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15 We report, for the first time, the solemyid Acharax svalbardensis n. sp., from deep-sea 

16 methane seep sites on the western Svalbard margin, 79˚N. This species is rather small and so 

17 far the northernmost representative of its genus. It is identified based on the combination of 

18 diagnostic characters: umbo 27–30% valve length from posterior margin; H/L-ratio ~0.35; 

19 broadly rounded to truncated anterior margin; 15 moderately developed, flat double-ribs with 

20 middle ribs about as strong as posterior ribs. The shells from Acharax svalbardensis n. sp. 

21 were found in sediment cores from two pockmarks at Vestnesa Ridge at ~1200 m water depth 

22 in the Fram Strait off NW Spitsbergen, Svalbard archipelago. Previously, the vesicomyid 

23 bivalves Archivesica arctica and Isorropodon nyeggaensis have been documented from the 

24 same pockmarks. Here, we describe the new solemyid species and report its stratigraphic 

25 occurrence and co-occurrence with the previously described methane seep-associated 

26 vesicomyids. All findings of the vesicomyids and the new solemyid species are restricted to 

27 the time interval ~19,000–15,600 cal. years BP, correlating with Heinrich Stadial HS1. This 

28 period was characterized by cold surface conditions and extensive ice rafting from sea ice and 

29 icebergs in the North Atlantic and Arctic region. Inflow of a warm subsurface current of 

30 Atlantic water below the melt water layer led to higher bottom-water temperatures at the 

31 Svalbard margin than at present. This increase in bottom-water temperature probably allowed 

32 several methane seep-associated bivalve species to settle for a short period of time, namely 

33 the vesicomyids A. arctica and I. nyeggaensis and the new species of the solemyid bivalve 

34 genus Acharax described here.

35

36 Key words: Bivalvia; Chemosymbiotic; Acharax svalbardensis n. sp.; Solemyidae; Heinrich 

37 Stadial HS1; bottom water temperature.

38

39 Introduction
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40

41 Bivalves are common in chemosynthetic habitats such as methane seeps, and include many 

42 chemosymbiotic species within the families and subfamilies Bathymodiolinae, Lucinidae, 

43 Solemyidae, Thyasiridae and Vesicomyidae (Taylor & Glover 2010). Arctic methane seeps, 

44 located off the archipelago of Svalbard (74˚N - 80˚N), have in recent years been targeted for 

45 benthic faunal community studies (Åström et al. 2016, 2017a, b; Hansen et al. 2017; Sen et 

46 al. 2018). Geographically, these studied methane seeps span over a large bathymetric range 

47 along the western Svalbard margin, where active methane seeps have been documented in the 

48 Storfjord Trough at 350–390 m water depth; west of Prins Karls Forland at 350 m water 

49 depth; and at Vestnesa Ridge in the Fram Strait at ~1200 m water depth (Fig. 1). Despite the 

50 many cold seeps and the widespread sea-bed methane seepage around Svalbard, there are only 

51 few records of chemosymbiotically associated bivalves. At Vestnesa, Åström et al. (2017a) 

52 found, that even though the composition of the molluscan fauna at these methane seeps is 

53 markedly different from faunal communities in surrounding non-seep areas, no methane seep-

54 associated chemosymbiotic bivalves were found. Recent investigations however, of marine 

55 gravity cores from ~1200 m water depth at Vestnesa Ridge have revealed that the presence of 

56 putatively chemosymbiotic molluscs was notable in the past at ~19,000–15,600 cal. years BP 

57 (recalibrated herein after Ambrose et al. (2015), Hansen et al. (2017) and Sztybor & 

58 Rasmussen (2017a, b)). These molluscs are the vesicomyid bivalves Archivesica arctica and 

59 Isorropodon nyeggaensis (Ambrose et al. 2015; Hansen et al. 2017). The period of time 

60 correlates to Heinrich Stadial HS1 (~19,000–14,700 cal. years BP e.g., Barker et al. 2009), 

61 when the bottom water in the Nordic seas and at the Svalbard margin was warmer than at 

62 present (e.g. Rasmussen & Thomsen 2004; Rasmussen et al. 2007; Ezat et al. 2014; Sztybor 

63 & Rasmussen 2017a, b) despite it being a climatically cold period in the North Atlantic region 

64 (e.g. Bond et al. 1993; Dansgaard et al. 1993; Hoff et al. 2016). Furthermore, shallower 
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65 methane seeps along the Prins Karls Forland shelf and Storfjord Through (~350 m water 

66 depth) were, at least in the past, inhabited by the seep-associated thyasirid species Rhacothyas 

67 kolgae and Thyasira capitanea (Åström et al. 2017b), which are thought to have colonized 

68 these areas after the deglaciation of the Barents Sea Ice Sheet (after ~15,000 cal. years BP) 

69 (Åström et al. 2017b).

70 Here, we describe one novel fifth methane seep-associated and putatively 

71 chemosymbiotic bivalve species from Svalbard. This species, documented from three gravity 

72 cores collected at Vestnesa Ridge, belongs to the family Solemyidae and occurs in deposits of 

73 HS1-age (Figs 1, 2).

74

75

76 Material and methods

77

78 Specimens of Acharax have been collected from three cores HH15-1241GC, HH13-203GC, 

79 and HH13-211GC. Gravity core HH15-1241GC was sampled at Vestnesa Ridge, eastern 

80 Fram Strait, during a cruise with RV Helmer Hanssen (79°00.214´N, 06°55.904´E, 1205 m 

81 water depth) 24th of July, 2015 (Rasmussen et al. 2015) (Fig. 1). The core was collected from 

82 the deepest part in the centre of an active methane seeping pockmark where acoustic 

83 reflections from bubble flares were detected with single beam echo sounder. After opening of 

84 the core, one of the 10 cm wide core halves was sampled, while the other half was stored as 

85 an archive. The stratigraphic occurrences were noted and the shells sampled after visual 

86 examination of the core and through sieving of sediment samples.

