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Abstract

Deep image clustering is a rapidly growing branch of machine learning and
computer vision, in which deep neural networks are trained to discover
groups within a set of images, in an unsupervised manner. Deep neu-
ral networks have proven to be immensely successful in several machine
learning tasks, but the majority of these advances have been in supervised
settings. The process of labeling data for supervised applications can be ex-
tremely time-consuming, or even completely infeasible in many domains.
This has led researchers to shift their focus towards the deep clustering
field. However, this field is still in its infancy, meaning that it includes sev-
eral open research questions, regarding e.g. the design and optimization of
the algorithms, the discovery of meaningful clusters, and the initialization
of model parameters.

In an attempt to address some of these open questions, a new algorithm
for deep image clustering is developed in this thesis. The proposed Deep
Tensor Kernel Clustering (DTKC) consists of a convolutional neural net-
work (CNN), which is trained to reflect a common cluster structure at
the output of all its intermediate layers. Encouraging a consistent cluster
structure throughout the network has the potential to guide it towards
meaningful clusters, even though these clusters might appear to be non-
linear in the input space. The cluster structure is enforced through the
idea of companion objectives, where separate loss functions are attached
to each of the layers in the network. These companion objectives are con-
structed based on a proposed generalization of the Cauchy-Schwarz (CS)
divergence, from vectors to tensors of arbitrary rank. Generalizing the
CS divergence to tensor-valued data is a crucial step, due to the tensorial
nature of the intermediate representations in the CNN. Furthermore, an
alternate initialization strategy based on self-supervised learning, is also
employed. To the author’s best knowledge, this is the first attempt at
using this particular self-supervised learning approach to initialize a deep
clustering algorithm.

Several experiments are conducted to thoroughly assess the performance of
the proposed DTKC model, with and without self-supervised pre-training.
The results show that the models outperform, or perform comparable to,
a wide range of benchmark algorithms from the literature.
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Part I / Introduction

1. What is machine learning?

Data source

Ground truth (supervised only)

Data Output
Database Model Error

Correction

Figure 1: An illustration of a generic machine learning system.

Machine learning is a field of study which resides in the intersection between
mathematics, statistics, and computer science. It is also considered to be an
integral part of the general field of artificial intelligence, as machine learning
components would allow these intelligent systems to learn from the environment
they inhabit. The basic principles of machine learning have been summarized
by several textbook authors [1, 2, 3, 4], and although there are some differences
in phrasing and terminology, these authors all succeed in conveying the same
message about the purpose of the machine learning field. Namely that it consid-
ers the design of computer systems for performing specific tasks, without them
being explicitly programmed with this exact task in mind. This is achieved by
constructing the system such that it can learn from examples, making it capable
of adapting to the current task at hand. The examples are often referred to as
the training data, and are — together with the learning algorithm itself — crucial
components of all machine learning systems.

The potential of this symbiotic relationship between data and algorithm is pre-
cisely why we have seen massive developments in machine learning in recent years.
Our society is in a constant state of digitalization, and the generation and col-
lection of massive amounts of data is a natural byproduct of this process. The
size of the datasets has long since outgrown the capabilities of manual analysis
and explicit programming, which means that the design of automated systems
is absolutely necessary when these datasets are to be translated into actionable
insight. The digitalization has also brought with it an increase in computational
capacity, which has led researchers to design increasingly complex systems for
dealing with the ever growing amounts of data.

Figure 1 shows a conceptual overview of a machine learning system. The data is
collected, and passed to the model, which then produces a set of outputs. The
outputs are processed by a cost function or loss function, whose objective is to
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quantify the error made by the system. This error is in turn used to compute
potential corrections that should be made to improve the model’s performance.
The loss function can either be a function of the output only, or it can be com-
puted by comparing the output to a collection of desired responses, referred to
as the ground truth. The difference between these two approaches is described in
more detail below.

The various machine learning tasks can be roughly divided into four different
categories [1, 3]. These are:

e Supervised learning: The training data consists of input-output pairs, and
the system is trained to reproduce the correct output for each input. In
this case we refer to the output examples as “ground truth” or “labels”,
and say that the training data is labeled.

e Unsupervised learning: The training data consists of only input observa-
tions. The training data is therefore said to be “unlabeled”. Due to the
lack of output examples, it is up to the machine learning practitioner to
specify which type of output one wishes the system to produce. This is
usually done through the design of the algorithm.

e Semi-supervised learning: A combination of supervised learning and unsu-
pervised learning. In this case the training data consists of both input-
output pairs, as well as observations where only the input is available.

e Reinforcement learning: The machine learning system represents an agent
capable of interacting with a specific environment, whose goal is to max-
imize some reward. The input to the system is information about the
environment, and the output is a sequence of actions. The system receives
information about the reward for a particular set of actions, and has to
adapt according only to this information.
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2. Clustering
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(a) Input data (b) Clustered data

Figure 2: An illustration of the clustering process for two-dimensional points. The “natural” groups
in the input data are automatically discovered by the system, and shown here with different
colors.

In this thesis we will study a particular branch of unsupervised learning, namely
clustering, which refers to the process of discovering underlying group structure
in an unlabeled dataset. The process is illustrated for a simple two-dimensional
dataset in Figure 2. The supervised counterpart to clustering, classification, re-
quires labeled data. However, when the labeling process is not an intrinsic prop-
erty of the data generating system, the labeling has to be done manually to make
supervised learning a viable option. Although several datasets have been manu-
ally labeled for the design of classification systems, it remains a prohibitive task
in many fields, especially within those containing massive amounts of data. This
makes clustering the only feasible option in these fields. The ability to identify
and quantify potential groupings in a dataset has proven to be immensely useful
in a wide range of applications including, but not limited to, image segmentation
and text processing [5], medical image analysis [6], satellite image segmentation
[7], texture analysis [8], and several others.

The need to understand the massive amounts of unlabeled data has led to the
development of a multitude of clustering algorithms. Comprehensive reviews of
many of these algorithms can be found in e.g. [9] or [10]. In the last couple of
years, the clustering field has seen a shift in methodology towards methods based
on Deep Learning [11, 12], resulting in the birth of the Deep Clustering subfield.
Deep learning architectures, also referred to as deep neural networks, are known
for their versatility, as well as their ability to handle more complex data types,
such as digital images or multivariate time series [13, 14].

Images and time series are examples of data types that cannot necessarily be
said to reside in a vector space, which is an assumption made by many of the
classical clustering algorithms. Deep clustering algorithms seek to leverage the
representational power of deep learning architectures in an unsupervised manner,
aiming to translate the success of supervised deep learning to the domain of
unsupervised learning. This translation has been identified as a main next goal
for machine learning research [11]. Recently, state-of-the-art results have been
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reported for complex vectorial data [15, 16, 17, 18], digital images [19, 20, 21],
and multivariate time series [22]. A review of some of these methods is provided
in Part III.

2.1. Key challenges in the current deep clustering scene

The process of developing the current state-of-the-art deep clustering techniques
has posed many important questions and challenges along the way. Some of those
considered to be most important are the following:

e How should the deep clustering models be optimized? The most
common approach to deep clustering has been to use some deep neural
network to embed each input observation in a vector space, and then pass
these embeddings to a clustering module, whose output is the final predic-
tion of the model. The deep neural network and the clustering module can
then be jointly optimized to improve the clustering result, by minimizing
some unsupervised loss function, computed at the output of the network.
However, we do not know if this is the best approach to combining the deep
neural network and the clustering module. There is also some uncertainty
regarding the specification of the loss function, which can be observed in
the more general field of clustering as well. The size of the literature and
the large amount of proposed clustering methods are consequences of the
fact that the mathematical specification of the “optimal clustering” can be
somewhat challenging [23].

¢ How do we make sure that the clusters we find actually make
sense in the input space? This question is somewhat loosely formu-
lated, but it amounts to enforcing some preservation of cluster structure
between the embedding space, which was discussed in the preceding ques-
tion, and the input space [24]. If our clustering is based on perceived cluster
structure in the embedding space, it is crucial that this structure reflects
some meaningful cluster structure in the input space as well.

e How do we quantify cluster structure for images and image repre-
sentations? One approach to encourage the preservation of cluster struc-
ture throughout the deep neural network is to enforce a common cluster
structure at the output of the layers in the network. Convolutional neural
networks (CNNs) [25] have been the go-to deep learning architecture for
image clustering [19, 20, 21]. However, as we will see later, the layers of
a CNN do not produce vectorial-representations, meaning that one cannot
rely on vector-based methods from the literature to quantify the cluster
structure for these representations.

e How should we initialize the parameters of the deep neural net-
works? Deep neural networks have to be optimized starting at some initial
point in the parameter space. It was pointed out by e.g. Kampffmeyer et al.
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[20] that randomly initializing the parameters of their clustering network
made it prone to getting stuck in local optima, resulting in sub-optimal
clusterings. Other works have focused on the use of autoencoders to alle-
viate some of the difficulties of training randomly initialized networks in
an unsupervised manner [15, 24|, but their results do not by any means
indicate that the problem is “solved”.

To the author’s best knowledge, these questions still remain as open research
topics in the field of deep clustering. The potential impact of advancements
within these topics constitutes the motivational foundation for this thesis.

3. Contributions

The focus of this thesis will be on image clustering. Digital images are an ex-
tremely common data type, and the processing of these images makes up the very
backbone of systems for e.g. autonomous driving [26, 27|, medical imaging [28],
and remote sensing [29]. Many of these systems rely on CNNs [25] — a particular
neural network architecture which has proven to be very successful within the
field of computer vision [13, 30]. These networks have a strong connection to the
domain of tensor theory, with early work including e.g. [31, 32, 33]. However,
the research on this topic is still very much in its early stages.

As an answer to the questions outlined above, the connection between CNNs
and tensors is utilized to construct a model for image clustering. This model
is referred to as Deep Tensor Kernel Clustering (DTKC), and draws inspiration
from Deep Divergence-based Clustering (DDC) [20]. The objective of DTKC is
not only to cluster the images, but to do so under constraints on the cluster
structure of the intermediate layers, as well as the output layer. This is done
by leveraging the idea of companion objectives [34], coupled with tensor kernels
[35], and information theory. The recent concept of self-supervised learning [36]
is also explored as an initialization strategy. The key contributions of the thesis
are summarized as follows:

e The Cauchy-Schwarz (CS) divergence [37] is a in information theoretic mea-
sure which is central in DDC. In this thesis, the CS divergence is generalized
from vectors to tensors of arbitrary rank, using kernel density estimation
[38], and tensor kernels [35]. This allows us to describe the cluster structure
in a tensor-valued dataset, by considering the divergence between probabil-
ity density functions representing the respective clusters.

e The generalized CS divergence is used to construct an unsupervised com-
panion objective for each of the layers in a convolutional neural network.
These companion objectives are integral parts of DTKC, and are essentially
terms which are added to the final loss function, that enforce a consistent
cluster structure in earlier layers of the CNN.
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e Self-supervised learning, as described in [36], is employed as an initialization
strategy for the proposed model, resulting in DTKC-SS. To the author’s
best knowledge, this is the first attempt at using this technique to initialize
deep clustering models.

Figure 3 shows an overview of the contributions and how they relate to their
respective domains. The ideas originate from recent developments in machine
learning, as well as advanced concepts from mathematics and statistics.

Information
theory

Tensor
theory

Kernel
theory

Deeply Supervised Cauchy-Schwarz Convolutional Neural
Nets Tensor Kernels Divergence Clustering Networks

Unsupervised Companion &) Deep Divergence-based (J\_) Self-Supervised

Objectives Clustering Learning

| DTKC & DTKC-SS |

Consistent cluster

structure for im-
proved deep clustering

Figure 3: Diagram relating the main contributions (red squares and arrows) and the domains they come
from.
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4. Thesis outline

After this introduction, we will proceed to Part II which covers the basic defi-
nitions and terminology of the clustering field. This part also includes a review
of clustering algorithms that do not belong to the deep clustering field, as they
remain relevant for a thorough understanding of the clustering problem.

Part III will take us closer to the deep clustering scene, as it begins with an
introduction of the most frequently used deep learning architectures. These will
also be revisited in later parts, both in theoretical and experimental contexts.
The final section of Part III builds on the understanding of these models, and
introduces a several deep clustering algorithms.

The theoretical and methodological contributions of this thesis are described in
Part IV. Here we will go through the relevant information theory, as well as the
theory on tensor kernels. This part ends with a thorough explanation of the
proposed DTKC model.

Part V covers the experiments performed to evaluate DTKC. This part describes
the datasets, model implementation, and provides all the experimental results.
The section containing the results is designed to thoroughly assess the effects
of the unsupervised companion objectives and self-supervised pre-training. It is
therefore divided into subsections, where the goal of each subsection is to investi-
gate and discuss very specific aspects of the proposed model. These analyses are
followed by a discussion whose aim is to address the more general observations
made during the experimental process, as well as to provide some thoughts on
future work, and the outlook of the contributions made in this thesis.

Part VI gives some concluding remarks, summarizes the contributions, the out-
come of the experiments, and what impacts they have on the future of the deep
clustering field.

5. Notes from the author

A paper related to the work described in this thesis has been published by the au-
thor in the 2019 IEEE International Conference on Acoustics, Speech, and Signal
Processing. The paper proposes RDDC [22], which is a model for deep clustering
of variable length time series, based on recurrent neural networks and DDC. A
second paper which is related to unsupervised image processing, is scheduled for
publication in the 2019 Scandinavian Conference on Image Analysis. This pa-
per proposes UCSN [39], which is a CNN-based model for unsupervised feature
extraction from images.
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In this part we will go through some of the background material that is neces-
sary to understand the clustering problem. This will also include a definition
of clustering which is more formal than what was given in the preceding part,
which helps us build a consistent framework for terminology and mathematical
notation. Following this will be a brief overview on data transformation, and
a discussion on the quantitative evaluation of clusterings — the latter of which
introduces the important concept of cluster validity indices (CVIs).

In the last section of this part we will go through several of the well-known clus-
tering algorithms in the literature. Although these algorithms do not fall within
the field of deep clustering, they are included as they represent important ad-
vancements in the more general clustering field. They also provide some relevant
background and motivation for the deep clustering methods introduced later.

6. Definitions and background theory

Many different clustering definitions have been formulated throughout the years,
all of which come with their own strengths and weaknesses regarding the formal-
ization of the problem, and the formulation of specific clustering algorithms. The
following definitions related to clustering are similar to those given by Theodor-
idis and Koutroumbas [1], and provide a general framework which can be further
expanded upon when specific algorithms are introduced.

Definition 1. A clustering of a dataset X = {x1,...,x,} is a partitioning
of X into k sets, Cq,...,Ck. These sets are commonly referred to as clusters.
In general, the partitioning can be performed such that the sets Cy,...Cx
are either fuzzy (soft) or crisp (hard), producing fuzzy clusterings or crisp
clusterings, respectively. For a given clustering to be valid, it should also
satisfy the following:

G) C;#0, j=1,....k

.. k
(i) Uiy € = &
(i) &;NCj =0, i #7, i,j=1,...,k (Hard clusterings only).

In the case of a fuzzy clustering, we need to introduce some object which deter-
mines the grade of an observations membership in a specific cluster. This object
is the cluster membership function, and is defined as follows:
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Definition 2. The cluster membership function U; : X — [0, 1] for a cluster
C;, is a function which takes an observation as input, and outputs the grade
of membership for the given observation in the cluster C;. Additionally, we
require that the grade of cluster memberships for a specific data point over
a set of clusters is normalized, such that: 25:1 Uj(x;) = 1.

From this last definition it can be seen that hard clustering actually is a special
case of soft clustering. If we take the range of U; to be the set {0,1} instead of
the interval [0, 1], we recover the binary “in“ (1) or “not in“ (0) options. In this
case, condition (iii) of Definition 1 is actually equivalent with the normalizing
condition of Definition 2.

When introducing specific algorithms this formulation of hard clustering will be
used to somewhat ease the mathematical notation, and help bridge the gap be-
tween soft and hard clustering, when such a transition is necessary. To further
aid this cause, it is useful to introduce the cluster membership vectors, and the
cluster membership matrix:

Definition 3. The cluster membership vector for a given observation x; and
a given clustering Cy, ..., Cy is the vector:

ui:[uﬂ uik}T

where the shorthand u;; = U;(x;) is used.

Definition 4. The cluster membership matriz for a data set @, ...,x, and
a given clustering Cy, . ..,Cy is the matrix:
U1 Uik
U= :
Un1 Unk

where Uz = Uj (Q’JZ>

10
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6.1. Cluster prototypes

e ©
LY [ ) i
° o AP
°
e ® o °, ° o
° ° i
.. b [ J [ J
® o
L4 [ ] ¢ ° .. °
o © e o
o ® ®.
° °
(a) Point (b) Line (Hyperplane)

Figure 4: Examples of cluster prototypes

In addition to the cluster itself, many clustering algorithms rely on some ad-
ditional object which describes or summarizes the cluster in some way. These
objects are commonly referred to as cluster prototypes or cluster representatives,
as they provide some insight into characteristic properties of the cluster that they
represent. Figure 4 provides some examples of different cluster prototypes, in the
case that they are geometrical objects lying in the same space as the input ob-
servations. An interesting note about the cluster prototypes in Figures 4a and
4c is that the points contained in the cluster are identical in the two cases. How-
ever, the cluster prototypes are very different, which helps prove the fact that the
choice of cluster prototype is not at all obvious in many cases.

6.2. Clustering based on distance to prototype

The main motivation behind introducing the cluster prototypes is that they pro-
vide a convenient formulation of a general clustering paradigm: Informally stated,
an observation should be assigned to the cluster whose representative is the closest
to said observation. The key component of this statement is a notion of distance,
proximity, or dissimilarity, which is a crucial part of many clustering algorithms.

11
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Definition 5. Suppose that the dataset is embedded in some space X. Then
a distance function on X is a function d : X x X — R satisfying, for each
T,y € X:

(i) d(z,y) = d(y, =)
(i) d(x,y) > 0.
A distance function is said to be a metric on X if it also satisfies
(iii) d(xz,y) =0if and only if x = y
(iv) d(z, z) < d(z,y) + d(y, z) for all z € X.

If the cluster prototype is a subset of X and not a single point, we define the
distance between a point,  and the prototype, © as:

d(x,0) =min{d(x,0) : 0 € O}.

Choosing a good distance measure is very important for algorithm performance.
Although this choice can be very domain-dependent, a few go-to distance func-
tions are provided below.

Vector space distance functions

Traditionally, it is assumed that the data lies in R™, where m is the number of
attributes contained in each observation. In this case, the number of distance
functions in the literature is massive, and naturally, some are applied more often
than others. Arguably, the most commonly used distance function is the well-
known Euclidean distance,

ds(a,y) = | S (s — )
i=1
where @ = [x1,..., 2] and y = [y1, ..., ym). There is also the squared Euclidean
norm:

di(x,y) = Z(% — i)’
i=1
The former is a specific instance of the LP norm, defined as

m

1/p
dp<m7y) = (Z(mz - yz)p) y D > 1.

i=1
In the event that the data is not normalized, it can be beneficial to account for

the different attributes having different numerical ranges. This is done in the
Mahalanobis distance which is

dul@,y) = /(@ —y)'S"(x — y)

12
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where X is the (estimated) covariance matrix of the data generating distribution.
The Mahalanobis distance effectively measures distance in units of standard de-
viation, eliminating the problem of different numerical ranges.

In some cases, it may be useful to have a distance function which is bounded,
such as the cosine distance

x'y
deos(,y) =1 — ———
. [zl llyll
where || - || denotes the Euclidean norm. An important property of the cosine

distance is that it only depends on the angle between the vectors, meaning that
any two parallel vectors will have cosine distance 0.

Time series distance functions

If the data generating process is sequential in nature, it might be wise to take this
into account when selecting the distance function. In Dynamic Time Warping
(DTW) [40], the two given sequences are aligned using varying shifts along the
time axis, such that the Euclidean distance between the aligned sequences is
minimized. This minimum distance is referred to as the DTW distance between
the two sequences.

Complexity Invariant Distance (CID) [41] is another time series distance function,
in which the Euclidean distance is corrected by a correction factor, which depends
on the complexities of the sequences. The key motivation behind the CID is that
the distance between time series of different complexities should be large. Suppose
we have two (multidimensional) time series, @; and y,, t = 1,...,7. The CID
between them is given by:

T
dew(@,y) = CF(z,y) - | > [l — y,l1°
t=1

where || - [|?> denotes the squared euclidean norm, and

max {CE(x), CE(y)}

CF(z,y) = min {CE(z), CE(y)}

is the correction factor, and

T-1
CE(x) = \| > _ll@ — 2|2
t=1

is the complexity estimate.

13
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Image distance functions

Suppose now that our data set consists of c-channel N x M images, where a
specific image A has components A = [A,;], withi=1,... N, j=1,...,M, | =
1,...,c. The Normalized Hausdorff Metric between two images, A and B can
then be formulated as

%

Here A and B are the sets of (¢ + 2)-dimensional vectors obtained from A and
B. That is:

A:{(i,j,Aijl,...,Aijc)Zizl,...,N, ]:1,M}
B:{(i,j,Bijl,...7Bijc)Zizl,...,N7 jzl,M}

and A;; and B;; are the elements of A and B corresponding to the pixel located at
(i,7). d is some vectorial distance function on R¢*2, where the distance between
a vector and a set of vectors is computed as in Definition 5. Although the formu-
lation is somewhat cryptic, the key intuition behind the Normalized Hausdorft
metric is that it measures the maximal inter-pixel distance between two images

[42].

In some image processing tasks, the images compared by the system can be
warped relative to each other by some affine transformation. If we let the set
of warps we wish to consider be denoted 7, we can define a modified distance
function which accounts for this [43]:

— : 2
dr(A, B) = ||arg mind(A, T'B)|[p

where d is some image-distance function, T'B is the transformation T" applied to
the image B, and ||-||% denotes the squared Frobenius norm of the transformation
(sum of squared elements). This distance function effectively searches through
the set of allowable transformation, and finds the transformation T" such that A
is most similar to T'B. The norm of this transformation is then taken to be the
distance between the two images.

14
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6.3. Cluster shapes

/
=

Figure 5: Cluster prototypes (red) and a level curve (black), indicating the points that are equidistant
from the cluster prototype. All distance functions are LP norms with p = 1 (left) p = 2
(middle), and p — oo (right). The level curve indicates the most compact cluster shape in
each of the cases.

The choice of distance function together with the choice of cluster prototype
determines a key aspect of the clustering algorithm, namely the geometrical shape
of the “ideal” cluster. In this case, “ideal” refers to the shape which makes the
cluster most compact, in the sense that the volume contained by the cluster-shape
is maximized for a fixed surface area. This shape is determined by looking at the
level surfaces (curves) of the distance function. For a constant ¢ > 0, the level
surface is the set {x : d(x,0) = ¢}, where d is the distance function, and © is
the cluster prototype. Some examples of level curves and cluster prototypes are
shown in Figure 5.

15
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6.4. Data transformation

(a) Original (b) Transformed

Figure 6: The Swiss-roll dataset “unwrapped” using Locally Linear Embedding [{4].

One important notion to consider before delving into the realm of clustering algo-
rithms, is the one concerning data transformation and dimensionality reduction
— and more generally — data preprocessing. As it turns out, real world data is not
always as nice to work with, and do therefore often require some processing before
being sent to the chosen clustering algorithm. This is especially important when
it comes to high dimensional data, such as digital images, or streams from a large
collection of industrial sensors. Large dimensionality often leads to high com-
putational complexity, which in turn causes longer training and inference times.
Moreover, one might encounter a particular set of mathematical challenges as
well. These are often collectively referred to as the Curse of Dimensionality [45].
Lastly, higher dimensionality can lead to more complex geometrical structure,
potentially making the specification of a “good” distance function difficult.

These issues have led to the development of many techniques for feature learn-
ing over the years. The goal of these is essentially to learn compressed vectorial
representations for the input data. A comprehensive review of these methods is
beyond the scope of this thesis. However, notable contributions include Principal
Component Analysis (PCA) [46], t-distributed Stochastic Neighborhood Embed-
ding (t-SNE) [47], Multidimensional Scaling (MDS) [48], Laplacian Eigenmaps
[49], Locally Linear Embedding (LLE) [44], and Uniform Manifold Approxima-
tion and Projection (UMAP) [50]. The last three of these methods are motivated
by the concept of manifold unwrapping, where one attempts to “unwrap” a man-
ifold embedded in a high dimensional space, and then embed the unwrapped
manifold in a lower dimensional space. The classical Swiss-roll example is shown
in Figure 6, where the initially curved data manifold has been “flattened” using
LLE.

Methods like these have been extensively used by machine learning practitioners
to map the raw data to vector spaces where the clustering algorithms can work

16
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more comfortably. However, as we will see later, a new trend within the field is
to combine the data transformation step with the clustering algorithm to create
an end-to-end pipeline for joint feature learning and clustering.

7. Cluster evaluation

Finding a good clustering of a dataset is the essence of cluster analysis. However,
how do we determine whether a clustering is good or bad? This question has
led to the development of mathematical quantities referred to as Cluster Validity
Indices (CVIs), whose objective is to say something about the quality of a given
clustering, with respect to some predetermined conditions or assumptions. CVIs
are usually classified into two categories [1, 51]:

e [nternal C'VlIs, which measure the quality of a clustering without any ex-
ternal information. The majority of internal CVIs are based on notions of
between-cluster separability and within-cluster compactness, and do there-
fore require the quantization of these ideas.

e Farternal C'VIs, which measure the quality of a clustering based on some
fixed external “solution”. The most common case is when the clusters pro-
duced by the algorithm should reflect some categorization which is known
beforehand. One can then compare the cluster memberships with the
ground truth labels of the categorization to determine the quality of the
clustering.

