UiT Faculty of Science and Technology

THE ARCTIC Department of Computer Science

UNIVERSITY
OF NORWAY Latency Optimized Microservice Architecture for Privacy

Preserving Computing

Nikolai Asen Magnussen
INF-3981: Master’s Thesis in Computer Science june 2019

FLTT0TT 0TI iiirrririiiriiriririrri TRTETET R BT AT Ll L LTI I (i rireieriis
LLLLLLLrnn e i nrinnnlnriiieieiiierlgl lIlIlIlllllIlIlIlllIlIlIlllllIlIlIllllllllIlIlIlllllIlIlIlll/
F11000TETrnenrrieieririileliiiilrieiel lIlIlllllIlIlIllllllllIlIlIlllllIlIlIlIlIlIlIlIlIlIIGIIIIIIII
' 1

UITTEETTEET R aariia i aadidd 1000000000000 0000 00000000000 002000 00002070000 00renqiinnranniininieii
IIIC!ca!IIIIIIIIIIIIIIIIIIIIII LI0T070 000000000 0000007000000 702qiqiqiqairenarqaerenenenireninenen

IIIIIIIIIIIIIIIIIIIII IIIIIIIIII LO2T000 000000000000 00000000 00000000000 1qqqiqaqiqneiqaeiqneneninoneia

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
:
§~§
B
~
B
~
v
~
-
~
~
~
~
~
~y
~
-
~
~
~
-
~
-~
~
-
~
~
~
-~
~
-~
~
~
~
-
~
-~
~
g
~
-~
~
~
~
~
~
~
~

~
~
~
~
~
~
~
~
~
~
~
~
~
“~

J
i 111 101 I l
odbaaraedbbbiaroiny I IMIMIINININIANINS Illllllllllllllllllllllll ll Illlllllll e

1

N
N
~
~
~
-
~
~
~
~
~
~
N
~
~
-y
S
~
~
~
~
N
S~
~
~
~
-~
L
~
~
~
~

AN RRR RN ANV llllllllllll 40
verbaarrrdiaiinoy I IIIMIMINMNMMIMINMIMIMNMIMMININnn llllll ” ll

RaaRRRRRaaaN Y A NNINAIIINNINI N lllllllllllllllllllllll aunnng

veaaaaaareair MMM IR llllllllllllllllllllllll winn
ARIA ey il l 144 lllllllllllllllllllllll"
l 'llllllllllllllllllllllllll

qrraaaaaannnnnnnnnnnd
Wiy il llll

-

quraaananinininininen
AR RRaRaRaar 2NN 'lllll l'll'lllll ll'll'llllll'l 'lllll (4 lllll (A lllll llllllll'll lllllll'll"

[/

PO00000 J00 0000000000000 00000000000000000000000 0000000000000
AA0QRY 2000 00001
LY l""'""""""""""""""""'"'""'""'"'""'"""""""""""' LLLLLLILA
IAA00r 20000000000000000004. LLLLL] ANQR000000000 LLLLL] LILLL] 'l'l"""'l"
AL l'""""""""""""""""""""""""""""" """"" """' "

1AqNt 000000000000 0000000000000000000000000R0R0R0R0RARRRARARARARNRNRARARAGNRRRNRNNANAAS
LU """"""'"""""""""""""""""""""""""""""""""""

w l'""' " Serenany
17 J00000000000000000000000000R 000000000 RARARARARARARARRNNNARARARANNNARARARRINRARAGAIRNGNNNGAGNGNI
7 2000000000000 000N RQNNRANRAANARANRNANANIRRNNRRNARANARANARNANANANRNARANARANARANNQNNRRANAANARANANANRN

This thesis document was typeset using the UiT Thesis IATEX Template.
© 2019 — http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

“Publication is the self-invasion of privacy.”
—Marshall McLuhan

“Hofstadter’s Law: It always takes longer than you expect, even when you
take into account Hofstadter’s Law.”
-Douglas Hofstadter

“If debugging is the process of removing bugs, then programming must be the
process of putting them in.”
—Edsger W. Dijkstra

Abstract

Recent developments in microservices architecture and building have lead to
the advent of unikernels, a specialized operating system kernel coupled with,
and executing only, a single application.

This thesis presents PPCE a distributed system utilising a microservices archi-
tecture based on unikernels, created to enable privacy-preserving computing
for users, classes of users, and more importantly; doing so with acceptable
latency.

We built an initial version of PPCE, and through experimentation, we measured
the latency to be 63.15ms. Then we devised two optimized approaches to
reduce the user-perceived latency of the initial version.

After conducting experiments on the two optimized versions of PPCE, we
discussed the applicability of the two approaches and compared them to
related work. Showing that our hybrid version of PPCE is able to implement
an architecture enabling privacy preserving computing with only 29.53 ms
user-perceived latency.

Acknowledgements

To my supervisor Havard D. Johansen; for his criticism, advice and guidance.
Thank you for allowing me to bear the burden of responsibility and freedom,
and always being available for discussions.

To all the people of the Corpore Sano lab; they have heaps of patience. We
have had numerous interesting, and less interesting, discussions. You truly are
an amazing bunch of people, all of which will be missed!

To my fellow master’s candidates in the class of 2014; congratulations and best
of luck. Almost five years ago we didn’t know any programming, but look at
us now. Thank you for the five amazing years, to spending even more of them
together with you! I love you all!

To my friend Andreas Isnes Nilsen; for his love, hate and support. Thank you
for not taking me to Dignitas, but enduring my crazy ideas and behavior, and
at times encouraging it with your own craziness. Without you, this journey
would not have been close to this exciting and enjoyable.

To the rest of my friends; you know who you are. Your help and presence was
greatly appreciated.

List of Abbreviations

AOT Ahead of Time

API Application Programming Interface
ARP Address Resolution Protocol
BLP Bell and LaPadula

BTC Bitcoin

DDR Double Data Rate

DNS Domain Name System

GC Garbage Collector

HTTP Hypertext Transfer Protocol
HVT Hardware Virtualization Tender
IAD Information Access Disruption
IP Internet Protocol

JIT Just in Time

JSON JavaScript Object Notation
KVM Kernel-based Virtual Machine
LB Load Balancer

LXC Linux Containers

Vi

Vil LIST OF ABBREVIATIONS

MAC Media Access Control

ML Meta Language

NvMe Non-Volatile Memory Express

0s Operating System

0sSI Open Systems Interconnection

POSIX Portable Operating System Interface
PPCE Privacy-Preserving Computing Environment
PRIVATON Privacy Automaton

RAM Random Access Memory

REST Representational State Transfer

SGX Software Guard Extensions

SML Standard ML

SSD Solid State Drive

TCB Trusted Computing Base

TCP Transmission Control Protocol

TLS Transport Layer Security

UiT University of Tromsg

uuID Universally Unique Identifier

vM Virtual Machine

vMM Virtual Machine Monitor

VvMMD Virtual Machine Manager Daemon

Contents

Abstract iii
Acknowledgements \
List of Abbreviations vii
List of Figures xi
List of Tables xiii
1 Introduction 1
1.1 ThesisStatement. 1
1.2 Context. e e e e e e 2
1.3 Methodology, 2
1.4 Outline 3
2 Background 5
2.1 InformationFlow 5
2.2 Use-BasedPrivacy, 7
2.3 MICroServiCes v v v v v i e e e e e e e e e e 7
2.4 Containers v it e e e e e e e e 8
2.5 Unikernels e 8
26 OCaml e 9
2.7 MirageOS L 10
3 Design and implementation of PPCE 11
3.1 SystemoOVerviewo e it e e e e 11
3.2 Communication Between Components 14
3.3 Proxy 15
3.4 Authentication Lo o 16
3.5 Virtual Machine Manager Daemon 17
3.6 Applications 19
3.7 Modularity 20

X CONTENTS

4 Evaluation 21
4.1 Experimental Setup 21
4.2 NetworkSetup 23
4.3 Initial Full System Experiment 23

4.3.1 Discussion 25
4.4 Microbenchmark: Creating and attaching tap to bridge . .. 26
4.4.1 DiscussSiono 27
4.5 Microbenchmark: Unikernel boot 28
4.5.1 Discussion 29
4.6 Improved Full System Experiment 30
4.6.1 Ahead-of-time spawning of unikernels 31
4.6.2 Hybridtappool 33
4.7 SUMMATIY . . . v v v v v e e e e e e e e e e e e e e 35

5 Discussion 37
5.1 Securityand Privacy 37
5.2 Service Lifetime Configuration 39
5.3 System Shortcomings 41

6 Conclusion 43
6.1 RelatedWork. 43
6.2 ConcludingRemarks 44

6.3 Future Work 45

List of Figures

2.1
2.2

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3

Linear lattice based on mutually exclusive security classes . . 6
Subset lattice based on a subset of the security classes {A, B,C} 6

Architecture of PPCE 13
Hosting environment for PPCE 22
Network setup for full system experiments 23
Initial full system experiment communication flow 24
Microbenchmark: create and attach tap to bridge 26
Microbenchmark: unikernel boot 28
AOT optimized full system experiment communication flow . 31
Hybrid optimized full system experiment communication flow 33
Comparison of expected and measured latency for PPCE . . 35
Lifetime configuration for user classes 39
Lifetime configuration for individual users 40
Lifetime configuration for one-off application instances . . . 40

Xi

List of Tables

4.1
4.2
4.3
4.4
4.5

Initial full system experiment statistics 25
Microbenchmark: create and attach tap to bridge statistics . 27
Microbenchmark: unikernel boot statistics 29
AOT optimized full system experimetn statistics 31
Hybrid optimized full system experiment statistics 33

Xiii

Introduction

The move from monolithic computing systems to microservices oriented system
architectures, where each component only performs a few or a single part
of the computation, has sparked new development and interest in different
hosting architectures and methods. One of these new methods for hosting
microservices are unikernels, where a library operating system in combination
with the microservice application code create a small operating system only
capable of performing the tasks defined in the application code. This leads to
microservices with small trusted computing bases compared to conventional
operating systems.

This thesis presents PPCE, a unikernel based privacy preserving computing
environment. The concept privacy preserving in the context of this thesis is
meant to encompass the system to preserve the privacy of its users by both
access restriction and reporting of user behavior and data access. The system
will be evaluated and optimized to minimise user-perceived end-to-end latency
while still being scalable and practical in use.

1.1 Thesis Statement

This thesis will investigate the applicability of using the MirageOS [1] library
Operating System (0S) to build a microservice architecture for privacy preserv-
ing computing. In addition, we will investigate the feasibility of using latency

2 CHAPTER 1 / INTRODUCTION

hiding to optimize user-perceived end-to-end latency.

Our thesis statement is:

MirageOS can be used to build a microservice architecture for privacy
preserving computing while providing reasonable user-perceived end-to-
end latency.

1.2 Context

The context of this thesis is in the Corpore Sano Centre! at University of Tromsg
(uiT) with the Information Access Disruption (IAD) research group. The group
focus areas are in privacy, operating systems, and employing information to
empower users. All the while not violating privacy of users, and keeping systems
secure.

Our work with 0s architecture include Vortex [2], an implementation of the
omni-kernel operating system architecture providing fine-grained scheduler
control of resource allocation and pervasive monitoring. We have also developed
Fireflies [3], a Byzantine fault-tolerant membership and gossip service capable
of operating with the presence of malicious members. Using Fireflies, we built
FirePatch [4], a secure and time-critical software patch dissemination system
with the goal of preventing an adversary from delaying patches in a distributed
system.