87 Gravity cores HH-13-203GC (79°00.144´N, 06°55.683´E, 1210 m water depth) and HH-

88 13-211GC (79°01.867´N, 06°49.851´E, 1202 m water depth) were taken the 13th and 14th of 

89 October 2013 respectively, from two pockmarks at Vestnesa Ridge during a scientific cruise 
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90 with RV Helmer Hanssen (Mienert 2013) (Fig. 1). These two cores were previously 

91 investigated by Ambrose et al. (2015). Both cores have a diameter of 10 cm. Core HH-13-

92 203GC was collected at an active gas flare site in the same pockmark as cores JM10-335GC 

93 (Sztybor & Rasmussen 2017a) and HH15-1241GC (this study). Core HH-13-211GC was 

94 collected at a nearby pockmark (Fig. 1), for which no acoustic flares were detected during 

95 sampling in 2013. However, flares have previously been documented by Bünz et al. (2012) 

96 and again in 2018 by Rasmussen et al. (2018). Solemyid shell fragments from both cores were 

97 sorted out from sieved sediment samples (1 mm mesh-size) (for details see Ambrose et al. 

98 2015).

99 For core HH15-1241GC, radiocarbon dates were performed on four samples of the 

100 planktonic foraminiferal species Neogloboquadrina pachyderma (Table 1). All dates and 

101 previously published 14C dates have been recalibrated using the Calib7.04 and the Marine13 

102 program and the reservoir age correction of 405 years inherent in the program (Stuiver & 

103 Reimar 1993; Reimar et al. 2013). This age is close to modern reservoir age of the surface 

104 ocean in the open Nordic seas of 400 years with a ΔR of 7±11 years (Mangerud et al. 2006).

105 All shells showed damage from sedimentary compaction and core sampling. It is 

106 uncertain how complete the specimens recovered by sieving were before sampling. Shell 

107 fragments of little taxonomic value were not used. The holotype is broken in several pieces, 

108 but is otherwise intact except for a post-mortem loss of a thin slice of the valve edge at the 

109 anteroventral margin of the right valve (Figs 3, 4).

110

111

112 Results

113

114 Stratigraphy and correlation of cores
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115 Radiocarbon dating of vesicomyids from the shell interval in core HH-13-203GC published 

116 by Ambrose et al. (2015) gave a 14C age of 14,230+50 years BP, which by recalibration 

117 resulted in an age of 16,735±130 cal. years BP (Fig. 2). Two published recalibrated ages from 

118 vesicomyid shells from core HH13-211 gave ages of 17,585±90 and 17,735±95 cal. years BP. 

119 These dates are all typical for Heinrich Stadial HS1. Dates performed on N. pachyderma from 

120 the same two cores indicated too old ages, probably due to contamination from authigenic 

121 carbonate overgrowth, which is a general problem at seep sites (Uchida et al. 2008; Ambrose 

122 et al. 2015). Therefore, we use the characteristic lithological features stacked from 11 slope 

123 records from the western Svalbard margin published by Jessen et al. (2010) to generate a 

124 general stratigraphy of the cores (Fig. 2). All 14C ages from the stacked record of Jessen et al. 

125 (2010) have been recalibrated similarly to the dates from the three cores of this study (see 

126 methods above) (Fig. 2). Furthermore, we recalibrated ages from the previously published 

127 record JM10-335GC, which was correlated closely to the stack record of Jessen et al. (2010) 

128 (Sztybor & Rasmussen 2017a) (same position as HH13-203GC) (Figs 1, 2). Three lithological 

129 units (a mass flow/ice-rafted debris (IRD) layer dating ~24,000 cal. years BP, a laminated 

130 deposit from the Bølling interstadial dating ~15,100–14,600 cal. years BP, and a Holocene 

131 diatom layer dated to ~10,000 cal. years BP) occur in core HH15-1241GC, while cores 

132 HH13-203GC and HH13-211GC do not reach into the mass flow/IRD layer (Fig. 2). From the 

133 correlation based on lithology supported with 14C ages it is clear that the Acharax shells occur 

134 in sediments dating between 19,000 and 15,600 cal. years BP, correlating to Heinrich Stadial 

135 HS1 (Fig. 2). This time-interval is similar as for the previously described vesicomyid bivalves 

136 from Vestnesa Ridge (Ambrose et al. 2015; Hansen et al. 2017; Sztybor & Rasmussen 2017a, 

137 b). By this correlation to known lithology it is also clear that the three upper radiocarbon ages, 

138 which were performed on N. pachyderma from core HH15-1241GC, are too old (Fig. 2; Table 

139 1), similar to the ages reported by Ambrose et al. (2015). 
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140

141 Reposition of type specimens

142 The type specimens are deposited in the geological collections (TSGF-numbers) at the 

143 Tromsø University Museum, NO-9037 Tromsø, Norway.

144

145

146 Systematic descriptions

147

148 Class Bivalvia Linnaeus, 1758

149 Order Solemyoida Dall, 1889

150 Family Solemyidae Gray, 1840

151 Genus Acharax Dall, 1908a

152

153 Type species. Solemya johnsoni Dall, 1891

154 Diagnosis. Solemyidae with ligament external as a high arched band. Full diagnosis is 

155 provided by Kamenev (2009)

156

157 Acharax svalbardensis n. sp.

158 (Figs 3–5)

159

160 Diagnosis. Small to medium-sized Acharax reaching a length of at least 70 mm. Elongate, 

161 rounded subrectangular outline. Umbo 27–30% valve length from posterior margin. 

162 Subparallel dorsal and ventral margins. H/L-ratio of valves ~0.35. Broadly rounded to 

163 truncated anterior margin. Sculpture of 15 moderately developed, flat double-ribs with middle 

164 ribs about as strong as posterior ribs.
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165

166 Derivation of name. ‘svalbardensis’ refers to Svalbard archipelago from where it has been 

167 recorded.

