
Faculty of Science and Technology
Department of Computer Science

HyperProv

Blockchain-based Data Provenance using Hyperledger Fabric
—
Petter Tunstad
INF-3981 - Master’s thesis in Computer Science, May 2019

This thesis document was typeset using the UiT Thesis L�TEX Template.
© ���� – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

“Who controls the past controls the future.
Who controls the present controls the past.”

–George Orwell, ����

Abstract
With data intensive computing helping advance state-of-the-art in varied fields,
data provenance and lineage continue to remain formidable challenges in
assisting with integrity and reproducibility in research and applications. This
is particularly challenging for distributed scenarios, where data may be origi-
nating from decentralized sources without any centralized control by a single
trusted entity. To date most of the data provenance systems are specific to
particular domains, and are often centralized. Distributed ledgers such as
blockchains have proved quite popular and effective in addressing trust and
consensus without central control. There are a few recent proposals to employ
blockchains for data provenance, however, they rely on currency in order to
propose transactions using public blockchains.

We present HyperProv, a general framework for data provenance based on
the permissioned blockchain Hyperledger Fabric (HLF), and to the best of our
knowledge, the first provenance system that is ported to ARM based devices
such as Raspberry Pi (RPi). HyperProv records the operation history and data
lineage by tracking checksums, editors, timestamps, data pointers, dependen-
cies, and more. Provenance data is retrieved and stored through a NodeJS
client library to simplify interactions with the blockchain. HyperProv has a set
of built-in queries using smart contracts that enable lightweight retrieval of
large collections of provenance data. We evaluate the throughput, latency and
resource consumption of HyperProv on x��-�� desktop machines, as well as
RPi, demonstrating the feasibility of using HyperProv on RPi for tamper-proof
data provenance, useful in particular for Internet of Things use cases. Our con-
tributions to HLF for ARM devices have already generated significant uptake
and attention in the community, with multiple interactions and more than ���
downloads in less than � months.

Acknowledgements
First and foremost I would like to thank my supervisors, Phuong Hoai Ha
and Amin Khan for your advice, ideas and feedback during this project and for
my time at the Green Computing Group. I miss the cake-fueled Fridaymeetings.

Thanks to Sunjun Mehedi and Tommy Øines from Arctic Green Computing
Group for your input on machine learning model management and helpful
talks around the office.

I would also like to express my sincerest gratitude for my fellow students in
the class of ����. Thank you for five great years, both on and off campus. We’ve
come a long way since the teapots.

Finally, I would like to thank my parents for encouraging me, and for your
endless love and support.

Contents
Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Problem Definition . 2
1.2 Methodology . 3
1.3 Previous Work . 3
1.4 Hypothesis and Choice of Platform 4
1.5 Summary of Contributions 4
1.6 Outline . 5

2 Related Work 7
2.1 Provenance with Blockchain 7
2.2 Provenance in General . 9
2.3 Other related projects using blockchain 10

3 Hyperledger Fabric 13
3.1 Blockchain . 13

3.1.1 Consensus Protocols 14
3.1.2 Smart Contracts . 15

3.2 Architecture . 15
3.2.1 Endorsement Policies 16

3.3 Docker . 17
3.4 Node Client Libraries . 17

4 Architecture and Design 19
4.1 Provenance Metadata . 21
4.2 High-level Architecture . 21
4.3 Hyperledger Nodes . 22

vii

viii CO N T E N T S

4.3.1 Chaincode Operations 23
4.4 Off-Chain Storage . 24
4.5 Client Placement . 25
4.6 Availability and Consistency with Network Partitions 26
4.7 System Specification . 27

4.7.1 Core Functionality 27
4.7.2 Additional Functionality 27

5 Implementation 29
5.1 Chaincode . 29

5.1.1 Data Pointers and Checksums 30
5.1.2 Dependency Linking 31
5.1.3 Identity . 32
5.1.4 Historic and Range Queries 32
5.1.5 Pagination . 33

5.2 Client Library . 33
5.2.1 Exposed API . 34
5.2.2 NPM Library . 34
5.2.3 REST Client . 35

5.3 Case Studies . 35
5.3.1 IoT Sensor Data Client 35
5.3.2 Machine Learning Models Client 36

5.4 System Configuration . 36
5.4.1 Compose Files . 37
5.4.2 Certificate Authority 37
5.4.3 Shared Storage . 37

5.5 Building Docker Images . 38

6 Evaluation 39
6.1 Methodology . 40

6.1.1 Experimental Setup 40
6.1.2 CPU Throttle on 64-bit Raspberry Pi 41
6.1.3 Throughput Measurements 41
6.1.4 Measuring Resource Consumption 41

6.2 Throughput . 43
6.2.1 Latency . 47

6.3 Resource Consumption . 48
6.3.1 Raspberry Pi . 51
6.3.2 Energy . 52
6.3.3 Network . 53

6.4 Edge Computing . 55
6.5 Model Metadata Tracking 57

7 Discussion and Concluding Remarks 61

CO N T E N T S ix

7.1 Discussion . 61
7.1.1 Findings . 62

7.2 Future Work . 63
7.3 Concluding Remarks . 64

Bibliography 65

Appendices 73

A Appendix A: System Specifications and Configuration 73

B Appendix B: Building Hyperledger Fabric Docker Images 85

List of Figures
3.1 Sequence of blocks and fork illustrated. 14
3.2 Transaction flow between Client, Peer and Orderers in Hyper-

ledger Fabric. 16

4.1 The three core components in the Hyperprov System 22
4.2 Hyperledger components in Hyperprov 23
4.3 Off chain storage possibilities 25
4.4 Hyperledger Fabric in the CAP-theorem venn-diagram 26

5.1 JSON object from getDependencies for IoT sensor data visu-
alized. 31

5.2 The software stack for Hyperprov 34

6.1 Component distribution on experimental setup. 40
6.2 Throughput and average response times for increasing load

levels. (Desktop) (only provenance data) 43
6.3 Figure 6.2 extended. Throughput for load levels up to 10 000

transactions at a time. Peaking at 3276 tx/min. 44
6.4 Throughput and average response times for increasing load

levels. (RPi) (only provenance data) 44
6.5 Throughput and response times for varying data sizes. (Desk-

top) . 45
6.6 Throughput for 1-3 concurrent client devices. (RPi) 46
6.7 Throughput and response times for varying data sizes. (RPi) 46
6.8 Latency for an increasing number of dependent records re-

trieved with the getdependencies chaincode. (Desktop) . . . 48
6.9 CPU/Memory at max load (⇠ 3200 tx/min). (Desktop) . . . 49
6.10 CPU and memory for peer process (Desktop) 50
6.11 CPU and memory for client process (Desktop) with external

storage. 50
6.12 CPU and memory for peer process (RPi) 51
6.13 CPU and memory for client process (RPi) with external storage. 52
6.14 Energy consumption on RPi. 10-minute intervals 53
6.15 Network consumption without transactions. 54

xi

xii L I S T O F FI G U R E S

6.16 Network consumption with and without SSHFS. 55
6.17 IoT gateways illustrated . 56
6.18 Resource usage for storing 100 x 94MB ML models. 57
6.19 V8 Profile for storing 100x 94MB models 58
6.20 Network for storing 94MB models 58

List of Tables
5.1 Key operations enabled by the Hyperprov Client Library . . . 34

6.1 Latency of operations to blockchain 47
6.2 Statistics of SET operation latency data 47

xiii

1
Introduction
Over the last two decades, the size of data generated and used for research
has increased significantly [�], highlighting the importance of data provenance
systems [�, �] in order to ensure the quality and integrity of information, and
to counteract accidental or malicious data manipulation or corruption. Data
provenance is the process that determines the lineage of data, starting from its
original sources. A provenance system can be useful for verifying the integrity
of data, tracking its history and recording identities of any of its editors.

Blockchain technology [�] has in the recent years attracted a lot of focus due
to its ability to create a tamper-proof, shared decentralized ledger of trans-
actions resillient to byzantine parties. Permissioned blockchains [�, �] vary
from public blockchains by placing more trust in an infrequently changing
set of participants, allowing for consensus algorithms with better performance
and energy efficiency. One of these permissioned systems is Hyperledger Fab-
ric (���) [�], which is a new and promising enterprise-targeted blockchain
framework backed by IBM and The Linux Foundation. Evaluations [�] show
that ��� [�] compares well with other major private blockchains. Most other
provenance solutions are developed for centralized architectures and designed
for specific fields [�, �] while recent provenance systems using blockchain rely
on currency-based public blockchains [�, �].

In this thesis, we present Hyperprov, a blockchain based provenance system
using ��� to provide guarantee and lineage of data by storing provenance
metadata in a tamper-proof ledger. Hyperprov records the operation history

�

� C H A P T E R � I N T R O D U C T I O N

and data lineage by tracking editors, timestamps of operations, checksums, data
locations, dependencies and additional custom metadata. Provenance data is
retrieved and stored through a NodeJS client library to simplify the interactions
with the blockchain. Hyperprov has a set of built-in queries in the chaincode
(smart contracts) that allow for lightweight retrieval of large collections of
provenance data. As a distributed system, the aim of Hyperprov is to provide
tamper-proof replication of provenance data while ensuring consistency and
fault tolerance.

Because permissioned blockchains like ��� do not rely on any heavy computa-
tions, unlike proof-of-work blockchain systems, we believe this makes it feasible
to use edge devices such as ��i or acting as gateways for devices producing
data. By building and releasing Docker images for ARM we hope to pave way
for other projects looking to evaluate ��� on edge devices. Our contributions
in porting HLF for ARM devices have already generated significant uptake
and notice in the community, with multiple interactions, and more than ���
downloads in the past �-� months [�].

We evaluate Hyperprov on an experimental setup both on Desktop x��-�� com-
modity hardware and ��i to evaluate throughput and resource consumption.
To the best of our knowledge, this is the first provenance system to feature
���’s first long-term release, and also the first to run a provenance system
based on ��� on ARM devices. We have compared our results on desktop
machines with those reported for recent systems [�, �]. For the ��i, our goal is
to evaluate and argue for acceptable overhead of ���-based distributed data
provenance systems for �o� devices at the edge.

�.� Problem De�nition

The objective is to explore the landscape of provenance tracking and the capabili-
ties of the ��� framework. The research will propose a system for data provenance,
implement a prototype and evaluate for use both on desktop and RPi devices.
We will deploy a system running the long-term release of ��� with all current
performance, stability and feature improvements. Focus will be on general usabil-
ity, sufficient performance and low resource consumption. We will evaluate the
feasibility of this for �o� edge devices on ��i and compare results against recent
systems on commodity desktop hardware.

�.� M E T H O D O LO G Y �

�.� Methodology

In accordance with the final report of the ACM Task Force on The Core of
Computer Science [��] there are three main paradigms in the discipline on
computing. These are theory, abstraction and design.

The first paradigm, theory, is rooted in mathematics. This consists of an
iterative process involving defining a problem to study, developing one or more
theorems, test in order to prove/disprove the theorems and lastly evaluate
and interpret the results to determine new factors and make progress in
computing.

Abstraction is rooted in experimental scientific models. This involves forming
a hypothesis, constructing models and predictions, designing an experiment
to collect data and lastly analyze the results.

The last paradigm, design, is rooted in engineering. Within this paradigm one
seeks to create a system for solving a given problem. This involves stating
requirements and specification of the system, designing and implementing the
system and lastly evaluating and testing the system.

For this thesis, the last paradigm, design seem to be most fitting as we seek
to construct a system to enable data provenance. We state a problem, set
requirements and specifications and evaluate the system behavior based on an
implemented prototype.

�.� Previous Work

This thesis builds on previous work from a capstone project [��] where we
evaluated the possibility of running an early version of��� on ��i devices. We
came across several limitations which we improve upon to create a competitive
solution both in terms of functionality and performance. We found that earlier
versions of ��� (v�.�) did not have sufficient functionality to implement com-
petitive provenance features. Also, storing all data in the ledger was unfeasible
due to performance limitations and the ledger growing unsustainably large.
Additionally, we found that accessing network features and interacting with
the ledger was too complex and would most likely discourage users from using
our system. For this work we will resolve all these limitations and more to
implement a new provenance framework we believe to be competitive with
existing cutting edge solutions.

� C H A P T E R � I N T R O D U C T I O N

�.� Hypothesis and Choice of Platform

For this thesis we want to focus on three main hypotheses which affect our
choice of platform. Our first point (H�) is that we believe that the ��� frame-
work (v�.�) is sufficient to provide competitive provenance features using
functionality built into smart contracts. Additionally (H�) we believe that a
system based on ��� can compare against existing provenance solutions on
blockchain in terms of performance. Last but not least (H�) we believe that the
resource overhead is sufficiently small that our system will be feasible to run
on ��i for �o� devices at the edge.

To summarize we want to explore (H�) functionality, (H�) performance and
(H�) low-overhead. To do this we will conduct evaluations on both commodity
desktop hardware and ��i.

�.� Summary of Contributions

This thesis makes the following contributions:

• We strengthen the viability of running ��� on ARM devices by building
deployable Docker images from source and publishing them to Docker
Hub [�].

• We research existing provenance systems to discover limitations and
common traits that can be implemented and improved upon using a
permissioned blockchain framework.

• We present the architecture and implementation of Hyperprov, a system
consisting of��� chaincode and a NodeJS client library to enable storage
and retrieval of provenance metadata to a tamperproof blockchain ledger.

• We demonstrate that our system is capable of storing provenance data
for real-world scenarios by implementing a collection of applications on
top of our client library.

• We experimentally evaluate Hyperprov trough a number of benchmarks
to evaluate throughput and latency both on commodity hardware desk-
top systems and for Raspberry Pi devices. We also evaluate the device
resource usage in terms of CPU, memory, network and energy consump-
tion.

�.� O U T L I N E �

�.� Outline

Chapter � gives an overview of related work and related projects in the subjects
of Provenance, Blockchain and IoT. It also provides context for comparisons
and mentions throughout the thesis.

Chapter � describes the key framework on which Hyperprov is built, namely
Hyperledger Fabric and presents relevant background material on blockchain.

Chapter � presents Hyperprov and how it designed to benefit data provenance
and provides an overview of the system architecture.

Chapter � discuss the methodology and implementation of the system proto-
type and ��� setup.

Chapter � evaluates the measurements derived from the experimental setups
on Desktop and ��i devices. It also evaluates the system for two real-world
scenarios.

Chapter � Discusses the findings, outlines future work and concludes the thesis

2
Related Work
For this section we will outline some other projects using blockchain for data
provenance. We will also look into other more traditional provenance systems
and how other systems make use of blockchain technology beyond prove-
nance.

�.� Provenance with Blockchain

SmartProvenance [�] uses the public blockchain Ethereum [��] to create a set
of techniques for secure storage of data trails, access control policies, voting
mechanisms and penalty payments to prevent malicious changes. Every change
in this system is similarly stored as a new encrypted version of the data. They
are able to mimic the Open Provenance Model (���) [��] and create an
off-chain JavaScript module for user accessibility using MeteorJS. Building a
system on a public blockchain yields some guarantees that the ledger is shared
across a large number of participants, however the system relies on currency
to process transactions. They state that the cost of operation ranges from �.��
USD to �.�� USD per change made in the system.

ProvChain [�] also make use of public blockchains, to store and verify prove-
nance of data stored in the cloud. They claim only an average of �.�� %
overhead for storing data with the system. Data is stored using Chainpoint
[��] which is responsible for combining hashes of the provenance history into

�

� C H A P T E R � R E L AT E D WO R K

a Merke-tree [��] to allow more data per block. Transactions return verifiable
proofs that are irreversibly anchored in the blockchain. Chainpoint is based
on the Bitcoin [��] ledger and require a transaction to be processed before
data provenance is stored. This similarly to SmartProvenance [�] is costly but
ProvChain [�] propose that cloud service providers charge extra for provenance
capabilities and in turn use this to pay for transactions that eventually lead to
currency for the Bitcoin miners, keeping the network running.

Another approach from Demichev, Kryukov and Prikhodko [��] suggests using
blockchain and more specifically ��� [�] to manage provenance metadata and
access control for distributed storage. The paper is targeted towards tracking
large amounts of data in studies involving administratively separate orga-
nizations where funding or estimating the required storage for projects are
problematic. They target a storage model between centralized and Peer-to-peer
(���) storage, where each participating organization integrates their central-
ized storage pool into a unified distributed set of storage providers which can
be allocated for projects when needed. At this stage they only present a design,
claiming a preliminary version prototype created with Hyperledger Composer
has been deployed, which may be evaluated in the future.

Vegvisir [��] is a partition-tolerant permissioned blockchain for the �o� focus-
ing on low-network connectivity and power efficiency. They resolve network
partitions by allowing them to create forks of the blockchain resulting in a
graph structure of the ledger with causal ordering. This limits Vegvisir to only
applications based on Conflict-free Replicated Data Types (����) [��] which
can be replicated across multiple hosts and updated independently while keep-
ing strong eventual consistency, but at the cost of unique total ordering. Nodes
reconcile by periodically asking neighbors for all its blocks with no successors,
and if any of these blocks are not known they add them and all their parent
blocks if not already present, by doing this the nodes achieve eventual consis-
tency on nodes without successors and gain a causal history of the blocks added.
Because malicious nodes may delete new blocks before being propagated, a
block is considered persistent only once it has been stored by a k number of
different users, this is called proof-of-witness. An android application using
this system, targeted towards emergency first responders is currently under
construction and may prove to be useful in low connectivity or in ad hoc mobile
networks.