In both these categories, the corresponding CVlIs are test statistics entering in
statistical hypothesis tests. The exact formulation of the tests, and their cor-
responding null hypothesis are different for the different CVIs, but they are all
based on the idea that “/...] Hy should be a statement of randomness concerning
the structure of X 7 [1], where X denotes the input space. In other words, there
is no apparent cluster structure under the null hypothesis. Due to the often diffi-
cult task of sampling under the null hypothesis, it has become more common to
report the value of the test statistic itself, rather than the outcome of the test.
Although this removes the need to sample under the null hypothesis, it requires
the evaluator to have a more thorough understanding of the test statistic.

17
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7.1. Internal CVlIs

The literature on clustering evaluation contains a large amount of suggested in-
ternal CVIs, and comprehensive reviews can be found in e.g. [52] or [53]. The
following internal CVIs are some of the most frequently used indices, and have
been shown to perform well in several applications [52, 53].

e Calinski-Harabasz (CH) [54]. This index is defined as:

n—k S0, |Cilde(z,m;)
k—1 Ef:l Zweci dg(x, m;)

R e _ 1
where & = - > ", ; is the overall mean of the dataset, m; = C D owee, ®

CH =

is the mean of the i-th cluster, and dg(-,-) denotes the Euclidean distance
function. The Calinski-Harabasz index is a classical take on the separability-
over-compactness criterion as the numerator looks at the average distance
between cluster means and the global mean, while the denominator con-
siders the distance between cluster means and the observations assigned to
the respective clusters. This means that a large value of C'H corresponds
to a “good” clustering.

e Davies-Bouldin (DB) [55]. The DB index is defined as:

k
DB — lz ' max 'S(Ci) +5(C)
k — j=1,..k, j#i dE(m“ mj)

=1
where S(C;) = ﬁ > wcc, de(®,m;) is the summed within-cluster distance
for cluster i, and m; and dg(-,-) are defined as above. The interpretation
of this index is somewhat more involved than than the aforementioned CH
index. However, it can be interpreted as the average maximum “closeness”
between clusters. The fraction in the expression is the ratio between the
average sum of squares in the respective clusters, and the distance between
their respective means. Thus, if the numerator is large, while the denomi-
nator is small, the ratio will be large, and the clusters will appear close to
each other. This means that a small value of DB corresponds to a “good”
clustering.

It should be noted that in their original formulations, both of these indices use
the Euclidean distance function as a measure of dissimilarity. In theory, one
could use any distance function, as long as it allows for the computation of both
point-to-point distances, as well as point-to-cluster distances. However, as is also
the case with several clustering algorithms, the choice of distance function is a
critical one, and can severely degrade the performance of the index if not made
appropriately.

18
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7.2. External CVlIs

As the name implies, the task of external CVIs is to measure the quality of the
clustering with respect to some predetermined ground truth. In the following
descriptions, let

i =7 1wy > uy,l=1,...k
be the index of the predicted cluster for observation ¢, and let r; be the cor-

responding ground truth label for observation i. Then we have the following
external CVlIs:

e Unsupervised Clustering Accuracy (ACC). This is perhaps the most
frequently used external CVI in the recent years, and is defined as

1 n
max ; (m(y:) = r:)
where (-) denotes the Kronecker delta function, and M denotes the set
of all possible bijective mappings from {1,...,k} to itself. The unsuper-
vised clustering accuracy is essentially the best possible accuracy when one
attempts to assign each of the clusters to different categories.

e Normalized Mutual Information (NMTI). This external CVI is rooted
in information theory, and is defined as

3(H(y) + H(r))
where we let y = [y, ..., 9,7 and » = [r1,...,7,]7 to unburden the nota-

tion. I(-,-) denotes the mutual information:

k T

Y g
I<y7 T) = ‘Pzg lIl Pijr
=1 j5=1 LI

and H(-) denotes the entropy:

k
H(y)=—) F'lnP.
i=1

The P’s denote relative frequencies of cluster indices occurring in the re-
spective vectors, and are defined as

1 u . T 1 - ) ]
P=g 2 0=, P =00 0n =080 =),

The NMI measures the mutual dependence between the cluster assignments
and the ground truth labels. A high NMI implies that the ground truth
labels are — to a large degree — explained by the cluster memberships. This
indicates a good clustering.
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7.3. Choosing the correct CVI

As it turns out, both external and internal CVIs have their own pitfalls that
should be avoided. With internal CVIs, one has to chose a distance function —
or at the very least — some function capable of correctly capturing dissimilarities
in the input space. On the other hand, when using external CVIs, one has to be
certain that the specific categorization is indeed the “best” possible clustering.
In the latter case, the existence of another clustering that appears more natural
to the algorithm, would completely invalidate the evaluation procedure.

These drawbacks are thoroughly discussed by von Luxburg et al. [23], and lead
to the conclusion that the evaluation of a given clustering has to be done with
respect to the problem at hand. This conclusion also emphasizes the importance
of qualitative analysis when evaluating the performance of a clustering algorithm.
For instance, qualitative analysis might reveal that the clustering reflects some
other categorization than the one used with external CVIs — or that the clustering
has indeed learned to identify similar objects, even though this was not reflected
by the distance function used in internal CVIs. We will see examples of the
necessity of these considerations in Part V, which describes the experiments and
their respective outcomes.

8. Clustering algorithms

[ \ [ L 1 ___
Squared | | Graph- Mixture Mode i Deep Learning- |

Agglomerative [Divisive] error based resolving seeking L __based J

Spectral-

k-means || Clustering [GMM] [Mean-Shift][DDC][DEC] SpectralNet

Figure 7: A collection of clustering paradigms, and associated algorithms. Based on [9], but augmented
to include the more recent deep learning-based clustering algorithms.

Since the concept of clustering was first introduced, a large number of approaches
and algorithms have surfaced over the years. Figure 7 outlines some of the main
paradigms under which most of the commonly used clustering techniques are de-
veloped. According to the two top branches of Figure 7, a clustering algorithm
can be either hierarchical or partitional. What is characteristic for hierarchical
algorithms, is that they produce a hierarchy of clusters, where at the one end, all
observations are assigned to separate clusters, and at the other end, all observa-
tions are assigned to the same cluster. Partitional algorithms on the other hand,
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produces a single clustering by partitioning the input space into a fixed number
of partitions. The observations are then assigned to clusters based on which par-
tition they lie within. A direct consequence of many approaches to partitional
clustering is that the number of clusters has to be known beforehand. Clearly,
this is unproblematic if one seeks the partitioning between a known set of classes
present in the dataset. However, this might be problematic for more exploratory
applications. A simple way to get around this problem has been to run the algo-
rithm several times using a different number of clusters each time, and then use
a CVI to chose the number of clusters. Although most of the algorithms we will
cover in this paper fall within the partitional category, a couple of approaches
to hierarchical clustering will be included as well, where the number of clusters
can be determined based on intrinsic quantities computed during the clustering
process.

8.1. Hierarchical algorithms

As can be seen in Figure 7, there are two main approaches to hierarchical cluster-
ing, namely agglomerative and divisive. In agglomerative hierarchical clustering,
the algorithm is initialized with all observations placed in separate clusters. Pairs
of clusters are then iteratively merged, according to some criterion, until all ob-
servations are assigned to the same cluster. Divisive hierarchical clustering works
in the opposite direction, meaning that the algorithm is initialized with all ob-
servations belonging to the same cluster. Then, at each iteration, a cluster is
split according to that same criterion. The divisive algorithm terminates when
all observations lie in separate clusters.

8.2. Single-link, average-link and complete-link

The criterion which governs the merging or splitting of clusters is the most crucial
part of the hierarchical clustering algorithms. Suppose that at the current iter-
ation we have the clusters Cy,...,C. For agglomerative clustering, the criterion
is as follows:

Merge clusters C; and C; if:

d(CZ,CJ) = brillin kd(Ca,Cb). (1)

a#b

L.e, merge the two clusters which are the closest. For the divisive approach, we
split cluster C; into clusters C, and Cy if:

= d 2
i =arg gaxk CC r%eb%) (Ce, Ca) (2)
cUCq=C;
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and

d(Cy,Cy) = max d(C.,Cy). (3)
Ccﬂcd:@
C.UCy3=C;
Here, we search over all allowable sub-clusters of each cluster, and find the two
sub-clusters which are the furthest apart from each other. These are then taken
as separate clusters during the next iteration.

The function d is in this case a distance function measuring distance between
clusters. Depending on how d is computed, the linkage of the algorithm is said
to be either single-link, average-link, or complete-link. For two clusters C; and
Cj, the different linkages are defined as follows:

e Single-link: The distance between the two closest points from the different
clusters:

dsl (CH C]) = min dX(m> y)

mGCi,yGCj

o Average-link: The average distance between all points from different clus-
ters:

1
dal<CiaCj):m > dx(w,y).

Tl zec; yec;

o Complete-link: The distance between the two most distant points from the
different clusters:
dd(Ci,C]’) = max dx(.’l}, y)

x€C;,y€C;

dx is a distance function on the input space X, following Definition 5.

The specification of the merging/splitting criterion allows us to formulate the two
hierarchical clustering algorithms, which can be found in Algorithms 1 and 2.

input : Raw dataset X = {@x1,...,x,} or distance-matrix
D = [d;j], dij = dx(=x;, ;)
output: Cluster hierarchy {{C{,...,C}},{C},....C21},...,{C}}
Initialize Ci,...,C, = {x1}, ..., {x.}
for t < 1 to n do
Find clusters C{ and Cj satisfying Eq. (1).
Form the next hierarchy-level by merging Ci and Cf, and leaving the

other clusters as-is.
end

Algorithm 1: Agglomerative hierarchical clustering.
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input : Raw dataset X = {@x1,...,x,} or distance-matrix
D = [d;j], dij = dx(z;, ;)
output: Cluster hierarchy {{C{},{C? C3},...,{C},...C"}}
[nitialize C{ = {@1,...,%,}
for t < 1 to n do
Find clusters C! = C:*' U Cjt! satisfying Eq. (2) and Eq. (3).
Form the next hierarchy-level by splitting C! into C:+! and C/™, while

leaving the other clusters as-is.
end

Algorithm 2: Divisive hierarchical clustering.

8.3. The dendrogram

The dendrogram is a great tool for visualizing the cluster hierarchy produced
by a hierarchical clustering algorithm. For simplicity, we will only consider the
agglomerative case'. Example dendrograms for the three different linkage types
are shown in Figure 8. When looking at a dendrogram, there are two main
elements to consider: (i) The actual cluster assignments produced, and (ii) at
each step, what was the distance between the merged/divided cluster? The latter
consideration brings with it the important notion of cluster lifetime, which in turn
can help determine the level of the hierarchy that should be taken as the final
clustering of the dataset. The lifetime of a cluster is defined as |dcreated — dabsorbed |
where dereateq 18 the distance at which two clusters were merged to create the
current cluster. d,psorbeq 18 the distance at which the current cluster was absorbed
into a larger cluster [1]. Note that both of these quantities can be extracted
directly from the dendrogram.

The idea behind a cluster’s lifetime is that it says something about both how
compact the cluster is, and how isolated it is from other clusters. A compact
cluster will be merged at a low distance, whereas an isolated cluster will be
absorbed at a large distance. Hence, the difference between the distances will be
large, producing a large cluster lifetime. Similar approaches to determining the
optimal level in the hierarchy have been proposed by [1, 52, 56].

!The divisive case is analogous, as the dendrograms can be read top-down instead of bottom-
up.
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Figure 8: Dendrograms produced when performing hierarchical clustering on a small data set. Although
the link-types produce the same clusters, the distances at which the clusters are merged, are

different.

8.4. Partitional algorithms

8.4.1. k-means

Perhaps the most frequently used clustering algorithm to date is the k-means
algorithm [57]. The algorithm arises naturally from the general prototype-based
method outlined earlier, by choosing the squared Euclidean distance measure,
along with point cluster prototypes. Suppose we are interested in partitioning
the data set into k disjoint clusters Cy, . .., Cy, associated with point-prototypes
01, ...,0,. This can be formulated as a loss function minimization problem, with
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loss function

n k

L= > uyllei— 6 (4)

i=1 j=1

where u;; = U;(x;) is the j-th cluster membership function evaluated at the i-th
observation. In k-means, the clusterings are assumed to be hard, thus causing
the u;; to be non-differentiable. We will therefore settle for the two-stage greedy
optimization algorithm:

1. Treat the cluster prototypes as fixed, and recompute the cluster membership
functions such that Eq. (4) is minimized.

2. Treat the cluster membership functions as fixed, and recompute the cluster
prototypes such that Eq. (4) is minimized.

In stage 1, we can see that Eq. (4) is minimized if a point is assigned to the closest
cluster prototype. That is:

(L a0 = min [z — o)
1 |
J O,

otherwise

()

In stage 2 we can minimize £ by ordinary gradient-based minimization. For the
J-th prototype, we get

i=1

equating the gradient to zero and solving for 6; gives

Zﬁfl U525 1
grev — i LT z (6)
’ D it Wi Gl a;c]

which is the mean of cluster C;, hence the name k-means. The optimization
process is summarized in Algorithm 3.

8.4.1.1. Convergence

It can be shown that the optimization procedure outlined above converges to a
local minima of the loss function in a finite number of steps [58]. The proof is
informally summarized below. First, make the following observations:

1. Due to the hard nature of the algorithm, there is finite, but possibly large,
number of different clusterings.

2. At each iteration, the loss function £ decreases or stays constant.
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input : Raw dataset X = {xy,...,z,}, number of clusters, k.
output: Cluster membership matrix U = [u;].

[nitialize 64, ..., 0, randomly.
while not converged do
Recompute cluster assignment matrix U = [u;]:
1 0.7 = i . — 0,17
ol = 65]]° = min [lz; — 6]

Uj = :
0, otherwise

Recompute cluster prototypes 04, ..., 0;:

1
0,=—=> = j=1,...Fk
Cil

:BEC]'

end

Algorithm 3: k-means.

3. If the clustering algorithm produces the same two clusterings at two con-
secutive iterations, it has converged.

From observation 1, it is evident that, at some iteration, the algorithm will revisit
a previous solution (clustering). Thus, the algorithm has entered a cycle. If the
cycle had length greater than 1, by observation 2, this would imply that the loss
function would take on a value at the current iteration, which is lower than the
value of the loss function which was previously visited. Hence, the cycle has
length 1, and the algorithm has converged by observation 3.

It is very important to stress that this proof only guarantees convergence to a
local minimum of the loss function. There might therefore exist better clusterings
which are never visited by the algorithm. Due to this fact, it is common to run
the k-means algorithm from several different initializations, and then choose the
clustering which resulted in the lowest value of the loss function.

8.4.1.2. Initialization

In some cases, the random initialization might not be sufficient for producing good
initial prototypes. To alleviate this, many different initialization schemes have
been proposed to help speed up the convergence of the algorithm, and improve
the quality of the final clustering. One option is to choose k random observations
from the dataset, and use these as the initial prototypes [1]. This ensures that the
prototypes are initialized close to the data, regardless of the location of the data
distribution. A more robust method is the k-means++ initialization technique
[59], in which prototypes are iteratively chosen such that the probability of them
being far away from each other, is large. This helps scatter the initial prototypes
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such that most of the populated input space is explored during the optimization
procedure.

8.4.2. Spectral clustering

In contrast to the aforementioned methods, spectral clustering does not make an
explicit vector-space assumption. Rather, the data is represented as a weighted
undirected graph G = (V, E, W), where each vertex represents an observation,

= {z1,...x,}. W = [wy] is a symmetric and nonnegative affinity-
matrix, which contains the weights of each edge, describing how strongly two
vertices (observations) are connected. A large w;; means that observations ¢ and
7 are strongly connected, or similar in some sense. In this case, the clustering
problem can therefore be seen as cutting the graph to produce k disconnected sub-
graphs. This train of thought is what initially led to the minimization problem
[60]:

k

Cg@gk;cm(@,c;), (7)

where C5 denotes the complement-set of C;, and

cut(C;, C5) Z Z W (8)

x;€Cj x€CY

Hence, the minimization problem of Eq. (7) can be seen as minimizing the total
weight of the cut edges, effectively finding the partitioning such that the summed
similarities of points assigned to different clusters, is minimized. However, the
solution to the minimization problem in Eq. (7) tends to favor very small and
isolated clusters, meaning that the resulting clusters might be very imbalanced
with respect to the number of observations assigned to them. This led to the
formulation of the normalized cut [61]:

cut (Cj, C]c)

ncut(C;, C;) = vol(C))
J

and the minimization problem

min ncut(C;, C5). (9)

Cyi,ee ’Ck -1

The normalization term vol(C;) is defined as

vol(C)) = > da

z,;€C;
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where D = [d;;] is a diagonal ”"degree” matrix, with elements d;; = > ", wy.
The degree d;; of an observation x; tells us "how connected” x; is to the other
observations. The volume of a cluster is the sum of the degrees of its elements,
which means that a cluster containing few elements weakly connected to all other
observations, will have a small volume. This is precisely how the normalization
of the cut works in Eq. (9). If we define the matrix Y = [y;;], where

gy = ey T E < , (10)
vol(C;) 0, otherwise

it can be shown that [62]:

K
> neut(C;, Cf) o tr(Y'LY)

j=1

where tr(-) denotes the matrix trace, and L = D — W is the graph Laplacian.
Furthermore, observe that Y7 DY = I, which is the k X k identity matrix.

To allow for more efficient optimization, we will relax the hard memberships from
Eq. (10). With this relaxation, we can approximate the minimization problem in
Eq. (9) as

arg min tr(Y'LY), st. Y DY = I,. (11)
Y eRnxk
This is the well known trace-minimization problem [2], which is solved by taking
the columns of Y to be the k eigenvectors of L corresponding to its k& smallest
eigenvalues. When the solution, Y*, to the relaxed optimization problem has been
found, it still remains to recover the original hard cluster memberships w;;. This
can be done with e.g. k-means Shalev-Shwartz and Ben-David [2], thresholding
[1, 61], or spectral rotation [63]. The complete Spectral Clustering algorithm is
summarized in Algorithm 4.

input : Affinity-matrix W, number of clusters k.
output: Cluster membership matrix U = [u;].

Compute the eigenvectors of L = D — W corresponding to the k
smallest eigenvalues. These are the columns of Y.

Find U by running k-means on Y™, or by using some other
thresholding method.

Algorithm 4: Spectral clustering.

8.4.2.1. Computing the affinity-matrix

Up until this point, we have assumed that the affinity matrix is known. This is
not the case for most applications, which makes the computation of the affinity-
matrix a critical step of spectral clustering. Perhaps the most widely used class of
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affinity matrices are computed using the e-connected Gaussian affinity function:

_ {exp (_%> ) d(miawj) <é

0, otherwise

where € and ¢ are hyperparameters, and d is some symmetric distance function.

8.4.3. Mixture models

The class of mixture models arise naturally when one envisions a probabilistic
approach to the clustering problem. Suppose that the clusters Cq,...C; are
represented by k different probability distributions pq, ..., pg, resulting in the
marginal data distribution:

p(x) = Z%‘Pj(“’; ®;)

where ¢; is a vector of parameters, and 7; denotes the probability of an observa-

tion belonging to C;, satisfying 25:1 m; = 1. Let us introduce stochastic versions
of the cluster indicators, such that

U, = {1, X, €C; (12)

0, otherwise

where X; can be thought of as the stochastic (unobserved) i-th element of the
dataset. Then we have

p(wi, . wig) = H’]T;-Lij
and
k
j=1

This gives the log-likelihood

n

(m, @ | X,U) =) > Uj(lnm; + Inp;(z:; ¢;)) (13)
=1 j=1
where we let 7w = [m1,..., 7|7, ® = [¢y,...,¢,)" and U = [Uy], to unburden

the notation.

Since the U;; in Eq. (13) are unobserved, we cannot maximize the log-likelihood
directly. Hence, the mixture resolving is usually done using the Expectation
Maximization (EM) algorithm [64], which is an iterative two-step procedure for
maximizing the log-likelihood, where at iteration ¢, we do:
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1. E-step: Compute the expected log-likelihood (), conditioned on the current
parameters (7", <I>(t)), and the observed data X

Q(Tf, @ | ﬁ(t)’ @(t)) — E(l(ﬂ" @ ’ X) U) ’ W(t), @(t)’ X)

2. M-step: Update the parameters by maximizing the expected log-likelihood
with respect to the parameters:

(0, @) = arg max Q(m, @ | =, @),

With the log-likelihood from Eq. (13), we get

n k

i=1 j=1

where

©, (0. ®
py = E(U, | 70, &0 1) = T i@ ® ) (14)

2511 Wl(t)pl(wi; ¢z(t)> .

Maximizing () with respect to 7; gives

1 n
(t+1) _
T T E Dij-

i=1

whereas the explicit form of P+ depends on the choice of probability distri-
butions py, ..., pr. When it comes to determining the output of the algorithm,
we must remember that in the case of mixture models, the U;; are unobserved
stochastic variables, and thus, cannot be ”"computed” directly. Hence, we esti-
mate these using their expected value, conditioned on the parameters of the final
model, as well as the observed data. This expectation is precisely the p;; defined
in Eq. (14).

8.4.3.1. Gaussian mixture models

Up until this point, we have assumed some general form of the probability distri-
butions pq, ..., pr. This is nice for the sake of generality, but when we actually
want to compute something, these have to be specified. A common choice is to
let each of the distributions be a Gaussian with different means and covariance-
matrices:

1 1 _
pj(w; K, E]) = (271')5/2\/mexp (_i(w - p’j)TEj l(w - p’j))
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where ¢ is the dimensionality of the input space. Using these probability density
functions, we get an explicit form for the update equations for ¢; = (,uj, 35):

u/('t—‘,—l) _ Z:’L:l Diix;

! > i1 Pij
n 41 t+1
20+ D i Dij(@i — Ng‘ ))(wi _ :“5' ))T
! > ie1 Dij

The complete EM-algorithm for a Gaussian mixture model is presented in Algo-
rithm 5.

input : Raw dataset X = {xy,...,z,}, number of mixture
components (clusters), k.
output: Expected membership matrix P = [p;;].

Initialize p”, ..., p, =M, .. =W,

while not converged do
Compute the p;; using the current parameters:

t
_ (@i B))
Zf:l Wz(t)pl(wi; s )

Update 7, py, ..., py, and g, ..., 3 according to

7r§t+1) = %;pzj
“§t+1) _ 2%1 Dijxi
> i1 Dij
D i Dij(@i — HYH))(% - ng'tﬂ))T
Z?:l Pij

Dij

(t+1)
X =

end

Algorithm 5: Gaussian mixture model using the EM-algorithm
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8.4.4. Mean-shift clustering

The mean-shift clustering algorithm is similar in spirit to the aforementioned
mixture-resolving algorithms. However, instead of explicitly modeling several
distributions, mean-shift clustering only considers the modes of the data distri-
bution p(x), and does so in a nonparametric manner. Hence, the critical assump-
tion made in mean-shift clustering is that the data distribution is multimodal,
and that different modes correspond to different clusters. Let us start with the
Kernel Density Estimator [38] for the data distribution?:

. RN
plx) =~ K|z — =)
gt
where K is some function (kernel) satisfying
0 < K(z) <oo,VreR and / K(x)dz = 1.

The gradient of p(x) is

Vila) = 23 (o~ 2K (la — )

i=1

= (@)Y Kl =) (15)

where
i K (|2 — if])

Yim K[|z — i])
is the mean-shift vector. Note that the gradient in Eq. (15) is on the form
c(xz)m(x) for some scalar function c. Hence, the vector m(x) points towards
the direction of steepest ascent from x. This forms the basis for the mean-shift
algorithm for finding the modes of a probability density function. Starting from
an initial point (*) the algorithm iteratively updates £® according to the update
equation

m(x) =x

20D — 20§ (20,
which will eventually converge to a mode of p(x) [65].

The clever trick used to employ the mean-shift algorithm for clustering, is to
start the algorithm once from each of the observations in the dataset. Then,
all observations converging to the same mode are said to be clustered together.
This also brings with it the key property of not having to specify the number of
clusters, which is instead determined natively as a part of the algorithm. The
mean-shift clustering procedure is summarized in Algorithm 6.

2Note that Kernel Density Estimation will be revisited in Part IV.
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input : Raw dataset X = {x,...,z,}
output: Cluster membership matrix U = [u;;].

foreach =¥ € X do

while not converged do // Mean-shift procedure

| 20D = 20 4 (z®)

end

Save the point that the mean-shift algorithm converged to
end
Generate U such that all observations that converged to the same

mode are clustered together.

Algorithm 6: Mean-shift clustering.

8.4.4.1. Choice of kernel

Although the algorithm has been fully described, the critical choice of a sensible
kernel remains. This choice can be highly problem dependent, but one go-to
kernel from the literature is the Gaussian kernel:

1 2
KGauss(-r) = —€Xp <_x_)

2mo 2072

where o is a positive bandwidth parameter. The choice of o determines how
smooth the estimate for p(x) is, and can therefore also influence the number
of modes present in p(zx), as well as the number of clusters identified by the
algorithm.
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The objective of this part is twofold: First we will thoroughly review the deep
learning architectures that are used later in this thesis. The review will also
contain information on how these models are trained, as well as an explanation
of the self-supervised learning approach [36].

After reviewing the deep learning models, we will shift our focus towards some
examples of deep clustering models, and a thorough explanation of these. One
of these models is the aforementioned Deep Divergence-based Clustering (DDC)
[20], which was included due to its relation to the DTKC model proposed in this
thesis.

