration for the building. Lithium-ion phosphate rechargeable Powerwall battery bank of 

13.5 kWh by Tesla is proposed for the building with a capacity of peak power up to 7 kW and 

5 kW continuous power. For the number of Powerwall batteries, a rough calculation was done 

for the case building.  The average of the energy demand of the case building is 70534 kWh/ 

year, from table 8, which is around 194 kWh/ day and the battery can deliver 13.5 kWh of 

capacity, which means the case building will approximately require 14 Powerwall batteries.  

- Electrical energy demand  

- Electricity delivered from 

the PV modules to the 

building  

- Electricity exported to the 

grid. 
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4.4.3 Economic analysis of the PV system 

PV panels have a lifetime warranty of 20 years which will generate at least 80% of the rated 

power after 20 years of utilization since each year the panels degrade about 1%. The electricity 

companies use various tariff schemes for delivering electricity, which may vary for summer, 

winter and peak power usage. The table 16 below shows the estimated investment price for PV 

panels with the cost of a fully assembled solar PV system presumed to be 16 NOK/Wp (p=peak) 

as provided by STS solar technologies Scandinavia.  

Table 16. Investment cost per watt peak. 

Placement PV Area  

[m2] 

Watt peak 

[kWp] 

Cost 

[NOK/Wp] 

Cost  

[NOK] 

Roof 125 20 16 320,000 

South facade 27 4.3 16 68,800 

West facade 20 3.2 16 51,200 

Total Sum  27.5  440,000 

 

The following table 17 presents the investment cost of one 13.5 kWh Tesla Powerwall battery 

(Tesla, 2019). As explained in section 4.4.2, 14 Powerwall battery banks will be required for 

the case study building. The investment cost for 14 battery banks can reach up to 1,269,800 

NOK. 

Table 17. Cost estimation for one 13.5kWh Powerwall from Tesla (Tesla, 2019). 

Battery Quantity Cost [NOK] 

13.5 kWh Powerwall battery 1 69,000 

Supporting hardware  7,200 

Deposit for Powerwall  4100 

Installation cost  10,400 

Total sum  90,700 
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An overview of economic analysis is presented in figure 24, where the total sum investment for 

the solar PV modules is 440,000 NOK. The investment is paid at an interest rate of 2% per year. 

PV system produces own electricity of 18639 kWh which reduces the electricity bill of the 

household by consuming the energy of 12598 kWh generated from the PV system and gets 

income or deduction of 6042 kWh in monthly payment by exporting generated electricity to the 

grid. The total electricity price of 1.23 NOK/ kWh is presumed to be the cost which is retrieved 

from Statistics Norway (SSB, Statistics Norway, 2019). All the energy that is delivered to the 

building saves the extra cost. And, the energy cost for purchase of each kWh from the household 

by the grid company is assumed to be 1 NOK/kWh (Barstad, 2017), which is the maximum 

purchase rate by power company till date. About 6042 kWh is exported to the grid in this case. 

The net gain is the amount of cost reduced with own electrical energy production per year. The 

payback period of the investment cost will be around 20 years. 

 

Figure 24. Graphical representation of payback period of solar PV system investment. 
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4.5 Recommended PV cells and solar collector 

The table 18 below shows the characteristics of monocrystalline solar cell and flat plate 

collector that are recommended for the case study building. 

Table 18. Characteristics of recommended solar thermal collector and PV system. 

Characteristics 
Photovoltaics 

(Monocrystalline cells) 

Solar collector 

(Flat plate collector) 

Module size 1.7 m2 3 m2 

Placement Roof – east, south façade, west facade Roof - west facing 

Receiving area 172 m2 64 m2 

No. of modules 101 21 

Annual Energy production  West direction: Roof ~122 kWh/ m2  West direction: Roof ~335 kWh/m2  