�.� P R OV E N A N C E I N G E N E R A L �

�.� Provenance in General

Herschel et al. [�] defines provenance as the production process of an end prod-
uct. This could possibly include the actual data, meta-data, processes, activities
and/or even people involved in the production or transformation of data. The
paper brings up some use cases such as food supply chains, reproducing scien-
tific research or complex data processing e.g. when analyzing or debugging.
They also describe an interesting distinction between different types of prove-
nance, namely provenance metadata, information system provenance, workflow
provenance and data provenance. This forms a hierarchy where provenance
metadata is the most general and data provenance is most specific. Provenance
metadata describes all types of general-purpose provenance that with high free-
dom is used to model information about the data derivation process. Following
is information system provenance which is more specifically meta data about
an information disseminating process which can be calculated based on input,
output and parameters of a process.Workflow provenance further specializes by
restricting the processes to directed graphs where nodes and edges represent
functions and the data flow between them, this allows for higher resolution
provenance as you can leverage all connections of the workflow graphs. The
final level of the hierarchy is data provenance in which you track individual
items and the operations applied to them. Per-object provenance usually mod-
els either the history of existing results or explain the absence ofmissing results.

Simmhan, Plale and Gannon [�] classify several definitions for data provenance.
The most notable is the origins of data, the process in which it arrived at
the database, resources and transformations applied to derive the data, what
processes created it and additional metadata which describe the process. Their
survey [�] gives insight into multiple aspects where provenance information
could be useful. Lineage of data can e.g. be used to determine quality and
reliability. Provenance can also be used to trace the audit trail of data or as a
means of replicating to another system, it can be used to strengthen ownership
of data or determine liability in the event of faulty records. Lastly provenance
metadata could be used in the context of data discovery and or to provide
context for understanding data.

The survey [�] evaluates five major works in the field of data provenance and
classifies them based on characteristics. Chimera [��] is a script based prove-
nance system for physics and astronomy which collects provenance in the form
of data derivation steps to allow for on-demand regeneration of data, simple
comparison and audits of derivations. MyGrid [��] provides a middleware layer
for biology experiments. Provenance is modeled as workflows in a grid enviro-
ment, this allows for features such as resource discovery, workflow-enactment
and metadata/provenance management to better integrate and enhance the

�� C H A P T E R � R E L AT E D WO R K

bio-informatics information model. CMCS [��] is a project targeted towards
collaborative and metadata-based data management. It has been used for
combustion research and uses the Scientific Annotation Middleware for storing
URL-referenceable files and collections. The ESSW [��] is a script-based system
used by earth science researchers for metadata management and data storage.
This system relies on tracing the lineage of data for error detection and for
determining the quality of datasets. The sequence of operations performed by
a master script forms a Directed Acyclic Graph (���) which can be visualized
and navigated in a web-browser. Trio [��] is a proposed database system which
includes data accuracy and lineage as inherent components. Data is stored as
tuples, and lineage is a product of the query and source tuples automatically
determined by the system from inverse queries. Common for all five systems is
that they mostly rely on a relational database, are not as tamperproof as sys-
tems based on blockchain technology and are mostly specified towards specific
fields.

�.� Other related projects using blockchain

Shafagh et al. [��] makes use of blockchain to create a distributed access
control and management scheme for IoT data streams. This is made possible
by running a virtual chain layer [��] to add system logic on an already existing
blockchain. In this case they use Bitcoin [��] because of its security, reliability
and current dominance. Because of the specific IoT use case, data is structured
in streams and chunked, compressed and encrypted before being stored in an
off-chain storage service. Because IoT data typically has a high level of correla-
tion in time, the data is also highly compressible, chunks are then compressed
and chained together where only the top chunk needs to be stored in the
blockchain due to cryptographic chaining. This makes for efficient storage-use
both off chain and in the Bitcoin blockchain where storage typically is slow and
costly. The devices used are "in the orders of few MHz of CPU, few ��s of KB of
RAM, and few ���s of KB of ROM" [��] and would most likely be too restrained
for running their own blockchain like ���. The paper mentions however, that
an "IoT gateway" also could be used as an intermediate node and cache for
multiple smaller devices interacting with the off-chain storage.

Nygaard [��] presents a highly scalable architecture for a storage system built
using blockchain. The system consists of three types of devices; clients, ledger
nodes and storage nodes. The system uses traditional BFT algorithms to pro-
vide superior throughput and latency over other consensus methods such as
proof-of-work or proof-of-stake. For this they use a blockchain engine built
around Tendermint [��] to provide consensus in permissioned environments.

�.� OT H E R R E L AT E D P R O J E C T S U S I N G B LO C KC H A I N ��

For storage he uses the IPFS [��] distributed ��� file system which has content-
addressing so that each item has its unique content identifier. The prototype
results show the time required to disseminate varying data sizes across the
network for different size networks. The limitation seems to be reliant on
sending data to the storage nodes, but if tested with more than one operation
the number of ledger nodes may also start to play a role.

Stanciu [��] proposed an interesting use of ��� in a system for hierarchical
distributed access control based on the IEC����� Standard. He targets Edge
Computing as an extension to the cloud located closer to the devices. Hyper-
ledger [�] chaincode and Docker [��] is used to implement function blocks and
Kubernetes [��] is used to orchestrate execution across all edge resources. The
goal is a three-layered architecture where edge nodes can be used to do the first
steps of processing to significantly reduce transfer sizes and cloud dependency.
The paper includes an evaluation of ��� v�.� on Google Cloud Platform (���)
to measure set(invoke) and get(query) operations on two different levels of
hardware. The results show that ��� invoke transactions per second increase to
��� invoke transactions per second for twice as powerful hardware. The results
indicate a limitation regarding the load that can be effectively processed by
the framework as twice as powerful hardware does not significantly increase
the throughput. While this limitation may exist in a data center, it may not be
as present using RPi devices or commodity desktop hardware.

Selimi et al. [��] have tested an active ��� deployment in a production wire-
less mesh network. They make use of chaincode to automatically account for
resource consumption in a community mesh network where a large number of
participating routers share network resources and can be economically compen-
sated based on usage. They set up an experimental setup where ��i nodes was
used to run the blockchain. Tests were run both in a lab environment and in an
actual production setting where they measured transaction latency, CPU and
memory utilization. Results show that endorsing nodes become a bottleneck at
about ��� transaction/min. This could be used as grounds for comparison to
our system on ��i. We need to keep in mind that we run different chaincode
and as we know this work was done before April ����, nodes must comprise of
the ��-bit compatible ��� v.�.� or earlier.

3
Hyperledger Fabric
Hyperledger Fabric [�] is part of the Hyperledger collection of blockchain frame-
works that are hosted by the Linux Foundation. Hyperledger was originally
developed by IBM and is in many ways targeted towards business applications.
Due to its focus on enterprise it can be seen as a blockchain for everything
except cryptocurrency, but with many of the same features such as immutability,
ordering of operations and prevention of double spending. ��� is built using
a modular approach which means that consensus, endorsement and storage
protocols can be easily swapped. Because ��� is open-source and has been
embraced bymultiple industries [��], there is a high level of flexibility, available
source material and support from the community.

�.� Blockchain

There are many descriptions of the term blockchain, but generally it can be
described as a data structure in which data is always appended to the end of a
list. Data is recorded in blocks and each block can hold a number of records.
Each block, however, has a cryptographically secured link to its predecessor by
storing its hash as part of itself. By this logic, every new block act as additional
proof of every previous block as changing data in any previous block would
require recalculation of all succeeding blocks. This allows the blockchain to
protect the integrity of the data stored in it.

��

�� C H A P T E R � H Y P E R L E D G E R FA B R I C

Figure �.�: Sequence of blocks and fork illustrated.

When you start a blockchain the only thing you need to decide on is a common
starting point, this is commonly referred to as the genesis block. In many
implementations of blockchain, especially in public/permissionless systems,
you can end up having multiple blocks linking to a common predecessor. This
typically occurs if two blocks are created around the same time or during
a network partitioning and is called a fork. The typical way to resolve this
is to have all nodes choose the longest sub-chain visible to them and then
simply wait until multiple blocks has been appended to your block before
declaring it reliable. An example of how tedious this can be is Bitcoin [��]
which suggests reliability at six blocks depth and only submits a block every ��
minutes, resulting in a full hour of wait time for a transaction to be considered
valid. Figure �.� illustrates a fork happening, and while there exists only one
Block �, for some systems like Bitcoin, multiple blocks would still need to be
appended before deeming the data in Block � trustworthy.

�.�.� Consensus Protocols

The core component of any blockchain is the consensus protocol used to
reach agreement between all participating nodes. Most commonly for Public
blockchains such as Bitcoin [��] and Ethereum [��] are the use of Proof-of-
Work (�o�) based consensus where a collection of miners are financially
incentivized to compute cryptographic puzzles in a race to propose new blocks,
resulting in increasingly large computational barriers for recomputing blocks
in the ledger. The mining industry consumes a lot of unnecessary energy doing
these trivial computations, and at the time of writing (��.��.��) the estimated
annual electricity consumption of only Bitcoin [��] is more than the entire
country of Colombia [��]. Because of this many blockchain frameworks are
actively trying to move away from �o�-based consensus. An example of this
is Ethereum [��] which is pursuing a switch to Proof-of-Stake (�o�)-based
consensus, meaning that nodes are selected for validation based on their value
in the system, typically based on the amount of currency a node holds. This
allows the system to remain secure as long as a majority of the currency in
the system is in honest hands, as opposed to �o� always requiring an honest

�.� A R C H I T E C T U R E ��

majority of computing power. Algorand [��] is a new approach proposing a
new and improved version of Byzantine Agreement using a technique called
Cryptographic Sortition to randomly choose users based on �o� and have
them compete in a voting committee for consensus with proofs from Verifiable
Random Functions [��]. This seems promising but has to our knowledge not
yet been used in a publicly available blockchain framework.

Permissioned blockchains are a newbranch of systems inwhichnodes need to be
authenticated, resulting in higher trust and a more constant set of participants.
This allows for more effective and deterministic consensus protocols to be
utilized, resulting in less computation overhead and in most cases no forks.
Fault tolerant consensus in distributed systems can therefore utilize battle
tested protocols such as Paxos [��], Raft [��] or PBFT [��]. ��� uses orderer
nodes to collect transactions, and endorsers from different organizations are
required to verify a transaction before it is considered valid. While prototypes
often use a single orderer, production networks use multiple orderers for
fault tolerance which currently supports either Kafka [��] or Raft [��] based
consensus as of ��� v�.�.

�.�.� Smart Contracts

Smart Contracts are a concept used within blockchain technology that refer to
executable logic that is programmed into the core components of a blockchain
network. This allows the automatic execution of certain operations and logic
based on the parameters of a transaction. In Hyperledger Fabric the term
Chaincode is used to describe a collection of Smart Contracts, and from this
point we will refer to smart contract functionality as chaincode. Within ���,
all operations performed on the ledger both for invoking and querying is the
work of chaincode. Additionally, we can write and enable our own custom
chaincode operations to do specific provenance related operations or more
efficient queries. This enables a lot of opportunities for chaincode developers
to abstract functionality into the core of the network, and a provides a certain
level of functionality guarantee as all nodes are required to run the exact same
operations.

�.� Architecture

��� consists of three roles: client, peer and orderer. Clients are responsible for
issuing transactions to the peers, collecting proposal responses in the event
of multiple endorsing peers and sending blocks for ordering. On the other
hand, peers are responsible for endorsement of transactions by running the

�� C H A P T E R � H Y P E R L E D G E R FA B R I C

chaincode and interacting with the ledger. Chaincode containers in HLF act as
an individual process but are generally considered as part of the peer component
for architectural purposes. Orderer nodes are responsible for verifying the
validity of responses and reaching consensus on how transactions are grouped
together to form a new block. These blocks are then sent out to peers which
in turn update their local ledgers. When this occurs, the peer emits an update
event to the client, at which point a transaction is considered committed.
Figure �.� shows the transaction flow as described in the ��� documentation
[��].

Orderer

Service

Peer

Process

Hyperprov

Client

Chaincode

1.1 Transaction invokes chaincode

1.3 Chaincode updates proposal response

Ledger

1. Transaction proposal

2. Proposal response

3. Request ordering on transaction

4. Ordered transaction sent as part of new block

1.2 (optional) Chaincode queries ledger
4.1 Ledger updated with new block

5. Ledger updated event, valid transaction

1. (
optio

nal)
Pro

posal t
o o

th
er e

ndors
in

g p
eers

3.1 (optional) Consensus for multiple orderers

Figure �.�: Transaction flow between Client, Peer and Orderers in Hyperledger Fabric.

�.�.� Endorsement Policies

As Hyperledger Fabric is business centered with focus on cross organization
cooperation, the endorsement policy similarly is designed around those prin-
ciples. Endorsement in Hyperledger can be configured on a chaincode level
when initializing and set to require peers from multiple organizations to en-
dorse a transaction before an orderer will accept it. This assumes trust within
an organization, e.g. that all peers within an organization act according to
their interests. This makes ��� ideal for systems that want cross organization
sharing of provenance, but also limits the attacker model to not encompass
byzantine nodes within these organizations. While certificate revocation lists
[��] enable certificates to be revoked if byzantine behavior is detected, any
node with an ill-intentioned agenda can propose transactions to ��� as long
as they have a valid certificate. However, as the ledger is immutable, data
can never be deleted by byzantine nodes. Additionally, incorrect data could
be automatically invalidated once a certificate is revoked if transactions are
marked with certificate identifiers.

�.� D O C K E R ��

�.� Docker

Docker [��] is virtualization software that allows its users to spin up virtual-
ization environments called containers seamlessly on multiple devices. Docker
containers are more lightweight than virtual machines because they share the
host OS kernel, but because of this, images also need to be built for specific
architectures. Containers are isolated and includes all dependencies and soft-
ware in what is called a Docker image. ��� runs its core components such
as peer and orderers in Docker environments, similarly chaincode is run in a
separate Docker container along with peers. Research shows [�] that running
chaincode in Docker is beneficial to many other smart code implementations
relying on Ethereum Virtual Machine (���) [��]. Docker Compose is a tool used
for running multiple containers using a single configuration file. These files
are called compose-files and are specified using the YAML language. This can
be useful for prototyping and developing systems reliant on multiple interact-
ing docker containers. Another tool, Docker Swarm enables users to configure
docker instances on multiple devices from a single compose file.

�.� Node Client Libraries

The client component is as shown in Figure �.� a central component of ���.
Unlike the peer and orderer components, the client is not a docker image you
can just enable and access. Instead the client refers to any application that is
used to access the ��� network. This is enabled by a collection of Software
Development Kit (���)s that include the protocols used to communicate with
peer and orderer nodes. The two currently supported ���s are for Node.js and
Java, whereas the former seem to be the most maintained in terms of features
and tested examples [��]. Fabric also includes a collection of unofficial or no
longer maintained ���s for Python, Golang and a REST server, which may be
supported at a later point in time [��].

4
Architecture and Design
In this chapter, we explain the architecture and design decisions that went into
the process of creating Hyperprov.

Blockchain enables a new range of decentralized databases that by nature
allows us to trace the history of transactions appended to a shared ledger.
Blockchain may not be useful for every application and many times regular
centralized databases or distributed storage solutions may be more efficient due
to problems with scaling and storage. However as coined by Gideon Greenspan
[��] there are certain factors which may indicate that blockchain could be
useful for you. If your system needs either a shared database, have multiple
writers, non-trusting participants, don’t want to rely on a trusted intermediary
or you want automated interactions between multiple different transactions in
the database, blockchain technology may be used to make your system more
resilient to tampering and increase auditability. As a distributed provenance
tracking system all of these apply directly or indirectly based on the application
built on top of Hyperprov.

In the recent years with the expanding amount of collected data [�], we not
only have to focus on security, but also on data provenance and quality. Data
provenance refers to the metadata stored along with the collected data, this is
often in regard to the source of data collected and what is collected. A helpful
description of data provenance is that it helps identify who, when, what, where
and how the data was derived. The granularity of provenance can vary in a
wide range between different projects and while very specialized solutions

��

�� C H A P T E R � A R C H I T E C T U R E A N D D E S I G N

exist to track provenance data in fields like physics [��], biology [��] and earth
sciences [��], we believe in a more generalized approach that can individually
be adapted to target more specific fields.

Intertwined with provenance you can often find the field of data quality, this
often relates to answering questions like if we have acceptable accuracy and
precision in our measured data or if our data is specific enough. The measured
metadata for data quality is often related to accuracy or tracking other factors
that may have an effect on the data besides the obvious. These factors could
be anything like additional sensor data such as what the pressure was during
the measurements to what firmware was being run on the sensor devices.
Other fields of data quality would be tracking missing values and metadata
fields, or the consistency of multiple measurements across different datasets.
To strengthen data quality assurance, users could choose to store additional
metadata related to quality and operations could also be put in place for
tracking the amount of missing data. Data quality tracking and management
however is outside the scope for this project, mostly due to the wide and often
use-case specific span of quality dimensions.

A system for data provenance needs to focus on provenance, albeit to have a
system that users can rely on we can not compromise in terms of data security
either. The term data security strongly correlates with the fields of the CIA-
triad of confidentiality, integrity and availability. Confidentiality is vital to limit
sensitive data from reaching undesired people while making sure that people
who should reach it has proper access. This is often handled in permissioned
blockchains by having a shared set of participants as registered members. An
example of this is the organizational level CA’s in ��� that supply unique
identifiable certificates that is required to access the ledger. Further integrity is
by nature already handled in blockchains once the data reaches the ledger due
to its immutability. The question of integrity then becomes ensuring that data
has not been tampered with during creation e.g. at sensor level or changed
during transit. To combat this, we could have some sort of unique hardware
fingerprints such as done here by using Physical Unclonable Functions (���)
[��] and already common secure end-to-end communication mechanisms such
as Transport Layer Security (���). Lastly, availability is important to make
sure that data is accessible when it is needed by handling faulty components or
unexpectedly high activity. While distributed systems and blockchains typically
handle faulty nodes and high activity well, there arises other problems such
as how to handle network partitions. This may for some systems require core
design choices to be made in favor as done by Vegvisir [��]. Hyperprov inherits
its partition tolerance from ��� which in turn uses Kafka [��] and requires a
majority of orderers with communication between them, limiting availability
in the event of network partitions.