168

169 ZooBank registration. urn: ---- [to be provided in case of acceptance of manuscript]

170

171 Type material. Holotype, crushed but entire shell, TSGF 18407, core HH15-1241 GC, core 

172 depth 248–250 cm; paratype 1, fragment of right valve, TSGF 18408, core HH-13-203 GC, 

173 core depth 242–250 cm; paratype 2, fragment of right valve, TSGF 18409, core HH-13-211 

174 GC, core depth 421–426 cm; paratype 3, broken specimen, TSGF 18410, core HH15-1241 

175 GC, core depth 219–221 cm; paratype 4, broken left valve, TSGF 18411, core HH-13-211 

176 GC, core depth 421–426 cm; paratype 5, fragment of left valve, TSGF 18412, core HH-13-

177 211 GC, core depth 417–421 cm; paratype 6, fragment of left valve, TSGF 18413, core HH-

178 13-211 GC, core depth 405–408 cm; paratype 7, fragment of left valve, TSGF 18414, core 

179 HH-13-211 GC, core depth 421–426 cm; paratype 8, broken right valve, TSGF 18415, core 

180 HH-13-211 GC, core depth 421–426 cm; paratype 9, broken right valve, TSGF 18416, core 

181 HH-13-203 GC, core depth 243–246 cm; paratype 10, fragment of left valve, TSGF 18417, 

182 core HH-13-211 GC, core depth 421–426 cm.

183

184 Type locality. Core HH15-1241GC (79°00.214´N, 06°55.904´E, 1205 m water depth), 

185 Vestnesa Ridge, Fram Strait, NW Spitsbergen, Svalbard archipelago.

186

187 Description. Shell rather small to medium sized, with holotype ~36 mm long and 12.5 mm 

188 high (H/L-ratio = 0.35 (~0.32–0.35 on growth lines of holotype and paratypes, taking into 

189 account that the umbonal valve margin is partly resorbed during shell growth)), and slightly 
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190 deeper at 1/4 valve length from anterior margin of valve than at umbo. Size estimates of 

191 fragments indicate a size range from 20 to 70 mm in length, with the majority between 30 and 

192 50 mm. Broad and flattened umbo located at ~27–30% (measured on growth lines or valve 

193 outline of seven valves) valve length from posterior margin. Shell equivalve with moderately 

194 robust valves. Outline (based on outlines and a study of growth lines of all specimens) 

195 elongate, rounded subrectangular with length about three times of height. Valves somewhat 

196 compressed. Dorsal and ventral margins subparallel. Anterior margin broadly rounded to 

197 truncated perpendicular to dorsal and ventral margins, becoming more truncated with size. 

198 Posteroventral margin narrowly rounded, with gently convex to nearly straight posterodorsal 

199 margin defining an angle of ~155°–160° on the dorsal margin at umbo. Umbo with indistinct 

200 beak. Periostracum yellowish brown, darkening to blackish brown at margins. Sculpture of 15 

201 very flat, widely spaced radial double-ribs, with ten in front and five posterior. The ribs are 

202 strongest developed in the anterior-most part of the shell. A rather narrow, smooth median 

203 area equalling the combined width of one rib and two interspaces separates posterior part 

204 from anterior. Posterior ribs in several specimens darker than the interspaces. Posterior most 

205 part of shell without ribs. 

206 Opisthodetic ligament external and supported by a thickened shell margin. Hinge teeth 

207 absent, but nymph rather prominent and extending over half the distance from umbo to 

208 posterior end. Anterior adductor scar large and subtriangular with evenly rounded 

209 anteroventral margin and nearly straight dorsal and posterior margins. Its length ~15–18% 

210 valve length based on holotype and estimates on paratypes. Anterior pedal retractor scar 

211 deeply impressed, elongate subtriangular and bordering adductor scar posterodorsally. 

212 Posterior adductor scar rather deeply impressed subrectangular and about two-third the size of 

213 the anterior adductor scar or ~10–13% length of valve. The size of muscle scars compared to 

214 shell size seems not to change with growth. External sculpture weakly impressed on interior 
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215 of valves, especially close to valve margins. Pallial line is simple, running close to ventral 

216 valve margin, and connecting medioventrally to adductor scars.

217

218 Distribution. The specimens are from a methane seep environment at 1202–1210 m water 

219 depth on the Vestnesa Ridge in the Fram Strait, NW Spitsbergen, Svalbard. All specimens are 

220 dated to ~19,000–15,600 cal. years BP. At that time the global mean sea level was ~110–80 m 

221 lower than at present (Fairbanks 1989).

222

223 Comparisons. Due to the fragmented state of the specimens, it is problematic to get exact 

224 measurements of maximum size. However, assuming a relatively stable outline of the shells 

225 during growth as supported by the growth-lines, it is possible to get a coarse estimate of the 

226 size range of the available specimens. The 11 specimens show a size range from 20 to 70 mm 

227 in length, with the majority (eight specimens) between 30 and 50 mm in length. Even though 

228 the specimens have rather fragile shells, at least two individuals had conjoined valves. It is 

229 likely that these individuals were found in their original habitat and have not been subject to 

230 transport or size sorting. Furthermore, since the shells of the new solemyid species originate 

231 from three cores penetrating different parts of the methane seeping pockmarks, as well as 

232 representing an interval of several thousand years, we assume that the material represents the 

233 normal size range of the species.

234 Presently there are 9 extant species recognized within the genus Acharax, as well as about 

235 23 fossil species among which most are from the Pacific region. Comparison has been made 

236 with all recognized species, but here we include only the Neogene species. All species 

237 differed in more than just their size. The comparisons with the extant species assigned to the 

238 genus are partly based on the updated information provided by Huber (2010). Some of the 

239 main characteristic differences are presented in Table 2.
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240 Acharax svalbardensis n. sp. is close to the extant NE Atlantic species A. gadirae Oliver, 

241 Rodrigues & Cunha, 2011 found and described from the Gulf of Cadiz off Portugal, Spain and 

242 Morocco. A. gadirae reach a size of 67 mm length, but it differs by a consistently higher H/L-

243 ratio of 0.37 on four mature specimens and 0.37–0.48 on five immature specimens ~10 mm 

244 long (including one illustrated by Rueda et al. (2012)); more pointed anterodorsal corner; 

245 generally more oblique anterior margin with less defined transition to ventral side; and by the 

246 ribs in the middle part of the shell being consistently poorly developed making the smooth 

247 median area seem very broad, whereas on the new species A. svalbardensis they are 

248 consistently as well developed as in the posterior part of the shell (Figs 3–5).