Total annual Energy 

production 
~ 109 kWh/ m2 ~335 kWh/m2 

Shape/ Size flexibility High flexibility Low flexibility 

Thickness 0.4 cm  4 to 10 cm 

Weight 19kg/m2 20kg/m2 

Module structure Laminated modules Sandwich modules 

Materials 
Glass/ silicon cells/ Tedlar-Mylar or 

glass 

Glass/ air / metal absorber/ hydraulic 

system/ insulation 

Surface textures 

External glass: smooth/ acid etched/ 

structured 

Silicon cells: variable patterns, 

possible transparency 

External glass: smooth/ acid etched/ 

structured 

Absorber: slightly corrugated, opaque 

metal sheet 

Colors Black/ blue mainly Black/ dark blue mainly 

Energy medium Electricity Hot water 

Energy transport 
Flexible cabling (0.8-1.5 cm diameter). 

 Low energy losses 

Rigid insulated piping system (3-8 cm 

diameter). 

 High energy losses 

Energy storage Lithium battery storage/ into the grid Accumulator tank 

Working temperature 
Lower temperature preferable  

(back ventilation required) 

Higher temperature preferable  

(back insulation required) 

Shadows impact 
Reduction in performances  

Risks of permanent damage to panel. 

Reduction of performances proportional 

to shadow size, no damage to the panel. 

Cost estimation 16 NOK/ Wp 1647 NOK/m2 
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5 Discussion  

Simple calculations and simulation models have been used for determining the size and energy 

output production of both the systems. The data of solar hours and peak sun hours, which were 

retrieved from (Suncurves, 2019), were entered for the calculation of both the systems. 

However, the data are not guaranteed. Data from meteorological institute would have been more 

accurate, but the meteorological institutes have limited stations installed in Norway.  

In case of the PV system, SIMIEN model of the study case building was used, which was 

provided by Lars Kimo Jørgensen from Enerconsult that followed TEK17. The solar PV system 

inputs were done based on area calculations, PV cell efficiency, orientation and inclination of 

the building. But whether the building satisfied the standard TEK17 or not was not cross-

checked. For detailed simulation of the energy production, programs such as POLYSUN for 

the solar thermal collector and PVSYST, IDAICE, Energy Plus or Matlab for the PV system 

could be used. These software’s can be used to design the collectors that provide accurate 

simulation with respect to actual module size and types found in the market.  

Regarding the cost of the systems, they were retrieved from various sources. The costs for the 

PV system provided by various companies ranged from 10 NOK/ Wp to 30 NOK/Wp for a 

complete setup of PV system. Finally, the price provided by STS solar technologies 

Scandinavia was chosen. Also, the price provided by different companies had different units, 

for example, NVE stated that the cost for solar cell installation is 1.7 NOK/ kWh for 15 kWp 

system (Sidelnikova, et al., 2015). Nevertheless, the cost of the PV modules continues to decline 

year after year. And within 2025, the costs of the PV modules are expected to reduce up to 20-

35% (Thorud, et al., 2015).  

The payback period used in this work is a simple calculation which fails to factor in several 

important factors in estimation such as the lifetime of the system, operation and maintenance 

costs. These parameters are taken into account in lifecycle costing (LCC), which is the cost of 

using a PV system during its lifetime. The LCC includes capital cost, operation and 

maintenance costs and replacement costs.   
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6 Conclusion 

6.1 Summary 

The aim of this report was to assure the possible advantage of solar energy in existing residential 

buildings in the arctic region. To reach this aim, calculation and simulation models that take 

solar energy systems into account have been investigated. In both the systems, solar thermal 

collector and PV modules, the energy demand of the building was met during summer. The 

solar collector was designed such that the area of the collector was properly sized with respect 

to energy demand in summer to avoid wastage of energy generated. This resulted in enough 

energy produced per m2 in summer and low heat loss in the accumulator tank. When the vertical 

solar thermal collectors are compared to roof collectors at 27˚, the vertical collectors generate 

approximately 1300 kWh more energy than the collectors on the roof as shown in table 10. For 

building applied PV modules, the architectural suitability area was taken into consideration 

since it is unfit to install the whole building with PV panels. The structure and orientation of 

the case building affect the maximum amount of possible solar utilization since minimum area 

is exposed to the south direction, resulting in lower energy generation than expected for the 

number of PV panels installed.  