�.� P R OV E N A N C E M E TA DATA ��

�.� Provenance Metadata

From other provenance systems we see a trend thatmultiple systems [��, ��, ��]
trace data lineage, meaning all items used as part of creating an item is tracked,
or file versions before and after an operation is linked [��]. Another trend is
to track how the files changed [�, ��, ��], e.g. what operations was applied
during creation or modification. Also, the user involved and responsible for
the operation is often tracked [��, �, ��, �]. These three features form the
Open Provenance Model [��] which list them as Artifact, Process and Agent
respectively. We wish to retain functionality like this while still having the
option for field-specific provenance data as seen in many of the reviewed
provenance systems [��, ��, ��]. To do this we store the checksum of data to
ensure validity, client-specified location pointers to ensure customization in
terms of storage provider, the unique certificate-ID pertaining to the user who
stored the data (provided by the Client Identity Chaincode Library [��]) and
a list of all other data items used to form the lineage of this item. Additionally,
to encompass the need for field-specific provenance data about the process, we
include a custom field in which any data structure can be encoded and stored
to be able to enable large record collection queries with filing based on these
extra fields. A unique ID for every transaction is stored to distinguish different
versions of the same object as well as a timestamp of when the transaction
occurred. We choose to split the data location into two variables for increased
customization on storage provider options in regard to supporting multiple
different off-chain storage services simultaneously.

�.� High-level Architecture

We categorize the system into two necessary components and one supple-
mentary component. The first two are the ���-framework running in Docker
containers and the client library for interacting with these components. The
final and optional component is the off-chain storage which can be skipped if
a system to handle storage is already in place. The client library is responsible
for initiating operations and communicating with the other components as
can be seen in Figure �.�. On invoke operations the client will put the data in
storage first and then send information to the blockchain framework. On query
operations the ledger will be queried first to check the data location and then
subsequently retrieved from storage. The goal of this high-level architecture
is to enable seamless storage of provenance metadata and checksums in a
tamperproof blockchain ledger while accessing and storing data in a pluggable
storage service.

�� C H A P T E R � A R C H I T E C T U R E A N D D E S I G N

Hyperprov

Client

HLF
Blockchain

Off-
Chain
Storage

Figure �.�: The three core components in the Hyperprov System

�.� Hyperledger Nodes

��� processes are configured to run on a range of nodes trough Docker. Every
node is part of maintaining the ledger by running a peer process that can
receive transaction proposals. Transaction proposals start at the Hyperprov
Client Library via functions from the various ���-SDK’s and is signed with
an eCert issued by the Certificate Authority (��). ��� provides their own ��
Docker image but can also be configured to be any X.��� capable ��. The ��
only needs to be accessed when registering new certificates. Peer processes
are the most fundamental element in a ��� blockchain network as they host
the ledgers and chaincode. To have the most access points, endorsers and
copies of the ledger we suggest running as many peers as possible, but one for
each participating organization is technically enough. The ordering service is
responsible for the ordering of blocks and relies on a deterministic consensus
algorithm to validate blocks and their order as proposed by peers. The single
orderer approach is currently deployed for our prototype, but for a production
setting multiple orderers should be enabled using ���’s built-in support for
Raft [��] or Kafka [��] for fault tolerance.

�.� H Y P E R L E D G E R N O D E S ��

HLF Blockchain

Certificate

Authority

Orderer

Service

Peer

Process

Hyperprov

Client

Chaincode

Figure �.�: Hyperledger components in Hyperprov

�.�.� Chaincode Operations

The peer nodes are responsible for hosting the chaincode, which is the logic
that append or query data stored in the ledger. The chaincode consists of a
few core operations that form the base of the Hyperprov functionality. These
operations are implemented as typical functions and are mirrored and available
across all peer nodes. The main functionality for the chaincode in Hyperprov
is to store and retrieve data from the ledger. By the current design, the core
data that is stored is the checksum of every data object, the data location, a
certificate ID referring to who stored the data, a list of other objects that were
used to create an object and lastly a custom field for any additional metadata
such as a JSON struct as described in section �.�. For the data to be stored
in the ��� ledger, chaincode functions first need to be invoked with the data
as parameters. Because Hyperprov only stores a single type of provenance
metadata record, we can get by with a single set-function and instead choose
not to include parameters that are not available or applicable as the space
overhead is limited to the key-length of that empty field in the ultimately
stored JSON-entry for that record. The chaincode can set certificate ID and
timestamp automatically, so the remaining parameters needed are checksum,
file-location, custom description field and list of data lineage.

As for retrieving data from the ledger, because the type of data we want is
specific to the core data parameters stored in the ledger, we can design specific

�� C H A P T E R � A R C H I T E C T U R E A N D D E S I G N

functions in the chaincode to retrieve data. We want to be able to query both
data items based on the key they are stored on, but also specify iterations of
the same data. Additionally we want to be able to query for collections of data
where the three query types we will initially support are the history of iterations
on a single data item, a range query between a start and end key and also a
full list of specific data items ID’s which form the lineage of an item. These
operations could be done easier at the client level with the ability for more
custom queries, but for large searches sending an individual request for each
data item would be notably slower than using built in functions or recursive
queries from within the chaincode container. This results in the chaincode
setting the basis for the operations supported by the client, but by no means
limiting from other solutions such as having an additional database of keys for
off-chain lookup.

�.� O�-Chain Storage

Distributed ledgers implemented with blockchain have a limitation on how
much data should be stored in them, both in terms of the shared ledger growing
undesirably large but for ��� also in terms of the performance degradation of
storing large data in the ledger [��]. To prevent this, we choose to store only
provenance metadata in the blockchain ledger which for most applications
is only a small fraction of the total data size. This allows data to be stored
in other non-blockchain based services with the trade-off being having to
compute and store checksums so the integrity of data can be verified against
the immutably stored blockchain records. The choice of storage, however, does
not directly affect the ledger or any chaincode functions. The only thing stored
is a location field and a pointer to the individual data item, which can be
interpreted however desired by the Hyperprov Client application. This allows
us to quickly add other storage solutions if needed and could also help in
terms of supporting multiple storage solutions simultaneously on the same
ledger. As previously mentioned, the off-chain storage is a supplementary
component which means it could entirely be skipped if Hyperprov is to be used
as part of a system that already handles storage. Then only checksums and
provenance metadata would be sent via the Hyperprov Client library without
addressing any file-store operators. Because of this and the fact that you can
switch between multiple storage solutions, we say that Off-chain storage is a
pluggable component of Hyperprov.

�.� C L I E N T P L AC E M E N T ��

Hyperprov

Client

Off-Chain

Storage

Hyperprov File

Store Path

Cloud

Distributed
FS

Shared Central
Storage

Figure �.�: Off chain storage possibilities

�.� Client Placement

The Hyperprov Client Library is based on the��� SDK [��] as a way to simplify
the process of interacting with blockchain technology for provenance tasks.
The client library is intended as middleware for any other application that
needs to store provenance information, e.g. a client application. The client
application can be run either at a separate node by connecting to a peer node
in the ��� network or on the peer node itself. This means that you could have
a network of nodes that all have its own client application while simultaneously
running the blockchain services in the background, completely separate peers
and client or any other combination of the two. An important distinction to be
aware of when choosing the client placement is the data transferred between
client, storage and the ��� blockchain. The data stored and transferred to
the ledger generally is only a fraction of the data that is stored in off-chain
storage. To reduce the bandwidth the client placement should be prioritized
as closely to the storage service as possible, e.g. on the same machine, LAN, or
on a device with good network connectivity.

�� C H A P T E R � A R C H I T E C T U R E A N D D E S I G N

�.� Availability and Consistency with Network
Partitions

Brewer’s Theorem also known as the CAP Theorem [��] is used to identify three
system properties for distributed/decentralized systems, namely consistency,
availability and partition tolerance. Consistency refers to strong or sequential
consistency so that all nodes must agree on the same sequence of operations.
Availability refers to that any node should be able to respondwithin a reasonable
amount of time and partition tolerance means that you should be able to
handle communication errors and recover when whole parts of your network
is unreachable.

Consistency Availability

Partition Tolerance

RDBMS

Hyperledger Fabric ProofOfWork (Bitcoin)
Vegvisir

Figure �.�: Hyperledger Fabric in the CAP-theorem venn-diagram

Because distributed systems are inherently partition tolerant, this means that in
the event of a network partition the system will need to choose between strong
consistency or availability. Proof-of-work based solutions such as Bitcoin [��]
choose availability here, which is why forks can occur that are after some time
resolved, resulting in eventual consistency. A framework with strong focus on
availability during network partitions is Vegvisir [��] which uses ���s to track
only the partial ordering of events, and reconciliate by gradually comparing the
outermost blocks similarly resulting in eventual consistency.��� and inherently
Hyperprov do not sacrifice consistency due to the ordering service relying on
deterministic consensus algorithms [�] but can struggle with availability in the
event that not enough endorsing peers are reachable or not enough orderers
are available for Raft/Kafka-based [��, ��] ordering to complete.

�.� S Y S T E M S P E C I FI C AT I O N ��

�.� System Speci�cation

To end this section, we outline the functionality we want to have implemented
based on our system design. We want to provide a system using ��� to give
assurance of data by storing provenance data in a tamperproof append-only
blockchain ledger. The system should record operations made by tracking
editors, timestamps, checksums, data locations and lineage. We also want a
custom field for the user to add specific data about the process. To access the
data, we want to have a client library.

�.�.� Core Functionality

Following is a list of core functionality for the provenance tracking part of
Hyperprov, excluding framework-related functionality such as being able to
deploy a ���-based blockchain network to Desktop and ��i devices as well as
organizing certificates and docker containers:

a) Track the location of a data item and accompanying checksum to verify
its integrity.

b) Track when and who stored or edited an item based on the certificate
used to invoke the transaction.

c) Track data lineage of new items by storing references to items used to
create it.

d) Optional field to store additional application specific provenance meta-
data such as data about the creation process.

e) Store and query provenance information through a multi-purpose user-
friendly client library.

�.�.� Additional Functionality

Additionally, we list functionality that Hyperprov should support, while not
being critical to the definition of the system.

a) Support for referencing individual versions of data items using unique
ID’s.

b) Optional support for storing data in off-chain storage trough the client
library.

�� C H A P T E R � A R C H I T E C T U R E A N D D E S I G N

c) Additional chaincode-level support for full lineage, single item history or
key-range queries.

5
Implementation
This chapter covers the implementation of several components of our system,
most notably is the chaincode, client library and system configuration. First,
we describe the base logic of our system, the Chaincode, and how it handles
storing provenance and accompanying challenges. We then explain how our
client library is developed to abstract away the hassle of interacting with ���
and how it handles storing provenance data. Lastly, we describe processes
related to deploying a ��� network and setting up devices.

�.� Chaincode

The chaincode in ��� is the only method for interacting with the blockchain
ledger. It is also the lowest level of code responsible for storing and querying
for provenance information in Hyperprov. Because of this it becomes the first
step in abstracting away logic for storing provenance, this is done by grouping
���-specific operations into common problems such as storing provenance
data, retrieving it and querying data lineage. Since multiple endorsing nodes
are responsible for running the chaincode we ideally want the chaincode to be
lightweight. To guarantee that the chaincode always returns the same result
on all endorsers, we also need the chaincode to abstain for accessing external
resources. Because of the need for lightweight and deterministic operations
we should move away from designs that lead to calculating checksums and
accessing external storage from chaincode. The chaincode supports multiple

��

�� C H A P T E R � I M P L E M E N TAT I O N

operations related to data provenance at this point. The operations are: storing
provenance data of an item, retrieving the last provenance information on an
item, requesting the checksum of an item, getting an item with its correspond-
ing transaction ID, getting a specific version of an item from transaction ID,
recursively getting all other items listed as lineage of a certain item, getting
the history of a single item and retrieving a list of items with a key-range
query.

�.�.� Data Pointers and Checksums

We track file objects by storing a pointer to the location where it is stored split
into two fields: location and pointer. In the current implementation location
refers to the path on disk where this data item is stored, whereas pointer can
refer to the unique file-name used to store the data or a position within a file
referred to by the location field. By default, the client library uses location
+ pointer as the full path of the relevant file. This provides a link from the
entry used for data provenance in the blockchain to the actual data stored in
off-chain storage. There is a one-way link from the blockchain to the off-chain
storage and provenance is only written after data has been properly stored
in the blockchain. This can be referred to as data-driven data management
as opposed to metadata-driven data management where the raw data is only
written as a result of provenance metadata being recorded [��]. Keep in mind
as there is only a one-way link from provenance metadata to actual raw data,
data should never be deleted or moved in the off-chain storage without issuing
an update to the provenance ledger. With other distributed storage solutions
than SSHFS [��] and XtreemFS [��] it could be applicable to store the unique
transaction id from the ledger operations along with the raw data item to
allow for a more resilient two-way link between raw data and provenance
metadata.

To verify that that data is never modified without updating the provenance
log we always store the checksum of the data along with every operation.
Calculating this checksum could technically be performed by the chaincode,
but that would require that the chaincode container have access to external
resources and also require the checksum to be recalculated by every peer
responsible for endorsing the transaction. From profiling we found that for
anything larger than a few kilobytes of raw data, calculating the checksum
rapidly becomes amajor part of the computing required for issuing a transaction.
To combat this and reduce the network transfer required we instead calculate
the checksum once at the client application level. Here the client library supplies
both a full function to handle storing raw data, calculating hash and publishing
to provenance log, or as an alternative you may supply your own calculated
hash if you have a more efficient way to compute it than the JavaScript Crypto

�.� C H A I N CO D E ��

library.

�.�.� Dependency Linking

By comparing to other provenance solutions and projects in potential need of
provenance we identify a need for tracking data lineage [��, ��, ��]. Assume
you have an item A which is further iterated to create item B, and then you
have item F which has no connection to either. Then you proceed to analyze
item B and F to form a new item result Z. Item Z should now hold direct
dependency links to item B and F, and also indirectly to item A through B. This
is what our lineage chaincode functionality do if we store data with dependency
links to items that was partial in their creation. We store dependencies as the
transaction IDs delimited by colons. We use transaction ID instead of keys
to be able to accurately pinpoint what provenance metadata was current at
that point in time. Transaction ID’s can be used to query the provenance for
specific versions of an item instead of the currently latest one referred to with
keys. Figure �.� shows the results of a dependency response for IoT data [��].
Listing dependencies from chaincode also supports a depth-specifier to limit
the lineage depth as thousands of levels with dependencies may in some cases
be unnecessary.

Figure �.�: JSON object from getDependencies for IoT sensor data visualized.

�� C H A P T E R � I M P L E M E N TAT I O N

�.�.� Identity

Part of the provenance capabilities provided by the chaincode is tracking who
performed an update on the data. From other systems we see a need to track
users for verifying the origin of data as well as for querying on specific users to
retrieve or invalidate it [��, ��, �]. Previous iterations of HyperProv attempted
to solve this problem by simply retrieving and storing the full eCert-certificate
used to invoke in the transaction itself. This would be a security risk if access
was not limited to certain roles which then in turn would void the concept of
every participant being equal and would open up a whole new set of problems.
Instead the Client Identity (CID) chaincode library [��] added in HLF v�.� can
be used to retrieve a unique userID issued by the �� which can be directly
linked to certificates. The unique attributes are encoded in the certificate and
can not be changed without invalidating the certificate. This allows us to store
a unique string set by the �� to track origin in the chaincode. The string can be
set to anything descriptive of the node which will use the certificate. If identity
is ever questioned, the CA-database can be queried to check additional info
specified about certificates linked to a userID.

�.�.� Historic and Range Queries

The chaincode additionally has support for two more types of queries on
provenance data, historic and range queries. The former will return the full
history of changes made to the provenance information about a specific item.
This could be used to query the history of editors, data locations, corresponding
checksums, dependency lists or any other metadata stored in the description
field of data items stored in the immutable provenance ledger. Currently
this chaincode function returns all information for the complete history of a
provenance item, but this could also be specified to return only a certain type
of information for a specified depth. An example query of history would be,
"who was the editors of this item for the past �� updates to it?".

The other mentioned chaincode query is range queries. This type of queries is
based on the built-in support for range queries which return an iterator over
all keys stored in the ledger between two key strings startKey and endKey.
This adds additional query capabilities for the user based on their key naming
scheme. An example of this could be to label sensor nodes with something
like <owner>_<location>_<sensortype> where an example node would be
acme_f_temperature. Then you could query startkey=acme_d endkey=acme_m
to get all Acmes sensors between d and m including acme_f_temperature. You
could also do something like startkey=acme_f_ endkey=acme_ f_~ to get all
sensors on location f such as acme_f_temperature and acme_f_humidity. This
could potentially be very useful if used correctly but relies on key names to be

�.� C L I E N T L I B R A R Y ��

labeled in the order that searches would occur. You can not e.g. search for all
humidity sensors on node f in any company because company is specified first
in the key structure. This can be solved by introducing composite key queries
or even better rich queries with CouchDB [��].

�.�.� Pagination

If the number of results by the any of the queries for historic or range query
surpass the maximum specified when building the ��� images in core.yaml
variable queryLimit the results will only return values up to that point. This
maximum is by default set to �����. To retrieve more than this amount from a
single query requires us to use pagination. Luckily Hyperledger Fabric natively
supports pagination on all its query operators so if needed a wrapper function
to target the paginated functions can easily be added to the chaincode lineup.
These supports retrieving specific page-sizes and all queries after the first limit
use a bookmark-key as their starting point, meaning that the last retrieved key
becomes the bookmark used for the next paginated call.

