
Faculty of Science and Technology
Department of Computer Science

EDMON
A backend server for an infection detection system monitoring individuals with
type 1 diabetes
—
Sverre Coucheron
INF-3981 Master’s Thesis in Computer Science

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2019 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

To my family, friends and girlfriend;

thank you for all the support throughout the years.

“Writing a master’s thesis is hard.”
–Marius Wiik (30)

Preface
With infectious diseases being such a massive threat to the population, there
is a great need for earlier disease detection. Together with this, individuals
with type 1 diabetes also benefit a lot from self-monitoring and self-recording.
Because of this, the EDMON project seemed like an excellent fit for me. To
be able to help the project achieve its goals and build a platform to help both
individuals and society, was to me, an honor.

The summer of 2018, I worked at DIPS, where I got an introduction to medical
informatics and software development within the health sector. This led to a
course at the University of Tromsø held by Gunnar Hartvigsen. The course
had a strong focus on mobile health applications and the challenges within
medical informatics. Both of these sparked an interest in the field and to create
software to help, together with assisting users. After talking with Gunnar, it
came clear that he was the founder of Tromsøstudentenes Dataforening, the
student organization where I was currently the head of. We talked a lot about
this, and to me, having him as my supervisor felt like a great match. We landed
upon the EDMON project, where I wanted a back-end project.

First of all, I want to thank Gunnar Hartvigsen for all the support, guidance, and
supervision throughout the project. He has provided me with knowledge not
only in the project but helped me become a better computer scientist. I want to
thank all of my co-supervisors too. Thank you to Ashenafi Zebene Woldaregay
for providing me with continuous support and feedback and Miguel Tejedor
for being there in all of my supervisions and all of his knowledge and feedback.
A huge thank you to Eirik Årsand and Taxiarchis Botsis for all of their help and
insight throughout the project.

A special thanks to my family for being there for me at all times - through thick
and thin. They have given me continuous support throughout the years. Thank
you for the opportunity you have provided me to chase a higher education,
and for believing in me — and a special thank to my sister, Tina. From the
time when she started school, she has provided me with help and tutoring. By
forcing me to learn all that she had at school, it helped lead me to enjoy gaining
more knowledge. She has also given me the support and encouragement in

iii

all of these years, and a special thank you for helping me with my homework
since the first grade.

Next, I would like to thank Guro Møller Ødegård, my girlfriend, for providing
me with endless support and love. Thank you for sticking with me through the
late nights and weekends I had to spend at the university. The endless help
and support from you, helped me achieve the goal I had been chasing for the
last 18 years - getting a masters degree.

I want to send a special thanks to the great company at the office. Thank you for
a great semester with laughs, jokes, ribbing, and taunting. I will always cherish
and look back at this time with love. Thank you to Marius Wiik for making me
feel young and shaming me if I was 10 minutes late at 7 AM. To Valter Berg,
whom I worked with last summer and had the pleasure of sharing an office
with this semester. Thank you to Vebjørn Haugland for being a goof and his
love for fossil cars. Tobias Borgen Olsen, thank you for talking so much about
your glasses and how much they weigh, together with always being cheerful.
Lastly, thank you to Andreas Isnes Nilsen for all the beer and wine, it has been
a pleasure.

In truth, I could not have achieved my goal and finished my master thesis had
it not been for the support from all of the people above. From the bottom of
my heart, thank you all!

Tromsø, the 20th of May 2019
Sverre Coucheron

iv

Abstract
There are a growing number of adults with diabetes worldwide. Within 2045 it
is expected to become over 600 million individuals. Since there are no known
cures for diabetes, self-monitoring and self-recording are often used to manage
the condition. Having tools such as mobile applications allow individuals to do
this. The world and society face a significant health threat from communicable
diseases,which has resulted in a growth in the detection algorithms of infectious
diseases.

This thesis proposes a back-end server with the functionality to implement
disease surveillance algorithms on data from monitoring individuals with type
1 diabetes. It has a focus on standardization, security, and privacy. It also offers
the opportunity for users to record themselves in a video with each medical
recording. The design is devised with a modular approach to provide future
scientists and researchers the possibility to extend the functionality.

Experiments and tests are conducted to see that the system is satisfactory
and handles enough traffic for the task at hand. The solution handles 100
concurrent clients sending 10 000 requests, with around 800 requests per
second. All testing is done on real user data, with calculations to simulate the
EDMON infection detection systems performance. The server spends around
11 minutes running the algorithm on almost 3 million medical records, which
is sufficient since this algorithm is meant to run once per hour.

Contents
Abstract v

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Background and Motivations 1
1.2 Scope and Research Questions 3

1.2.1 Assumptions and Limitations 5
1.3 Methods . 6
1.4 Significance and Contribution 7
1.5 The organization of the report 7

2 Theoretical Framework 9
2.1 Health platforms . 9
2.2 Disease surveillance . 13
2.3 Diabetes . 14
2.4 Security and Privacy . 17

2.4.1 General Data Protection Regulation 18
2.4.2 HTTPS . 18
2.4.3 De-identification . 18
2.4.4 JSON Web Tokens 19

2.5 Standardization . 20
2.5.1 Health Level 7 . 21
2.5.2 LOINC . 21
2.5.3 FullFlow . 22

2.6 EDMON . 22
2.7 State-of-the-Art . 24

2.7.1 Data Sources and Search Criteria 24

3 Methods and Materials 31
3.1 Research Paradigm and Tools 31
3.2 Materials . 32

vii

3.3 Golang . 33
3.3.1 Rational for choosing Golang 34

3.4 Literature review . 34
3.5 Testing . 35

3.5.1 Experimental design 35
3.5.2 EDMON algorithm 36
3.5.3 Performance . 37
3.5.4 Average time of execution for a user 38
3.5.5 Average time of concurrent requests to the system . . 39
3.5.6 Profiling . 40
3.5.7 Throughput . 41

3.6 Evaluation methods . 42
3.7 Critique of the Methods Used 42

4 Requirements Specification 43
4.1 Source of the Requirements 43
4.2 Requirements . 44

4.2.1 Scenario one . 44
4.2.2 Scenario two . 45
4.2.3 Scenario three . 45
4.2.4 Functional requirements 46
4.2.5 Non-functional requirements 48

4.3 User Stories . 49

5 Design 51
5.1 Identified Features of the System 51

5.1.1 EDMON system design 52
5.2 Application programming interface 52

5.2.1 Data transfer design 53
5.2.2 Authentication and Access Control 56

5.3 Database design . 58
5.3.1 User . 58
5.3.2 Medical Record . 60
5.3.3 Location . 62

5.4 Version of the system . 63
5.4.1 System design . 65
5.4.2 Extension of the system 66

6 Implementation 69
6.1 Project Dependency . 69

6.1.1 General . 69
6.1.2 API . 70
6.1.3 Models . 71
6.1.4 Database . 72

viii

6.1.5 Middleware . 73
6.1.6 System illustration 74

7 Test and results 75
7.1 EDMON algorithm . 75
7.2 Average times . 77

7.2.1 Concurrent requests 78
7.3 Profiling . 81

7.3.1 CPU & Memory . 81
7.3.2 Pprof results . 82

7.4 Throughput . 84

8 Discussion 87
8.1 Evaluation of results . 87
8.2 Research questions . 91
8.3 Future work . 93

9 Conclusion 95

Bibliography 97

Appendices 105

A Appendix 1 107

ix

List of Figures
1.1 Top 10 causes of deaths in 2016 2

2.1 Healthvault screenshots . 10
2.2 mySugr screenshots . 11
2.3 Diabetesdiary application 12
2.4 Screenshot from Healthmap [46] 14
2.5 Example of a JWT token . 20
2.6 LOINC example with HL7 integration 22
2.7 Proposed EDMON System Architecture [67] 23
2.8 PRISMA Flow Diagram . 27

4.1 Requirement shell from Volere template [73] 46
4.2 User stories from the product backlog 50

5.1 EDMON system design suggestion[7] 52
5.2 Example of a GET request to the system 54
5.3 Example of a PUT request to the system 55
5.4 Example of a DELETE request to the system 56
5.5 Database design . 63
5.6 First design of the server 64
5.7 Second design of the system 64
5.8 System design . 65
5.9 Access granted for user example 65
5.10 Access denied for user example 66

6.1 Code dependency . 70
6.2 Components of the API . 71
6.3 Components of the model 71
6.4 SQL script to set up location table 73
6.5 Example of a request to www.example.org/medrec/GetAll . . 74

7.1 Server performance executing EDMON algorithm 76
7.2 Creation of user, login, creating records and deleting time

measurement . 77

xi

www.example.org/medrec/GetAll

7.3 Average time when concurrently creating new users 79
7.4 Average time with concurrent login’s 80
7.5 Average time when concurrently creating medical records . . 80
7.6 CPU and memory usage during setup and tear down script . 81
7.7 CPU & mem. when concurrently setting up and tearing down

500 accounts . 82
7.8 Log in profiling . 82
7.9 Creating user profiling . 83
7.10 Medical record creation profiling 84

xii

List of Tables
2.1 Datatypes: The OhioT1DM Dataset for Blood Glucose Level

prediction, p. 2 [51] . 16
2.3 Results from systematic review 26
2.4 Detailed list of relevant mobile and web-based applications . 28
2.6 Detailed list of reviewed literature 29

3.1 Hardware specifications . 35
3.3 Database information when executing EDMON algorithm . . 37

4.1 Functional requirement specification 47

5.1 Database: User table explanation 59
5.2 Database: Medical table explanation 61
5.3 Database: Location table explanation 62
5.4 Filesystem . 67

7.1 Times when executing the EDMON algorithm 76
7.3 Creation of user, login, creating records and deleting time

measurement . 78
7.5 Average time of concurrent requests 78

xiii

1
Introduction
1.1 Background and Motivations
There are around 425 million adults with diabetes worldwide, and this is
expected to become 629 million by 2045. [1] Diabetes mellitus, often referred
to as diabetes, is a collection of three types of diabetes; type 1, type 2 and
gestational diabetes. The focus in this thesis is on diabetes type 1, which is
where the body can not produce enough, or any at all, of the hormone insulin
[1] [2].There are no known cures for diabetes, but with active surveillance,
self-monitoring, together with treatment, the condition is manageable. The
Internet of Things (IoT) has helped a lot in this aspect, paired with mobile
health (mHealth). When one combines these to create a body area network
(BAN) with sensors and wearables, it may be of great help for the individuals.
It may create a solution for self-monitoring that could potentially save lives
by helping the users to monitor their vitals. According to the Global Health
Observatory [3] by the World Health Organization, [4] diabetes is the seventh
highest cause of death yearly, as can be seen in Figure 1.1. Around 1.6 million
deaths are directly attributed to diabetes each year [5]. To control diabetes
type 1, one has to test blood values regularly [6] to inject with the right amount
of insulin at the correct time. Often the individual has to follow a regular
scheme of when to check blood values and take their long term insulin.

1

Figure 1.1: Top 10 causes of deaths in 2016

One can, therefore, assume that there is a great need for the individuals with
diabetes to have a solution that can help them monitor their condition with
ease, and give them a warning or a heads up that something may be wrong.
The focus of this project is to create a cloud back-end solution which supports
the further development of mobile applications for individuals with diabetes
type 1.

This thesis is a part of EDMON - the Electronic Disease Monitoring Network
[7] at the University of Tromsø. EDMON proposes a real-time early disease
outbreak detection system by the use of self-monitoring and gathering data
from individuals with diabetes type 1. The data undergoes micro event analyses,
which detects infection induced elevated blood glucose pattern on an individual
level, to reach on a conclusion for uncovering macro events in the world and
on the general population [7]. As stated in the EDMON paper, the goal of
the system is to create a mobile computer tier - a standalone mobile app that
integrates the reading of the individual’s essential diabetes and physiological
parameters.

As communicable diseases are still a significant health threat for the population,
there has been a growth in detection algorithms to try and detect this at an
earlier stage [8]. Today there are a lot of data that can potentially give clues to
when an outbreak of infectious disease has happened, and therefore it may be
stopped at an earlier stage. There have been ways to do this in the past, butmost

2

1.2 SCOPE AND RESEARCH QUEST IONS

of the solutions have had the issue of lag between the recording of the data, and
when a general practitioner can make an assessment. For some time, solutions
are developed, such as one by the New York City department for health and
Mental Hygiene. They developed a syndromic surveillance system that uses
data from different emergency departments and analyzed them electronically
to try and detect disease outbreaks early. [9] In France, the same type of system
is developed, with the name SurSaUD [10].

In the last years big data has been used in several aspects. Big data is used to
describe the vast amount of data that is stored and how rapid the growth of the
data is. As a result of the magnitude of data that is collected, researches started
to use the data to try to gain knowledge [11]. It leads to standardization issues
[12] [13] where the more complex infrastructure leads to several problems if
there is not a standard in place to handle the data. There are organizations
which are trying to help with this, such as Health Level 7 [14], which has been
adopted to be the standard by many within healthcare. Another organization,
and one of the most prevalent parts in disease surveillance, is the International
Society for Disease Surveillance [15]. Their vision is to "work toward a timely,
effective, and coordinated disease prevention and response among a skilled
public health workforce through programs..." [16]. Standards aid and create
opportunities for organizations such as ISID to work more efficiently towards
their goals.

Within healthcare and storing sensitive data, problems arise when talking about
privacy and security [17]. Healthcare in the US is a billion dollar industry, with
millions of users [18], which leads to privacy and security of their confidentially
health-related data to become a pressing issue. In Europe, the European Union
tries to regulate laws regarding security and privacy for users, which helps
to identify and fix issues. The General Data Protection Regulation recognizes
the concern and defines clear rules around the issue [19]. In 2016, Norway
defined how a health related system should be and which laws one has to obey
to create an open system with data from the health sector. This reflects the
ruling of Datatilsynet [20] and a national service which should make healthcare
data available for responsible usage by third-parties with legitimate purposes
[21].

1.2 Scope and Research Questions
The project started as a way to help solve the challenges and problems of
individuals with type 1 diabetes. Both self-monitoring and identifying if their
blood glucose levels are abnormal. By gathering their data and gaining a deeper
understanding, we want to develop a disease outbreak system, which is the

3

second challenge of this project.

The project is aimed to develop a general server-side solution which allows
the developers of the project to use the back-end server for their applications.
Further development should also help assist in creating microservices[22] and
farther develop the functionality needed to aid individuals with type 1 diabetes.
One of the goals for the project is to provide a permanent storage and interface
for diabetes type 1 users to gather self-recorded data by self-monitoring.

The main research question of the thesis is:

Research question

"How can an electronic health system server to aid individuals with
diabetes type 1, while creating a warning system of disease out-
break with security and privacy in mind, be designed?"

With this question, we try to identify sub-question which deal with the secu-
rity and privacy aspects, together with having the expansion of the services
components in mind.

Subquestion one

How can a system for disease surveillance be designed, and which
drawbacks or advantages is there of the state of the art systems?

When designing a system for storing data and creating a warning system for
disease surveillance, one has to look into the state of the art of the technology,
together with how the current solutions chose to design their systems. It is,
therefore, an important aspect of this thesis.

The design of the application meets the application developers, and users need
and expectations. Aspects such as usability, security, availability, and privacy
prevail as some of the essential choices when designing a project such as this.
Therefore the second question is articulated as follows.

Subquestion two

How can secure data storage for mobile applications for individuals with
diabetes be created?

Since this solution is meant to store the data for mobile applications, within

4

1.2 SCOPE AND RESEARCH QUEST IONS

healthcare, one has to ensure that the data transmitted is secure. Further
research and a dive into the current solutions are also needed.

Subquestion three

How can user’s authentication be ensured with the least amount of
user-interaction in the front-end application?

As mentioned, the system is meant to be used, paired with mobile applications.
Because of this, one has to take the users experience into consideration. It
can not be too much of a hassle to log in to the system. The server solution
should, consequently, ensure the authentication of a user to ensure privacy,
together with making it as convenient as possible. An important aspect of login
into applications is that the barrier is not too high. How this is done, when
thinking about the design choices of the back-end server is one of the core
questions.

Subquestion four

How can an electronic health system that is to be expanded by other
researchers and students be designed?

This thesis is a part of the EDMON project thus it has to provide the researchers
and students which will develop further on the solutions an easy way of
expanding and understanding the system.

1.2.1 Assumptions and Limitations
The project has a focus on storing the data safely for the user while ensuring
privacy. Since this is a building block for a larger project, there is also a
focus on documentation and ease of further development. It has a focus on
helping a limited target group: individuals with type 1 diabetes. According
to Folkehelseintitutet, there are around 28.000 individuals in Norway in 2017
[23]. The disease detection algorithm is under development of someone else
in the project.

Because of this, there are some limitations for the project, which leads to some
assumptions before the project:

1. The detection algorithm may not be integrated into the server solution.

5

2. Since the project has a focus on the back-end solution for further devel-
opment, there is no usability testing with a target audience.

3. Persuasive technology is not a focus of the thesis, but rather of the front-
end application later in the project.

1.3 Methods
The thesis and the development work is done in the following order:

1. Review of relevant health systems with a focus on diabetes

2. Create requirements and an outline of the project

3. Developed a prototype using Golang’s HTTP libraries

4. Designed and implemented database

5. Developed a new version of the system using GIN libraries

6. Created request using Postman 1

7. Added support for JSON web tokens

8. Further development for https support

9. Performance testing and analysis of the results

As a starting point for the project, a state of the art review was conducted in
the field to understand the current solutions. Together with this, the author
had to outline the needs of the thesis for the EDMON project. Because of this,
a lot of the design and development has had a focus on supporting further
development and usage of the system.

Denning [24] suggest an engineering approach, and this was used to create re-
quirements and as a tool to create prototypes that can solve the problems.

Throughout the project meetings with supervisors and experts within the field
has helped shape the project and provided feedback for which direction the
problem should go. There was also contact with the experts in the EDMON

1. Postman https://www.getpostman.com/ (Visited 2019-05-16)

6

https://www.getpostman.com/

1.4 S IGNIFICANCE AND CONTR IBUT ION

project to ensure that the solution would satisfy their needs.

1.4 Significance and Contribution
The projects’ main contribution is to create a back-end server for mobile
applications monitoring individuals with type 1 diabetes and using this data to
create a real-time disease surveillance system. As an addition, the project has
a focus on security and privacy, while giving the users a diary that is usable in
daily life. This diary consists of short videos where each user can talk about
their current feelings and well-being. The features in the project are defined
by the state-of-the-art of the field, together with the requirements created and
the EDMON requirements.

Another contribution of the system is that it should be a general enough solution
that the project as a whole can use it in the coming years. Since several
researchers and students are creating interesting thesis’ where this project
works as the foundation. The project will be used to collect data from real
users, and the data can be analyzed further to help gain an understanding of
how blood glucose levels, for example, can be used to identify if an individual
has caught a disease. The system also supports extensions of the current
solutions by creating a middleware that can add microservices to create more
room for analysis, or satisfy future ideas.

1.5 The organization of the report
The organization of the thesis is as follows:

Chapter 2 - Theoretical framework
This chapter gives an overview of existing healthcare back-end solutions, cloud
solutions, and similar technologies. It also explains more about diabetes and
why this project can give a helping hand to its users, together with the data
used as a tool to analyze and alert if there are infectious diseases. It also looks
into existing technology in disease surveillance.

Chapter 3 - Methods and Materials
The chapter gives a brief understanding of which methods used under devel-
opment, together with the materials used.

7

Chapter 4 - Requirements and Specification
The chapter looks into the project specifications and the functional and non-
functional requirements, together with their sources.

Chapter 5 - Design
The design process as a whole is explained together with the design choices
throughout the development of the project. There is also a history of how the
server choices were made.

Chapter 6 - Implementation
The chapter looks into the chosen tools for developing a back-end server for
a project within health care and reasons for choosing them. There are also
code examples and an overview of the code-structure which allows for add-
ons.

Chapter 7 - Test and Result
This chapter presents the testing and the results from the project in the form
of latency and throughput.

Chapter 8 - Discussion
The chapter discusses the results of the test, together with a comparison of
the project to existing technologies. There is also described some identified
improvements to the project. Also contains the future work of the thesis.

Chapter 9 - Concluding Remarks
Concluding remarks for the research and the contribution of the project.

8

2
Theoretical Framework
2.1 Health platforms
As the world has moved from health records to electronic health records (EHR)
rapidly, several different approaches occur. From 2000 to 2011, every major
industry invested heavily in computerization [25], and this does not seem to
stop. DIPS, which has around 85% of market share in hospitals in Norway
[26] is developing with OpenEHR as a focus. Because of this, their products
"consists of open specifications, clinical models and software that can be used
to create standards, and build information and interoperability solutions for
healthcare" [27].

From a consumer perspective, there would be significant benefits to be able
to gather relevant health data by self-monitoring and being able to utilize the
open systems such as DIPS. Several vendors already create server-side solutions
which users can collect data from a considerable amount of different electronic
devices, such as smart-watches. By collecting data and integrating it to your
general practitioner’s system, one could get a diagnosis based upon the data
you have continuously gathered.