The solar thermal collector produces 14314 kWh which satisfies around 68% of DHW demand 

throughout a year whereas the proposed installation of PV system size generates 18639 kWh 

where around 67% of the production is self-consumed. When battery storage is considered for 

the PV system almost 90% of the production can be utilized by the building. Storage of energy 

during low demand and utilization during high demand can reduce electricity bill, besides that, 

batteries aid in controlling energy fluctuations. Both the systems contribute to the building in 

self-sufficiency and less dependency on external power consumption. However, the 

requirement for the building to completely satisfy the energy demand would require 51.6 kWp 

nominal power as shown in table 12, but due to limitation in the area for installation, nominal 

power of 34.4 kWp was chosen as presented in table 14.The characteristics of the recommended 

solar thermal system and PV system are presented in section 4.5 in table 18 where the output 

energy production from the solar thermal system is quite high than in the PV system.  
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The price for a solar thermal collector system is estimated to be 1674 NOK/m2 resulting in total 

investment cost of 209,834 NOK which has a payback period of 15 years. Whereas for the PV 

system, the price of a fully assembled solar PV system is considered to be 16 NOK/Wp which 

results in total invest of 440,000 NOK. The system, however, does not consist of battery 

investment and has a payback period of 20 years. A Tesla Powerwall battery bank investment 

cost is provided in table 17 but the cost is very high for the number of batteries required by the 

building. Second life batteries of an older version of EV are a better option for the PV system 

which can be stacked and purchased as secondhand. The loft area would be a good placement 

for battery storage. 

With respect to both the solar systems, the solar thermal system is relatively cheaper and 

produces more output energy production of 335 kWh/m2 than PV system with 109 kWh/m2, 

even though the size of PV panels is more than double the size of the solar thermal system. The 

cost of PV panels and even batteries decline year after year providing increasing motivation for 

the installation of solar systems. Enova supports both the solar systems for individual customers 

who invest in renewable energy, though when a building is owned by real-estate companies or 

other companies PV system is not subsidized. Nevertheless, solar technologies create a positive 

impact on residential buildings by meeting the energy demand of the building and is profitable 

in the long run. 
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6.2 Further work 

The solar potential for power production by solar technologies in Norway is sought after by all 

solar enthusiasts and experts. Though the meteorological stations for observations of solar 

irradiation throughout Norway are limited. More such stations should be introduced, and the 

accurate measurements ought to be available publicly.  

The capacity of the frame of the modules for both solar systems may or may not withstand the 

pressure of snow accumulated during winter. Modules are generally rated by horizontal 

pressure, but the modules are mounted at an angle or vertically. The tilt of the module should 

be either high so that the snow falls off easily or low so that the frame is not affected by snow 

load. Clearance of snow during winter is a must to utilize solar radiation and not damage the 

frame of the module. More detailed research is required for such situations in Northern Norway. 

Today, there are varieties of BIPV materials available in the market which can replace existing 

roof or windows. If the building must be renovated, then such solutions also can be 

implemented which can reduce both costs for installation of solar modules and building material 

cost. For instance, Tesla has introduced solar PV roof tiles which replace conventional roof 

tiles. However, these solutions are still relatively new, and case-studies should be done on this 

topic. 

Installation of the solar systems in households to be self-sufficient should be encouraged by the 

government and NVE which in return will economize the cost for a fully assembled solar 

system. Other than that, many individuals should invest in a solar system for the benefits of 

own energy consumption and contribution to the environment by no usage of fossil fuels.  
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8.1. Optimal inclination angle and azimuth angle at Narvik from PVGIS. 

8.2 Sun path diagram from PVSYST. 

8.3 Weather and solar information at Narvik from Suncurve  

8.4 Solar thermal system production and investment analysis. 

8.5 PV system simulation in SIMIEN. 

8.6 PV system investment analysis 

 