�.� Client Library

The ��� framework can appear complex to interact with. Because of this the
��� team has created multiple ���s to help users interact with the system,
wheere the most established of which is the Node ��� [��]. This is the basis
for our client where we further tailor the interactions with the blockchain for
our chaincode and provenance in general. The client library will be the only
software applications built on Hyperprov will directly interact with once nodes
have initially been set up and configured, figure �.� illustrates the software
layers. Core functionality should be storing provenance metadata in the ledger
and querying the ledger to retrieve provenance records for items. Additionally,
the client library can be responsible for storing files in the off-chain ledger
and calculating hashes, but to remain feasible for a larger audience of use
cases we support this as optional functionality as well. The client still boasts
a wide range of functionality such as registering users with the ��, directly
accessing any function implemented in the chaincode, storing raw file objects
in the blockchain encoded as Base��, Storing/Retrieving data from off-chain
storage while verifying its checksum against provenance metadata and more
functionality used for the benchmarks in Evaluation. Table �.� show the core
functionality while additional functions are described in Appendix A.

�� C H A P T E R � I M P L E M E N TAT I O N

�.�.� Exposed API

The HyperProv Client Library enables the use of the HyperProv system for a
wide range of functionality with only a few limited operators listed in Table
�.�. The library splits into two modes of operations whereas the first one uses
the Post and Get methods to directly access the ��� chaincode functionality.
The latter uses StoreData and GetData to also handle everything in regard to
storing data in the external file storage and retrieving data to form actual file
objects.

Function Required Input Output
Init Certificate, Channel, ChaincodeID, PeerURL , OrdererURL Success/Failure
Post Key, Checksum, Path, Dependency List, Custom Provenance Data ID/Failure
Get Getfunction, Key/ID/Startkey-Endkey Query Result
InitFS StorePath Success/Failure
StoreData File, Key, Dependency List, Custom Provenance Data ID
GetData Key File, ID

Table �.�: Key operations enabled by the Hyperprov Client Library

Hyperprov Client Library

Orderer

Chaincode

Docker

Client Application

Peer

Hyperledger Fabric SDK

Figure �.�: The software stack for Hyperprov

�.�.� NPM Library

The client library is supplied as a Node.js Package Manager (���) package
which can be imported into any Node.js-project as well as other JavaScript
projects. The accessibility of the client library being a ��� package allows po-
tential users to quickly download the client and start incorporating provenance
features into their applications.

�.� C A S E S T U D I E S ��

�.�.� REST Client

Hyperprov comes with a few examples of how to use the client library, one
of which is the REST Client application. The application introduces a restful
API using a HTTP listener receive requests for multiple of the provenance
operations enabled by the client library and chaincode functionality. This allows
data to be sent from any HTTP enabled service to be stored in Hyperprov and
then be received later with a simple HTTP-request, preferably authenticated.
The restful service only currently supports receiving and sending provenance
metadata to the blockchain, but the actual raw data could also potentially be
received or sent to this client either in multipart/form-data or Base�� encoded.
Ideally, the REST client could also be set up to handle any off-chain storage,
completely abstracting Hyperprov data storage to a couple of authenticated
HTTP requests.

�.� Case Studies

To evaluate different use cases and possibly discover useful new features
and limitations of our system we decided to look into two different use case
scenarios. The first will be tracking frequently updated data in the kilobytes
range like you would typically have for simple sensor data measurements. This
type of use case we target towards the more lightweight like the ��i. The other
use case regards larger data stored in desktop environments which can be
stored frequently but typically is less frequent and could also be not as evenly
distributed over time.

�.�.� IoT Sensor Data Client

Because we are among the first to run ��� on ��i devices we believe to
have a unique opportunity to provide provenance tracking to systems that
may have previously struggled to run in edge environments where low cost
and low power devices such as the RPi are typically deployed. To create an
application to test with IoT data the first step was to actually get some IoT
data. The choice fell on the Global Surface Summary of the Day (����) [��]
which contains measurements such as temperature, pressure, visibility, wind
and snow depth from about ���� stations around the world every day with
the most complete data being from ���� to present. The ����-data can then
be parsed and stored using the ��� client library. Every �� measurements are
batched together for a total about �KB, every third batch is also "analyzed",
which in reality means that the previous version and previous analyzed data
are retrieved and concatenated to form a new analyzed object. The analyzed

�� C H A P T E R � I M P L E M E N TAT I O N

objects are stored with a dependency linking to both the previous analyzed
object as well as the current newest data object. An example of five levels
recursive dependencies from the IoT data stored with HyperProv can be seen
in figure �.�.

�.�.� Machine Learning Models Client

As a rising field in a number of sectors Machine Learning is a relevant technol-
ogy for any new research. Due to the compute intensiveness and randomness
aspect of model training we think there may be a need for provenance data to
both verify the validity of trainedmodels as well as for providing reproducibility.
Multiple of our provenance features and especially the ability to trace the lin-
eage and history of iterating data could make the case for adding an additional
tamperproof storage layer for this type of data production. For further explo-
ration of Hyperprov we created another example application to check for and
store gradually changing machine learning models produced by the ImageAI
library [��]. This library is for our example being used to train models on the
IdenProf dataset [��] containing images of identifiable professionals such as
chefs, doctors and police. Our application uses Hyperprov to store the iteration
history of training models with dependency links to the training and test sets
used for any particular model. We do this by every run checking the current
test and training sets, and by keeping a list in persistent storage of what models
have already been stored before scanning for new models. Models are stored in
off chain storage with their provenance metadata being pushed to blockchain
using the Hyperprov client library. We suggest this example application could
be invoked after every training epoch, session or periodically from a cron job
to push provenance information to the blockchain.

�.� System Con�guration

A substantial part of the time spent implementing Hyperprov consisted of tasks
related to system configuration. This in terms of setting and configuring de-
pendencies, docker compose, docker swarm, required certificates, start scripts,
chaincode updates, off-chain storage, external network access and creating
custom docker images for RPi. As well as multiple issues related to updating
from ��� V�.� to ��� V�.�. The experimental setup on RPi featuring unsup-
ported ��-bit Linux was the root of many problems related to missing libraries,
software and kernel issues. For future projects using Hyperledger for RPi we
would like to see improved ��-bit support for RPi devices or the ability to run
��� on ��-bit ARM devices.

�.� S Y S T E M CO N FI G U R AT I O N ��

�.�.� Compose Files

To easily start up and shut down the prototype network used in the Hyperprov
experiments we used Docker compose to organize the deployment of multiple
containers to our test nodes accessible through a shared Docker swarm network
configuration. This allows relatively simple management of our network to
allow for quickly clearing, changing roles and updating chain-code during
development. The compose file is responsible for configuring all required
variables, deploying containers and calling a script for initializing and testing
the blockchain. For a non-experimental setup the single Docker compose file
and swarm network would be replaced by role specific compose files on each
new node joining the network.

�.�.� Certi�cate Authority

While the certificates used to set up and run ��� can be generated using
the supplied cryptogen and configtxgen binaries, access from the client library
requires eCerts that are best generated from the fabric_ca_client-library. To
do this we need an appropriate certificate authority to issue the certificates.
While it is stated that any X.��� capable �� can be used, we decided to go with
Hyperledger’s own �� docker image started with a customized compose file
to enable persistent storage of the certificate database. All certificates issued
require a unique identifier which will be stored in the ledger on transactions
issued using that certificate. The Hyperprov client library can be used to register
new user certificates with the fabric-�� using methods registerAdmin and
registerUser.

�.�.� Shared Storage

For shared storage we currently use SSHFS [��]. The choice was largely in-
fluenced by limited availability on aarch�� for our ��i system. SSHFS is a
filesystem in userspace client that interacts with a remote filesystem trough
SSH with SFTP as the underlying protocol. Performance evaluation [��] show
that SSHFS compare well to the established NFS [��]. SSHFS is easy to set up
and allows for quick swapping between storage servers for baseline measure-
ments and debugging. To provide fault-tolerance in a deployed network we
would swap SSHFS for something more resilient like the distributed filesystems
XtreemFS [��] or OpenAFS [��] run directly on the nodes, or a cloud service
provider like Amazon EFS [��].

�� C H A P T E R � I M P L E M E N TAT I O N

�.� Building Docker Images

As ��� does not officially support the ��i there were no official or public
images for the ARM architecture available when beginning this project. There
are some existing images for RPi running v�.� in ��-bit mode or v�.� in ��-bit
mode, but none complete or with the improvements of v�.� including key-level
endorsement policies and the first long term support release v�.�. To do this we
had to build docker images from source code on the ��-bit ARMv� architecture
which is only supported on a small number of unofficial operating systems
such as Debian Buster ��-bit for RPi. This can be a tedious process due to
missing libraries or bugs on ARM, slow build times on RPi and its constrained
memory. To our knowledge we are the first to build ��� v�.� docker images
for ARM with �� of �� docker images published to Docker Hub [�], with the
remaining image (Javaenv) being published later thanks to outside help [��].
See Appendix B for further details on building ��� for ARM.

6
Evaluation
During implementation the focus has been on providing the required func-
tionality while keeping chaincode lightweight and without access to external
resources. A substantial part of the functionality is therefore placed at the
client level while the peer remains an integral component at the center of
communication (see Figure �.�).

In this chapter, we evaluate HyperProv with focus on performance in terms of
throughput and response times. We also evaluate the resource consumption in
terms of CPU, memory, network and for our ��i devices also energy efficiency.
We think performance and resource consumption overhead is essential in the
evaluation of a system based on the premise of being an addition to already
existing systems. We use custom client-side benchmarks for performance,
Linux-based resource measuring tools for resource consumption and a physical
power-meter to check energy usage on ��i. We run benchmarks for varying
load levels and transactions sizes and compare running Hyperprov both with
and without attached storage.

��

�� C H A P T E R � E VA LUAT I O N

�.� Methodology

�.�.� Experimental Setup

The experiments are run on two different setups of the same network. The first
setup consists of desktop-grade nodes and the other consists of ��i nodes. The
desktop setup has �machines: � Intel Xeon™E�-���� v� CPU @ �.�� GHz �C�T,
� Intel Core™i�-����MQ CPU@ �.��GHz �C�T and � Intel Core™i�-����MCPU
@ �.��GHz �C�T. These four nodes form the desktop network each running
peer docker containers, whereas one Xeon machine run the orderer. All nodes
run Ubuntu ��.��, are on the same LAN and are equipped with SSD storage
with approximately ��� MB/s read and write speeds. These nodes run the
official docker images provided by ���.

The next setup consists of � ARM-based Raspberry Pi �B+ �.�GHz �C�T Cortex-
A�� devices interconnected on the same network switch. The nodes run the
yet unofficial ��i � Debian Buster ��-bit OS as the newer ��� versions require
��-bit support. Due to the lack of other supported docker images we have
compiled our own images for the ARM�� architecture used to run Hyperprov
on these nodes [�].

Measurements were performedwith client on the �.�GHz �C�T Xeon E� CPU for
desktop and compared against the ���MHz (Originally �.�GHz see �.�.�) �C�T
Cortex-A�� CPU on the ��i. For measurements involving off-chain storage we
run SSHFS [��] on the remaining node after client, orderer or accessed peer.
Figure �.� show the layout used for measurements.

Orderer Accessed
Peer

Client
Application SSHFS Storage

Node

Figure �.�: Component distribution on experimental setup.

�.� M E T H O D O LO G Y ��

�.�.� CPU Throttle on ��-bit Raspberry Pi

Due to an error with the �.�.x - �.��.� aarch�� kernels on ��i, the CPU scaling
governor responsible for modifying frequency does not work properly [��].
This causes the device to be stuck in powersave mode where the frequency
is constantly set to the lowest setting (���MHz). Because we need ��-bit OS
support to run ��� we are now limited to reduced frequencies until either���
adds support for ��-bit systems or the Linux kernel for aarch�� on ��i fixes
frequency scaling. This limits the maximum throughput we can measure on
RPi devices, but also limits the energy used to what would be the case running
devices with the powersave setting on the CPU governor.

�.�.� Throughput Measurements

Measuring throughput was done by a benchmark-application built on top of
the Hyperprov client library to push batches of transactions to the network.
The application would run timers for every batch and individual timers for each
transaction. For varying data sizes or batch sizes the application wouldmeasure
multiple samples and calculate the average total time, transaction response
times, transactions per minute and track the number of failed transactions
occurring. The application would then be set to either store data only in the
blockchain or both in the blockchain and off-chain storage. These are the
results you can see in figures like �.� and �.�. The single transaction latency
measurements in tables �.� and �.� were derived from measurements made by
another application that sends transactions to ��� ��� times and records the
time of each individual transactions to calculate averages, standard deviation
and more.

�.�.� Measuring Resource Consumption

For statistics on resource consumption we did measurement on a set of load
levels that reflect the middle and edge cases of load that could likely be applied.
For desktop we measured �� Transactions of ���MB data stored over a ��-
minute span (� tx/min), ��� times ��KB (�� tx/min) and ����� times ��KB
(���� tx/min). For ��i we reduced the load to account for the less capable
hardware and did �� times ��MB (� tx/min), ��� times ��KB (�� tx/min) and
���� times ��KB (��� tx/min), also over �� minutes.

�� C H A P T E R � E VA LUAT I O N

Measuring CPU/RAM Usage

The CPU and RAM usage was measured on a per-process level with the psrecord
tool [��]. Psrecord allows us to record the specific usage of any process, with
maximum utilization on these systems being ��� % percent. We saw no
limiting factor on the Orderer or Chaincode processes as we moved towards our
maximum load, and therefore display them only briefly in Figure �.�. Instead
we focus on measuring the peer process which is responsible for running the
blockchain and handling incoming transactions, as well as our NodeJS client
application using the Hyperprov Client Library to issue transactions, calculate
checksums and store data when off-chain storage is involved.

Measuring Network Tra�c

Network traffic was measured using the speedometer network measuring tool
for Linux-systems [��]. The tool was used to measure total received and sent
network traffic over a time span of about �minutes, then for more visible graphs
cut down to⇠ �� seconds. During this time all other significant network activity
from the measuring machine was disabled and only the ��� processes and
SSHFS communication seemed to be using traffic based on manual monitoring
with the iftop Linux tool.

Measuring Energy Consumption

Energy measurements were only performed on the ��i devices as they are
most relevant there. To measure energy on desktop we would use a framework
like Heartbeats [��] which relies on the Model Specific Registers of the X��
CPU to measure power usage. Measurements on ��i were measured during
the same intensity runs as described in section �.�.�. The measurements were
manually derived from an ODROID Power Meter V� located in between the
device and power source over �� minutes. While software measurements are
generally better and more accurate, without access to model specific registers
on our ARM�� ��i devices, we think manual measurements are sufficient for
a general idea of relative energy drain.

�.� T H R O U G H P U T ��

�.� Throughput

We start by measuring throughput for different levels of load intensity. To do
this we change the number of transactions submitted together before waiting
for all to complete. From Figure �.� we can see as we increase the batch
size the throughput grows exponentially with large steps and diminishing
returns evening out around ���� transactions per batch. The benefit from
higher batch size comes from the ability for more messages to be ordered
in the same block if received within the same timeout (about two seconds).
This allows higher throughput to be reached if a large number of blocks are
filled up quickly. The limitation of about ���� transactions per minute or
approximately �� transactions per second indicates that our desktop hardware
can handle about five blocks of �� transactions per second on average. Also, as
we increase the batch size, the individual transaction response times increase
as seen in Figure �.�. This is likely due to the increasing congestion of items
waiting to be handled by peers and approved by the orderer. As the numbers
shown here are the averaged times of every transaction on a batch, the first
transactions compute quickly however as the queue grows individual response
times increase accordingly. The throughput however does not fully peak until
between ���� and ����� transactions per batch as shown in figure �.�, where
we measured a peak performance of ���� tx/min. We believe, however, that
batch sizes of this scale are unreasonable for most applications and not worth
it due to the diminishing returns and increase in response times.

Figure �.�: Throughput and average response times for increasing load levels. (Desk-
top) (only provenance data)

�� C H A P T E R � E VA LUAT I O N

Figure �.�: Figure �.� extended. Throughput for load levels up to �� ��� transactions
at a time. Peaking at ���� tx/min.

We did similar measurements on ��i and figure �.� show the same trends
as figure �.� while reaching its peak at a lower batch size, generally lower
throughput and substantially higher response times. Due to the earlier peak
efficiency and especially the high response times we believe that batch sizes of
anything above ��� may be less than optional for the limited hardware of a
single endorsing ��i device.

Figure �.�: Throughput and average response times for increasing load levels. (��i)
(only provenance data)

Figure �.� shows how increasing the size of data items impact both throughput
and response times when off-chain storage is involved. When only provenance
data is stored performance is not affected by increasing data size as the data
is never actually stored in the blockchain. On the other hand, when off-chain
storage is involved we must now account for both the time to store data to
SSHFS, but also the time to calculate the checksum of the data object. The
results show gradually degrading performance as size increases, however about
��� transactions perminute of a �MB object is not badwith average transaction

�.� T H R O U G H P U T ��

response times of about two seconds. It is especially good considering this is
the work of a single client device while a network of multiple clients and
endorsers should each be capable of similar throughput. The limitation here
may seem like a hardware limitation, but only from the client application and
peer process limiting in conjunction with one another. What this means is that
while there is a limitation on storing data, computing checksums and storing
it in the ledger, none of these operations seem to use the full extent of the
host device resources. Instead it is limited by the time required to do these
operations in sequence for each data object, resulting in lower throughput and
longer response times.