9

Figure 2.1: Healthvault screenshots

HealthVault
HealthVault [28] is one of the suppliers of a system for self-monitoring and
self-recording of data. It is a service run by Microsoft which integrates 24
applications and 188 differentmonitor devices such as smart-watches, according
to their website [28]. It is also showcased that you can get more out of visiting
your general practitioner since you can have an updated list ofmedicines you are
on and allergy lists, combined with the self-recorded data. It offers applications
for iPhone as well as Windows. In Figure 2.1 the Windows application is shown.
The image fetched from the Microsoft store 1

It also allows developers to create third-party applications which are compatible
with their platform. This may be the reason why they can provide such a large
number of devices. One of the reasons to use HealthVault as a developer is that
they provide solutions for storage and authentication. It may lower the cost for
the developer, together with creating new business opportunities [29].

Diabetes applications
While there are corporations like HealthVault that provide a way to store
your data, there are also open-source projects such as Nightscout [30]. The
thought of Nightscout is that everyone should be allowed to access their blood

1. Microsoft Store HealthVault https://www.microsoft.com/nb-no/p/
healthvault/9wzdncrfj3mc

10

https://www.microsoft.com/nb-no/p/healthvault/9wzdncrfj3mc
https://www.microsoft.com/nb-no/p/healthvault/9wzdncrfj3mc

2.1 HEALTH PLATFORMS

glucose levels via a personal website and that it uses an open source, do-it-
yourself approach. This system is tailored to diabetes users for recording their
data.

Nightscout is created by the parents of a 4-year-old boy that had to use a glucose
monitoring system after being diagnosed with type 1 diabetes. Since there was
no commercial option available, they created one for them. Their initiative has
created a community where the focus is on creating a way to monitor their
chronic condition by integrating hardware with their software. You can also
use their code to upload data to the cloud by setting up a MongoDB database
and using Azure as a web hosting service.

As an alternative to NightScout, one also has applications such as mySugr [31].
The application is available for both iOS and on Google Play and allows the
user to record their data to the cloud. They claim to be loved by more than 1
million people with diabetes and offer blood glucose recording, estimated blood
glucose, continuous glucose meter data, insulin calculations, and a personal
diabetes coaching functionality. The functionality and how the application
looks on Android as seen in Figure 2.2. The screenshots are from Google Play.
2

Figure 2.2: mySugr screenshots

2. Images from Google Play https://play.google.com/store/apps/details?id=
com.mysugr.android.companion&hl=english

11

https://play.google.com/store/apps/details?id=com.mysugr.android.companion&hl=english
https://play.google.com/store/apps/details?id=com.mysugr.android.companion&hl=english

Diabetesdiary
Another approach is the Diabetesdiary [32] where data is gathered and used in
self-monitoring. The user provides the application with data such as what the
meal contained, or about physical exercising, and stores the data so that the user
have full control over what the value was in, for example, insulin at a given time.
As can be seen in Figure 2.3, the application has a button for registering insulin,
and see the records made. Together with this it provides tools for monitoring
food intake. The images are from the Diabetesdiary webpage 3.

Figure 2.3: Diabetesdiary application

General
There are several options to these, and most big technological companies
offer some way of recording health data. Apple HealthKit[33], Google Fit[34]
and Samsung Health[35] to mention a few. These often focus on exercising
and following a goal in for example number of steps each day, but the last
years they have integrated support for personal health monitoring. Other
services such as CareZone [36] and NoMoreClipboard [37] have the same
focus as HealthVault, that is, to collect data and organize health information.
For example, NoMoreClipboard has a focus on an own and personal health
record where one can access the data anywhere and any time. They also state
that it does not matter what system one uses.

The services mentioned above are discussed and explained in detail in chapter

3. Images for Diabetesdiary http://www.diabetesdagboka.no/en/howtos/

12

http://www.diabetesdagboka.no/en/howtos/

2.2 DISEASE SURVE ILLANCE

Chapter 8, but as one can see, many solutions offer ways to collect your health
data.

2.2 Disease surveillance
Through the years, surveillance systems have served greatly in detecting dis-
eases in society and responding to the infectious disease outbreaks. [38]. Since
the world has changed extensively the past decades, we sit with more informa-
tion on each individual than ever, and this has the potential to help us develop
solutions that can alert the general public earlier in situations where there
are infectious disease outbreaks. Traditional systems often have a lag between
their readings and the time one can say for certain that there is an outbreak
[38].

As the internet and computers grow,more andmore data is generated [11]. This
data can, for example, be about an individuals health, where one uses a Body
Area Network (BAN) to record heart rate or sleep quality of a user. Another
example is to record individuals with type 1 diabetes blood glucose to manage
their chronic condition [39]. The Internet of Things (IoT) [40] has created an
opportunity where one can easily record data and push it to stable storage
for analyzing. These factors lead to an opening in creating systems that can
analyze huge amounts of data and make conclusions on a larger scale.

Modern technology and solutions allow for faster response and reaction to
global threats such as infectious diseases, and there are several solutions which
have sped up the detection of these. There are systems in place already, such as
using Googles search trend to predict outbreaks [41]. Others go another route
and develop apps for disease surveillance in Africa [42]. This project included
both livestock and human in a trial, where within the first 5 months of the
deployment, a total of 1915 clinical cases were reported.

The Medical Informatics and Telemedicine group at the University of Tromsø
has looked into using blood glucose levels to create an automatic infection
system for a while, and already in 2007, they investigated the possibility of using
it to create an automatic infection detection system [43]. Here it was concluded
that the blood glucose data had the potential to be used as an indicator. While
the MI&T group used blood glucose data, others analyze tweets on Twitter at
the time of outbreaks [44] [45].

In 2006 a team of researches, epidemiologists and software developers founded
HealthMap [46] [47]. It offers disease outbreak monitoring in real-time and
bases itself on several sources such as Google news, WHO [4], news sources,

13

and Baidu ⁴. They have created a map where alerts of outbreaks are added as
can be seen on Figure 2.4, when one press on the dots, information about what
has happened and where the source originated. For example, on the 6th of May
there was a young woman who died from a rabies infection in Norway ⁵. On
the map, it is marked as an incident. There is also a summary of the story where
you can find the sources and more information about what happened.

Figure 2.4: Screenshot from Healthmap [46]

2.3 Diabetes
Diabetes mellitus, often only referred to as diabetes is a chronic condition
where the blood glucose is too high [48]. Blood glucose (also referred to as
blood sugar) is consumed when eating, where the food is broken down in the
digestion. The body uses the pancreas to produce insulin, which then helps
the glucose in the blood to go into cells and create energy [48]. Therefore
the result of not producing insulin is that the glucose would stay in the blood
forever.

There are several types of diabetes; type 1, type 2, gestational, and others
such as monogenic diabetes, even though the latter is less common [49]. As
mentioned, this project focuses on individuals with type 1 diabetes. Diabetes
milletus type 1 is when the body produces small amounts of insulin or no insulin

4. "Baidu" http://www.baidu.com/ Visited (2019-05-04)
5. "Birgitte Kallestad (24) fra Hordaland døde av rabies" https://www.aftenposten.

no/norge/i/70B5mo/Birgitte-Kallestad-24-fra-Hordaland-dode-av-
rabies (Visited 2019-05-10)

14

http://www.baidu.com/
https://www.aftenposten.no/norge/i/70B5mo/Birgitte-Kallestad-24-fra-Hordaland-dode-av-rabies
https://www.aftenposten.no/norge/i/70B5mo/Birgitte-Kallestad-24-fra-Hordaland-dode-av-rabies
https://www.aftenposten.no/norge/i/70B5mo/Birgitte-Kallestad-24-fra-Hordaland-dode-av-rabies

2.3 DIABETES

at all [48]. Normally this is a result of the body’s immune system attacking and
destroying the betacells in the pancreas [48]. Type 1 diabetes is also referred
to as juvenile diabetes since in most cases it affects children or young adults
[50].

Monitoring diabetes
Since the body can not produce insulin, the individuals have to inject insulin
into their bodies daily. This results in the need to self-monitor and using
applications for recording data, as mentioned in Section 2.1. Cindy Marglin
and Razcan Bunescu promoted and facilitated research in blood glucose level
prediction where they gathered eight weeks worth of data with continuous
glucose monitoring, insulin, physiological sensors, and self-reported live-event
data for six people with diabetes type 1. This can be seen in Table 2.1, which is a
table from the Ohio paper. They provide this data to researchers and scientists
which want to gather more knowledge about which data is relevant to obtain
and to try and understand how the data can be used in research.

15

Table 2.1: Datatypes: The OhioT1DM Dataset for Blood Glucose Level prediction, p. 2
[51]

Value Explanation
patient The patient ID number and insulin type. Weight is set to 99 as a

placeholder, as actual patient weights are unavailable.
glucose_level Continuous glucose monitoring (CGM) data, recorded every 5

minutes
finger_stick Blood glucose values obtained through self-monitoring by the

patient.
basal The rate at which basal insulin is continuously infused. The basal

rate begins at the specified timestamp ts, and it continues until
another basal rate is set.

temp_basal A temporary basal insulin rate that supersedes the patient’s nor-
mal basal rate. When the values is 0, this indicated that the basal
insulin flow has been suspended. At the end of a temp_basal, the
basal rate goes back to the normal basal rate.

bolus Insulin delivered to the patient, typically before a meal or when
the patient is hyperglycemic. The most common type of bolus,
normal, delivers all insulin at once. Other bolus types can stretch
out the insulin dose over the period between ts_begin and ts_end

meal The self-reported time and type of a meal, plus the patient’s
carbohydrate estimate for the meal.

sleep The times of self-reported sleep, plus the patient’s subjective
assessment of sleep quality: 1 for Poor; 2 for Fair; 3 for good.

work Self-reported times of going to and from work. Intensity is the
patient’s subjective assessment of physical exertion, on a scale of
1 to 10, with 1 being most physically active.

stressors Time of self-reported stress.
hypo_event Time of self-reported hypoglycemic episode. Symptoms are not

available, although there is a slot for them in the XML file.
illness Time of self-reported illness.
exercise Time and duration, in minutes, of self-reported exercise. Intensity

is the patient’s subjective assessment of physical exertion, on a
scale of 1 to 10, with 10 being most physically active.

basis_heart_rate Hear rate, aggregated every 5 minutes.
basis_gsr Galvanic skin response, also known as skin conductance, aggre-

gated every 5 minutes.
basis_skin_temperature Skin temperature, in degrees Fahrenheit, aggregated every 5 min-

utes.
basis_air_temperature Air temperature, in degrees Fahrenheit, aggregated every 5 min-

utes.
basis_step Step count, aggregated every 5 minutes.
basis_sleep Times when the Basis band reported that the subject was asleep,

along with its estimate of sleep quality.16

2.4 SECURITY AND PR IVACY

Dangers of diabetes
Individuals with diabetes have a chance to get hyperglycemia, which is high
blood glucose. It is a result of the body not getting enough insulin, and can, for
example, occur if the individual has forgotten to inject insulin. [52] The first
symptoms of hyperglycemia may include: [53]

1. Thirst or a parched mouth

2. Frequent urination

3. High levels of ketones in the urine

When an individual can not break down the sugars, and the cells do not
get the glucose they need for energy, the body begins to burn fat for energy,
which in return produces ketones. High levels of ketones can poison the body.
[52].

On the other side, there is a danger of having too low blood glucose. This is
called hypoglycemia, and the most severe symptoms are: [54]

1. Unable to eat or drink

2. Seizure or convulsions

3. Unconsciousness

Hypoglycemia often occurs in people with type 1 diabetes [54] In the worst
case, both of these can lead to diabetic coma or even death.

2.4 Security and Privacy
Whenworking with health-related personal data,many aspects have to be taken
into account, such as authentication, encrypting data, security, and ensured
privacy for the user. For this project, a natural aspect to look into is the General
Data Protection Regulation (GDPR), encryption of data, how to authenticate a
user and using de-identification to ensure the privacy of each user. The concern
for privacy and security of a user and the users’ information has been around
for a while, but when the GDPR went into effect on the 28th of May in 2018,
there was a shift in the industry.

17

2.4.1 General Data Protection Regulation
Datailsynet[20] is an independent inspection body in Norway which is respon-
sible for ensuring that privacy and security of the people are safeguarded in the
processing of digital data registers [55]. Datatilsynet has a checklist of sixteen
points about the GDPR, where each point on the list describes an important
aspect of handling personal data, such as asking for permission, keeping proto-
cols over how to store the data, and it also goes into detail about which type
of data that is stored.

For the thesis, the most crucial aspect of GDPR is that the GDPR enforces
the service to allow the user to see all the data about themselves, and delete
everything if wanted. One also has to ask consent from the user before storing
or collecting any personal data, and when it is stored there should be apparent
to the user what is stored and what the data is used for.

2.4.2 HTTPS
Since there are rules in place for protecting a users’ privacy, there has to be
a technical solution on how to solve these. In the early days of the internet,
HTTP was invented at CERN by Tim Berners-Lee [56]. Later it is adopted by
most of the web. There was a need for creating a secure version of HTTP, where
a third party could not read the data. Therefor HTTPS came along, which run
HTTP on top of SSL/TSL [57].

HTTPS protects the users’ privacy when the connection to a web service by
bidirectional encryption between the service and the user. Therefore it protects
against third-parties eavesdropping or editing the communication in any form.
There is a cost of using HTTPS, since encrypting and securing data, inevitably
leads to an increase in infrastructure costs [58]. It can also lead to direct and
noticeable protocol-related performance costs[58].

2.4.3 De-identification
The Health Insurance Portability and Accountability Act (HIIPA) provides guid-
ance regarding methods for de-identification [59]. De-identifications ensures
the removal of all personally identifying private health information (PHI) from
the records [60]. When Uzner evaluated the State-of-the-Art in Automatic
De-identification [60], he says the following:

"According to HIIPA, for the data to be treated as de-identified it must clear on
of two hurdles:

18

2.4 SECURITY AND PR IVACY

1. An expert must determine and document “that the risk is very small
that the information could be used, alone or in combination with other
reasonably available information, by an anticipated recipient to identify
an individual who is a subject of the information.”

2. Or, the data must be purged of a specified list of seventeen categories of
possible identifiers relating to the patient or relatives,householdmembers
and employers, and any other information that may make it possible to
identify the individual.10 Many institutions consider the clinicians caring
for a patient and the names of hospitals, clinics, and wards to fall into
this final category because of the heightened risk of identifying patients
from such information" ([60] vol. 14, no. 5, pp. 550)

This highlights the requirement for de-identifying a user. No information, alone
or in combination with others, should be enough to identify the individual.
Since the project handles sensitive personal data, such as the blood glucose
level, it has to take the threat of the user being identified seriously. This is
addressed in chapter Chapter 5.

2.4.4 JSON Web Tokens
According to the RFC standard;"JSON Web Token (JWT) is a compact, URL-safe
means of representing claims to be transferred between two parties"[61]. A JWT
is a way for the user to authenticate who they are once, where the server sends
back a token that can be used to authentication at a later point. They are often
used in mobile applications since it provides a seamless log in feature where
the users can log in once and then use the application daily without logging in
again if the expiration date of the token is long enough.

JSON web tokens is a standard in the RFC 7519[61], and its basis is that it
should fit in the header of a basic RESTFull HTTP call. A JWT consist of three
parts, the header, payload, and the signature that verify that the message is
not altered along the way. An example of how a JWT may look can be seen
in Figure 2.5. All parts are written in the JSON format, and after that Base64
encoded. ⁶

The header of a JWT usually consists of two parts; the type of token and which
signing algorithm. The type of token is JWT,while the type of signing algorithm
varies on the implementation, but it is often RSA and HS256 [62]. The payload

6. "Base 64 encoding and decoding" Link: https://developer.mozilla.org/en-US/
docs/Web/API/WindowBase64/Base64_encoding_and_decoding (Visited 2019-
05-10)

19

https://developer.mozilla.org/en-US/docs/Web/API/WindowBase64/Base64_encoding_and_decoding
https://developer.mozilla.org/en-US/docs/Web/API/WindowBase64/Base64_encoding_and_decoding

of a JWT contains claims that the user sends, together with some additional
data. These claims are statements about the user, such as who the issuer is,
the expiration time for the token and private claims that are created to share
information between the user and the service. The last part of the token is the
signature. The signature is used to verify that the message as not changed in
transmission. How this is created will vary between implementations. If one
creates both the issuer of tokens and the application that is to use the service
and has a way to distribute a shared secret, HS256 could be used.

Figure 2.5: Example of a JWT token

As can be seen in Figure 2.5, the signature is created by adding the base64
encoded header and payload together by separating them with a dot. The
signature is hashed, and since the secret is shared between the user and service,
it can be read by the service, and therefore it confirms the authentication of
the user.

While JWT’s work in authenticating the user, it is worth mentioning that it
does not encrypt the payload. As a result of this, one should be careful when
sending sensitive data unless there is encryption in place to ensure that no one
can read the payload.

2.5 Standardization
In the health sector, interoperability and efficiency in the sharing of data is an
important aspect. The data from a patient may be needed in another sector,
or by a general practitioner that is examining a patient. Earlier there has been
a spread in how to define data and what is good medical practice, whereas

20

2.5 STANDARDIZAT ION

in the later years the need for a standard has become apparent as we move
towards electronic health records [63].

2.5.1 Health Level 7
Health Level 7 International (HL7) is a not-for-profit, ANSI-accredited standard
developing organization [14]. Often it is seen as the standard for sending health
data and labeling health data between software used by healthcare providers.
One of the primary missions of HL7 is to provide interoperability between the
system so that they can exchange data.

Health Level 7 offers guides and introduction courses in how to work with their
framework and exchange data between electronic health records. There are
different type of standards, such as the primary standards which are considered
the "most popular standards integral for system integrations, interoperability
and compliance" [64]. They also offer implementation guides to aid developers
when creating projects. FHIR ⁷ is HL7’s standard for health care data exchange.
it offers the following guides:

1. Basic framework on which the specification is built

2. Supporting implementation and binding to external specifications

3. Linking to real world concepts in the healthcare system

4. Record-keeping and data exchange for the healthcare process

All of these has a foundation in how to create a service with the support for
FHIR.

2.5.2 LOINC
Logical Observation Identifiers Names and Codes (LOINC) is, as the name sug-
gests, a way of giving identifiers codes and names to provide a global universal
standardization [65]. It is often used for identifying health measurements, ob-
servations and documents [65] or in combination with HL7 version 2 messaging
standard, as can be seen in Figure 2.6. ⁸

7. FHIR http://www.hl7.org/FHIR/ Visited (2019-05-11)
8. Loinc example https://dev.loinc.org/wp-content/uploads/2016/09/get_

started_1_coded_results.png (Visited 2019-04-08)

21

http://www.hl7.org/FHIR/
https://dev.loinc.org/wp-content/uploads/2016/09/get_started_1_coded_results.png
https://dev.loinc.org/wp-content/uploads/2016/09/get_started_1_coded_results.png

LOINC provides a database where one can find all their codes with a simple
search if one creates a user. Because of this, it is often used as a standard
for labeling different types of health-related data, so that different health
services can communicate with each other and expect to know what each code
represents.

An example is a code for heart rate post exercise, which has the code 40442-6.
By using an identifier as this, one can easily log the heart rate at a given time
and therefore use the data at a later time. Because it is a standard, it would
also suggest that the data could be imported to, e.g., a hospital and be used
by the general practitioner to aid the patient when in need.

Figure 2.6: LOINC example with HL7 integration

2.5.3 FullFlow
The Norwegian Center for E-health research has a project called Full Flowwhich
aims to integrate patient-gathered data to the Norwegian electronic health
records. Per now this has not been possible, but they believe that by shining a
light on the problem and researching on how to integrate self-recorded and
self-managed systems for real patients into the support systems designed for
health care personnel, it can unveil a vast amount of new information and
insight. [66]

2.6 EDMON
Electronic Disease Surveillance Monitoring Network (EDMON) is a proposal
by the scientist and researches from the Department of Computer Science
at the University of Tromsø in cooperation with the Norwegian Centre for
E-health Research at the University Hospital of North Norway. It proposes a
solution that supports the detection of infections before the onset of the first
symptoms [7] by the monitoring of individuals with type 1 diabetes. These

22

2.6 EDMON

individuals monitor their blood glucose levels to manage their condition, and
with ubiquitous technology such as mobile phones.

Figure 2.7: Proposed EDMON System Architecture [67]

Since the use of blood glucose levels to detect early outbreaks of diseases [68]
[69] [70], EDMON proposes a system that consists of five different components
[67], together with a data store as can be seen in Figure 2.7. Firstly a way of
collecting the data is needed. This is suggested to be in the form of a mobile
application which will collect the individuals diabetes data together with other
physiological indicators [67]. The data will be analyzed and mapped so that
the information can be used to give an overview of disease in the society as a
whole.

For this thesis, the author thinks that the most critical aspects of the EDMON
design is the collection and storing of the data together with the possibility of
extending the functionality of the back end solution. The reason for this is that
the author is limited in time. The thesis, therefore, discusses the possibilities
and opportunities that the designed system contributes to EDMON, together
with the path forward.

23

2.7 State-of-the-Art
This section showcases the systematic review conducted of academic literature.
The literature is about disease surveillance systems, self-monitoring diabetes
systems, and standardization in health care systems.