With the introduction of Intel Software Guard Extensions (SGX), we conducted
extensive research and performance evaluation, leading to recommendations
for application development on the architecture [5]. In the domain of pri-
vacy, we show a mechanism for enforcing privacy policies for shared data [6].
The combination of previous work, together with our partners at Pomona
College and Cornell University, resulted in SGX enforcement of use-based pri-

vacy [7].

1.3 Methodology

The ACM task force on the Core of Computer Science presents a scientific
framework for describing computer science and computing engineering. It
defines computer science and computer engineering through three paradigms,
forming the basis of scientific work within computing:

1. https://corporesano.no

1.4 / OUTLINE 3

Theory is roted in mathematics, where a valid theory is described through
defining the objects, hypothesize possible relationships between them,
proving said relationships and finally interpreting the results

Abstraction is rooted in the experimental scientific method, focusing on the
investigation of phenomena. Its method involves designing experiments
from collected data and performing analysis based on an initial hypothe-
sis

Design is rooted in engineering, applicable to the construction of a system or
device. These steps involve stating requirements and specifications of the
system, designing and implementing it, and finally testing it.

This thesis is rooted in the areas of systems engineering and the scientific
method, consequently using methods from both the design and abstraction
paradigms. We will specify our requirements regarding end-users and system
features. PPCE will be implemented through an iterative process, taking into
account the original requirements and from experimentation and results, we
will change the system to better suit end users, demonstrating the system’s
capabilities and applicability.

1.4 Outline
The rest of the thesis is outlined as follows:

Chapter 2 introduces required background information, and other prerequi-
sites pertaining to system components, theoretical concepts such as infor-
mation flow and the lattice model, the high-level concept of unikernels,
and the more specialized MirageOS which is employed in this thesis.

Chapter 3 describes the overall system architecture with design choices and
requirements, and implementation details of the components composing
PPCE.

Chapter 4 first describes the experimental setup, then goes into detailed de-
scription of the experiments conducted, with the results from the different

experiments, and discussing the experimental results.

Chapter 5 discusses PPCE in terms of security and privacy, service lifetimes
and its shortcomings.

Chapter 6 concludes the thesis, compares PPCE against other related work,

CHAPTER 1 / INTRODUCTION

and outlines future work.

Background

2.1 Information Flow

In the field of information theory, information flow is a well researched subject,
with Denning’s seminal paper from 1976 [8] introducing the lattice model for
secure information flow. Information flow focuses on the flow of information
between objects through operations [9], rather than the transfer of access and
access to larger objects such as processes or files, such as the original Bell and
LaPadula (BLP) model [10].

The lattice model is a mathematical framework for formulating requirements
for secure information flow between security classes. As the name suggests,
the central component is a lattice structure, which is derived from a set of
security classes. Secure information flow is defined to be the property that no
unauthorized flow of information is possible [8]. In practice, information flow
policies are not necessarily safety properties [11].

6 CHAPTER 2 / BACKGROUND

{COSMIC TOP SECRET} {A ’ B ’ C}

{NATO SECRET}

{A,B} {A,C} {B,C}

{NATO CONFIDENTIAL} >< ><

{NATO RESTRICTED}
{A} {B} {C}

{UNCLASSIFIED}

9! {}

Figure 2.1: Linear lattice based on mutu- Figure 2.2: Subset lattice based on a sub-
ally exclusive security classes set of the security classes {A,
B, C}

The lattice structure is derived from a set of security classes, and either be a
linearly ordered lattice, or a lattice of subsets. As Figure 2.1 illustrates; the
lattice derived from the security classes {UNCLASSIFIED, NATO RESTRICTED,
NATO CONFIDENTIAL, NATO SECRET, COSMIC TOP SECRET} is linear. On the
other hand, Figure 2.2 illustrates the more complex lattice derived from the
security classes {A, B, C}. It is also possible to construct even more complex
lattices, with the only constraint being that the constructed structure is a
universally bounded lattice [8].

More formally, the following notation is defined:

SC is the set of disjoint security classes of information.

@ is the class-combining operator specifying the output security class when
any binary operator is applied to a pair of operands.

— is the flow relation on pairs of security classes.

We write A — B if and only if information from class A is permitted to
flow into class B. Using the security classes from Figure 2.1, we can write
NATO CONFIDENTIAL — COSMIC TOP SECRET,butnotNATO RESTRICTED —
UNCLASSIFIED.

In the lattice model; information, users, and objects are assigned security

2.2 / USE-BASED PRIVACY 7

classes. A flow model is considered secure if and only if execution of a sequence
of operations cannot result in a flow that violates the relation defined by the
operation ‘—".

2.2 Use-Based Privacy

The concept of use-based privacy is a part of the field of information theory.
Use-based privacy is fundamentally different from the views originating from
the seminal paper on privacy from Brandeis and Warren [12] which resulted
in privacy often being defined in terms of access control. Comparatively, use-
based privacy is not just concerned with keeping information secret, but also
restricting how information is used [13].

To enforce fine-grained user privacy based off use-based privacy, Birrell propose
avenance tags which use a new language for expressing privacy policies [14].
Avenance tags are enforced by employing a Privacy Automaton (PRIVATON),
a finite state automata which are used in conjunction with the rest of the
avenance ecosystem to enforce user privacy. Use-based privacy can either
assume malicious adversaries, or accountable ones while still guaranteeing
privacy when using SGX [7].

2.3 Microservices

As more companies are adopting cloud computing to deploy applications,
the microservices [15] architecture is gaining in popularity [16]. Contrary to
common beliefs,the ideas of microservices architecture are not entirely new,
but is based on concepts from service-oriented architectures, and is also called
the second generation of services [17].

Systems with a monolithic architecture results in tight coupling between sys-
tem components, making them more difficult to, among other things, maintain
and scale [18]. Modern applications have taken the route of splitting these
large, monolithic systems into microservices [19]. A single microservice will not
provide the same functionality as a monolithic system. Each microservice will
provide a limited set of functionality, which combined with the other microser-
vices provide the same functionality as the original monolithic system. Not
only does this make it easier to swap out individual microservices and updating
them. But microservices are also generally designed so that they contain little
to no state, resulting in them being easier to scale horizontally by spawning
multiple instances as the total load increase. This is a common development

8 CHAPTER 2 / BACKGROUND

when running services on a cloud-based infrastructure [20].

Microservices are often deployed in the cloud, using containers such as Docker [21]
or Linux Containers (LXC) [22], or Virtual Machines (VMs) on a hypervisor
such as Kernel-based Virtual Machine (KvM) [23] or Xen [24].

2.4 Containers

The idea of virtualization and vMs has its origins in 1966 from IBM and
CP-40/CMS and described in their seminal paper [25]. Virtual machines are
executed on top of a hypervisor using a Virtual Machine Monitor (VvMM). The
hypervisor provides hardware virtualization, meaning it provides the vMs with
emulated CPU, memory, I/O and other devices.

Containers also employ the idea of virtualization, but uses OS virtualization
rather than hardware virtualization [26]. The container equivalent of a hyper-
visor is a container engine which is a part of the host 0s, allowing it to provide
the containers with 0Os virtualization. In practice, OS virtualization means a
container will use the services of the host OS kernel, and provide the required
libraries for the applications it hosts.

There are different implementations of containers. Perhaps the most popular
ones for Linux are LXC, and Docker which is a further development based off
LXC. An important result of containers only providing a small base and the
application itself, is that they are capable of being spawned quickly compared to
a VM, while maintaining low overhead in terms of performance and footprint.
In some instances, the throughput is higher, and latency lower for an application
in a container compared to a VM [27]. Containers are protected from each
other, somewhat like vMs, but resulting in a lower level of security than vMs
due to multiple containers sharing several different resources they get from
the host 0s kernel [28].

2.5 Unikernels

The idea of the library 0S, and application-level resource management is not
a new one [29], [30] and the label unikernel is mostly a refinement and a new
label for library 0ss built for executing on a hypervisor, only supporting the
virtual devices provided [31].

Unikernels are a further development after the initial rise of vMs followed by the

2.6 / OCAML 9

recent emergence and adoption of container technology. Virtual machines only
share the hardware and hypervisor, and usually, the same vMM. Comparatively,
containers share the same as vMs, but also the kernel of the vM. Unikernels
often share the same resources as any other vM, but further research has shown
that it is feasible, and a good decision security-wise to compile a specialized
VMM together with the unikernel, leaving them to only share hardware and
hypervisor [32], [33].

The main difference between regular vMs and unikernels is that vMs usually
run a commodity 0S8, like Ubuntu Linux. In addition to the one service you
want to run, commodity OSs also usually contain other services, such as a SSH
server and client, web browser and file manager. They are components of the
system that are not required, and will make the system easier to compromise,
and to further pivot from a compromised system to other systems, due to the
increased attack surface further.

Unikernels are statically compiled from the application code and the library
0S. Optionally, a specialized vMM is also compiled. The compilation process
contains, among other forms of optimization, dead code elimination. Meaning
the compiled unikernel will only contain the drivers and capabilities that are
used by the application code. As a consequence; if the application is not
using disk for storage but only operates in memory, like Redis, the resulting
unikernel does not have the ability to access disk devices, reducing the attack
surface.

There are a multitude of different unikernel systems, or library 0Ss, such as
IncludeOS [34] written in C+ +, EsseOS [35] written in Haskell, ClickOS [36]
optimized for network functionality, Drawbridge [37] being a Windows 7 library
0S, and MirageOS [38] written in OCaml.

2.6 OCaml

OCaml is a functional programming language that allow multi-paradigm code,
such as imperative and object oriented programming styles as well [39]. OCaml
uses a strong static type system to enforce types, as well as having algebraic
data types to ensure further reliability and safety. Algebraic data types are a
part of the functional programming paradigm, which has its roots in Church’s
lambda calculus [40] with a foundation in mathematics. OCaml itself stem
from the much older Meta Language (ML), which was standardized by Milner
with Standard ML (SML) [41].

OCaml is a language with automatic memory management, meaning the lan-

10 CHAPTER 2 / BACKGROUND

guage runtime will allocate and free the memory for the user. OCaml employs
an incremental Garbage Collector (GC) [42], meaning it is better suited for
soft real-time applications than languages with other types of GC [43]. Studies
also show that OCaml code yields performance on par or better than Java, and
close to that of C and C++ [43].

This results in OCaml being well suited for systems programming, soft real-
time applications and other applications requiring high performance, safety
and reliably. These qualities make OCaml very attractive compared to other
languages generally used for systems programming, such as OSs [44].

2.7 MirageOS

There are multiple library OSs that are capable of creating unikernels, and they
have different goals and are programmed using different languages. MirageOS
is a library Os for building unikernels using the OCaml programming language
with the goal of being a clean-slate approach to the unikernel space [38].

MirageOS is a clean-slate approach as a library 0sS, meaning that it ignores
Portable Operating System Interface (POSIX) compliance, and by that back-
wards compatibility with existing software. Which means that existing software
already written in OCaml must be modified to conform to the interface ex-
posed by the MirageOS libraries, and software written in other languages
must be rewritten in OCaml while conforming to the MirageOS libraries’ inter-
face.

MirageOS empowers developers to use a three-stage development process,
making development and potential debugging easier [38]. This is done by pro-
viding multiple compile targets where, in terms of the three-stage development
process, the two first targets are common and the final stage will be specialized.
The first stage is to compile the unikernel as a Unix application making use of
system calls as other applications. Compiling the unikernel as a Unix applica-
tion with its own direct networking stack using a virtual ethernet device, is the
next, and second, stage. Finally, the unikernel is compiled against the specific
environment that it will be deployed in, such as a Xen image, or Hardware
Virtualization Tender (HVT) for KvM. This three-stage approach enables devel-
opers to build the three targets from the same source code, optimally, without
needing to make any changes to the source code between testing, using a Unix
target, and the deployment on the release platform.