Figure �.�: Throughput and response times for varying data sizes. (Desktop)

To show this limitation we did a series of measurements with one, two and
three clients simultaneously sending transactions to their own local peers to
be issued on the same endorsing peer and orderer. To have uniformity in
hardware we did this on ��i devices, with orderer and endorsing peer both on
the fourth device. Results in figure �.� show how multiple clients can be used
to achieve overall higher throughput, at the cost of per-device throughput. This
is because our network of four devices have only a single orderer and endorsing
peer node where all transactions need to pass. With more devices we could
do an in-depth analysis of how Hyperprov and ��� v�.� performs for a large
network of devices. For now, we will make do with the results from evaluations
such as Blockbench [�] where they fail to scale beyond �� nodes due to the
old consensus protocol implementation over-saturating servers, although this
should be fixed in newer releases. Similarly, Selimi et al. [��] indicate endorsers
as a bottleneck, which should be reduced by deploying multiple endorsers with
a suitable endorsement policy.

�� C H A P T E R � E VA LUAT I O N

Figure �.�: Throughput for �-� concurrent client devices. (RPi)

The same trend as figure �.� can be seen on the ��i setup, however with about
�/� of the performance as shown in Figure �.�. The trend is similar but due
to the ��i being more limited by its hardware the results are lower and more
varying. Slightly below ��� transactions per minute the ��i has about �/�
of the performance compared to desktop, which correlates with an expected
four- or five- times performance difference from ���MHz to �.�GHz for these
measurements.

Figure �.�: Throughput and response times for varying data sizes. (RPi)

�.� T H R O U G H P U T ��

�.�.� Latency

We measure the responsiveness of the system by sending requests to the peer-
process through the Hyperprov client library every �� seconds. The results
shown in Tables �.� and �.� are the average of ��� operations. We are able
to submit a transaction with confirmation in ���� ms on Desktop and ����
ms on ��i. Retrieving operations for all get operators seems to hover around
���ms both on Desktop and ��i. The data lineage functionality getdependencies
implemented in our chaincode have been tested with �� recursive dependencies
returned in ���ms or less, with latency within a margin of � % for all other
query operations.

set get -withid -fromid -keyhistory -byrange -dependencies(��)
Desktop ���� ms ��� ms ��� ms ��� ms ��� ms ��� ms ��� ms
RPi ���� ms ��� ms ��� ms ��� ms ��� ms ��� ms ��� ms

Table �.�: Latency of operations to blockchain

To investigate why the set-operation performed worse on RPi we extended the
measurements to show how the times spread out compared to desktop. We see
that the standard deviation on RPi is the cause. Both resource measurements
and throughput measurements on RPi also fluctuate more than its desktop
counterparts. In table �.� we here see slightly higher lows, but also highs in
the range of ���� ms, explaining the higher averages on RPi.

AVERAGE STDEV MEDIAN MIN MAX
Desktop ���� �� ���� ���� ����
RPi ���� ��� ���� ���� ����

Table �.�: Statistics of SET operation latency data

To explore the performance degradation of our built in queries, we tested the
lineage tracking functionality on IoT data [��] with up to ���� recursively
linked dependencies similar to what is displayed in figure �.�. Figure �.�
show that every increase of about ��-�� depth levels, the time to respond
increases by almost exactly ��� ms. We could not find any documentation or
configuration setting explaining this phenomenon, but we think it might be
due to limitations imposed by the ��� chaincode framework because of either
memory limitations of a single query or being limited to a certain number of
recursive calls before having to issue another transaction. Which in turn would
cause the time to increase by almost the exact time of a transaction for each
step of ��-�� depth levels.

�� C H A P T E R � E VA LUAT I O N

Figure �.�: Latency for an increasing number of dependent records retrieved with the
getdependencies chaincode. (Desktop)

�.� Resource Consumption

As a means of measuring the overhead and understanding the effect of hard-
ware, we performed a series of resource consumption measurements, starting
with the CPU and memory usage of the involved processes, then network
and energy consumption. Our system consists of four measurable components,
namely the peers, orderers, chaincode and client. In Figure �.� you can see
the CPU and Memory usage of a ���� T/min load issuing transactions of �KB
in batches of ����. These initial measurements show how peer and client com-
ponents resource utilization depend heavily on the data size and throughput,
while both the orderer and chaincode claims a relatively moderate �� and
��% CPU usage or below in all our testing and less than �� MBs of memory
combined, see Figure �.� (a) and (b). Because of this we will focus mainly
on the peer and clients resource utilization for the remainder of this section.
The client process steadily hovers around �� % CPU and ��� MB of RAM. This
because the client has multiple responsibilities for each transaction such as
connecting to the peer, invoking chaincode/proposing transactions, handling
the proposal response and request that the transaction is ordered. Additionally,
if the client uses off-chain storage it would need to calculate the checksums
stored in the ledger and store the actual data in off-chain storage. The figures
display a maximum load scenario whereas for real world usage the resource
utilization may be lower, see Figures �.�� and �.��.

�.� R E S O U R C E CO N S U M P T I O N ��

(a) Orderer process (b) Chaincode process

(c) Peer process (d) Client process

Figure �.�: CPU/Memory at max load (⇠ 3200 tx/min). (Desktop)

Similarly to the client, the peer process resides at around ��% CPU usage. As
the core component in any��� network it plays a substantial role in transaction
proposal as it needs to coordinate responses to and from all other components
while also maintaining the ledger data. In Figure �.� (c) you can see about �-�
spikes in CPU-usage over the ��-minute span, this occurred only in some of our
measurements on full load. We think this is due to the peer sometimes falling
behind on communication with client, chaincode and orderers and therefore
consuming more at certain intervals in an effort to catch up. In Figure �.� (c)
about ��� seconds in, we pause transactions for a bit, and we can see how the
peer is the only process with any discernible consumption at idle state with a
�-�% CPU utilization.

To evaluate how the resource consumption is at different levels of intensity
we measure both peer and client for three levels of throughput. These levels
were selected to showcase (a) large data size with low throughput, (b) small
data size with low throughput and (c) small data size with high throughput.
The measurements show plots of CPU and memory usage over �� minutes
with one second granularity. If we look at how the peer process behaves across
different load intensities in Figure �.��, we see similar behavior across the lower
intensities in (a) and (b) but increasing to high throughput (c) of ���� tx/min,
we see a substantial change to �� % CPU usage. Similarly, as we increase the

�� C H A P T E R � E VA LUAT I O N

load intensity, the memory consumption increases as more transactions must
be handled by the peer simultaneously.

(a) � tx/min ���MB (b) �� tx/min ��KB (c) ���� tx/min ��KB

Figure �.��: CPU and memory for peer process (Desktop)

To evaluate performance on the client application we enabled off-chain storage
to see if data size affected the CPU and memory consumption. For a small
number of large transactions in Figure �.�� (a) we can see how the CPU usage
spikes about �� times in between ��-�� %, this compared to the mostly sub
� % CPU of a larger number of transactions in (b) strengthens the claim that
the client library’s calculation of checksums may become a limit for large file
sizes. Large files also consume increased memory, as storing and calculating
the checksum of these large files seem to consume about �GB of memory in
�.��(a). This, however, is client specific and depends on the application making
use of the Hyperprov client library. For the application used to measure this
we store data in between transactions to avoid latency related to randomly
generating a ���MB file for each transaction. The throughput on the other
hand has a clear effect on the client as seen from (c) where high intensity
with small files of ��KB has the CPU utilization at around �� %. These results
combined with the full load measurements without off chain storage in Figure
�.� (d) show that the client can be affected and limited by large file sizes, high
intensity or a combination of both.

(a) � tx/min ���MB (b) �� tx/min ��KB (c) ���� tx/min ��KB

Figure �.��: CPU and memory for client process (Desktop) with external storage.

�.� R E S O U R C E CO N S U M P T I O N ��

�.�.� Raspberry Pi

To evaluate ��i system relative to its hardware we did similar resource mea-
surements on ��i devices with two modifications. We lowered the size of
measurement (a) from ���MB to ��MB and the high throughput of measure-
ment (c) from ���� tx/min to ��� tx/min. This was done to more realistically
fit the hardware limitations of these devices while maintaining measurement
(b) of �� tx/min ��KB for direct comparison.

From Figure �.�� (a) and (b) we can see that the difference between � tx/min
and �� tx/min are more apparent than on the desktop setup, even on peers that
should be unaffected by the modified size. Compared to the desktop the same
throughput levels result in �-� times higher CPU consumption running on ��i,
which need to be considered relative to their clock speed difference ratio of
�.�. For measurement �.�� (c) we can not directly compare but see that ���
tx/min has approximately the same CPU consumption as ���� tx/min does on
desktop, albeit with noticeably more fluctuating consumption, which again is
a trend seen across all measurements comparing ��i to desktop.

(a) � tx/min ��MB (b) �� tx/min ��KB (c) ��� tx/min ��KB

Figure �.��: CPU and memory for peer process (��i)

The client application on ��i similarly was measured with off-chain storage
enabled. Figure �.�� show similar trends to Figure �.�� across all measurements.
The difference between running client on desktops and on ��i seems to be the
overall higher CPU % which is relative to clock speed difference.

Where comparable, the memory consumption seems to be equal on clients
between ��i and Desktop. For peers the memory consumption seems to be
overall higher on ��i, which may be related to the slower hardware requiring
the peers to hold on to pending transactions longer. With memory consumption
between ���MB and ���MB for all components combined, memory may be-
come a limitation for systems utilizing ��i devices for additional computation
besides provenance, with only �GB available.

�� C H A P T E R � E VA LUAT I O N

(a) � tx/min ��MB (b) �� tx/min ��KB (c) ��� tx/min ��KB

Figure �.��: CPU and memory for client process (��i) with external storage.

�.�.� Energy

High energy consumption is a concerning problem with PoW based blockchains
like Bitcoin [��]. While permissioned blockchain don’t suffer similarly thanks
to the lack of mining, if they are to be viable for IoT and edge devices energy
consumption becomes important again. Since we run our system on ��i
devices, we want to measure the overhead of running Hyperprov for different
load intensities. Figure �.�� shows the average energy consumption of ��i
devices running both peer and client processes over a ��-minute span. The first
measurement show that the ��i consumes about �.��Watts in idle state with no
transactions. We did multiple similar measurements with ���/docker disabled
and ended upwith approximately �.��Won average. Thus, running Hyperledger
Fabric without any transactions barely consumes power as reflected by the idle
CPU usage in Figure �.�� (c). Once we start increasing throughput to ��X
and ���X transactions, power moves up to around �.��W, which is about a
�.�� % increase in power consumption from idle. For the highest load level
of ����X transactions there is about a ��.� % increase in power consumption
from idle. The final bar shows the maximum power consumption at ���% CPU
load is �.�� W based on our device, while the Raspberry Pi � B+ is rated at a
maximum consumption of �.� W. This is due to the issue with CPU frequency
scaling for ��-bit OS on ��i mentioned in section �.�.�. All measurements
in Figure �.�� reflect the power consumption of our ��i devices running in
powersave mode.

Just for fun, our highest throughput of ���� transactions over �� minutes
consumes �.��� watt-hours, if we compare this to the average network con-
sumption of a Bitcoin transaction [��] at ��� kilowatt-hours [��], we are more
efficient by �� orders of magnitude. However, this does not account for the global
scale of Bitcoin. Assuming that ��� would scale as large and handle byzan-
tine adversaries with a constantly changing set of participants, if every Bitcoin
miner (⇠� Million) instead had a RPi running Hyperledger Fabric it would still
improve energy consumption by six orders of magnitude on a per-transaction

�.� R E S O U R C E CO N S U M P T I O N ��

basis.

Figure �.��: Energy consumption on ��i. ��-minute intervals

�.�.� Network

To measure the overhead in terms of network resources consumed we measure
on a setup with a peer and client running locally, while publishing transactions
to an external peer, orderer and storage service. By running a peer locally, we
are able to account for ledger updates received while measuring client to peer
traffic on transferred traffic. This way we are able to account for all factors of
potential data transfer.

Our baseline measurements were run without Docker or any processes running
except those included by the OS. Figure �.�� (a) shows that without any service
enabled we can write off between �-� KiB/s to other traffic. When we start
��� we can after the initial setup process see a discernible increase in network
traffic from running just the peer process. Figure �.�� (b) shows that this has
increased the network traffic approximately by a factor of ��. This is due to the
peers communicating trough gossip protocols to verify the consistency of the
ledger. Gossip messages from all other nodes compared to only a few being
passed on by the local node explains why the received traffic are slightly higher
than transferred data, especially on a network of only four nodes.

To see how the network utilization is affected by throughput we measured two

�� C H A P T E R � E VA LUAT I O N

(a) Baseline

(b) Peer Idle

Figure �.��: Network consumption without transactions.

very different levels of throughput with and without external storage enabled.
The results displayed in figure �.�� (a) show that both read and write traffic for
sending a transaction every five seconds range mostly within the higher end of
the �-�� KiB/s spectrum. Moving over to figure (b) we see that once we enable
data transfer to external storage, we see a noticeable increase on write traffic
ranging as high as �� KiB/s at times. Less expected we see a slight increase
also in received traffic, which we assume is from SSHFS issuing confirmation
that new files have been stored in the shared folder.

As traffic increase to �� tx/sec sec in figures �.�� (c) and (d) we see that
granularity decreases in proportion to the increased scale due to constant high
throughput. Also more present in (c) than in (a) is the difference between
traffic received and sent. This strengthens the claim that gossiping results in
received traffic and that it is affected by throughput.

From subfigure �.�� (d) we can see that transferred data is a product of
provenance data and data as

610KiB/s + (50KB ⇤ 25tx/sec = 1.25MB/s = 1.19MiB/s) =⇠ 1.80MiB/s
whereas the final 50 to 100KiB/s is due to additional traffic related to storing
�� files every second to SSHFS.

�.� E D G E CO M P U T I N G ��

(a) �.� tx/sec. Only provenance.

(b) �.� tx/sec - ��kb. Provenance + SSHFS.

(c) �� tx/sec. Only provenance.

(d) �� tx/sec - ��kb. Provenance + SSHFS.

Figure �.��: Network consumption with and without SSHFS.

�.� Edge Computing

Many new emerging technologies such as smart city, smart grid, smart health-
care or smart transportation require interconnected sensors and devices that
collect and share data. For applications such as these and more, aspects of
provenance tracking such as validity, identity and lineage of data can be highly
desirable. Devices referred to by the term Internet of Things are often small
sensor-based devices with processing power in the couple of MHz range. Based
on our current resource measurements we think Hyperprov may be too de-
manding to run directly on the smallest of sensor devices. However, the terms

�� C H A P T E R � E VA LUAT I O N

IoT Gateway [��] and Edge Computing [��] are used to describe a sort of
middleware-box between the sensors and their storage or application services.
We propose for systems using this machine-to-gateway model that running a
system like Hyperprov between gateways could provide uniquely tamperproof
records with acceptable overhead, especially on relatively energy efficient ARM
devices.

RPi IoT Gateway

RFID

Tracker

Camera Node

Analytics

RPi IoT Gateway

Analytics

RFID Tracker

Pressure

Sensor Node

RPi IoT Gateway

Wind Sensor

Node

Temperature

Humidity

Analytics

Backend/Cloud

Analytics

Data Update

Verify Integrity

Shared
provenance log

Figure �.��: �o� gateways illustrated

Offloading work to edge devices can save sensor devices for energy, bandwidth
and may even improve latency [��]. Doing pre-processing or compression at
the edge can also save a lot of energy. [��] show that IoT data is often highly
compressible due to its correlation in time and achieved a �.�� compression
ratio on a year of Fitbit data. Based on our early evaluations of Hyperprov
and ��� on ��i devices we believe that the performance is sufficient and the
resource consumption low enough for this to be useful. Our main concern for
this is regarding network traffic as results (Figure �.�� and �.��) show constant
traffic in the ��-�� KB/s range during idle operation and traffic that can range
into the several hundred KB/s range during load for provenance data only. If
additional research show that network traffic remains approximately the same
for an increased number of orderers and endorsing peers, idle traffic can most
likely be reduced by configuring the gossip protocol. We think that Hyperprov
could be considered for provenance tracking for large scale IoT networks as a
collection of authenticated edge computing nodes on devices like ��i.

�.� M O D E L M E TA DATA T R AC K I N G ��

�.� Model Metadata Tracking

Systems that learn from data are increasingly being deployed and tested for a
wide range of applications in today’s industry. Lately Federated Machine Learn-
ing [��] have seen a rise in popularity, proposing continuous computation
of models across a distributed set of participants, and even across multiple
organizations. These machine learning systems often has a complex and often
varying combination of models, training and test datasets. Also, because mod-
els often are a one-way recipe, transparency of their generation process may
be desired for both researchers and users. As a result of this we see the need
for a framework to help develop Model Metadata Tracking [��] as data scien-
tists and organizations often use their own ad-hoc style and no standardized
framework for tracking results, in turn making it difficult to compare results
and reproduce successful experiments. Figure �.�� show the resource consump-
tion of the peer process and client application storing ��� models of ⇠�� MB.
The models are generated by the ImageAI [��] library and has dependency
links to lists of files used as training and test datasets. The process of storing
the models takes approximately � minutes to complete, because everything
is done in a sequential manner. Storing a model involves reading it from disk
to compute checksum, storing it over network via SSHFS and then pushing a
Hyperprov transaction including checksum and location. For a ��MB model on
our desktop experimental setup this is completed in �.� seconds. From figure
�.�� we see that the peer process is barely affected from its idle �-� % CPU
consumption, while the client application is under constant load in the �-�� %
CPU range.

(a) Peer process (b) Hyperprov client application

Figure �.��: Resource usage for storing ��� x ��MB ML models.

To further explore the CPU consumption, we did some profiling on the client ap-
plication. Figure �.�� show that the client process largely consists of computing
checksums and transferring data to storage, while storing data in Hyperprov
and garbage collection occupy the last � and � % respectively. Our client ap-
plication for model tracking stores models as part of their subsequent models,

�� C H A P T E R � E VA LUAT I O N

requiring sequential operation, but for applications with unassociated mod-
els figure �.�� (b) show that there exists headroom to parallelize checksum
calculation.