9. Frequently used deep learning models

As was previously alluded to in Section 6.4, the more recently developed deep
clustering algorithms attempt to combine the data transformation and clustering
steps into a single architecture, which can then be simultaneously optimized by
minimizing some loss function. As the name “deep clustering” implies, the ar-
chitectures used for the feature learning step are borrowed from the field of deep
learning [11]. These are models belonging to a category often referred to as deep
neural networks (DNN), as early instances were developed based on the anatomy
of the human brain [66].

In the last few decades, a large number of models have been devised under the
DNN theme, and naturally, some have been used more than others. The goal of
this section is therefore to introduce three types of models that are frequently used
in the literature, namely multilayer perceptrons (MLPs), convolutional neural
networks (CNNs), and recurrent neural networks (RNNs). Both the MLP and
the CNN are integral parts of the DTKC model, and will therefore appear in both
the model description in Section 13, and in the preceding experiments in Part V.
The RNN on the other hand, is in Section 17.9 used to modify the DTKC model,
making it applicable to time series clustering.

Following the explanation of these architectures, we will go through autoencoders,
as well as the self-supervised learning technique, which is used as an alternate
initialization strategy for some of the experiments later in this thesis. Finally, we
will take a closer look at neural network optimization, and how this can be done
for general loss functions.
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9.1. Multilayer perceptron

9.1.1. The perceptron

The perceptron [66] is a simple linear model for vectorial data. This model is
often regarded as the very model that later grew to become the large class of
models we know as deep neural networks. The perceptron maps an input vector
x to an output scalar y using the linear transformation:

y=g(x) =w'z+w (16)

where w and wy are the parameters of the model. Originally, the perceptron was
formulated as a binary classifier, where the output y would be either close to —1
or 1, indicating the classifier’s decision. This then motivated the perceptron loss
function, which is
L= Z Oo(w' T + wy)
reX*

where X'* are the set of training observations that are misclassified by the system,
and 0, = 1, depending on which class & belongs to.

The minimization is done using the gradient descent algorithm, which computes
the gradient of the loss function with respect to the weights, and then updates
these weights according to the computed gradient. That is:

Wpew = Woid + Aw = Wyiqg — )\Vwoldﬁ(wold) (17)

where )\ is the learning rate, which is a user-specifiable hyperparameter that scales
the magnitude of the parameter-update Aw.

9.1.2. The XOR problem, and perceptrons working together

1 f(ga(z))

A
[
T
g(z) =0 A 5 (@)
gi(z) =0 ,
(b) The XOR problem in the space mapped to by Eq.
(a) The XOR classification problem. (18).

Figure 9: XOR problem in original space and transformed space.

Consider the classification task of Figure 9a, where [0,0] and [1, 1] belong to
class A, and [1, 0] and [0, 1] belong to class B. It can be easily verified that there
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exists no straight line which perfectly separates the two classes, and thus a linear
classifier, like the perceptron, would perform rather poorly in this case.

However, what if two perceptrons are used instead of one? From Figure 9a it can
be easily seen that the space between g; and gs should be classified to class B,
and the space either below g; or above gy should be classified to class A. Now
consider applying the mapping

1, >0

f(gi(z)) _
o o) f<"""’>—{o, <0 18)

to the points in the classification problem of Figure 9a. Note that g;(x) is on the
form given in Eq. (16). The result of this mapping is presented in Figure 9b, and
as the plot clearly shows, the classes are now linearly separable in this new space.
Thus, by using the mapping of Eq. (18) the classification task was transformed
from nonlinear to linear. Based on this, a new perceptron could be trained in the
mapped-to space, and the classification task would be completed.

Figure 10 provides a graphical overview of the data flow for the two-dimensional
two-layer perceptron. The output will be either 0 or 1, depending on which class
x is classified to.

Input Layer Mapping Layer Output Layer

Figure 10: A wvisual representation of the two-layer perceptron.

At this point it is important to note that one mapping will not always be suffi-
cient to make the data linearly separable. The solution to this is the multilayer
perceptron (MLP), which adds more perceptrons, either in the form of increasing
the size of the mapping layer, adding more mapping layers, or both. The indi-
vidual layers of an MLP are often referred to as fully-connected (FC) layers, as
each node in a layer receives the output of all nodes in the preceding layer.

9.1.3. Training and the backpropagation algorithm

Training a multilayer perceptron is usually done with the backpropagation algo-
rithm [67]. In essence, it performs gradient descent with respect to some loss
function by analytically computing the gradient, and then updating the parame-
ters accordingly. We will now deviate from the original perceptron loss function,
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o [2,(7),...,24(7)]": Input vector i.

o [yi7'(0),...,up " (1)]" =y Output vector from layer r — 1.

e ¥: Operator performing the inner product (w?)"y" (i) +wy in layer
r, node j.

e vj(i): Result of inner product in layer r, node j.

y;(i): Activation function f applied to the result of the inner product
in layer 7, node j.

Figure 11: A snapshot of the data flow for layer r and input vector i in a multilayer perceptron.

and instead assume that the loss function is on the form
N
L= e (19)

where €(7) is a function representing the severity of the error made when trying
to classify the training vector a;, and /N is the number of training vectors. Then,
calculating the gradient of the loss function with respect to the weights of node
J in a layer r < L gives:

N N ,
. 0e(7) : :

L = L = T A B h h 1 .

Vi L ;:1 Vo (%) ;:1 50 (i) Vurvi(i) (By the chain rule)
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Clearly, the dependence of v} (i) in £(4) can be quite complex. For now however,
define:

(i) = §<()) (20)
and observe that:
Vs v} (1) = Vary™ (1) 'w] =y 1(3).
This gives:
N
Aw’ = —)\Zlyr_l(i)é;.(i) (21)

which is the desired correction for the weights in node j in layer r. A is the
learning rate. Note that if » = 1, then y"~'(4) would be the training vector ;.

These last two results require the activation function f to be continuously dif-
ferentiable, a property clearly not possessed by f in Eq. (18). To fix this, the
step-activation is swapped for a smooth function with the same asymptotic prop-
erties. Commonly used activation functions include the hyperbolic tangent:

tanh(z) = ——
er +e*
or the sigmoid:
(1) =
o(r) = ———.
14+e®

Another popular choice is the softmax function, which is a normalized version of
the sigmoid, where one ensures that the outputs from the nodes in a given layer,
say [, sum to one:

l
oly:
SOftmaX(yi) = %
> j=1 U(Zgj)
This activation function is frequently used when one wants the outputs 1!, . . . yfcl

to reflect some probability mass function.
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9.2. Convolutional neural networks

Convolutional neural networks (CNNs) [25] represent a type of deep neural net-
works that mimics the behavior of the multilayer perceptron, where each layer is
made out of simple processing units (nodes), and each layer produces its output
based on all the outputs from the preceding layer. However, in contrast to the
inner product in MLPs, the units in a CNN uses the well known convolution
operator to produce their output. As we will see in the following, the convolution
operator is well suited for data which is inherently grid-based, such as images and
time series.

9.2.1. The convolution operator

Since CNNs will be used to process images in this thesis, the convolution operator
will be introduced here in the context of images. Suppose we have an N, X My
image A, and an Ng X Mp image B. In many image processing tasks, the latter
image can be referred to as the filter or kernel®, as it has been carefully selected
to emphasize some property of the image. The convolution of the image A with
B is the new image:

(AxB)(i,j) =>_> A(a,b)B(i —a,j—b) (22)

where the dimensions of the resulting image A x B, and thereby also the summa-
tion limits, depend on which type of convolution is being performed. The three
most common forms of convolution are:

e Valid: Only the indices for which 1 < a < Ny, 1 < b < My and
1<i1—a < N, 1 <j5—b< Mg are summed over. The result has
dimensions [Ny — Np| + 1 x |M4 — Mp| + 1. See Figure 12a.

e Same: The first input image is zero-padded such that the output has the
same size as A. See Figure 12b.

e Full: Either of the images are padded such that all overlaps with size greater
than or equal to one, are included in the output. The resulting image has
dimensions Ny + Ng — 1 X M4+ Mp — 1. See Figure 12c.

9.2.1.1. Examples

Two examples of image filtering using convolution are shown in Figure 13. The
image in Figure 13b was obtained by convolving the original image with a filter
of size 11 x 11, where each value was 1/112. This effectively makes each output

3We will refrain from using this name, as it can be confused with other types of “kernels”
defined later.
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Figure 12: Different types of padding schemes for discrete convolution. Note that the filter, B is flipped
up-down and left-right before the element-wise multiplication, as is indicated in Eq. (22).
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(a) Original (b) Smoothed (¢) Edges detected

Figure 13: Examples of filtered images using convolution.

pixel a local average of its neighboring pixels, resulting in a smoothed image. The
image in Figure 13c was obtained using the Laplacian filter:

-1 -1 -1
BLaplace =|-1 8 -1
-1 -1 -1

which is a widely used edge-detection filter.

9.2.1.2. Properties of the convolution operator

The convolution operator is both associative: (Ax B) *C = A x (B C), and
commutative: A x B = B % A. Additionally, it has two nice properties which
makes it especially suitable for image processing; the first one being linearity:

Ax (bB+cC)=b(AxB)+c(AxC)

where b and ¢ are arbitrary scalars. The second property is translation equivari-
ance:

T(A)xB =T(Ax B)

where T is a translation function, with T(A)(i,j) = A(i + 1,7 + t3), where
t1 and to are integers. This last property means that the response for a specific
object in an image will be the same regardless of that object’s position in the
image. The response will simply be located at the corresponding position in the
output image.

9.2.1.3. Images with multiple channels

There are several ways to handle the case of images with multiple channels when
designing the convolution operator. If we have a filter with a single channel,
the classical solution is to simply perform the convolution channel-by-channel.
Another option is to define a filter with the same number of channels as the
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8@64x64
8@32x32
3@64x64 1x128

=

Convolution MaxPool Dense

Figure 14: A simple convolutional neural network. ”Dense” refers to a perceptron layer, which is com-
monly used as a last layer to produce vectorial outputs.

input image, say C', and then generalize the convolution operator in the following
manner:

(A*B)(i,j)=>_ > Z A(a,b,¢)B(i —a,j — b, c) (23)

which produces an output image with one channel. Adding more output channels
can be solved by simply adding more filters.

9.2.2. Convolutional layers

A convolutional neural network, is a deep neural network where one or more of
the layers are convolutional layers. In a convolutional layer, the nodes perform
convolutions, as in Eq. (23), instead of the inner product done by the MLP.
An example of a simple convolutional layer can be found in the first transition
in Figure 14. Here a 3-channel 64 X 64 input image is processed by 8 filters,
producing 8 1-channel images of size 64 X 64, or equivalently, one 8-channel
image of size 64 X 64.

Note that there is some ambiguity in the literature regarding the term “convo-
lutional layer” [12]. One option is to strictly define the layer as above, where
the layer consists of only the convolution operator. However, this can make the
explanation of more complex CNN-based models somewhat cumbersome, which
has led to the inclusion of activation functions and pooling operations (explained
below) in the term “convolutional layer”. In this thesis, we will adhere to this
second, somewhat looser definition — in order to make the description of future
models easier.

9.2.2.1. Activation function

Recall that convolution is a linear operator, and that the composition of linear
operators is itself linear. Thus, a convolutional neural network consisting solely of
convolutional layers will be a linear map from the input space to the output space.
To take potentially nonlinear structure in the data into account, a nonlinear
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activation function is usually applied within convolutional layers, in an element-
wise fashion. Early work on CNNs focused on squashing nonlinearities, like the
sigmoid or hyperbolic tangent [25]. However, recently it has been shown that
networks using rectifier-activations tend to improve performance by allowing for
better gradient flow during training [68, 69, 70]. The rectified linear unit (ReLU)
is defined as:

ReLU(z) = max(0, x).

Its derivative is the unit-step function:

1, >0

d
£ ReLU(z) =
eLU(z) {0, z <0

dx

which, in contrast to the derivatives of squashing nonlinearities, does not vanish
for large values of x. This property is precisely what helps improve gradient flow
during training. Note that ReLU(z) is not actually differentiable at = 0,
which is a problem since backpropagation requires differentiable loss functions.
The common approach to bypass this problem is to simply define the gradient
4 , ReLU(z) to be equal to zero [69].

dz lx=

9.2.2.2. Pooling

Depending on the problem at hand, it might be beneficial for objects located
at approximately the same location in the image to have the same output. An
extreme example of such a problem is an object detector, where the only task is
to detect whether a specific object is in the image, or not. At some point, the
network has to translate the information ”object located at position (z,y)”, to
just "object exists somewhere in the image”. This motivates the use of Pooling-
layers, which divide the input image into non-overlapping patches of equal size,
and then compute some scalar statistic for each patch. The statistic can be e.g.
the maximum value, or the average of the given patch. When the former is used,
the operation is referred to as maz pooling or MaxPool. As is indicated in Fig-
ure 14, the Pooling operation is applied on a channel-by-channel basis. Pooling
layers also have the added benefit of reducing the size of the intermediate rep-
resentations, decreasing memory consumption, and allowing for faster processing
in subsequent layers.

9.2.2.3. Weight sharing

As was previously stated, the most important distinction between the multilayer
perceptron and the convolutional neural network, is that the CNN replaces the
MLPs inner product with convolution. This also brings with it the notion of
shared weights [25]. Since the convolution operator ”"slides” the same filter across
the input image, the filter can be chosen to have dimensions much smaller than
the input. Hence, the same weights (elements of the filter) are used at multiple
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locations in the input, i.e. they are shared across the spatial dimensions of the
image. An MLP designed to process the same input would need to have a weight
vector with number of elements equal to the number of pixels in the input, lead-
ing to an increase in the number of parameters compared to the CNN. Thus,
the memory consumed by a CNN can be drastically smaller than the memory
consumed by a similarly sized MLP.

9.2.3. Computing the gradient of a convolutional layer

In contrast to classical signal processing tasks, the filters used in convolutional
neural networks are not explicitly selected, but rather learned from data. Usually,
this is done with gradient descent, similar to the training of MLPs. Suppose we
have a loss function £, and we are interested in computing its gradient with
respect to K (i, 7, ), which will denote element (¢, j,[) of the filter /. Define:

Y=0aV), V=XxK,

as the output of the layer, after application of the activation function. Here, X
is the input to the convolution layer, and a is the activation function, which is
applied element-wise. From the chain-rule, we get:

oL oYy

K650 VY eRG D .

where we assume Vy L has been computed in later layers of the network. Thus,
it remains to compute:

oY _[8}/(1,1) Y (m,n)1"
OK(i,j.1)  LOK(i,j,1)" " 0K(i,j,1)

where (m,n) are the dimensions of Y. For element (x,y) we get:

oY (x,y) OV (z,y)
OK (i, j,1) (V(I’y))w{(z‘,g,g
=a(V(z,y)) ; IR, Z)K(a, b,c)X(z —a,y—b,c)

Substituting this result back into Eq. (24) gives:

oKy

&(V(m,n) X (m —i,n — j,1)
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which is the desired update for K (4, j,[). Analogously, we can obtain the deriva-
tive of £ with respect to the input, X as:

a(V(1,1)K(1 —i,1—34,1)

= (VyvL)" :
a(V(m,n))K(m—i,n—j,l)

oL
0X (i, 5,1)

which can then be propagated backwards to earlier layers. The generalization to
several filters, and several inputs is straightforward.

9.3. Recurrent neural networks

We will now shift our focus to the type of data which incorporates some form of
sequential dependence. This type of data mainly includes sequences, and more
specifically, time series, which are sequences formed through the evolution of
time. Due to the nature of the data-generating process, the vast majority of
these sequences contain some form of dependence between different timesteps.
Therefore, it is most natural that the way we process element ¢ of the sequence
should not only depend on observation ¢ itself, but also on the preceding elements,
1 through ¢ — 1, so that we are able to capture this temporal dependence.

Recurrent Neural Networks (RNNs) are a class of deep neural networks designed
to take the temporal dependence into account. In general, the RNN model is a
pair of recurrence relations on the form

ht) = f(:c(t), h(t_l); 0;), y(t) = g(h’(t); 6,) (25)

where 2',... 27 is the input sequence, h®) is the state of the RNN at time
t, y® is the output of the RNN at time ¢, and (8, 8,) are parameter vectors.
From this we can see that the current state h® depends on all previous states
and inputs through the recurrent connection with R, The exact form of the
functions f and g can vary based on which type of RNN is being used. Moreover,
it should be noted that both the parameter vectors 8 and 6,, and the functions
f and ¢ do not depend on t, meaning that these are constant with respect to
time. Hence, the RNN also employs the concept of parameter sharing, which we
previously saw in CNNs.

9.3.1. The Elman RNN

The Elman RNN (ERNN) [71] is one of the first types of RNN to be proposed.
Here, the function f consists on an affine transformation of the pair (2, R,
followed by a sigmoid-activation function:

) = (W' + ULV 4+ b). (26)
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The output of the ERNN at time ¢ is then
y" = o(W,h" +b,)

where (W, U,b, W, b,) are learnable parameters, and o(z) = (1 4+ e %) ! is
the sigmoid-function, which is applied element-wise.

9.3.2. Vanishing or exploding gradients

RNNs are trained using a generalization of the backpropagation algorithm, re-
ferred to as backpropagation through time (BPTT)*. However, it was quickly
discovered that the simple ERNN-architecture had problems with this training
regime, especially when it came to modeling long-term dependencies [72, 73]. For
now, consider the simple RNN computing

R — f(h(t))
for some function f. The Jacobian dh*™V) of R is
dh") = df (hD)dh' = df (WD)df (R*~V) - - - df (h)

by the chain rule, where df denotes the Jacobian of f. If we take f to be a
linear mapping with matrix A, we get dh*? = A’, which means that, for
an initial gradient gV, we have g = A'g™ for the gradient at time t. Let
A = EAE™! be the eigendecomposition of A, where A is a diagonal matrix
containing the eigenvalues of A. A! then has eigendecomposition A' = EA'E~L.
Thus, eigenvalues whose absolute values are not close to one will either explode or
vanish, also causing the gradient to act similarly [12]. Furthermore, it was shown
in [73] that the gradient of a long-term interaction is vanishingly small compared
to the gradient of a short-term interaction, meaning that one cannot simply solve
the problem by ”constraining the parameters such that the eigenvalues of the
Jacobian are close to one”.

In practice, the assumptions made about the form of the recurrence relation in
the preceding argument, are somewhat unrealistic. However, it turns out that
simpler nonlinear RNN architectures, like the ERNN, still exhibit the same type
of behavior [12].

9.3.3. Multilayer RNNs

Similarly to the aforementioned DNN architectures, RNNs can also be stacked
to produce a "deeper” model. This is done by taking the hidden state R and
passing it on to another RNN operation, instead of using it to compute the output

4BPTT will be revisited in more detail later in this section.
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directly. For an RNN of depth D, we get one sequence of hidden states for each
layer:

hY = fi(h{™), 20 0,,)
hy = f,(hd ™V nY;6,,)

t t—1 t
hiy = folhp 7 B 1 050).
The output y(t) is then computed as a function of the topmost hidden state:

y(t) = g(hg); 09)

9.3.4. Bidirectional RNNNs

In some applications, it might be beneficial to model the system based on tempo-
ral dependence in both the forward and backward directions. With RNNs, this
can be done by having two separate instances of the recurrence relations, where

the first instance receives the original sequence @1, ...xy, while the second in-
stance receives the reversed sequence xr,...x1. le:
t t—1 t T—t4+1 t—1
hi = fe(z®, hE;0,p) hy = fo(z" 0 RS0, p)

where the subscripts F' and B denote ”forwards” and ”backwards”, respectively.
The output is then computed based on both of the current hidden states:

y(t) = g( g)7hg)§ eg)-

9.3.5. Gated RNNs

To overcome the gradient problems often exhibited by simpler RNN architectures,
many modifications to the classical models have been proposed. Among these are
the Long Short-Term Memory (LSTM) [74], and Gated Recurrent Unit (GRU)
[75]. Both of these architectures keep a persistent state-vector which is only
updated through element-wise affine transformations, whose slopes change over
time. This allows for better gradient flow throughout the network.

48



9 / Frequently used deep learning models

D,

A

D >
Enb>
0

,
_®
¥,
>
Q

Figure 15: The computational flow within an LSTM. The horizontal line on the top indicates the cell
state c(t), while the horizontal line at the bottom indicates the hidden state h(®). Figure
from [76]

)

9.3.5.1. Long short-term memory

A complete overview of the connections within the LSTM is given in Figure 15.
For each time step ¢, the cell state ¢ and hidden state R are computed as:

F9=o(W;a® + U + b))
i) = o(Wiz" + Un"Y + b))

¢ = tanh(W " + U A"V +b,)
M = §0 @ =D 4 0 ¢ &

o =o(W,z" +U,h"V +b,)
" = 0 © tanh(c")

where © denotes element-wise multiplication. If we first look at the cell state
¢, we see that it is indeed updated by an affine transformation. The slope,
decided by f ) is referred to as the output of the forget-gate, which decides how
much of the previous cell state that should be kept (or forgot). The output of
the input-gate, i decides how much of the new proposed cell state, E(t), that
should be added to the current cell state. The hidden state A" is not updated
via an affine transformation, but rather as a squashed version of the cell state,
which is scaled by the output of the output-gate, o).
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Figure 16: Flowchart for the Gated Recurrent Unit. Figure from [76]

9.3.5.2. Gated recurrent unit
The computations within the GRU are illustrated in Figure 16. The update-

equations are as follows:

A = (1 - 20) @ D 4 20 ¢ Y

20 =o(W_h'Y + U.2Y +b,)

AY = tanh(W (+® © R*D) + Uz® + b)

r) = o(W,h"™) + U,2" +b,).

The GRU can be seen as a simplification of the LSTM, where the forget-gate and
input-gate have been replaced by a single update-gate (z(t)). The cell state has
also been removed, meaning that only the hidden state remains. Furthermore,
the updating of the hidden state is now being done via an affine transformation,
similarly to the cell state in the LSTM. The coefficients of the transformation are
determined by the output-gate.

9.3.6. Computing the gradient in an RNN

As was previously stated, RNNs can be trained using ”backpropagation through
time” (BPTT), which is a variant of the ordinary backpropagation algorithm
adapted to the RNN model. Suppose that, at time ¢, we have a scalar loss
function £® (y(t)), which we wish to compute the gradient of, with respect to the
parameter vectors 8, and @, for the general RNN in Eq. (25). Starting with 6,
we get:

Vegﬁ(t) - (Vy(t)g(t))T ) dogy(t)
where dy gy(t) denotes the Jacobian of y® with respect to 0,. For O, we get:

Vo ﬁ(t) - (Vy(oﬁ(t))T ’ dh(t)y(t) : defh(t)

f
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and: .
do, " = dg, k" + dyi-y bV - dg 'Y

where h(" is a variable which is identical to h(t), with the exception of RtV
being treated as a constant.

For the Elman-RNN, the elements of the Jacobians are:

ay.” N () ay.” .
= (0,800, )R S = 0 (0,:)0(i,
ow, 1 o' (vy,:) (4, 7)hy, ab, o' (v, )0(i, 7)
ah(t)* ah(t)*

7 o ) 5 .o (b % _ ) 5 .o h(tfl)
awjk o (U ) (27.])Ik aujk o (’U ) (Zvj> k

: == ! ; 5 ). 1 v —= / . ..
abj o (vl) (27.]) ahg.til) o (vl)ul]

where v, ; denotes the i-th element of Wyh(t) +b,, and v; denotes the i-th element
of Wa + Uh!""Y + b. The function §(i, j) is the Kronecker-delta, which is 1
if 2 = 7, and 0 otherwise. The generalization to bidirectional RNNs, multiple
layers, and several inputs is straightforward.

9.4. Autoencoders

U
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Figure 17: A simple autoencoder. The input X is processed by the encoder, producing h = Ence,(X).
Then the reconstructed input is computed by the decoder as X = Decg,(h).

The autoencoder [77, 78, 12] is a neural network based model designed for unsu-
pervised feature learning. In essence, the main objective of an autoencoder is to
reconstruct an input observation as best it can. This might seem tautological at
first, as the trivial identity mapping is indeed capable of perfectly reconstructing
its input. Thus, it is required by the vast majority of autoencoders that at least
one of the intermediate representations within the autoencoder has a dimension-
ality which is smaller than that of the input data. This is sometimes referred to
as the bottleneck principle, and has led to the success of autoencoders in many
machine learning tasks [77, 79, 80, 15] °.

5These types of autoencoders are sometimes also referred to as undercomplete, whereas au-
toencoders implementing the constraint of nontriviality through other means are referred to
as overcomplete. The latter will not be covered in more detail in this thesis.
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Mathematically, the autoencoder consists of a pair of parameterized functions,
namely the encoder Encg, : X — H, and the decoder Decg, : H — X, where X
is the space containing the input data, and H is a vector space which contains the
learned representations. 8, and 6, denote parameter vectors for the encoder and
decoder, respectively. The bottleneck principle now reads dim(H) < dim(X),
which immediately implies Ence, # Id and Decg, # Id, where Id denotes the
identity mapping. This causes the aforementioned trivial solution to be avoided.
Figure 17 shows an example of a simple autoencoder. Here, both the encoder
and decoder consist of three fully-connected layers.

The autoencoder can represented by the composition Decg, o Ence, : X — X,
whose reconstruction error we seek to minimize. For a dataset X = {X1,..., X, }
we have the loss function

1
Lac(Be, 04 X) = — > 11X — (Decg, © Ency, )(X4)|I%
=1

where || - ||§( denotes some norm on X. If X is a vector space, the squared
Euclidean norm is frequently used. When the autoencoder’s training procedure
is finished, the encoder Encg, can be used to obtain the learned representation
for arbitrary input elements from X.