The purpose of the state-of-the-art review is to gather resources and knowledge
about the current solutions while finding the information available on how to
creating an electronic health record system which aims to provide individuals
with diabetes type 1 a solution to self-monitor and self-report. Using the
gathered data as the main attributes in creating an infectious disease warning
system, is in itself a difficult task. Thereforewe try to gather asmuch information
of the field as possible as a way to contribute to the solution of the requirements
and to investigate the state-of-the-art for the thesis topic.

2.7.1 Data Sources and Search Criteria
Several electronic databases contain relevant literature. These were used in
the state-of-the-art literature review and are as following:

• Scopus (https://www.scopus.com/)

• Google Scholar (https://scholar.google.no/)

• Journal of Diabetes Science and Technology (https://journals.sagepub.
com/home/dst)

• IEEE (https://www.ieee.org/)

• ScienceDirect (https://www.sciencedirect.com/)

• ACM Digital library (https://dl.acm.org/)

• PubMed (https://www.ncbi.nlm.nih.gov/pubmed/)

When choosing which databases to query, it was essential to try and use relevant
ones. Databases such as Scopus, google scholar, IEEE are massive databases
which contain thousands of papers and relevant literature. The Journal of
Diabetes Science and Technology, on the other hand, is a journal, and not
a database containing papers from several hundred journals. Because of the
relevance, it is included in the systematic review. To exclude the papers deemed
as not relevant several exclusion criteria are applied. How relevant a paper
is are based on the abstract and sometimes the whole text if needed. The

24

https://www.scopus.com/
https://scholar.google.no/
https://journals.sagepub.com/home/dst
https://journals.sagepub.com/home/dst
https://www.ieee.org/
https://www.sciencedirect.com/
https://dl.acm.org/
https://www.ncbi.nlm.nih.gov/pubmed/

2.7 STATE-OF-THE-ART

exclusion criteria are the following;

• Papers without a full-text or PDF

• Papers that is not written in English

• Papers only focusing on the physiological aspects of diabetes management

• Papers that only focus on machine learning approaches of disease surveil-
lance

When searching for relevant literature, a specific combination of keywords is
made. Since there are several aspects to include and therefore we want to be
as specific as possible to filter out papers that are not relevant. Together with
searching for relevant papers a search over Google Play, Apples App Store, and
a search on google to see if there are related applications on the market were
conducted.

The main focus of the literature search is to find papers which focus on creating
a back-end server which records confidential health-related data and possibly
has a way of using this data to create a system for disease surveillance. Together
with this self-monitoring of type 1 diabetes works as an essential factor, so it is
also included. The following is the resulting query that was used to search the
databases;

Systematic review query

((((((diabetes) AND type 1 diabetes AND mellitus) AND server)
AND self-care) AND self-management) OR disease AND surveillance
AND server) AND (LIMIT-TO (SUBJAREA , "COMP")) AND (LIMIT-TO
(LANGUAGE , "English"))

As can be seen, the search is limited to the subject of computer science in the
databases that this is a possibility. Because of this, one could say that it is an
added exclusion criterion. Most of the searches are only done with the query
up until this criterion.

25

Table 2.3: Results from systematic review

Source Found Hits
SCOPUS 297 3
Google Scholar 1010 9
Journal of Diabetes Science and technology 168 2
IEEE 22 1
ScienceDirect 87 2
ACM 1 0
Total 1585 11

In Table 2.6 there is a brief overview of the papers that are deemed most
relevant and therefore included as the primary source of information in this
literature review. Since the thesis is under the EDMON project, all papers from
the EDMON group are relevant and included in the search.

In Table 2.3 one can see the number of articles found together with the hits.
These hits are based upon the excluding criteria together with using the Prisma
flow diagram [71]. The process can be seen in Figure 2.8. Because of the time
limitation in this thesis, the author chose to be strict in choosing relevant
papers in the literature review.

Some of the leftover papers are included in the thesis but is not a part of the
systematic review for this reason. In Table 2.3 we can see that the Journal
of Diabetes Science and technology yielded 168 papers even though it is a
journal. This is more than ACM, ScienceDirect, and IEEE yielded together,
which showcases how relevant the journal proved to be.

26

2.7 STATE-OF-THE-ART
Id

en
tifi

ca
tio

n
Sc

re
en

in
g

El
ig

ib
ilit

y
In

cl
ud

ed

Records identified through database
searching
(n = 1585)

Records after duplicates removed
(n = 1588)

Additional records identified through
other sources

(n = 3)

Records screened
(n = 1588)

Records excluded based on title
(n = 1539)

Full-text articles assessed for
eligibility
(n = 49)

Studies included in qualitative
synthesis
(n = 11)

Full-text articles excluded based on
abstract
(n = 38)

Figure 2.8: PRISMA Flow Diagram

The 11 papers we are left with are then grouped into three different group-
ings:

• Group 1: Disease Surveillance Systems

• Group 2: Diabetes Monitoring

• Group 3: EDMON Papers

The first group is disease surveillance. In this group, the papers that have
a foundation of what is needed to build a disease surveillance system such
as; security, disease surveillance algorithms or definitions and showcasing of
electronic health systems. Group 2 are papers with an emphasis on diabetes
monitoring, which includes data sets or papers that contain information about
how one should build an application for individuals with type 1 diabetes. The

27

last group is the papers that this thesis is a part of, EDMON. These are the most
important ones since they talk specifically about what the project as a whole
is going to look like and showcases an example of the design.

Table 2.4: Detailed list of relevant mobile and web-based applications

App Group Significant features
HealthVault [28] 1 Electronic health system with the possi-

bility to extract data from several devices
such as smartwatches.

NightScout[30] 3 Open source project which integrates
with CGM data to have real-time access
and self-monitoring for diabetes. Has
a personal website and mobile applica-
tions for users

MySugr [31] 3 Diabetes manager. Self-monitoring.
Apple HealthKit [33] 2 Electronic health record which inte-

grates data seamlessly from othermobile
applications together with Apple Prod-
ucts

Google Fit [34] 2 Electronic health record. Integrates with
other app. and has open API that one
can post and fetch data to.

Samsung Health [35] 2 Electronic health record. Keeps track of
sleep, food intake, stress levels and heart-
rate. Focus on fitness.

CareZone [36] 1 Electronic health record. Organizes
health information.

NoMoreClipBoard [37] 1 As the same suggests it is a online stor-
age point for health data. (Electronic
health record)

HealthMap [46] 4 Map that showcases flu, Ebola or other
disease outbreaks by parsing news in dif-
ferent countries

28

2.7 STATE-OF-THE-ART

Table 2.6: Detailed list of reviewed literature

Author Group Significant features
E. Arsand et al [32] 1 Creates and test a diabetes eDiary. prototype devel-

oped and tested on real users. Tries to improve the
solutions at the time.

C. Marling [51] 2 Provides data set and an example of a data format
for diabetes data. Real test data from users.

I. Rodríguez-Rodríguez [39] 2 How the use of ICT and body are networks can
help improve the lives of individuals with type 1
diabetes. Looks into challenges and where we have
to move to get an ICT structured platform.

N. Menachemi et al. [25] 1 After HITECH Act of 2009 this discusses the ben-
efits and drawbacks that occurred in creating an
electronic health system. Describes from drawbacks
such as costs and how it disrupts the workflow to
learn a new system, together with privacy concerns.

A. Appari [18] 1 Looks at the state-of-the-art in security within
healthcare. Discusses several aspects over several
domains while including privacy concerns from
both perspectives (user and provider)

O. Granberg [43] 1, 2 Investigates and proves that blood glucose levels
can be used to detect contagious diseases earlier.
Creates a prototype named AID. Detects earlier
than other systems that were used at the time.

M. Meingast et al. [17] 1 Discusses the security and privacy aspects now as
EHR is becoming more prominent. Describes meth-
ods used and suggests solutions that exist together
with what can be improved on

R. Heffernan et al. [9] 1 Implemented system that collect information from
emergency departments to create an early detec-
tion system

P. Kostova [8] 1 Lays out a road-map to integrate digital public
health and surveillance systems. Highlights the
needs a system that scan services such as Facebook,
Twitter, and other big platforms need to work to-
gether and analyze the data.

A. Z. Woldaregay et al. [67] 3 Explains the proposed EDMON system architecture.
Showcases how BG values can be used to predict
infectious diseases

A. Z. Woldaregay et al. [7] 3 Explains the outline for this thesis’ groundwork.
Looks into how one can use diabetes data to pre-
dict an infection incident. Explains architecture of
EDMON.

29

Together with finding relevant literature, the author searched for mobile appli-
cations and server solutions that are state-of-the-art within the research field.
These can be seen in Table 2.4. The applications are divided into groups; group
1 is an electronic health record, group 2 are health services which offer to store
of electronic health data together with analysis on the data to improve the users’
daily routines and self-monitor. Group 3 are applications created for individuals
with diabetes to self-monitor, while group 4 are disease surveillance platforms
that showcase current technology. To read more about each application, see
earlier in this Chapter.

30

3
Methods and Materials
The chapter contains information on which methods and materials are used
throughout the project and thesis. Firstly, about the research paradigms and
tools. Next, the materials and programming language, together with the ratio-
nale for choosing the given language, is explained. After that, a walk-through
of how the testing is conducted is given. Lastly, a summarizing of the critique
of the methods and materials. It is worth noting that the project is experimen-
tal.

3.1 Research Paradigm and Tools
In 1989 Denning et al. created a task force to define the paradigms for computer
science as a discipline [24]. They defined three paradigms that divide the
discipline of computing; the first is theory, second is abstraction while the third
is design. They state that the theory paradigm is rooted in mathematics and
has four steps;

“(1) characterize objects of the study (definition);
(2) hypothesize possible relationships among them (theorem);
(3) determine whether the relationshiups are true (proof);
(4) interpret results.” (Denning et al., p. 10)

The second paradigm, abstraction (modeling), is rooted in experimental scien-

31

tific methods, which has the following four steps;

“(1) form a hypothesis;
(2) construct a model and make a prediction;
(3) design an experiment and collect data;
(4) analyze results.” (Denning et al., p. 10)

The third paradigm, design, is rooted in engineering and has the following four
steps;

“(1) state requirements;
(2) state specifications;
(3) design and implement the system;
(4) test the system.” (Denning et al., p. 10)

For all of the paradigms, the steps are iterative. One has to go back and look
over the earlier steps and reiterate to ensure correct results. Denning et al.
argue that when examining closer these are intertwined, so one can not use
one of the paradigms without touching the others.

This thesis uses a bit from all of the paradigms but has a focus on the design
paradigm. Firstly, the requirements are created together with the specifications
of the implementation. After that, the system is designed and implemented,
and lastly tested. There have been iterations over the four points to ensure that
the system was correct and had a satisfying design and implementation. This
will be mentioned in Chapter 5 and Chapter 6.

3.2 Materials
Under the development of the service, several tools are used. Vertelo 1 served
as a visualizer for the database, meanwhile, Draw. io 2 served as a design and
illustration tool for figures. For further implementation of the project prototype,
the following libraries and software is used.

• Golang3, a programming language designed by Google

• Gin libarary ⁴, a framework used for HTTP requests and debugging

1. Vertelo, design of the database. https://www.vertabelo.com/ (visited 2019-05-11)
2. Draw.io https://www.draw.io/ (Visited 2019-05-11)
3. Golang official site https://golang.org/ (Visited 2019-05-11)
4. Gin HTTP library https://github.com/gin-gonic/gin (Visited 2019-05-11)

32

https://www.vertabelo.com/
https://www.draw.io/
https://golang.org/
https://github.com/gin-gonic/gin

3.3 GOLANG

• Postgres ⁵, an open source database used as the systems database

• Gin-jwt ⁶, used as a middleware to handle JSON web tokens

• Openssl ⁷, used to create a certificate and public key for HTTPS requests

For testing, Python was chosen as the programming language since the author
lacks graphical programming experience in golang. It was used to test and
create graphs under the testing of the project.

3.3 Golang
The implementation of the project is done in Golang ⁸. Golang is a programming
language developed by Google, and it is statically typed. It is designed to have a
syntax similar to C, but with features such as garbage collection and structural
typing. It was designed to address the criticism of other languages that were
used at google, but to keep some of the characteristics such as readability and
usability, high-performance networking and multiprocessing, together with
runtime efficiency ⁹. Several applications are developed using golang, such
as Docker which is a tool for deploying Linux containers. The cryptocurrency
Etherum is also an example, while other services use golang to an extent, such
as Netflix, MongoDB, and Uber [72].

Goroutine
An interesting feature of Golang are goroutines. The Golang tour 1⁰ defines
a goroutine as "... a lightweight thread managed by the Go runtime". This
provides an application with the possibility to easily spawn new thread to
handle a part of the workload separately from the main application.

5. Postgres open source database https://www.postgresql.org/ (Visited 2019-05-11)
6. Gin-JWT library https://github.com/appleboy/gin-jwt (Visited 2019-05-11)
7. OpenSSL https://www.openssl.org/ (Visited 2019-05-11)
8. Golang https://golang.org/ (Visited 2019-05-13)
9. Robert Criesemer about Golang https://talks.golang.org/2015/gophercon-

goevolution.slide (Visited 2019-05-13)
10. A tour of go: Goroutines https://tour.golang.org/concurrency/1 (Visited 2019-

05-13)

33

https://www.postgresql.org/
https://github.com/appleboy/gin-jwt
https://www.openssl.org/
https://golang.org/
https://talks.golang.org/2015/gophercon-goevolution.slide
https://talks.golang.org/2015/gophercon-goevolution.slide
https://tour.golang.org/concurrency/1

Channels
Another feature Golang offers are channels. A channel is a way to create a flow
of data between to components. One can create a shared channel, where one
can send an receive values 11. By default, a channel block until it receives data,
which in turn creates the possibility for goroutines to synchronize without
locks or condition variables.

3.3.1 Rational for choosing Golang
Golang is chosen as a solution for developing the system since the author
has experience in programming in C while wanting to explore the strength
and weaknesses of a programming language at Google. The usage of gor-
outines and channels fit the type of system that is created, where there are
several parts of analysis and algorithms that have to be done. These can be
outsourced to goroutines at all time, which may take off some load of the main
application.

The language also offers plenty of libraries for most usages, and enforce strict
typing, which in turn forces the programmer to write readable and well-
documented code. This leads to the code being easier to maintain later in
the EDMON project.

To ensure that all resources available are used when needed, there is also the
possibility to create a pool of workers (goroutines) which fetches data from a
channel if there is any work to be done. By having the choice to put parts of
the workload over on several small workers, it may ease the workload when
adding several microservices.

3.4 Literature review
When gathering functional and non-functional requirements for the project,
a literature review is conducted. This can be seen in chapter 2, under the
subsection "State Of the Art". The main outline for the project is formed during
this review and in meetings with the supervisor and co-supervisors. The design
of the project can be summed up as below.

An individual with diabetes type 1 should record information about their

11. A tour of go: Channels https://tour.golang.org/concurrency/2 (Visited 2019-
05-13)

34

https://tour.golang.org/concurrency/2

3.5 TEST ING

condition, such as blood glucose, and this information is permanently stored
on the system. This system analyzes the data, and give the user feedback if the
values are within the normal range. The individual should have the right not
to share their data, and use the application for their gain, but this limits the
feedback of the disease surveillance aspect for their use. The system should
be able to store images or short videos for the individuals to look back on.
This can help them remember how they felt or their state of mind at a given
point in time. The system should save the location of both the individuals and
the recording they do, such that it can analyze the result and based upon the
number of sick individuals within an area, and respond accordingly.

The literature review also helped gain knowledge about what the current solu-
tions within health applications offer, together with how disease surveillance
systems are designed.

3.5 Testing
Several aspects of the system are benchmarked and tested. The metrics used are
throughput in the form of the number of requests, memory and CPU activity,
and some API calls are profiled to see which functionalities demand more
resources.

3.5.1 Experimental design
All experiments are conducted on a single computer, where all aspects run
locally. Both the scripts that are used to test, together with the system itself are
run on this computer. The hardware specifications used for testing the system
can be seen in Table 3.1.

Table 3.1: Hardware specifications

Operating system Ubuntu 18.04.2 LTS x86_64
Kernel 4.15.0-50-generic
GNOME 3.28.3
CPU Intel i7-7700 (8) @ 4.200GHz
GPU Intel HD Graphics 630

Memory 32056MiB

35

There are several experiments which provided insight and useful information
about the system. These are explained below.

OhioT1DM dataset
All tests conducted on the system uses the OhioT1DM [51] dataset. This is
provided to the author and contributes to test the system under real-life con-
ditions with actual user data. This dataset contains six weeks of real user
data from seven different users. In total, the training set used contains almost
29.000 records. For testing purposes, the data fetched is a subset of the needed
values. The dataset is seeded to the database and system with the following
values:

• User information

• Glucose level

• Meal information

• Basal reading

• Bolus reading

The user information is an ID, together with the weight of a user. The weight
is by default set to 99. All the readings have a timestamp and a value. The
meal information is the number of carbohydrates that are consumed, while
the basal and bolus values are the insulin injected by the user. It is worth
mentioning that the bolus readings come with a carbohydrate reading too, but
this is translated into a meal in the database when seeding.

3.5.2 EDMON algorithm
The system is created to execute the EDMON algorithm. To ensure that the
server can handle executing larger data-sets tests are conducted to showcase
the performance when running a simple algorithm that mimics the EDMON
intended algorithm. During testing the database is filled with different amounts
of data from the OhioT1DM dataset. Since the dataset is limited in size, it is
reused and used as a way to seed the database. The EDMON algorithm is then
run on the given number of records in the database to see the execution time
when fetching and calculating on the records.

36

3.5 TEST ING

To record the time spent executing Golang’s time library is used 12. To ensure
accurate readings, each measurement is executed 100 times, and calculations
of the mean together with the standard deviation. The highest and lowest
value is also removed to ensure that huge outliers have less impact on the
result.

The EDMON algorithm is run on a different number of records, as can be seen
in Table 3.3. The algorithm is meant to run once each hour and use the last
hour result to analyze if there are any deviations in the users’ data, which may
indicate illness. Because of this, the values chosen are to illustrate the number
of medical records that the system has to fetch, together with the number of
users this represents. The number of medical records seeded to the database
will, therefore, represent the number of medical records in the last hour.

Table 3.3: Database information when executing EDMON algorithm

Times dataset is used # of users # of records
1 7 29 000
2 14 58 000
3 21 87 000
4 28 116 000
5 35 145 000
10 70 290 000
100 700 2 900 000

3.5.3 Performance
In this subsection, the average time spent executing in different aspects of the
system is shown. It is worth noting that the tests explained below had some
logging on the server side which has an impact on the system’s performance, but
it is in place to simulate how a real-life server would log important events.

All of the experiments below, which creates a medical record, has the same
structure. This can be seen in Listing 3.1. The record contains a value, an
arbitrary standardization code, a timestamp of the recording, a location, and
a small image to illustrate the storage of a short video diary. We assume that
the location is already created for the given medical record.

12. Golang Time Package https://golang.org/pkg/time/ (Visited 2019-05-22)

37

https://golang.org/pkg/time/

Listing 3.1: HTTP Body of the medical record

1 {
2 "Value": 781,
3 "HL7": "LOINC -123",
4 " Timestamp ": "2019-05-05 12:25:01",
5 " Location_id ": 1,
6 " recording ": "data:image/png;base64, iVBORw 0

KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC 1 HAwCAAAAC 0
lEQVR42mNk+A8 AAQUBAScY 42 YAAAAASUVORK 5CYII ="

7 }

The user’s values that are used to test the system’s performance can be seen in
Listing 3.2.

Listing 3.2: HTTP Body of the user

1 {
2 " username ": " Sverre ",
3 "email":" Sverre@Sverre .com",
4 " password ": " Sverre 123"
5 }

3.5.4 Average time of execution for a user
The first time of execution test is to measure the average time to do a given set
up and tear down script while the server is under load. To test this, the author
wrote a python script which is used for several parts of the testing. This script
does the following;

• Creates a user

• Log in as the user (with password and username)

• Stores the authorization token in memory

• Creates X number of medical records

• Creates X number of locations

• Creates X number of medical records with the given locations

• Fetches all the medical records from the system

38

3.5 TEST ING

• Deletes all of the medical records that were created

This script is referred to as the setup and tear down script later in the thesis. As
mentioned, it is used in other parts of the testing, such as in the profiling. To
test the average time for executing the script, it is run 20 times. The time spent
executing was recorded using pythons time library 13. The results are then
stored and sorted, where the shortest and longest times are removed to get
rid of possible outliers. The mean time and standard deviation are calculated
to showcase how long it may take to execute. This measurement is done to
provide insight to the user uploading more than one element, and how the
system does when creating a user, medical records, and deleting them again.
The test is executed with 1, 10, 50, 100, 150, 200, 250, 300 number of records
of medical records, locations, and medical records with a location.