Figure �.��: V� Profile for storing ���x ��MB models

In terms of network traffic, the overhead of storing provenance here should be
similar to that of Figure �.�� (a). The high network traffic shown in figure �.��
is the product of storing ��MB data objects every �.� seconds. For most systems
this level of traffic is a given if you want to store large files to a shared network
file-store. If network traffic is a limitation, we propose that all preceding models
could have only its provenance stored and remain stored locally. Then only
the final and best performing model could be uploaded to shared storage with
appropriate lineage pointers pointing to the preceding models.

(a) �.�� tx/sec - ��mb. Provenance + SSHFS.

Figure �.��: Network for storing ��MB models

From our evaluation using Hyperprov to store models generated by ImageAI
[��] we found that our system is capable of storing provenance information
about the generated models such as checksum, location, who generated it and

�.� M O D E L M E TA DATA T R AC K I N G ��

optional parameters such as batch_size or num_obects. We track the current
training data and test set, as well as the history of models. We can now trace
the lineage of successful experiments and use it to reproduce or verify existing
models. From resource measurements and profiling we see that the process of
storing ��� ��MB models using Hyperprov is limited by the file size in terms
of calculating checksum and network transfer. Figures �.��, �.��, �.�� and �.��
(a) all indicate low overhead for running Hyperprov without off chain storage.
Because the system is limited by network transfer and checksums, we instead
propose the use of a system like Fast Integrity Verification (FIVER) [��] either
along with or integrated into the Hyperprov Client Library. Their experiments
show that by concurrently executing transfer and checksum operations and
by enabling file I/O share between them they are able to reduce verification
overhead from �� % down to only �� %.

7
Discussion and Concluding
Remarks

In this final chapter, we list and discuss our design choices and our findings.
We also outline possibilities for future work and conclude the thesis.

�.� Discussion

We have implemented a prototype of Hyperprov, a general purpose-provenance
solution using blockchain to enable transparent and tamperproof metadata
records. As a measure to appeal to a large audience of potential use cases,
design choices were made in favor of customization. One of these choices
was to not store any storage specific data in the ledger but have generic
pointers that can instead be implemented and handled client-side. This allows
for greater variety in terms of storage services. To access the ledger, a client
library was implemented in NodeJS which is made available through ���.
This was developed through the use of the ��� Node ���, but the client
could also be ported to other ���s at a later point in time like Java or Python.
The Hyperprov chaincode is used to store file pointers in a generic manner.
Checksums are tracked to ensure the validity of data stored. We optionally
store lists of dependencies when adding data to be able to track the lineage
of combined objects. A custom field is allocated to optionally track additional

��

�� C H A P T E R � D I S C U S S I O N A N D CO N C LU D I N G R E M A R K S

meta data to describe the data derivation process or for sorting. For increased
efficiency a set of lightweight retrieval functions are built into the chaincode,
this allows us to quickly retrieve collections of records such as the history of a
specified item, items within a key range or the lineage of a specified item. This
functionality has shown only about ��� ms degradation in latency for every ��
records requested in a single query.

�.�.� Findings

Because the ���-framework requires ��-bit we need to run an unofficially
supported OS for our ��i setup. This led us to uncover that due to limitations
of the Linux kernel on ��-bit ARM devices, the CPU does not scale above the
minimum rated threshold of ���MHz to the maximum rated �.�GHz for our
devices, essentially rendering our devices stuck in powersave mode. Because
of this our two experimental systems run on nodes with ��� % difference in
CPU performance at ��� MHz and �.� GHz respectively. Experiments shown
in figures �.� & �.� comparatively show an increase in throughput of approx-
imately ��� % indicating a less than optimal scale with increased hardware.
Other research [��] using ��� similarly show an only ��.�� % increase in
throughput for twice as powerful hardware, but then at a significantly higher
throughput ��� to ��� tx/sec against our �.� to �� tx/sec. We would need to
run the system on additional and more powerful hardware to verify if our
system is prone to the same amount of diminishing returns. However, we can
not directly compare either as they used the v�.� ���-framework and provide
different functionality.

Peer and client processes seem to be the main resource consumers from our
measurements with an average �� & �� % CPU consumption respectively at
full load. The orderer process and chaincode comparatively use an average
of �� & �� % CPU. We see from additional measurements at varying load that
resource consumption scales mostly relative to throughput, but files in the
megabytes-range are affected additionally on the client side due to checksum
computation. For realistic loads of transactions of ��KB every five seconds we
see as low as � & � % CPU on desktops and �� & �� % on ��i. As an argument
to the feasibility of Hyperprov for use in IoT, this level of load only amounts
to about �.��W or about �.�� % increased power consumption over our idle
measurements.

If we compare our system to Smartprovenance [�] which state no total time
for the full procedure of recording a document change, their operations Initi-
ate Change(���ms), Vote(���ms) and Record Change(���ms) stacked already
surpass our time of ����ms both for changes and new documents. This be-
ing running on our own network, then without the per-operation gas-tax on

�.� F U T U R E WO R K ��

Ethereum [��] smart contracts. ProvChain [�] claim sub-second storage speeds,
but also rely on Chainpoint [��] that can require up to �� seconds for initial
proofs and ��-��minutes [��] to be anchored to Bitcoin [��]. Smartprovenance
does not state retrieval times, but ProvChain [�] claim to retrieve �� records
using an average time of ��� ms. Comparatively we retrieve a single record in
⇠��� ms, while using our built-in chaincode queries we were able to retrieve
up to �� dependent IoT records in ⇠��� ms and ���� in ���� ms. Provchain [�]
also claim a peak of �� transactions per second in their figures, on our desktop
setup with ����+ transaction batches we can achieve about �� tx/sec (see
Figure �.�). However, on a more comparable load of ��� transaction batches of
��KB we achieve about �� tx/sec (See Figure �.�). For energy measurements
we have no other provenance system to compare against, but we can refer to
the overhead of �.��% and ��.�% increase in power consumption over idle for
load levels we consider realistic in terms of high and low throughput.

�.� Future Work

For future work, we would like to explore integrating Vegvisir [��] into Hy-
perProv to better cope with lack of network connectivity for �o� edge devices,
and handle network partitions.

We want to test ���’s built-in support for CouchDB [��] to enable more
advanced queries to allow provenance for fields which require retrieval of
provenance based on application-specific data.

An automated system for enrolling new devices and revoking certificates could
similarly be explored.

Due to the high overhead of checksum calculation and network transfer for
large file sizes we would like to also explore integrating a more efficient system
like Fiver [��] to reduce this overhead.

We also want to evaluate whether the proposed extensions to ��� [�] by
the FastFabric [��] project, can help in improving performance further for
HyperProv.

Last but not least, the CPU-scaling issues in the Linux kernel for ��-bit ��i [��]
currently require a fix to fully utilize the devices’ potential.

�� C H A P T E R � D I S C U S S I O N A N D CO N C LU D I N G R E M A R K S

�.� Concluding Remarks

In this thesis we have described the design and implementation of Hyperprov, a
general-purpose provenance system built using���with a Node.js client library.
We have also made a contribution in terms of building ��� Docker images for
ARM, making the process easier for new projects to develop systems using ���
on ARM-devices. By building a provenance framework using blockchain we can
provide tamperproof and transparent records distributed across a collection of
peers while maintaining similar functionality to already established systems
[�].

Our evaluation show that Hyperprov can be deployed to track provenance meta-
data with competitive throughput and response times on commodity desktop
hardware, while also maintaining low overhead on ARM-based devices like
��i. We achieve similar or better performance to other comparable provenance
solutions anchoring in blockchain technology without relying on �o� and
currency reliant blockchains [�] [�].

Bibliography
[�] A. Dragland and SINTEF, “Big data - for better or worse,” may ����.

[Online]. Available: https://www.sintef.no/en/latest-news/big-data-for-
better-or-worse/

[�] Y. L. Simmhan, B. Plale, and D. Gannon, “A survey of data provenance in
e-science,” SIGMOD Rec., vol. ��, no. �, pp. ��–��, Sep. ����. [Online].
Available: http://doi.acm.org/��.����/�������.�������

[�] M. Herschel, R. Diestelkämper, and H. Ben Lahmar, “A survey
on provenance: What for? what form? what from?” The VLDB
Journal, vol. ��, no. �, pp. ���–���, Dec. ����. [Online]. Available:
https://doi.org/��.����/s�����-���-����-�

[�] M. Herlihy, “Blockchains and the future of distributed computing,” in
Proceedings of the ACM Symposium on Principles of Distributed Computing,
ser. PODC ’��. New York, NY, USA: ACM, ����, pp. ���–���. [Online].
Available: http://doi.acm.org/��.����/�������.�������

[�] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro,
D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Muralidharan,
C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti,
C. Stathakopoulou, M. Vukolić, S. W. Cocco, and J. Yellick, “Hyperledger
fabric: A distributed operating system for permissioned blockchains,”
in Proceedings of the Thirteenth EuroSys Conference, ser. EuroSys ’��.
New York, NY, USA: ACM, ����, pp. ��:�–��:��. [Online]. Available:
http://doi.acm.org/��.����/�������.�������

[�] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L.
Tan, “Blockbench: A framework for analyzing private blockchains,” in
Proceedings of the ���� ACM International Conference on Management of
Data, ser. SIGMOD ’��. New York, NY, USA: ACM, ����, pp. ����–����.
[Online]. Available: http://doi.acm.org/��.����/�������.�������

[�] X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, and L. Njilla,

��

https://www.sintef.no/en/latest-news/big-data-for-better-or-worse/
https://www.sintef.no/en/latest-news/big-data-for-better-or-worse/
http://doi.acm.org/10.1145/1084805.1084812
https://doi.org/10.1007/s00778-017-0486-1
http://doi.acm.org/10.1145/3087801.3087873
http://doi.acm.org/10.1145/3190508.3190538
http://doi.acm.org/10.1145/3035918.3064033

�� B I B L I O G R A P H Y

“Provchain: A blockchain-based data provenance architecture in cloud en-
vironment with enhanced privacy and availability,” in ���� ��th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID),
May ����, pp. ���–���.

[�] A. Ramachandran and M. Kantarcioglu, “Smartprovenance: A distributed,
blockchain based dataprovenance system,” in Proceedings of the
Eighth ACM Conference on Data and Application Security and Privacy, ser.
CODASPY ’��. New York, NY, USA: ACM, ����, pp. ��–��. [Online].
Available: http://doi.acm.org/��.����/�������.�������

[�] Hlf arm images dockerhub. Accessed: ��.��.����. [Online]. Available:
https://hub.docker.com/u/ptunstad

[��] P. J. Denning, D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner,
and P. R. Young, “Report of the acm task force on the core of computer
science,” New York, NY, USA, Tech. Rep., ����, aCM Order No.: ������.

[��] P. Tunstad, “Towards energy efficient blockchain-based systems for secure
data sharing on edge devices,” UIT The Arctic University of Tromso, dec
����.

[��] V. Buterin, “Ethereum: A next-generation smart contract and
decentralized application platform,” ����, accessed: ����-��-��. [Online].
Available: https://github.com/ethereum/wiki/wiki/White-Paper

[��] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth,
N. Kwasnikowska, S. Miles, P. Missier, J. Myers, B. Plale, Y. Simmhan,
E. Stephan, and J. V. den Bussche, “The open provenance
model core specification (v�.�),” Future Generation Computer Systems,
vol. ��, no. �, pp. ��� – ���, ����. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S�������X��������

[��] Chainpoint, “Chainpoint: A scalable protocol for anchoring data in
the blockchain and generating blockchain receipts,” ����, accessed:
����-��-��. [Online]. Available: https://www.chainpoint.org

[��] R. C. Merkle, “Protocols for public key cryptosystems,” in ���� IEEE
Symposium on Security and Privacy, April ����, pp. ���–���.

[��] S. Nakamoto. (����) Bitcoin: A peer-to-peer electronic cash system.
[Online]. Available: http://bitcoin.org/bitcoin.pdf

[��] A. Demichev, A. Kryukov, and N. Prikhodko, “The approach to managing

http://doi.acm.org/10.1145/3176258.3176333
https://hub.docker.com/u/ptunstad
https://github.com/ethereum/wiki/wiki/White-Paper
http://www.sciencedirect.com/science/article/pii/S0167739X10001275
http://www.sciencedirect.com/science/article/pii/S0167739X10001275
https://www.chainpoint.org
http://bitcoin.org/bitcoin.pdf

B I B L I O G R A P H Y ��

provenance metadata and data access rights in distributed storage using
the hyperledger blockchain platform,” CoRR, vol. abs/����.�����, ����.
[Online]. Available: http://arxiv.org/abs/����.�����

[��] K. Karlsson, W. Jiang, S. Wicker, D. Adams, E. Ma, R. van Renesse,
and H. Weatherspoon, “Vegvisir: A partition-tolerant blockchain for the
internet-of-things,” in ���� IEEE ��th International Conference on Dis-
tributed Computing Systems (ICDCS), July ����, pp. ����–����.

[��] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-free
replicated data types,” in Proceedings of the ��th International Conference
on Stabilization, Safety, and Security of Distributed Systems, ser. SSS’��.
Berlin, Heidelberg: Springer-Verlag, ����, pp. ���–���. [Online].
Available: http://dl.acm.org/citation.cfm?id=�������.�������

[��] I. Foster, J. Vockler, M. Wilde, and Yong Zhao, “Chimera: a virtual data sys-
tem for representing, querying, and automating data derivation,” in Pro-
ceedings ��th International Conference on Scientific and Statistical Database
Management, July ����, pp. ��–��.

[��] J. Zhao, C. Goble, R. Stevens, and S. Bechhofer, “Semantically linking
and browsing provenance logs for e-science,” in Semantics of a Networked
World. Semantics for Grid Databases,M. Bouzeghoub, C. Goble, V. Kashyap,
and S. Spaccapietra, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
����, pp. ���–���.

[��] C. Pancerella, J. Hewson, W. Koegler, D. Leahy, M. Lee, L. Rahn,
C. Yang, J. D. Myers, B. Didier, R. McCoy, K. Schuchardt, E. Stephan,
T. Windus, K. Amin, S. Bittner, C. Lansing, M. Minkoff, S. Nijsure,
G. von Laszewski, R. Pinzon, B. Ruscic, A. Wagner, B. Wang, W. Pitz,
Y.-L. Ho, D. Montoya, L. Xu, T. C. Allison, W. H. Green, Jr., and
M. Frenklach, “Metadata in the collaboratory for multi-scale chemical
science,” in Proceedings of the ���� International Conference on Dublin
Core and Metadata Applications: Supporting Communities of Discourse and
Practice—metadata Research & Applications, ser. DCMI ’��. Dublin
Core Metadata Initiative, ����, pp. ��:�–��:�. [Online]. Available:
http://dl.acm.org/citation.cfm?id=�������.�������

[��] J. Frew and R. Bose, “Earth system science workbench: a data manage-
ment infrastructure for earth science products,” in Proceedings Thirteenth
International Conference on Scientific and Statistical Database Management.
SSDBM ����, July ����, pp. ���–���.

[��] Y. Cui and J. Widom, “Practical lineage tracing in data warehouses,” in

http://arxiv.org/abs/1811.12706
http://dl.acm.org/citation.cfm?id=2050613.2050642
http://dl.acm.org/citation.cfm?id=1383296.1383313

�� B I B L I O G R A P H Y

Proceedings of ��th International Conference on Data Engineering (Cat.
No.��CB�����), Feb ����, pp. ���–���.

[��] H. Shafagh, L. Burkhalter, A. Hithnawi, and S. Duquennoy, “Towards
blockchain-based auditable storage and sharing of iot data,” in
Proceedings of the ���� on Cloud Computing Security Workshop, ser. CCSW
’��. New York, NY, USA: ACM, ����, pp. ��–��. [Online]. Available:
http://doi.acm.org/��.����/�������.�������

[��] J. C. Nelson, M. Ali, R. Shea, and M. J. Freedman, “Extending existing
blockchains with virtualchain,” ����.

[��] R. Nygaard, L. Jehl, and H. Meling, “Distributed Storage with Strong Data
Integrity based on Blockchain Mechanisms,” Master’s thesis, University
of Stavanger, Norway, ����.

[��] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” Master’s thesis, The University of Guelph, Guelph, Ontario,
Canada, jun ����.

[��] J. Benet, “IPFS - content addressed, versioned, P�P file system,” CoRR, vol.
abs/����.����, ����. [Online]. Available: http://arxiv.org/abs/����.����

[��] A. Stanciu, “Blockchain based distributed control system for edge com-
puting,” in ���� ��st International Conference on Control Systems and
Computer Science (CSCS), May ����, pp. ���–���.

[��] Docker - enterprise container platform for high-velocity innovation.
Accessed: ��.��.����. [Online]. Available: https://docker.com

[��] C. Mcluckie. (����, Aug) Containers vms kubernetes and vmware.
[Online]. Available: http://googlecloudplatform.blogspot.com/����/��/
containers-vms-kubernetes-and-vmware.html.

[��] M. Selimi, A. R. Kabbinale, A. Ali, L. Navarro, and A. Sathiaseelan,
“Towards blockchain-enabled wireless mesh networks,” CoRR, vol.
abs/����.�����, ����. [Online]. Available: http://arxiv.org/abs/����.
�����

[��] Hyperledger, “Five hyperledger blockchain projects now in production,”
Hyperledger Blog, nov ����.