9.4.1. Connection to principal component analysis

If we let X be a vector space, and Encg, and Decg, be linear transformations,
it can be shown that minimizing the mean squared error loss L, is equivalent to
performing PCA on zero-mean data [77]. Thus, in this simple case, the matrix
for the encoding transformation can be obtained by stacking eigenvectors from
the estimated covariance matrix of the input data.

9.4.2. Deep autoencoders and other variations

Many different takes on the classical autoencoder framework have been proposed
over the years. One of the most noticeable trends — which has also influenced the
entire field of deep neural networks, due to the increase in computational capacity
— is to build deeper models consisting of an increasing amount of layers, both in
the encoder and in the decoder.

It should also be noted that the autoencoder framework is not limited to MLPs,
but can also employ both convolutional and recurrent layers. A CNN-based
autoencoder was proposed by Masci et al. [81], and an RNN-based autoencoder
was introduced by Srivastava et al. [82].

Although all layers of a deep autoencoder can be trained simultaneously, a greedy
layer-wise training procedure has been shown to yield better representations in
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some cases [83, 80, 81]. These stacked autoencoders are formed by first training
a shallow two-layer autoencoder, and then using the representation provided by
this autoencoder to train another two-layer autoencoder “between” the two initial
layers. This process can be repeated until the desired number of layers is reached.

Another commonly applied modification to the autoencoder framework is to train
with a denoising criterion [79, 80]. In this case, the autoencoder is trained to
reconstruct a noise-free version of an input observation, based on a noisy version
of said input. Thus, the denoising autoencoder introduces a stochastic corruption
process 1) which produces a corrupted version of a given input observation. The
loss function is therefore

1 n
Lane(8e,00,X) = — > [|X; = (Deco, o Enco, 0 1)(X)][%-
=1

Vincent et al. [80] empirically demonstrate that the features learned using a
stacked denoising autoencoder are better suited for classification and reconstruc-
tion, compared to similarly constructed stacked autoencoders.

9.5. Self-supervised learning

Self-supervised learning [36] is an approach to learning image representations in
an unsupervised manner. The main idea is to construct a model that can be
trained in a supervised fashion, based on an unlabeled dataset. One approach to
this is through the task of context prediction, where the model learns to predict
the location of an image patch, relative to another patch extracted from the same
image. This approach to self-supervised learning is the one we will use throughout
this thesis. Doersch et al. [36] argue that a model which is trained to perform this
task learns to recognize characteristic parts of the objects present in the dataset.
This is indeed intuitive as determining the relative location of one patch with
respect to another becomes much easier when one is able to identify the object
in the image.

9.5.1. Model description

The model used for the prediction task is a convolutional neural network, followed
by a number of fully-connected layers. The input to the model is illustrated in
Figure 18. Note that the different patches outlined in Figure 18 are not con-
tiguous, but rather separated and jittered relative to each other. This is done to
avoid “trivial” solutions where the model simply learns to continue patterns or
textures in the image.

The input X consists of the two image-patches, which are processed indepen-
dently by the convolutional layers of the model, as well as the first fully connected
layer. Note that the output of the last convolutional layer has to be vectorized
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Figure 18: Input to the self-supervised model. Figure from [36]

(flattened) before being processed by the fully-connected layer. The vectorial
representations produced for the two patches by the first fully connected layer
are then concatenated, and processed by three more fully-connected layers. The
last of these layers produces an 8-dimensional vector containing the predicted
probabilities of the different relative positions.

When training the model, these probabilities are compared with the correct po-
sition (position 3 in the example of Figure 18), so that they agree as best as
possible. This can be done using an ordinary supervised loss function, such as
the cross-entropy loss function [1]:

n 8 ~ N
S5 (1 m 1,
Ece = - (yij lny_] + (1 - yij) In ]>
1)

i=1 j=1 1 =y

where n is the number of patch-pairs, ¢;; is the predicted probability of patch-pair
1 having relative position j, and

_J 1, True relative position of pair i is j
Yi = 0, otherwise

is the one-hot encoded true relative position for patch-pair 7.

9.5.2. From patches to full images

The model outlined above is designed to process patches extracted from a given
image, rather than the full image. Thus, to obtain one representation for the
whole image, one has to slightly modify the model. Recall that the convolution-
operator does not require a fixed size input, meaning that the convolutional layers
of the model can be left as-is. The fully-connected layers following the concate-
nation can be discarded, since we only have one image, and thus, nothing to
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concatenate. This leaves the first fully connected layer, which still requires an
input with fixed dimensionality. This layer is transformed to a convolutional layer
following [84]. The transformation removes the vectorization-step after the last
convolutional layer, and replaces the first fully-connected layer with an equiva-
lent convolutional layer, whose parameters are obtained from the weight matrix
belonging to the fully-connected layer it replaces. After this modification, the
model is capable of processing an input image of arbitrary size.

The transformed model can now be used as a feature extractor directly, or to
initialize the parameters of another convolutional neural network designed for
other image-processing tasks.

9.6. Training DNNs
9.6.1. Gradient descent

In the description of MLPs, CNNs, and RNNs, we saw examples of gradient
computations used to determine the desired weight updates for the respective
models. This is because DNNs are commonly trained using the backpropagation
algorithm [67]. Suppose we have a loss function £(60; X’) which measures the
performance of the model with parameters 6, evaluated on the dataset X. The
function L is assumed to be large for "bad” models, and small for ”good” models,
which means that we seek the parameter vector @ which minimizes £. Often, £
is taken to be the negative log-likelihood of the sample: £ = —>"__. Inp,(x),
where the dataset is assumed to contain independent and identically distributed
samples from the distribution p,.

In gradient descent, the current parameter vector 8; is updated according to

which specifies an iterative procedure that can be repeated until some stopping
criterion is met. In other words, at each iteration we update 8 by moving it
along the opposite direction of the gradient evaluated at that point. Recall that
the gradient always points in the direction of steepest ascent, meaning that the
above update corresponds to moving 0 in the direction of steepest descent. The
learning rate A, is a hyperparameter which specifies the length of the step taken
when updating the parameter vector. The selection of A is both model dependent
and data dependent, which can make it difficult to determine a good value for
this hyperparameter.

9.6.2. Stochastic mini-batch gradient descent

The algorithm outlined above updates the parameters based on the gradient
computed on the full dataset X. If the dataset is large, the computational cost of
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computing the gradient can be prohibitively large. Stochastic mini-batch gradient
descent aims to alleviate the computational cost by randomly partitioning the
dataset X into a set of mini-batches, By, ..., B,,, and then update 8 based on
the gradient computed on each mini-batch. The algorithm is summarized in
Algorithm 7.

input: Raw dataset X', loss function to minimize L.
[nitialize @ randomly.
while Convergence criterion not met do
Randomly partition X into m mini-batches, By, ..., B,
for B in By,...,B,, do

Compute the gradient: g = VoL(8; B)

Update the parameters: 8 <— 0 — \g
end

end

Algorithm 7: Stochastic mini-batch gradient descent.

From a statistical viewpoint, stochastic mini-batch gradient descent offers a com-
promise between computational cost and variance minimization. The latter of
which is a consequence of the averaging effect obtained when performing gradi-
ent descent on the full dataset [12, 85].

9.6.3. The Adam optimization technique

A natural consequence of deep learning models beginning to gain traction, was
that the literature simultaneously saw an increase in publications about improving
the basic gradient descent theme set by the aforementioned methods. Many of
these works focused on the learning rate A, and how it should be adapted to
achieve faster convergence to a minimum of potentially lower value. Among these
methods are AdaGrad [86], AdaDelta [87], and RMSprop [88]. The Adam [89]
optimization technique also falls within this category, as it adapts the learning
rate based on running estimators of the mean and (uncentered) variance of the
gradient. These estimators are

m; = Bim;_1+ (1 — B)g;
v, = Bov;y + (1 — 52)9?

where g; = Vp,£(8;) is the gradient at iteration 4, and g7 is its element-wise
square. 3; and f3, are hyperparameters®. The update rule is:

01’—{-1 - 61 - (28)

n ~
Voite

5The authors suggest 81 = 0.9 and B2 = 0.999 as default values.
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where
m; ~ V;
= . v; = .
1—p5 Lol 8
are bias-corrected modifications of m; and v;, respectively. 7 is a learning rate,
and € is a small constant which is included to avoid potential numerical insta-

bilities. From Eq. (28) it is apparent that Adam differs from ordinary gradient
descent in two main ways:

and

m;

(i) The mean-gradient m; is used instead of the current gradient g,;

(ii) The learning rate is adapted based on the uncentered variance of previous

gradients \; = \/ﬁﬁ —.

Property (i) introduces more of the previously mentioned averaging-effect, which
can also help "push” the updating-scheme forwards at points where the current
gradient is small [1]. A large variance implies that the algorithm is uncertain
about which direction it should advance the gradient, and property (ii) therefore
ensures that only small steps are taken in potentially uncertain directions [89].

9.6.4. Batch normalization

Batch normalization is a normalization scheme which can be applied to the layers
of DNNs to improve performance and reduce the required number of training steps
[90]. The normalization attempts to alleviate Internal Covariate Shift (ICS)
which is defined as “the change in the distribution of network activations due
to the change in network parameters during training” [90]. ICS is problematic
as it requires a particular layer of the network to continuously adapt to a new
distribution of outputs from the preceding layer.

Suppose we let y,,...,y, be the vectorial outputs for the current batch at the
layer to be normalized, at the current training iteration. Batch normalization
then normalizes these outputs according to:

9, =70 (y,—pn) 0o+ (29)

where v and B are learnable parameters, and © and @ denote element-wise
multiplication and element-wise division between vectors, respectively. p and o
are the empirical mean and standard deviations of the output components, for
the given batch. These are computed as:

R 1 &
n = —Zyw g — Z(yi_u‘i) G(yi_“i)
n = n—1

i=1

where the square root is taken element-wise. To understand why this particular
transformation reduces ICS it is useful to view it as the swo-stage transformation:

U, =70y +8, yi=(y,—pn) oo
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where the elements of y; has empirical mean and variance equal to 0 and 1,
respectively.

The orignal authors of batch normalization, loffe and Szegedy [90], claim that this
standardization of moments constrains the distribution of the layer’s outputs, thus
reducing the ICS. y, is then simply a linear transformation of y; with parameters
~ and 3, which is included to restore the representational power of the network
after normalization.

However, in more recent work by Santurkar et al. [91], they show that the ob-
served optimization improvements come from a smoother loss landscape, and not
from stabilized distributions of activations. The smoothing of the loss landscape
make the gradients more predictive and well behaved, allowing for more efficient
optimization [91].

Batch normalization in CNNs

The transformation in Eq. (29) assumed that the outputs from the given layer
were vectors. However, this is not the case with convolutional neural networks,
where each output is represented as a 3-dimensional array of numbers, which
means that the transformation has to be modified to accommodate these data
types. This is done by slicing each array along the third dimension, forming a set
of vectors from each array:

Yi a4 {yi,17 s ayi,m}

where Y,; € RP1*P2xDs g the 4-th output of the layer. The slicing process
produces m = D - Dy vectors which have dimension Ds. See Figure 19 for an
illustration.

|
Y1 ,/Y9
|
I
D, i Y i
D,

Figure 19: Slicing an array Y along the third dimension to form a set of vectors y,,...y,, € RDS,
where m = D1 - D2 .

The transformation in Eq. (29) can then be performed on the set of vectors
obtained by slicing all the arrays in the given batch. This causes the the normal-
ization to have an effective batch size of n-m =n - Dy - Dy, as this is the total
number of vectors obtained by slicing all n arrays.
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Inference with batch normalized networks

From Eq. (29) it is apparent that introducing batch normalization after one or
more layers in a neural network causes the output for a given input to depend
on the rest of the elements in the current batch. Although this is fine during
training, it is not a desired effect when the network is used for inference, as one
typically wants a fixed correspondence between input and output. This is solved
by keeping running estimates of p and o during training, such that these reflect
the moments of the layer outputs. When the network is used for inference, these
estimates can then be used in place of the empirical moments, which will result
in a fixed input-output relationship.

10. Deep clustering algorithms

The architectures described in the preceding section have proven to potentially
yield large performance improvements in supervised classification tasks. Exam-
ples include AlexNet by Krizhevsky et al. [13] for large-scale image classification,
and the Deep LSTM by Graves et al. [14] for speech recognition. However, these
models are trained in a supervised fashion, as is the case with the majority of deep
learning based success stories. Supervised training requires the data to be labeled
before it can be used to train the model, which can be a prohibitive process for
many applications.

This section will serve as an overview of related work, and introduce some of
the impactful recent advances in deep clustering. The methods covered include
Deep Embedded Clustering [15], SpectralNet [18], and Deep Divergence-based
Clustering [20]. A few more algorithms are also covered in less detail, in order to
provide a broad overview of the deep clustering field.

The design pattern for these models is to take one of the classical deep learning
architectures described previously, and combine it with a clustering module, which
computes the cluster membership vectors based on the representation provided
by the deep neural network. The network and the clustering module are then
trained simultaneously by minimizing an unsupervised loss function, to determine
their respective parameters. The joint optimization causes the network to learn
features that are well suited for the clustering module, while the clustering module
learns to cluster these features in an optimal way.

Throughout this section, fo : X — Z will denote the neural network mapping
with parameters €, which maps from the input space X to the space of learned
representations Z. The clustering module will be denoted g4 : Z — U, where ¢
is a vector of parameters, and U is the space of cluster membership vectors. For
an observation X;, we have the learned representation z; = fo(X;), and cluster
membership vector u; = g4(2;) = (g4 © fo)(X).
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10.1. Deep Embedded Clustering

In Deep Embedded Clustering (DEC) [15], the feature extractor is parameter-
ized by a multilayer perceptron, and the clustering module is based on soft-
assignments to a set of centroids. More specifically, suppose we have k centroids

Wy, - iy € Z associated with k respective clusters. The soft cluster assignment
of observation 7 to cluster 7 is then computed using Student’s ¢-distribution:
_oatl
(1 4 IIZrO[usz) 2
uij = _QT_H (30)

2?;1 <1 + ||zz‘—aﬂl||2>

where « is a hyperparameter specifying the distribution’s degrees of freedom”.

The loss function is constructed by forcing the distribution of cluster assignments
U closer to a target distribution P, by means of the Kullback-Leibler (KL) diver-
gence:

n k

£ = KL(P||U) = ZZpUlnp” (31)

i=1 j=1

The specification of target distribution is clearly a nontrivial choice, but the
authors of DEC, Xie et al. [15], state that it should be chosen to have the following
properties:

(i) Strengthen predictions.
(ii) Put more emphasis on high-confidence assignments.
(iii) Normalize loss contribution of each centroid.

They then proceed to suggest the distribution

ol
Y Zl LU/ fi

where f; = " | u;; is the frequency of the j-th cluster. Note that the division
by f; helps P satisfy property (iii). However, to the author’s best knowledge, no
further proof on the fulfillment of conditions (i) or (ii) has been given. To this
end, the following analysis is provided here: Let the difference between p;; and
u;; be 0;;. Then we have p;; = u;; + 9,5, and:

Ufj/f]

Ui]’ + 52']' = 52

"The authors of the DEC leave o = 1 for all experiments.
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where we let s7 = Zle u?/ f; to unburden the notation. After some algebra, we
obtain:

SN

] Si

Y % Ty
Note that S?,uij and f; are all positive, implying that if % > s? then 0ij >
0 and p;; > w;;. Thus, if u;; is large (high confidence assignment), the loss
function will force it to become even larger by pulling it closer to p;;, effectively
strengthening the prediction. Conversely, if ” < §7 then Pij < Uj;;, meaning
that the contribution of this specific a851gnment will be weighted down in the loss
function (by multiplication of p;;). This leads to more emphasis being put on
high-confidence assignments.

10.1.1. Training

The clustering parameters (centroids) ¢ = [uy, . . ., pg], and network parameters
0, are estimated using stochastic mini-batch gradient descent. The gradient of
the loss with respect to the j-th centroid is:

-1
a+ 1L 12 — myll°
Vi L=— > (1 + TJ (pij = wi)(z: = ).

« i=1

For the 7-th embedded observation, the gradient is:

1
at1 z — pyl|?
VL= > <1 + %) (pij — wig) (2 — ny)

« =

which can be used to compute the weight updates in the MLP.

10.1.2. Initialization

DEC is not trained end-to-end using the aforementioned loss function. Rather,
the parameters of the MLP are initialized by a stacked autoencoder (see Sec-
tion 9.4), which is an architecture previously proven to provide representations
suitable for clustering [80, 92]. When the autoencoder’s optimization procedure
terminates, the decoder is discarded, and the parameters of the encoder are taken
to be the initial parameters for the mapping fg. The centroids pq, . .., p; are ini-
tialized by running k-means on the hidden representations z, ..., z,, obtained
by the autoencoder-initialized MLP. The MLP-parameters and centroids are then
fine-tuned using the loss function in Eq. (31).
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Figure 20: An overview of the DEC architecture (from [15]). The feature extractor fo is first trained
as a stacked autoencoder, and then fine tuned using the clustering loss.

10.2. SpectralNet

As the name implies, SpectralNet [18] offers a deep learning based approach to
the spectral clustering algorithm described in Part II. Recall that for ordinary
spectral clustering, we sought an output y for a given input «, without explicitly
considering the mapping y = ¢(x). Instead, the solutions for a given dataset was
formulated as an eigendecomposition of the graph Laplacian, formed from a set
of input vectors X = {xy, ..., x,}. This approach has a few notable drawbacks,
the two most important being generalizability and scalability: The ordinary spec-
tral clustering approach requires the full eigendecomposition to be repeated when
clustering a previously unseen observation. Moreover, the computational com-
plexity can make the eigendecomposition prohibitive for large datasets.

SpectralNet aims to alleviate these two shortcomings by modeling ¢ explicitly
using an approximation fg, which is parameterized by a neural network®. Suppose
for now that we have a known symmetric affinity matrix W = [w;;]. The loss
function used to train SpectralNet is then

52@“(}’ LY):EZZ%J‘H%—?JJH (32)
i=1 j=1
where yy, ..., 4, = fo(x1), ..., fo(x,) are therows of Y, and L = D—W is the
graph Laplacian, defined as in Section 8.4.2. This loss function is proportional
to the loss function of ordinary spectral clustering, but it is minimized using
gradient descent, rather than through an eigendecomposition.

To avoid the trivial solution of mapping all inputs to the same output, the mini-
mization of Eq. (32) is performed subject to the constraint
1

Y'Y = I,
n

8The original authors does not explicitly state which neural network architecture they use for
their experiments.
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where I, denotes the k X k identity matrix. This constraint is implemented as
a linear orthogonalization layer, which orthogonalizes the columns of the matrix
Y. Thus, the complete SpectralNet pipeline is (see Figure 21):

y, = 0y,, Y, = fo(x:)
where O denotes the matrix of the linear mapping performed by the orthogo-

nalization layer, which can be obtained through the Cholesky decomposition of
Y'Y [18].

T —

LO_O O]

LO_O O]

N

o [O O O
le
=

=[O _ 0O O]

Figure 21: An illustration of the SpectralNet architecture. The input @ is processed by the neural network
fe, producing . This representation is then orthogonalized using the linear transformation
O, to produce the output y.

10.2.1. Training

During training, the data is presented to the architecture in the form of randomly
sampled mini-batches of size n. Due to the addition of the orthogonalization
constraint, the optimization procedure alternates between the following two steps:

1. Sample a mini-batch, and compute the matrix Y based on current estimates
of O and 6, and use it to update the orthogonalization matrix O

2. Sample a new mini-batch, and recompute the matrix Y. Compute the
gradient of the loss function £, to update the network parameters 6.

In the latter step, the gradient?

i=1

T
4 n
V@aﬁ = 2 (Z wai(ya - yz)) o

is propagated down to the neural network to update the parameters 8. When
the network has been trained, the final y,, ...y, are clustered using k-means.

9Not provided by SpectralNet’s authors [18], but included here for completeness.
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10.2.2. Computing the affinity matrix

As is the case with ordinary spectral clustering, the specification of an affinity
matrix remains as a critical choice. The e-connected Gaussian affinity

_ d=ij) .
. — {exp( e ) , d(xy, ;) < ¢ (33)

) .
0, otherwise

can most certainly be used, but it still requires the specification of a suitable
distance function in the input space. In SpectralNet this distance function is
learned from data, rather than being specified directly. This is accomplished by
training an unsupervised siamese neural network [18, 93] to embed the input data
in a vector space where the Euclidean distance can be used as a suitable distance
function. An unsupervised siamese network is any network producing vectorial
representations, trained to minimize the contrastive loss

n n
L, = Z Z es(z;, ;)
i=1 j=1
where
. ) ||z: — 2%, x; is ;’s nearest neighbor
T, Tj) = :
s\&Li, Lj max(()’ 1— sz — zj||)2, otherwise

Here, z; denotes the siamese embedding of x;. The distance function is then
d(zi, ;) = ||z — 2|

which can be used to compute the affinity matrix W through Eq. (33). The
contrastive loss function causes the siamese network to learn an approximate
adaptive nearest neighbor metric, which tends to more accuratly describe simi-
larity structure, than the Euclidean metric computed in the input space. This
is demonstrated experimentally by Shaham et al. [18]. Note that the siamese
network is constructed and trained prior to training of the neural network fy,
and thus treated as fixed when the latter is being trained.
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10.3. Deep Divergence-based Clustering

Sq) aration +
“““
+ oK
Input Conv Conv FC Output I Rl
Layer Layer Layer Layer Layer L08S mAI‘i;%m

Orthogonality
(a) - Cluster
"N Assignements

Figure 22: An overview of the DDC model for image clustering. Figure from [20]. Note that the notation
is slightly different, as we have o = u and h = z.

In contrast to the two aforementioned algorithms which were vector based, Deep
Divergence-based Clustering (DDC) [20] is an approach to image clustering uti-
lizing ideas from deep learning. In DDC, the mapping fs is a convolutional
neural network, which previously has been shown to perform well on supervised
image processing tasks [25, 13]. The last layer of the CNN is a fully-connected
layer which receives the flattened output from the last convolutional layer, and
produces the representation z. The clustering module g, consists of another
fully-connected layer, which produces the soft cluster membership vector (see
Figure 22).

DDC’s loss function is constructed based on both the learned representations z,
and the cluster membership vectors w. It is designed to enforce the following
requirements:

(i) Cluster compactness and separability: In the representation space Z, indi-
vidual clusters should be compact, while different clusters should be well
separated.

(ii) Orthogonal cluster membership vectors: Cluster membership vectors point-
ing to different clusters should be orthogonal in R¥.

(iii) Closeness to simplex corner: Each cluster membership vector should be
close to a corner of the standard simplex in R” (defined as: {(ay, ..., a;) €

k
RYo > a4 = 1}).
The loss function is the sum of three terms, each of which tackles one of the
properties outlined above:

£:£1+£2+£3.

The first loss term enforces the separability and compactness condition through
the Cauchy-Schwarz (CS) divergence between k probability density functions

Py, PE [37]

N ~ «—  Jpi(=)p(2)dz
Des(pr, .- px) = ;];l \/fpZ dzfpj( z)dz
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-1
Note that % is used as a normalization constant, instead of (S) , which was used
by Jenssen et al. [37]. In order to describe DDC in its original form, we will stick

to % in this section.

Maximizing D, corresponds to minimizing the argument of the logarithm, re-

sulting in:
~ < J pi(2)p;(2)d=
;JZH\/fpl dzfp]( )dz

Suppose that each of the probability density functions represent their own cluster.
The numerator of term (i, 7) in £; is the integrated overlap between between
clusters 7 and 7. A small value of the integrated overlap leads to clusters that
are well separated. The denominator is the product of integrated self-overlap
for clusters ¢ and j. These quantities will be large if both clusters are compact.
Hence, a combination of compact and well-separated clusters will result in £;
taking a small value.

The probability density functions pq, ..., p, are unknown, and have to be esti-
mated from data. Using the kernel density estimator [38] we get!?:

pi(z) = |C |0dlmzZK(Hz z]||)

z;€C;

where K is chosen to be a Gaussian

K(z) = \/127 exp (-”’;)

and o is a bandwidth parameter. If we assume for now, that the cluster mem-
bership functions produce hard assignments, we can rewrite £; as:

Z Z v! Kv;,

=1 j=i+1 \/’UZTK’UZ"U?K’U]'

where K = [k;;] is the kernel matrix whose elements are the pairwise similarities

=K <”z2 ZJH). v, denotes the j-th column of the n X k cluster assignment
matrlx U, which can be formed row-wise from the cluster assignment vectors
Uy, ..., u,. To make the loss function differentiable, we can now relax the hard
membership constraint, and allow for soft assignments instead.

The second loss term enforces the orthogonality between the cluster assignments
vectors wy, . . ., u,. The matrix UU” consist of pairwise inner products between
cluster assignment vectors, and thus, small elements in the upper (or lower)

1ONote the small abuse of notation where p; denotes both the true pdf and the kernel density
estimate.
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triangular part of this matrix would correspond to orthogonal cluster assignment
vectors. This gives the loss term

n—1 n
EQ == tI'IU(UUT) == Z Z u;u;

i=1 j=i+1

which is the sum of the strictly upper triangular part of UU”. However, this
sum also enforces orthogonality between vectors pointing to the same cluster, and
thus introduces a regularizing effect to the optimization by repelling the cluster
assignment vectors away from each other.