249 Acharax alinae Métivier & Cosel, 1993 from near the Fiji Islands in the South Pacific is 

250 up to 106 mm long and is distinguished by an H/L-ratio of 0.43; umbo 1/3 valve length from 

251 posterior valve margin; 16–17 rather strong ribs, and anterior margin similar to that of A. 

252 gadirae.

253 Acharax bartschii (Dall, 1908b) from the Philippines is up to 191 mm long; with the 

254 umbo at ~36% valve length from the posterior valve margin; and a very wide median area 

255 without radiate ornamentation between the anterior and the posterior ribs.

256 Acharax burica Olsson, 1942 from the Pliocene of Panama is estimated to have been 

257 ~115 mm long and differs by an H/L-ratio of ~0.41; by the broad and flat-topped posterior 

258 ribs, and radiate striation in the broad median area between the anterior and the posterior ribs.

259 Acharax caribbaea (Vokes, 1970) from Louisiana is up to 78.3 mm long. It can be 

260 distinguished on its higher H/L-ratio of ~0.36–0.41; only four to five distinct, low anterior 

261 ribs with many second and third order ribs on top and in between; very poorly developed ribs 

262 in the median part of the shell, and three distinct ribs in the posterior part.
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263 Acharax clarificata Dell, 1995 from New Zealand is up to 88 mm long and differs by an 

264 H/L-ratio of 0.36–0.39; dark reddish brown to blackish periostracum, and ribs weakly 

265 developed in the middle part (see Walton 2015).

266 Acharax doderleini (Mayer, 1861) from the Miocene and Pliocene of Italy is up to 101 

267 mm long and has, according to illustrations by Taviani et al. (2011), an H/L-ratio of 0.28–

268 0.33 (mostly 0.30 or lower); umbo located at ~23–27% valve length from posterior margin; 

269 and has very weak median ribs similar to A. gadirae.

270 Acharax gigas (Kanno, 1960) from the Miocene of Japan is up to 264 mm long and has 

271 very poorly developed ribs in the middle part, while the ribs in the posterior and anterior part 

272 are moderately developed.

273 Acharax grandis (Verrill & Bush, 1898) from the Northwest Atlantic off Virginia is up to 

274 at least 70 mm long, with an H/L-ratio of ~0.36, but has the umbo much closer to the mid-line 

275 of the valves, and a strongly developed nymph supporting the ligament.

276 Acharax johnsoni (Dall, 1891), which presently is thought to include specimens from the 

277 Lower Miocene to Recent of the Pacific region (see Sasaki et al. 2005), is up to 150 mm long 

278 and is morphologically very variable. A molecular study by Neulinger et al. (2006) has shown 

279 that it is a species complex of at least two extant species, probably explaining some of its 

280 large morphological variability. The species complex encompasses many features resembling 

281 those of the specimens from Svalbard externally as well as internally. However, the complex 

282 seems to differ in that the median one to three ribs nearly always are markedly weaker than 

283 the rest. The original specimen of Dall (1891) is 115 mm long and with an H/L-ratio of 0.42. 

284 We believe more differences will be revealed when the morphologic characters of Acharax 

285 johnsoni sensu stricto have been reanalysed. Geographically A. johnsoni and A. svalbardensis 

286 are separated by the American continent and major oceanic current systems.
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287 Acharax muroensis (Natori, 1964) from the Upper Oligocene or lowermost Miocene of 

288 Japan is based on a poorly preserved and broken valve, but is at least 22 mm long. According 

289 to description and illustration, it differs by having strongest ribs around midvalve length, 

290 while posterior and anterior ribs are weak. It also differs in that the posterodorsal margin of 

291 the shell is much more excavated. By tracing growth lines, the umbo is located at ~1/5 valve 

292 length from posterior margin and the anterior outline resembles that of A. gadirae.

293 Acharax patagonica (Smith, 1885) from the SE Pacific off Chile is up to 62 mm long and 

294 can be distinguished on its elongate suboval outline  and weaker developed or absent posterior 

295 and middle ribs.

296 Acharax prashadi (Vokes, 1955) (including A. eremita in Kuznetsov & Shileyko 1984) 

297 from the West Indian Ocean and Gulf of Aden is up to 100 mm long. It has about the same 

298 H/L-ratio of 0.33–0.36, but is distinguished by the poorly developed ribs, especially in the 

299 entire middle part of the valves; the dark colour of all ribs; and by that the umbo is slightly 

300 closer to the posterior margin, at ~22–27% valve length.

301 Acharax subquadrata (Foresti, 1879) from the Miocene of Italy is at least 86 mm long, 

302 and differs by an H/L-ratio of ~0.38–0.41, umbo at 24% valve length from posterior margin; 

303 and a very angular outline (see Taviani et al. 2011).

304 Acharax subventricosta Krishtofovich in Gladenkov et al. (1984) from the Neogene of 

305 Western Kamchatka is ~50 mm long and is distinguished by having a broader rounded 

306 posterior margin; a greater H/L-ratio of ~0.4; and umbo located at ~1/3 valve length from 

307 posterior margin.

308  Acharax ventricosa (Conrad, 1849) from the Miocene and Pliocene of Western USA is 

309 more than 100 mm long and has an H/L-ratio of ~0.35–0.44, and an anterior margin very 

310 similar to that of A. gadirae (see Moore 1963).
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311 Acharax yessoensis (Kanehara, 1937) from the Miocene of Japan is 84 mm long and 

312 differs by its H/L-ratio of 0.31; valve anterodorsally pointed, and anterior margin goes almost 

313 continuously into ventral margin.