Design and
implementation of PPCE

In this chapter we give a system overview of PPCE. We describe our design
decisions, requirements and scope limitations. In addition, we will describe
the implementation of the system components in isolation, and unifying them
to compose PPCE.

3.1 System overview

The design goals of the system is for a user, or a class of users, to use the system
in a manner that transparently preserves privacy.

More specifically, PPCE should have the following properties:
* Provide users with access transparency.
* Preserve user privacy through isolating computations.
* Minimize resource sharing through hardware virtualization.
From a consumer’s point of view, PPCE should act like a single, monolithic

M

12 CHAPTER 3 / DESIGN AND IMPLEMENTATION OF PPCE

system handling all requests and performing all computation for all users
and all classes. The above mentioned system quality is access transparency,
meaning a user will always access resources in the same, uniform way in a
distributed system [45]. While the users see this, the system will really preserve
privacy and security by only allowing a single user, or a class of user to use an
application instance. Meaning the system must create and instantiate multiple
instances of application services, which will perform the required computation.
The goal of this is to eliminate a whole class of bugs that can be leveraged to
create information leakage. An example of such a bug is the one leading to the
Heartbleed vulnerability in the OpenSSL library [46], which allowed a user to
leak information from the system, possibly obtaining information the user is
not authorized to view, compute on and have.

The threat model is a user who is authenticated, but will not deliberately
perform malicious acts due to accountability. This scenario is very similar to
the attacker scenario at hospitals where doctors technically are able to view
journals of patients they should not view, but due to the oversight and the
consequences of actually accessing the journals without good reason, and even
further spreading them, will deter doctors form acting maliciously.

PPCE consists of multiple components, each of which are currently trusted, as
they are all part of the core system. In practice, all components act as their own
separate systems using the services of other components, and trusting their
output. Due to difficulty of debugging and time constraints, Transport Layer
Security (TLS) certificates have not been issued and used internally within the
system.

3.1/ SYSTEM OVERVIEW 13

App 1
User
App 2
P @
Auth L Appn
P & P &

Figure 3.1: Architecture of PPCE with communication lines between the different
components

Figure 3.1 shows that the PPCE consists of four distinct parts; a combined proxy,
Domain Name System (DNS) server and Load Balancer (LB), an authentication
service, a Virtual Machine Manager Daemon (VMMD), and multiple application
services.

The proxy service is the point of entry to PPCE and the only component the
user should interact with, and the rest should not be accessible through the
internet, but only via the internal network the proxy is connected to. Resulting
in the user seeing the proxy service as the whole monolithic system, and not
any of the other microservices. The user will send a request to the proxy service,
which will make sure the user is authenticated and authorized, before handing
over the request to the appropriate computation service.

As shown in Figure 3.1, there are not much communication going on between
the different components. Most communication is between the proxy and the
other microservices, resulting in the proxy acting as a hub for communication
and the system as a whole.

14 CHAPTER 3 / DESIGN AND IMPLEMENTATION OF PPCE

3.2 Communication Between Components

We will now describe the communication between the different components
of the system as we can see in Figure 3.1 on the previous page. One thing to
note is that these lines of communication are not enforced as the only lines of
communication, but only as the default lines of communication in the system
and between components.

When a user makes a request to the system, the proxy initially receives the
request, and is responsible for routing it to the intended destination. But
before the request can be routed to its destination, the user needs to be
authenticated, though it is possible to allow a user to not be authenticated
before communicating with the system, possibly allowing the user access to
very general and otherwise fully open information. In most cases, and as
the system currently functions, the user must be authenticated, which is not
something the proxy is able to do on its own, and it relies on the auth service,
sending the user credentials to the authentication service, which performs its
internal authentication routine, and returns to the proxy which class of user
the authenticated user belongs to, if any.

Based on the user class, the user might be outright denied access if the creden-
tials are wrong, or the request may proceed to the next check. Once a user is
authenticated and the proxy knows which class the user belongs to, the proxy
will find a suitable application service to forward the request to. The request
is then forwarded to the appropriate application, which by its rules performs
computations, potentially querying a database or performing some other ar-
bitrary action with which the proxy is not concerned. After the application
service is finished with its computation, the response will be returned to the
proxy, which will forward the response back to the user.

The communication pattern described above only applies when there is a
suitable application service available for the particular user class, and for the
particular computation needs of the user. If such an application is not currently
present, the proxy need to make sure there is one available, and queries the
VMMD to spawn a new application that is suitable for that user’s clearance
level and computation needs. If the vMMD has an appropriate application
registered, it will use it’s internal logic to create and start a new application
service, and respond with the necessary routing information. The proxy then
uses the information from VMMD to register the application service. After
which the proxy will try and forward the request to the application service,
retrying until the application is ready to receive network traffic. The subsequent
communication will at this point be the same as the communication between
the proxy and application described above.

3.3 / PROXY 15

3.3 Proxy

As mentioned in section 3.1 on page 11, the proxy service is not only a proxy, but
also a LB and has some of the characteristics of a DNS server. A LB is a front
facing system which receives requests and distributes them to the different
available instances of a service. A LB balances the load according to some
scheme, which may be segmenting users geographically, yielding lower latency
for users due to geographical locality [47], or in a round-robin fashion - evenly
spreading the requests over multiple instances [48]. Some LBs require the
services to be configured at startup, or at compile-time, while a dynamic LB
allows services to register during runtime.

A proxy is a service with the ability to forward a request based on a pattern, to
another service generally not available externally, but only through the proxy
server. Proxy servers serve some of the same functionality as a LB, such as the
ability to proxy connections to different other applications. A proxy does not
need to perform load balancing in addition to proxying, and a proxy usually
proxies based on some more complex routing scheme than a LB that can spread
to the actual application behind the L.B. These are sometimes combined into
a proxy server that can load balance. One example of this is the Nginx web
server which is a web server, but also serves as a LB and proxy if configured to
do so.

The proxy server implemented here acts as a proxy server, matching routes
to proxied services, as well as load balancing services by providing multiple
instances of the same service. By allowing services to register themselves with
the proxy, it provides dynamic load balancing. A great difference between this
proxy and other proxy services is the fact that this proxy is closely coupled
with the authentication service, which provides the clearance level for a user,
impacting which instances that user is allowed to access.

Using the linear lattice show in Figure 2.1 on page 6, a user with NATO SECRET
clearance is not allowed to use a service graded COSMIC TOP SECRET. If the
user with NATO SECRET clearance is allowed to use a service graded NATO
CONFIDENTIAL, that service’s grading must be changed to NATO SECRET deny-
ing users with only NATO CONFIDENTIAL clearance to gain access to the service,
because of information potentially leaked from the request by the user with
clearance NATO SECRET. This is required to maintain secure information flow.
The most straight forward way to maintain the security of the information flow
is to only allow a user to interact with a service with the exact same clearance
level as his or her own.

The proxy can receive a registering request from a service where it specifies the
required clearance level for access and with the Internet Protocol (1P) address of

16 CHAPTER 3 / DESIGN AND IMPLEMENTATION OF PPCE

itself. Registering will place the required information into a mapping structure
between the tuple (application, clearance) and a set of 1P addresses serving
that particular combination of (application, clearance).

Upon receiving a request from a user, the proxy will extract the username and
password from the request, and send that to the authentication service, which
responds with a Universally Unique Identifier (UUID) which is used to identify
the user from that point forward. Together with the UUID, the authentication
service also returns the user’s clearance level, which will be used to determine
which, if any, service it is allowed to access.

If an appropriate service is already registered, the request is forwarded to
it, and later returned back to the user. If on the other hand, no appropriate
service is registered, the proxy will determine the name of the service, and
request the VMMD to spawn a new instance with that specific clearance level.
If successful, the vMMD will respond OK with the clearance and 1P address of
the newly spawned unikernel, which the proxy uses to register the application
in its internal routing tables. This enables the proxy to subsequently forward
user’s requests to it.

3.4 Authentication

In order for an authentication service to authenticate a user, it must have
access to either a token store, username and hashed passwords, or both. Most
authentication systems still require users to log in by providing a username
and password. The most straightforward, but inherently problematic from a
security point of view, is to store the username and passwords in plain text, and
compare the provided credentials with the stored ones. In earlier systems, it
was commonplace to store plain text passwords for a long time, but the practice
has almost disappeared, partly due to the large number of major data breaches
reported during the last decade [49]. In spite of this, we still observe issues
relating to storing passwords in plain text [50], [51], and systems designed
with the assumption that their systems or networks will never be breached.
This issue grows even larger when users reuse their passwords at multiple
sites, and the compromise of one service lead to accounts on other sites being
compromised too [49], [52].

To properly secure passwords, it is recommended that a sufficiently hard-to-
compute algorithm is used, as well as salting the password when hashing it.
An easy-to-compute hash can either be reversed due to mathematical vulnera-
bilities being discovered, or due to the ability to brute force, or rainbow table
them very quickly [53]. By rainbow table, we mean a precomputed mapping

3.5 / VIRTUAL MACHINE MANAGER DAEMON 17

from hash to password, using storage to reduce the required computation [54].
A salt is a random value combined with the password, and is stored together
with the username and hashed password. Passwords should be salted when
they are hashed to make sure that two equal passwords are not hashed to the
same value. Meaning that salt ensures that two equal passwords with different
salt yields two different hashes, making brute forcing or rainbow tables much
more time consuming, and on some occasions; infeasible.

The authentication service of this system uses salt from a high quality random-
ness source, along the password hash to verify a user’s username and password
combination. When the authentication service receives the username and pass-
word from the proxy, it will pass them along to the authentication service for
validation. Upon receiving the username and password, the authentication
service fetches the user with that particular username, and uses the Argon2
algorithm [55] for verifying the password’s validity against the stored digest
together with the stored salt.

If the password is verified, the authentication service returns a UUID which will
be the user’s cookie for authentication during the rest of the session. In addition
to the UUID for identifying the user’s session, the user’s clearances which is
stored with the credentials is also returned so the proxy service can determine
the clearances of the newly logged in user. Meaning the proxy service is able
to use that information to determine which application service the user should
be proxied to.

3.5 Virtual Machine Manager Daemon

In our PPCE, the VMMD orchestrates application services, allowing them to be
started on demand, and managing them while they are running. If the proxy
does not have an application registered for the combination of application
service and clearances, it must request the VMMD to spawn the appropriate
application service at the required level.

The vMMD orchestrates the different application services by starting new
instances, stopping running instances, registering new ones, de-registering
registered ones, and listing the current status of the different services available
for starting as well as currently running. The most important aspect of such an
orchestrator is to manage the lifetime of the services it launches, both being
able to start and stop, in addition to monitoring [56].

One can draw parallels between the VMMD and both Virt-Manager from Red
Hat [57] for regular vMs, or Docker swarm mode [58] and Kubernetes [59]

18 CHAPTER 3 / DESIGN AND IMPLEMENTATION OF PPCE

for Linux containers. The VMMD is closer to Virt-Manager in the way that
it orchestrates vMs and not containers, but more similar to Kubernetes or
docker swarm mode in the way it orchestrates microservices while being a
microservice itself. In particular, it differs from the others by being more light-
weight and specialized, in addition to being implemented in OCaml, just as
the other components of PPCE.

The vMMD is implemented as a Unix daemon with a Representational State
Transfer (REST) interface for actions such as registering the unikernel service,
deregistering a unikernel, starting a new unikernel, killing a unikernel, as well
as listing available unikernels. The vMMD is not implemented as a unikernel
itself, nor can it be implemented as one. It needs to be executed as a regular
application on the host OS to use the OS capabilities required to create and
run VMs using the KVvM subsystem of the Linux kernel.