The last loss term ensures that the cluster assignment vectors lie close to a corner
of the simplex containing the assignments wq,...,u,. Let M be the matrix
whose elements are:

my; = exp(—||u; — ¢j||*)

where e; denotes the j-th corner of the simplex (j-th cartesian basis vector).
Then we have the loss term:

k=1 k
L, = %Z Z m! Km,;

=1 j—it1 \/szK'mZm;meJ

where m; denotes the j-th column of M. Due to its resemblance to £y, L3 can
be interpreted analogously: The distribution of cluster assignment vectors should
be compactly centered around separate simplex corners.

10.3.1. Training

In contrast to DEC, DDC can be trained end-to-end from randomly initialized
parameters. Training is done by minimizing the loss function £ using mini-
batch stochastic gradient descent. However, the gradient computations were not
provided by Kampffmeyer et al. [20]. For the sake of completeness, they are
provided here. First of all, notice that we have:

VL=VL +VL, +VLs.

Starting with the derivative of £; with respect to an output wg:

.. .o vI'Kuv;
oL, 125 zk: Di(i, ) - /vl Kvwl Kv; — Da(i, 5) - e
Oug, k po e UiTK'UZ»U]TK'uj
where

n

a n
Di(i,j) = 7—vf Kv; = 0(i,0) > KamUm; + 6(5,0) > _ kiati

m=1 =1
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and:
Dy(1,5) = 5 v Kv;v; Kv;
ab
=2 ((5(@, b)U?K'U] Z kamumi + 5(], b)'U;TK’UZ Z kamum]’> .
m=1 m=1

The gradient of £; wrt. an embedded point z, is:

T X

v; Kv;
T gL .
2\/”1‘ Kvlvj Kuvj

Lt b Dy(ig) -y Jol Kuwl Ky — Da(i, j) -
Vali=72 >

T T
i1 it v; Kvlvj Kuv;
where:
D3(Z,]) = Vzavi K’U]
- z z i 2 — 2
m ~ “~a I = ~a
- E uaiumjkam 2 + § uliuajkla 2
o o
m=1 =1

and:

D4(l,_]) = vza (’U?K’U{U?K’Uj) == Dg(’é, i)U?K'Uj + U?KUZDg(j,j)

Moving on to L, we have:

n—1 n
VLo => w+ > u
i=1

j=a+1

and finally, for L3, we get:

S T T o S szK'rn
6?£3 _ l Zl i D5(Za]) \/mz szmj Km] D6(Z7j) 2¢memin;;mej
Ougy, k= P mlTKmlm]Tij
where
DS(Zvj> = au meTij
=2 Z katmtjmai(eib - uab) + 2 Z ksamsimaj(ejb - uab)
t=1 s=1
and:

To summarize, any derivative with respect to component(s) of U are used to
update the parameters of the output layer ¢, through the MLP-gradients provided
in the previous part. The parameters the CNN are updated using V, L, as well as
the gradients that are propagated down through the output layer. The updating
is done according to the CNN gradients which were also provided in the previous
part.
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10.4. Other algorithms

The purpose of this subsection is to introduce a few more deep clustering al-
gorithms, in order to further increase our insight into the deep clustering field.
These particular algorithms were chosen since they fall within the “DNN + clus-
tering module” framework, which has been common for the previously discussed
algorithms as well. As we will see later, this shared framework means that all
these algorithms can be modified using the unsupervised companion objectives
proposed in this thesis — to potentially improve the clustering performance. The
algorithms are:

e Improved Deep Embedded Clustering (IDEC) [24]. As the name
implies, IDEC is closely related to the previously described DEC algorithm.
However, the authors of IDEC argue that the fine-tuning stage of DEC
“leads to non-representative meaningless features and this in turn hurts
clustering performance” [24]. To alleviate this IDEC keeps the decoder-

part of the autoencoder during fine-tuning, in contrast to DEC, where it is
discarded. The other parts of the IDEC model are shared with DEC.

e Deep Clustering Network (DCN) [17]. This method is also similar
to IDEC, since it uses an autoencoder with a clustering module attached
to the code-space. However, instead of the soft clustering module used
by IDEC, DCN uses a hard k-means clustering module to produce the
cluster assignments. Due to the non-differentiability of the hard cluster
assignments, DCN adopts the following three-stage optimization procedure:
(i) Update autoencoder parameters with gradient descent on reconstruction
loss; (ii) recompute cluster assignments; (iii) recompute cluster centers.
This optimization procedure is repeated until convergence.

e Discriminatively Boosted image Clustering (DBC) [21]. DBC
is another autoencoder-based algorithm which is designed specifically for
image clustering. It uses a fully-convolutional autoencoder, which is an
autoencoder consisting of only convolutional layers [81, 94]. DBC’s training
procedure begins with pre-training the autoencoder, and when the pre-
training finishes, the decoder is discarded, and the encoder is fine-tuned
using DEC’s clustering loss.

Lastly, the deep clustering literature also contains a few algorithms that does
not directly adhere to the “DNN + clustering module” framework. These algo-
rithms include: (i) Joint Unsupervised LEarning (JULE) [19], which uses a CNN
for hierarchical clustering; (i) Information Maximizing Self-Augmented Train-
ing (IMSAT) [95], which depends heavily on data augmentation; (iii) Variational
Deep Embedding (VaDE) [96], which is a generative model based on variational
autoencoders [97]; and (iv) Categorical Generative Adversarial Network (Cat-
GAN) [16], which is another generative model based on generative adversarial
networks [98]. However, a thorough review and comparison of these methods
falls outside the scope of this thesis.
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In this part we will go through the mathematical foundations for the model
proposed in this thesis. The methodology includes ideas and theory from several
different areas of research, including nonparametric statistics, information theory,
kernel methods and reproducing kernel Hilbert spaces, differential geometry and
tensor analysis, and finally deep learning.

The first section in this part considers the problem of estimating an unknown
probability density function from a vectorial dataset, without any explicit as-
sumptions on the distribution itself. These concepts are generalized to tensors of
arbitrary rank in the second section by building upon the work done by Signoretto
[35]. Then, in the last section of this part we will see how all these concepts come
together to form the main contribution of this thesis, whose goal is to address
some of the challenges that arise with current state-of-the-art methods for deep
clustering.

11. Kernel density estimation

Kernel Density Estimation (KDE) [38, 99] is one of the most widely used meth-
ods for estimating unknown probability distributions. In contrast to many other
estimation techniques, KDE is nonparametric, meaning that there are no direct
assumptions on the underlying distribution of the data. Kernel density estimates
have been used to describe methods previously in this thesis, but since it repre-
sents an integral part of the proposed method, it is explained in more detail in
this section.

Suppose we have a dataset consisting of n vector-valued random variables
X4,..., X, € RP drawn from an unknown distribution px(x). The KDE is a
generalization of the well-known histogram, and is formulated as follows:

. 1 & ||z — X
px(z) = WZK (—>
i=1

o

where || - || denotes the Euclidean norm on R”, ¢ is a bandwidth parameter, and
K is a distribution or kernel on R satisfying

i) 0<K(z)<ooVreR

(i) K(z)=K(—z)Vz eR

(i) /_ Z K(z)dz = 1.

71



Part IV /Proposed method

Furthermore, one can constrain ffooo 22K (x)dz = 1, causing the bandwidth
parameter o to represent the scale-parameter of the kernel. Perhaps the most
commonly used kernel in the literature is the Gaussian kernel:

K(z) = \/1276—””5. (34)

In essence, KDE with a Gaussian kernel places a D-dimensional spherical Gaus-
sian distribution around each observation, and then averages the contributions
from each of the observations to create the final estimate. Setting the bandwidth
parameter o is a highly nontrivial task, and several automated procedures have
been proposed to alleviate this burden. Jenssen et al. [37] suggest determining o
by minimizing the asymptotic mean integrated squared error (AMISE) between
px and px resulting in

. 4 D
OAMISE = O (m)

where
1 D n

TSR NI )

j=1 i=1

o=

is the averaged sample standard deviation along each dimension.

Another rule of thumb which has been used in previous information-theoretic
clustering algorithms [100, 20], is to let o be 15 % of the median pairwise distances
between the observations in the dataset:

o = 0.15 - median {d;; }}

i,j=1

Figure 23 shows examples of kernel density estimates using different values for
the bandwidth o. From the plots, it is apparent that a smaller value of o causes
the estimates to exhibit larger variations, as more of the mass in each kernel lies
closer to its respective observation.
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(a) o =0.07 (b) o =0.15

(C) O = OAMISE = 0.338 (d) o = 0.55

Figure 23: Univariate kernel density estimate (red) for 5 observations (e). The dashed curves indicate
individual contributions from the respective observations to the total estimate. The kernels
are Gaussians with varying scales. Note the large difference in the smoothness of the different
estimates.
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11.1. Kernel density estimation and Mercer kernels

As it turns out, there is a connection between kernel density estimation, and the
theory of Mercer kernels and reproducing kernel Hilbert spaces. The link was first
outlined by Jenssen et al. [37], and is based on a specific information theoretic
quantity referred to as the Cauchy-Schwarz (CS) divergence. However, before
delving into the exact formulation, we will first outline the relevant background
theory on Hilbert spaces and Mercer kernels.

11.1.1. Mercer kernels and reproducing kernel Hilbert spaces

Informally, a Hilbert space H is a possibly infinite dimensional linear space which
possesses an inner-product operation!. When the dimensionality of H is finite,
it reduces to an Euclidean space. Let ¢ : RP — H be a mapping from the D-
dimensional input space to a Hilbert space H, and «,y € R”. Then, according
to Mercer’s Theorem [1], there exists a function k(x,y) such that

<¢(m)7 ¢(y)>'H = k(mu y)

where (-, )y denotes the inner procuct on H. Furthermore, k is a symmetric
continuous function satisfying

/C / Kz, y)g(z)g(y)dedy > 0 (35)

for any g(x),z € C C R” such that

/Cg(m)zda: < 00.

In this case, k is referred to as a Mercer Kernel, and H is called a Reproduc-
ing Kernel Hilbert Space (RKHS). Interestingly, the above also holds in reverse,
meaning that any symmetric continuous function satisfying Eq. (35) specifies an
inner product in some RKHS.

It is important to note that Mercer’s theorem does not provide any guidance
on how to find the mapping ¢ explicitly. However, many machine learning al-
gorithms can be formulated through inner products, meaning that one can map
the data from R” to H implicitly, through the kernel function k. This has led
to the “kernelization”'? of classical linear algorithms, resulting in e.g. Kernel
k-means, Kernel Principal Component Analysis [103], and the Kernel Support
Vector Machine [104]. Although linear in H, these techniques become nonlinear

1A formal definition can be found in e.g. [101] or [102]
12The translation is also sometimes referred to as the “Kernel Trick”.
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11 / Kernel density estimation

in R” due to the potential nonlinearity of the mapping ¢. It can be shown that
the Gaussian kernel

o (@, y) = 5 (36)

satisfies the kernel-conditions (see e.g. [105]), making it a popular choice in
these methods as well. Note that we have omitted the normalization factor since
Mercer’s theorem does not require the total integral of the kernel to be equal to
one.

11.1.2. The Cauchy-Schwarz divergence in a Hilbert space

10 1

Des
(@2

0- * . —e

0.2 0.4 0.6 0.8 1.0
o

Figure 24: The CS divergence between two probability density functions at different widths and overlaps.

The CS divergence is an approach to measuring the similarity between probability
density functions. For a pair of densities p; and ps, the CS divergence is given
by

n J pi(z)pa(z)de
\/fpl(a:)Qda: [ pa(z)?dx

As was previously argued in the explanation of DDC, densities that are compact
and well separated will result in a large CS divergence.

Dcs(p17p2) - _1

Figure 24 illustrates how the CS divergence changes for a pair of Gaussians when
o increases. The plots show that an increasing o leads to densities that are
overlapping and less compact — which is reflected by the decrease in D,.

For covenience, denote the argument of the logarithm d.,(pi,ps), such that
D.s(p1,p2) = —1In(d.s(p1,p2)). Now suppose the functions p; and p, are un-
known, and we are interested in estimating the CS divergence between them from
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Part IV /Proposed method

the random samples X ,...,X,, and Y,...,Y, drawn from p; and p,, respec-
tively. Using the kernel density estimator, the numerator in d.s(p;, p2) becomes

[ @@ = QdZ/ (P e ()

If K is defined as in Eq. (34), we get

N I G

1,7=1

by the convolution theorem for Gaussians [37]. Similar calculations for the de-
nominator in des(py, P2) give

> ks (X4, YY)

i,j=1

Z k\fU(X“X> Z k\fU(YUY)

1,j=1 1,j=1

dcs(ﬁlaﬁZ) -

where we've used the Gaussian Mercer kernel k sz, (-, -) from Eq. (36). Since
k /3, (+, ) represents an inner product in a RKHS, we can write

dcs(ﬁl,ﬁQ) = Eu -
”Z:1< ( ) (XJ)>HZ]Z:1<¢(Y1)¢<YJ)>H
(M1, My)y

B <M17 M1>’H<M27M2>’H
= COS A(Ml,MQ)H

where M; = > ¢(X;) and My = > ¢(Y;) and Z(+,-)3 denotes the angle
=1 i=1

between two elements in H. Thus, we can interpret d.s(pi,p2) as the cosine
between the “kernelized” mean vectors from the respective samples.
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12 / Tensors and tensor kernels

12. Tensors and tensor kernels

In the preceding section we assumed that the input to the kernel density estima-
tion procedure was vectorial. However, in the case of more complex data types
such as time series, images, or videos, the vector-space assumption might not
hold. Thus, a modification of current algorithms, or construction of entirely new
algorithms, is necessary to correctly model these datatypes. Luckily, there exists
within the realm of mathematics, a framework on which we can base these mod-
ifications or new algorithms. These objects are referred to as tensors, and can be
regarded as generalizations of the well known vectors. The coordinate-free formal
definition of a tensor is not immediately useful to us, so we will throughout this
thesis assume that we have a basis, and that all tensors are expressed through this
basis. Informally, this allows us to view a tensor as a “hypercube of numbers”.
Hence, we have the following definition:

Definition 6. A tensor T of rank r is an r-dimensional collection of
elements:
T = [772'172'27"-,%]

where i, € {1,...Dy} for k = 1,...,r. The tuple (Dy,...,D,) is
referred to as the shape of the tensor.

From the definition above, we immediately have three well known examples of
tensors:

1. Vectors: A vector v = [v;] is a rank-1 tensor.
2. Matrices: A matrix M = [m,;] is a rank-2 tensor.
3. Color images: A color image I = [ij] is a rank-3 tensor.

Similarly to vectors and vector spaces, tensors reside in tensor spaces, where
element-wise addition and scalar multiplication are defined analogously. In the
following, we will add additional structure to the tensor space, in the form of
distances and kernels.
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Part IV /Proposed method

12.1. Tensor kernels
12.1.1. The naive kernel

Recall that for rank-1 tensors (vectors) we have the kernel:

ka(az,y):exp( ||=’”—y||2) ﬁexp< 203’))

The latter equality shows that this kernel belongs to a particular class of kernels,
namely product kernels. Generalizing this kernel to tensors X and Y of rank r
gives the naive kernel [35]:

Dy D,
k,ga'l've(X’ Y) — H . H exp (_ (lez, - }/;'1-»1'7-)2)

where we compute a kernel for each of the components, and then use these to form
a product kernel. However, as is also pointed out by Signoretto [35], this causes
the kernel function to ignore inter-component structure within and between the
respective tensors. Mathematically, this means that the kernel is invariant to a
fixed permutation rule P:

k(X Y) = kY (P(X), P(Y)).
This effect can be especially destructive for e.g. images, where these can be

transformed beyond recognition by permuting the spatial indices.

12.1.2. Matricization-based tensor kernels

( _
i D1 X<1>
|  D.=Dy-Dy
1 —
ol \ o, X<
,i ,,,,,,,,,,,,, PR B D_Q - Dl . D3
/// / D3 X<3>
W/ y D3 \ oy
Dg D—3 - Dl : D2

Figure 25: Matricization of a rank-3 tensor X.
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12 / Tensors and tensor kernels

The problem outlined above calls for a more robust kernel which takes inter-
component structure into account. To this end, Signoretto [35] suggests defining
a product kernel over the matricizations of the input tensors:

k(tjensor(X’ Y) _ H kgm(X<m>,Y<m>)

m=1

where X <™~ is the matricization of X along dimension m (and similarly for Y').
More specifically, this is the matrix obtained by rearranging the elements of X
into a matrix with shape (D,,, D_,), D_y, = D1+ Dy_1 - Dppyy -+ - D,.. The
matricization X <!> is therefore:

X101 - Xi1..p0 oo Xipsoo1 - XiDs..D,
x<1> 01,1 - Xo1.p oo Xopy,.o1 - Xop,.D,
Xpitpg -+ Xpoan, -+ Xpipyt oo+ XpiDsoD,

Note that the matricization for an arbitrary dimension m can be obtained sim-
ilarly by reordering the dimensions of X, and then reorganizing the elements
according to the rule given above.

Figure 25 shows an example of the matricization process where the rank-3 tensor
X is transformed to the matrices X <*>, X <?> and X <3”. In this case the tensor
X could be an image, or the output of a convolutional layer in a CNN — the latter
being the connection between tensors and CNNs mentioned in the introduction
of this thesis.

Thus, it remains to specify the form of the components k(- ), in the product
kernel. We will stick to the Gaussian kernel, but use a distance function on
the Grassmann manifold spanned by the respective matricizations (see Figure
26). Considering data matrices as points on the Grassmann manifold is the key
concept in Grassmannian learning [106, 105, 107]. Results from this field indicate
that using a distance function on the Grassmann manifold tends to improve
performance of distance-based machine learning systems for tensor data.

If we couple the Gaussian kernel with a generic distance function dg(p,, p_,,) on
the Grassmann manifold, we get the kernel component:

d X<m> Y<m>
kT(X<m>,Y<m>) = exp (_ Q(DmD—m)( ) )) .

202

Here G(D,,, D_,,) denotes the Grassmann manifold, which consists of all D,,-
dimensional linear subspaces of RP-m. This interpretation of the matricizations
assumes that we have D,,, < D_,,, as the dimensionality of the subspace has to be
less than or equal to the dimensionality of the parent-space. This assumption does
not necessarily hold for general tensors, which means that the computations have
to take this into account to ensure the “validity” of the approach. Matricizations
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for which D,,, > D_,, are therefore transposed prior to the distance computation,
following [35], meaning that we essentially consider distances on G(D_,,, D,,)
instead. Throughout the rest of this thesis we will assume that D,, < D_,,, and
that the transposition has been made whenever this does not hold.

Strictly speaking, it is not the matrix X <"~ itself that lies on the Grassmann
manifold, but rather the span of its rows. Therefore, it is useful to represent
points on the manifold by D,, X D_,, orthonormal matrices. These orthonormal
representations can be obtained through the singular value decomposition (SVD)
of the original input matrices. Recall that, for a real matrix X <"~ with shape
(D, D_,,) satistying D,,, < D_,,, we have

X<m> — U)<(m>2)<(m>(v)<(m>)T (37)

where 33" is a diagonal matrix with shape (D,,, D,,) and nonnegative real
numbers on the diagonal. U™ and V™ are orthonormal matrices with
shapes (D,,, D,,) and (D_,,, D,,) respectively. Moreover, it can be shown that
the row span of (V{"”)T is equal to the row span of X <"~ [108]. Thus one
can take (V™) to be the orthonormalized representation of X <""~. The dis-
tance function is illustrated in Figure 26 as the distance between (V{™” )" and

(V$™)T, which are points on the Grassmann manifold.

12.1.3. Distance functions on Grassmann manifolds

Figure 26: The distance dg(p,,,p_,)(X <", Y <"7) between two matricizations X <™ and Y <™~ on
the Grassmann manifold. Since the Grassmann manifold consists of linear subspaces, the

matricizations are represented by the respective orthonormalized matrices (V§m>)T and
(Vi)

There exists a variety of different distance functions on Grassmann manifolds
in the literature [106, 107]. Among the most commonly used distances, we find
the geodesic (arc length) distance, and the projection distance. The former is
computed using the principal angles between the respective subspaces [106]. The
computation of these angles requires another SVD, which substantially increases
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12 / Tensors and tensor kernels

the computational cost of the algorithm. Moreover, it can be shown that a
Gaussian kernel using the geodesic distance is not positive semidefinite [105].
Conversely, the projection distance, when coupled with a Gaussian, results in a
positive semidefinite kernel. This distance function is based on the orthogonal
projection operator which takes an arbitrary element of RP”-m and projects it or-
thogonally to the relevant subspace. For a matrix X <™~ the projection operator
is given by the product V5™ (V' {")T [35]. Considering the Frobenius norm®?
between projection operators gives the distance function:

B (X Y)Y (V) - VE(VE e
where || - || denotes the Frobenius norm. Moreover, it can be shown that:
dpr%va )(X<m>7 Y<m> \/2 V<m>)Tv<m> (V)<(m>>TV1</m>))

which is more efficient to compute compared to the previous expression [35].

Using the projection distance, we obtain the tensor kernel:

ktensor X Y H eXp<

— exp (_ 2 =1 (Dm — tr((V§m>)TV§m>(V§m>)TV§m>)))

o2

~ oxp ( w) (38)

— tr ((V<m>) V<m> (V<m>)TV}</m>) >

o2

202

where we let diensor be the tensor distance function constructed from the projec-
tion distance between the different matricizations for notational simplicity. It can
be shown that, due to the positive semidefiniteness of the product kernels, this
kernel is also positive semidefinite [105].

12.1.4. Computing V"~

It can be readily seen that the distance function described above only depends on
one of the three outputs from the SVD, namely V' "”. Moreover, it can be shown
that V'™ can be formed by stacking the D,, eigenvectors of X =™~ (X <"~)T
corresponding to the nonzero eigenvalues, column-wise [108]. We can therefore
compute V'™ directly with an eigendecomposition, instead of using a generic
SVD solver.

However, this approach requires the eigendecomposition of matrices with shape
(D_,n, D_,,) — which, in practical applications — can be quite large. To alleviate
this potential computational burden, we will instead make use of the fact that we

13The Frobenius norm of a matrix is the square root of the sum of its squared elements.
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can obtain eigenvectors of X <""7 (X ~">)T by linearly transforming the eigen-
vectors of (X ="7)T X =™ Suppose that v is an eigenvector of (X ~"7)T X <"~

with eigenvalue A # 0. Then we have:

(X<m>)Tx<m>,v — )\’U
= X<m><x<m>)TX<m>,U — )\X<m>’U
= X<m>(x<m>)Tw — )\w

thus, we have shown that w = X ™ v is an eigenvector of X <" (X <"")T

with eigenvalue \.

This result means that we can compute the eigenvectors of (X ="7)T X <"~
whose shape is (D,,, D,,), and then linearly transform these to form V3"~.
Since we assumed D,, < D_,, this will result in reduced computational com-
plexity compared to eigendecomposing X ="~ (X ="~)7" directly, whose shape is

(D_ns D).

12.1.5. Tensor kernel density estimation

The tensor distance function diensor can be used to construct a kernel density
estimator for an unknown probability density function in a tensor space. Gener-
alizing the vector space KDE to a tensor-valued dataset X ,..., X, we have:

Syt =)

where the normalization constants have been omitted as they disappear in the
expression for the CS divergence. K is assumed to be a univariate standard
Gaussian:

I =2
K(z)= \/%6 7,

Using the exact same calculations as in the vector case allows us to write the CS
divergence between two tensor-space-pdfs as:

Z ktensor(){'Z7 Y )

3,j=1

Dcs(ﬁlaﬁ?) =—In

Z ktensor(X“ X ) Z k.tensor(Y“ Y )

3,j=1 3,j=1

where X¢,...X,, and Y,...,Y, denotes tensor-valued samples from p; and
Do, respectively. The RKHS interpretation of D, is analogous to the vector-space
case.
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13. Deep Tensor Kernel Clustering

13.1. Motivation

The representational power of deep learning architectures is a double-edged sword
when training deep clustering algorithms [24]. Although these models are indeed
capable of producing vectorial representations from noisy and complex datatypes,
they are also capable of drastically changing the between-sample similarities
present in the dataset. The majority of deep clustering algorithms rely on the sim-
ilarities computed from the network’s output, meaning that one must adequately
regularize the model such that input-similarities are somehow reflected in the
output-similarities. Much work focuses on implementing this constraint through
the use of autoencoders, where an additional clustering module is attached to
the autoencoder’s code space [17, 24, 21]. Recall that also the aforementioned
DEC [15] pre-trains the embedding network as an autoencoder (using a recon-
struction loss), and then fine-tunes the network using the clustering loss. Thus,
the well known DEC also falls within the autoencoder-employing category of al-
gorithms. However, the autonecoder is trained to reconstruct its input as best
as possible, meaning that it does not necessarily produce representations suitable
for clustering.

Even though the autoencoder approach is a popular one, there are algorithms
that do well without the extra guidance provided by the reconstuction loss. Ex-
amples of such algorithms include SpectralNet [18] and DDC [20], which were
both described earlier in this thesis. These algorithms are trained end-to-end us-
ing randomly initialized parameters without explicit regularization terms'*. The
ability to do without the autoencoder has the benefit of reducing the number
of model parameters, potentially increasing training efficiency. Moreover, the
end user does not have to worry about pre-training vs. fine-tuning, and other
potential difficulties that might arise when combining the autoencoder and the
clustering module. However, as is also the case with the autoencoder-based mod-
els, these algorithms are far from perfect. In DDC the authors state that the
algorithm is indeed prone to getting stuck in local minima, potentially converg-
ing to sub-optimal clusterings.