3.5.5 Average time of concurrent requests to the system
The next experiment done is to test the time of a given type of request by
sending concurrent requests at the system. This is done to stress-test the
server and see how well it handles several concurrent requests, together with
how it may affect the time of each request. The python script used does the
following;

• Creates a user

• Authenticate as the user (username and password)

• Create a medical record

This test runs with a given number of concurrent clients to test and see if it
provides an insight into the performance of the system. It is worth noting that
for creating a user, the script only creates a user, but when authenticating one
create a user first. The same goes for creating a medical record, where the
creation and authentication of a user is also a request to the system. The time
measured is the time for the given type of request, excluding the other factors.
Because of this, there is a lot more throughput and load on the server when
creating a medical record, than when testing the creation of a user. The number
of requests used is 10,100, 1000, and 5000. As with the previous experiments
and tests, the results are saved and sorted, and the highest and lowest values
are removed in case of a potential outlier. The mean and standard deviation is
then calculated to showcase how long each type of request on average takes,

13. Python Time Library https://docs.python.org/3/library/time.html (Visited
2019-05-23)

39

https://docs.python.org/3/library/time.html

and how it potentially can vary depending on the type of request.

3.5.6 Profiling
To spot potentials bottlenecks and drawbacks, together with measuring how
effective the system as a whole is, extensive profiling is conducted. This is
done to see which parts of the system spends the most time executing and can
showcase possible slow parts of the system and possible improvements. It is
worth noting that when testing this all logging of the system is turned of since
I/O operations are slow.

The first experiment and profiling records the CPU and memory usage of the
system with psrecord 1⁴. It is a tool which records the memory and CPU usage
of a given process and creates a graph over a given amount of time spent
recording. How to use it can be seen below:

psrecord < PID > − − interval1 − −plotplot .pnд

To test several times, psrecord is running while the setup and tear down script
with a different number of medical records created is executed. With 20 clients,
the script executes with 10, 50, 100, and 200 medical records, where each client
is set up by creating a new user and creating medical records for the given
user.

Snapshot of memory and CPU
Secondly, to see the utilization of the computer’s hardware during the executing
of setup and tear down script, a snapshot of the Linux’ system monitor is taken.
It showcases the usage of CPU andmemory when the server handles concurrent
users. To run the script, a bash script is set up to create and concurrently run
500 users with 20 medical records each. This results in a continuous stream of
requests to the server.

Profiling in golang
Golang provides tools to profile a given program. In this experiment the HTTP
Golang package pprof is used 1⁵. The system sets up a monitoring page at port
6060 when it is set to debug mode, and it serves as a path to the profiling tool

14. psrecord https://github.com/astrofrog/psrecord (Visited 2019-05-25)
15. Pprof https://golang.org/pkg/net/http/pprof/ (Visited 2019-05-25)

40

https://github.com/astrofrog/psrecord
https://golang.org/pkg/net/http/pprof/

3.5 TEST ING

under http://localhost:6060/debug/pprof. The profiling tool is used for 30
seconds when the server is under heavy load from apache benchmark 1⁶.

Profiling for three different API calls are done, as listed below:

• Creating a user

• authentication

• Creating a medical record

Apache benchmark is used by creating 100 concurrent clients and sending 10
000 requests, how to do this is showcased below;

ab -T ’application/json’ -k -c 100 -n 10000 -p user.json http://localhost:8000/user/CreateUser

ab -T ’application/json’ -k -H ’Authorization: Bearer <TOKEN>’ -c <CONCUR-
RENCY> -n <requests> -p user.json <IP:PORT/PATH>

The profiling creates a PDF which provides information about the call stack
and which functionalities and functions in the implementation that spends
the most time executing. Since this provides many graphs, a screenshot of the
functions that execute for the longest is provided. Since apache benchmark is
used, it also gives an indication of how many requests the server manages to
execute in 30 seconds.

3.5.7 Throughput
The last experiment executed is to test the throughput of the server. Apache
benchmark is used to spam the server with requests. This indicates how the
server performs under heavy load, togetherwith showcasing howmany requests
per second the server can handle and how long each request takes on average.
It is also done to test the maximal number of concurrent clients that can spam
the server. The throughput tests are done by executing two different apache
benchmarks, first with 100 concurrent clients and then with 150 concurrent
clients. The tests are executed by creating new users. The number of requests
with 100 concurrent clients is 10000, while with 150 concurrent clients it is
15000.

16. Apache benchmark https://httpd.apache.org/docs/2.4/programs/ab.html
(Visited 2019-05-25)

41

http://localhost:6060/debug/pprof
https://httpd.apache.org/docs/2.4/programs/ab.html

3.6 Evaluation methods
Feedback regarding the requirements and design of the application was mainly
gathered in meetings with the supervisor and the co-supervisors. Here we
discussed wishes and improvements, how the application can be expanded,
and which security measures that had to be in place.

Since there was no mobile application created, the evaluation that has been
done of the complete system is mostly about how well it performs, in the form
of requests per second and hardware load.

3.7 Critique of the Methods Used
The main critique of how the project’s methods was conducted, is that there
should have been an application which allowed for user-testing. This could have
led to a deeper user-oriented implementation and helped discover potential
bugs in the solution. When testing the project, there should also have been tests
where the system was in deployment. This would have lead to more accurate
results in a real-world scenario.

Even though there have been meetings with the supervisor and experts within
the field, there could have been more contact with doctors within the field to
gain a deeper understanding and make further improvements.

Because of the reasons above, there has not been a field test to see if the system
works in a real-world context, which means that there can be limitations. On
the other hand, there has been thorough testing of the different throughput of
the application, but in the author’s opinion, it would have been helpful to have
user tests to see that the system worked.

Possibly if the project was longer, there could have been developed a mobile
application to go with the server-side solution, but this is mentioned more in
chapter 8.

42

4
Requirements Specification
In this chapter, the requirements are defined by functional and non-functional
requirements. To create these, the Volere Requirements Specification Templates
was used to apply function requirements, together with user stories from
SCRUM 1.

Some assumptions were also made in regards to the system;

• The mobile application is to be created by someone within the MI&T 2

• We assume that the server is to be expanded with other master and Ph.D.
students, and therefore need a general design for the solution

4.1 Source of the Requirements
Requirements are created to set a need for the system and defines how the
system as a whole should be designed and work. According to the Volere
template [73] there are different types of requirements as seen below.

1. Scrum https://www.scrum.org/ (Visited 2019-05-10)
2. MI&T group at UiT https://en.uit.no/forskning/forskningsgrupper/

gruppe?p_document_id=343402 (Visited 2019-05-11)

43

https://www.scrum.org/
https://en.uit.no/forskning/forskningsgrupper/gruppe?p_document_id=343402
https://en.uit.no/forskning/forskningsgrupper/gruppe?p_document_id=343402

• Functional requirements

• Non-functional requirements

• Project constraints

• Design constraints

• Project drivers

• Project issues

In this project, the main focus is on the functional and non-functional require-
ments. A functional requirement is defined as; "the fundamental or essential
subject matter of the product. They describe what the product has to do or
what processing actions it is to take." [73].

A non-functional requirement is defined by the Volere template as; "the proper-
ties that the functions must have, such as performance and usability. Do not be
deterred by the unfortunate type name (we use it because it is the most com-
mon way of referring to these types of requirements)—these requirements are
as important as the functional requirements for the product’s success."

So in short, a functional requirement describes what the system should do,
while non-functional requirements are constraints on how the system should
do it.

4.2 Requirements
As a prerequisite for understanding and setting all functional requirements
for the thesis, three different scenarios are explained to present the possible
problems of individuals that may require a system as in this project.

4.2.1 Scenario one
Ola Nordmann is a man of 37 years with type one diabetes. He got the diagnosis
several years ago and has lived with the condition for some time. To measure
his blood glucose, and when to inject insulin, he monitors himself daily with a
continuous glucose meter. He has to look at the meter and see where his levels
are at throughout the day when he eats or wakes up. If Ola eats, he often looks
at the number of calories and his blood glucose to know how much insulin to

44

4.2 REQUIREMENTS

inject.

From this scenario, we can see that Ola needs a better way of monitoring his
disease. By having an application in which he can record his blood glucose,
food intake, and insulin dosage. Because of this, he can be confident that he
injects himself with the correct amount of insulin at a given time.

4.2.2 Scenario two
Kari Nordmann has cancer. She is 26 and goes to immune therapy, and therefore
has a weakened immune system. Because of this, she is easier susceptible to
infectious diseases, and they may have a greater impact on her than the average
individual. She has no way of knowing if there is an infectious disease that
is currently spreading, and nowhere to look for cases where, for example,
pneumonia is spreading.

This scenario showcases another usage of a system like EDMON. Even though
she is not infected, she needs to know if there is a higher risk of getting
infected.

4.2.3 Scenario three
A man of 42 years named John Doe has diabetes type 1. He has been infected
with a new version of the swine influenza. For work, he drives a bus and each
day he infects several people. Because John does not call in sick, he infects
several people, which in turn infects even more. This gets to spread on a large
scale before the current systems can catch it and in the end, it is too late. The
influenza has spread throughout the country.

In this scenario, we highlight the warning mechanisms that are needed. It is
also important to note that even though there are systems in place, we are still
in need of lower latency between the first infection until an alarm tells us that
there is an outbreak. By letting John Doe monitor himself and his vitals while
sharing his data, there is a possibility to create a real-time monitoring system.
This could let the government know that measurements have to be taken and
that there is a risk of new infectious diseases spreading.

From the scenarios above, one can see that the use cases are both on amicro and
macro level. Where the micro level is the individuals help to monitor diabetes
type 1, together with monitoring the public health situation for vulnerable
individuals. The macro level is to create an earlier warning system that helps
to try and stop the spread of infectious diseases. Therefore, we need a tool

45

that:

• Helps users self-monitor and self-record to improve their quality of life

• Let users see if there are immediate threats in the form of infectious
diseases if they have a weakened immune system for example

• Has the functionality to look at macro events and use clustering algo-
rithms to warn the right authorities if there is an outbreak by using
real-time analytics

4.2.4 Functional requirements
By using the scenarios above as a foundation, the main features for the system
were defined using the Volere template shown in Figure 4.1. All of the functional
requirements are listed in Table 4.1. In the table, the source is assigned a number.
One is equal to the author, while two is colleagues.

Figure 4.1: Requirement shell from Volere template [73]

46

4.2 REQUIREMENTS

Table 4.1: Functional requirement specification

Description Purpose Source Fit criteria Priority
1 The system should

provide an open API
for application de-
velopers

Further devel-
opment of the
application

1 An API call can be
done to the system

1

2 The system should
be able to create
new user accounts

Provide personal
data for a user

1 The user is stored in
the database

1

3 The system should
be able to create
medical records

Self-monitoring
and self-recording
for the user

1 The medical record
is stored in the
database.

1

4 The system should
be able to create lo-
cations

Cluster detection in
later projects

1, 2 The location is
stored in the
database.

1

5 The system should
be able to perma-
nently store data for
the user

Permanently store
the data for better
calculations in the
machine learning of
EDMON

1, 2 The data is stored in
the database.

1

6 The system should
iterate through the
data and run the
mathematical oper-
ations on the data

Test the load on the
system for later inte-
gration

1 Users sickness-
status is changed
every hour

2

7 The system should
be able to do calcu-
lations on the user’s
blood glucose

Only use a given
type of medical
record and do
calculations on it

1 The system is able
to use algorithms on
the BG data

2

8 The system should
be able to fetch rele-
vant data from a sta-
ble storage

The user can see its
own data at all time
to self-monitor

1 The API returns the
wanted data

2

9 The system should
provide authentica-
tion and access con-
trol for user’s data

Ensure that one can
only view, edit, cre-
ate and delete data
which belongs to
you

1 Can fetch your own
data, but others
data will give an
error

1

10 The system should
encrypt all data sent
between the user
and the system

Confidential data
and should not be
shown to anyone

1 The data is sent over
HTTPS

1

47

11 The system should
be able to mark a
user as sick

Give an indication
to the user if there is
need to worry. Give
the system a way
to use cluster detec-
tion algorithms in
an area.

1 SicknessStatus in
database changes.

3

12 The system should
provide feedback
to a user’s request
based on the result
of a request

The application
has to know if
something is wrong
when communicat-
ing

1 HTTP response
codes and HTTP
response body

2

13 The system should
let the user store
small videos on
medical recording

Diary for users to
look back and see
how they felt at
a medical recording.
Can see correlations
between the BG val-
ues, insuline values
and how the user
felt

1 Video is stored
together with the
medical record in
the database

2

14 The system should
protect the user’s
passwords

Ensure that if the
passwords leak they
are not reusable

1 Password is stored
in database after
being hashed and
salted

2

15 The system should
protect the user’s
identity

De-identify the user
to ensure confiden-
tiality

1 Email is removed af-
ter user has created
their account

1

Some of the Volere template is excluded since it is deemed irrelevant because
of the short time this project was developed on. However, as can be seen, we
have created the functional requirements for the application.

4.2.5 Non-functional requirements
The non-functional requirements are defined by looking and the target group
and usage of the system. We create an early detection system by monitoring in-
dividuals with type 1 diabetes and help them self-record and self-monitor.

48

4.3 USER STORIES

Usability
The system is developed to create an easy gateway for later extension and
usability. We aim to develop an easy to use and easy to understand API for
the next developer and that can be used to create mobile applications for
individuals with type 1 diabetes, together with warning systems for the average
user and authorities.

Security
The data that is being stored and transferred is considered private health data.
Therefore it is important to send the data encrypted and securely by identifying
and authenticating the user. If there is any stolen medical data, it should be
de-identified and secured before it is stored in the database. Even though
health data is confidential, we aim to create an application that requires as
little as possible authentication interaction form the user, to ensure that it will
not feel like a burden to open it.

Performance & Throughput
The system is defined as a real-time monitoring application for disease surveil-
lance, which means that performance is an important aspect. We aim to create
a system with high throughput, together with low latency on detecting disease
spread in society. Throughput of data is also an important aspect if there are
several thousand users of the product. We, therefore, aim to create a system
that can handle the throughput of a relatively large user base.

Integrability & Extensibility
As mentioned before the system is under the EDMON project. Therefore we
aim to provide ways to integrate new components. Together with integrating
components, an important aspect is to add new features and develop a new
version of the application. This should be ensured by using microservices and
extensions in such forms.

4.3 User Stories
To keep track of the requirements a product backlog is created. A snapshot of
the early developed user stories can be seen in Figure 4.2. A user story is an

49

informal description of a requirement/feature of a system. This also helped
identify which technical solutions that had to be in place.

Figure 4.2: User stories from the product backlog

The user stories created technical tasks as can be seen in Figure 4.2. There are
tasks that the author used to develop the system and keep track of which parts
of the requirements that is done at a given time. In the figure, the technical
tasks of the API are shown,where each task defines which component it belongs
to, and what type of HTTP request it is. There is also a short description to tell
the developer how the given task should be implemented.

50

5
Design
In this chapter, the design of the project is described. The design of the EDMON
system as a whole, how each request is designed to interact with the system,
together with each part of the system such as the middleware and database is
explained in detail. The chapter showcases the iterations of the design, and
which improvements, or alterations are done for each version.

5.1 Identified Features of the System
To design the system, all features are a result of the review conducted in
Chapter 2. In addition, the functional and non-functional requirements from
Chapter 4 are added. There are a few aspects of the design that is to be explained
below; first of all, the design of the API. After that how the authentication and
access control, together with the middleware. Then the design of the database
will be explained in detail, where each table will be defined. The system as a
whole is showcased with all parts showing their role, together with a version
log where we showcase the differences from the start of the project until
the end. Lastly, it is shown how one can create and add microservices to the
system.

Since the thesis is written under the EDMON project, there are suggestions for
the system in related literature from the project [7]. This can be seen in Fig-
ure 5.1. Here it is showcased that the design should include a mobile application

51

which receives data from different devices and transfers data through the inter-
net to a back-end server which handles blood glucose prediction and has stable
storage. This is referred to as the "Computing unit" and is the foundation of
this thesis. The design also includes a field with "End users". This includes that
the users should be able to gather their data, share it with the family together
with sharing the disease cases with the general public. It is also highlighted
that the system should support desktops, laptops, and smartphones.

5.1.1 EDMON system design

Figure 5.1: EDMON system design suggestion[7]

From the design in the EDMON papers, a few assumptions are made. The
solution for this project had to be as general as possible to include all devices
and types of frontend applications. The system should have an API which
creators of applications can use, with standardization, security, and privacy in
place.

5.2 Application programming interface
The application programming interface (API) is the connection interface of
the application developers later in the EDMON project will use. Therefore the
possibility to create and add more API end-points if needed is vital. Together
with this, it has to support all functionality needed to create, edit, and delete
information dependent on the individual’s needs. The API in the project has an
emphasis on the "user", defined as the user of the applications in this section.
The user should have full control over their data, where they can choose

52

5.2 APPL ICAT ION PROGRAMMING INTERFACE

what they want to share with the system. That being said, there should be
an incentive for the user to share their data since it leads to more accurate
calculations in the disease surveillance part of the system.

5.2.1 Data transfer design
The API is built with a RESTful design 1, where GET, PUT, POST and DELETE
are the four types that are used to send all data. The data sent from a user to
the system in JSON-format, as can be seen in Listing 5.1. A brief explanation
of the different request types in the system is given below, but extensive
documentation on how to use them is given in Appendix A.

HTTP body contents
While fetching (GET) and deleting data does not require any contents in the
HTTP body, both editing and creating new data items in the database requires
some form of input. This input is typed out as JSON and will vary from the
request type one does. Below there will be given an example of each type of
request while showcasing one requests HTTP body and design.

GET
The users’ authentication information defines a get request to the system. The
user sends a token that is specific to the user’s saved token in the system.
The data that a GET request retrieves is only the given users’ health data.
Because of this retrieving, for example, from the medical records, the user give
the authentication token and the system returns the wanted data. This also
includes the users’ location(s).

1. RESTFul https://restfulapi.net/ (Visited 2019-05-12)

53

https://restfulapi.net/

Mobile application

Database

Middlware
(Authentication)

HTTP Handler

GET Request
With JWT

Status OK
JSON Data

EDMON Server

Figure 5.2: Example of a GET request to the system

As can be seen in Figure 5.2, a request of this type does not require any informa-
tion besides the token. Since a request is done based upon the user, the system
creates a session for the requester, fetch the user account if the credentials are
correct, and execute the given query based on the GET call.

PUT
A PUT request, on the other hand, requires input from the user. This input is
given as an HTTP body,where it should include the objects relevant information
as described later in the chapter under the database design. This information
should be given in JSON as can be seen in Listing 5.2. When a user sends a
PUT request, it also has to contain the authorization token.

54

5.2 APPL ICAT ION PROGRAMMING INTERFACE

Mobile application

Database

Middlware
(Authentication)

HTTP Handler

POST Request
With JWT

Body with JSON
formatted data

Status OK
ID of entry

EDMON Server

Figure 5.3: Example of a PUT request to the system

In Figure 5.3 one can see how a PUT is done from the user sending a request,
to the server authenticating that the requester has access to edit the data until
the user gets a response. There can be several responses dependent on what
the user sends. Either the user can be blocked for lacking access. This happens
if the authorization token is not correct or expired. Another issue could be that
the data the user sent in the request body is not formatted correctly, or does
not contain the correct information. How each request is formatted is specified
in Appendix A.

POST
When sending data to the system, a POST request is executed. This request has
to contain a body with the correctly formatted data, such as with the editing
(PUT). The authorization token should also be included in the header so that
the user is identified and only edit their own data. A POST request is the same
as a PUT request, but when creating new data, the user does not provide the ID
of the entry. See Figure 5.3 for a reference to how a PUT request is designed. To
give the user feedback on the newly created element the system will return the
ID created in the database to identify the object. This also gives the possibility
to fetch the wanted item. The return value does vary a bit between the different
POST requests.

55

DELETE
To delete an object from the system, one gives input on which object that is to
be deleted by using the ID, such as the primary key. It is important to notice
that if an object is deleted it is gone forever. As can be seen below in Figure 5.4
the user has to authenticate as with the previously stated examples, whereas
the request URL has to contain the ID of the object to be deleted.

Mobile application

Database

Middlware
(Authentication)

HTTP Handler

DELETE Request
With JWT

Status OK

EDMON Server

Figure 5.4: Example of a DELETE request to the system

5.2.2 Authentication and Access Control
Authentication and access control in the system is handled by JSON web tokens,
as mentioned in Chapter 2. These tokens are session-based, which mean that
as long as they are refreshed before the expiration by the application, a user
does not need to log in using their username and password.

When a user signs up for the system, he or she has to provide a username,
password, and an email address. The username and password are used to
authenticate if they do not have an active token, while the email is removed
because of de-identification. The original thought by using an email was to
send a verification email to the user. This is a feature that is discussed later
in the report. To create a user, an HTTP call to the https://www.example.org/
user/CreateUser has to be done. The call has to contain the essentials which
can be seen in Listing 5.1. The body of the HTTP has to contain the three values
while being formatted as JSON. If the data is wrongfully formatted an HTTP
status saying so is returned.

56

https://www.example.org/user/CreateUser
https://www.example.org/user/CreateUser

5.2 APPL ICAT ION PROGRAMMING INTERFACE

Listing 5.1: HTTP body contents when creating a user

1 {
2 " username ": " TestUsername ",
3 "email": " testuser@testemail .com",
4 " password ": " password 123",
5 }

When the user wants to log in to the application, they have to provide their
username and password. This is done by sending a POST request to https:
//www.example.org/auth/login which contains a body with the data in JSON
format, as can be seen in Listing 5.2. This provides an easy route for developers
to log in to the server and get a JWT in return.