Registering a new unikernel requires the requester to provide the path to the
HVT image of the unikernel along with a descriptive name, and the default
clearance level. When a unikernel is registered, the information is stored in
memory to be used by the vMMD for subsequent requests.

When the proxy requests a new service to be started, it will provide the name
of the application service to launch and the optional required clearances. The
clearances are optional, and if they are not provided, the vMMD will use the
default stored clearances. To spawn the new unikernel, two things that are
not in the host 0OS by default are required: the HVT VMM, and a tap device.
The HVT application, which is a specialized VMM is required, and will be
located by the HVT image which will be booted. It is for all practical purposes a
small and highly specialized version of QEMU. Because the unikernel does not
use the host Transmission Control Protocol (TCP)/IP stack, it needs ethernet
frames, which it can get through the tuntap network subsystem in the Linux
kernel. Tap interfaces are virtual devices located at layer 2 of the Open Systems
Interconnection (0SI) model, yielding ethernet frames. They must first be
created and a route must be added, or it can be added to a bridge device in
Linux, which acts as a virtual switch, routing ethernet frames and performing
all other actions that a physical switch would, such as containing the Address
Resolution Protocol (ARP) table.

When the VMMD receives a request to start a new unikernel service, it must first
create a new tap device and add it to the appropriate bridge to ensure proper
routing. After which the HVT VMM is launched, attaching the tap interface
and starting the application service unikernel.

Upon creation, the VMMD stores a UUID of the started unikernel, which can be
listed out, and used to stop the appropriate unikernel. It is also able to list out

3.6 / APPLICATIONS 19

the available unikernel images as well as the currently running unikernels, with
all required information by serializing the internal data structures containing
the appropriate information.

3.6 Applications

The previously described components of our PPCE allow users to execute
code using the application services while preserving privacy. Applications can
perform arbitrary computations, including querying a database, a website, and
compiling statistics from that data. A very important concept in the application
services is the information grading as well as taint tracking. In Section 2.1 on
page 5, we introduced the concept of information flow, which is a formalized
system for how information flows through a system and to determine the
resulting information classification based on the information it receives as
input and uses for computing.

In practice, it could return the same information as it received and not do any
operation on it, which would be of no issue. It could also potentially query
information it previously had not been tainted with, meaning it would be
tainted with that information access. Resulting in the clearances tag of the
service being modified, prohibiting some users from using it due to insufficient
clearance.

On the other hand, the application could be retrieving information that the
end user is prohibited to retrieve, but through a certified code path that can
declassify the information. An example of such a declassification could be re-
trieving information about a number of users, but sending the user information
through a function that only yields some statistical measurement of the input
data. The resulting statistics could then possibly be classified lower than the
original raw data, and the user has clearance to view the declassified statisti-
cal information, but not the raw data. On the other hand, now, the system is
tainted with the higher classified data, and it’s clearances must be updated to
reflect that, meaning the original user may be unable to use the same instance
again.

Information flow, and in particular the lattice model makes it possible to
design clearance systems which are not directly vertical, but more complex, as
described in Section 2.1 on page 5. Such a system could be used with health
data from athletes, where the player themselves would belong to a special class,
trainers to another one, researchers one and medical professionals a different
one. Some applications may require information from multiple classes, meaning
the user must also have clearance to view both classes, and the application

20 CHAPTER 3 / DESIGN AND IMPLEMENTATION OF PPCE

service would be tainted with information from both classes, resulting in them
not being usable by users without all required clearances.

An example application could fetch certain predetermined fields from a database
of health records. A user may obtain all data related to him or her, while there
may be certain types of information different classes of health professionals
are prohibited from receiving. All of these would be different applications. In
short, each application service should be single-purpose both to make them
easier to audit for bugs and making them light-weight, resulting in the spawn
time for them being lowered.

3.7 Modularity

All the different parts of the system use services from the other components.
This only require that the component adhere to the Application Programming
Interface (API) required by the requesting service, but does not enforce any-
thing regarding internal implementation. Making the system modular in such
a way that all components could be swapped out for new ones as long as
they provide the same interface. This is due to the microservices architecture
implemented by PPCE. Meaning we can take a component, change its internals
slightly to yield better throughput or lower latency, and swap the components,
or have them running side-by-side. In the experiments chapter, we show how
we can change different components to drastically change the user-perceived
end-to-end latency.

Evaluation

This chapter will evaluate the PPCE by conducting experiments to measure
the end-to-end latency, and discussing the results. The initial version of PPCE
described in Chapter 3 on page 11 will be evaluated first. Further, two mi-
crobenchmarks will be performed to determine the latency impact of the two
operations; creating a new tap device and attaching it to an existing bridge, and
starting and connecting to a unikernel. Because the initial version of PPCE is
fully Just in Time (JIT), two system optimizations are proposed, implemented
and their latency evaluated. Finally, the estimated and measured latency results
of all three versions of PPCE are compared.

4.1 Experimental Setup

Figure 4.1 on the next page illustrates the hosting environment when all system
components of PPCE are hosted on the same machine. KVvM is the hypervisor
at the very bottom of the stack, executing directly on hardware, which has
been excluded from the figure. As explained in Section 3.5 on page 17, VMMD
is executed as a process on top of a Linux host. Because unikernels are VMs,
the unikernel components of PPCE execute directly on top of KvM. They are
illustrated by the combination of both a kernel and an application combined
to emphasize that unikernels are applications compiled together with the 0s
kernel into a single image.

21

22 CHAPTER 4 / EVALUATION

Figure 4.1: Hosting environment for the unikernels: Proxy, Auth and App, and the
Linux process: VMMD

All three full system experiments will be hosted according to Figure 4.1 on
the same machine. By hosting all components of PPCE on the same machine,
the network latency will be reduced, providing more stable experimental re-
sults.

In order to have confidence in the experimental results, a sufficiently large
sample size is required. All full system experiments are conducted with 20
samples, and the PPCE is restarted between each sample, removing potential
artefacts from previous runs that potentially can influence the experimental
results. The unikernel boot microbenchmark was also conducted with 20 sam-
ples, due to an issue discovered during experimentation which resulted in the
time to run a sample increasing drastically. The microbenchmark for creating
a new tap device and attaching it to an existing bridge resulted was run with
1000 samples, because of the absence of the type of issue encountered with the
unikernel boot microbenchmark. For all experiments, the mean and standard
deviation latency are provided as results.

It is important to note the computing environment in which the experiments
have been carried out. The experiments have been run and compiled on a
computer running Solus Linux with the following configuration:

¢ Linux kernel version 5.0.

* Intel Core i7-8650U with 8 logical cores and 4 physical running at 4.2GHz.

* 24GiB Double Data Rate (DDR)4 Random Access Memory (RAM) at
2400MHz.

* Samsung PMg81 Non-Volatile Memory Express (NVMe) Solid State Drive
(ssp).

e OCaml version 4.07.0

4.2 / NETWORK SETUP 23

* MirageOS version 3.5.0

4.2 Network Setup

\ —

Auth
LY
=
VMMD
D &
Proxy
Linux
Bridge
) &
User Web

Figure 4.2: Network setup for system experiments showing all components communi-
cating via a Linux bridge.

Figure 4.2 illustrates the network setup of the architectural drawing Figure 3.1
on page 13. All unikernels are attached to the same Linux networking bridge
with each of their own virtual ethernet devices, called taps. The bridge functions
as a virtual router, and will route traffic in its defined subnet to the appropriate
tap devices, resulting in the traffic arriving at the correct unikernel. When
the bridge receives data which it does not know where to route, it will be
routed outside the bridge, and into the rest of the Linux networking subsystem,
allowing bridged devices to communicate with services outside the bridge,
meaning services running on the host, or even outside the computer. VMMD
will start the VMM processes that are running the unikernels, meaning it must
be running as an application on the host operating system. Because the bridge
routes a private subnet, the requests bound for the unikernels will be routed
through the bridge and to the specific tap devices attached to the correct
unikernel.

4.3 Initial Full System Experiment

We want to perform an initial full-system experiment, measuring the user-
perceived end-to-end latency. Note that this experiment is performed in a
cold-boot manner, meaning there are no running application services that can

24 CHAPTER 4 / EVALUATION

handle the request of the user.

Between each run, the system is restarted, removing potential artefacts from
previous runs that potentially can influence our experiment. Each experiment
is carried out by a user with a bearer token requesting a resource, which must
be authenticated before handed off to the correct application service. Each of
the requests are submitted manually using Postman?, which will measure the
end-to-end latency.

User Proxy Auth VMMD App

GET /static/ _|

POST/
200 OK

A

GET /start/static/

spawn static

200 OK

A

GET/
200 OK

Y

A

200 OK

S

Figure 4.3: Initial full system experiment with communication flow between compo-
nents.

As shown in Figure 4.3, the full system experiment involve four different
services, and a total of four requests in addition to the spawning of the unikernel
by vMMD. When the user requests a resource, the request will contain a bearer
token for identifying the user, and determining the user’s clearances. This
request will initially hit the proxy which will request the service of the auth
service to determine the clearances of the requesting user. The auth service
will find the bearer token and the clearances for that user, and return it to
the proxy service. The proxy service will then find an appropriate application
service matching both the application requested and the user clearances as
provided by the auth service. As this is a cold-boot experiment, the proxy will
not find a suitable application, and will request VMMD to spawn one. VMMD
will search through its registered applications, find the correct one, create a
new tap device and attach it to the bridge, before spawning the unikernel
with the correct clearance level, and return the address of the newly spawned

1. https://www.getpostman.com/

4.3 / INITIAL FULL SYSTEM EXPERIMENT 25

unikernel back to the proxy. After which the proxy service will register the
newly spawned unikernel in its internal routing table before requesting the
appropriate resource from the application service, and trying until the unikernel
is ready to receive network traffic and accepts the connection. The application
service will handle the request in a way it seems fit, which for the sake of
this experiment will return a static string depending on the clearance level
at which it was spawned. Once the proxy receives the response from the
application service, it will relay the response back to the user, concluding the
experiment.

Description | Time(ms)
mean 63.15
std 7.56

Table 4.1: Statistics from the initial full system experiment over 20 samples. Figure 4.3
on the facing page shows the experiment’s communication flow. PPCE is
restarted between each sample to remove potential artefacts.

Table 4.1 shows, over 20 runs, the mean end-to-end latency for a user is 63.15 ms,
with a standard deviation of 7.56 ms. Contrasting this to the end-to-end latency
for subsequent requests to the same resource from the same user, which is
approximately 4 ms, means that using the services of VMMD significantly slows
down the end-to-end latency for a request. The most time consuming tasks
performed by VMMD are creating and attaching the tap device to the bridge,
and spawning the unikernel. Which will be benchmarked next to determine
the magnitude of their impact on the full-system end-to-end latency.

4.3.1 Discussion

Though the latency statistics shown in Table 4.1 could be perfectly acceptable
in a number of contexts, in particular given the number of resources commonly
fetched from a web sever to make up a website and how great the user-
perceived latency for loading a web page is [60]. We hypothesize that we
can lower it further, making it more viable as a hosting solution. Because this
experiment will not take into consideration the network latency, as we are
only using the local networking subsystem of Linux, the actual internet latency
would potentially be considerably higher, further emphasizing the problem
of the mean latency being above 60 ms. Conversely, if this would be used in
conjunction with a website requiring information from different sources, the
amount and latency induced by other requests would reduce the significance
of the latency from our system [61].