[��] Bitcoin energy consumption index. Accessed: ��.��.����. [Online].
Available: https://digiconomist.net/bitcoin-energy-consumption

http://doi.acm.org/10.1145/3140649.3140656
http://arxiv.org/abs/1407.3561
https://docker.com
http://googlecloudplatform.blogspot.com/2014/08/containers-vms-kubernetes-and-vmware.html.
http://googlecloudplatform.blogspot.com/2014/08/containers-vms-kubernetes-and-vmware.html.
http://arxiv.org/abs/1804.00561
http://arxiv.org/abs/1804.00561
https://digiconomist.net/bitcoin-energy-consumption

B I B L I O G R A P H Y ��

[��] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proceedings
of the ��th Symposium on Operating Systems Principles, ser. SOSP ’��.
New York, NY, USA: ACM, ����, pp. ��–��. [Online]. Available:
http://doi.acm.org/��.����/�������.�������

[��] S. Micali, S. Vadhan, and M. Rabin, “Verifiable random functions,” in
Proceedings of the ��th Annual Symposium on Foundations of Computer
Science, ser. FOCS ’��. Washington, DC, USA: IEEE Computer Society,
����, pp. ���–. [Online]. Available: http://dl.acm.org/citation.cfm?id=
������.������

[��] L. Lamport, “Paxos made simple,” ACM SIGACT News (Distributed
Computing Column) ��, � (Whole Number ���, December ����), pp. ��–��,
December ����. [Online]. Available: https://www.microsoft.com/en-
us/research/publication/paxos-made-simple/

[��] D. Ongaro and J. Ousterhout, “In search of an understandable
consensus algorithm,” in Proceedings of the ���� USENIX Conference on
USENIX Annual Technical Conference, ser. USENIX ATC’��. Berkeley,
CA, USA: USENIX Association, ����, pp. ���–���. [Online]. Available:
http://dl.acm.org/citation.cfm?id=�������.�������

[��] M. Castro and B. Liskov, “Practical byzantine fault tolerance,”
in Proceedings of the Third Symposium on Operating Systems Design and
Implementation, ser. OSDI ’��. Berkeley, CA, USA: USENIX Association,
����, pp. ���–���. [Online]. Available: http://dl.acm.org/citation.cfm?
id=������.������

[��] J. R. e. a. J. Kreps, N. Narkhede, “Kafka: A distributed messaging system
for log processing,” in ���� Proceedings of the NetDB. Athens, Greece:
ACM, jun ����, pp. �–�.

[��] Hyperledger fabric docs - peers - transaction flow. Accessed:
��.��.����. [Online]. Available: https://hyperledger-fabric.readthedocs.
io/en/release-�.�/peers/peers.html

[��] Fabric ca user’s guide. Accessed: ��.��.����. [Online]. Avail-
able: https://hyperledger-fabric-ca.readthedocs.io/en/release-�.�/users-
guide.html#generating-a-crl-certificate-revocation-list

[��] Hyperledger fabric roadmap. Accessed: ��.��.����. [Online]. Avail-
able: https://wiki.hyperledger.org/display/fabric/Hyperledger+Fabric+
Roadmap

http://doi.acm.org/10.1145/3132747.3132757
http://dl.acm.org/citation.cfm?id=795665.796482
http://dl.acm.org/citation.cfm?id=795665.796482
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
http://dl.acm.org/citation.cfm?id=2643634.2643666
http://dl.acm.org/citation.cfm?id=296806.296824
http://dl.acm.org/citation.cfm?id=296806.296824
https://hyperledger-fabric.readthedocs.io/en/release-1.4/peers/peers.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/peers/peers.html
https://hyperledger-fabric-ca.readthedocs.io/en/release-1.4/users-guide.html#generating-a-crl-certificate-revocation-list
https://hyperledger-fabric-ca.readthedocs.io/en/release-1.4/users-guide.html#generating-a-crl-certificate-revocation-list
https://wiki.hyperledger.org/display/fabric/Hyperledger+Fabric+Roadmap
https://wiki.hyperledger.org/display/fabric/Hyperledger+Fabric+Roadmap

�� B I B L I O G R A P H Y

[��] G. Greenspan. https://coincenter.org/entry/do-you-really-need-a-
blockchain-for-that. Accessed: ��.��.����. [Online]. Available:
https://coincenter.org/entry/do-you-really-need-a-blockchain-for-that

[��] U. Javaid, M. N. Aman, and B. Sikdar, “Blockpro: Blockchain based data
provenance and integrity for secure iot environments,” in Proceedings
of the �st Workshop on Blockchain-enabled Networked Sensor Systems, ser.
BlockSys’��. New York, NY, USA: ACM, ����, pp. ��–��. [Online].
Available: http://doi.acm.org/��.����/�������.�������

[��] Client identity chaincode library. Accessed: ��.��.����. [Online].
Available: https://github.com/hyperledger/fabric/blob/master/core/
chaincode/shim/ext/cid/README.md

[��] Hyperledger fabric client sdk for node.js. Accessed: ��.��.����. [Online].
Available: https://github.com/hyperledger/fabric-sdk-node

[��] S. Gilbert and N. Lynch, “Perspectives on the cap theorem,”
Computer, vol. ��, no. �, pp. ��–��, Feb. ����. [Online]. Available:
https://doi.org/��.����/MC.����.���

[��] Sshfs - sftp remote file access. Accessed: ��.��.����. [Online]. Available:
https://github.com/libfuse/sshfs

[��] Z. I. Berlin. Xtreemfs - fault-tolerant distributed file system
for all storage needs. Accessed: ��.��.����. [Online]. Available:
http://www.xtreemfs.org

[��] N. Oceanic and A. Administration. Global surface summary of the day
- gsod dataset. Accessed: ��.��.����. [Online]. Available: https://data.
noaa.gov/dataset/dataset/global-surface-summary-of-the-day-gsod

[��] Using couchdb as the state database. Accessed: ��.��.����. [On-
line]. Available: https://hyperledger-fabric.readthedocs.io/en/release-
�.�/couchdb_as_state_database.html

[��] Imageai - easy to use computer vision library for state-of-the-
art artificial intelligence. Accessed: ��.��.����. [Online]. Available:
https://github.com/OlafenwaMoses/ImageAI

[��] Idenprof dataset containing images of identifiable professionals. Accessed:
��.��.����. [Online]. Available: https://github.com/OlafenwaMoses/
IdenProf

https://coincenter.org/entry/do-you-really-need-a-blockchain-for-that
http://doi.acm.org/10.1145/3282278.3282281
https://github.com/hyperledger/fabric/blob/master/core/chaincode/shim/ext/cid/README.md
https://github.com/hyperledger/fabric/blob/master/core/chaincode/shim/ext/cid/README.md
https://github.com/hyperledger/fabric-sdk-node
https://doi.org/10.1109/MC.2011.389
https://github.com/libfuse/sshfs
http://www.xtreemfs.org
https://data.noaa.gov/dataset/dataset/global-surface-summary-of-the-day-gsod
https://data.noaa.gov/dataset/dataset/global-surface-summary-of-the-day-gsod
https://hyperledger-fabric.readthedocs.io/en/release-1.4/couchdb_as_state_database.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/couchdb_as_state_database.html
https://github.com/OlafenwaMoses/ImageAI
https://github.com/OlafenwaMoses/IdenProf
https://github.com/OlafenwaMoses/IdenProf

B I B L I O G R A P H Y ��

[��] J. Layton. Sshfs – installation and performance. Accessed: ��.��.����.
[Online]. Available: http://www.admin-magazine.com/HPC/Articles/
Sharing-Data-with-SSHFS

[��] R. Sandberg, D. Golgberg, S. Kleiman, D. Walsh, and B. Lyon,
“Innovations in internetworking,” C. Partridge, Ed. Norwood, MA,
USA: Artech House, Inc., ����, ch. Design and Implementation
of the Sun Network Filesystem, pp. ���–���. [Online]. Available:
http://dl.acm.org/citation.cfm?id=�����.�����

[��] Openafs - distributed filesystem. Accessed: ��.��.����. [Online].
Available: https://www.openafs.org/

[��] Amazon. Aws elastic file storage. Accessed: ��.��.����. [Online].
Available: https://docs.aws.amazon.com/efs/latest/ug/efs-ug.pdf#how-
it-works

[��] AbelPelser. Steps to build fabric-javaenv:arm��-�.�.�. Ac-
cessed: ��.��.����. [Online]. Available: https://github.com/Tunstad/
Hyperprov/issues/��

[��] Temperature sensor and cpu freq scaling broken in �.�.x and �.��.x
kernels for rpi�/aarch��. Accessed: ��.��.����. [Online]. Available:
https://github.com/raspberrypi/linux/issues/����

[��] Psrecord: Record the cpu and memory activity of a process. Accessed:
��.��.����. [Online]. Available: https://github.com/astrofrog/psrecord

[��] I. Ward. Speedometer: Network & file system speed monitor
for ubuntu linux. Accessed: ��.��.����. [Online]. Available: http:
//excess.org/speedometer/

[��] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller, and A. Agarwal,
“Application heartbeats: A generic interface for specifying program
performance and goals in autonomous computing environments,” in
Proceedings of the �th International Conference on Autonomic Computing,
ser. ICAC ’��. New York, NY, USA: ACM, ����, pp. ��–��. [Online].
Available: http://doi.acm.org/��.����/�������.�������

[��] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A survey
on the edge computing for the internet of things,” IEEE Access, vol. �, pp.
����–����, ����.

[��] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine

http://www.admin-magazine.com/HPC/Articles/Sharing-Data-with-SSHFS
http://www.admin-magazine.com/HPC/Articles/Sharing-Data-with-SSHFS
http://dl.acm.org/citation.cfm?id=59309.59338
https://www.openafs.org/
https://docs.aws.amazon.com/efs/latest/ug/efs-ug.pdf#how-it-works
https://docs.aws.amazon.com/efs/latest/ug/efs-ug.pdf#how-it-works
https://github.com/Tunstad/Hyperprov/issues/14
https://github.com/Tunstad/Hyperprov/issues/14
https://github.com/raspberrypi/linux/issues/1918
https://github.com/astrofrog/psrecord
http://excess.org/speedometer/
http://excess.org/speedometer/
http://doi.acm.org/10.1145/1809049.1809065

�� B I B L I O G R A P H Y

learning: Concept and applications,” ACM Trans. Intell. Syst. Technol.,
vol. ��, no. �, pp. ��:�–��:��, Jan. ����. [Online]. Available:
http://doi.acm.org/��.����/�������

[��] S. Schelter, F. Biessmann, T. Januschowski, D. Salinas, S. Seufert, and e. a.
G. Szarvas, “On challenges in machine learning model management,” in
IEEE Data Engineering Bulletin, ����.

[��] E. Arslan and A. Alhussen, “Fast integrity verification for high-speed
file transfers,” CoRR, vol. abs/����.�����, ����. [Online]. Available:
http://arxiv.org/abs/����.�����

[��] Chainpoint. (����) Chainpoint Client Node.js. Accessed: ����-��-��.
[Online]. Available: https://github.com/chainpoint/chainpoint-client-js

[��] C. Gorenflo, S. Lee, L. Golab, and S. Keshav, “FastFabric: Scaling
Hyperledger Fabric to ��,��� Transactions per Second,” in IEEE
International Conference on Blockchain and Cryptocurrency (ICBC ’��).
IEEE, may ����. [Online]. Available: http://arxiv.org/abs/����.�����

http://doi.acm.org/10.1145/3298981
http://arxiv.org/abs/1811.01161
https://github.com/chainpoint/chainpoint-client-js
http://arxiv.org/abs/1901.00910

Appendix A

Appendix A: Hyperprov system specifications
and configuration

Hyperprov is a general purpose provenance framework for data provenance based
on the permissioned blockchain Hyperledger Fabric. The system have been
run for experiments and evaluation on both commodity desktop hardware and
Raspberry Pi devices. This document should give an idea of how the system is
built and configured beyond the more general descriptions in the thesis.

Getting started

Before getting started make sure you have the required depdencies. We recom-
mend Go version 1.11.1, Docker 18.09.1, Docker-compose 1.22.0, and NodeJS
v8.15.0. For installation help see the install section below.

Set up Docker Compose

To start o� we need to configure the docker-compose file docker-compose-cli.yaml
to orchestrate the devices and paths. The most important are to change paths
to this directory, as all devices need to have the Hyperprov directory cloned
and available. By default it is /data/Hyperprov but if you have it elsewere,
simply do a find and replace for the path in docker-compose-cli.yaml.

The devices used need to be specified in the docker-compose file to match the
containers running on them. There are six containers for this here four node
setup, whereas your head-node should run both peer, orderer and fabric-tools.
To specify device hostnames change the six node.hostname == entries to match
your device(s).

Lastly the docker image pointers of each service must be set to match
the devices architecture eg. ptunstad/fabric-ccenv:arm64-1.4.1 or
hyperledger/fabric-ccenv:amd64-1.4.0.

Docker Swarm

The prototype uses Docker Swarm to manage multiple nodes from a single device
for easy management. To start a swarm run docker swarm init on your “main”
node. This will be the same node you use to start and shut down the network.
This will return a command along the lines of docker swarm join --token
SWMTKN-1-xxxxxxxx 192.168.1.xxx:2377 which you need to call on all your
other nodes to join the network. You can verify that all nodes have been joined
by running docker node ls on the initial node. The initial node should also

1

Appendix A

initialize an overlay network by running docker network create -d overlay
--attachable hyperledger-fabric.

Starting the network

Before you actually run a network you should regenerate your certificates and
genesis block, but for a quick up and running test you can use the block and
certificates provided in this repository. See the section below on how to regenerate
this.

Assuming all prerequisites are installed and docker images are downloaded, run:
docker node ls to check that all nodes in swarm is up and running.

To start the network run the command docker stack deploy --compose-file
docker-compose-cli.yaml Hyperprov && docker ps on your “main” swarm
node.

This will start all containers and run a setup script script_ds.sh and utils.sh
to create channel, join peers, install chaincode and do some tests on query
and invoke.To follow the output of this script, get the id of CLI-container from
docker ps that uses fabric-tools and run docker logs -f 6e4c43c974e7 where
6e4c43c974e7 is the id of CLI-container.

If you encounter any problems run docker stack ps Hyperprov --no-trunc
on main swarm node to see useful error messages.

Shutting down can be done with docker stack rm Hyperprov on main swarm
node, this will shut down all nodes in the network and cause it to lose its state.

The Hyperprov Client Library

The Hyperprov client library is used to interact with the Hyperledger Fabric
instances running your provenance ledger. It is published to npm and can
be downloaded with npm i hyperprov-client. The library is also locally
configured in this respository client/hyperprov-client to easily experiment
with modifications. The client library should be used to build an application
that needs to interact with the ledger/chaincode. The table below show the
functionality currently present in the client library, whereas for simply interacting
with the chaincode you could get by with only ccInit, ccPost and ccGet.

2

Appendix A

Function Required Input Expected output
registerAdmin Keystore, CA-url, CA-name, Adminuname, Adminpw, MSPID eCert in Keystore
registerUser Keystore, Username, A�liation, Role, CA-url, CA-name, MSPID eCert in Keystore
ccInit Certificate, Channel+ChaincodeID, Peer+Orderer URL Success
ccPost Key, Checksum, Path, Dependency List, Custom Provenance Data txID
ccGet Getfunction, Key/txID/Startkey-Endkey Query Result
storeFile File, Key, Dependency List, Custom Provenance Data
retrieveFile Key, File-path
InitFileStore FileStorePath Success
StoreData File, Key, Dependency List, Custom Provenance Data txID
StoreDataFS File, Key, Dependency List, Custom Provenance Data Input for StoreDataHL
StoreDataHL Key, Checksum, Path, Dependency List, Custom Provenance Data txID
GetDataFS Key File, txID

Chaincode and Certificates

Hyperprov Chaincode

The chaincode supports multiple operations related to data provenance. The
operations are: storing provenance data of an item, retrieving the last prove-
nance information on an item, requesting the checksum of an item, getting
an item with its corresponding transaction ID, getting a specific version of
an item from transaction ID, recursively getting all items listed as lineage
of a certain item, getting the history of a single item and retrieving a list
of items with a key-range query. The current chaincode can be found in
/chaincode/chaincode_hyperprov/chaincode_hyperprov.go. For the chain-
code to implement the desired data provenance functionality it has the following
type of data on a stored data item:

Field Description
txID Unique transaction ID for each operation
Hash Checksum of the stored data
Location First part of data path
Pointer Second part of data path
Certificate CA issued unique ID linked to certificate (CID-CC)
Type Type of operation
Description Additional metadata, eg. on the process
Dependencies All txID’s that form the lineage of this item

3

Appendix A

The operations used to implement proveneance for storage and retrieval of data
items is the following:

CC Operation Input Expected output
get item data txID
set key JSON with item data of current version of key
checkhash key Only checksum of current version of key
getfromid txID JSON with specific item data for txID
getdependencies txID, depth JSON of txID lineage of item, specified by depth
getkeyhistory key JSON with item data for all updates on key
getbyrange start, end JSON with item data for all keys in range start-end

Issue chaincode changes

Updates to the chaincode is not issued if it detects already running chaincode
with the same version number. To change the version number you need
to specify it when it is instantiated in utils.sh. Instead you can delete
and overwrite the current chaincode. To delete current chaincode this need
to be performed on all nodes after a shutdown: docker stop $(docker
ps -aq) && docker rm -f $(docker ps -aq) Then do docker images to
find the chaincode container ID, usually the image is named something like
dev-peer0.org1.ptunstad.no-myccds-1.2-97ed6ab7c0e9eda2b3d967ab471-
b3691e7eb90fd2b84c0fc33f5c2588b170e4f. Then do docker rmi xxxxxxxxxxx
replacing the x’s with the container ID of running chaincode images to delete
them. Now you can start the network with your updated chaincode, just make
sure to have it updated on all nodes.