141t should be noted however, that DDC’s second loss term introduces a regularizing effect to
the hidden representation.
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13.2. Unsupervised companion objectives

In an attempt to alleviate some of the aforementioned difficulties, without sacrific-
ing end-to-end trainability from randomly initialized parameters, a new approach
to unsupervised loss function design is proposed in this thesis. The method is
similar in spirit to Deeply Supervised Nets introduced by Lee et al. [34], where a
collection of companion objectives are introduced to help guide the earlier layers
of a supervised model. The main idea behind these companion objectives is to
introduce a classifier at each layer in the network, and then jointly optimize these
classifiers, as well as the final classification layer. In mathematical terms, we get

the loss function:
L—1

L= ‘Cclassiﬁcation + Z ‘Céo
i=1
where L assification denotes the ordinary loss function computed at the final layer,
L is the total number of layers, and Eio denotes a loss function (companion
objective) computed at layer i. Although the Deeply Supervised Nets are — as
the name implies — supervised, the main idea can be transferred to the domain
of deep clustering.

Let us now assume that we have the standard deep clustering setup from Section
10:

z=fo(X), u=gy(2)
where fg denotes the neural network producing the learned representation z,

from the input X, and g4 denotes the clustering module producing the cluster
membership vector w. Since fy represents a neural network, it can be decomposed

layer-wise as:
L L—
fnggLofgLillo---ofél

where fél is the mapping performed by layer [. If we let Y be the output of
layer [, we have:

Y= (v

with Y° = X and Y* = z. Note that we assume X and Y, ..., Y* ! to
be tensors of arbitrary rank, whereas z and u are assumed to be vectors (rank-1
tensors).

If we have a dataset X = {X,..., X, } and a clustering loss function
Lauster (X, 0, @), the proposed total loss function reads:
L1
L - ‘Ccluster<X; 07 ¢) + A Z ‘CE:O(YZD <o Yﬁw U) (39)
1=1
where ﬁéO(Yll, e Yﬁl, U) is an unsupervised companion objective on the [-th

layer, which depends on both the outputs of that layer and the cluster member-
ship matrix produced by the clustering module. A is a hyperparameter which
determines the strength of the companion objectives.
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Following the idea of Deeply Supervised Nets, ﬁlco should be designed to enforce
a discriminative cluster structure at layer [. Similarly to DDC, this is done using
the CS divergence, resulting in the companion objective:

1 & & v K'v,
LLY:,...Y L U)=— L
1 () ;j;1 \/valvivalvj

(40)

where k is the number of clusters, v; denotes the i-th column of the cluster
membership matrix U, and K' = [liéj] is a kernel matrix whose elements are:

I __ 7.tensor l l
Ki; = k(Y Yj)

tensor
k o

where is the tensor kernel from the previous section. Note that the correct

normalization factor (’;)71 from [37] is used, instead of DDC'’s %

Eq. (39) and Eq. (40) constitute the mathematical formulation of the proposed
unsupervised companion objectives. In essence, these are designed to enforce
similar cluster structure at each of the layers in the network, ensuring a more
consistent similarity structure between the outputs of subsequent layers. Because
the representational power of a single layer is limited, and each layer has its
own companion objective, the similarity structure at later layers should more
closely resemble the similarity structure at the earlier layers, compared to the
unconstrained case.
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13.3. Model overview

Figure 27: An overview of the DTKC model. The dashed box shows the computation of the proposed
unsupervised companion objectives. The tensor kernels are computed from the outputs of
each pooling operation, and then used to compute the companion objectives for the respective
layers.

An overview of the complete DTKC model is shown in Figure 27. The “FC”
and “Out” layers as well as the losses L, L, and L3 are from DDC, which has
been shown to work well for both image clustering and time series clustering [20,
22], with randomly initialized parameters. Moreover, the companion objectives
closely resemble DDC’s £;. The DDC loss function should therefore tend to agree
with the companion objectives, so that they “pull in the same direction” during
training. In order to strengthen this agreement, the normalization constant of £,

was changed from % to (]2“)71 in DTKC.

Although DTKC shares its clustering module with DDC, it is important to em-
phasize that the unsupervised companion objectives can be coupled with any
deep clustering algorithm, as long as it uses a deep neural network to produce
the cluster membership predictions. The companion objectives have been intro-
duced for tensors of arbitrary rank, meaning that they can be attached to any
deep neural network which produces tensorial representations. To illustrate this
generalizability, Section 17.9 includes some experiments where the companion
objectives are used with a recurrent neural network to cluster sequential data.
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This part describes the experiments that were performed in order to assess the
performance of the proposed DTKC model. First, the datasets used for evalua-
tion are summarized, and their contents are discussed briefly. The next section
thoroughly covers the implementation details of DTKC, and the benchmark mod-
els to which it is compared. Following this is an overview of the CVIs used for
qualitative evaluation, and then the experimental results. The final section in
this part provides a discussion on different aspects of the performed experiments,
as well as some thoughts on outlook and future work.

14. Datasets

A wide range of benchmark datasets were chosen to thoroughly evaluate the
performance of DTKC. These datasets represent clustering tasks which are often
encountered in computer vision, and are thus widely used in the literature [15, 24,
18, 20, 19]. An overview of the datasets can be found in Table 1, and plots showing
some images from the respective datasets are shown in Figure 28. Compared to
datasets for large-scale object detection in natural images, such as ImageNet [109]
or the Pascal Visual Object Classes (VOC) [110], the chosen datasets include
images with less complex scenery, and less within-class variation.

Table 1: Overview of the datasets used for evaluation. n and k denote the total number of images, and
the number of categories, respectively.

Name Image size Color n k Contents
MNIST [111] 28 x 28  Gray 60000 10 Hand-written digits
USPS 16 x 16 Gray 9298 10 Hand-written digits
SVHN [112] 32x32 RGB 99289 10 House number digits
Fashion-MNIST [113] | 28 x28  Gray 60000 10 Clothing items
COIL-20 [114] 128 x 128  Gray 1440 20 Common objects
COIL-100 [115] 128 x 128  RGB 7200 100 Common objects
UMist [116] 112x92  Gray 575 20 Faces

The MNIST, USPS and SVHN datasets contain images of digits. The task of the
clustering system is therefore to group these images based on the depicted digit.
Whereas the first two datasets contains distraction-free and noise-free grayscale
images, the third dataset contains color images which can include both distrac-
tions in the form of other digits, as well as noise.

As the name implies, the format of the Fashion-MNIST dataset is similar to the
MNIST dataset. The difference is that this dataset contains grayscale images

of clothing items instead of digits, making it a somewhat harder clustering task
[118]. The COIL-20 and COIL-100 datasets also both contain images of common
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Figure 28: Random images drawn from the different datasets. Each row represents a different category.

For the COIL-20 and COIL-100 datasets, the first 10 categories are shown. Note that images
from the UMist dataset are omitted due to legal reasons [117].
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objects. However, in these sets each category consists of a single object depicted
at different angles. This means that the source of within-category variation comes
from the rotation of the given object. COIL-20 and COIL-100 contain 20 and
100 categories (objects), respectively. Although the number of categories is much
larger for COIL-100, the added color information appears to be beneficial for
recognizing the objects.

The UMist dataset consists of images of 20 different people where each person
is depicted from several angles. The clustering task is to recognize the person in
the image, independent of the imaging angle.

14.1. Dataset splits

In supervised learning it is common to split each dataset into a training set, a
validation set, and a test set. The training set is then used to train the model,
while the validation set is used for model selection and hyperparameter tuning.
Finally, the test set is used to evaluate the performance of the final model. This
last step is done to evaluate the generalization performance of the model [3].
However, in the recent literature on clustering, the common approach has been to
use the full dataset for training, model /hyperparameter selection, and evaluation
[119, 15, 24, 17, 18, 120, 121]. To obtain a fair comparison, the evaluation of the
models proposed in this thesis is performed in this way. However, it should be
stressed that this approach to evaluation does indeed neglect the generalization

capabilities of the model, which can be important based on the application at
hand.
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15. Models

15.1. Classical models

Several benchmark algorithms were chosen to thoroughly assess the clustering
performance of the proposed DTKC model. The following classical models were
chosen as they represent some of the most widely used clustering algorithms:

e k-means [57].
e Average-link agglomerative hierarchical clustering.
e Spectral Clustering [61].

An overview of these algorithms was provided in Section 8.

15.1.1. Implementation details

The classical models were implemented using the scikit-learn module in Python.
The images were vectorized as a preprocessing step for each of these algorithms,
as they require vectorial inputs. The methods were configured as follows:

e k-means: The initial centroids were chosen according to the k-means—+-+
initialization strategy. The algorithm was run for 300 iterations from 20
different initializations.

e Hierarchical Clustering: Agglomerative, average link.

e Spectral Clustering: A Gaussian affinity measure was used, where the value
of 0 was randomly chosen. The clustering was repeated 20 times for differ-
ent o values.
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15.2. Deep clustering models

In addition to the classical models, several deep clustering models were also chosen
for evaluation. These models were selected as they all employ similar approaches
to joint feature extraction and clustering with deep neural networks, thus allowing
for a fair performance comparison. The deep clustering models are:

e Deep Divergence-based Clustering (DDC) [20].

e Deep Divergence-based Clustering with self-supervised pre-training (DDC-
SS).

e Deep Embedded Clustering (DEC) [15].

e SpectralNet [18].

e Improved Deep Embedded Clustering (IDEC) [24].

e Deep Clustering Network (DCN) [17].

e Discriminatively Boosted Clustering (DBC) [21].

(See Section 10 for an explanation of these algorithms). The results for DDC,
DDC-SS, and DEC were obtained by the author of this thesis. The results for
the remaining models were extracted from their respective references, which is
why some models are missing in the tables below.

15.2.1. Implementation details

DDC was implemented in the TensorFlow framework in Python, mostly following
the model specification in [20]. The implementation used here only deviates from
the original formulation in the choice of CNN architecture (see Table 3) — a
choice which proved to be beneficial for the performance of DDC. The reason
for choosing the particular architecture is given in Section 15.3.1. DDC-SS is
implemented in this manner as well, but has an additional self-supervised pre-
training step. The parameters for the pre-training are the same as for DTKC-SS,
and are also described in Section 15.3.1.

The DEC implementation was based on DEC-Keras'®>. The hyperparameters and
network architecture were chosen according to the original article [15].

5 https://github.com/XifengGuo/DEC-keras
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15.3. DTKC and DTKC-SS

The experiments were performed with two different variants of the proposed
model. The first is DTKC trained from randomly initialized network-parameters.
The second variant is DTKC-SS, which is the same as DTKC, but with a CNN

that has been pre-trained using self-supervised learning.

15.3.1. Implementation details

The specification of hyperparameters can be somewhat challenging for clustering
applications, due to the aforementioned difficulties of quantitatively measuring
clustering performance. In supervised learning, the hyperparameter specification
is usually done by searching some portion of the hyperparameter space, and
then selecting the configuration which resulted in the best model performance,
with respect to some supervised performance measure. In clustering, one cannot
assume that labeled data is available in the general case, meaning that it is not
possible to use external CVIs. This leaves us with internal CVIs. These can be
used, but often produce sub-optimal results due to their dependence on some
distance (or dissimilarity) function in the input space.

At first, one might think that the creation of a small validation set by a domain
expert is a possible approach, as this would allow for the use of external CVIs.
However, there are two main problems with this approach:

(i) The validation set has to be sufficiently large to represent the majority of
the data distribution, meaning that its creation can be a time consuming
process.

(i) If such a set was made available before training the algorithm, why not use
a semi-supervised algorithm instead? This would tend to be beneficial as
long as the desired categorization is represented in the validation set.

Unless something else is explicitly stated, the choice of the different hyperpa-
rameters were therefore made by inspecting the loss function during training.
Both the value of the loss function, and its tendency to decrease during training,
were considered when configuring the models. Low values of the loss function
and small variations were considered favorable as they are indications of a good
clustering, and a stable training procedure, respectively.

Batch size

Both DTKC and DTKC-SS were trained on batches of size 120. This batch size
was chosen as it resulted in a stable training procedure. Note that it can be
difficult to base the choice of batch size directly on the value of the loss function
because the loss tends to depend on the batch size. Another consideration is that
several of the terms in the loss function are based on kernel density estimation,
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Table 2: Parameters for the self-supervised pre-training.

Parameter

Dataset Patch size Jitter
MNIST 7Tx7 1
USPS 5%x5 0
SVHN 77 1
Fashion-MNIST 77 1
COIL-20 24 x 24 4
COIL-100 24 x 24 4
UMist 24 x 24 4

which requires a large number of samples to produce reliable estimates [99]. This
last consideration will be revisited in Section 18.1.

Initialization

The parameters of all convolutional layers, as well as the first fully-connected
layer, were initialized according to [30]. The last fully-connected layer uses the
initialization strategy proposed in [122]. For DTKC the randomly initialized
network was trained end-to-end using the clustering loss function described in
Section 13. For DTKC-SS the randomly initialized CNN was first trained using
self-supervised learning (see Section 9.5), before being fine-tuned with the clus-
tering loss described in Section 13. The parameters used for the self-supervised
pre-training are listed in Table 2. These were selected such that the height and
width of each image was approximately equal to three or four times the height
and width of a patch, plus the jitter.

Network architecture

The architecture of the CNN was fixed for DTKC and DTKC-SS, as well as
the DDC benchmark model'®. The fixed architecture strategy was decided upon
mainly due to the difficulties of unsupervised hyperparameter tuning. Moreover,
the purpose of these experiments is not necessarily to search high and wide for
the best overall clustering performance on all datasets — but rather to thoroughly
evaluate the performance of the proposed models compared to relevant bench-
marks, as well as to inspect the effect of the proposed technique on intrinsic parts
of the CNN. Keeping the network architecture fixed aligns with these goals, as
a fixed architecture reduces the complexity of the experimentation by creating
a more controlled experimental environment. This is compared to the converse
case where the network architecture is treated more as a set of hyperparameters.

A summary of the CNN is given in Table 3, which also includes the “names” for

the different parts of the network. Note that for the convolution operations, the

16The benchmark DDC was also modified in order to obtain the best possible comparison.
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Table 3: Overview of CNN used for experimentation. All convolutions are performed with “valid”
padding, while the MaxPool operations use “same” padding. The number of units in the last
layer is equal to the number of clusters for the given dataset (k).

Convolution (5 x 5 x 32)
ReLLU
Convolutional Convolution (5 x 5 x 32)
layer 1 Batch normalization
ReLU
MaxPool
Convolution (3 x 3 x 32)
ReLU
Convolutional Convolution (3 x 3 x 32)
layer 2 Batch normalization

ReLU
MaxPool
Flatten
Fully-connected Fully-connected (100)
layer 1 ReLU
Batch normalization
Output layer/ Fully-connected (k)
Clustering module Softmax

notation “5 X 95 X 32” means that 32 different convolutions are performed, each
having filters with shapes 5 X 5. The depth of the filters is equal to the number of
channels in the input to the convolution (i.e D3 in tensor-shape notation). The
parenthesized number at the fully-connected layers indicate the number of units
in the output layer.

The network has proven to be sufficiently large for satisfactory performance, while
simultaneously being small enough to have a manageable memory footprint and
training time. Recall that the original DDC architecture used two convolution
operations, each of which was followed by max-pooling operations. The addition
of two more convolution operations to this network was done to increase the
representational power of the CNN, which in turn should lead to more prominent
differences between DTKC, and DDC. Note that max-pooling was omitted after
the two new convolutions as these would cause the tensors in later layers to have
negative dimensions. Batch normalization [90] was also added to increase the
stability of the training procedure.

Other parameters

e Optimizer: The models were trained using the Adam optimizer [89] with a
learning rate of 1074

e Gradient clipping: Abnormally large gradients were sometimes observed
during training. Gradients with a magnitudes larger than 10 were therefore
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clipped to this magnitude [11]. This was also found to improve training
stability.

e Epochs: The models were trained for a maximum of 100 epochs. A training
run was terminated if no decrease in the loss function was observed over
30 epochs. This approach was observed to be sufficient for the training
procedure to converge. Note that the models were saved at the epoch at
which the loss-value was at its lowest.

e Runs: Each model was trained 20 times.

e Bandwidth: The o parameter for each kernel was set to 15 % of the mean
pairwise distances between the activations from the respective layers, fol-
lowing [100, 20].

e Companion objective strength: The A parameter was set to 0.01 for all
experiments. The reasons for this choice are further discussed in Section
17.4.

16. Metrics

For the quantitative evaluation of the proposed models and the comparison of
these with the benchmark models, the following two external CVIs were chosen:

e Unsupervised clustering accuracy (ACC).
e Normalized mutual information (NMI).

These were chosen as they are the most frequently used performance measures in
deep clustering [119, 15, 24, 17, 18, 120, 121], and therefore allows for an evalu-
ation which is compatible with the literature. However, since these CVIs assess
the clustering system by its capability of reproducing a specific set of clusters,
they should not be blindly trusted as definitive measures of overall clustering per-
formance. This notion is taken into account in the presentation and discussion
of the results.

The metrics were computed for the models resulting in the lowest value of the
overall loss function for each run. This resulted in 20 (ACC, NMI)-pairs, where
each pair corresponds to the best observed performance for the given run, with
respect to the loss function. These pairs were further aggregated to produce the
following four summary statistics:

e Best: ACC and NMI for the run which resulted in the lowest value of the
loss function. This is used as the primary measure of model performance,
as the best model is selected in a completely unsupervised manner.

e Mean: Average ACC and NMI over the 20 runs.
e Sd.: Standard deviation for ACC and NMI over the 20 runs.
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e Maz: The highest observed ACC and NMI for the 20 runs. These are
selected based on external CVI’s and should therefore not be used for direct
comparisons between unsupervised models. The only reason for including
this statistic is to give an impression of the “best case” performace of the
model.

This collection of statistics should give thorough insight into the capabilities of the
different models with respect to the chosen CVIs, both in terms of performance
and in terms of stability.

17. Results

The results of the experiment setup above are summarized and discussed in this
section. The quantitative results are discussed first, followed by several subsec-
tions whose aim are to both present and discuss more specific aspects of the
resulting models. It is important to note that the main purpose of this section
is to thoroughly assess the effect of self-supervised pre-training and the unsu-
pervised companion objectives. Thus, more emphasis is put on the comparison
between the DDC-inspired models (DDC, DTKC, and DTKC-SS), and not neces-
sarily on the comparison of these together with the benchmark models. We must
also keep in mind that clustering evaluation is not always as straightforward as
e.g. classification [23], meaning that some qualitative verification of the learned
clusters is necessary. This is especially important when one uses external CVlIs
to evaluate the clusterings, as the clustering system can learn to cluster objects
based on entirely different properties than those given by the ground truth labels.

Tables 4 and 5 show the results for the different experiments described above. In
general, one can observe large gaps in performance, both between different models
on the same dataset, as well as across different datasets. These variations indicate
that the chosen datasets do indeed offer clustering tasks of varying difficulty. From
Tables 4 and 5, we can make the following observations:

e Deep clustering methods tend to outperform the classical
methods. This tendency is apparent for almost all datasets, with the
UMist dataset being the only exception. This difference in performance be-
tween the classical and deep models is likely due to the fact that the classical
models all use the squared Euclidean distance as a measure of dissimilarity
— whereas the deep models does not make any explicit assumptions about
the distance function in the input space.

For the UMist dataset, it is possible that the deep clustering models strug-
gle due to the small number of samples (see Table 1). This is consistent
with previous work [123, 124], which has shown that the performance of
deep learning methods tends to increase significantly with the number of
observations present in the dataset.
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e DEC is mostly outperformed by DDC, DTKC, and DTKC-
SS. One probable reason for this particular result is that DDC, DTKC
and DTKC-SS are based on CNNs, while DEC uses an MLP to extract
the representation z. Similar observations have been made in supervised

learning, where CNNs regularly outperform MLPs in image processing tasks
[13, 11].

Although the absolute performance is somewhat worse for DEC compared to
DDC, DTKC, and DTKC-SS, its standard deviations are consistently lower.
This can indicate that the autoencoder pre-training is somewhat more stable
compared to random initialization or self-supervised pre-training.

e Self-supervised pre-training does not seem to increase overall
performance. Comparing the models pre-trained using self-supervised
learning ( DDC-SS and DTKC-SS) to their randomly initialized couterparts
(DDC and DTKC), reveals no overall indications of improved performance.
The potential gain or loss in performance varies from dataset to dataset,
implying that the effect of self-supervised pre-training is mostly data de-
pendent.

The results also show that the differences in standard deviations are marginal
when comparing random initialization and self-supervised pre-training. The
effect of the pre-training step is discussed further in Sections 17.7 and 18.2.

e Clustering performance for the SVHN dataset is quite bad.
For the SVHN dataset, none of the clustering algorithms seem to be able to
cluster the images based on the digit they contain. This is not surprising
due to the complex structure of the images contained in this dataset (see
Figure 28c). This is discussed further in Sections 17.1 and 17.2.

Combined with the experimental results, these observations provide an overview
of the capabilities of the different models. The rest of this section will describe
several different aspects of these results in more detail, covering key observations
that are not directly visible in the result tables.
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Table 4: Resulting ACC and NMI for the MNIST, USPS, and SVHN experiments. The best results are
highlighted in bold.

MNIST
ACC NMI
Model Best  Mean Sd. Max Best  Mean Sd. Max
DBC 0.96 - - - 0.92 - - -
DCN 0.83 - - - 0.81 - - -
IDEC 0.88 - - - 0.87 - - -
SpectralNet | 0.97 - - — 0.92 — — —

k-means 0.51 0.54 0.03 0.58 0.49 0.5 0.01 0.52
Hierarchical | 0.21 0.21 0.0 0.21 0.31 0.31 0.0 0.31
Spectral 0.5 0.55 0.02 0.56 0.51 0.51 0.01 0.52
DEC 0.83 0.87 0.03 0.95 0.85 0.86 0.01 0.89
DDC 0.91 0.77 0.07 0.91 0.83 0.73 0.06 0.83
DDC-SS 0.88 0.76 0.09 0.9 0.83 0.74 0.07 0.84
DTKC 0.94 0.77 0.08 0.94 0.88 0.74 0.07 0.88
DTKC-SS 0.87 0.76 0.07 0.87 0.84 0.74 0.06 0.84

USPS
ACC NMI
Model Best Mean Sd. Max Best Mean Sd. Max
DBC 0.74 - - - 0.72 — — -
IDEC 0.76 - - - 0.78 - - -

k-means 0.67 0.63 0.04 0.69 0.63 0.62 0.02 0.65
Hierarchical | 0.22 0.22 0.0 0.22 0.19 0.19 0.0 0.19
Spectral 0.59 0.65 0.02 0.66 0.6 0.6 0.0 0.61
DEC 0.76 0.76 0.0 0.77 0.78 0.78 0.0 0.79
DDC 0.81 0.69 0.06 0.83 0.77 0.7 0.03 0.77
DDC-SS 0.72 0.69 0.05 0.78 0.7 0.7 0.03 0.78
DTKC 0.78 0.7 0.06 0.79 0.8 0.73 0.05 0.81
DTKC-SS 0.69 0.68 0.05 0.76 0.69 0.69 0.04 0.75

ACC NMI

Model Best Mean Sd. Max Best Mean Sd. Max
k-means 0.13 0.13 0.0 0.13 0.02 0.02 0.0 0.02
Hierarchical | 0.19 0.19 0.0 0.19 0.0 0.0 0.0 0.0
Spectral 0.13 0.14 0.0 0.14 0.02 0.02 0.0 0.02
DEC 0.18 0.2 0.01 0.23 0.07 0.09 0.02 0.14
DDC 0.15 0.14 0.01 0.17 0.02 0.02 0.01 0.04
DDC-SS 0.19 0.18 0.01 0.2 0.06 0.05 0.01 0.08
DTKC 0.17 0.18 0.01 0.21 0.05 0.06 0.01 0.09
DTKC-SS 0.14 0.14 0.01 0.17 0.02 0.02 0.01 0.05
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Table 5: Resulting ACC and NMI for the Fashion-MNIST, COIL-20, COIL-100, and UMist experi-
ments. The best results are highlighted in bold.