26 CHAPTER 4 / EVALUATION

4.4 Microbenchmark: Creating and attaching tap
to bridge

We previously explained that creating the new tap device and attaching it to
the bridge are some of the most time consuming actions performed by the
vmmd, and to properly measure the impact from creating the tap device and
attaching it to the bridge, we create this micro benchmark where we isolate the
two actions and separate them from all other actions. In practice this means
that we need to create a new application made just for benchmarking this
particular operation.

Bench Linux Tap Bridge

Create tap

Y

Create tap

tap created

attach tap

attach to bridge

attached to bridge

tap attached

Figure 4.4: Microbenchmark where a tap is created and attached to an existing Linux
bridge with process flow for illustrative purposes.

As illustrated by Figure 4.4, the experimental setup for the creation of the tap
device and attaching it to a bridge, showing the steps that must be taken, and
that are involved with the microbenchmark. Technically, the illustration is not
entirely truthful, but serves well as an illustration of the actions required to
create the tap and attaching it to a bridge. Both the tap and bridge columns
of Figure 4.4 are parts of the networking subsystem in Linux, meaning it
really is Linux which will perform all actions requested by the benchmarking
application.

We created a new benchmarking application that measures the time, creates the
new tap device, then attaches it to the existing bridge before stopping the time.
After which the tap device is removed from the bridge and deleted. This is the
cycle of each point of measurement in the benchmark. After performing 1000

4.4 / MICROBENCHMARK: CREATING AND ATTACHING TAP TO BRIDGE 27

runs, we calculate the mean and standard deviation of the time for creating the
new tap device as well as attaching it to the bridge. Both actions are performed
in the same manner as VMMD does.

Description | Time(us)
mean 6788.9
std 3232.7

Table 4.2: Statistics from the microbenchmark creating and attaching a tap to a bridge
over 1000 samples. Figure 4.4 on the facing page shows the process flow.

As we can see in Table 4.2, the creation of the tap and attaching it to the
bridge micro benchmark yields a mean of 6788.9 ns and a standard deviation
of 3232.7 ps, over 1000 runs. This seem significant, but does not account for
the bulk of the time difference between the hot and cold request experiments
for the full system.

4.4.1 Discussion

For each experiment run, the tap was deleted after the timer was stopped as to
reduce the amount of potential side effects of the system, as well as to provide
as accurate results from the benchmark as possible. As show in Table 4.2;
creating a new tap device and attaching it to the kernel resulted in a mean of
6.79 ms and a standard deviation of 3.23 ms over 1000 samples. This sample
size should be sufficient to get accurate results, but the standard deviation is
still significant in comparison to the mean, which may be due to a number of
different factors. Such as the other applications running on the system, as well
as different forms of caching and buffering in the Linux networking subsystem,
which have not been investigated further.

It is not surprising that the creation of a new tap device and attaching it to a
bridge is somewhat time consuming, given the method that it is created with.
In particular, the first non-existing tap is discovered by probing for a particular
tap id, and continually increasing that id until we discover a non-existing tap
device, which will be the tap device we create, and attach to the bridge. Both
of these operations currently require both spawning new processes, as well as
transitions to the Linux kernel for performing the actual networking subsystem
tasks for the processes.

Given the mean time required to create the new tap device and attaching
it to the bridge, we would expect that only preallocating tap devices before
spawning the unikernels would reduce the mean end-to-end latency for a
user from the first initial experiment to be reduced to 63.15 — 6.79, namely

28 CHAPTER 4 / EVALUATION

56.36 ms. This reduction is significant; just over 10%, but not as significant as
we would want. Though this reduction is at only 10%, we need to implement
the improvement into the full system and perform another experiment to have
conclusive evidence, as there will be some difference between the isolated
event of the microbenchmark and the full system experiment.

4.5 Microbenchmark: Unikernel boot

The other significant action performed by the vMMD is booting the unikernel,
which technically is a vM, and might account for a large part of the latency
experienced for a user in the cold-boot experiment. To properly isolate the
booting of the unikernel, as well as ensuring it is ready to receive network
traffic, from other actions performed by the rest of the system, we build a
custom benchmarking application just for this purpose.

Bench Linux App

start unikernel

spawn unikernel

unikernel started

TCP connect

TCP accept

Figure 4.5: Microbenchmark where a new unikernel is started and connected to over
TCP. The communication flow omits TCP connect retries.

We can see in Figure 4.5 that the unikernel experiment consists of spawning the
unikernel, then attempting to create a TCP connection to it, and retrying until it
is accepted, much in the same way the proxy operates. A plain TCP connection
is used instead of a Hypertext Transfer Protocol (HTTP) request, yielding better
isolation of determining when the unikernel is ready to receive network traffic,
ignoring the application layer handling of the HTTP request and transferring
data. After the TCP connection is accepted, it closes the socket and stops the
timer. Initially, we encountered issues with initially reusing the same tap as

4.5 / MICROBENCHMARK: UNIKERNEL BOOT 29

the previous unikernel, resulting in latency of upwards to 1000 ms. Due to
this, the benchmarking application needed to perform extra actions beside
starting the unikernel and connecting to it before stopping it. In particular,
before spawning the unikernel, the benchmarking application will also create
a new tap device and attach it to the bridge before the timer is started. After
stopping the timer, the unikernel is killed, the tap device is destroyed, and
the benchmarking application sleeps for several seconds to allow the internal
routing table caching in Linux return to normal, resulting in eliminating the
false measurements of approximately 1000 ms.

Description | Time(s)
mean 21731.8
std 2361.2

Table 4.3: Statistics from the microbenchmark booting and connecting to a unikernel
over 20 samples. Figure 4.5 on the preceding page shows the communication
flow.

Over 20 runs, we see in Table 4.3 that the mean time from spawning the
new unikernel and connecting to it over TCP is 21 781.8 ps, with a standard
deviation of 2361.2 ps. While the creation of a new tap device and attaching it
to the bridge doesn’t account for large parts of the extra latency experienced,
the spawning of the unikernel will account for a larger portion. Combined,
these two account for a very significant portion of the difference between the
cold-boot experiment, and requests performed when the unikernel is already
spawned, circumventing VMMD.

4.5.1 Discussion

Table 4.3 shows that when performing 20 samples, we saw a mean of 21.73 ms
and a standard deviation of 2.36ms . Only 20 samples were taken due to
the amount of time required to run a sample. Conducting the experiments,
it was discovered that a sample could be executed in approximately 21 ms,
but some samples would require just over a second to complete. This initially
resulted in a very large standard deviation. Our hypothesis is that this effect is
experienced due to the networking subsystem in Linux, probably by it caching
its routing table with a collision of 1P addresses with different Media Access
Control (MAC) addresses. Due to this issue, we determined to add a pause in
the benchmark allow the bridge with its routing table to flush its cache before
spawning a new unikernel. After this pause was included, we got the results
presented in the experiments chapter.

Compared to the tap bridge microbenchmark, the implication of this task
seem to be much greater. Spawning the unikernel cannot be offset without

30 CHAPTER 4 / EVALUATION

creating and allocating the tap and attaching it to the bridge, meaning our
hypothesized new latency must include that as well. With this assumption;
both allocating the new tap device and spawning the unikernel AOT, the new,
improved latency should be approximately 63.15 — 6.79 — 21.73, resulting in
34.63 ms in expected end-to-end latency. This is not including the elimination
of communicating with vMMD to have it spawn the new unikernel. Meaning the
actual expected end-to-end latency should be somewhat lower than 34.63 ms.
This results in an expected 45% end-to-end latency reduction. A 45% reduction
of end-to-end latency is a big leap, meaning that the system in theory would be
able to support approximately double the number of clients during the same
period of time compared to the initial unoptimized system.

A latency of approximately 35ms would be acceptable, but one would not
expect the rest of the system to yield such high latency. Again, we would need
to implement the optimizations in the full system and run the experiment
again to get realistic values.

4.6 Improved Full System Experiment

The results of both microbenchmarks show that there are a potential for
reducing the user-perceived end-to-end latency of the full system if we can
reduce the amount of time spent performing these two actions. One promising
technique would be to hide the latency associated with creating the new tap
device, attaching it to the bridge as well as booting the unikernel. The latency
of these could be hidden by performing all or some of these actions AOT,
instead of JIT. To experiment with these solutions, we have implemented the
improvements and will perform the same full system experiment as with the
initial system without any optimizations.

To reiterate the full system benchmark, the users token must be sent to the
auth service for validation and to retrieve the clearances of the user before
the proxy will request VMMD to spawn a new unikernel, before the proxy
performs the request for the user, and finally returning the response from the
application. Hiding the latency from creating the tap device and attaching it
to the bridge can be done by spawning appropriate unikernels AOT instead
of JIT, or a hybrid approach by allocating a pool of attached taps AOT and
spawning unikernels JIT.

4.6 / IMPROVED FULL SYSTEM EXPERIMENT 31

4.6.1 Ahead-of-time spawning of unikernels

If the proxy spawns a number of unikernels AOT which is ready to receive
requests, the latency is hidden, and when a user requests the proxy, it should
not need to access the services of VMMD, meaning the end-to-end latency
should be close to that of the end-to-end latency experienced by users for
subsequent requests. Depending on the unikernel life-cycle, the results from this
experiment could be viewed as the end-to-end latency for a warm system.

User Proxy Auth App

GET /static

Y

POST /
200 OK

GET/

200 OK

200 OK

Figure 4.6: Optimized full system experiment, where all unikernels are booted AOT,
with communication flow between components.

As Figure 4.6 depicts, for the AOT spawning of unikernels experiment, the
proxy will initially request the vMMD to spawn a unikernel at each clearance
level, as to cater to all possible users without the need for the proxy to spawn a
new unikernel including the allocation of a new tap device and attaching it to
the bridge. This means that the proxy already has multiple application services
registered in its internal routing table, resulting in the proxy not needing to
request VMMD, enabling the proxy to forward the request to the appropriate
application service.

Description | Time(ms)
mean 4.45
std 1.15

Table 4.4: Statistics from the AOT experiment over 20 samples. Figure 4.6 shows the
communication flow.

The results of this experiment in Table 4.4 clearly shows that spawning and

32 CHAPTER 4 / EVALUATION

registering unikernels AOT is very beneficial to the user-perceived end-to-end
latency. Compared to the initial full-system experiment, we see a mean end-to-
end latency of 4.45 ms with a standard deviation of 1.15 ms, which compared
to the JIT full system experiment is a 14.2x reduction of mean latency and a
6.6x reduction of standard deviation.

As we will discuss later; this significant latency reduction is not achieved
without problems.

Discussion

Based on the results of the microbenchmarks, the end-to-end latency should
be around 34.63 ms. But as we have seen in Table 4.4 on the preceding page,
the actual end-to-end latency for the AOT full system experiment resulted in a
mean of 4.45 ms and a standard deviation of 1.15 ms, which is vastly different
from our initial expectations. The only possible conclusion we can draw from
this is that one or both of the microbenchmarks results in smaller numbers than
their tasks actually take in the full system. Applying the AOT optimizations
results in a 93% end-to-end latency reduction, which would translate to the
system being able to serve over 14x the number of users within the same time
span as the original system without any optimizations.

This optimization results in a massive reduction of the user-perceived end-to-
end latency, but it comes at a cost. The application tested only require 16MB
of RAM, but with one application service running for each of a multitude of
clearance levels, the small footprint of each service will result in a large system
footprint. This is further enhanced by providing a number of applications that
each need to have multiple clones running at the same time to accommodate all
users’ needs. With 24GB of RAM, it would only be possible to accommodate 1500
executing unikernels of this application, discarding the memory requirements
of all other system components as well as the Linux kernel itself. The current
configuration contains 6 distinct clearance levels, resulting in the system only
being able to accommodate 250 applications in total, provided each of them
only require 16MB of RAM. We ca easily see that this does not scale very well,
as all applications are expected to provide a very specialized service, and one
could expect a system needing to accommodate thousands of small, specialized
application services, which would require all too much memory. It would also
greatly increase the time required to start the full system. This would deem
the fully AOT optimization unusable regardless of its very beneficial end-to-end
latency.