Listing 5.2: HTTP body contents when creating a user

1

2 {
3 " username ": " TestUsername ",
4 " userid ": "1",
5 " password ": " password 123"
6 }

When a user has provided the correct login information, their identity has been
verified, and the server therefore sends an answer to the application with the
newly created token. It also includes an expiration date, which provides an
easy way of knowing when one has to refresh the token. If this expiration is
not met, one has to log in again, as stated above. In Listing 5.3, an example of
a token that is returned from the server is provided. It is returned as JSON and
as can be seen is has a field named token which holds the JSON web token for
the user to authenticate with later on.

Listing 5.3: HTTP body contents when creating a user

1 {
2 "code": 200,
3 " expire ": "2019-05-12T17:43:00+02:00",
4 "token": " eyJhbGciOiJIUzI 1 NiIsInR 5cCI6 IkpXVCJ 9.

eyJleHAiOjE 1NTc2NzU3 ODAsIm 9 yaWdfaWF 0 IjoxNTU 3
NjY4 NTgwLCJwYXNzd 29yZCI6 IiQyYSQwNCRQMXJ 0bklwZ
2 ZWdVJYSmRzeDhSYkhlSUp 3 SjYwdFEwV 1 ouZjBLMVd 2
TVIyV05EQW85 WnBLSyIsInVzZXJpZCI 6 OSwidXNlcm 5
hbWUiOiJMT 0xPTE9MIn0.XAF3pej_0 gwsNqoTUDC 4
VEqgu5 kmtKYUoA 6 OiCXWc 3U"

5 }

57

https://www.example.org/auth/login
https://www.example.org/auth/login

The token provided by the server is the users’ way of authenticating all other
HTTP requests that can be seen in Appendix A. The authentication functionality
in the server is a part of the middleware.

5.3 Database design
To handle the stable storage of the medical data, a Postgres database is used
2. The design of the database has a focus on being as general as possible
to support later development of applications and exporting data from other
applications into this system. The main goal is to support all types of medical
data, while safely storing sensitive user information such as passwords.

When designing and creating functionality for the database, it was a strong
focus on it to be usable for the EDMON project as a whole. Considerable time
was spent creating functions for all use cases. It features the possibility to add,
create, edit, and delete all of the data that is stored, together with functions
in the system for executing these. All database access is done on individual
users credentials, and as mentioned earlier in the chapter, this is based on JWT
access control.

The database has three tables; User, Medical records, and locations. These are
the basis of each recording. After a detailed explanation, the database as a
whole is set into perspective, and the design is shown with foreign keys in
place to illustrate how each table is dependant on the other.

5.3.1 User
The design of the user table can be seen in Table 5.1. It has a focus on the users’
credentials, location, and medical records.

Firstly, each user should create a unique username. Since the data should be
anonymous, the user should be de-identified as soon as possible. This is done by
adding functionality to remove the email of the user. The reason for choosing
to have an email in the database is that this email could be used for sending
out a verification mail to the user, where the individual would verify that they
are a real user and not a computer-generated one.

2. Postgres https://www.postgresql.org/ (Visited 2019-05-12)

58

https://www.postgresql.org/

5.3 DATABASE DES IGN

Table 5.1: Database: User table explanation

Name Type Explanation
uid int, serial, PRIMARY KEY,

NOT NULL
The identification of a
user which is unique to
the given user.

username varchar(250) NOT NULL An identifier chosen by
the user that the system
then uses to authenticate

email varchar(250) The email of a given user,
which is removed when
de-identifying

password varchar(250) NOT NULL Password chosen by the
user, hashed & salted be-
fore stored

Tokens text JSON Web Token holder
Created timestamp NOT NULL Time of creation of the

given user
activationcode varchar(250) Meant to be the code sent

to the user for veryfing
the email

staticlocation_id int The foreign key of the
static location of a user

dynamiclocation_id int The foreign key of the dy-
namic location of a user

MedRecs int, serial NOT NULL Foreign key to the one-
to-many relationship to
medical records.

IsSick boolean NOT NULL Marks the user as sick
or healthy. Updated each
hour with EDMON algo-
rithm.

Each user can have two different locations. Firstly, they can set a static location.
The static location is defined as the hometown or where the individual lives.
This is useful information for both the system and the user. Because the system
knows where the user lives, it could send out warnings to the area where
individuals live about current infectious disease threats. Likewise, for the user,
it is relevant since it could give them the possibility to see if there is an outbreak
in their city. The dynamic location is used as a current location for the user, for
example, if the user is on holiday. This gives the opportunity to get feedback
based on the current position or city where the user is located. Both of these
locations is a foreign key to another table, which is explained later in this

59

chapter.

A user sets a password when creating an account. The password is stored in the
database for comparison when trying to log in to the system at a later time or
to fetch the JSON web token. The passwords are hashed and salted 3 to ensure
that if they are leaked to the public, it is still hard to get the passwords out in
plaintext. As a result of this, each time a user tries to identify, their passwords
are compared to the hashed and salted version stored in the database.

Under the creation of a user, a MedRecs ID is assigned. This ID is then later
used to fetch the given users medical records from a table, talked about later
on in this chapter. This acts as a foreign key, and if a user deletes all of the
recorded medical data, this is used to identify which records belong to it. A
detailed explanation of the fields is available in Table 5.1.

5.3.2 Medical Record
A medical record in the system is a recording of health-related data at a given
time. It is defined by its LOINC code, which has been called HL7 in the database.
Each recording is unique but has a foreign key identifier to the user that created
it. This foreign key is the med_id as can be seen in Table 5.2.

The value of the recording is an integerwhich could be the heart rate perminute
or the stress level recorded in integers from one to six. When a recording is
done the timestamp is set by the database with the built-in now() functionality
of Postgres ⁴. This value is used when fetching the last day, hour or minutes of
recordings, and offer the later developers in the EDMON project the possibility
to fetch custom data based on time.

3. Adding salting to hashing https://auth0.com/blog/adding-salt-to-hashing-
a-better-way-to-store-passwords/ (Visited 2019-05-12)

4. Postgres Documentation https://www.postgresql.org/docs/9.1/functions-
datetime.html (Visited 2019-05-12)

60

https://auth0.com/blog/adding-salt-to-hashing-a-better-way-to-store-passwords/
https://auth0.com/blog/adding-salt-to-hashing-a-better-way-to-store-passwords/
https://www.postgresql.org/docs/9.1/functions-datetime.html
https://www.postgresql.org/docs/9.1/functions-datetime.html

5.3 DATABASE DES IGN

Table 5.2: Database: Medical table explanation

Name Type Explanation
id intserialPRIMARY KEY Primary key and identifier of med-

ical records
med_id int NOT NULL Foreign key to a user table. Identi-

fies whom the medical record be-
long to.

value int, serial NOT NULL A value of the medical records
measurement given as an integer
(For example heart rate)

HL7 varchar(255) NOT NULL Standardization code for identi-
fying the value. (For example
LOINC)

timestamp timestamp NOT NULL, The time when themedical record
was recorded

Location_id int Foreign key to the location where
the medical record was recorded

recording bytea A diary in the form of a video cre-
ated by the user to further doc-
ument how the individual felt at
the time of the recording

Each recording can have a location. This is needed since the system later
runs diagnostics on a given area to determine if there is an infectious disease
outbreak. It could also be used on an individual level to have an overview of
where the user was. An example is if the user remembers being sick in Oslo.
One could easily send a request and fetch data from the last trip to Oslo and
see if it was correct.

Lastly, each medical record contains a recording. This recording is meant to be
either a picture or a short video that the user wants to save as a diary of how
the condition was, or how the user felt at the given recording. For example,
the user could save a short video explaining why the readings are not typical.
A fever could have occurred, and this his information could then be used by
the user at a later point to explain why the readings are irregular.

61

5.3.3 Location
Both the user and medical record table contains a reference to a location. This
location is a gathering of the latitude and longitude but does not give any
information about anything else than this, as is seen in Table 5.3. The reason
why this is put outside the other tables is both for having the possibility to
change the format of the location to for example being the city name or the zip
code, together with not storing information together. If all medical recordings
are leaked, then there is no way to trace the information back to the user or the
location of the recording, without having all the data in the database.

Table 5.3: Database: Location table explanation

Name Type Explanation
loc_id serial primary key, NOT NULL Foreign key to both user and

medical record table. Also the
identifier of a given location
record

latitude float The latitude of the location
longitude float The longitude of the location

Relations between the tables
As all of the table’s design are laid out, the relationships between them may
not be clear. The database is based upon several foreign keys, which defines
how each table interacts with each out. These can be seen in Figure 5.5

A user has two different foreign keys to the location table. The first is the static
location, and the second is the dynamic location. These set the users positions
at all times. The user can choose not to give their location, and in that case,
there is not a location record in the database with a foreign key to the user
table. While the user can set two different locations, it only has one medical
record ID. This is set on creating the user and is persistent through all of the
different medical recordings that are done by the given user.

The relation between a user and a medical record is a one-to-many relationship,
whichmeans that the user can havemanymedical records. TheMedRecs foreign
key in the user table has a reference to the med_id column in the medical
record table.

The medical record has a foreign key to a location, which is optional to create.
A medical record can have one location, which is to indicate where the user is
located at the time of the recording.

62

5.4 VERS ION OF THE SYSTEM

User

UID
Username
email
password
tokens
created
activationcode
staticlocation_id
dynamiclocation_id
Medrecs
IsSick

Medrecs

id
med_id
value
HL7
timestamp
location_id
recording

Location

loc_id
latitude
longitude

0..n

1

0..n1

0..n

1

Figure 5.5: Database design

5.4 Version of the system
The project is created with an agile methodology ⁵ with iterative changes. The
design of the system evolved throughout the project, and therefore, there are
several version of the design. When starting with the project, a design for the
foundation of the system was drawn, as can be seen in Figure 5.6.

This design only included a user together with a medical record without any
information other than value. This design lacked a database and stored ev-
erything in memory. After meetings with the supervisors and reading relevant
literature, the need for standardization was set to be in the next iteration. To-
gether with this a prototype was developed using Golangs HTTP library ⁶. This
was created to showcase the strengths and weaknesses of the implementation
while giving the author an overview of which needs a health-related system
such as this needed. The design can be seen in Figure 5.7

The database was added to the system, together with expanding the current API
to handle creating a user, and adding medical records to the given user. When
this was done, the author realized the lack of support for the HTTP library
when it comes to authentication, database access, and secure communication.
Therefore the current implementationwas set aside. With the gained knowledge
of developing the prototype, a new implementation was started. The design

5. Agile manifest https://agilemanifesto.org/ (Visited 2019-05-11)
6. Golang Http https://golang.org/pkg/net/http/ (Visited 2019-05-11)

63

https://agilemanifesto.org/
https://golang.org/pkg/net/http/

of this included creating a middleware which should support authentication of
the user, together with a stronger tool for handling HTTP requests ⁷ that also
allowed for easy integration of other libraries for authentication and access
control.

In this design, the functionality of snaps was added. After reading the literature,
it seemed like no other solution had this functionality, and it was added as a
way to represent the mood or form of the user at a given time.

Client

Request

Figure 5.6: First design of the server

Client

Request

DB

Figure 5.7: Second design of the system

7. Gin framework https://github.com/gin-gonic/gin (Visited 2019-05-11)

64

https://github.com/gin-gonic/gin

5.4 VERS ION OF THE SYSTEM

5.4.1 System design
The last design of the system contained everything from the API end-point,
middleware to the stable storage and can be seen below in Figure 5.8. This
is the current design of the system as a whole. It includes an API which the
user can send requests to, a middleware which authenticates the user, together
with stable storage in the form of a database.

DB

Req
ues

t

Res
pon

se

API

Authentication

Figure 5.8: System design

Each request from a user goes to the systems through the authentication service
which validates the token that is sent with the request. If a user has the correct
authorization token the system will fetch the requested data from storage and
send it back to the requester, as can be seen in Figure 5.9.

Client DatabaseAuthentication middleware

JSON Web token
Fetch userdata

Return requested data
Data in JSON

HTTP Handler

Fetch requested data with userinfo

Return userdata

Provide JWT

Return user

Figure 5.9: Access granted for user example

65

On the other hand, if the user can not provide the correct authorization token,
the middleware denies further access and deny the users request of data as
can be seen in Figure 5.10. Both when access is granted and denied showcases
the workflow of the system as a whole.

Client DatabaseAuthentication middleware

JSON Web token
Fetch userdata

401
Unauthorized

HTTP Handler

nil

Provide JWT

Failed

Figure 5.10: Access denied for user example

5.4.2 Extension of the system
Since the system is a part of a bigger project, EDMON, there has been an
emphasis on creating a server solution which could easily be expanded with
microservices or other projects in the MI&T group at the university. Together
with maintainability and an emphasis on creating a code structure that could
be understood at first glance, it was essential to create a system that could be
used for creating the infection detection system for people with type 1 diabetes.
The code is structured as in Table 5.4 and has the following folders to separate
the functionality.

66

5.4 VERS ION OF THE SYSTEM

Table 5.4: Filesystem

Name Subfolders Functionality

api

apiauth Create and set up the routes for medical
records. URL: https://www.example.org/
auth/...

apilocation Create and set up the routes for medical
records. URL: https://www.example.org/
location/...

apimedical Create and set up the routes for medical
records. URL: https://www.example.org/
medrec/...

apiuser Create and set up the routes for medical
records. URL: https://www.example.org/
user/...

createdb - Contains scripts to set up, tear down and
seed the database with both real and fake
data

db - Contains the database helper. Connects to,
pings and creates a database session

middleware - Contains the middleware. JWT functional-
ity and EDMON algorithm are placed here.

models
locations The model of a location and how a location

record is structured. Database functionality
for everything about a location record

medicalrecords The model of a medical record and how
a medical record is structured. Database
functionality for everything about a medi-
cal record

users The model of a user and how a user’s
database table is structured. This is the
main logic of the systems interaction with
the database and a everything a user does
is through this model

Because of this, the middleware was added. The middleware is meant to handle
authentication, but also be where the system is expanded. For now, it includes
the skeleton functionality for the algorithm to detect infectious diseases in
people with type 1 diabetes, which is to be executed each hour.

Addingmicroservices and expanding the functionality of the system is discussed
and explained in detail in Chapter 6.

67

https://www.example.org/auth/...
https://www.example.org/auth/...
https://www.example.org/location/...
https://www.example.org/location/...
https://www.example.org/medrec/...
https://www.example.org/medrec/...
https://www.example.org/user/...
https://www.example.org/user/...

6
Implementation
This chapter describes the implementation process of the thesis, together with
the reasoning behind each choice of the design process. The dependency of
the code is explained together with information about the reasoning behind
the structure of the code.

6.1 Project Dependency
The project’s components have dependencies to each other. In this section, these
are explained, and the implementation of the project is showcased. Firstly the
general components are touched upon, after that each component; from the API
and models to the middleware, database and how to generate the certification
keys. The author also highlights parts of the code, which may be of interest.
Then an explanation of how to create and add microservices to the system are
described.

6.1.1 General
There are several components in the system, each with a given purpose. As can
be seen in Figure 6.1, all components have a dependency on another. In the
system, a component is defined as each smaller part of the system. They are
the building blocks. Each component is divided into smaller parts represented

69

by the tables in the database. This division is done to create a clear and distinct
difference where each function of each functionality.

When the system boots, the main function is in charge of setting up the correct
settings, togetherwith initializing the routes,middleware, and the goroutine for
the infection detection system. Firstly a connection is created to the database,
where an instance is saved for later usage. After that, the Gin framework 1
creates and sets up all the routes. The routes can be seen in Appendix A.
As soon as the routes are initialized, the middleware is created, where the
JWT middleware is set up to ensure authentication and access control of the
routes.

API Models

Database
Middleware

Medical
Record UserLocationAuthentication

Authentication EDMON

User Medical
record Location

Figure 6.1: Code dependency

6.1.2 API
There are three different elements within the API component. Since there are
different routes in the system, there is a need for having more than one element
to separate which data we are working on. As can be seen in Figure 6.2, the
three elements are the User, Medical records, and lastly the location. Each one
of these has its grouping, which is to separate the URL-paths from each other.
The paths are as follows:

• www.example.org/user/...

1. Gin framework https://github.com/gin-gonic/gin (Visited 2019-05-14)

70

www.example.org/user/...
https://github.com/gin-gonic/gin

6.1 PROJECT DEPENDENCY

• www.example.org/medrec/...

• www.example.org/location/...

The first part of the URL is to separate which data the user is working, by either
creating new, editing existing data or deleting data. Each element is dependent
on the models component to use the given model for a user, medical record, or
a location. Each request is based upon a user. This user is from the user model
and used to operate on throughout the session. For example, when fetching
the static location from the user, the call made to the model is based upon a
given user that is fetched when authenticating. This creates the opportunity
to have a separate session for each user and divides the workload.

User
example.com/user/...

Medical records
example.com/medrec/...

Location
example.com/location/...

Authentication
example.com/auth/...

Figure 6.2: Components of the API

6.1.3 Models
As can be seen in Figure 6.3, the models are divided into three different
elements. Even though the model is divided into smaller elements, the user
model is the one which makes most of the requests to the database. The reason
behind this is that each call to the database is done on a user, and not through
a medical record or a location. Even though the calls are done through the user,
the model for a medical record or a location is separate from the user. This
was done to ensure the separation between the three, and to create a better
overview of which table that is worked on at a given time.

User Medical records Location

Figure 6.3: Components of the model

For each table in the database, there is also created a structure around each type
to create a grouping of information. This structure holds the same information
as the database tables, but it is represented in a way that the data can be
worked on in the code. An example of one of these structures can be seen in
Listing 6.1. The location structures shown contains an ID, together with the
latitude and longitude represented as float64. This is identical to the table in

71

www.example.org/medrec/...
www.example.org/location/...

the database, which allows us to fetch the data directly into an instance of the
structures.

Listing 6.1: Location struct

// LocRec i s a s t r u c t to hold the l o c a t i o n o f a g i v en us e r
type LocRec s t ruc t {

ID in t ‘ j son : " l o c _ i d " ‘
La t i tude f loat64 ‘ j son : " l a t i t u d e " ‘
Longitude f loat64 ‘ j son : " long i tude " ‘

}

As can be seen in Listing 6.1 each value in the struct is represented as a JSON
object. This allows us to bind an instance of the location to an incoming request
by the user. The body of the HTTP request is bound to each value and look like
in Listing 6.2. If the user does not want to edit a location, but rather create one,
there is no need to give the location id.

Listing 6.2: Body of a location HTTP request

1 {
2 " loc_id ": 1,
3 " latitude ": 69.649208,
4 " longitude ": 18.955324,
5 }

6.1.4 Database
As mentioned in Chapter 5 a Postgres database is used in the system. The
database is an open-source relational database. After the design of the database,
it is set up using SQL scripts such as the one seen below in Figure 6.4. Here
the values and attributes of the table such as foreign keys and primary keys are
defined. The SQL scripts set up all relationships, and after that, a small seeding
of the database is done to test the features of the system through requests on
the data in the system.

72

6.1 PROJECT DEPENDENCY

Figure 6.4: SQL script to set up location table

-- Table: location
CREATE TABLE location (
loc_id serial NOT NULL,
latitude float NOT NULL,
longitude float NOT NULL,
CONSTRAINT location_pk PRIMARY KEY (loc_id)

);

The database component is connected to the system through the given models.
As can be seen in Figure 6.1 it is not dependant on any other component,
but rather it is a dependency. The system as a whole has a connection to the
database, while each user that sends a request to the system has an own session
to execute queries. Because of this, one could, in theory, change the database
type as long as the tables have the same design. This makes migrating to
another database possible if this is desired later in the EDMON project.

6.1.5 Middleware
As previously stated, the middleware has two jobs; to create a JWT authenti-
cation middleware, and serve the system with microservices.

The authentication part of the middleware has dependencies to the user model.
These are used to authenticate the user through the database. The components
get data from the API call, where a middleware has been set up to catch the
data that a user sends as a claim. A claim is the data a user has to send to the
server in order to identify. It is used to verify that the user is the person that is
who he or she claims to be. The request is then forwarded.

The last functionality of the middleware is to run the EDMON algorithm. As per
now, this is a simplified version of the intended EDMON algorithm. It is created
to simulate the workload of a real-world example. The simplified algorithm
fetches all the users, together with their medical records. After that, it sums
the values together and divides them on each other. The simplified EDMON
algorithm ensures that there is a small workload to the system that simulates
the intended algorithm in later development.

73

6.1.6 System illustration
As all the components are presented, an example can be seen in Figure 6.5 on
how they interact with each other. The example shown is a user that has logged
in to the system and sends a request to fetch all of the medical records that
are stored. As can be seen, when a user makes a request, it is first redirected
to through the HTTP request to the middleware for authentication. If the user
has provided the correct token access, the request goes through.

Since access is granted, the request goes through the user part of the API. Each
request is done on the given user but is redirected to the model for medical
records and fetch the medical records. The data is saved in an array and then
returned to the user API where the data is parsed to JSON before the user gets
the requested data back.