Fashion-MNIST

ACC NMI
Model Best Mean Sd. Max Best Mean Sd. Max
k-means 0.47 0.52 0.04 0.61 0.51 0.51 0.01 0.54
Hierarchical 0.1 0.1 0.0 0.1 0.01 0.01 0.0 0.01
Spectral 0.48 0.5 0.02 0.52 0.5 0.5 0.01 0.52
DEC 0.56 0.55 0.01 0.58 0.6 0.6 0.01 0.62
DDC 0.58 0.55 0.06 0.65 0.52 0.49 0.04 0.56
DDC-SS 0.57 0.58 0.05 0.7 0.58 0.58 0.04 0.65
DTKC 0.63 0.56 0.04 0.63 0.55 0.5 0.03 0.56
DTKC-SS 0.65 0.55 0.05 0.65 0.62 0.55 0.03 0.62

COIL-20

ACC NMI

Model Best Mean Sd. Max Best  Mean Sd. Max
DBC 0.79 — — — 0.9 — — -
k-means 0.69 0.63 0.04 0.7 0.8 0.77 0.01 0.8
Hierarchical | 0.35 0.35 0.0 0.35 0.67 0.67 0.0 0.67
Spectral 0.61 0.65 0.03 0.68 0.76 0.77 0.01 0.78
DEC 0.67 0.66 0.04 0.71 0.77 0.77 0.01 0.8
DDC 0.68 0.64 0.03 0.71 0.77 0.75 0.03 0.81
DDC-SS 0.71 0.67 0.03 0.72 0.81 0.79 0.02 0.82
DTKC 0.62 0.64 0.03 0.69 0.75 0.75 0.03 0.8
DTKC-SS 0.71 0.68 0.03 0.74 0.82 0.79 0.02 0.83
COIL-100

ACC NMI

Model Best Mean Sd. Max Best Mean Sd. Max
DBC 0.78 — — — 0.91 — — —
k-means 0.62 0.61 0.01 0.63 0.83 0.83 0.0 0.84
Hierarchical | 0.23 0.23 0.0 0.23 0.68 0.68 0.0 0.68
Spectral 0.44 0.56 0.05 0.61 0.76 0.81 0.02 0.83
DEC 0.59 0.61 0.02 0.65 0.84 0.85 0.01 0.86
DDC 0.61 0.59 0.02 0.63 0.83 0.83 0.01 0.84
DDC-SS 0.5 0.49 0.03 0.53 0.78 0.77 0.01 0.79
DTKC 0.64 0.6 0.02 0.65 0.85 0.83 0.01 0.85
DTKC-SS 0.51 0.5 0.02 0.52 0.77 0.77 0.01 0.78
UMist

ACC NMI
Model Best Mean Sd. Max Best Mean Sd. Max
k-means 0.4 0.42 0.02 0.46 0.59 0.61 0.01 0.64
Hierarchical | 0.46  0.46 0.0 0.46 0.66 0.66 0.0 0.66
Spectral 0.36 0.42 0.03 0.46 0.58 0.63 0.02 0.66
DEC 0.08 0.24 0.12 0.4 1.69 0.75 0.56 1.69
DDC 0.31 0.36 0.03 0.42 0.46 0.52 0.02 0.55
DDC-SS 0.35 0.35 0.02 0.4 0.51 0.51 0.02 0.54
DTKC 0.29 0.36 0.04 0.42 0.45 0.52 0.04 0.59
DTKC-SS 0.34 0.34 0.03 0.41 0.51 0.51 0.03 0.57
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17.1. Visualization of learned clusters

Figure 29: Clusters produced by the best DTKC model for the SVHN dataset.

The preceding evaluations are solely based on external criteria, meaning that all
algorithms are measured by their ability to reproduce some predetermined catego-
rization. This appears to be especially problematic for the SVHN dataset, where
all methods perform very poorly according to the reported metrics. This behavior
is unsurprising if we consider the type of images contained in the SVHN dataset.
Figure 29 shows some example clusters extracted from the SVHN dataset. Each
row of images corresponds to a cluster. The figure shows that there is indeed a
very large variation in the appearance of the digits, as well as varying forms of
distractions and noise. When inspecting these images, no obvious reason for this
particular clustering reveals itself. The top row does seem to contain images that
are more “blue-ish” than the rest of the clusters, while the second row contains
images with more red colors. The bottom cluster on the other hand, seems to
contain images that are more blurry than the rest. However, these arguments re-
main speculative, as these traits are not particularly prominent, and not without
counterexamples.

When inspecting the learned clusters in this manner, one must also keep in mind
that it is possible for the clusterings to be more or less random, and without
any particular structure. A consequence of the design of most deep clustering
algorithms is that they will always produce some clustering, regardless of the
provided dataset, and presence of categories therein. Consequently, if no cluster
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structure is visible to the algorithm, it will end up producing some nonsensical
clustering, which often tends to depend on the randomly initialized parameters
of the model (if there are any). This somewhat unfortunate property has led
researchers to discuss the necessity of algorithms producing clusterings that are,
in a statistical sense, significantly different from random clusterings [23].

e LeeLLe

Figure 30: Clusters produced by the best DTKC model for the COIL-20 dataset.

Figure 30 shows some of the learned clusters for the COIL-20 dataset. Although
not perfect, these clusters are much more interpretable than the SVHN clustering
discussed above. Items that contain characteristic shapes, like the head of the
rubber duck, or items that are rotationally symmetric, e.g. rows 2 and 3, are easily
separated into their own clusters. However, the last three rows show clusters that
are not as pure as the first three. In these clusters the algorithm is unable to
distinguish between the three different cars, and sometimes confuses them with
the Anacin-box.

The car confusion also poses the more complicated question of whether we should
expect the three cars to be placed in three different clusters, regardless of their
orientation. As an example, consider image 4-6 (row 4, column 6), and compare
it to image and image 4-2. How can we say that images 4-6 and (same
cars, different rotation) are more similar than images 4-6 and 4-2 (different cars,
same rotation)? A system capable of determining the presence of a decal on the
car’s hood will correctly separate the two cars, whereas a system focusing on the
overall shape of the car will not. The orientation of the cars is arguably a more
low-level feature which is easier to identify than the decal on the hood. It is
therefore more natural, and quite possibly favorable, that the system focuses on
these “more obvious” clusterings [23].
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17.2. Correspondence between loss and accuracy
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Figure 31: Loss wvs. accuracy for the DDC and DTKC models on the MNIST and SVHN datasets.
Different colors correspond to different runs. The loss-azis is normalized to allow for more
accurate comparisons between models. Note that the early stopping criterion resulted in a
noticeable difference in the number of samples for DDC and DTKC on the SVHN dataset.

Table 6: Results of fitting a simple linear regression model to the loss-accuracy pairs during training. s
denotes the standard error of the slope estimate. The p-value is the result of a two-sided t-test
for whether or not the slope is equal to zero.

Dataset Model | Slope S R?  p-value
DDC |-0.044 0.002 0.333 0.0
MNIST DTKC | -0.041 0.002 0.264 0.0
DDC | 0.002 0.001 0.03 0.0
DTKC | -0.003 0.001 0.029 0.034

SVHN

Another approach to more quantitatively evaluate the validity of an external
CVI, is to check the correspondence between what the model thinks is a “good”
clustering, and the resulting CVI. If a model is trained to minimize some loss
function, it means that, from the model’s perspective, the lower the loss function,
the better the clustering.

Figure 31 shows loss-accuracy pairs sampled during the 20 training runs, for
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the DDC and DTKC models, and for the MNIST and SVHN datasets. For
the MNIST dataset there is a clear negative correspondence between loss and
accuracy, while no such trend is visible for the SVHN dataset. These observations
are confirmed by the results of Table 6, which contains summary statistics for
a simple linear regression model, fitted to the respective sets of loss-accuracy
pairs. The table shows that there is a statistically significant'” negative linear
relationship between loss and accuracy for the MNIST models.

When it comes to the SVHN dataset, there is actually a significant, but small
positive trend for the DDC model, indicating that decreasing the loss function
corresponds to a decrease in accuracy. Clearly, this is not the desired outcome
if we want the clustering to reflect the depicted digits. There is a significant
negative trend for DTKC, but this is still not large enough to result in satisfactory
performance.

It should be noted that the R? values for the regression models are quite low,
indicating that linear models are not very accurate in predicting the relationship
between loss and accuracy. Moreover, the independence assumption might not
hold for the sampled pairs, as multiple samples were extracted for each run.
However, the regression model should still provide some overall insight into the
true relationship between loss and accuracy.

17.3. Visualization of kernel matrices

To investigate the effect of the unsupervised companion objective on the layer-
outputs, kernel matrices extracted from the CNNs of DDC and DTKC during
training on the MNIST dataset, are shown in Figure 32. The kernels were com-
puted from the output of the convolutional layers, using the same tensor kernel as
in the unsupervised companion objectives. The rows and columns of the kernel
matrices were sorted according to the ground truth for visualization purposes.

The class structure is not especially prominent for either of the two models at layer
1. However, the class structure is visible already at epoch 4 for both models at
layer 2, with similar separability between classes for the two models at this stage.
At epoch 20, the classes are somewhat more separable with DTKC, especially
when it comes to the images containing 1’s. This trend is also visible between the
two models et epoch 50. This is as expected since the cluster structure coincides
well with the class structure (see Table 4), and DTKC is trained to explicitly
enforce this cluster structure at the intermediate layers.

17Using a significance level of 0.05.
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Epoch 4 Epoch 20

Epoch 50

DDC, K

DDC, K? DTKC, K*

DTKC, K?

Figure 32: Kernel matrices computed for a random subset of 1024 MNIST samples. Brighter pizels
indicate higher values. The kernel matrices are sorted such that the bottom left block corre-
sponds to the 0’s, and the top right block corresponds to the 9’s.
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Figure 33: Normalized Frobenius norm between the perfect kernel, and the kernel matrices shown in
Figure 32.

To further validate the claim that DTKC has learned intermediate embeddings
which are more discriminative, the normalized Frobenius norm was computed
between the extracted kernels, and the perfect kernel, defined as:

Kl . errfect
|Kl||F ||errfect||F

dNF(Kl7 errfect) - H |
F

where:

K _ )1, if observations (4, j) belong to the same class
perfect,ij = 0, otherwise

1Allr = [>_ A
i

Figure 33 shows the resulting normalized Frobenius norms at different training
epochs. The plots show that the kernels extracted from DTKC’s CNN are more
similar to the perfect kernel, reflecting the “true” cluster structure. Moreover, the
normalized Frobenius norm has a steeper downward trend for the DTKC model
at layer 2, which is consistent with the goal of the companion objectives. These
observations therefore show that the addition of companion objectives has made
the cluster structure more prominent within these intermediate representations.

and:
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17.4. Choosing the unsupervised companion objective
strength A

The specification of the strength of the unsupervised companion losses () is a
both crucial and difficult task. The approach taken in this thesis is somewhat
similar to the approach outlined in Section 15.3, but does not require the creation
of validation sets by domain experts. Here \ was chosen based on a supervised
validation procedure on the MNIST benchmark dataset, and the resulting value
was used in all subsequent experiments. Clearly, one assumes with this approach
that the hyperparameter configuration determined on the benchmark dataset
generalizes to the other datasets, meaning that this approach is not problem free
either.
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Figure 34: Effect of the X hyperparameter on accuracy and DDC loss for the MNIST dataset.

The resulting accuracies for the DTKC model on the MNIST dataset are shown
in Figure 34a. The plot does not show a particularly large variation in accuracy,
but the optimal value seems to be at around A = 0.01. The small variation
implies that the model is rather robust to variations in A. This last property is
crucial, as it makes the assumption about generalization to other datasets more
feasible. Based on these observations, as well as the difficulties with unsupervised
hyperparameter validation, A was set to 0.01 for all experiments.

Figure 34b shows the DDC loss (£1 + L5 + L3) when training the DTKC model
using different values of A. One could think that this plot can be used to determine
the optimal value of A, making the hyperparameter choice entirely unsupervised.
However, the validity of this approach depends on one important factor, namely
the correspondence between minima of the clustering loss and minima of the
companion objectives. This is explained by considering the following two cases:

o Minima of companion objectives do not coincide with minima of clustering
loss. When this is the case, the optimization procedure will “pull” the
point of convergence away from the minima of the clustering loss, which
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will result in an increase of the final clustering loss. Stronger companion
objectives implies that the convergence point is pulled further away from the
minimum of the clustering loss, and closer to the minimum of the companion
objectives. Therefore, this case should result in higher clustering losses for
higher values of A. This increasing behavior makes the clustering loss an
unsuitable measure of performance for the selection of .

e Minima of companion objectives coincide with minima of clustering loss. In
this case, the point of convergence will be a minimum of both the clustering
loss and the companion objectives. Thus, no “pulling” will be present, and
no increasing trend should be observed. The clustering loss might therefore
be used for selecting A in this case.

From Figure 34b it is not straightforward to determine which of the two cases
that best fits the observed behavior. However, the large jump in DDC loss from
A = 107! to A = 1 indicates that the optimization procedure has been pulled
away from a clustering-loss-minimum and towards a minimum of the companion
objectives. Also note that the standard deviation is very large at A = 1, meaning
that companion objectives this strong resulted in a model which was unstable
during training.

17.5. Effect of unsupervised companion objectives at
individual layers

Table 7: Resulting MNIST accuracies and DDC losses when different companion objectives are included
in the model.

ACC DDC Loss
A Included terms | Best Mean & Sd. | Best Mean 4 Sd.
0 None 091 0.77 £0.07 | 051 0.52 &+ 0.01
Ll 0.80 0.79 £ 0.04 | 0.52 0.52 =+ 0.00
0.01 L2, 0.85 0.73+0.07 | 0.51 0.53 £ 0.01
Llo+r2, 0.94 0.75+0.10 | 0.51 0.53 + 0.01
Ll 094 0.73+£0.11 | 0.52 0.54 £ 0.01
1 L2, 0.82 0.77 £ 0.05 | 0.79 0.80 + 0.01
Ll + L2 0.82 0.74 £0.05 | 0.79 0.82 4 0.02

This subsection describes an ablation study where the goal is to investigate the
effect of the companion objectives on the different layers. The experiment includes
the DDC base model, as well as the DTKC model, both trained on the MNIST
dataset. For DTKC, the companion objectives were attached to layer 1 or 2, or
both (see Table 3 and Figure 27). The experiments were repeated for A = (.01
and A = 1. This was done to investigate the contributions of the different terms
both at the “optimal” value, and at an “exaggerated” value.

Table 7 shows the resulting accuracies and DDC losses for the different model
configurations. Perhaps the most prominent trend in this table is the increase
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in loss for the models with companion objectives at layer 2 with A\ = 1. This is
consistent with the findings of Section 17.4, where an increase in DDC loss was
discovered at A = 1, indicating that the model has put too much emphasis on
minimizing the companion objective(s), instead of the DDC loss.

Another observation which can be made from Table 7 is that strong companion
objectives at layer 1 is comparable to weak companion objectives at layers 1 and 2,
and that these two configurations seem to give the best overall performance. The
latter has a somewhat higher mean accuracy, and a lower standard deviation,
but the differences are not large enough to provide conclusive evidence on the
benefits of using one over the other. However, it is beneficial with respect to
model design that the model including both companion objectives at the same
strength, is among the best performing configurations. Unequal weighting or
dropping terms entirely would significantly increase the model design complexity,
which is already tricky due to the unsupervised nature of the clustering problem.
An exhaustive study of these modifications is therefore beyond the scope of this
thesis, and left as future work.

4 —— None
A=0.01,LL
— A=0.01,£?
3 oo
— A=0.01,L% + L2
— A=1Ll
9 — A=1,.2
A=1,LL+ L2
1 -
0 |

-15 -1 =05 0 0.5 1
(a) Layer 1 (b) Layer 2
Figure 35: Estimated distributions of learned parameters in the two convolutional layers for the different

companion objective configurations. The estimates were computed using the Gaussian kernel
density estimator with ¢ = camisE.

To check whether the different model configurations has different effects on the
parameters of the convolutional layers, kernel density estimators of the parameter-
distributions were extracted for the run resulting in the lowest value of the total
loss function. These are shown in Figure 35. From these plots we can make the
following key observations:

e The configuration A = 0.01, £}, + L2 has parameter values that are more
compactly centered around zero than the other configurations for both lay-
ers, with the exception of A = 1, L1 + L2 in layer 2.

e The base model A = 0 has the widest parameter distribution in both layers.

These observations indicate that the unsupervised companion objectives can lead
to smaller parameter values in the CNN. This is not particularly surprising as
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the companion objectives tend to penalize differences in kernels between layers,
as long as the DDC loss is sufficiently low. Recall that, for DTKC:

£cluster - El + EQ + £3

where:

k— T
-y
2 =1 j—it1 \/v Kvv; K’U
where K denotes the kernel matrix extracted at the output of the first fully

connected layer, and v, ..., v, denotes the columns of the cluster assignment
matrix U. Furthermore, we have:

1

TK™
k Z Z v; U;

() = 1 j=it1 \/viTKmv,-v;‘-FKmvj

where K™ is the tensor kernel extracted at layer m. If we set K = K™ we get
Ly = L7, which means that similar kernels and low values of £; will correspond
to low values of L. One way to obtain similar kernels is to make the mappings
between the layers less complex, which can lead to smaller parameter values. This
is because transformations similar to the identity would result in similar kernels,
and such transformations are represented as sparse filters in convolutional layers

(recall that the identity filter contains a single one surrounded by zeros).

17.6. Effect of the bandwidth parameter o

Recall that the bandwidth parameter o was chosen according to the “15 % of
median distance” rule of thumb given in [100]. This rule of thumb has been
successfully applied to other DDC-based models [20, 22] — which is why it was used
for the experiments in this thesis as well. However, as was previously discussed in
Section 11, the specification of o in the Gaussian kernel can be difficult, as well as
critical for the performance of the resulting algorithm. The goal of this subsection
is therefore to inspect the consequences of this choice, and more specifically, to
investigate how sensitive the DTKC model is to variations in o.

Note that the findings of this analysis were not used to specify the o parameter,
in contrast to what was done in Section 17.4 for the A hyperparameter. There
are two main reasons for this, the first being that introducing a similar procedure
for o would result in a significant increase in the experimental complexity. The
second reason is that for o, we already have a rule of thumb which has been
proven to work well with previous DDC-based models — which is not the case for
the A hyperparameter.

To evaluate the effect of different o values on DTKC, the model was trained
using variations of the aforementioned rule of thumb, on the MNIST, USPS, and
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Figure 36: Effect of the o hyperparameter on accuracy and DDC loss for the MNIST, USPS, and COIL-
20 datasets.

COIL-20 datasets. Specifically, for a given layer [, o' was varied according to:

o' = & - median {dﬁj}n
i,7=1

where ¢ is the multiplication factor'®, and dij is the distance between output 2
and output j in layer [. Following the ordinary loss-function-computations, the
tensor distance dtensor(-, ) was used for the o values in the companion objectives,
while the Euclidean distance was used for o in the DDC loss function. Note
that the same ¢ was used for all layers, in order to reduce the complexity of the
analysis.

The resulting accuracies and DDC losses are shown in Figure 36a and Figure 36b,
respectively. The accuracy plots show that the DTKC is rather robust towards
variations in the multiplication factor . Thus indicating that the potential loss
or gain in performance is not particularly large when varying this hyperparame-
ter. This is indeed an advantage due to the aforementioned difficulties of setting
hyperparameters in unsupervised algorithms.

The loss curves in Figure 36b shows why the DDC loss function is unsuitable
for specifying . The plots show a clear monotonically increasing trend, meaning

18Note that setting & = 0.15 recovers the original rule of thumb.
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that higher values of ¢ results in increased DDC loss. The intuitive reason for this
is that a larger o leads to larger values in the kernel matrix, resulting in wider
and smoother kernel density estimates. Furthermore, recall that £, penalizes
overlapping and non-compact clusters, meaning that £; will increase with the
width of the density estimates. The loss function will therefore favor smaller
values of o, regardless of the resulting clustering performance.

Although DTKC did not prove to be especially sensitive to the choice of o, its
specification remains an important consideration for future work. Section 18.1
offers a broader discussion on the choice of o for tensor-based methods, and
summarizes some thoughts on future work along those lines.

17.7. Visualization of importance

Figure 37: Pizels in the input image important for the cluster assignment. The images were obtained
using guided backpropagation [125].

Another way to qualitatively assess the validity of the clusterings produced by the
models, is to inspect which pixels in the input image that are important for the
cluster assignment. These visualization techniques have been extensively used in
supervised image classification [126, 125, 127], but not so much in unsupervised
applications. Even though one can argue that the necessity for such visualization
techniques is even greater in the unsupervised case, due to the potential ambiguity
in the interpretation of the clusterings.
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Guided backpropagation [125] is a recent technique for visualizing the importance
of the input pixels with respect to an activation in a particular layer. Suppose we
want to determine which pixels in the ¢-th input image X, = [Xi@yc]; are most
important to a the soft assignment ;. In guided backpropagation this is done
by computing an approximation of the gradient

80zij
aXi,a:yc .

The approximated gradient differs from the actual gradient in that only positive
values are kept when back-propagating through RelLU activations. This modifica-
tion might seem arbitrary at first, but the reasoning is as follows: If an element of
the input gradient to the ReLLU activation is negative during the backward pass,
this means that this particular element corresponds to a negative derivative with
respect to the prediction, effectively “speaking against” that prediction. How-
ever, we are interested in explaining the prediction, and not the “lack” thereof,
meaning that we should keep only positive values. Another argument is that the
positive contributions of some gradients are “cancelled out” by the negative con-
tributions of other gradients. This modification has been shown to vastly improve
the resulting importance maps in supervised image classification [125].

Figure 37 shows the result of applying guided backpropagation to DDC, DDC-SS,
DTKC, and DTKC-SS. The images show the gradient of the largest input to the
softmax function in the last fully-connected layer, with respect to the input image.
The reason for choosing the largest softmax input is that this value represents
the predicted cluster membership of the input image. We want to inspect the
importance of the assignment of digit  to the cluster of x’s, as opposed to its
assignment to a cluster corresponding to some other digits. Informally, one could
say that we are explaining why the 1 was clustered as a 1, and not why it was
not clustered as a 2.

The resulting importance plots are as expected for DDC and DTKC. In these
plots we see that the system focuses on characteristic parts of the respective
digits, such as the horizontal bar in the 5. The plots also show that the system
assigns negative importance to areas surrounding the digit, meaning that if these
were part of the digit, it would speak against the current prediction.

The results are quite different when it comes to the models pre-trained using self-
supervised learning, namely DDC-SS and DTKC-SS. In contrast to the randomly
initialized models, these models seem to put very much emphasis on the borders
of the images. This might seem puzzling at first, as the surrounding parts of the
images are homogeneous and mostly equal to zero. However, recall that during
the self-supervised pre-training, the images are randomly divided into patches,
whose relative positions are to be determined by the system. It is reasonable to
assume that the edge of a given patch is important for determining its relative
position with respect to some other patch, which means that the network — and
especially the convolutionalized fully-connected layer — learns to focus on these
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edges. As these features are not immediately useful to the clustering system
during the fine-tuning process, one could further conjecture that the importance
of the edges would decrease with a longer fine-tuning process.

17.8. Classification-based companion objectives

The preceding results show that the companion objectives constructed from ten-
sor kernels and Cauchy-Schwarz divergence helps guide the system towards more
separated embeddings, and possibly better performance. It is therefore reasonable
to ask the question of whether there exist other formulations of the companion
objectives which yield similar results. One option — which is closely related to
Deeply Supervised Nets [34] — is to construct the companion objectives based on
an ordinary supervised classification system. Clearly, these “companion classi-
fiers” will need some form of ground truth labels for training, but what if these
could be obtained as part of the network?

Suppose we let Yll, cee Yﬁl be the tensorial outputs of layer [ for the current
batch, and that we flatten these to form the vectors 4!, ..., y!. These can then
be passed to a fully-connected layer with a softmax activation function:

@) = softmax(W'y! + b')

where (Wl, bl) denote the parameters of the fully-connected layer. The outputs
ull, - ,'&fl can now be compared to the outputs of the final layer, in order to
optimize (W* b'). The I-th companion objective can thus be constructed based

on e.g. the cross-entropy loss function [1]:

Z il
Coclf ZZ(U ln_j+(1_u1]>1n1 ]>

=1 j=1 _uij

where u! = [ul},... ul] denotes the predicted cluster membership vector for
the ¢-th input. This companion objective can then be used in place of ,Cfm in the
total loss function, which gives:

E Ecluster -+ )\ Z ‘Cco clf (41)

which can be minimized using ordinary gradient descent. This setup essentially
attaches a linear logistic regression classifier [3] to each of the layers, meaning that
the companion objectives will try to enforce linear separability between clusters
in earlier layers.
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Experiment setup

To investigate the classifier-based companion objective formulation, the loss func-
tion in Eq. (41) was used to train a model analogous to DTKC in the previously
described experiments, which is referred to as DTKC-SM (DTKC-SoftMax). The
network layout and all other training components were left exactly as described
in Section 15.3, to obtain accurate comparisons. The DTKC-SM model was
trained and evaluated on a representative subset of the datasets, namely MNIST,
Fashion-MNIST and COIL-100.

Results

Table 8: Resulting accuracy and NMI for the models with classifier-based companion objectives. The
relevant results from the previous experiments are included for easier comparison.

MNIST
ACC NMI
Model Best Mean Sd. Max Best Mean Sd. Max
DDC 0.91 0.77 0.07 0.91 0.83 0.73 0.06 0.83

DTKC 0.94 0.77 0.08 0.94 0.88 0.74 0.07 0.88
DTKC-SM | 0.87 0.77 0.08 0.87 0.84 0.74 0.07 0.84

Fashion-MNIST

ACC NMI
Model Best Mean Sd. Max Best Mean Sd. Max
DDC 0.58 0.55 0.06 0.65 0.52 0.49 0.04 0.56
DTKC 0.63 0.56 0.04 0.63 0.55 0.5 0.03 0.56
DTKC-SM | 0.56 0.54 0.05 0.62 0.51 0.49 0.03 0.54

COIL-100
ACC NMI
Model Best Mean Sd. Max Best Mean Sd. Max
DDC 0.61 0.59 0.02 0.63 0.83 0.83 0.01 0.84

DTKC 0.64 0.6 0.02 0.65 0.85 0.83 0.01 0.85
DTKC-SM | 0.59 0.6 0.02 0.62 0.83 0.83 0.01 0.85

The results in Table 8 show that the models using softmax-based companion
objectives perform slightly worse than both DDC and DTKC on all datasets in
terms of “Best” performance, whereas the “Mean” performance is similar for all
models across all three datasts.