4.6 / IMPROVED FULL SYSTEM EXPERIMENT 33

4.6.2 Hybrid tap pool

The previous latency reduction improvement resulted in a great reduction
of latency, but has scalability issues. Another approach to reducing the user-
perceived end-to-end latency is to allocate the tap devices and attach them to
the bridge AOT, while still spawning unikernels on demand, as in the initial
experiment.

User Proxy Auth | | VMMD App

GET /static/ _|

POST/
200 OK

Y

GET /start/static/

Y

spawn static

200 OK

A

GET/
200 OK

Y

A

200 OK

<

Figure 4.7: Optimized full system experiment, where unikernels are booted JIT, but
tap devices are created and attached AOT, yielding a hybrid solution, with
communication flow between components.

We can see from Figure 4.7 that we introduce VMMD as a component again,
but allowing it to skip the allocation and attaching of tap devices to the bridge
by allocating a pool of them AOT. Meaning vMMD will only need to fetch an
already allocated tap device from its internal pool, and use it when spawning
the new unikernel, reducing the amount of work carried out by vMMD on
demand.

Description | Time(ms)
mean 29.35
std 3.92

Table 4.5: Statistics from the hybrid experiments over 20 samples. Figure 4.7 shows
the communication flow.

Intuitively, one would assume the latency reduction to be relatively close to
the initial full system experiment when subtracting the time required for the
tap creation microbenchmark. But as Table 4.5 shows, with mean latency of

34 CHAPTER 4 / EVALUATION

29.35 ms and standard deviation of 3.92 ms, this is not the case. If one were to
calculate the intuitive expected mean latency of 63.15 ms—6.79 ms = 56.36 ms,
we get a difference of 27.01 ms, which is not accounted for. In practice, the
latency reduction achieved by allocating the pool of tap devices AOT while still
spawning unikernels on demand, we achieve a 2.2x reduction of mean latency
and a 1.9x reduction of standard deviation.

Discussion

As discussed in Section 4.4 on page 26, the expected latency reduction of
applying this optimization was only 10%. On the other hand, when actually
performing the experiment on the hybrid system, the results differ greatly
from the expected values. As seen in Table 4.5 on the preceding page; with
20 samples, we saw a mean of 29.35ms and a standard deviation of 3.92 ms,
meaning a reduction of 63.15 — 29.35, 33.8 ms, which is much greater than
our expected improvement.

Based on these data, we can assume that the microbenchmark for allocating
and attaching tap devices to the bridge either was subject to great optimization
compared to the rest of the system, the implementation was not correct, or that
the Linux kernel performed some optimization when performing the benchmark
that was not experienced in the full system. Comparing the initial full system
experiment with the new hybrid approach, where the only difference is getting
a preallocated tap from the tap pool, we can see the practical overhead of
spawning and attaching tap interfaces to the bridge on demand as we do in the
initial full system experiment. This reduction is 33.8 ms, meaning the practical
overhead of creating and attaching the tap interface seem to be the major
source of latency in the system as a whole, yielding the optimization more
beneficial than originally anticipated.

Comparing the end-to-end latency of the hybrid approach to the fully AOT
approach, we see that the additional overhead associated with both commu-
nicating with vMMD and having it spawn the unikernel is only 29.35 — 4.45,
24.9 ms. This result is close to our expectation from the microbenchmark of
spawning unikernels, but is slightly higher due to the microbenchmark not
taking into account the communication with vMMD, fetching the tap from the
pool, returning JavaScript Object Notation (JSON) from VMMD, and parsing
it in the proxy service.

Spawning tap interfaces AOT will not incur great overhead, and seem to be
an optimization without much cost associated with it. This optimization yields
relatively low latency, without the extreme memory requirements of spawning
all unikernels fully AOT.

4.7 | SUMMARY 35

4.7 Summary

In this chapter, we have described and shown results of an initial system to-
gether with two different system improvements to reduce the user-perceived
end-to-end latency. Along these three experiments, we have used two mi-
crobenchmarks to illustrate the amount of time required for different tasks to
complete, and where we can apply techniques for latency reduction, such as
latency hiding, as we have done here.

—— [0 Expected
60 | - I Measured ||
E 40|]
P _
=i
Q
=
= 20/ |
oLl | Um|
T T T
JIT Hybrid AOT

Figure 4.8: Comparison of the expected and measured values for initial, hybrid and
AOT implementations of PPCE.

Figure 4.8 shows our two different approaches to achieve latency reduction
both succeeded and exceeded initial expectations, resulting in a 14.2x and
2.2x reduction of latency for spawning unikernels AOT, and allocating tap
pool AOT, respectively. In addition, it also shows that the difference between
expected and measured latency is 27.01 ms and 30.18 ms for the hybrid and
AOT optimizations, respectively.

Discussion

We previously discussed the experiments, and their results. In this chapter we
will discuss the feasibility of the design, security and privacy properties, as well
as possible shortcomings of the system.

5.1 Security and Privacy

The concept privacy-preserving in the context of this thesis is meant to encom-
pass the system to preserve the privacy of its users by both access restriction
and reporting of user behavior and data access. One of the concepts we draw
from information theory and information flow control is the concept of secure
information flow. If an information flow is considered safe, there is a guarantee
that the user will only receive data to which the user have the correct clearance.
Which is only true if the system is without any bugs that let the user accidentally
or maliciously gain access to data to which it should not have.

Our system will allow application developers to create their own information
flow control system in addition to the benefits provided by the design of our
system. Applications are programmed using statically compiled OCaml, which
has a strong type system, and is suited for formal verification, and there are tools
available that can extract propositions that can be formally proved using tools
like Coq [62], [63]. The combination of our applications and operating system
being implemented in OCaml, and application services only serving users at

37

38 CHAPTER 5 / DISCUSSION

a specified clearance level, or only a single user, will result in a reduction of
potential information leakage in case of either a logical programming mistake,
a bug, or a security vulnerability. Compared to other systems, this would reduce
the Trusted Computing Base (TCB) and the resulting unikernel will only contain
the code required for it to perform its tasks, and nothing more.

In QEMU, the most commonly used vMM for Linux, a bug in a floppy device
driver [33] resulted in the guest being able to execute arbitrary code on the host
operating system, which is critical in a system handling sensitive information.
This happened regardless of the guest operating system needing to use a
floppy device or not, which for our system would not be the case, as the entire
operating system is statically linked, resulting in all components not used by
the application via the operating system being stripped out.

Studies show [64] that applications written in C and C++ are still very prone
to errors, which at best results in a crash, and at worst results in a total system
compromise, and that the number of bugs in an application is proportional to
the number of lines of code. Not only are there fewer bugs per line of code of
OCaml, but the number of lines will be drastically different, due to the statically
linkage of the operating system components together with the application, as
well as the vMM also being statically compiled based on the services required
by the unikernel, the trusted computing base will be reduced dramatically. As
an example, one could opt not to use network, but Vchan, which is a high speed
shared memory-only alternative to using a network stack, originally from the
Xen hypervisor. Using Vchan would result in an attacker not being able to
directly use network to either exfiltrate data, or to pivot to different services
using the network. If something is not used by the application service, it is not
present, meaning an attacker discovering a critical bug would not be able to
use any services the guest unikernel is not using.

We have previously stated that OCaml and MirageOS unikernels usually tend
to result in more secure and safe applications, and the Bitcoin Pifiata [65]. is a
testament to the security of these unikernels. The Bitcoin Pifiata is a project
where a unikernel using TCP, TLS and X.509 certificates were built, and it is
intended as an open and transparent bug bounty. The pifiata contains a wallet
private key, meaning that if you are able to find vulnerabilities and exploit them
such that you are able to leak the private key, you can use the leaked private
key to transfer the Bitcoins to your own account, displaying to the world who
managed to exploit it. It has been online since march of 2015, but the majority
of the funds were allocated to other projects after three years, in march of
2018. During that time, and still, there has not been another transaction on
that account, meaning the pifiata has still not been broken after being online
for over 4 years, and the first three years, it contained 10 Bitcoin (BTC), which
at todays rate would be $80 000, and at the very top - during Christmas of

5.2 / SERVICE LIFETIME CONFIGURATION 39

2017, where the bug bounty would be worth $197 830.6

5.2 Service Lifetime Configuration

PPCE can also be configured to support different styles of application service
lifetimes, such as either only having one service serving only one request, a
service serving only one user, or to serve a class of users.

Each of which can automatically be killed after a certain amount of time where
the service is not used, both to allow the system host to regain resources allo-
cated by the vMs. This form of life-cycle for the unikernels would also promote
the privacy aspect of the system as well, regarding the amount of information
that can be leaked from the system in case a bug is discovered and exploited
in such a way that a user may gain access to additional information.

Different service lifetimes will lead to different system constraints in terms
of resource requirements, user-perceived latency and the privacy and safety
of the systems in case of information leakage and other bugs. Most web ser-
vices and other applications have shared instances of the service for most
users, regardless of their user clearances, meaning that a information leak bug
could potentially lead to private and sensitive information being leaked to
unauthorized users.

Proxy
(a) (@)

(b) (b) App 1

User a (CTS)

User b (CTS)

Figure 5.1: Lifetime configuration where users with the same clearance can use the
same application instance

The least privacy-preserving lifetime configuration of PPCE, illustrated by
Figure 5.1 would be an entire class of authorized users sharing the same
computing service, information leakage would in this case be reduced to the
information retrieved by other users with the same clearances as you. Although
never a desired property, information leakage can potentially represent an
acceptable risk in certain circumstances to balance the privacy-preserving
aspect of the system with the resource footprint and user-perceived latency.

40 CHAPTER 5 / DISCUSSION

When sharing an instance between all users of a class, only the first request in
a class will result in a new unikernel being spawned, and for all subsequent
requests, the latency will be minuscule, as we shown with the fully AoT full
system experiment.

— App 1
User a ® Proxy ® -

(b (b)

S App 1

User b

Figure 5.2: Lifetime configuration where each user get their own application instance

Figure 5.2 shows the lifetime configuration where unikernel is restricted to a
single user, and not an entire class of users, any information leakage from bugs
would only be accessible to the user, that previously requested that information.
The risk associated with this type of information leakage would be even smaller
than that of sharing an instance with entire classes of users. On the other hand,
it would require as many instances as there are active users, plus some more
because the instances would still be available for each user for some particular
amount of time before they are deallocated, and subsequent requests would
result in a new instance being spawned. But the average user-perceived end-
to-end latency would grow greater for users, even though only the first request
will require VMMD to spawn a new unikernel.

Proxy [] App 1

(@) @) =\
(b) (b)

User a _— App 1

Figure 5.3: Lifetime configuration where each application instance only handles one
request

The configuration with the least risk would be spawning a new instance for
each new request, and destroying the instance upon request completion. This is
illustrated by Figure 5.3 and would result in the greatest user-perceived end-to-

5.3 / SYSTEM SHORTCOMINGS A1

end latency, but probably lower resource footprint than allocating an instance
for each user, as the unikernels would need to be kept alive for some time after
the user has completed its requests. It would require the greatest amount of
computation to be completed by the system, and in particular vMMD.