DB

example.com/medrec/GetAll

API

Checks that
the JWT

token is valid

{ Data:

[{m
edrec},

{medrec}]}Response with JSON

Fetch
userinfo

Return all m
edical records

JWT Included

Fetch data

Request data

Figure 6.5: Example of a request to www.example.org/medrec/GetAll

74

www.example.org/medrec/GetAll

7
Test and results
This section describes the results of the tests conducted. To read more about
how they are done, see Chapter 3.

7.1 EDMON algorithm
The execution times of the simple algorithm that mimics the EDMON intended
algorithm when using different amounts of medical records can be seen in
Table 7.1. The time to execute grows with the number of elements that have to
be fetched and analyzed. Together with this, we can see an increase in time
when the algorithm is run on 2.9 million elements. In the table one can also
see that the standard deviation is significant when calculating on 2.9 million
elements. On the other hand, the EDMON algorithm uses around six seconds
to execute with 290 000 medical records from 70 users.

75

Table 7.1: Times when executing the EDMON algorithm

of records in DB Mean (s) Standard deviation
29 000 0.150 0.010
58 000 0.358 0.058
87 000 0.654 0.056
116 000 1.037 0.066
145 000 1.579 0.101
290 000 5.796 1.127
2 900 000 648.271 35.933

As seen in the Figure 7.1, the time spent executing stays fairly low at all times,
and grows steadily with the number of records. The measurement with 2.9
million medical records is excluded from the graph for accurate readings. As
can be seen in the graph, it is close to exponential growth in time depending
on the number of elements.

29k 58k 87k 116k 145k 290k

0

1

2

3

4

5

6

Records in database (in thousands)

Ti
m
e
in

ex
ec
ut
io
n
(i
n
se
co
nd

s)

Figure 7.1: Server performance executing EDMON algorithm

76

7.2 AVERAGE T IMES

7.2 Average times
When measuring the average times of the setup and tear down script, the
results can be seen below in Table 7.3. As the table shows, the average time
grows with the number of records that are created, and it leads to linear growth.
The results can be seen in Figure 7.2, where the fact that the execution time
of more elements is linear becomes clear. It is worth noting that for a user
to create, fetch, and delete a total of 600 medical records with 300 locations,
takes around 6.5 seconds when authentication is in place.

010 50 100 150 200 250 300

0

1

2

3

4

5

6

7

of records created by the user

Ti
m
e
(s
ec
on

ds
)

Figure 7.2: Creation of user, login, creating records and deleting time measurement

77

Table 7.3: Creation of user, login, creating records and deleting time measurement

of created records Mean (s) Standard deviation
1 0.210 0.010
10 0.411 0.051
50 1.233 0.094
100 2.229 0.141
150 3.290 0.275
200 4.304 0.171
250 5.260 0.218
300 6.510 0.218

7.2.1 Concurrent requests
When testing concurrent requests with a different number of request on the
various API calls, the mean and standard deviation is calculated. This can be
seen in Table 7.5. The creation of a user has an average time of 0.01 seconds
when only 10 other requests are sent, while it starts to get longer when the
number of requests is higher. For example, with 5000 requests, user creation
takes 0.77 seconds, which is a noticeable difference. This is the case with all
type of requests in this test. It is worth noting that the standard deviation
for both creating a user and authentication (login) gets higher with more
concurrent users.

Table 7.5: Average time of concurrent requests

of requests Request Mean (s) σ (s)

10
create user 0.011369 0.003542

log in 0.009945 0.003946
create med. rec. 0.005407 0.000741

100
create user 0.073985 0.033374

log in 0.057195 0.034586
create med. rec. 0.051408 0.022681

1000
create user 0.675765 0.253713

log in 0.329046 0.116809
create med. rec. 0.347396 0.113942

5000
create user 0.773496 1.171404

log in 0.564387 0.920808
create med. rec. 0.469078 0.227804

78

7.2 AVERAGE T IMES

The time when concurrently creating users is illustrated in Figure 7.3. Here
one can see that the average time flattens out after 1000 concurrent requests
while having a steep growth from 100 concurrent requests and upwards. It is
also possible to see that the standard deviation is high when a lot of concurrent
creation of users is executed.

10 10
0

10
00

50
00

0

0.2

0.4

0.6

0.8

1

1.2

1.4

of concurrent HTTP requests

Ti
m
e
(s
ec
on

ds
)

Figure 7.3: Average time when concurrently creating new users

As with the creation of users, the authentication of a user has a noticeably high
standard deviation. It is worth noting that with both of these each request is
still responded to within a second, but both graphs seem to follow the same
pattern as seen in Figure 7.4 and Figure 7.5 From 100 concurrent requests and
upwards there is a steep growth, and after this, the graph seems to even out
more. When creating medical records, the growth is still fairly steep, while the
standard deviation is a bit lower. Each request is still shorter than the average
creation and authentication of a user.

79

10 10
0

10
00

50
00

0

0.2

0.4

0.6

0.8

1

of concurrent HTTP requests

Ti
m
e
(s
ec
on

ds
)

Figure 7.4: Average time with concurrent login’s

10 10
0

1,
00

0

5,
00

0

0

0.1

0.2

0.3

0.4

0.5

0.6

of concurrent HTTP requests

Ti
m
e
(s
ec
on

ds
)

Figure 7.5: Average time when concurrently creating medical records

80

7.3 PROFIL ING

7.3 Profiling
In this subsection, the profiling results are shown. First of we start with the
CPU and memory trace of the setup and tear down script with psrecord. As
can be seen in Figure 7.6, the memory impact on the machine is constant at
18 MB, this because the memory that psrecord records is of the program itself,
which is an 18 MB file. The CPU usage, on the other hand, lies around 10 to 15
% when setting up and tearing down 10 users, but it increases to 20 to 25 %
when more data is sent.

7.3.1 CPU & Memory

Figure 7.6: CPU and memory usage during setup and tear down script

On the other hand, as can be seen in Figure 7.7, the CPU usage in Linux tells
us that there is 100% usage when 500 accounts are spamming the server with
requests. The memory usage goes up to 40%, but then rapidly decreases as
soon as the requests are over.

81

Figure 7.7: CPU &mem. when concurrently setting up and tearing down 500 accounts

7.3.2 Pprof results
The results of creating a user in the server by the pprof profiling tool can be
seen in Figure 7.9. Here one can see that 50% of the time is spent encrypting
passwords, while around 20% is spent on querying the database. In this case,
the querying is writing to the database. When spamming the server for these
30 seconds, the system created 100.000 new users.

Figure 7.8: Log in profiling

82

7.3 PROFIL ING

Figure 7.9: Creating user profiling

As can be seen in Figure 7.8 the time spent is more spread out, where 27%
of the execution time is spent reading the input by the HTTP library, and the
Gin framework parsing spends around 30% using the JSON web token authen-
tication login-handler. During the profiling, around 4 million authentications
(logins) are accepted by the server.

Lastly, in Figure 7.10, it is clear that the most prominent time is to authenticate
the user by using the JWT. The interaction with the GIN library is around 80 %
of the servers execution time, where 80% of this time is spent authenticating
and 20% is spent on writing the medical record.

83

Figure 7.10: Medical record creation profiling

7.4 Throughput
The results form Apache benchmark with 100 concurrent clients can be seen in
Listing 7.1. Here we can see that the number of failed requests is 0, where all
10.000 requests went through and got a response. The server handled around
800 requests per seconds, and the mean time for each request is around 123
ms before it got a response from the server.

On the other hand, when having a concurrency level of 150 clients it shows
that almost 300 requests sent to the server failed as seen in Listing 7.2 Even
though the server seems to handle more requests per second at 1262 requests
per second around 2% of the requests failed. We can also see that the time

84

7.4 THROUGHPUT

per request is around 118 ms and that all 15000 requests are completed during
11.877 seconds.

Listing 7.1: Apache Benchmark: 100 concurrent clients 10k requests

1 Concurrency Level: 100
2 Time taken for tests: 12.391 seconds
3 Complete requests : 10000
4 Failed requests : 0
5 Keep -Alive requests : 10000
6 Total transferred : 1520000 bytes
7 Total body sent: 2680000
8 HTML transferred : 60000 bytes
9 Requests per second : 807.06 [#/ sec] (mean)

10 Time per request : 123.906 [ms] (mean)

Listing 7.2: Apache Benchmark: 150 concurrent clients with 15k requests

1 Concurrency Level: 150
2 Time taken for tests: 11.877 seconds
3 Complete requests : 15000
4 Failed requests : 297
5 Total transferred : 2302869 bytes
6 Total body sent: 4020000
7 HTML transferred : 109899 bytes
8 Requests per second : 1262.92 [#/ sec] (mean)
9 Time per request : 118.773 [ms] (mean)

85

8
Discussion
In this section, the system features, implementation and test results will be
thoroughly discussed. Firstly, an evaluation of the test and experiment results
is discussed, together with the profiling results. Then the research questions
in Chapter 1 is brought up again, where we look at the project as a whole and
discuss if the goals and questions are answered. Lastly, an evaluation of what
could be improved on is discussed, together with a section for future work that
could be implemented.

8.1 Evaluation of results
In this section, the result of the test is to be evaluated. The test and experiment
conduct an overview of the number of requests the server can handle, and a hint
to how the server performs in regards to memory and CPU usage, together with
its limitations. Each test will be discussed below. They are run enough times to
get a representative sample of each test, then in case there are any huge outliers,
some of them are removed after sorting. Because of this, a good average and
standard deviation are calculated for all the requests that are tested. Even
though there are enough runs of each test, one critique is to be made on the
fact that they are run on a local machine with fairly limited hardware. Since
both the server and the test framework is on the same machine, they have
to share the resources, resulting in a possible shortcoming of hardware. Even
though this shows some problems, there is a positive side with this. Since all

87

test is on the same machine as the server, we eliminate the possibility of latency
and loss and execute them under perfect conditions.

EDMON Algorithm
The EDMON algorithm performs fairly well on the system. As could be seen in
Chapter 7, the number of records had an impact on the standard deviation, but
the mean time of execution grew as expected. In the test, there was a problem
with too many records for each run of the algorithm, but this seems to be a
side effect of the algorithm loading everything into memory at once, and the
data has to be swapped in and out of memory in several cases. This could be
the reason for the huge variance in time spent executing.

The algorithm itself is supposed to run once per hour. After analyzing the data
set, it seems as the average number of recording per hour for six weeks is
around 4 recordings. This is a result of the data set containing around 29 000
records for 7 users over 6 weeks. This means that one has to have a user-base
of over 700 000 users before the server reaches 2.9 million records within an
hour. Moreover, it is still worth mentioning that even with 2.9 million records,
the algorithm spent around 10-12 minutes executing. This results in idle time
of 48-50 minutes each hour. While there is a lot of idle time, it is essential
to remember that memory might become an issue when loading large data
sets. Therefore there could have been created a pool of workers in the form of
Goroutines, that fetches the users’ data continuously and spreads the workload
over an hour, instead of having a heavy algorithm run once per hour. This
would also decrease the chance of running out of memory since there was a lot
of data fetched by the EDMON algorithm, and therefore impacting the serving
of users in real time.

Performance
When testing the performance of the server in regards to execution time when
running the setup and tear down script described in Chapter 7, the result shows
that the when using more records the graph grows linearly. This is a good sign
since the user tries to authenticate, set up and tear down its data, sequentially.
This showcases that if a user is without internet or loses its connection, the
server is still able to handle the creation of several medical records from the
same user, within a reasonable time frame. In this case, the user uploads 600
medical records, with 300 locations in under seven seconds, while the server
is under a fair amount of traffic.

Under the testing of concurrent requests using the python script in combination

88

8.1 EVALUAT ION OF RESULTS

with the bash script, one can notice that the requests are not running in true
concurrency. The bash script sets up all the python scripts in memory and then
executes them some at the time. This means that there is a period before they
are run, and as a result, they seem to run almost sequentially. Even though this
is the case, it highlights the throughput and time of execution for the given type
of request. As can be seen in the graph, the time grows with a higher number
of requests. This because the requests queue up and have to wait for a response
from the server. As can be seen in the graph when trying 5000 concurrent
requests, the standard deviation is a lot higher than with the previous tests.
This may be because they have to wait a bit longer since the server is busy at
the time of the request. Even though the standard deviation may seem high,
the request time is still under 2 seconds at worst. This may be a bit too long
and cause the user to get impatient, but it is acceptable since it is showcased
under such a high load.

Profiling
Profiling is done during run-time to provide insight into how the system
performs and to try and identify possible bottlenecks. When recording memory
and CPU usage with psrecord, the memory is static at 18MB. The compiled
program itself is 18 MB, so it seems as the library is not able to fetch the total
usage of memory with a golang implementation, but rather only measures
the program file in memory. On the other hand, it does capture CPU usage
in percentage. With the setup and tear down script the CPU usage is stable
at 25% when it is sequential. This is expected, together with the fact that the
execution time is longer when there are a higher number of medical records
created.

When using Linux’s system monitor on the other hand, the CPU usage is at
100%. Since everything is run locally, this could indicate that setting up clients
and request with the python script is highly demanding. One can not conclude
that the CPU usage of the machine is purely the server. The memory usage
is stable at around 40% at maximum, which indicates that there is still more
memory to be used. If one assumes that 30% of the machine’s memory is used
to run the server, this is still not regarded as a high percentage. This may be
because Golang offers garbage collection, together with freeing memory at the
end of each request.

As can be seen in Chapter 7, when creating an account most of the time is spent
encrypting the passwords before it is stored in the database. Even though this
might not sound good, it is a necessary trade off that has to be made to ensure
that the users’ data is safe and private. If anyone where to get a hold of the
password this may lead to the user losing control over several accounts since

89

the password may be reused. In the time-span of 30 seconds, the server created
100 000 new accounts. This is not a real-life scenario, but it showcases that
the server can handle creating more than a sufficient amount of users within a
reasonable period.

When authenticating, most of the execution time goes to check that the pass-
word is correct and creating a JSON web token. Therefore most of the time is
spent in the Gin library login handler. In 30 seconds, there were over 4 million
authentications done, which showcases that the server can handle more than
enough authentications in a given period. This is meant to be done once, and
after it is done, one can refresh the token instead of login in again.

Lastly, the creation of medical records is profiled. Interestingly most of the
execution time goes to authentication and checking that the JSON web token is
correct and that it belongs to the user. Meanwhile, a relatively short amount of
time is spent creating andwriting the medical records to the database. In the 30
seconds, over 41 000 records are created. This is fewer than with creating a user
and authenticating, but this could be because we have to ensure the security
and privacy of a user before saving the data to the database. This is a trade-off
one has to expect, especially since we do not want a user creating medical
records or fetching medical records for other users. Therefore it is logical that
most of the time is spent authenticating the JSON web token.

Stress test
To test the liability and maximal throughput of the server Apache benchmark
was used to create a small denial of service attack essentially. As can be seen
in Chapter 7, 100 concurrent clients sent 10 000 requests, which averaged to
around 800 requests per second. This showcases that the server can receive a
high amount of requests. With 150 concurrent clients, on the other hand, around
2% of the requests failed. This is a result of the default maximum number of
clients connected to the Postgres database is 100. As the implementation stands
per now, each user gets a connection to the database when the session is started.
A drawback of the implementation is, therefore, showed to be the number of
clients which concurrently can connect. This could be fixed with changing the
default value to more clients, but a result of this is that the server requires
more hardware in the form of CPU and memory. Another possible fix could be
to re-write the database code to create a single connection to the database,
but this could result in queuing and longer wait time for requests. Since this
is a special case, and the server returns an HTTP status code to indicate if
something went wrong, it is not seen as a huge drawback. It is also worth
mentioning that if it is too many concurrent clients spamming the server with
requests, the database will itself crash and need a restart.

90

8.2 RESEARCH QUEST IONS

8.2 Research questions
In this section the research questions from Chapter 1 is addressed. First, the sub-
questions are evaluated and discussed; thereafter the main research question
is brought up and discussed.

Subquestion one

How can a system for disease surveillance be designed, and which
drawbacks or advantages is there of the state of the art systems?

There are several systems today which offers ways to store medical data. As
mentioned in Chapter 2, some of them has interoperability with hundreds of
devices and offers solutions that integrate with electronic health records. Most
of the huge technology companies in the world, such as Apple, Samsung, and
Google, offer solutions such as these. Many of them now also offer storage
and analysis on diabetes data and provide open API’s for developers to in-
tegrate their devices to, together with fetching user data. They also include
authentication and security.

Even though these seem like an ideal solution, there are a few drawbacks
by using them. Firstly, all of the data that is stored is sent directly to a huge
corporation, where the data is stored at locations that you have no control over.
You also have no guarantee that the data is truly deleted, and not just put to
cold storage when you want to erase all of your medical information. Lastly,
since the data is in the hands of a huge corporation, there is the risk of the
data being shared with 3rd parties that can sell your information. This could
lead to insurance companies getting a hold of it and not giving you insurance
because of a minor detail in your health history.

This thesis offers safe storage for user information at a known location within
Norway. The users can fully trust that the data is not shared in any way, while
their privacy and security are first in line. It also offers the possibility to store
images or small videos with each medical record. The author did not find any
real-time surveillance systems using diabetes data to create infectious detection
in society. So while the current state of the art has a lot to offer regarding
storing, scaling, and interoperability, the infectious disease detection part of
the project is an original contribution.

91

Subquestion two

How can secure data storage for mobile applications for individuals with
diabetes be created?

To secure the data from a mobile application for individuals with type 1
diabetes encryption, hashing and salting, and secure authentication is used on
the server. Firstly HTTPS is used to encrypt the data sent from a user to the
server. This provides the security of a man-in-the-middle attack on the server
where the certificates provide authentication from the server. To ensure that
the passwords from the user are safe, they are hashed and salted before adding
them to the database. Because of this, there are no parts of the system that
interacts with the password after a user is created.

To ensure the identity of a user when authenticating JSON web tokens are
used. These provide a way to authenticate the user and is talked more about
in the next sub question.

Subquestion three

How can user’s authentication be ensured with the least amount of
user-interaction in the front-end application?

To ensure the authentication of a user with the least amount of user-interaction,
JSON web tokens is implemented on the server. Since users may feel like it
is a hassle to log in using a username and password at all times when using
the application, they provide a way of authentication as long as the application
has saved the token. It eases up the threshold for the user to open the mobile
application while ensuring that a user can not interact with other users data.
As long as the token is refreshed before the expiration, it provides a way for the
user to get the least amount of interaction when authenticating in the front-end
application such as a mobile application.

Subquestion four

How can an electronic health system that is to be expanded by other
researchers and students be designed?

Since the EDMON project is ongoing at the University of Tromsø and the server
solution provided in the thesis is the start of a bigger project, it was an important
aspect that the server was designed with expansion in mind. Therefore the
code and server solution is built to provide support for microservices and uses

92

8.3 FUTURE WORK

a modular approach to ensure that the extension is possible. As the server
stands a simple algorithm that mimics the EDMON intended algorithm runs
each hour. All that is needed here is to change which values to fetch from the
database and some of the mathematical functions done on them.

All functionality is split into different folders, and extensive information on
how they depend on each other is given in Chapter 5 and Chapter 6. Golang
was also chosen to create a code-base that is possible to add functionality to
by using goroutines. A thorough documentation of the API calls can also be
found in Appendix A.

Research question

"How can an electronic health system server to aid individuals with
diabetes type 1, while creating a warning system of disease out-
break with security and privacy in mind, be designed?"

Throughout the work on the thesis, the author learned a lot from the state of
the art review and used some of the state of the art technology as inspiration.
Especially in security, together with standardization. The OhioT1DM data
set provided insight into how real data would be and what was needed to
standardize it. With the goals and design in mind, the goal was to create a
general enough solution, using encryption and authentication. For an individual
with type 1 diabetes, themost important aspect is to have a stable solution which
can provide insight into the condition and aid in self-monitoring. Therefore a
database was designed to support the storage of all types of data, where the
mobile application is the only limitation. The subquestions provide insight into
how everything is solved and a small discussion around each question.

8.3 Future work
This section covers the future work of the thesis, together with some of the
planned work on the project going forward at the University of Tromsø.

Firstly, one of the main opportunities for the project is to create a mobile
application which can collect data from individuals with type 1 diabetes. The
mobile application will also provide a real-world test platform for the server,
where the real throughput and performance is tested. To do this, one has to set
up a certificate for HTTPS. A straightforward approach here would be to buy a

93

domain and set up HTTPS through a service such as Let’s Encrypt 1. To ensure
that all of the users’ data is safe all data in the database could also be encrypted,
not just the password. This could lead to problems in the performance of the
server, so it would have to be tested and evaluated.

Secondly, the disease surveillance and infectious detection algorithm that is
currently being worked upon in the MI&T group at the university could be
implemented. By integrating it with the server, it could provide the population
with a real-time warning system, and provide more accurate readings as more
and more data is collected from the individuals with type 1 diabetes.

As mentioned earlier a project, to use the location and individuals marked as
sick by the infectious disease detection algorithm is worked on. Together with
a cluster detection algorithm that determines if there is a reason to worry of an
infectious disease outbreak in a given area. By providing these two, a solution
to show the infected areas such as Healthmap [46], can be created.