To more closely inspect the effect of the softmax-based companion objectives,
the analysis in Section 17.3 was repeated for the DTKC-SM model. Figure 38
shows K? for the DDC, DTKC and DTKC-SM models resulting in the lowest loss
function'®. From these plots it is apparent that, when compared to the DDC base
model, the intermediate representations from the second layer are slightly more
compact and well separated for the DTKC-SM model. On the other hand, when

19P]ots of K are omitted as they were all similar.
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(a) DDC (b) DTKC (c) DTKC-SM

Figure 38: Plots of K* for the DTKC and DTKC-SM models resulting in the lowest values of the
respective loss functions. The kernels were extracted from a random subset of 1024 MNIST
samples.

comparing DTKC-SM and DTKC, there is a noticeable difference in separability
and compactness in favor of DTKC. This can intuitively be described by the fact
that the logistic regression classifier favors linearly separable clusters, but not
necessarily the compactness of these clusters.

It should also be noted that this analysis is somewhat biased towards DTKC as
the tensor kernel framework is used to compute K2, which is the same kernel
used in DTKC’s companion objectives. Nevertheless, if one assumes that the
tensor kernel is capable of correctly describing the geometry of the output space
of layer 2, the analysis still holds with respect to between-cluster-separability and
within-cluster-compactness in this space.

A significant benefit of using the softmax companion objectives instead of the
companion objectives based on tensor kernels, is that it leads to a noticeable
decrease in training time. Recall that DTKC requires the computation of sev-
eral eigendecompositions at each training step, which significantly increases the
training time. DTKC-SM on the other hand simply requires the computation
of a matrix product, followed by a softmax nonlinearity — a computation which
is much faster, especially when done with specialized deep learning frameworks
such as TensorFlow. The extra parameters (Wl, bl) introduced by the softmax
classifiers causes this increase in training speed to come at the cost of an increase
in the model’s memory footprint during training. This is not a problem for infer-
ence however, as the final prediction is not influenced by the softmax classifiers,
which means that they can be discarded when the training process is finished.
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17.9. Experiments with sequential data

Up until this point, the main focus of this part has been on image clustering.
However, in [22] it was shown that DDC provides a promising framework for the
clustering of sequential data as well. By replacing the CNN with an RNN it was
shown that the resulting Recurrent Deep Divergence-based Clustering (RDDC)
was able to outperform classical methods when clustering sequences. It is there-
fore natural to ask if the framework proposed in this thesis can help improve
the performance of RDDC as well, by introducing stronger supervision in earlier
layers of the RNN.

Recall that RNNs can be seen as layer-wise models, similarly to CNNs. The
translation of the unsupervised companion objectives from CNNs to RNNs is
therefore relatively straightforward. Suppose we have an input sequence x; =
T;1,...,L;r where T is the length of the sequence. Recall from Section 9.3.3
that at layer [ we get the output sequence:

hiﬂf - fel(hé,t—l7 hi;1)7 t=1,...,T.

We can then use the last hidden states hllyT, cee hiL’T of layer [ to compute the
companion objective. Note that in contrast to the CNN case, this will result
in the companion objectives receiving rank-1 tensors (vectors) instead of rank-3
tensors. The regular Gaussian kernel was therefore used to compute the elements
of the kernel matrix:

I l
RITRUE y
) z] -

4 202

Models

The sequential experiments were performed with two different models: RDDC as
described in [22], and RDTKC (Recurrent Deep Tensor Kernel Clustering). The
latter refers to a DTKC-based model where the CNN has been replaced with an
RNN. Following [22] both models used a two-layer bidirectional gated recurrent
unit [75] (also see Section 9.3.5.2), together with the DDC clustering module. The
dimensionality of the hidden states for each layer was set to 32, also following
[22]. Batch size, optimizer, gradient clipping, epochs, runs, and bandwidth all
follow the configuration specified in Section 15.3. The companion objectives in
RDTKC were constructed as described above.

k-means, spectral clustering, and average-link hierarchical clustering were used
as benchmark methods. Since these require vectorial inputs, the sequences were
first zero-padded to have length equal to the maximum length in the dataset, and
then reshaped into vectors.
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Datasets
The datasets used for evaluation are:

o Character Trajectories [128]. Sequences of vectors on the form (z, y,pen tip
force), where each sequence corresponds to the trajectory of a hand-written
letter in the English alphabet. Following [22] a subset consisting of the first
6 characters was selected. However, since almost all algorithms produced
perfect clusterings on this subset, the set was augmented with the next 4
characters as well, resulting in a total of 10 characters.

e Arabic Digits [128]. Mel-frequency cepstrum coefficients [1] extracted from
recordings of spoken Arabic digits. All 10 digits were used.

These datasets were chosen as they represent clustering or classification challenges
of suitable complexity [22, 129, 130]. These are also openly accessible and well-
known benchmark datasets, allowing for easier comparison with the literature.
See Table 9 for a summary of relevant attributes.

Table 9: Summary of attributes for the sequential datasets. “Lengths” denotes the range of sequence
lengths contained in the datasets. dim, n, and k represent the dimensionality of each sequence-
element, the number of sequences, and the number of clusters, respectively.

Name ‘ Lengths dim n k Contents
Character Trajectories | [109,198] 3 1491 10 Hand-written letters
Arabic Digits [4,93] 13 8800 10 Spoken digits

Results
Table 10: Results for the experiments with sequential data.
Character Trajectories

ACC NMI
Model Best  Mean Sd. Max Best  Mean Sd. Max
k-means 0.84 0.8 0.05 0.86 0.86 0.86 0.03 0.91
Hierarchical | 0.51 0.51 0.0 0.51 0.73 0.73 0.0 0.73
Spectral 0.79 0.78 0.0 0.79 0.86 0.85 0.0 0.86
RDDC 0.64 0.58 0.09 0.71 0.73 0.68 0.09 0.81
RDTKC 0.8 0.65 0.08 0.8 0.83 0.74 0.06 0.83

Arabic Digits

ACC NMI
Model Best  Mean Sd. Max Best  Mean Sd. Max
k-means 0.71 0.67 0.05 0.72 0.6 0.6 0.02 0.61
Hierarchical 0.1 0.1 0.0 0.1 0.03 0.03 0.0 0.03
Spectral 0.64 0.65 0.02 0.68 0.59 0.58 0.01 0.59
RDDC 0.46 0.55 0.07 0.68 0.63 0.62 0.04 0.73
RDTKC 0.76 0.56 0.09 0.76 0.74 0.61 0.07 0.76
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The results for the sequential experiments are given in Table 10. In contrast
to the image clustering results, these show that the deep models (i.e. RDDC
and RDTKC) are not capable of consistently outperforming the classical models.
Moreover, the results for RDDC and RDTKC also show relatively low mean-
accuracies and large standard deviations.

Comparing RDDC’s results on the Arabic Digits dataset in Table 10 to [22] reveals
that there is a relatively large gap between the “Best” accuracies. Since the im-
plementation used here follows the implementation used in [22], this discrepancy
is most likely due to the randomness of the RNN initialization.

The preceding observations strengthen the hypothesis about the necessity of a
more consistent cluster structure. Moreover, the performance of k-means reveals
a great deal about the geometry of the Character Trajectories input space. Recall
that k-means uses the squared Euclidean distance as its dissimilarity measure,
and thus, favors compact, hyperspherical clusters. This, together with k-means’
accuracy, tells us that the character-classes are indeed compact and hyperspher-
ical clusters in the input space. The poor performance of RDDC compared to
k-means indicates that the RNN is not capable of preserving this Euclidean ge-
ometrical structure. The companion objectives of RDTKC seems to somewhat
alleviate this problem, resulting in better performance than RDDC. However, its
performance is still worse than k-means for the Character Trajectories dataset.

Discussion

In summary, the results seem to show that using an RNN instead of a CNN makes
the DDC clustering framework more prone to the aforementioned geometrical
problems. In future work, it would therefore be interesting to investigate the
use of one-dimensional convolutional architectures instead of recurrent networks
to process the input sequences. However, if one insists on using an RNN, other
ways to incorporate the geometric constraints could be explored. One option is
to use more of the hidden states produced by the layers, instead of only using the
last hidden state. For instance, all the hidden states in a layer could be stacked,
resulting in the rank-2 tensor:

l l l
_ h¢,1 h’i,2 hi,T

Y=
A \J
For a dataset of sequences xq, . ..x,, the corresponding Yll, cee Yfl could then

be used to compute the kernel matrix K ' for layer [ using the tensor kernel
framework.
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18. Discussion and future work

18.1. Unsupervised companion objectives and tensor
kernels

The generalized Cauchy-Schwarz divergence coupled with the idea of companion
objectives is perhaps the most important contribution made in this thesis. To-
gether, these two concepts play an essential role in DTKC — as they incorporate
the much needed geometrical constraints on the individual layers of the deep
neural network used by the model.

In the derivation of the unsupervised companion objectives we made one par-
ticularly important choice, namely to base the kernel density estimation on the
tensor kernel framework proposed by Signoretto [35]. By using these kernels
we assumed that the summed Grassmann distance between matricizations is a
“oood” distance measure, in the sense that it reflects the cluster structure we are
seeking. However, since these kernels are computed at the output of layers in
the network, it is not immediately straightforward to evaluate the validity of this
assumption. In future work it would therefore be interesting to more thoroughly
investigate this assumption, both from theoretical and experimental standpoints.
One could also construct other tensor kernels based on e.g. domain knowledge,
weak supervision, or semi-supervision.

Another important choice which was made in the construction of the unsupervised
companion objectives, was to use the CS divergence as a measure of dissimilar-
ity between the density functions describing the clusters. The CS divergence is
only one of many different divergence measures in the literature on information
theory, with other examples including the Kullback-Leibler (KL) divergence [131]
and the more general Rényi divergence [132]. From the perspective of loss func-
tion minimization, there are no immediate problems with using either of these two
divergences in place of the CS divergence. One reason for favoring the CS diver-
gence however, is that it takes on a quite favorable form when expressed through
the kernel density estimator. Recall from Section 11.1.2 that the KDE-based es-
timator for the CS divergence is a function of the kernel matrix K only, allowing
for more straightforward loss computations. Moreover, the particular form of
the CS divergence estimator also allows for the RKHS-based interpretation also
outlined in Section 11.1.2.

Furthermore, it is important not to neglect the potential influence of the band-
width parameter o in the kernel density estimator. Much research has been
done on data-driven selection of this parameter, both in the univariate case
[99, 133, 134, 135], and the multivariate vectorial case [99, 136]. The domain
of density estimation for tensor data will most likely also benefit from similar
advancements in automatic bandwidth selection. It is possible that much of the
statistical intuition and theory that underlies the univariate and vectorial meth-
ods, is applicable in the more general case of bandwidth selection for tensor valued
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density estimators. However, the developments of new methods for selecting these
bandwidths should take the (possibly non-Euclidean) geometrical structure into
account, to correctly model the underlying data distribution.

It is a well known result from nonparametric statistics that kernel density es-
timation becomes difficult in higher dimensions [99], requiring massive sample
sizes to obtain accurate estimates. Omne might therefore think that this result
somewhat invalidates the computation of the unsupervised companion losses, as
well as DDC’s loss function, since these are computed for each mini-batch. How-
ever, note that these losses are concerned with density estimates that roughly
reflect the overall shape and location of the respective clusters, and not neces-
sarily the best possible modeling of the data distribution. The results obtained
by DTKC, DDC [20], RDDC [22], as well as other classical information-theoretic
approaches [137, 138, 139], indicate that these rougher estimates are sufficient for
the clustering objective, regardless of their questionable accuracy.

Section 13 states that the unsupervised companion objectives can be coupled
with any clustering algorithm using some form of deep neural network. This de-
gree of generalizability is an important advantage of the unsupervised companion
objectives, since new deep neural network architectures are likely to be intro-
duced in the future. We are already seeing examples of this development with
the introduction of Graph Convolutional Networks [140] and Transformers [141].
The tensor kernel framework [35] and the proposed CS divergence for tensors,
are also general concepts that can be applied outside the field of deep clustering.
One potential application is the promising work on understanding deep neural
networks through information theory [142, 143]. Preliminary work by Yu et al.
[144] on applying these methods to CNNs has focused on the naive kernel, but it
is possible that these methods can benefit from the tensor kernel utilized in this
thesis.

The idea of introducing loss functions at the output of individual layers also
opens up for an interesting pre-training strategy. Recall from Section 9.4 that
the stacked autoencoder is built by training the network layer by layer, instead
of training all layers at once. The unsupervised companion objectives could
be used in a similar manner, where we initially only consider the first layer,
and train it to minimize the first companion objective. Then we move on to
the second layer, and train only the parameters of this layer to minimize the
second companion objective. This process can be repeated until the desired
number of layers is reached. Finally, we can fine-tune all layers and the clustering
module by minimizing all the companion objectives, combined with the clustering
loss. This could make it easier for the individual layers to learn transformations
that enhance the cluster structure. However, the training of individual layers
requires a clustering module attached to each layer, leading to an increase in
memory consumption during training. As always, this is a tradeoff which has to
be considered by the end-user.
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18.2. Self-supervised pre-training

From the preceding results it is not immediately apparent whether or not self-
supervised pre-training will result in increased clustering performance. Thus,
when comparing to a randomly-initialized model, the tradeoff between added
computational cost and potentially improved initialization is one that has to
be considered based on the current task at hand. However, when compared
to autoencoder-based pre-training, self-supervised learning offers an alternative
pre-training strategy with a potentially significant reduction in the number of pre-
training parameters. This is because the autoencoder’s decoder might introduce
a large number of extra parameters, depending on its architecture.

To reduce the cost of the pre-training step, one could experiment with setups
where one pre-training run is used to initialize several fine-tuning runs. The ex-
treme case being one single pre-training run for all fine-tuning runs. A concrete
example of this strategy could be the following: Suppose our computational ca-
pacity limits us to 20 runs. Then, we could pre-train 4 times, and then perform
5 fine-tuning for each of the 4 pre-training runs. This would result in 20 runs in
total, but we’ve effectively reduced the pre-training time by a factor of 5.

It is also possible to expand upon this line of thinking by including fine-tuning
runs from random initializations into the allowed number of runs. For instance,
instead of pre-training 4 times, we could pre-train 3 times, and then perform 5
fine-tuning runs for each of the now 3 pre-training runs. We could then do 5
runs from a random initialization, again resulting in a total of 20 runs. Diagrams
illustrating these different strategies are shown in Figure 39.

1 pre-train | fine-tune 1 fine-tune 1 fine-tune
2 pre-train | fine-tune 2 fine-tune 2 fine-tune
3 pre-train | fine-tune 3 pre-train | fine-tune 3 pre-train | fine-tune
4 pre-train | fine-tune 4 fine-tune 4 fine-tune
5 pre-train | fine-tune 5 fine-tune 5 fine-tune
6 pre-train | fine-tune 6 fine-tune 6 fine-tune
7 | pre-train | fine-tune 7 fine-tune 7 fine-tune
8 pre-train | fine-tune 8 pre-train | fine-tune 8 pre-train | fine-tune
9 pre-train | fine-tune 9 fine-tune 9 fine-tune
10 | pre-train | fine-tune 10 fine-tune 10 fine-tune
11 | pre-train | fine-tune 11 fine-tune 11 fine-tune
12 | pre-train | fine-tune 12 fine-tune 12 fine-tune
13 | pre-train | fine-tune 13 | pre-train | fine-tune 13 | pre-train | fine-tune
14 | pre-train | fine-tune 14 fine-tune 14 fine-tune
15 | pre-train | fine-tune 15 fine-tune 15 fine-tune
16 | pre-train | fine-tune 16 fine-tune 16 fine-tune

17 | pre-train | fine-tune 17 fine-tune 17 fine-tune

18 | pre-train | fine-tune 18 | pre-train | fine-tune 18 fine-tune

19 | pre-train | fine-tune 19 fine-tune 19 fine-tune

20 | pre-train | fine-tune 20 fine-tune 20 fine-tune

Figure 39: Suggested pre-training and fine-tuning strategies for a total of 20 runs. The leftmost strat-
egy was used for the erperiments in this thesis, which is also the strategy with the highest
computational cost.

Another factor to consider is that the pre-training step might also require some
careful configuration of its hyperparameters. Doersch et al. [36] argue that suf-
ficient jitter and patch-spacing has to be applied in order for the network to
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learn features which reflect the objects present in the images. Furthermore, they
observed that failure to meet these conditions led the network to only focus
on pattern similarities along the image-edges. This is also consistent with the
importance maps shown in Section 17.7, indicating that this “continuation of
patterns” might be the case for the self-supervised network pre-trained on the
MNIST dataset. However, due to the low resolution of the images considered in
this thesis, increasing the jitter would require the patches to shrink accordingly.
Although increased jitter was not further investigated here, it is possible that
upsampling methods could be used to alleviate the problem of low resolutions.

Lastly, it is possible that self-supervised pre-training proves to be more beneficial
for the clustering of images with more complex scenery than those used in this
thesis. The results obtained by Doersch et al. [36] for ImageNet [109] and Pascal
VOC [110], indicate that the system is capable of capturing visual similarity
across images in these more diverse datasets.

18.3. Quantifying uncertainty for the “Best” statistic

The quantitative analyses done in the different subsections of Section 17 were —
to a large degree — based on the “Best” statistic extracted from the 20 runs. But
how closely does this really reflect the expected performance of the model? The
answer to this depends on which of the two following situations we find ourselves
in when trying to solve the problem at hand:

1. We have the computational resources to train the model from 20 different
initializations, and then select the one resulting in the lowest loss value.

2. We have the computational resources to train the model once, and have to
make due with the model we get from that single run.

Clearly, if we are in situation 2, the “Best” statistic will give an overly optimistic
estimate of the true performance. In this situation, it would therefore be more
accurate to consider the “Mean” statistic. Additionally, the “Sd.” statistic pro-
vides us with an estimate of the uncertainty of the resulting performance in this
situation.

On the other hand, if we actually have the resources to train the model 20
times — and thus find ourselves in situation 1 — we will get a more accurate
point estimate from the “Best” statistic. But what if we want to say something
about the uncertainty of this point estimate? Since the analytic computation
of an estimator for this uncertainty can be somewhat tricky due to the complex
distribution of the loss function, we can resolve to simulation techniques instead.
Bootstrapping [145, 99] is one widely known such simulation technique, where
the original sample is resampled a number of times to create a set of bootstrap
samples. Each bootstrap sample can then be used to compute a value of the
statistic — resulting in several values for the statistic in total. We can then
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compute e.g. the standard deviation based on these values. Suppose we let
Rl - [LhAl]; e 7RT - [L'MAT]

be vectors containing “loss” and “ACC” from the r different training runs. We
are then interested in estimating the standard deviation of the “Best” statistic:

f = Best(Ry,...,R,) = (A; st. Li=min{Ly,...,L.})

whose distribution is unknown. To estimate this standard deviation, we first draw
the bootstrap samples:

R, ,R,,,...,R,, b=1,...,B
where B is the total number of bootstrap samples, and:
R, ~U{R,,....,R.}), b=1,....B,i=1,...,r

where U({ Ry, ..., R,}) denotes the discrete uniform distribution on the original
sample. We then compute the statistic for each bootstrap sample:

Br =Best(R},,...R;), b=1,...,B

and get the bootstrap estimators for “Best” and its standard deviation as:

R B b el /a0 &
5=Ebz_;5b, o5 = ;% (42)

These are estimators of the expected “Best” performance, and its standard devi-
ation.

Table 11 shows the resulting estimates computed for B = 10000 bootstrap sam-
ples. From these results we can make the following key observations:

e The expected accuracy is lower than the overall “Best”, which can be found
in Tables 4 and 5. This is because the overall “Best” is the highest observed
value in the original sample, meaning that the bootstrap samples which does
not include this value will pull the overall mean downwards?.

e The deep models outperform the classical models for almost all datasets.
This is consistent with the results in Tables 4 and 5.

e DEC has a noticeably lower standard deviation than the other deep models.
This can be either due to the autoencoder initialization, or that DEC’s
fine-tuning process behaves more consistently across runs. The latter can
be caused by a “nicer” loss functions with fewer local optima to get stuck
in.

20The asymptotic probability (r — oo) of the overall “Best” being included in a bootstrap
sample is 1 — e~ ! ~ 0.632 [3].
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Table 11: Estimates of expected “Best” accuracies + standard deviation (8" £ oj). The estimates were
computed based on the estimators in Eq. (42). The highest means are highlighted in bold.

‘ MNIST USPS SVHN F-MNIST COIL-20 COIL-100 UMist

k-means 0.51 +£ 0.0 0.67 +£ 0.0 0.13 £ 0.0 0.5+ 0.03 0.68 + 0.02 0.62 £+ 0.0 0.41 £ 0.02
HC 0.21 +£ 0.0 0.22 +£ 0.0 0.19 + 0.0 0.1+ 0.0 0.35 £+ 0.0 0.23 £ 0.0 0.46 £+ 0.0
DEC 0.87 £ 0.03 0.76 +£ 0.0 0.18 £ 0.01 0.55 £+ 0.0 0.65 + 0.04 0.6 £ 0.0 0.09 £+ 0.01
DDC 0.88 + 0.04 0.77 £ 0.05 0.15 + 0.0 0.6 + 0.02 0.67 + 0.02 0.61 £+ 0.01 0.33 +0.03
DDC-SS 0.88 £ 0.02 0.72 £ 0.01 0.19 £+ 0.01 0.56 £ 0.02 0.7 £0.02 0.51 £+ 0.02 0.35 £ 0.01
DTKC 0.92 + 0.04 0.77 £ 0.02 0.18 £ 0.01 0.61 £+ 0.02 0.63 + 0.01 0.62 + 0.02 0.32 £ 0.04
DTKC-SS 0.86 £+ 0.01 0.71 £ 0.02 0.14 +£ 0.0 0.61 £+ 0.06 0.7 £ 0.02 0.51 £ 0.0 0.35 + 0.01

e DTKC and DTKC-SS outperform, or perform comparable to, the other deep
models on all datasets, indicating that the performance of the proposed
models is at least as good as DDC and DEC. Note that the benchmark
models whose results were extracted from the literature, are not included
here. This is because it was not possible to design and execute a comparable
bootstrap when only the point estimates (or means) were reported for these
models.

Lastly, and perhaps most importantly, the values of the estimated standard devi-
ations are so large that they should be taken into consideration when evaluating
the results. The key advantage of estimating uncertainty in this way, is that
the bootstrap approach requires no extra training of models, making it very
cheap compared to running multiple instances of the 20-run-setup. Bootstrap-
ping should therefore be strongly considered as an option to quantify uncertainty
when using the “Best” statistic based on multiple runs — especially when the
alternative is to report the point estimate only.

18.4. Specifying the number of clusters

The number of clusters is an important parameter for many clustering algorithms,
including DTKC. Although we have assumed the number of clusters to be a known
quantity, this might not be the case in real-world applications — especially those
designed for exploratory purposes.

The literature on determining the number of clusters seems to focus on mainly
two different approaches: (i) Finding the number of clusters in the dataset before
training the model [52, 146], and (ii) training several model instances with dif-
ferent numbers of clusters, and then selecting the best of these [147, 148]. Most
of the methods within both these approaches rely heavily on the specification
of a similarity (or dissimilarity) measure in the input space. As was previously
discussed in Section 7, this choice can be highly nontrivial for more complex
datatypes, such as digital images and time series.

For approach (ii), the requirement of a similarity measure could be bypassed by
considering the loss function of the clustering algorithm, instead of the commonly
used internal CVIs. However, this can also be problematic if the loss function
itself is biased towards either small or large numbers of clusters. For the deep
clustering methods, an alternative approach would be to keep using internal CVls,
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but to compute these for the learned representations (denoted z in Section 10)
instead of the input data. The specification of a similarity measure in this space
is less challenging, as it tends to be an integral part of the subsequent clustering
module [15, 20]. Sadly, this approach is not problem free either. Different models
will result in different embeddings, which can negatively impact the validity of
comparing the resulting CVIs. Thus, the determination of the number of clusters
in complex datasets remains as an important direction for future work.
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The purpose of this thesis has been to develop a new deep clustering algorithm
for image clustering, as an answer to some of the open research questions in the
field of deep clustering. The proposed DTKC employs unsupervised companion
objectives to enforce cluster structure in earlier layers of its convolutional neu-
ral network. In the development of the unsupervised companion objectives, a
connection between tensors and convolutional neural networks was utilized, in
order to construct companion objectives capable of describing clusters of tensors.
This work was inspired by ideas from several different fields of study, namely
information theory, tensor theory, and deep learning.

Self-supervised learning in the form of context prediction [36] was also described
and tested as a pre-training approach. Many deep clustering methods use au-
toencoders for pre-training, and self-supervised learning was recognized as an
alternative to these, potentially reducing the number of extra parameters intro-
duced in the pre-training stage.

In the experiments, both DTKC and DTKC-SS (DTKC with self-supervised pre-
training), were compared to several benchmark algorithms from the literature
— consisting of both classical algorithms, as well as algorithms from the more
recent deep clustering field. The experimental results show that DTKC and
DTKC-SS outperform, or perform comparable to, the benchmark algorithms. The
experiments also describe the evaluation of two different variations of the base
DTKC model, with the first being an alternate formulation of the unsupervised
companion objectives. The second variation was a DTKC-based model in which
a recurrent neural network was used in place of the convolutional neural network,
resulting in a model for time series clustering.

The aforementioned connection between tensor theory and convolutional neu-
ral networks has received limited attention in the current deep learning scene.
However, promising work on e.g. increasing network efficiency [31], and tensor
factorization [32, 33], indicate that there is much untapped potential at the in-
tersection between deep learning and tensor theory.

The preservation of geometrical structure in the input data is still a key challenge
in deep clustering [24], and remains as an important direction for future work. To
this end, the theoretical contributions made in this thesis show that the quantifi-
cation of cluster structure can be done for tensors of arbitrary rank. More work
along these lines can therefore lead to impactful advancements in the clustering
field — especially for datatypes with more complex geometrical structure, such as
images, sequences, and graphs.
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