Different use-cases would result in a different choice of service lifetime con-
figuration, and for some particular use-cases, it would probably be enough
to allow entire classes of users to use the same application service instances.
On the other hand, applications closely related to a user’s private, and often
sensitive, information would benefit from providing each user with an instance
of their own. In 2012, the tax return for a Norwegian man named Kenneth was
available for all users that logged in to the Altinn system to check their own tax
return [66]. Using a system like ours, with a user-specific service lifetime con-
figuration, the probability of such an event happening would be dramatically
lowered, as no users but Kenneth would have access to the system where the
data of Kenneth resides. Though we cannot say for sure the event would not
have occurred, as software will inevitably have a certain number of bugs, but
designing the system to take into account that programmers make mistakes
and bugs do occur will increase the system resiliency and help preserve user
privacy.

5.3 System Shortcomings

Though we describe the system as privacy preserving and specify that appli-
cation services are only containing information for the specific class of users,
or specific users themselves, our current implementation do not perform the
same kind of separation for other services, which may show itself as a potential
privacy or security concern. All users currently share the same auth service, as
well as the same VMMD to spawn the different unikernels at different clear-
ance levels. This current implementation detail might prove problematic in
the face of vulnerabilities. On the other hand, neither vMMD, nor the auth
service handle any of the private or sensitive information that the application
services would handle, and one can argue that the privacy of the users are still
preserved.

The proxy service currently also is shared between all users of the system, and
may in some regard be considered a critical flaw, potentially jeopardizing the
privacy preserving aspect of the system. In case of taint tracking, it will lead to
the proxy service being tainted with the highest level of clearances, meaning
the proxy can no longer serve requests at a lower level without rendering
the information flow insecure. Regarding secure information flow within the
application services, it would not pose any problems with a monotonically

42 CHAPTER 5 / DISCUSSION

increasing clearance level, as we showed initially. If users are properly tagged,
as they should be, this would also be the case when dealing with more complex
clearance lattices. The issue on the other hand is that the current system
design only handles the taint tracking on a user-basis, meaning a user with
the maximum clearance level performing an action requiring a lower level of
clearances would end up improperly tainting the data with a higher clearance
level than what is necessary, something that is not desirable.

Conclusion

This chapter will conclude the thesis by summarizing our results and relating
them to our thesis statement. In addition, we will compare PPCE to other
systems and describe future work.

6.1 Related Work

PPCE is a unikernel-based distributed system enabling users to perform privacy-
preserving computations. There are other related works either unikernel-based
or privacy-preserving, some of which inadvertently providing parts of the
privacy-preserving aspects of this system. Albatross [67] is closely related
to VMMD in our system, effectively enabling developers to build a similar
unikernel-based distributed systems, but it is not a full system enabling privacy-
preserving computations for its users. Jitsu [68] is a DNS server providing
JIT spawning of unikernels for resources by DNS name, which results in each
DNS request to spawn a new unikernel to handle that resource. If coupled
with authentication, it could enable privacy-preserving computations, but as
it is a DN server, the user would need to be authenticated at the application
service in addition to at the DNS server. The unikernels spawned by Jitsu can
either be short-lived, providing a class- or user-specific unikernel to handle
requests, or one-off unikernels providing the same possible service lifetime
configuration as our system, but additional authentication is required at the
application service to restrict malicious users to gain unauthorized access to an

43

44 CHAPTER 6 / CONCLUSION

application service and its resources by guessing the appropriate DNS name.
One area where Jitsu shines in comparison with our system is regarding taint
propagation to the proxy, as Jitsu has none. In Jitsu, each service would use
TLS to communicate directly with the user, maintaining the information flow
secure. In terms of implementation, Jitsu is using Xen as a backend, compared
to our system, which is using KvM for virtualization.

6.2 Concluding Remarks

In this thesis we have shown the design and implementation of PPCE; a
unikernel-based privacy-preserving computing environment. We then ran ex-
periments, resulting in implementation of both an AOT and a hybrid version
of PPCE. The unoptimized system achieved a mean user-perceived end-to-end
latency of 63.15 ms.

With our fully AOT version of PPCE, we managed to reduce the mean end-to-
end latency to 4.45 ms, but concluded this approach does not scale well, and
results in the system having a very large resource footprint. The hybrid version
of PPCE, the mean end-to-end latency was reduced to 29.35 ms, less than half
of the end-to-end latency of the unoptimized system performing both actions
in a JIT fashion, without sacrificing scalability, and still maintaining virtually
the same resource footprint as the original system.

Recalling our original thesis statement:

MirageOS can be used to build a microservice architecture for privacy
preserving computing while providing reasonable user-perceived end-to-
end latency.

Using latency-hiding techniques, the system reduces the user-perceived end-
to-end latency by 53.5%, while still maintaining it’s goal of being privacy
preserving. It also achieves this while still maintaining a system footprint
comparable to that of the original, unoptimized system, enabling the system to
potentially scale to the thousands of application services executing concurrently,
while the user interacts as if with a single coherent system. Thereby confirming
our thesis.

6.3 / FUTURE WORK 45

6.3 Future Work

With our current design, the proxy service will render the information flow
insecure due to acting as a proxy for requests at all clearance levels. To solve this,
we would in future work need to repurpose the proxy service into a redirection
gateway, which based on authentication results would trigger an appropriate
DNS request. In the same way Jitsu spawns unikernels on demand [68], a
unikernel should be spawned at the correct clearance level, which would enable
the application service to authenticate and authorize the user to access it’s
resources. By allowing the user to directly communicate with the application
service, the information flow would be secure. Combining these aspects, a
future system supporting different service lifetime configurations and privacy-
preserving computations while maintaining the security of the information
flow could be constructed.

It could also be possible to programmatically show that the information flow
would be secure by performing internal routing and handing connections off
inside of the proxy. This would not isolate different clearance levels from
one another using different vMs, as the application services, but merely by
the programmer showing and the compiler verifying that it should not be
possible for the information flow to be insecure. Resulting in the possibility of
vulnerabilities or other bugs leaking information to users that are unauthorized
to view and possess that information.

Bibliography

[1]

[2]

[3]

[4]

[5]

(6]

[7]

[8]

[9]

[10]

[11]

A. Madhavapeddy and D. J. Scott, “Unikernels: Rise of the virtual library
operating system,” Queue, vol. 11, no. 11, p. 30, 2013.

A. Kvalnes, D. Johansen, R. van Renesse, F. B. Schneider, and S. V. Val-
vag, “Omni-kernel: An operating system architecture for pervasive mon-
itoring and scheduling,” IEEE Transactions on Parallel and Distributed
Systems, vol. 26, no. 10, pp. 2849—2862, 2014.

H. D. Johansen, R. V. Renesse, Y. Vigfusson, and D. Johansen, “Fireflies:
A secure and scalable membership and gossip service,” ACM Transactions
on Computer Systems (TOCS), vol. 33, no. 2, p. 5, 2015.

H. Johansen, D. Johansen, and R. van Renesse, “Firepatch: Secure and
time-critical dissemination of software patches,” in IFIP International
Information Security Conference, Springer, 2007, pp. 373—384.

A. T. Gjerdrum, R. Pettersen, H. D. Johansen, and D. Johansen, “Perfor-
mance principles for trusted computing with intel sgx,” in International
Conference on Cloud Computing and Services Science, Springer, 2017, pp. 1—
18.

H. D. Johansen, E. Birrell, R. Van Renesse, F. B. Schneider, M. Sten-
haug, and D. Johansen, “Enforcing privacy policies with meta-code,”
in Proceedings of the 6th Asia-Pacific Workshop on Systems, ACM, 2015,
p- 16.

E. Birrell, A. Gjerdrum, R. van Renesse, H. Johansen, D. Johansen, and
F. B. Schneider, “SGX enforcement of use-based privacy,” in Proceedings
of the 2018 Workshop on Privacy in the Electronic Society - WPES’18, ACM
Press, 2018. DOI: 10.1145/3267323.3268954.

D. E. Denning, “A lattice model of secure information flow,” Com-
munications of the ACM, vol. 19, no. 5, pp. 236—243, May 1976. DOI:
10.1145/360051.360056.

C. E. Landwehr, “Formal models for computer security,” ACM Computing
Surveys (CSUR), vol. 13, no. 3, pp. 247-278, 1981.

D. E. Bell and L. J. LaPadula, “Secure computer systems: Mathematical
foundations,” MITRE CORP BEDFORD MA, Tech. Rep., 1973.

F. B. Schneider, “Enforceable security policies,” ACM Trans. Inf. Syst.
Secur., vol. 3, no. 1, pp. 30-50, Feb. 2000, 1SSN: 1094-9224. DOI: 10.

47

https://doi.org/10.1145/3267323.3268954
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/353323.353382
https://doi.org/10.1145/353323.353382
https://doi.org/10.1145/353323.353382

48

[12]
[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]

BIBLIOGRAPHY

1145/353323. 353382. [Online]. Available: http://doi.acm.org/10.
1145/353323.353382.

L. Brandeis and S. Warren, “The right to privacy,” Harvard law review,
vol. 4, no. 5, pp. 193-220, 1890.

E. Birrell and F. B. Schneider, “A reactive approach for use-based privacy,”
2017.

E. Birrell and F. B. Schneider, “Fine-grained user privacy from avenance
tags,” 2015.

J. L. Martin Fowler. (Mar. 25, 2014). Microservices, [Online]. Available:
https://martinfowler.com/articles/microservices.html.
Dimensional Research, “Global microservices trends,” Tech. Rep., 2018.
[Online]. Available: https://go.lightstep.com/global-microservices-
trends-report-2018.html (visited on 05/26/2019).

N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R.
Mustafin, and L. Safina, “Microservices: Yesterday, today, and tomorrow,”
in Present and ulterior software engineering, Springer, 2017, pp. 195-216.
M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca, R. Casallas,
and S. Gil, “Evaluating the monolithic and the microservice architecture
pattern to deploy web applications in the cloud,” in 2015 10th Computing
Colombian Conference (10CCC), IEEE, 2015, pp. 583-590.

G. Kakivaya, L. Xun, R. Hasha, S. B. Ahsan, T. Pfleiger, R. Sinha, A.
Gupta, M. Tarta, M. Fussell, V. Modi, et al., “Service fabric: A distributed
platform for building microservices in the cloud,” in Proceedings of the
Thirteenth EuroSys Conference, ACM, 2018, p. 33.

Y. Tsuruoka, “Cloud computing-current status and future directions,”
Journal of Information Processing, vol. 24, no. 2, pp. 183-194, 2016.
Docker Inc. (2018). Why docker? [Online]. Available: https: //www .
docker . com/why-docker (visited on 12/14/2018).

Canonical Ltd. (2018). What’s Ixc? [Online]. Available: https://linuxcontainers.

org/lxc/introduction/ (visited on 12/14/2018).

A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “Kvm: The linux
virtual machine monitor,” in Proceedings of the Linux symposium, Dttawa,
Dntorio, Canada, vol. 1, 2007, pp. 225-230.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
ACM SIGOPS operating systems review, ACM, vol. 37, 2003, pp. 164-177.
R. J Adair, R. U Bayles, L. W Comeau, and R. J Creasy, “A virtual machine
system for the 360/40 - cambridge scientific center report 320,” May
1966.

D. Bernstein, “Containers and cloud: From Ixc to docker to kubernetes,”
IEEE Cloud Computing, vol. 1, no. 3, pp. 81-84, 2014.