Genesis block and certificates regeneration

Before running a new network you should always regenerate the genesis block
and following certificates. Aslo if you need to make any changes to either
crypto-config.yaml or configtx.yaml you may need to regenerate the certifi-
cates for your network anyway. To do this first delete the folder /crypto-config
and /channel-artifacts. Then run export PATH=<replace this with your
path>/bin:$PATH with the full path to your bin folder.
To generate network entities such as peers, organizations and genesisblock run
the following:

bin/cryptogen generate --config=./crypto-config.yaml
export FABRIC_CFG_PATH=$PWD
bin/configtxgen -profile TwoOrgsOrdererGenesis -outputBlock ./chan-
nel-artifacts/genesis.block

Then to generate a channel for our peers to interact on run:

4

Appendix A

export CHANNEL_NAME=mychannel && bin/configtxgen -profile TwoOr-
gsChannel -outputCreateChannelTx ./channel-artifacts/channel.tx -
-channelID $CHANNEL_NAME

bin/configtxgen -profile TwoOrgsChannel -outputAnchorPeersUpdate
./c-hannel-artifacts/Org1MSPanchors.tx -channelID $CHANNEL_NAME -
-asOrg Org1MSP

This should have generated new crypto material and your new network should
be able to deploy. The previous eCerts will no longer work for accessing the
network so you will also have to generate new certificates for the client.

eCerts and the CA server

To access the network you need eCerts issued by a certificate authority. For this
we use Hyperledger Farbrics own fabric CA image which can be retrieved with
docker pull hyperledger/fabric-ca.

The CA server requires to have Golang installed and to have sudo apt install
libtool libltdl-dev installed. Then to start it move to /fabric-ca and run
docker-compose up -d. This will start the CA server by default on port 7054
and allow it to respond to requests. You create certificates by first generating
an admin certificate using the Hyperprov-client function registerAdmin with
the username and password set in the fabric-ca/docker-compose.yml file.
Once this admin certificate is generated, you can use it to register multiple
certificates using the registerUser functionality of the Hyperprov-client. Af-
ter all certificates are generates the CA server docker container can be shut
down again with docker-compose down. If any data need to be read, like
who owns or registered a certificate, you can access the fabric-ca database in
fabric-ca/fabric-ca-server/fabric-ca-server.db with sqlite.

Example applications

To show how the system is used and to evaluate its usability we have created a
series of applications built on top of the Hyperprov client library.

Benchmark

The benchmark application found in client\benchmark.js is used to benchmark
the peformance of the system. This supports three di�ernet types of benchmarks.
These are:

• Single benchmark - Runs a single round on benchmark of a specified number
of transactions and data size.

5

Appendix A

• Multi benchmark - Runs a collection of single benchmarks for varying
load/data size, calulating average response time, total time and transac-
tions/min from multiple samples.

• Load test - runs a specific level of load over a set time. This means that over
10 minutes we can send 3000 transactions of size 4KB and this benchmark
will manage the amount of sleep neccecary between each transaction for
an even load.

IoT

The IoT application in client/iot.js shows how the system can be used to
send a collection of small data and track lineage. It uses the GSOD dataset 1

downloaded using NOAA-GSOD-GET 2. This dataset is then parsed into records
for a few select stations, and stored onto the ledger in batches of 30 records.
Every 90 records a data item and the previous “analysed” record is concatinated
to mimic analysing data, where the goal is to store the concatinated items as
a dependency recorded for the newly created item. This allows us to use the
getdependencies chaincode functionality to get the full lineage of all “analysed”
records.

ML

The machine learning model management example in client/ml.js uses models
from the IdenProf dataset 3 and models generated by ImageAI 4 to track its
provenance metadata. The simple code used to train and recognize based on
models can also be found in the client/ML folder. Our example application
tracks models, testdata and training data. We track the full model files and
store in o� chain storage, while for testdata and training data we only track file
lists. This is done by checking what files are present in specified folders and
comparing against records stored in the ledger for di�erences. If di�erences are
found, the records are updated. When we store models, we list the training
dataset and testdata set-lists as dependencies so the metadata includes what
test and training data was used to produce the model. We can queue the full
history of a single model using getkeyhistory or the datasets used to produce
it with getdependencies chaincode.

1https://data.noaa.gov/dataset/dataset/global-surface-summary-of-the-day-gsod
2https://github.com/BStudent/NOAA-GSOD-GET
3https://github.com/OlafenwaMoses/IdenProf
4https://github.com/OlafenwaMoses/ImageAI

6

Appendix A

REST

The REST-client in client/API.js is a simple restful api client built on
the express web framework to allow external access to interact with the
blockchain trough http-requests. The application supports direct access to
chaincode functionality such as /set, /get , /getfromid, /getkeyhistory,
/getdependencies, /getbyrange, /sendfile and /getfile. The client can
also only listen to localhost to limit to internal access from other applications
on the same device.

Datastore

The application in client/DataStore.js is the most baseline appliaction, show-
ing the minimal required code for storing a file in o� chain storage and on the
ledger, then retrieving it again.

Latency

The latency application in client/latency.js is a simple example of sending
100 transactions with five seconds of sleep in between. This is used to measure
latency of transactions. The application measures individual times of all 100
transactions and then exports it as .csv format.

Measurements

For measurements on how the system performs we often couple the load test
benchmark mode with resource monitoring tools, some of which are listed below.

CPU/Memory

To measure CPU and memory consumption we used the psrecord 5 utility built
on psutil. Make sure the measuring node has python, psutil and matplotlib
installed. To measure we start o� with installing dependencies. These are
installed by running ./client/cpu_mem_setup.sh and possibly also export
DISPLAY=:8 again to fully set up Xvfb which is needed for plotting on headless
devices. Then to run measurements edit client/cpu_mem.sh with your desired
process names, interval, duration and output figures. You can add and remove
to record only one, or maybe four processes simultaneously.

5https://github.com/astrofrog/psrecord

7

Appendix A

Network

To capture network usage we used iftop and the monitoring tool speedometer
2.8 6. To measure with speedometer you can run speedometer -r eno1 -t
eno1 to capture all recieved and transferred network tra�c on the network
interface eno1.

NodeJS Profiler

To profile the client you can use the built in NodeJS profiler by appending
the --prof flag when running an application. This will output a file named
something like isolate-xxxxxxxx-v8.log. Then run node --prof-process
isolate-xxxxxxxx-v8.log to process and output results about the profiling.
Here you can explore the number of ticks and percentages occupied the runtime
of the profiled process.

Dependencies

Operating System

The experiments were run on Raspberry Pi 3 B+ using the Debian Buster 64-bit
Raspberry Pi OS which you can download from here 7. 64-bit OS will only run
on Raspberry Pi 3 and is currently required as HLF only supports 64 bit. This
guide targets Raspberry Pi because they are most di�cult to set up, but most of
this applies to Ubuntu 16.04 by replacing arm64 with amd64 and pulling docker
images directly from the hyperledger/ repo.

Start by making sure your system is up to date and have some important de-
pendencies used in the following steps: apt-get update && apt-get install
curl wget sudo.

Docker and Docker Compose

Start o� by installing Docker and Docker compose. We have tested only with
Docker 18.09.1 and Docker compose 1.22.0, so if problems arise revert to these
versions.

curl -sSL https://get.docker.com | sh
curl -s https://packagecloud.io/install/repositories/Hypriot/Schatz-
kiste/script.deb.sh | bash
apt-get install docker-compose

6http://excess.org/speedometer/
7https://wiki.debian.org/RaspberryPi3

8

Appendix A

To check if you installed them correctly run docker --version &&
docker-compose --version if it does not work, a reboot will usually
solve this problem.

Docker images

Because no HLF docker images are o�cially available from Hyperledger Fabric, i
have compiled my own images for HLF v1.4 on ARM64 8. If you want to compile
your own images see Appendix B or Github9.

docker pull ptunstad/fabric-baseos:arm64-0.4.15 &&
docker pull ptunstad/fabric-basejvm:arm64-0.4.15 &&
docker pull ptunstad/fabric-baseimage:arm64-0.4.15 &&
docker pull ptunstad/fabric-ccenv:arm64-1.4.1 &&
docker pull ptunstad/fabric-peer:arm64-1.4.1 &&
docker pull ptunstad/fabric-orderer:arm64-1.4.1 &&
docker pull ptunstad/fabric-zookeeper:arm64-1.4.1 &&
docker pull ptunstad/fabric-kafka:arm64-1.4.1 &&
docker pull ptunstad/fabric-couchdb:arm64-1.4.1 &&
docker pull ptunstad/fabric-tools:arm64-1.4.1 &&
docker pull apelser/fabric-javaenv:arm64-1.4.1

Golang

The version of Golang used for Hyperledger Fabric v1.4.1 is Go 1.11.1, installing
it on RPI can be done by:

wget https://dl.google.com/go/go1.11.1.linux-arm64.tar.gz
tar -C /usr/local -xzf go1.11.1.linux-arm64.tar.gz
echo �export PATH=$PATH:/usr/local/go/bin� >> ~/.profile
echo �export GOPATH=$HOME/go� >> ~/.profile

To verify run go version and echo $GOPATH to verify its set to /home/pi/go.

Node

To run the applications you need NodeJS and npm installed. We encountered
some errors with newer versions of node and therefore encourage you to downgrade
to version 8 to avoid problems for now.

curl -sL https://deb.nodesource.com/setup_8.x | -E bash -
sudo apt-get install -y nodejs

8https://hub.docker.com/r/ptunstad/
9https://github.com/Tunstad/Hyperprov/blob/master/compiling.md

9

Appendix A

Other

If you get a problem due to missing dependencies other than the ones listed
above, installing some of these additional packages may help:

apt-get install git python-pip python-dev docker-compose build-essen-
tial libtool libltdl-dev libssl-dev libevent-dev libffi-dev
pip install --upgrade pip
pip install --upgrade setuptools
pip install behave nose docker-compose
pip install -I flask==0.10.1 python-dateutil==2.2 pytz==2014.3 pyyam-
l==3.10 couchdb==1.0 flask-cors==2.0.1 requests==2.4.3 pyOpenSSL==16-
.2.0 pysha3==1.0b1 grpcio==1.0.4
pip install --trusted-host pypi.org docker-compose

Clone repository to /data folder

The docker compose file currenty relies on the code being placed in
/data/Hyperprov. To clone this repository there do the following:

sudo mkdir /data && sudo chmod -R ugo+rw /data
git clone -b "master" https://github.com/Tunstad/Hyperprov.git

Otherwise you can edit the path in docker-compose-cli.yaml.

Swap Partition

The Raspberry Pi devices may run out of memory during execution or start up,
which will cause a crash. You especially need to do this if you want to build your
own docker images. To avoid running out of memory i suggest setting up a swap
partition if not already present. You can check for existing swap either with
top or swapon --show. 1GB of swap should be more than enough, to create
perform the following actions:

sudo fallocate -l 1G /swapfile
sudo dd if=/dev/zero of=/swapfile bs=1024 count=1048576
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
sudo echo �/swapfile swap swap defaults 0 0� >> /etc/fstab

10

Appendix B

Appendix B: Building Hyperledger Fabric v.1.4
to Docker Images for Raspberry Pi on ARM64

Because there seemingly is no guide for building HLF images from source, i
decided to write one, specifically targeted towards Raspberry Pi devices. The
base operating system used to compile the images is Debian buster aarch64
64-bit operating system, with uno�cial support on Raspberry3. The source
image used can be downloaded from the Debian page on RPI3 1. The kernel
used during the successful builds were 4.18.0-3-arm64.

Dependencies

The dependenices for building are similar to those required to run the system
and guides for installing on Rasbperry Pi can be found in the Install section
of Appendix A. Your will need docker, docker-compose and golang(specifically
version 1.11.1 for Fabric v1.4). To compile the javaenv repository you will also
need to install gradle.

sudo apt-get install git curl gcc libc6-dev libltdl3-dev python-setuptools -y

Set gopath with export GOPATH=~/golang and make symbolic link as some of
the files use another path ln -s ~/golang ~/go.

Then you can start downloading repositories to ~/golang/src/github.com/hyperledger/

git clone https://github.com/hyperledger/fabric-baseimage

git clone https://github.com/hyperledger/fabric

git clone https://github.com/hyperledger/fabric-chaincode-java

Building Baseimages

Before you can build baseimages you need to add the line
DOCKER_BASE_aarch64=aarch64/ubuntu:xenial to the Makefile. Then you can
run make -f Makefile or make docker to build baseimage, basejvm and baseos
images. To build third party images like kafka, zookeeper and couchdb you
can run make dependent-images. After building you should see the images in
docker images.

CouchDB error

CouchDB may return an error when built, the solution is to edit the file
fabric-baseimage/images/couchdb/Dockerfile.in to find the line

1https://wiki.debian.org/RaspberryPi3

1

Appendix B

&& ./configure --disable-docs \ and add the following lines after it

&& chmod +w bin/rebar \
&& mv bin/rebar bin/rebar-orig \
&& cd bin \
&& curl -fSL https://github.com/rebar/rebar/wiki/rebar --output rebar \
&& chmod +x rebar \
&& cd .. \

Thanks to Sasha Pesic and YR Sang on the Hyperledger JIRA for solving this. 2

Building Fabric Images

For the resulting images such as peer, orderer, tools and ccenv we need to go to the
fabric folder cloned with git clone https://github.com/hyperledger/fabric.
Here we need to make a few modifications as pointed out in this thread 3. The
main changes are in the core.yaml files, in HLFv1.4 there exist two versions of
this, you can find them using find . -name core.yaml. I chose to edit both,
although it might not be necessary. The patch code is

Gossip related configuration
gossip:

- bootstrap: 127.0.0.1:7051
Use automatically chosen peer (high avalibility) to distr-
ibute blocks in channel or static one
Setting this true and orgLeader true cause panic exit
useLeaderElection: false

@@ -280,7 +279,7 @@ vm:
Config:

max-size: "50m"
max-file: "5"

- Memory: 2147483648
+ Memory: 16777216

The other modification mentioned in dockerutil.go is not present in HLFv1.4
so it might not be required any more. Further if the variable BASEIM-
AGE_RELEASE in Makefile does not match the baseimage built in the above
step, change it accordingly. Now to build you can run make docker to com-
pile all images, or build them individually with make peer peer-docker make
orderer orderer-docker make tools-docker make buildenv make ccenv.

2https://jira.hyperledger.org/browse/FAB-11912
3https://stackoverflow.com/questions/45800167/hyperledger-fabric-on-raspberry-pi-3

2

Appendix B

Bulding binary executables

Now we will build the binary executables like configtxgen, cryptogen and more.
Move to the fabric folder and run make native. The images will appear in
.build/bin and can then be copied to the /bin folder of your Hyperledger Fabric
project repository.

Building Javaenv

The image ‘fabric-javaenv’ is required to run java chaincode in Hyper-
ledger Fabric. It was in version 1.1 separated from the other fabric build
projects into a separate project which can be cloned with git clone
https://github.com/hyperledger/fabric-chaincode-java. You may have
to install Gradle locally aswell with apt-get install gradle. I have not
yet had success with building this image on the arm64 architecture due to
issues with the packages com.google.protobuf and protoc-gen-grpc-java
not beeing available for arm64/aarch64.

Thanks to AbelPelser 4 for writing steps to build javaenv. The prebuilt image can
be downloaded with docker pull apelser/fabric-javaenv:arm64-1.4.1.
Steps to build it can be found here 5.

4https://github.com/AbelPelser
5https://github.com/Tunstad/Hyperprov/issues/14

3

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Definition
	1.2 Methodology
	1.3 Previous Work
	1.4 Hypothesis and Choice of Platform
	1.5 Summary of Contributions
	1.6 Outline

	2 Related Work
	2.1 Provenance with Blockchain
	2.2 Provenance in General
	2.3 Other related projects using blockchain

	3 Hyperledger Fabric
	3.1 Blockchain
	3.1.1 Consensus Protocols
	3.1.2 Smart Contracts

	3.2 Architecture
	3.2.1 Endorsement Policies

	3.3 Docker
	3.4 Node Client Libraries

	4 Architecture and Design
	4.1 Provenance Metadata
	4.2 High-level Architecture
	4.3 Hyperledger Nodes
	4.3.1 Chaincode Operations

	4.4 Off-Chain Storage
	4.5 Client Placement
	4.6 Availability and Consistency with Network Partitions
	4.7 System Specification
	4.7.1 Core Functionality
	4.7.2 Additional Functionality

	5 Implementation
	5.1 Chaincode
	5.1.1 Data Pointers and Checksums
	5.1.2 Dependency Linking
	5.1.3 Identity
	5.1.4 Historic and Range Queries
	5.1.5 Pagination

	5.2 Client Library
	5.2.1 Exposed API
	5.2.2 NPM Library
	5.2.3 REST Client

	5.3 Case Studies
	5.3.1 IoT Sensor Data Client
	5.3.2 Machine Learning Models Client

	5.4 System Configuration
	5.4.1 Compose Files
	5.4.2 Certificate Authority
	5.4.3 Shared Storage

	5.5 Building Docker Images

	6 Evaluation
	6.1 Methodology
	6.1.1 Experimental Setup
	6.1.2 CPU Throttle on 64-bit Raspberry Pi
	6.1.3 Throughput Measurements
	6.1.4 Measuring Resource Consumption

	6.2 Throughput
	6.2.1 Latency

	6.3 Resource Consumption
	6.3.1 Raspberry Pi
	6.3.2 Energy
	6.3.3 Network

	6.4 Edge Computing
	6.5 Model Metadata Tracking

	7 Discussion and Concluding Remarks
	7.1 Discussion
	7.1.1 Findings

	7.2 Future Work
	7.3 Concluding Remarks

	Bibliography
	Appendices
	A Appendix A: System Specifications and Configuration
	B Appendix B: Building Hyperledger Fabric Docker Images