314 Acharax yokosukensis Kanie & Kuramochi, 1995 from the Miocene of Japan is exceeding 

315 295 mm in length, has an umbo situated between 39–48% valve length from posterior valve 

316 margin; an H/L ratio of 0.39–0.44 and has only 14 ribs (see Amano & Ando 2011).

317

318

319 Discussion

320

321 Spatial and temporal distribution of Acharax svalbardensis n. sp.

322 To present date, there are no records of live specimens of Acharax svalbardensis n. sp., nor 

323 any other living methane seep-associated chemosymbiotic bivalve species in the Svalbard-

324 Barents Sea region, as well as in the Arctic Ocean and the Nordic seas, except thyasirids 

325 (Rachor 1997; Gebruk et al. 2003; Krylova et al. 2011; Decker & Olu 2012; Åström et al. 

326 2016; Åström et al. 2017a, b; Hansen et al. 2017; Sen et al. 2018). Therefore it appears that 

327 the species is absent from the area in Modern times and possibly extinct. Acharax 

328 svalbardensis n. sp. seems restricted to Heinrich Stadial HS1 ~19,000–15,600 cal. years BP, 

329 when cold surface conditions prevailed in the North Atlantic and Arctic region (Bond et al. 

330 1993; Fronval et al. 1995; Cronin et al. 2012; Ezat et al. 2016; Hoff et al. 2016). This is the 

331 same pattern that was observed by Hansen et al. (2017) for the co-occurring methane seep-

332 associated vesicomyid bivalves Archivesica arctica and Isorropodon nyeggaensis at Vestnesa 

333 Ridge. Hansen et al. (2017) speculated that the presence of the vesicomyids in the area, 

334 including similar old specimens at the Gakkel Ridge in the Arctic Ocean, was made possible 

335 by the short-lived increase in bottom-water temperature due to a subsurface current of 
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336 northward advection of Atlantic water below the cold meltwater layer, which led to >2°C 

337 warmer bottom-water temperatures than in Modern times (Rasmussen et al. 2007, 2014; Ezat 

338 et al. 2014, 2016; Sztybor & Rasmussen 2017a, b). Presently, at Vestnesa Ridge, where the 

339 new species A. svalbardensis n. sp. is found, bottom water temperatures are ~-0.9° to -0.8°C 

340 (Aagaard et al. 1985; Åström et al. 2017a). If bottom water temperature was the restricting 

341 factor of the distribution of A. svalbardensis n. sp. similarly as for the vesicomyids, live 

342 communities could be found at deep-sea methane seeps at lower latitudes, if still extant.

343

344 Climatic controls on the genus Acharax through time

345 In his treatise on fossil and extant solemyids, Vokes (1955) found evidence that the 

346 bathymetric distribution of the genus Acharax was controlled by temperature, with the deepest 

347 occurrences of the individual species found near the Equator. There have been an increasing 

348 number of reported sites with living Acharax spp., which has made the general picture of their 

349 distribution more complex. Nonetheless, it seems that there is a trend of generally shallower 

350 both minimum and maximum depths farthest away from the Equator, both at species level and 

351 within the widespread A. johnsoni species complex (see e.g. Vokes 1955 and Kamenev 2009). 

352 This distribution could indicate that Acharax has a preferred temperature range. Similarly, 

353 Taylor & Glover (2010) noted that the geographical ranges of extant species of the family 

354 Solemyidae are limited to tropical to temperate latitudes. Live Acharax specimens have not 

355 been reported from farther south than off South America at 53°S or been observed north of 

356 60°N in the northern Pacific (Huber 2015). The geographical distribution of fossil Acharax 

357 species shows that the northernmost species previously reported is the Eocene Acharax 

358 tigilensis (Krishtofovich in Devjatilova & Volobueva 1981) from the Siberian Anadyr River 

359 at ~65°N, while the southernmost report is of the Oligocene Acharax belenensis Olsson, 1931 

360 in Peru, at ~5°S. More recently, Amano & Ando (2011) observed that the largest species 
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361 within both the chemosymbiotic bivalve taxa Acharax and Lucinidae occurs in geological 

362 periods or regions with warmer climates, and suggested that size is more dependent on 

363 temperature and food supply than water depth. However, while we agree with this suggestion 

364 by reviewing existing literature, the size of Acharax-species is in geological perspective 

365 evidently also increasing as a result of evolution. Despite several warmer periods before the 

366 Miocene (e.g., Zachos et al. 2001) there are hitherto no reports of specimens exceeding 90 

367 mm length prior to the Miocene, while there are many reports of this size class from the 

368 Miocene and after. All these observations on temperature dependence corresponds well with 

369 that Acharax svalbardensis n. sp. is a relatively small member of the genus and also supports 

370 the hypothesis that temperature is an important limiting factor for the distribution of the 

371 species.

372

373 Faunal characteristics of deep-sea Arctic methane seeps

374 Present day Modern macrofaunal communities from deep-sea methane seeps at high northern 

375 latitudes are substantially different from those of comparable non-seep habitats and dominated 

376 by chemosymbiotic worms (Siboglinidae) (e.g. Gebruk et al. 2003; Vanreusel et al. 2009; 

377 Krylova et al. 2011; Åström et al. 2017a). However, most species from these communities, 

378 such as the abundant Thyasira aff. dunbari (an undescribed bivalve species commonly 

379 assigned to the North American T. dunbari), are not restricted to the seep habitats (Gebruk et 

380 al. 2003; Åström et al. 2017a). In a similar manner, the still poorly investigated Antarctic 

381 region seems to lack well-developed seep-endemic chemosymbiotic communities even though 

382 vesicomyid shell layers show such existed in the past (see German et al. 2011). In contrast, 

383 lower latitude seep and vent systems from >200 m water depth sustain well-developed 

384 chemosymbiotic communities, characteristically inhabited by vent and seep molluscs such as 

385 Vesicomyidae, Lucinidae, Solemyidae and small gastropods (e.g. Provanna) (Sahling et al. 
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386 2003; Sweetman et al. 2013; Hryniewicz et al. 2015a; Levin et al. 2016). The Modern 

387 Molluscan macrofauna at the Vestnesa Ridge methane seeps is a typical Arctic deep-water 

388 methane seep fauna comprised of opportunistic non-seep species (Gebruk et al. 2003; Åström 

389 et al. 2017a). 