P. Sharma, L. Chaufournier, P. Shenoy, and Y. Tay, “Containers and
virtual machines at scale: A comparative study,” in Proceedings of the
17th International Middleware Conference, ACM, 2016, p. 1.

https://doi.org/10.1145/353323.353382
https://doi.org/10.1145/353323.353382
https://doi.org/10.1145/353323.353382
http://doi.acm.org/10.1145/353323.353382
http://doi.acm.org/10.1145/353323.353382
https://martinfowler.com/articles/microservices.html
https://go.lightstep.com/global-microservices-trends-report-2018.html
https://go.lightstep.com/global-microservices-trends-report-2018.html
https://www.docker.com/why-docker
https://www.docker.com/why-docker
https://linuxcontainers.org/lxc/introduction/
https://linuxcontainers.org/lxc/introduction/

BIBLIOGRAPHY 49

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

D. Williams, R. Koller, and B. Lum, “Say goodbye to virtualization for
a safer cloud,” in 1oth {USENIX} Workshop on Hot Topics in Cloud
Computing (HotCloud 18), 2018.

D. R. Engler and M. F. Kaashoek, “Exterminate all operating system
abstractions,” in hotos, IEEE, 1995, p. 78.

D. R. Engler, M. F. Kaashoek, et al., Exokernel: An operating system
architecture for application-level resource management, 5. ACM, 1995,
vol. 29.

A. Happe, B. Duncan, and A. Bratterud, “Unikernels for cloud architec-
tures: How single responsibility can reduce complexity, thus improving
enterprise cloud security,” Submitt. to Complexis, vol. 2016, pp. 1-8, 2017.
D. Williams and R. Koller, “Unikernel monitors: Extending minimalism
outside of the box.,” in HotCloud, 2016.

The MITRE Corporation. (2015). The venom vulnerability, [Online].
Available: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2015-3456 (visited on 12/14/2018).

A. Bratterud, A.-A. Walla, H. Haugerud, P. E. Engelstad, and K. Begnum,
“Includeos: A minimal, resource efficient unikernel for cloud services,”
in Cloud Computing Technology and Science (CloudCom), 2015 IEEE 7th
International Conference on, IEEE, 2015, pp. 250-257.

K. Stengel, F. Schmaus, and R. Kapitza, “Esseos: Haskell-based tailored
services for the cloud,” in Proceedings of the 12th International Workshop
on Adaptive and Reflective Middleware, ACM, 2013, p. 4.

J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and
F. Huici, “Clickos and the art of network function virtualization,” in
Proceedings of the 11th USENIX Conference on Networked Systems Design
and Implementation, USENIX Association, 2014, pp. 459—473.

D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt,
“Rethinking the library os from the top down,” in ACM SIGPLAN Notices,
ACM, vol. 46, 2011, pp. 291-304.

A. Madhavapeddy and D. J. Scott, “Unikernels: The rise of the virtual
library operating system,” Communications of the ACM, vol. 57, no. 1,
pp. 61-69, 2014.

X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and J. Vouillon, “The
ocaml system release 4.02,” Institut National de Recherche en Informatique
et en Automatique, vol. 54, 2014.

P. Hudak, “Conception, evolution, and application of functional pro-
gramming languages,” ACM Computing Surveys (CSUR), vol. 21, no. 3,
Pp. 359-411, 1989.

R. Milner, “A proposal for standard ml,” in Proceedings of the 1984
ACM Symposium on LISP and Functional Programming, ser. LFP ’84,
Austin, Texas, USA: ACM, 1984, pp. 184-197, ISBN: 0-89791-142-3. DOI:
10.1145/800055.802035. [Online]. Available: http://doi.acm.org/10.
1145/800055.802035.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3456
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3456
https://doi.org/10.1145/800055.802035
http://doi.acm.org/10.1145/800055.802035
http://doi.acm.org/10.1145/800055.802035

50 BIBLIOGRAPHY

[42] C.Bozman, M. Mauny, F. Le Fessant, and T. Gazagnaire, “Study of ocaml
programs’ memory behavior,” OCaml Users and Developers, 2012.

[43] Y. Minsky, “Ocaml for the masses,” Communications of the ACM, vol. 54,
no. 11, pp. 53-58, 2011.

[44] T.Imada, “Mirageos unikernel with network acceleration for iot cloud
environments,” in Proceedings of the 2018 2nd International Conference
on Cloud and Big Data Computing, ACM, 2018, pp. 1-5.

[45] A.S.Tanenbaum and M. Van Steen, Distributed systems, 3rd ed. distributed-
systems.net, 2017.

[46] CERT Coordination Center. (2014). Openssl tls heartbeat extension read
overflow discloses sensitive information, [Online]. Available: https :
//www.kb.cert.org/vuls/id/720951/ (visited on 05/30/2019).

[47] V. Cardellini, M. Colajanni, and P. S. Yu, “Geographic load balancing for
scalable distributed web systems,” in Proceedings 8th International Sym-
posium on Modeling, Analysis and Simulation of Computer and Telecom-
munication Systems (Cat. No. PRoo728), IEEE, 2000, pp. 20-27.

[48] S. Sharma, S. Singh, and M. Sharma, “Performance analysis of load
balancing algorithms,” World Academy of Science, Engineering and Tech-
nology, vol. 38, no. 3, pp. 269—272, 2008.

[49] T. Hunt. (2013). Have i been pwned? [Online]. Available: https://
haveibeenpwned.com/ (visited on 05/30/2019).

[so] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang, “The tangled
web of password reuse.,” in NDSS, vol. 14, 2014, pp. 23—26.

[51] B. Krebs. (Mar. 2019). Facebook stored hundreds of millions of user pass-
words in plain text for years, [Online]. Available: https://krebsonsecurity.
com/ 2019/ 03/ facebook - stored - hundreds - of ~millions - of - user -
passwords-in-plain-text-for-years/ (visited on 05/26/2019).

[52] B. Ives, K. R. Walsh, and H. Schneider, “The domino effect of password
reuse,” Communications of the ACM, vol. 47, no. 4, pp. 75-78, 2004.

[53] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov, “The
first collision for full sha-1,” in Annual International Cryptology Confer-
ence, Springer, 2017, pp. 570-596.

[54] H. Kumar, S. Kumar, R. Joseph, D. Kumar, S. K. S. Singh, and P. Kumar,
“Rainbow table to crack password using mds hashing algorithm,” in
2013 IEEE Conference on Information & Communication Technologies,
IEEE, 2013, pp. 433-439.

[55] A. Biryukov, D. Dinu, and D. Khovratovich, “Argon2: New generation of
memory-hard functions for password hashing and other applications,”
in 2016 IEEE European Symposium on Security and Privacy (EuroS&P),
IEEE, 2016, pp. 292—302.

[s6] E. Casalicchio, “Autonomic orchestration of containers: Problem defini-
tion and research challenges,” in 10th EAI International Conference on
Performance Evaluation Methodologies and Tools. FAI, 2016.

https://www.kb.cert.org/vuls/id/720951/
https://www.kb.cert.org/vuls/id/720951/
https://haveibeenpwned.com/
https://haveibeenpwned.com/
https://krebsonsecurity.com/2019/03/facebook-stored-hundreds-of-millions-of-user-passwords-in-plain-text-for-years/
https://krebsonsecurity.com/2019/03/facebook-stored-hundreds-of-millions-of-user-passwords-in-plain-text-for-years/
https://krebsonsecurity.com/2019/03/facebook-stored-hundreds-of-millions-of-user-passwords-in-plain-text-for-years/

BIBLIOGRAPHY 51

[57]
[58]
[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

M. J. Hammel, “Managing kvm deployments with virt-manager,” Linux
J., vol. 2011, no. 201, Jan. 2011, 1SSN: 1075-3583. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1924401.1924408.

Docker Inc. (2019). Docker swarm mode overview, [Online]. Available:
https://docs.docker.com/engine/swarm/ (visited on 05/27/2019).

D. Vohra, Kubernetes microservices with Docker. Apress, 2016.

A. S. Asrese, S. J. Eravuchira, V. Bajpai, P. Sarolahti, and J. Ott, “Mea-
suring web latency and rendering performance: Method, tools & longi-
tudinal dataset,” 2017.

B. Briscoe, A. Brunstrom, A. Petlund, D. Hayes, D. Ros, J. Tsang, S.
Gjessing, G. Fairhurst, C. Griwodz, and M. Welzl, “Reducing internet
latency: A survey of techniques and their merits,” IEEE Communications
Surveys & Tutorials, vol. 18, no. 3, pp. 2149-2196, 2014.

B. Barras, S. Boutin, C. Cornes, J. Courant, J.-C. Filliatre, E. Gimenez, H.
Herbelin, G. Huet, C. Munoz, C. Murthy, et al., “The coq proof assistant
reference manual: Version 6.1,” PhD thesis, Inria, 1997.

E. M. Clarke, E. A. Emerson, and J. Sifakis, “Model checking: Algorithmic
verification and debugging,” Communications of the ACM, vol. 52, no. 11,
pp. 74-84, 2009.

B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale study of
programming languages and code quality in github,” in Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering - FSE 2014, ACM Press, 2014. DO1: 10.1145/2635868.
2635922.

Robur. (2015). The bitcoin pifiata, [Online]. Available: https://robur.
io/Projects/Pinata (visited on 05/21/2019).

Nerings- og handelsdepartementet, “Dnvs rapport om altinn ii,” 2012.
[Online]. Available: https://www.regjeringen.no/no/dokumenter /
dnvs-rapport-om-altinn-ii/id675893/ (visited on 05/27/2019).

H. Mehnert. (2018). Albatross - provisioning, deploying, managing, and
monitoring virtual machines, [Online]. Available: https://hannes.ngsb.
io/Posts/VMM (visited on 05/21/2019).

A. Madhavapeddy, T. Leonard, M. Skjegstad, T. Gazagnaire, D. Sheets,
D. J. Scott, R. Mortier, A. Chaudhry, B. Singh, J. Ludlam, et al., “Jitsu:
Just-in-time summoning of unikernels.,” in NSDI, 2015, pp. 559-573.

http://dl.acm.org/citation.cfm?id=1924401.1924408
https://docs.docker.com/engine/swarm/
https://doi.org/10.1145/2635868.2635922
https://doi.org/10.1145/2635868.2635922
https://robur.io/Projects/Pinata
https://robur.io/Projects/Pinata
https://www.regjeringen.no/no/dokumenter/dnvs-rapport-om-altinn-ii/id675893/
https://www.regjeringen.no/no/dokumenter/dnvs-rapport-om-altinn-ii/id675893/
https://hannes.nqsb.io/Posts/VMM
https://hannes.nqsb.io/Posts/VMM

	Abstract
	Acknowledgements
	List of Abbreviations
	List of Figures
	List of Tables
	1 Introduction
	1.1 Thesis Statement
	1.2 Context
	1.3 Methodology
	1.4 Outline

	2 Background
	2.1 Information Flow
	2.2 Use-Based Privacy
	2.3 Microservices
	2.4 Containers
	2.5 Unikernels
	2.6 OCaml
	2.7 MirageOS

	3 Design and implementation of PPCE
	3.1 System overview
	3.2 Communication Between Components
	3.3 Proxy
	3.4 Authentication
	3.5 Virtual Machine Manager Daemon
	3.6 Applications
	3.7 Modularity

	4 Evaluation
	4.1 Experimental Setup
	4.2 Network Setup
	4.3 Initial Full System Experiment
	4.3.1 Discussion

	4.4 Microbenchmark: Creating and attaching tap to bridge
	4.4.1 Discussion

	4.5 Microbenchmark: Unikernel boot
	4.5.1 Discussion

	4.6 Improved Full System Experiment
	4.6.1 Ahead-of-time spawning of unikernels
	4.6.2 Hybrid tap pool

	4.7 Summary

	5 Discussion
	5.1 Security and Privacy
	5.2 Service Lifetime Configuration
	5.3 System Shortcomings

	6 Conclusion
	6.1 Related Work
	6.2 Concluding Remarks
	6.3 Future Work