Lastly, a cooperation with the FullFlow [66] project, and implementing full
FHIR support could lead to interoperability from the server to open EHR
solutions such as at DIPS [26]. By creating a solution which supports this one
would allow doctors, general practitioners, and health personnel a way to fetch
the users data. The data could then be used in diagnostics by certified health
personnel.

1. Let’s Encrypt https://letsencrypt.org/ (Visited 2019-05-26)

94

https://letsencrypt.org/

9
Conclusion
Throughout the thesis, several aspects of creating, designing and implementing
a back end server for self-monitoring for individuals with type 1 diabetes,
with the functionality to create a diseases surveillance and infection detection
system, is designed and implemented. In the report, several aspects, such as
security, privacy, and standardization, are discussed and used to design the
system. There is a considerable emphasis on creating an expandable system
where other researchers and students can build upon the solution with their
work.

After testing the server implemented handles up to 1000 requests per second,
depending on which type of request. From the OhioT1DM dataset with real user
data, one can conclude that the requests per second are sufficient for a real-life
application. A review of the state of the art technology is conducted, and several
aspects from the applications found, are used to design and implement the sys-
tem. This helped the author gain knowledge about the field and requirements
of the thesis while providing insight into the current solutions.

The thesis contributes with a general back end solution with security and
privacy in mind, where the code is structured for other researchers to add
microservices. Going forward, the EDMON project is to implement the infection
detection systems, together with cluster detection algorithms to create a real-
time warning system for disease in the population. This thesis is the first
building block in designing and creating the EDMON platform. The author
could not find any other real-time monitoring system of individuals with type

95

1 diabetes, which provides the same functionality, such as the possibility to
store videos with each medical record. The solution provides authentication,
privacy, and security, through JSON web tokens. These give the user minimal
interaction with the authentication part of a mobile application, where the
application itself can refresh the token if used frequently. Moving forward,
monitoring other chronic conditions such as chronic obstructive pulmonary
disease and asthma is also of interest for the project.

96

Bibliography
[1] (2019). Idf diabeted atlas 8th edition, [Online]. Available: www.diabetesatlast.

org (visited on 02/20/2019).
[2] (2019). Diabetesforbundet: Diabetes type 1, [Online]. Available: https:

/ / www . diabetes . no / om - diabetes / diabetes - type - 1/ (visited on
03/12/2019).

[3] (2016). Global health observatory by the world health organization,
[Online]. Available: https://www.who.int/gho/mortality_burden_
disease/en/ (visited on 02/20/2019).

[4] (2019). World health organization, [Online]. Available: http://www.who.
int (visited on 04/19/2019).

[5] (2018). Diabetes fact sheet by the who, [Online]. Available: https :
//www.who.int/en/news-room/fact-sheets/detail/diabetes (visited
on 04/19/2019).

[6] (2019). The global diabetes community, [Online]. Available: https :
//www.diabetes.co.uk/controlling-type1-diabetes.html (visited on
03/12/2019).

[7] A. Z. Woldaregay, E. Årsand, A. Giordanengo, D. Albers, L. Mamykina, T.
Botsis, andG. Hartvigsen, “EDMON - a wireless communication platform
for a real-time infectious disease outbreak detection system using self-
recorded data from people with type 1 diabetes,” 15th Scandinavian
Conference on Health Informatics SHI2017, p. 7, 2017.

[8] P. Kostkova and P. Kostkova, “A roadmap to integrated digital public
health surveillance: The vision and the challenges,” p. 7,

[9] R. Heffernan, F. Mostashari, D. Das, A. Karpati, M. Kulldorff, and D.
Weiss, “Syndromic surveillance in public health practice, new york city,”
Emerging Infectious Diseases, vol. 10, no. 5, pp. 858–864, May 2004,
issn: 1080-6040, 1080-6059. doi: 10.3201/eid1005.030646. [Online].
Available: http://wwwnc.cdc.gov/eid/article/10/5/03-0646_article.
htm (visited on 05/08/2019).

[10] A. Fouillet, N. Fournet, N. Caillère, A. Musset, L. Mercier, C. Durand,
C. Caserio-Schönemann, and L. Josseran, “SurSaUD® software: A tool
to support the data management, the analysis and the dissemination of
results from the french syndromic surveillance system,” Online Journal
of Public Health Informatics, vol. 5, no. 1, Apr. 4, 2013, issn: 1947-2579.

97

www.diabetesatlast.org
www.diabetesatlast.org
https://www.diabetes.no/om-diabetes/diabetes-type-1/
https://www.diabetes.no/om-diabetes/diabetes-type-1/
https://www.who.int/gho/mortality_burden_disease/en/
https://www.who.int/gho/mortality_burden_disease/en/
http://www.who.int
http://www.who.int
https://www.who.int/en/news-room/fact-sheets/detail/diabetes
https://www.who.int/en/news-room/fact-sheets/detail/diabetes
https://www.diabetes.co.uk/controlling-type1-diabetes.html
https://www.diabetes.co.uk/controlling-type1-diabetes.html
https://doi.org/10.3201/eid1005.030646
http://wwwnc.cdc.gov/eid/article/10/5/03-0646_article.htm
http://wwwnc.cdc.gov/eid/article/10/5/03-0646_article.htm

[Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3692763/ (visited on 05/08/2019).

[11] T. B. Murdoch and A. S. Detsky, “The inevitable application of big data
to health care,” JAMA, vol. 309, no. 13, p. 1351, Apr. 3, 2013, issn:
0098-7484. doi: 10.1001/jama.2013.393. [Online]. Available: http:
//jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2013.393
(visited on 05/09/2019).

[12] B. K. Smith,H. Nachtmann, and E. A. Pohl, “Improving healthcare supply
chain processes via data standardization,” Engineering Management
Journal, vol. 24, no. 1, pp. 3–10, Mar. 2012, issn: 1042-9247, 2377-0643.
doi: 10.1080/10429247.2012.11431924. [Online]. Available: http:
//www.tandfonline.com/doi/full/10.1080/10429247.2012.11431924
(visited on 05/09/2019).

[13] R. L. Wears, “Standardisation and its discontents,” Cognition, Technology
& Work, vol. 17, no. 1, Feb. 2015, issn: 1435-5558, 1435-5566. doi: 10.
1007/s10111-014-0299-6. [Online]. Available: http://link.springer.
com/10.1007/s10111-014-0299-6 (visited on 05/09/2019).

[14] (2019). Health level 7, [Online]. Available: https://www.hl7.org/
about/index.cfm?ref=nav (visited on 05/05/2019).

[15] (2019). International society for disease surveillance, [Online]. Available:
https://www.healthsurveillance.org/ (visited on 02/04/2019).

[16] (2019). International society for disease surveillance - about page, [On-
line]. Available: https://www.healthsurveillance.org/page/About
(visited on 02/04/2019).

[17] M. Meingast, T. Roosta, and S. Sastry, “Security and privacy issues with
health care information technology,” in 2006 International Conference
of the IEEE Engineering in Medicine and Biology Society, Aug. 2006,
pp. 5453–5458. doi: 10.1109/IEMBS.2006.260060.

[18] A. Appari and M. E. Johnson, “Information security and privacy in
healthcare: Current state of research,” International Journal of Internet
and Enterprise Management, vol. 6, no. 4, p. 279, 2010, issn: 1476-1300,
1741-5330. doi: 10.1504/IJIEM.2010.035624. [Online]. Available: http:
//www.inderscience.com/link.php?id=35624 (visited on 05/09/2019).

[19] (2019). Gdrp health data, [Online]. Available: https://edps.europa.
eu / data - protection / our - work / subjects / health _ en (visited on
02/04/2019).

[20] (2019). Datatilsynet, [Online]. Available: https://www.datatilsynet.
no/ (visited on 03/12/2019).

[21] Helseutvalget, Et nytt system for enklere og sikrere tilgang til helse-
data, 2016. [Online]. Available: https://www.regjeringen.no/no/
dokumenter/et-nytt-system-for-enklere-og-sikrere-tilgang-til-
helsedata/id2563907/.

[22] (2019). Microservices, [Online]. Available: https://microservices.io/
(visited on 04/19/2019).

98

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3692763/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3692763/
https://doi.org/10.1001/jama.2013.393
http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2013.393
http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2013.393
https://doi.org/10.1080/10429247.2012.11431924
http://www.tandfonline.com/doi/full/10.1080/10429247.2012.11431924
http://www.tandfonline.com/doi/full/10.1080/10429247.2012.11431924
https://doi.org/10.1007/s10111-014-0299-6
https://doi.org/10.1007/s10111-014-0299-6
http://link.springer.com/10.1007/s10111-014-0299-6
http://link.springer.com/10.1007/s10111-014-0299-6
https://www.hl7.org/about/index.cfm?ref=nav
https://www.hl7.org/about/index.cfm?ref=nav
https://www.healthsurveillance.org/
https://www.healthsurveillance.org/page/About
https://doi.org/10.1109/IEMBS.2006.260060
https://doi.org/10.1504/IJIEM.2010.035624
http://www.inderscience.com/link.php?id=35624
http://www.inderscience.com/link.php?id=35624
https://edps.europa.eu/data-protection/our-work/subjects/health_en
https://edps.europa.eu/data-protection/our-work/subjects/health_en
https://www.datatilsynet.no/
https://www.datatilsynet.no/
https://www.regjeringen.no/no/dokumenter/et-nytt-system-for-enklere-og-sikrere-tilgang-til-helsedata/id2563907/
https://www.regjeringen.no/no/dokumenter/et-nytt-system-for-enklere-og-sikrere-tilgang-til-helsedata/id2563907/
https://www.regjeringen.no/no/dokumenter/et-nytt-system-for-enklere-og-sikrere-tilgang-til-helsedata/id2563907/
https://microservices.io/

BIBLIOGRAPHY

[23] (Jun. 2017). Diabetes - fhi, [Online]. Available: https://www.fhi.no/
nettpub/hin/ikke-smittsomme/diabetes/ (visited on 02/04/2019).

[24] P. J. Denning, D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J.
Turner, and P. R. Young, “Computing as a discipline,” Communications
of the ACM, vol. 32, no. 1, pp. 9–23, Feb. 1, 1989, issn: 00010782. doi:
10.1145/63238.63239. [Online]. Available: http://portal.acm.org/
citation.cfm?doid=63238.63239 (visited on 05/11/2019).

[25] N. Menachemi and T. H. Collum, “Benefits and drawbacks of electronic
health record systems,” Risk Management and Healthcare Policy, vol. 4,
pp. 47–55, May 11, 2011, issn: 1179-1594. doi: 10.2147/RMHP.S12985.
[Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3270933/ (visited on 05/07/2019).

[26] (2019). Dips, [Online]. Available: https://www.dips.com/no (visited on
02/04/2019).

[27] (2019). What is openehr, [Online]. Available: https://www.openehr.
org/about/what_is_openehr (visited on 03/07/2019).

[28] (2019). Healthvault, [Online]. Available: https://international.healthvault.
com (visited on 03/07/2019).

[29] (Oct. 2018). Process for becoming a healthvault solution provider, [On-
line]. Available: https://docs.microsoft.com/en-us/healthvault/
publishing/become-a-solution-provider (visited on 02/04/2019).

[30] (2019). Nightscout, [Online]. Available: http://www.nightscout.info/
(visited on 02/04/2019).

[31] (2019). Mysugr application, [Online]. Available: https://mysugr.com/
(visited on 10/05/2019).

[32] E. Arsand, R. Varmedal, and G. Hartvigsen, “Usability of a mobile self-
help tool for people with diabetes: The easy health diary,” in 2007 IEEE
International Conference on Automation Science and Engineering, Sep.
2007, pp. 863–868. doi: 10.1109/COASE.2007.4341807.

[33] (2019). Apple health kit, [Online]. Available: https://developer.apple.
com/healthkit/ (visited on 02/04/2019).

[34] (2019). Google fit, [Online]. Available: https://www.google.com/fit/
(visited on 02/04/2019).

[35] (2019). Samsung health, [Online]. Available: https://www.samsung.
com/no/apps/samsung-health/ (visited on 02/04/2019).

[36] (2019). Carezone, [Online]. Available: https://carezone.com/home
(visited on 02/04/2019).

[37] (2019). Nomoreclipboard, [Online]. Available: https://nomoreclipboard.
com/ (visited on 02/04/2019).

[38] K. Hope, “Syndromic surveillance: Is it a useful tool for local outbreak
detection?” Journal of Epidemiology & Community Health, vol. 60, no. 5,
pp. 374–374, May 1, 2006, issn: 0143-005X. doi: 10.1136/jech.2005.
035337. [Online]. Available: http://jech.bmj.com/cgi/doi/10.1136/
jech.2005.035337 (visited on 05/08/2019).

99

https://www.fhi.no/nettpub/hin/ikke-smittsomme/diabetes/
https://www.fhi.no/nettpub/hin/ikke-smittsomme/diabetes/
https://doi.org/10.1145/63238.63239
http://portal.acm.org/citation.cfm?doid=63238.63239
http://portal.acm.org/citation.cfm?doid=63238.63239
https://doi.org/10.2147/RMHP.S12985
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270933/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270933/
https://www.dips.com/no
https://www.openehr.org/about/what_is_openehr
https://www.openehr.org/about/what_is_openehr
https://international.healthvault.com
https://international.healthvault.com
https://docs.microsoft.com/en-us/healthvault/publishing/become-a-solution-provider
https://docs.microsoft.com/en-us/healthvault/publishing/become-a-solution-provider
http://www.nightscout.info/
https://mysugr.com/
https://doi.org/10.1109/COASE.2007.4341807
https://developer.apple.com/healthkit/
https://developer.apple.com/healthkit/
https://www.google.com/fit/
https://www.samsung.com/no/apps/samsung-health/
https://www.samsung.com/no/apps/samsung-health/
https://carezone.com/home
https://nomoreclipboard.com/
https://nomoreclipboard.com/
https://doi.org/10.1136/jech.2005.035337
https://doi.org/10.1136/jech.2005.035337
http://jech.bmj.com/cgi/doi/10.1136/jech.2005.035337
http://jech.bmj.com/cgi/doi/10.1136/jech.2005.035337

[39] I. Rodríguez-Rodríguez, M.-Á. Zamora-Izquierdo, and J.-V. Rodríguez,
“Towards an ICT-based platform for type 1 diabetes mellitus manage-
ment,” Applied Sciences, vol. 8, no. 4, p. 511, Apr. 2018. doi: 10.3390/
app8040511. [Online]. Available: https://www.mdpi.com/2076-3417/8/
4/511 (visited on 08/05/2019).

[40] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(IoT): A vision, architectural elements, and future directions,” Future
Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, Sep. 2013,
issn: 0167739X. doi: 10.1016/j.future.2013.01.010. [Online]. Avail-
able: https://linkinghub.elsevier.com/retrieve/pii/S0167739X13000241
(visited on 05/10/2019).

[41] M. Verma, K. Kishore, M. Kumar, A. R. Sondh, G. Aggarwal, and S.
Kathirvel, “Google search trends predicting disease outbreaks: An anal-
ysis from india,” Healthcare Informatics Research, vol. 24, no. 4, pp. 300–
308, Oct. 2018, issn: 2093-3681. doi: 10.4258/hir.2018.24.4.300.
[Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC6230529/ (visited on 05/07/2019).

[42] E. D. Karimuribo, E. Mutagahywa, C. Sindato, L. Mboera,M. Mwabukusi,
M. Kariuki Njenga, S. Teesdale, J. Olsen, and M. Rweyemamu, “A smart-
phone app (AfyaData) for innovative one health disease surveillance
from community to national levels in africa: Intervention in disease
surveillance,” JMIR Public Health and Surveillance, vol. 3, no. 4, e94,
Dec. 18, 2017, issn: 2369-2960. doi: 10.2196/publichealth.7373. [On-
line]. Available: http://publichealth.jmir.org/2017/4/e94/ (visited
on 05/06/2019).

[43] O. Granberg, J. G. Bellika, E. Årsand, and G. Hartvigsen, “Automatic
infection detection system,” p. 5, [Online]. Available: http://ebooks.
iospress.nl/publication/11039.

[44] N. Kanhabua andW. Nejdl, “Understanding the diversity of tweets in the
time of outbreaks,” in Proceedings of the 22nd International Conference
on World Wide Web - WWW ’13 Companion, Rio de Janeiro, Brazil: ACM
Press, 2013, pp. 1335–1342, isbn: 978-1-4503-2038-2. doi: 10.1145/
2487788.2488172. [Online]. Available: http://dl.acm.org/citation.
cfm?doid=2487788.2488172 (visited on 05/10/2019).

[45] N. Collier and S. Doan, “Syndromic classification of twitter messages,”
arXiv:1110.3094 [cs], Oct. 13, 2011. arXiv: 1110.3094. [Online]. Available:
http://arxiv.org/abs/1110.3094 (visited on 05/10/2019).

[46] (2019). Healthmap, [Online]. Available: https://www.healthmap.org/
en/ (visited on 05/10/2019).

[47] (2019). Diseasedaily healthmap, [Online]. Available: http://www.diseasedaily.
org/about (visited on 05/10/2019).

[48] (Nov. 2016). What is diabetes? niddk, [Online]. Available: https://www.
niddk.nih.gov/health- information/diabetes/overview/what- is-
diabetes (visited on 02/04/2019).

100

https://doi.org/10.3390/app8040511
https://doi.org/10.3390/app8040511
https://www.mdpi.com/2076-3417/8/4/511
https://www.mdpi.com/2076-3417/8/4/511
https://doi.org/10.1016/j.future.2013.01.010
https://linkinghub.elsevier.com/retrieve/pii/S0167739X13000241
https://doi.org/10.4258/hir.2018.24.4.300
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6230529/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6230529/
https://doi.org/10.2196/publichealth.7373
http://publichealth.jmir.org/2017/4/e94/
http://ebooks.iospress.nl/publication/11039
http://ebooks.iospress.nl/publication/11039
https://doi.org/10.1145/2487788.2488172
https://doi.org/10.1145/2487788.2488172
http://dl.acm.org/citation.cfm?doid=2487788.2488172
http://dl.acm.org/citation.cfm?doid=2487788.2488172
http://arxiv.org/abs/1110.3094
http://arxiv.org/abs/1110.3094
https://www.healthmap.org/en/
https://www.healthmap.org/en/
http://www.diseasedaily.org/about
http://www.diseasedaily.org/about
https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes
https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes
https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes

BIBLIOGRAPHY

[49] (Nov. 2017). Monogenic diabetes (neontal diabetes mellitus and mody),
[Online]. Available: https://www.niddk.nih.gov/health-information/
diabetes/overview/what-is-diabetes/monogenic-neonatal-mellitus-
mody (visited on 02/04/2019).

[50] “Classification and diagnosis of diabetes,” Diabetes Care, vol. 39, S13–S22,
Supplement 1 Jan. 2016, issn: 0149-5992, 1935-5548. doi: 10.2337/
dc16-S005. [Online]. Available: http://care.diabetesjournals.org/
lookup/doi/10.2337/dc16-S005 (visited on 05/08/2019).

[51] C. Marling and R. Bunescu, “The OhioT1dm dataset for blood glucose
level prediction,” p. 4,

[52] (Mar. 2015). Dka (ketoacidosis) and ketones, [Online]. Available: http:
//www.diabetes.org/living-with-diabetes/complications/ketoacidosis-
dka.html (visited on 02/05/2019).

[53] (Dec. 2018). Hyperglycemia (high blood glucose), [Online]. Available:
http://www.diabetes.org/living- with- diabetes/treatment- and-
care/blood-glucose-control/hyperglycemia.html (visited on 01/05/2019).

[54] (Aug. 2016). Hypoglycemia (low blood glucose), [Online]. Available:
https://www.niddk.nih.gov/health-information/diabetes/overview/
preventing-problems/low-blood-glucose-hypoglycemia (visited on
03/05/2019).

[55] (2018). Snl omd datatilsynet, [Online]. Available: https://snl.no/
Datatilsynet (visited on 03/13/2019).

[56] (Mar. 2019). Evolution of http (mozilla), [Online]. Available: https:
//developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/
Evolution_of_HTTP (visited on 01/05/2019).

[57] (Aug. 2008). The transport layer security (tls) protocol — rfc 5246.,
[Online]. Available: https://tools.ietf.org/html/rfc5246 (visited
on 01/05/2019).

[58] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia, M.
Munafò, K. Papagiannaki, and P. Steenkiste, “The cost of the "s" in
HTTPS,” in Proceedings of the 10th ACM International on Conference on
emerging Networking Experiments and Technologies - CoNEXT ’14, Sydney,
Australia: ACM Press, 2014, pp. 133–140, isbn: 978-1-4503-3279-8. doi:
10.1145/2674005.2674991. [Online]. Available: http://dl.acm.org/
citation.cfm?doid=2674005.2674991 (visited on 02/05/2019).

[59] O. f. C. Rights (OCR). (Jul. 9, 2012). Methods for de-identification of
PHI, HHS.gov, [Online]. Available: https://www.hhs.gov/hipaa/for-
professionals/privacy/special-topics/de-identification/index.
html (visited on 01/05/2019).