390 Two main hypotheses have been proposed as explanations for the lack of the lower 

391 latitude deep-water seep-, and vent endemic mollusc faunas in the Arctic region (Pedersen et 

392 al. 2010; Sweetman et al. 2013; Hansen et al. 2017); 1) the Greenland-Scotland Ridge forms 

393 a migration barrier; and/or 2) the sub-zero (°C) bottom-water temperatures in the Arctic 

394 region are too cold for characteristic seep-, and vent- mollusc faunas to compete with the 

395 conventional non-seep fauna in the region. Since both vesicomyids and solemyids inhabited 

396 Vestnesa Ridge during HS1, and that vesicomyids also occur in deposits of similar age at the 

397 Gakkel Ridge in the Arctic Ocean, as well as in deposits at the Nyegga methane seep in the 

398 Norwegian Sea (Rachor 1997; Krylova et al. 2011; Hansen et al. 2017; herein), we can rule 

399 out the first hypothesis. This leaves restriction by temperature as the most likely hypothesis 

400 for their past presence and current apparent absence in the region. So far we have noted, all 

401 documented live occurrences of typical chemosymbiotic deep-sea seep molluscs are from 

402 places with bottom water temperatures of >1°C at least during summer, even in the East 

403 Russian Sea of Okhotsk (e.g. Tomczak & Godfrey 1994; Sahling et al. 2003; Kamenev 2009, 

404 2017). Seep-associated bivalves have been present at Svalbard methane seeps as far back as 

405 the Late Jurassic and Early Cretaceous (Hryniewicz et al. 2014, 2015b). However, these 

406 communities evolved during very different and much warmer conditions and at a more 

407 southern palaeogeographic position compared to today’s Arctic environment (Zakharov et al. 

408 2002). According to Plaza-Faverola et al. (2015) methane seepage at Vestnesa Ridge has been 

409 active for the past 2.7 million years, in principle leaving enough time for Arctic 

410 chemosymbiotic seep communities to evolve. The fact that no such communities are observed 
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411 today leads us to infer that seepage may have been insufficient or dormant over periods of 

412 time. 

413

414 Bathymetric gradients of seep faunas off Svalbard compared to the Sea of Okhotsk

415 Along the Svalbard-Barents Sea margin several present-day methane seeps emits methane at 

416 water depths between 80–400 m, which is near the predicted upper depth limit of the gas 

417 hydrate stability-zone (Westbrook et al. 2009; Sahling et al. 2014; Portnov et al. 2016; Mau et 

418 al. 2017). The benthic community-composition at these active seeps compared to the deeper 

419 Vestnesa Ridge shows a substantial bathymetric gradient. At seep-sites at the Svalbard deep 

420 shelf/upper slope, the faunas are mainly dominated by chemosymbiotic frenulates 

421 (Siboglinidae) and the small thyasirid bivalve Mendicula cf. pygmaea (Åström et al. 2016). 

422 Empty shells reveal that in the past these seep-sites also hosted the seep-associated larger 

423 thyasirids Thyasira capitanea and Rhacothyas kolgae described by Åström et al. (2017b). In 

424 comparison, the most dominant organisms at the active deep-sea seeps at Vestnesa Ridge are 

425 the crustacean Tanaidacea, Siboglinidae, Oligochaeta and Thyasira aff. dunbari (Gebruk et al. 

426 2003; Åström et al. 2017a). In the past, Vestnesa Ridge furthermore hosted colonies of 

427 vesicomyids and solemyids (Hansen et al. 2017; this study). 

428 Sahling et al. (2003) investigated seep-community composition along a bathymetric 

429 gradient in the Sea of Okhotsk. They found that seeps at the outer shelf did not host any 

430 obvious seep-associated molluscs, however, at the upper slope seeps (370–380 m water depth) 

431 empty shells of the seep-associated large thyasirid Conchocele bisecta as well as from 

432 Acharax were observed together with live siboglinids Siboglinum plumosum. The 

433 intermediate slope seeps (675 m water depth) hosted shell beds of Conchocele bisecta and 

434 vesicomyid bivalves, where also a few live C. bisecta were recorded. At the deep-sea seeps 

435 (1450–1600 m water depth), live vesicomyids together with siboglinids were found. 
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436 Despite many differences in faunal composition at species and genus level between the two 

437 regions, the Sea of Okhotsk and the Svalbard margin, there are striking similarities at higher 

438 taxonomic levels. In both regions, there is a bathymetric shift in faunal composition from: 1) 

439 the shelf seeps (<250 m) with no documented chemosymbiotic metazoans, though microbial 

440 patches are present; 2) upper slope seeps (250–450 m) with faunal communities where 

441 siboglinids and at least empty shells of large seep-associated thyasirids occur; 3) the deep-

442 water seeps (1200–1600 m) where siboglinid-vesicomyid communities are noticeable (at 

443 present day in the Sea of Okhotsk and in the past, also at Vestnesa Ridge). 

444 Since Sahling et al. (2003) found shells of vesicomyids and Acharax on the slope, where 

445 bottom water temperature can oscillate between -1.7° and 2°C, they excluded temperature as 

446 the reason for the absence of vesicomyids from shallower waters in the Sea of Okhotsk. 

447 Instead they suggested low oxygen levels, fine-grained sediments and low abundance of 

448 predators as likely factors controlling the distribution. It is likely that such factors also have 

449 influenced the distribution of the observed chemosymbiotic seep species around Svalbard 

450 (Pedersen et al. 2010; Schander et al. 2010; Sweetman et al. 2013; Åström et al. 2016; 2017a, 

451 2017b; Sen et al. 2018). However, as discussed above, the oceanographic changes and 

452 bottom-water temperature increase during HS1 most likely played a major role for the 

453 establishment and duration of the seep-associated mollusc faunas at Vestnesa Ridge and at 

454 Gakkel Ridge in the Arctic Ocean. The fact that only few chemosymbiotic taxa are 

455 documented at methane seeps in the Arctic today despite their presence in the past indicates 

456 that both bottom water masses and temperature might be important restrictions on the 

457 distribution of such biota (Åström et al. 2016; 2017a; Decker & Olu 2012; Paull et al. 2015, 

458 Hansen et al. 2017; Savvichev et al. 2018). 

459

460
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461 Summary and conclusions 

462

463 We documented a novel Arctic bivalve, Acharax svalbardensis n. sp., present in sediment 

464 cores from active methane seeping pockmarks at Vestnesa Ridge off Svalbard, 79˚N. The new 

465 species, Acharax svalbardensis n. sp., co-occurred with recently described vesicomyids, dated 

466 to ~19,000–15,600 cal. years BP. This period of time corresponds to the Heinrich Stadial 

467 HS1, where surface water conditions were colder and bottom water conditions warmer (up to 

468 2˚C warmer) than today. We suggests that the presence of the new species and its restricted 

469 stratigraphic distribution is linked to the warmer bottom water conditions in the North 

470 Atlantic and Arctic region during HS1.

471
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784 Black circles mark eleven core sites from Svalbard western margin used in creating a stack 

785 record of stratigraphy for the western Svalbard margin shown in Figure 2 (see text for 

786 explanation and Jessen et al. (2010)). C: Enlargement of Vestnesa seepage area showing 

787 location of the cores from which Acharax svalbardensis n. sp. was collected; red star marks 

788 location of type core HH15-1241GC; red circles mark other cores with Acharax svalbardensis 

789 and vesicomyid bivalves (this study; Ambrose et al. 2015; Sztybor & Rasmussen 2017a, b). A 

790 and B modified from Jessen et al. (2010); C modified from Sztybor & Rasmussen (2017a) 

791 based on data from Bünz et al. (2012).

792

793 Figure 2. Stratigraphy, calibrated 14C ages and correlation of studied cores with previously 

794 published records. The stack record is modified from Jessen et al. (2010). Ages in italics are 

795 transferred ages from other cores (see Jessen et al. 2010). Core JM10-335GC is modified 

796 from Sztybor & Rasmussen (2017a) and cores HH13-211GC and -203GC are modified from 

797 Ambrose et al. (2015). Column to the left shows known event stratigraphy of the western 

798 Svalbard margin (e.g., Rasmussen et al. 2007; Jessen et al. 2010). Abbreviations: H, 

799 Holocene interglacial; YD, Younger Dryas stadial; A, Allerød interstadial; B, Bølling 

800 interstadial; H1, Heinrich event H1; LGM, Last Glacial Maximum. All ages are calibrated 14C 
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801 ages (re-calibration of all new and published ages using Calib7.04 and Marine13 programs; 

802 see text for explanation). Ages marked with asterisks are considered as too old due to 

803 contamination by authigenic carbonates.

804

805 Figure 3. Drawings of the reconstructed holotype of Acharax svalbardensis n. sp. A, Left 

806 valve exterior; B, Left valve interior; C, Right valve exterior; D, Right valve interior. 

807 Abbreviations: aa, anterior adductor scar; apr, anterior pedal retractor scar; lig, ligament; ny, 

808 nymph; pa, posterior adductor scar; pl, pallial line. Dashed line in C and D marks outline of 

809 broken off valve margin.

810

811 Figure 4. Acharax svalbardensis n. sp. A–F. Holotype (TSGF 18407). A, Exterior of left 

812 valve; B, Interior of left valve; C, Dorsal view of left valve; D, Dorsal view of umbonal part 

813 of right valve; E, Exterior of right valve; F, Interior of right valve. Core HH15-1241GC, 

814 Vestnesa Ridge, Fram Strait, NW Spitsbergen, Svalbard archipelago, 79°00.214´N, 

815 06°55.904´E, water depth 1205 m.

816

817 Figure 5. Acharax svalbardensis n. sp. A, B. TSGF 18408, RV fragment. A, Exterior; B, 

818 Interior. C, D. TSGF 18409, RV fragment. C, Exterior; D, Interior. E–G. TSGF 18410, LV. 

819 E, Exterior; F, Interior; G, dorsal view. H–I. RV of same specimen. H, Exterior; I, Interior. J, 

820 K. TSGF 18411, LV. J, Exterior; K, Interior. L, M. TSGF 18412, LV. L, Exterior; M, 

821 Interior. N–O. TSGF 18413, LV fragment. N, Exterior; O, Interior. P, Q. TSGF 18414, LV 

822 fragment. P, Exterior; Q, Interior. R, S. TSGF 18415, RV. R, Exterior; S, Interior. T, U. 

823 TSGF 18416, RV. T, Exterior; U, Interior. V, W. TSGF 18417, LV. V, Exterior; W, Interior.
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Table 1. 

Depth
(cm)

Material Laboratory
Code

Age
(14C a yr BP)

Age
(cal. yr BP)

199.5 N. pachyderma UBA-36332 17,270 ±     82 20,347 ±     127
244.5 N. pachyderma UBA-36333 17,385 ±     77 20,481 ±     115
329.5 N. pachyderma UBA-36344   23,231 ±    136 27,205 ±     155
494.0 N. pachyderma UBA-36345 27,341 ±    238 31,020 ±     144
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Table 2

Period L (mm) H/L Umbo from 
posterior margin 

(%L)

Ribs Strength of middle ribs Anterodorsal corner

Acharax svalbardensis n. sp. Pleistocene ~70 ~0.35
(0.32–0.35)