[60] O. Uzuner, Y. Luo, and P. Szolovits, “Evaluating the state-of-the-art in
automatic de-identification,” Journal of the American Medical Informatics
Association, vol. 14, no. 5, pp. 550–563, Sep. 1, 2007, issn: 1067-5027,
1527-974X. doi: 10.1197/jamia.M2444. [Online]. Available: https://

101

https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes/monogenic-neonatal-mellitus-mody
https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes/monogenic-neonatal-mellitus-mody
https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes/monogenic-neonatal-mellitus-mody
https://doi.org/10.2337/dc16-S005
https://doi.org/10.2337/dc16-S005
http://care.diabetesjournals.org/lookup/doi/10.2337/dc16-S005
http://care.diabetesjournals.org/lookup/doi/10.2337/dc16-S005
http://www.diabetes.org/living-with-diabetes/complications/ketoacidosis-dka.html
http://www.diabetes.org/living-with-diabetes/complications/ketoacidosis-dka.html
http://www.diabetes.org/living-with-diabetes/complications/ketoacidosis-dka.html
http://www.diabetes.org/living-with-diabetes/treatment-and-care/blood-glucose-control/hyperglycemia.html
http://www.diabetes.org/living-with-diabetes/treatment-and-care/blood-glucose-control/hyperglycemia.html
https://www.niddk.nih.gov/health-information/diabetes/overview/preventing-problems/low-blood-glucose-hypoglycemia
https://www.niddk.nih.gov/health-information/diabetes/overview/preventing-problems/low-blood-glucose-hypoglycemia
https://snl.no/Datatilsynet
https://snl.no/Datatilsynet
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://tools.ietf.org/html/rfc5246
https://doi.org/10.1145/2674005.2674991
http://dl.acm.org/citation.cfm?doid=2674005.2674991
http://dl.acm.org/citation.cfm?doid=2674005.2674991
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
https://doi.org/10.1197/jamia.M2444
https://academic.oup.com/jamia/article-lookup/doi/10.1197/jamia.M2444
https://academic.oup.com/jamia/article-lookup/doi/10.1197/jamia.M2444
https://academic.oup.com/jamia/article-lookup/doi/10.1197/jamia.M2444

academic.oup.com/jamia/article-lookup/doi/10.1197/jamia.M2444
(visited on 05/07/2019).

[61] M. Jones, J. Bradley, and N. Sakimura, “JSON web token (JWT),” RFC
Editor, RFC7519, May 2015, RFC7519. doi: 10.17487/RFC7519. [Online].
Available: https://www.rfc- editor.org/info/rfc7519 (visited on
05/10/2019).

[62] (2019). Json web token webpage, [Online]. Available: https://jwt.io/
(visited on 10/05/2019).

[63] C. D. Shaw, “How can healthcare standards be standardised?” BMJ
Quality & Safety, vol. 24, no. 10, pp. 615–619, Oct. 2015, issn: 2044-
5415, 2044-5423. doi: 10.1136/bmjqs-2015-003955. [Online]. Available:
http://qualitysafety.bmj.com/lookup/doi/10.1136/bmjqs- 2015-
003955 (visited on 05/11/2019).

[64] (2019). Health level 7 introduction to hl7 standards, [Online]. Available:
http : / / www . hl7 . org / implement / standards / index . cfm ? ref = nav
(visited on 05/11/2019).

[65] (2019). Logical observation identifiers names and codes, [Online]. Avail-
able: https://loinc.org/about/ (visited on 05/05/2019).

[66] (2019). Fullflow, [Online]. Available: https://ehealthresearch.no/en/
projects/fullflow (visited on 05/10/2019).

[67] W. A. Zebene, E. Årsand, B. Taxiarchis, and H. Gunnar, “An early in-
fectious disease outbreak detection mechanism based on self-recorded
data from people with diabetes,” Studies in Health Technology and In-
formatics, pp. 619–623, 2017, issn: 0926-9630. doi: 10 . 3233 / 978 -
1- 61499- 830- 3- 619. [Online]. Available: http://www.medra.org/
servlet/aliasResolver?alias=iospressISBN&isbn=978-1-61499-829-
7 & spage = 619 & doi = 10 . 3233 / 978 - 1 - 61499 - 830 - 3 - 619 (visited on
05/08/2019).

[68] T. Botsis, O. Hejlesen, J. Bellika, and G. Hartvigsen, “Blood glucose levels
as an indicator for the early detection of infections in type-1 diabetes,”
English, Advances in Disease Surveillance, vol. 4, p. 147, 2007.

[69] E. Årsand, O. A. Walseth, N. Andersson, R. Fernando, O. Granberg, J. G.
Bellika, and G. Hartvigsen, “Using blood glucose data as an indicator
for epidemic disease outbreaks,” p. 6,

[70] J. N. Lauritzen, E. Arsand, K. Van Vuurden, J. G. Bellika, O. K. Hejlesen,
and G. Hartvig-sen, “Towards a mobile solution for predicting illness
in type 1 diabetes mellitus: Development of a prediction model for de-
tecting risk of illness in type 1 diabetes prior to symptom onset,” in
2011 2nd International Conference on Wireless Communication, Vehicu-
lar Technology, Information Theory and Aerospace & Electronic Systems
Technology (Wireless VITAE), Chennai, India: IEEE, Feb. 2011, pp. 1–5,
isbn: 978-1-4577-0786-5. doi: 10.1109/WIRELESSVITAE.2011.5940877.
[Online]. Available: http://ieeexplore.ieee.org/document/5940877/
(visited on 05/16/2019).

102

https://academic.oup.com/jamia/article-lookup/doi/10.1197/jamia.M2444
https://academic.oup.com/jamia/article-lookup/doi/10.1197/jamia.M2444
https://academic.oup.com/jamia/article-lookup/doi/10.1197/jamia.M2444
https://doi.org/10.17487/RFC7519
https://www.rfc-editor.org/info/rfc7519
https://jwt.io/
https://doi.org/10.1136/bmjqs-2015-003955
http://qualitysafety.bmj.com/lookup/doi/10.1136/bmjqs-2015-003955
http://qualitysafety.bmj.com/lookup/doi/10.1136/bmjqs-2015-003955
http://www.hl7.org/implement/standards/index.cfm?ref=nav
https://loinc.org/about/
https://ehealthresearch.no/en/projects/fullflow
https://ehealthresearch.no/en/projects/fullflow
https://doi.org/10.3233/978-1-61499-830-3-619
https://doi.org/10.3233/978-1-61499-830-3-619
http://www.medra.org/servlet/aliasResolver?alias=iospressISBN&isbn=978-1-61499-829-7&spage=619&doi=10.3233/978-1-61499-830-3-619
http://www.medra.org/servlet/aliasResolver?alias=iospressISBN&isbn=978-1-61499-829-7&spage=619&doi=10.3233/978-1-61499-830-3-619
http://www.medra.org/servlet/aliasResolver?alias=iospressISBN&isbn=978-1-61499-829-7&spage=619&doi=10.3233/978-1-61499-830-3-619
https://doi.org/10.1109/WIRELESSVITAE.2011.5940877
http://ieeexplore.ieee.org/document/5940877/

BIBLIOGRAPHY

[71] (2019). Prisma website, [Online]. Available: http : / / www . prisma -
statement.org/ (visited on 05/19/2019).

[72] (2019). Awesome go: A currated list of aewsome go frameworks, libraries
and software, [Online]. Available: https : / / github . com / avelino /
awesome-go (visited on 05/13/2019).

[73] S. Robertson and J. Robertson, Mastering the requirements process, 2nd
ed. Upper Saddle River, NJ: Addison-Wesley, 2006, 560 pp., OCLC:
ocm62697079, isbn: 978-0-321-41949-1.

103

http://www.prisma-statement.org/
http://www.prisma-statement.org/
https://github.com/avelino/awesome-go
https://github.com/avelino/awesome-go

Appendices

105

A
Appendix 1
Documentation of the servers API is provided below. It is also available at https:
//documenter.getpostman.com/view/7682478/S1TU2yHY?version=latest. Each
API call contains the following;

1. A name with the syntax: [NAME] Function

2. The URL and path of the given request

3. Information about the header

4. The body of the request

5. An example of how to use the given request with curl

107

https://documenter.getpostman.com/view/7682478/S1TU2yHY?version=latest
https://documenter.getpostman.com/view/7682478/S1TU2yHY?version=latest

5/29/2019 EDMON

https://documenter.getpostman.com/view/7682478/S1TU2yHY?version=latest 1/13

EDMON

GET [Location] Get static

localhost:8000/location/GetStaticLocation

Get the users static location

HEADERS

Authorization

Bearer {{token}}

Example Request

[Location] Get static

curl --location --request GET "localhost:8000/location/GetStaticLocation" \

 --header "Authorization: Bearer {{token}}"

POST [Location] Set static

localhost:8000/location/PostStaticLocation

Set the users static location

HEADERS

BODY

Content-Type

application/json

Authorization

5/29/2019 EDMON

https://documenter.getpostman.com/view/7682478/S1TU2yHY?version=latest 2/13

{
 "latitude": {{LATITUDE}},
 "longitude": {{LONGITUDE}}
}

Example Request

[Location] Set static

curl --location --request POST "localhost:8000/location/PostStaticLocation" \

 --header "Content-Type: application/json" \

 --header "Authorization: " \

 --data "{

 \"latitude\": {{LATITUDE}},

 \"longitude\": {{LONGITUDE}}

}"

POST [Locaiton] Set dynamic

localhost:8000/location/PostDynamicLocation

Set the users dynamic location

HEADERS

BODY

Content-Type

application/json

Authorization

Bearer {{token}}

{
 "latitude": {{LATITUDE}},
 "longitude": {{LONGITUDE}}
}

Example Request

[Locaiton] Set dynamic

5/29/2019 EDMON

https://documenter.getpostman.com/view/7682478/S1TU2yHY?version=latest 3/13

curl --location --request POST "localhost:8000/location/PostDynamicLocation" \

 --header "Content-Type: application/json" \

 --header "Authorization: Bearer {{token}}" \

 --data "{

 \"latitude\": {{LATITUDE}},

 \"longitude\": {{LONGITUDE}}

}"

PUT [Location] Edit static

localhost:8000/location/EditStaticLocation

Edit the users static location

HEADERS

BODY

Content-Type

application/json

Authorization

Bearer {{token}}

{
 "latitude": {{LATITUDE}},
 "longitude": {{LONGITUDE}}
}

Example Request

[Location] Edit static

curl --location --request PUT "localhost:8000/location/EditStaticLocation" \

 --header "Content-Type: application/json" \

 --header "Authorization: Bearer {{token}}" \

 --data "{

 \"latitude\": {{LATITUDE}},

 \"longitude\": {{LONGITUDE}}

}"

PUT [Location] Edit dynamic

5/29/2019 EDMON

https://documenter.getpostman.com/view/7682478/S1TU2yHY?version=latest 4/13

localhost:8000/location/EditDynamicLocation

Edit the dynamic location of a user

HEADERS

BODY

Content-Type

application/json

Authorization

{
 "latitude": {{LATITUDE}},
 "longitude": {{LONGITUDE}}
}

Example Request

[Location] Edit dynamic

curl --location --request PUT "localhost:8000/location/EditDynamicLocation" \

 --header "Content-Type: application/json" \

 --header "Authorization: " \

 --data "{

 \"latitude\": {{LATITUDE}},

 \"longitude\": {{LONGITUDE}}

}"

DEL [Location] Delete static

localhost:8000/location/DeleteStaticLocation/

Deletes the users static location

HEADERS

Authorization

Bearer {{token}}

5/29/2019 EDMON

https://documenter.getpostman.com/view/7682478/S1TU2yHY?version=latest 5/13

Example Request

[Location] Delete static

curl --location --request DELETE "localhost:8000/location/DeleteStaticLocation/" \

 --header "Authorization: Bearer {{token}}"

DEL [Location] Delete dynamic

localhost:8000/location/DeleteDynamicLocation/

Delete the users dynamic location

HEADERS

PARAMS

Authorization

Bearer {{token}}

Example Request

[Location] Delete dynamic

curl --location --request DELETE "localhost:8000/location/DeleteDynamicLocation/" \

 --header "Authorization: Bearer {{token}}"

GET [MedRec] Get all medical records

https://localhost:8000/medrec/GetAll

Fetch all the medical records for a user

HEADERS

Authorization

Bearer {{token}}

Example Request

5/29/2019 EDMON

https://documenter.getpostman.com/view/7682478/S1TU2yHY?version=latest 6/13

[MedRec] Get all medical records

curl --location --request GET "https://localhost:8000/medrec/GetAll" \

 --header "Authorization: Bearer {{token}}"

GET [MedRecs] Get all with given LOINC

localhost:8000/medrec/GetAllLoinc/:loinc

Fetch all medical records with a given LOINC code for a given user

HEADERS

PATH VARIABLES

Authorization

Bearer {{token}}

loinc

LOINC-CODE

Example Request

[MedRecs] Get all with given LOINC

curl --location --request GET "localhost:8000/medrec/GetAllLoinc/:loinc" \

 --header "Authorization: Bearer {{token}}"

GET [MedRecs] Get last X days

localhost:8000/medrec/GetPastDays/:day

Gets the past X days of recordings

HEADERS

PATH VARIABLES

Authorization

Bearer {{token}}

day

5/29/2019 EDMON

https://documenter.getpostman.com/view/7682478/S1TU2yHY?version=latest 7/13

{{date}}

Example Request

[MedRecs] Get last X days

curl --location --request GET "localhost:8000/medrec/GetPastDays/:day" \

 --header "Authorization: Bearer {{token}}"

PUT [MedRecs] Edit

localhost:8000/medrec/EditRecord/

Edit an existing medical record (update)

HEADERS

BODY

Content-Type

application/json

Authorization

Bearer {{token}}

{
 "Value": {{ID}},
 "HL7": "LOINC-CODE",
 "Timestamp": "2016-01-02 15:04:01",
 "ID": 4
}

Example Request

[MedRecs] Edit

5/29/2019 EDMON

https://documenter.getpostman.com/view/7682478/S1TU2yHY?version=latest 8/13

curl --location --request PUT "localhost:8000/medrec/EditRecord/" \

 --header "Content-Type: application/json" \

 --header "Authorization: Bearer {{token}}" \

 --data "{

 \"Value\": {{ID}},

 \"HL7\": \"LOINC-CODE\",

 \"Timestamp\": \"2016-01-02 15:04:01\",

 \"ID\": 4

}"

POST [MedRecs] Post

http://localhost:8000/medrec/CreateRecord

Create a new medical record

HEADERS

PARAMS

BODY

Content-Type

application/json

Authorization

Bearer {{token}}

{
 "Value": {{value}},
 "HL7": "LOINC-CODE",
 "Timestamp": "2019-05-05 12:25:01",
 "Location_id": {{ID}},
 "recording": {{BASE64-VIDEO}}
}

Example Request

[MedRecs] Post

5/29/2019 EDMON

https://documenter.getpostman.com/view/7682478/S1TU2yHY?version=latest 9/13

curl --location --request POST "http://localhost:8000/medrec/CreateRecord" \

 --header "Content-Type: application/json" \

 --header "Authorization: Bearer {{token}}" \

 --data "{

 \"Value\": {{value}},

 \"HL7\": \"LOINC-CODE\",

 \"Timestamp\": \"2019-05-05 12:25:01\",

 \"Location_id\": {{ID}},

 \"recording\": {{BASE64-VIDEO}}

}

DEL [MedRecs] Delete

localhost:8000/medrec/DeleteRecord/:id

Deltes a record (Give an ID)

HEADERS

PATH VARIABLES

Authorization

Bearer {{token}}

id

{{ID}}

Example Request

[MedRecs] Delete

curl --location --request DELETE "localhost:8000/medrec/DeleteRecord/:id" \

 --header "Authorization: Bearer {{token}}"

GET [User] Get

https://localhost:8000/user/GetUser/

Fetch all data about your user

HEADERS

Content-Type

5/29/2019 EDMON

https://documenter.getpostman.com/view/7682478/S1TU2yHY?version=latest 10/13

application/json

Authorization

Bearer {{token}}

Example Request

[User] Get

curl --location --request GET "https://localhost:8000/user/GetUser/" \

 --header "Content-Type: application/json" \

 --header "Authorization: Bearer {{token}}"

POST [User] Create user

https://localhost:8000/user/CreateUser

Create a new user

HEADERS

PARAMS

BODY

Content-Type

application/json

Authorization

Bearer {{token}}

{
 "username": "Username",
 "email": "test@email.com",
 "password": "password"
}

Example Request

[User] Create user

5/29/2019 EDMON

https://documenter.getpostman.com/view/7682478/S1TU2yHY?version=latest 11/13

curl --location --request POST "https://localhost:8000/user/CreateUser" \

 --header "Content-Type: application/json" \

 --data "{

 \"username\": \"Username\",

 \"email\": \"test@email.com\",

 \"password\": \"password\"

}

"

PUT [User] Edit

localhost:8000/user/EditUser

Edit the information on a user

HEADERS

BODY

Content-Type

application/json

Authorization

Bearer {{token}}

{
 "username": {{USENAME}},
 "email": {{EMAIL}},
 "staticlocation": [2,2],
 "dynamiclocation": [2,2],
 "SicknessStatus": true
}

Example Request

[User] Edit

5/29/2019 EDMON

https://documenter.getpostman.com/view/7682478/S1TU2yHY?version=latest 12/13

curl --location --request PUT "localhost:8000/user/EditUser" \

 --header "Content-Type: application/json" \

 --header "Authorization: Bearer {{token}}" \

 --data "{

 \"username\": {{USENAME}},

 \"email\": {{EMAIL}},

 \"staticlocation\": [2,2],

 \"dynamiclocation\": [2,2],

 \"SicknessStatus\": true

}

DEL [User] Delete

localhost:8000/user/DeleteUser/

Delete your user

HEADERS

PARAMS

Authorization

Bearer {{token}}

Example Request

[User] Delete

curl --location --request DELETE "localhost:8000/user/DeleteUser/" \

 --header "Authorization: Bearer {{token}}"

POST Authenticate

https://localhost:8000/auth/login

Provide your username and password to get the JSON web token from the server

HEADERS

Content-Type

application/json

Authorization

5/29/2019 EDMON

https://documenter.getpostman.com/view/7682478/S1TU2yHY?version=latest 13/13

BODY

Bearer {{token}}

{
 "username": {{USERNAME}},
 "userid": {{UID}},
 "password": {{{PASSWORD}}
}

Example Request

Authenticate

curl --location --request POST "https://localhost:8000/auth/login" \

 --header "Content-Type: application/json" \

 --data "{

 \"username\": {{USERNAME}},

 \"userid\": {{UID}},

 \"password\": {{{PASSWORD}}

}"

	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background and Motivations
	1.2 Scope and Research Questions
	1.2.1 Assumptions and Limitations

	1.3 Methods
	1.4 Significance and Contribution
	1.5 The organization of the report

	2 Theoretical Framework
	2.1 Health platforms
	2.2 Disease surveillance
	2.3 Diabetes
	2.4 Security and Privacy
	2.4.1 General Data Protection Regulation
	2.4.2 HTTPS
	2.4.3 De-identification
	2.4.4 JSON Web Tokens

	2.5 Standardization
	2.5.1 Health Level 7
	2.5.2 LOINC
	2.5.3 FullFlow

	2.6 EDMON
	2.7 State-of-the-Art
	2.7.1 Data Sources and Search Criteria

	3 Methods and Materials
	3.1 Research Paradigm and Tools
	3.2 Materials
	3.3 Golang
	3.3.1 Rational for choosing Golang

	3.4 Literature review
	3.5 Testing
	3.5.1 Experimental design
	3.5.2 EDMON algorithm
	3.5.3 Performance
	3.5.4 Average time of execution for a user
	3.5.5 Average time of concurrent requests to the system
	3.5.6 Profiling
	3.5.7 Throughput

	3.6 Evaluation methods
	3.7 Critique of the Methods Used

	4 Requirements Specification
	4.1 Source of the Requirements
	4.2 Requirements
	4.2.1 Scenario one
	4.2.2 Scenario two
	4.2.3 Scenario three
	4.2.4 Functional requirements
	4.2.5 Non-functional requirements

	4.3 User Stories

	5 Design
	5.1 Identified Features of the System
	5.1.1 EDMON system design

	5.2 Application programming interface
	5.2.1 Data transfer design
	5.2.2 Authentication and Access Control

	5.3 Database design
	5.3.1 User
	5.3.2 Medical Record
	5.3.3 Location

	5.4 Version of the system
	5.4.1 System design
	5.4.2 Extension of the system

	6 Implementation
	6.1 Project Dependency
	6.1.1 General
	6.1.2 API
	6.1.3 Models
	6.1.4 Database
	6.1.5 Middleware
	6.1.6 System illustration

	7 Test and results
	7.1 EDMON algorithm
	7.2 Average times
	7.2.1 Concurrent requests

	7.3 Profiling
	7.3.1 CPU & Memory
	7.3.2 Pprof results

	7.4 Throughput

	8 Discussion
	8.1 Evaluation of results
	8.2 Research questions
	8.3 Future work

	9 Conclusion
	Bibliography
	Appendices
	A Appendix 1