27–30 15 about as posterior rounded to 
perpendicular

Acharax alinae Métivier & Cosel, 1993 Recent 106 0.43 ~33 16–17 about as posterior generally pointed
Acharax bartschii (Dall, 1908b)* Recent 191* 0.32* 36* 14–15* absent* pointed*
Acharax burica Olsson, 1942* Pliocene ~115* 0.41* ~33* 20–21* about as posterior* ?
Acharax caribbaea (Vokes, 1970)* Recent 78 0.36–0.41 ~27 14–15 poorly developed perpendicular to 

slightly pointed
Acharax clarificata Dell, 1995 Recent 88 0.36–0.39 ~28–30 ~16 poorly developed rounded to 

perpendicular
Acharax doderleini (Mayer, 1861)* Miocene-

Pliocene
101 ~0.30

(0.28–0.33)
23–27 ? poorly developed generally pointed

Acharax gadirae Oliver, Rodrigues & 
Cunha, 2011

Recent 67 ~0.37
(0.37–0.48)

25–32 15–16 poorly developed generally pointed

Acharax gigas (Kanno, 1960) Miocene 264 0.25–0.35 22–35 ? poorly developed rounded
Acharax grandis (Verrill & Bush, 1898) Recent >70 ~0.36 28 16–19 weaker developed rounded to 

perpendicular
Acharax johnsoni (Dall, 1891)* species 
complex

Miocene-
Recent

150
(holotype 115)

0.42 
(holotype)

23–30 14–15 generally weaker variable

Acharax muroensis (Natori, 1964)* Oligocene-
Miocene

>22* ? ~20* ? strongest* pointed*

Acharax patagonica (Smith, 1885)* Recent 62 ~32–35 ~25–28 ~17–18 absent or weaker 
developed

rounded

Acharax prashadi (Vokes, 1955) Recent 100 0.33–0.36 22–27 9–? absent or poorly 
developed

slightly pointed

Acharax subquadrata (Foresti, 1879)* Miocene 86 0.38–0.41 ~24 ? about as posterior angular, slightly 
pointed to 
perpendicular

Acharax subventricosta Krishtofovich in 
Gladenkov et al. (1984)*

Neogene ~50* ~0.4* ~33* ? ? rounded to 
perpendicular*

Acharax ventricosa (Conrad, 1849) Miocene-
Pliocene

>100 ~0.35–0.44 ~29–36 ? poorly developed generally pointed

Acharax yessoensis (Kanehara, 1937)* Miocene 84* 0.31* ~29* ? poorly developed* pointed*
Acharax yokosukensis Kanie & Kuramochi, 
1995

Miocene >296 0.39–0.44 39–48 11–14 finer and weaker rounded to pointed
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Figure 1. Map showing location of Vestnesa Ridge. A: Overview map of the Nordic seas indicating main 
surface currents. B: Map of Svalbard archipelago with red squares marking known methane seep areas of 

Vestnesa Ridge, off Prins Karls Forland and Storfjord Trough. Black circles mark eleven core sites from 
Svalbard western margin used in creating a stack record of stratigraphy for the western Svalbard margin 

shown in Figure 2 (see text for explanation and Jessen et al. (2010)). C: Enlargement of Vestnesa seepage 
area showing location of the cores from which Acharax svalbardensis n. sp. was collected; red star marks 

location of type core HH15-1241GC; red circles mark other cores with Acharax svalbardensis and vesicomyid 
bivalves (this study; Ambrose et al. 2015; Sztybor & Rasmussen 2017a, b). A and B modified from Jessen et 

al. (2010); C modified from Sztybor & Rasmussen (2017a) based on data from Bünz et al. (2012). 
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Figure 2. Stratigraphy, calibrated 14C ages and correlation of studied cores with previously published 
records. The stack record is modified from Jessen et al. (2010). Ages in italics are transferred ages from 

other cores (see Jessen et al. 2010). Core JM10-335GC is modified from Sztybor & Rasmussen (2017a) and 
cores HH13-211GC and -203GC are modified from Ambrose et al. (2015). Column to the left shows known 

event stratigraphy of the western Svalbard margin (e.g., Rasmussen et al. 2007; Jessen et al. 2010). 
Abbreviations: H, Holocene interglacial; YD, Younger Dryas stadial; A, Allerød interstadial; B, Bølling 
interstadial; H1, Heinrich event H1; LGM, Last Glacial Maximum. All ages are calibrated 14C ages (re-

calibration of all new and published ages using Calib7.04 and Marine13 programs; see text for explanation). 
Ages marked with asterisks are considered as too old due to contamination by authigenic carbonates. 
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Figure 3. Drawings of the reconstructed holotype of Acharax svalbardensis n. sp. A, Left valve exterior; B, 
Left valve interior; C, Right valve exterior; D, Right valve interior. Abbreviations: aa, anterior adductor scar; 

apr, anterior pedal retractor scar; lig, ligament; ny, nymph; pa, posterior adductor scar; pl, pallial line. 
Dashed line in C and D marks outline of broken off valve margin. 
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Figure 4. Acharax svalbardensis n. sp. A–F. Holotype (TSGF ----1). A, Exterior of left valve; B, Interior of left 
valve; C, Dorsal view of left valve; D, Dorsal view of umbonal part of right valve; E, Exterior of right valve; 

F, Interior of right valve. Core HH15-1241GC, Vestnesa Ridge, Fram Strait, NW Spitsbergen, Svalbard 
archipelago, 79°00.214´N, 06°55.904´E, water depth 1205 m. 
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Figure 5. Acharax svalbardensis n. sp. a, b. TSGF ----2, RV fragment. a. Exterior. b. Interior. c, d. TSGF ----
3, RV fragment. c. Exterior. d. Interior. e–g. TSGF ----4, LV. e. Exterior. f. Interior. g. dorsal view. h–i. TSGF 
----5, RV. h. Exterior. i. Interior. j, k. TSGF ----6, LV. j. Exterior. k. Interior. l, m. TSGF ----7, LV. l. Exterior. 

m. Interior. n–o. TSGF ----8, LV fragment. n. Exterior. o. Interior. p, q. TSGF ----9, LV fragment. p. 
Exterior. q. Interior. r, s. TSGF ----10, RV. r. Exterior. s. Interior. t, u. TSGF ----11, RV. t. Exterior. u. 

Interior. v, w. TSGF ----12, LV. v. Exterior. w. Interior. 
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